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ABSTRACT

>NScheduling logistics operations in a multi-echelon production

system requires planning and coordination of production and transpor-

tation decisions. In this paper we show how these decisions can be

made in an economical manner for a real situation involving a) limited

capacity production lines in an automotive component plant, b) a A

limited shipping capability at the component plant, and c) meeting

shipping requirements on time for several automobile assembly plants

over the planning horizon.

"The nature of the production process and the rail car loading

facility allow an aggregation of decisions concerning products to

decisions concerning rail car units, reducing substantially the dimen-

sionality of the problem.

The resulting model is a special case of a multi-commodity network

flow problem. A two-phase heuristic solution procedure is developed,

first for weekly aggregate demand and then for shift-by-shift aggregate

demand within the first week of the horizon. Finally, the straight-

forward details of disaggregating into production and shipping schedules

for products are presented.
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I. INTRODUCTION

Scheduling logistics operations in a multi-echelon production system

requires planning and coordinating production and transportation deci-

sions for all facilities in a system. Our goal in this paper is to show

how these decisions can be made in an actual multi-facility system

operated by a large automotive manufacturer. The system consists of a

component plant, at which products are produced, and a set of destina-

tions, at which automobiles are assembled. An assembly schedule for

automobiles is specified in advance for each week in the planning horizon

for each of the destinations. In the real environment, the planning

horizon is normally 12 weeks, and the assembly schedule is known and is

not the same for each week of the horizon. The component plant is

required to ship the correct mix of products to each destination to

meet the automobile assembly schedule on time considering rail transit

times between the component and assembly plants.

The component plant produces products on independent production

lines. Certain products can be produced on each line. Only one product

is produced on a given line at a time; different or the same products

can be produced on different lines at the same time. Changing produc-

tion from one product to another on a given line is accomplished quickly

and at virtually zero cost, and therefore can be ignored. This occurs

because the fixtures moving down a line are the same for each product

produced on the line, and at each station the parts and tools exist for

each product produced on the line. Production lines are designed to

produce products used in the assembly of a limited number of types of

automobiles. These production lines can be divided into separate groups
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so that lines in one group are all capable of producing the same range

of products; however, any product produced in the group cannot be

produced on a production line in any other group. Only certain types

of cars are assembled at each destination. Furthermore, the manner

in which products have been assigned to production lines corresponds to

the products used at the destinations. The destinations can be divided

into groups such that a) each product produced in a group of production

lines goes to only one group of destinations, and b) the products used

at any destination are produced on only one group of production lines.

This relationship is illustrated in Figure 1.

The products produced on all lines perform roughly the same function

on each type of automobile. The production lines are designed to take

advantage of the peculiarities of product manufacture that are dictated

by the differences in the design of the automobiles. Due to the simi-

larity in their basic design, the cost to manufacture each product on

the same group of production lines is essentially the same.

The amount of a product produced on a particular production line

is normally measured in container loads. The time required to produce a

container ioad is essentially the same for all products. Once produced,

the individual units are placed in containers which are transported to

a warehouse for temporary storage prior to being shipped.

Each week in the planning horizon is subdivided into shifts. During

each shift container loads of different products are loaded into rail

cars, which are then sent to various destinations. A rail car is never

partially loaded; only full rail cars are shipped. For any given des-

tination, any mix of products can be loaded into a rail car. Also, any
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integral number of rail cars can be loaded for a particular destination,

with no savings in freight cost for multiple rail car' dispatching. How-

ever, one rail car goes to one and only one destination.

Assembly schedules can be expressed in terms of rail car equivalents.

Thus a schedule can be stated in terms of the number of rail cars of

various products that are needed at each destination by a specified time

to carry out the planned assembly schedule. Due to the manner in which

each product is produced on one of a group of production lines, which are,

in turn, uniquely identified with a set of destinations, we can aggregate

the requirements for each destination and express these requirements in

terms of rail car equivalents. For example, we could state destination

twenty's requirement as follows: by the end of week three we must have

at least five rail cars shipped to destination twenty from the component

plant. The component plant can disaggregate this rail car plan by recog--

nizing the exact mix of automobiles that will be assembled at each destin-

ation. Thus the production goals for each type of product can be established

for each week in the horizon given a weekly rail car shipping schedule

and the assembly requirements at each destination. Furthermore, these

weekly production goals can then be systematically assigned by product

and ultimate destination to each shift throughout a given week.

