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Abstract

The testing of optimization algorithms requires the running of

problems with ill-conditioned Hessians. For constrained problems,

it is the projection of the Hessian onto the space determined by

the active constraints that must be ill conditioned. In this note

it is argued that unless the Hessian and the constraints are

constructed together, the constrained Hessian is likely to be

well conditioned. The approach is to examine the effects of

random constraints on a singular Hessian.
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Constrained Definite Hessians

Tend to be Well Conditioned

G. W. Stewart

In testing and comparing optimization algorithms, it is important

to include test problems for which the Hessian matrix of the objective

function is ill conditioned, both at the optimum point and away from

it. For unconstrained optimization this is easy enough to do, and prob-

lems with ill-conditioned or even singular Hessians appear frequently

in the literature.

For constrained optimization problems, however, the operative con-

dition number is usually that of the projection of the Hessian onto the

space of active constraints (or the tangent space in the case of non-

linear constraints). It is the purpose of this note to show that such

a projection will tend to be well conditioned, even when the underlying

Hessian is singular.

It is easy to see that projection can only improve the condition of

a definite matrix. Specifically, for a positive definite matrix H of

order n, define the condition number K(H) by

(1) c() - Xmx/Amin

where Amx and mn are the largest and smallest eigenvalues of H

(n.b. this definition is appropriate only for positive definite matrices;

it does not generalize to indefinite or nonsyimntric matrices). A set of

constraints may be specified by a set {ql, q2, ... ' qp} of independent
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vectors, which, without loss of generality, may be taken to be ortho-

normal. The constraint space is then the orthogonal complement of the

space spanned by qlq 2,...,qp. Thus if we set

Q, = (ql'q2 '...9qp)

and determine an orthogonal matrix

(2) Q = (Q1 Q2)

whose first p columns are the vectors q,,q2 ... qp, then the con-

straint space will be spanned by the columns of Q2 "

The constrained Hessian is

(3) H - QTHQ2  .

It follows from standard results of matrix theory [2] that

andj

XmaxH C) zax(H) n-

c -

Hence from (l) space cni

Moreover, equality will be attained only if the constraint space contains
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eigenvectors of R corresponding to X (H) and X (H). This suggestsmax min

that unless Q1 is specially chosen, c(H c ) can be appreciably smaller

than i(H). The rest of this paper is an attempt to give some quantitative

substance to this conjecture by examining the behavior of K(H c ) when

the constraint space is chosen at random.

For definiteness we shall consider the singular matrix

In-1l
(4) H - ,

where Iln_ is the identity matrix of order n-l. We shall determine a

randomly constrained Hessian by choosing a random orthogonal matrix Q

from the Haar distribution on the group of orthogonal matrices [1], par-

titioning Q as in (2), and defining Hc by (3). The distribution

from which Q is chosen is analogous to the uniform distribution. Coi-

putationally such a Q may be obtained by orthogonalizing a set of n

vectors whose components are identically distributed, independent, normal

random variables [3]. In particular, any row or column of such a matrix

has the distribution of a normalized vector of identically distributed,

independent, random normal variables.

The principal result is contained in the following theorem.

Theorem. Let Q be a random orthogonal matrix from the Haar distri-

bution on the group of orthogonal matrices. Let Q be partitioned as in

(2), where Q, has p columns. Let H be defined by (4) and
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Hc  by (3). If p<_n-2, then

(5) K(H) =1 + F
p

where F has an F-distribution with n-p and p degrees of freedom.

Proof. Since Q2 has at least two colums,

max (H) =

Thus the problem becomes that of determining the distribution of X mn(HC) .

We shall use the characterization

x,(H .in xTH
min c)"I x I1-

where 011 denotes the usual Euclidean norm.

Let Q be partitioned in the form

p n-p

Q 'l1 Q12]

T Tq 21  q 22.

Then H = 2 Hence

x (Hmn xT QT min I x12
min("c ) I* " 1 2 Q12 ' i " II11 * 1 Q12

(6)

mm - T 2a min i- (q2 2 x)xI I-
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the last inequality following from the fact that the vector

I°lIT
q2 2 J

has norm one. The last expression in (6) is clearly minimized

vhen x - q22/ 1q22 I
'  in which case

I ,,, . -m. -( q22  112 _ q21  f2

since q ,. q 2 1

Let y be an u vector of identically distributed, independent

normal random variables, and partition yT = (y , yT). where Yj

is a p-vector. Then by the observations made before the theorem,

X n(Hc ) has the distribution of

11 "y 11 2  -Y 1 2

ly |12 Iyj12 + IY2 12

Thus sc(H) - 1/A min(H c ) has the distribution of

ljy 12 + |Y2 32 P- 
1

Y 2

ly, 12 p (n-p) yj 12

* +" |RF=I -pF
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where F has an F-distribution with n-p and p degrees of

freedom.

Note. The proof of the theorem can easily be extended to cover

the case Hc - diag(X 13 x2 ,... XUn1,0) where X1 > > ... > Xn-l > 0.

For this matrix

K H ) < 1 + n-p F
- rn_ 1  P

where again F has an F-distribution with p and n-p degrees of

freedom. We do not pursue this embellishment here because the simpler

case (4) adequately illustrates how likely projection is to produce

a well-conditioned matrix.

The well known properties of the F distribution along with (5)

can be used to determine what is a probable value of the condition number

of Hc . Table 1 gives values of p such that for n I p+2

(7) P{ic(H ) _ 1 + (n-p)aI > 0.99

Thus for p - 3, we shall observe K(Hc) < 1 + 9.4(n-3) at least ninety

nine percent of the time, and n will have to be very large indeed to

produce the degree of ill-conditioning that would seriously discommode a

well constructed algorithm.

It would be wrong to conclude from this analysis that ill-conditioned

constrained Hessians do not occur in practical problem. Nature has a way



Tab le ~1

IAfrom (7)

p

1 6370

2 49.8

3 9.40

4 3.80

5 2.10

6 1.35

7 0.960

8 0.726

9 0.576

10 0.471
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of confounding naive randomness assumptions by behaving in a distinctly

nonrandom and frequently perverse manner. However, to the extent that

ill-conditioned constrained Hessians occur in practice, to that extent

there is a need for test problems with such Hessians; and the above analysis

has implications for the construction of these problems. Namely, it is

not enough to choose an objective function with an ill-conditioned Hessian

and hope that unsystematically chosen constraints will preserve the ill-

conditioning; rather the constraints and the Hessian must be constructed

together.
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