Other considerations in addition to the ones we have already men-

tioned must be taken into account when preparing a production and rail

car shipping schedule. First, there are weekly and shift constraints

on the number of rail cars that can be loaded and dispatched to destina-

tions from the component plant. Second, a maximum number of container loads

of products can be produced on a given line during a shift; however, this
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production capacity can be divided in any fashion among the products that

can be produced on the line plus possibly slack time.

We have noted that production changeover costs are negligible at

the component plant, and that the cost of producing a container load of

any product is approximately the same. Also, the cost of production does

not depend on the shipping schedule since there is adequate capacity on

regular time to meet all demands at the component plant. (Overtime,

in practice, is used only when an unforeseen shortage occurs for parts

used in making the products, or a quality problem occurs at the component

plant.) However, the manner in which production and shipping activities

occur at the component plant do significantly affect inventory carrying

costs at each location. If production takes place several weeks prior

to the time that units are needed, then carrying costs are incurred.

These units are sometimes stored at the component plant, but may be

shipped by rail car to assembly plants in advance of the time they are

needed and stored there. Normally if the units are stored at a destina-

tion, they are left in the rail cars. The cost of storing a unit,

including the additional material handling cost at the component plant

and the demurrage for a rail car used as a storage device at a destination,

is assumed to be the same at either the component plant or a destination.

We ignore the pipeline inventory of units in rail cars traversing from

the component plant to a destination; this time has been taken into

account in the assembly schedule at the component plant for a destination.

The production and shipping scheduling problem we have discussed

can be modelled in several ways. One possible model would have as deci-

sion variables the amount of each product produced on each shift at the
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component plant and the number of rail cars shipped to each destination

during each shift throughout the entire planning horizon. Although

this type of model is easy to develop, computational requirements for

generating an optimal solution are substantial. For example, the

real problem we examined involves 100 products, 10 production lines,

11 shifts per week, 12 weeks in the horizon, 40 assembly plants, 18

containers per rail car, and 20 rail cars shippable per shift. A

frontal attack dealing with a container load as the basic unit of data

requires solving a problem having 124,120 constraints and 10,810,800

integer variables!

Rather than tackling this computationally intractable detailed

shift-by-shift problem for the entire horizon, we propose to separate

the production and shipping scheduling problem into two parts. Since

weekly assembly schedules are fixed at the destinations for many weeks

in advance, we first propose to identify aggregate week-by-week produc-

tion and shipping goals for the component plant. The aggregation scheme

we propose is conceptually similar to the one proposed by Hax and Neal

[2]. Aggregation is done over all products that are a) produced on a

given group of lines, and b) shl'pzd1 to a particular set of destinations.

Thus, rather than being concerned with particular products, production

and shipping requirements will be expressed in terms of rail car equiva-

lents for each group of products at each group of destinations over the

planning horizon. This aggregation is possible since production capacity

in each group of lines is interchangeable among the products produced

on those lines, and each destination's requirements are produced in only

one group of lines. The first model we develop will determine the number
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of rail car loads to produce at and ship from the component plant to the

destinations each week so that the only cost under control, the carrying

cost at the plant and the destinations, is minimized while satisfying

constraints on a) meeting aggregate product demand at each destination,

b) loading no more than a maximum number of rail cars each week at the

component plant, and c) producing no more than capacity allows each week

on a group of production lines at the component plant. The model must also

not allow a rail car to be sent to more than one destination. Thus, the

solution to this problem, which we will call the aggregate production and

shipping scheduling problem, will indicate the number of rail cars to ship

each week to each destination so that overall inventory carrying costs

will be minimized.

Once this solution is available we can address the second part of the

problem, namely, determining the detailed shift-by-shift production and

shipping schedules. However, rather than determining these detailed

schedules for the entire horizon, we will establish them for only the

first week of the horizon. A detailed schedule can be developed for longer

horizons if desired using the methods we will describe. Recall that the

solution to the first problem establishes the weekly shipping plan. Given

this plan, the second problem we propose to solve determines what products

to produce and ship on each shift of the first week so that carrying costs

are minimized over this period of time and the constraints on a) rail car

loading capacity for each shift, b) production capacity on each line in each

shift, and c) the weekly shipping schedule as established in the solution

to the aggregate production and shipping scheduling problem are all met.

We also must ship only full rail cars, and individual rail cars can go

to only one destination.
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As we will see, each of these two problems has a special structure.

In the next section we will state a mathematical model for the aggregate

production and shipping scheduling problem, analyze the structure of this

problem, develop an algorithm which exploits this structure, and present

an example problem. In the third section, we will show how the solution

to the aggregate production and shipping scheduling problem can be disag-

gregated. In the final section we summarize our results and discuss some

possible extensions to the model.
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II. AN ANALYSIS OF THE AGGREGATE PRODUCTION

AND SHIPPING SCHEDULING PROBLEM

The aggregate production and shipping scheduling problem described in

the last section can be formulated as a mathematical programming problem.

The model we present takes special advantage of the relationship between

a group of production lines and a set of destinations. Recall that a) all

production lines within a group can produce the same products, b) products

produced in one group of production lines cannot be produced in any other

group of lines, c) each product produced in a group of lines is shipped to

only one group of destinations, and d) the products used at a destination

are produced in only one group of production lines. Hence there is a

one-to-one correspondence between a group of production lines and a group

of destinations. The weekly production capacity for each group of production

lines can therefore be considered as the sum of the capacities of the lines

within that group; also, the shipping requirements for all destinations

within the same group can be aggregated since only full rail car shipments

are made and the one-to-one correspondence exists between a group of des-

tinations and a group of production lines. This relationship is expressed

in Figure 2, which shows the flow of rail cars through production, inventory,

and consumption.

We assume the planning horizon is W weeks in length; the number of

production line groups, and therefore the number of destination groups,

is G; the demand, measured in rail car loads, for all products used in

destination group g in week w is D (g = 1,...,G and w = 1,...,W);

and the maximum number of rail car loads that can be shipped from the

component plant during week w is L .
w
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The decision variables used in the model are

P = the number of rail cars of products produced ongw

production lines in group g during week w,

S = the number of rail cars shipped from the component
gw

plant to destination group g in week w,

H = the number of rail car loads of products producedgw

on production lines in group g in inventory at

the component plant at the end of week w,

E = the number of rail car loads of product on hand
gw

at the end of week w at destinations in group g,

U the slack production capacity for production lines
gw

in group g during week w (measured in rail cars),

and

V = the slack rail car loading capacity in week w.
w

Recall that the objective of the aggregate production and shipping

scheduling problem is to determine a) the number of rail car loads to

produce on each group of production lines during each week of the planning

horizon, and b) the number of rail cars to send to each group of destinations

each week of the horizon so as to minimize system carrying charges while

satisfying production and shipping limitations at the component plant, and

demand requirements for each group of destinations. As we have discussed,

the carrying charges are proportional to the number of rail car equiva-

lents worth of inventory carried in the system (excluding those in transit

from the component plant to the destinations since there is no way to

reduce this quantity). The model can be stated as:
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(1) min Z H Hgw + E 9,
gw gw

(minimize the total rail car loads of inventory
carried at the component plant and the destinations)

subject to

(2) (Inventory balance constraints at the component plant)

Hg,wl + P : H + Sgwl gw gw gw

(3) (Inventory balance constraints at destination group g)

E +S =E +D
g,w-i gw gw gw

(4) (Production capacity constraints at the component plant)

P + U =C
gw gw gw

(5) (Rail car loading constraints at the component plants)

I S +V =L
g gw w w

Pgw, Hgw , Eg w , Sgw, Ugw , Vw > 0, where g = 1,...,G

and w = 1,...,W in all of the above cases.

The above problem is a near network problem. This can be seen by

examining the graphical representation of the constraints given in

Figure 3. First, we observe that by ignoring the rail car loading

constraints, as we have done in the diagram in Figure 3, the problem

decomposes into G independent network problems, one for each production

line group-destination group combination. Next, observe that the rail

car loading constraint for week 1 states that the sum of the flows over
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the arcs labelled 0 in Figure 3 cannot exceed L In general, the

rail car loading constraint for week w states that the sum of the

flows over arcs having label G (flow is I S over these arcs)ggw

cannot exceed L . Constraints that cut across arcs in this fashion
w

are often called "bundle constraints." The presence of these bundle

constraints cause the problem to have a structure that is not a network

flow structure. More precisely, the problem is a multi-commodity network

flow problem [31, albeit one having a special structure.

We now discuss an algorithm for finding a solution to the problem,

which is based on the problem's near network structure. The complicating

rail car loading constraints are first relaxed to take advantage of the

simplicity of the structure of the remaining problem. As we have stated,

the remainder of the problem has the form of G independent problems.

These G problems are all network flow problems that have the form of a

linear production-distribution problem with upper bounds on production

in each period. This problem was first discussed by Bowman [1]. The

solution to these problems is found by simply producing the destinations'

requirements as late as possible. Thus it is easy to obtain an optimal

solution to each of these G problems. Once these solutions have been

found, the rail car loading constraints are systematically considered.

The rail car loading constraints that are violated by the solution

obtained for the G independent problems are addressed one at a time.

Inventory and production decisions are revised but remain as close to

the solution found when solving the G independent problems as possible.

Let us now formally state the algorithm.
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Algorithm for Solving the Aggregate

Production and Shipping Scheduling Problem

Step 1: Obtain the least cost production schedule for each group that

satisfies production capacity constraints and demand require-

ments ignoring the rail car loading constraints. In the

solution, carry inventory only at the destinations. The

algorithm used to determine the optimal production plan

places production as close to the period in which it is consumed

as possible. (A formal statement of this algorithm can be

found in Wagner [2].)

Step 2: If all rail car loading constraints are satisfied by the solu-

tion found in Step 1, then that solution is optimal. Otherwise,

beginning with period 1, and proceeding period-by-period,

resolve rail car loading infeasibilities by following in

order Step 2a and, if necessary, Step 2b.

1
Step 2a: If V < 0, w is the earliest period followingw

w having positive slack loading capacity (Vwl > 0), and

there is a destination group g having E gj > 0 for

j= ww+l,... ,w -I, then increase H k by

a = min(-Vwv .,wl min E .), k = w,...,w -1. Next,

adjust Vw , Vwl' Sgw and Sgwl to reflect the fact that

car loads previously shipped in period w are now shipped

in period w ; also, decrement E ., j 2 w,.. . 1w 1, by a.

Examine additional destinations until either V = 0, therew

are no destinations for which shipping can be moved into the

future, or there is no slack car loading capacity in any

future period.
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Step 2b: If V = 0, then return to Step 2a and examine thew

next period for which the car loading constraint is violated

(if there are no future periods for which the car loading

constraint is violated, then the algorithm terminates).

If V < 0, then beginning with period w-l, and movingw

back period-by-period as necessary, attempt to find a destina-

tion g for which P > 0 (positive production at destinationgw

g in week w) and for which there exists a week j < w for

which Ug. > 0 (there is slack production capacity in week j)g]

and a week k, j < k < w, in which Vk > 0 (excess car loading

capacity exists in week k). Let

a min(Ugj, P' _w V V ).

Then decrement Ugj, Vk, Pgw' Sgw by a and increment Pgj, Sgk,

Vw, Hg£, 9 = j,... ,k-l, E g, 9 = k,...,w-l by a. Repeat until

V = 0. If V cannot be increased to a value of zero, then no
w w

feasible solution exists.

The first step of the algorithm establishes the optimal production

and shipping plan ignoring the rail car loading constraint. Step 2a

adjusts the shipping schedule to eliminate infeasibilities in the rail

car loading constraints without increasing the amount of inventory carried.

If all infeasibilities are eliminated via these adjustments, then an

optimal solution has clearly been obtained. If Step 2b is invoked for a

given week, inventory carrying costs are increased.

This algorithm does not necessarily reach an optimal solution when

Step 2b must be used. It is a reasonable, myopic type of greedy algorithm.
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We leave it to those interested in the performance of algorithms to address

our reasonableness conjecture. As engineers we are interested primarily

in a convincible procedure rather than in epsilon-optimal procedure.

We now illustrate the algorithm on an example problem. Assume there

are two production line-destination group combinations (G = 2) and the

planning horizon is five weeks long (W = 5). The demand, production

capacity, and rail car shipping capacity data are given in Table 1.

We also assume the initial inventories are zero.

Week

week,w 1 2 3 4 5

Group 1 D1w, demand 
4 6 8 10 10

C1w, production capacity 6 8 8 8 8

Group 2 D2w, demand 
3 5 7 9 9

C2w, production capacity 6 6 8 8 8

rail car shipping capacity 10 15 13 16 17

Table 1

Demand and Capacity Data

The solution to the production and shipping problem ignoring the

rail car loading constraint is given in Table 2; that is, the solution

obtained from Step 1 of the algorithm is given there. We see that this

solution violates the rail car loading constraint in week 3. Therefore,

we must invoke Step 2a of the algorithm. Week 3 is the first week, and

in this example the only week, with a negative slack on rail car loading

capacity. The first week following week 3 having positive slack rail
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Week (w)

1 2 1 3 '4

P w, production 6 8 8 8 8

Slw, shipments 6 8 8 8 8

Group 1 H 1w, factory inventory 0 0 0 0 0

Elwl destination inventory 2 4 4 2 0

Ulw, slack production 0 0 0 0 0

P2w' production 3 6 8 8 8

S2w, shipments 3 6 8 8 8

Group 2 H2w, factory inventory 0 0 0 0 0

E2w, destination inventory 0 1 2 1 0

U2 w, slack production 3 0 0 0 0

Vw, slack rail car loading 1 1 -3 0 1
capacity

Table 2

Initial Solution

1

car loading capacity is week 5 (w = 5 and Vwl = 1). Destination 1

has positive inventory carried at the destination at the end of weeks 3

and 4 (E13 = 4 and EI1 = 2). Instead of carrying one rail car load

of inventory at destination 1 we can carry that one rail car load of

inventory at the component plant. Formally, the algorithm states that the

maximum increase in HI3 and H.4 is a = min{-(-3), 1, min(4,2)} = 1.

Then V and S are increased by 1, and Vwl , El3 S13 and E14w S15 Vl 1 , 31

are all decreased by 1. The results of these calculations are given in

Table 3. Note that the total inventory carried is the same as it was at



week, w 1 2 3 4 5

Plws production 6 8 8 8 8

Slw, shipments 6 8 7 8 9

Group 1 Hlw, factory inventory 0 0 1 1 0

Elw, destination inventory 2 4 3 1 0

Ulw, slack production 0 0 0 0 0

P2w' production 3 6 8 8 8

S2, shipments 3 6 8 8 8

Group 2 H2w, factory inventory 0 0 0 0 0

E destination inventory 0 1 2 1 0

U2w, slack production 3 0 0 0 0

Vw, slack rail cars 1 1 -2 0 0

Table 3

Results of First Iteration

the end of Step 1. Consequently, if the solution found after making

these adjustments yields a feasible solution (i.e. satisfies the rail

car loading constraints), then that new solution is optimal.

Week 3 is still the first week with a negative slack on rail car

loading capacity. Looking forward in time from week 3, it is not

possible to delay any rail car shipping since there is no slack rail

car shipping capacity in either week 4 or week 5. Therefore, we invoke

Step 2b of the algorithm. Thus we will now look back in time to see what

changes need to be made to the production and shipping schedule.
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Production lines in group 1 have no excess capacity in weeks 1, 2

or 3 (UII = UI2 = UI3 = 0) so that no changes will be made to the

production or shipping schedule for the production lines in group 1.

There is additional capacity on production lines in group 2, however,

since U = 3. Furthermore, in week 1 there is available rail car

loading capacity (V1 = 1). Thus we can reduce the production on lines

in group 2 in week 3 by a = min(3, 8, -(-2), 1) 1. Then U21 = 2,

V1  0, P23 
= 7, $23= 7, P2 1 

= 4, $21 = 4, V3 = -1, El1 = 1, and

E = 2. Since V -1, we repeat Step 2b. There is still additional

production capacity for production lines in group 2 in week 1 (U21 = 2).

We see that V2 = 1, that is, there is excess car loading capacity in

week 2. The production on lines in group 2 can therefore be reduced by

a = min(2, 7, 1, 1) = 1 in week three. The results of applying Step 2b

are displayed in Table 4. Since all of the rail car loading constraints

are now satisfied, the solution displayed in Table 4 is the final solution.

Initial values for inventory at a destination, Eg0 - can be used

to net out destination demand, so without loss of generality one can

assume Ego = 0. Any required values for inventory at the destination

at the end of the horizon, E gT can be added to the demand, DgTv so

one can assume EgT = 0.

Initial values for inventory of a group at the factory, Ig0, can

in step I be assumed to be shipped in week 1 to the destination and then

netted against demand. Step 2 may shift this inventory from the

destination to the component plant, if necessary. Any required values

for inventory at the component plant at the end of the horizon can be

assumed to be produced on "a-latest-possible-week" basis. To do this

" " .______.______-_ -
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week,w 1 2 3 4 5

Plw' production 6 8 8 8 8

S w, shipments 6 8 7 8 9

Group 1 Hlw, factory inventory 0 0 1 1 0

Elw' destination inventory 2 4 3 1 0

U1w, slack production 0 0 0 0 0

P2w' production 5 6 6 8 8

S2w, shipments 4 7 6 8 8

Group 2 H2w, factory inventory 1 0 0 0 0

E2w' destination inventory 1 3 2 1 0

U2w, slack production 1 0 2 0 0

V , slack rail cars 0 0 0 0 0

Table 4

Final Solution

one appropriately adjusts the capacities C , netting final require-

ments backward in time.
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III. DETAILED PRODUCTION AND SHIPPING PLANNING

The solution of the aggregate production and shipping scheduling

problem discussed in Section II is a plan that smooths weekly fluctua-

tions in demand over the planning horizon subject to weekly constraints

on rail car loadings and production line capacities. In particular,

the solution determines what the total production should be for each

group of production lines and what amounts should be shipped to each destina-

tion group in the first week considering various capacity constraints in

future weeks. Thus the solution specifies the values of Pgl, the number

of rail cars of products to produce on group g during week 1, and Sgl'

the number of rail cars to be shipped to destinations in group g during

week 1. This aggregate plan can be accomplished in week 1 since P < C

gl - gl
(the production does not exceed production capacity) and I Sg1 < LI (the

g
number of rail car loadings is not greater than loading capacity in week 1).

The aggregate planning information must be disaggregated to establish

the detailed production and shipping plan for the first week. We will

show how to disaggregate the quantities P and S in three senses.gl gl

First, we disaggregate the first week's production and shipping plan by

indicating production and shipping requirements for each of the T shifts

during that week. At this stage no attempt is made to establish production

and shipping goals by individual product or by specific destination loca-

tion. All production quantities will be measured in rail car loads without

regard for individual product requirements; the shipping requirements and

plan will be stated in terms of the number of rail cars for each group of

destinations.
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The second level of disaggregation specifies how the first week's

shipments should be allocated among the individual destinations within

each group. Individual destination requirements, measured in rail car

loads, are used to make the allocations. At this stage no attempt is

made to disaggregate by individual product types.

In the final level of disaggregation, the aggregate quantities of

production and shipping determined in the first two levels of the

disaggregation process are divided among the individual products made

and shipped to each group.

The purpose of the three stage disaggregation process is to deter-

mine what products, measured in container loads, should be produced on

each group of production lines during each shift, what portion of a shift's

production and the inventory on-hand at the beginning of each shift at

the component plant should be loaded into rail cars and shipped during

that shift to each destination, and what portion of a shift's production

should be carried in inventory at the component plant into the next shift.

First, we will show how the first week's aggregate production and

shipping schedule can be disaggregated into a shift-by-shift production

and shipping schedule for the first week. Recall that the solution of

the aggregate model specifies the number of rail car loads of products

produced on production line group g in week 1 (P gl), the number of rail

car loads shipped to group g during week 1 (S ), the number of rail
gl

car loads of products produced in group g in inventory at the component

plant at the end of week 1 (H ), and the number of rail car loads of
gI

inventory at destinations in group g at the end of week 1 (El).
gl

In addition to the weekly production and shipping goals, we have

other data that are used to determine shift-by-shift production and shipping
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decisions. The capacity of group g during shift t is c . which is
T Cgt

measured in rail car loads. Furthermore, we assume cgt = C g. We
t=l

also have the shipping capacity for each shift, 2t' which is also measured

T
in rail cars. We also assume 2 .t = L1 ,

t=l
The decision variables we will have in this first le, el disaggregation

problem are:

Pgt = the production on lines in group g during shift t

measured in rail car loads,

s = the number of rail cars shipped to destination group g
gt

during shift t,

h = the number of rail car loads produced in production group ggt

remaining in inventory at the component plant at the end of

shift t, and

egt = the number of rail car loads carried by destinations in

group g corresponding to shipments from the component

plant made prior to the end of shift t.

Using these data we can state the first level disaggregation problem

as:

find the aggregate (without regard to product types or

destination within a group) production and shipping

schedule that minimizes inventory holding cost at both the

component plant and destination groups during week 1 subject

to a) meeting end of the week inventory goals at both the

component plant and each group of destinations, b) satis-

fying aggregate demand requirements for each group of

destinations, and c) not exceeding shift-by-shift production

and rail car loading capacities.
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As before, we assume that the cost of holding a container load is the

same for all products.

The mathematical statement of this first level disaggregation problem

is

(6) min Z = hgt + egt
g t gt

subject to

(7) hg't-i + pgt = hgt + Sg t )

(8) eg,tl + Sgt = egt + dgt ,

(9) Pgt +Ugt Cgt'

(10) 1 Sgt +vt =t
g

(11) hgT = Hg1 ,

(12) egT = EgI ,

Pgt' hgt, egt Sgt. vt > 0, g 1,...,G and t =1,...,T,

where u is the slack production capacity for production line group ggt

in shift t, vt  is the slack rail car shipping capacity for shift t,

and dgt = 0 for t = I,...,T-l and dgT = Sgl, the aggregate demand

for destination group g in week 1. The reason for defining the dgt

as we have is obvious once we examine the structure of this problem.

Observe that this disaggregation problem (6)-(10) is mathematically

equivalent to the aggregate production and shipping scheduling problem
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(l)-(5) discussed in Section II. Since this problem's structure is

identical to that of the aggregate production and shipping scheduling

problem, we can use the special algorithm developed in Section II to

find the optimal (or near optimal) values for each of the decision

variables.

The second level of disaggregation involves assigning the rail car

quantities of shipping and production by shift obtained in the first

level of disaggregation to each of the specific destinations within

a group. For group g, suppose there are I destinations, indexed

by i = 1,...,. Let r. be the rail car demand at destination ilW

in week w; the aggregate demand for group g in week w, D , is
Igw

riw
i=l

At the start of week 1 a total of E rail cars are at thegO

destinations of group g and a total of H rail cars of product are

in inventory at the component plant. We will show shortly that the

quantities E and H can be considered to be already disaggregated

by destination by showing how the quantities E and H are disaggre-

gated by destination.

Figure 4 shows the essential features of the procedure for deciding

to which specific destination rail cars are shipped in each shift and

for which specific destination rail cars of product are produced in

each shift. The top scale has the specific destination demand in rail

cars ordered by week and then by destination. The aggregate relations

Dg1 + Eg1 = Ego + Sgl, and Sgl + Hgl = Hgo + Pgl are shown. The

disaggregation of D into specific destination demands, of S into

shi9sg ptin of P into s gl

shift shipping, and of P glinto shift production are also shown.
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To find to which destination the k
th rail car of shift t (the kth

unit of s gt) is to be shipped, one simply projects to the top scale and

finds the destination index. Similarly, to find for which destination

the kt h  rail car of shift t (the kth  unit of p gt) is produced,

one also projects to the top scale and finds the destination index.

The final level of disaggregation is to determine the number of

container loads of each of the J products to ship in each rail car

or to produce for each rail car. We show how to disaggregate r.,

the rail car demand at destination i in week w.

Let qi. be the container demand at destination i for product
3)w

j in week w and R. the number of containers that fit into a rail
1

car going to destination i. By assumption, . qijw/Rl =

jw

Figure 5 shows how this final level of disaggregation is accom-

th
plished. To find which product to put in the k container of a

rail car, one simply projects to the top scale and finds the product

index. To find the shift of shipping and the shift of production one

needs to project downward on Figure 4.
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IV. SUMMARY AND EXTENSIONS

In this paper we have shown how coordinated production and transpor-

tation decisions can be made in an actual multi-facility system operated

by an automobile component manufacturer. We first developed a model

that establishes a production and shipping schedule for each week in

the horizon. This model was based on several key observations concerning

the system's operation.

First, the production lines could be divided into mutually exclusive

groups. The products produced within a group could be produced on any

line within the group, but on no other group of production lines. Second,

the assembly plants could be similarly divided into groups such that

products produced on one group of production lines could only be used

at assembly plants within the same group, and products used at a particular

assembly plant could all be produced on one group of production lines.

Third, because only full rail cars are shipped from the component plant

to the destinations, the automobile schedule could be expressed in terms
4

of the number of rail cars that have to be shipped by the end of each week

to each destination. Fourth, the length of time required to produce a

container load of any product produced within a group is the same for all

products and lines within a group, and also there is no time required to

change from production of one product to another. These four observa-

tions guaranteed that a feasible shift-by-shift production and shipping

schedule for each product could be obtained from the solution of an

aggregate model in which production requirements were aggregated over

products and individual assembly plants for each of the destination groups

for each week, and the production capacity for each group of lines in each
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week was expressed in terms of rail car loads of products produced on

each group.

We also observed that the only cost that varies with the production

and shipping schedule is the inventory carrying cost. Furthermore, this

cost could be expressed in terms of rail car loads of product held

since a car load of any product had the same value as that of any

other product, and the cost of carrying a car load of inventory at

the component plant is the same as the cost of carrying that car load

at a destination plant.

Based on these observations we developed a model that determines

aggregate weekly production quantities measured in rail car loads for

each group of production lines and an aggregate weekly shipping schedule

to each group of destinations. We also presented a simple algorithm for

finding the solution to this problem.

Next we showed how the aggregate solution can be disaggregated so

that a shift-by-shift production and shipping schedule for each product

and each specific destination can be established for the first week in

the planning horizon.

The models and algorithms we have developed can be extended to other

situations. If products produced on different groups of production lines

cost different amounts to produce, then the objective function can be

modified to reflect the difference in holding costs. Furthermore, the

algorithms we presented can be modified so that adjustments to shipping

and production decisions are made in order from highest to lowest holding

cost for the production line group-destination group combinations.

Also, if holding costs are higher at destinations than at the compo-

nent plant, the algorithm we presented for the aggregate scheduling problem
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can be modified so that initial inventory is all carried at the component

plant rather than at the destinations. The shipping plan can be adjusted

in the same general manner as described in the algorithm presented in

Section II. The difference is that inventory is sent to the destina-

tions as late as possible rather than as early as possible. Thus the

roles of the destination and component plant in the algorithm stated in

Section II would be essentially reversed.

As we have previously stated, the production lines in the real

environment involve a fixture for a product moving on a conveyor past a

series of many piece part assembly stations. The velocity of the conveyor

can be adjusted within limits. This adjustment requires rebalancing the

work performed at each station on the assembly line so as to achieve the

output rate dictated by the conveyor velocity. Given the position of the

operator stations relative spacewise to the position of bins of piece

parts, there is a maximum possible conveyor speed. Consequently, a

maximum production capacity for a production line; this maximum produc-

tion capacity is C (or C ), since any demand requirements abovegw gt

this amount must be satisfied by production in prior weeks (or shifts).

If the actual production requirements are P < C then the productiongw gw

line can be rebalanced to meet the projected production requirements, Pgw,

There remains a very important managerial decision as to how to

allocate a fixed labor force amongst the production lines so as to

achieve maximum labor force utilization as well as meet required shipping

schedules on time with minimum use of inventory. The model we have presented

can be used to help make this decision.
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