7	AD-AG	94 254 SSIFIE	ARNO STIN DEC AEDC	LD ENGI IG INTER 79 F E -TSR-79	NEERING	DEVEL EFFEC	OPMENT	CENTER	ARNOLD CONE AS	AFS TN S DETER	MINED B	F/G : MEA-	20/4 ETC(U)	
		or ^{Ajt} A 442 (-)												
			END DATE FILMED 2 - BI DTIC											
														المحمقة

NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

References to named commerical products in this report are not to be considered in any sense as an indorsement of the product by the United States Air Force or the Government.

APPROVAL STATEMENT

This report has been reviewed and approved.

Water P. West

WALTER P. WEST, Capt, USAF Test Director, PWT Division Directorate of Test Operations

Approved for publication:

FOR THE COMMANDER

1.94

JOHN C. HARTNEY, Colonel, USAF Director of Test Operations Deputy for Operations

UNCLASSIFIED

2

	REPORT DOCUME	INTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT	MBEN	2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
AEDC-TSR-	-/9-P75	AD-1094	254
4. TITLE (and	Subtriles		THE OF SEPORT & PERIOD COVERED
STING]	INTERFERENCE EFFEC	CTS ON A 7 DEG CONE AS \setminus	Final Reports September 26
DETERMI	INED BY MEASUREMEN	NTS OF DYNAMIC STABILIT	Y 1979 to October 3, 1979
DERIVAT	TIVES AND BASE PRI	ESSURE FOR MACH NUMBERS	S. PERFORMING ORG. REPORT NUMBER
Ø.2 THE	ROUGH 1.3	and an approximate and a set of the	- CONTRACT OF CRANT NUMBER()
7. ROTHOR(S)			CONTRACT ON GRANT NUMBER(S)
) F. B./C	Cyran ARO, Inc.,	a Sverdrup	CIONALS 1
Corpora	ation Company		(-1ch -1 -1
9. PERFORMI	G ORGANIZATION NAME	AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Arnold	Engineering Deve	lopment Center/DOT	AREA & WORK UNIT NUMBERS
Air For	ce Systems Comman	nd	Program Element 6580/F
Arnold	Air Force Station	n, Tennessee 37389	
11. CONTROL	LING OFFICE NAME AND A	DDRESS	12. REPORT DATE
Arnold	Engineering Deve	lopment Center/DOS	/ December 79
Air For	rce Systems Comman	nd	43- NUMBER OF PAGES
Arnold	Air Force Station	n, TN 37389	
14. MONITORI	NG AGENCY NAME & ADDR	RESS(II dillerent from Controlling Office	ce) 15. SECURITY CLASS. (of this report)
	• •		UNCLASSIFIED
· ·			154 DECLASSIEICATION/DOWNGRADING
1	·		SCHEDULE
16 0157 01011	TON STATEMENT (AL INIA	Percett)	LN/A
Approve	ed for public relo	ease; distribution unli	mited.
Approve	ed for public rele	ease; distribution unli	mited.
Approve	ed for public rele	ease; distribution unli	mited.
Approve	ed for public rele FION STATEMENT (of the all ENTARY NOTES	ease; distribution unli	mited.
Approve	ed for public rele fion statement (of the all entary notes	ease; distribution unli	mited.
Approve 17. distribut 18. suppleme Availa	ed for public rele fion statement (of the of entary notes ble in Defense Te	ease; distribution unli	mited. <i>trom Report)</i> Ater (DTIC).
Approve 17. distribut 18. suppleme Availa	ed for public rele fion statement (of the of entary notes ble in Defense Te	ease; distribution unli	mited. At from Report) hter (DTIC).
Approve 17. distribut 18. suppleme Availa	ed for public rele FION STATEMENT (of the effective ENTARY NOTES ble in Defense Te (Continue on reverse side	ease; distribution unli betrect entered in Block 20, if differen chnical Information Cen	mited. <i>trom Report)</i> hter (DTIC).
Approve 17. DISTRIBUT 18. SUPPLEME Availa 19. KEY WORD dynamic	ed for public rele FION STATEMENT (of the el ENTARY NOTES ble in Defense Te (Continue on reverse side c stability	ease; distribution unli batract entered in Block 20, if different chnical Information Cen If necessary and identify by block num sting interference	mited. <i>(from Report)</i> Ater (DTIC).
Approve 17. DISTRIBUT 18. SUPPLEME Availat 19. KEY WORD dynamic pitch o	ed for public rele FION STATEMENT (of the el ENTARY NOTES ble in Defense Te (Continue on reverse eide c stability damping	ease; distribution unli betrect entered in Block 20, if different chnical Information Cen If necessary and identify by block num sting interference splitter plates	mited. nt (rom Report) hter (DTIC). nber)
Approve 17. DISTRIBUT 18. SUPPLEME Availat 19. KEY WORD dynamic pitch c yaw dat	ed for public rele TION STATEMENT (of the el ENTARY NOTES ble in Defense Te (Continue on reverse side c stability iamping mping	ease; distribution unli batract entered in Block 20, 11 different chnical Information Cen If necessary and identify by block num sting interference splitter plates yaw damping as a fun	mited. <i>(from Report)</i> Ater (DTIC). mber) ction of angle of attack
Approve 17. DISTRIBUT 18. SUPPLEME Availa 19. KEY WORD dynamic pitch c yaw dan forced	ed for public rele TION STATEMENT (of the el ENTARY NOTES ble in Defense Te (Continue on reverse side c stability damping nping oscillation	ease; distribution unli batract entered in Block 20, 11 different chnical Information Cen If necessary and identify by block num sting interference splitter plates yaw damping as a fun	mited. At from Report) Ater (DTIC). mber) ction of angle of attack (+ 1
Approve 17. DISTRIBUT 18. SUPPLEME Availa 19. KEY WORD dynamic pitch c yaw dar forced transor	ed for public rele TION STATEMENT (of the el ENTARY NOTES ble in Defense Te (Continue on reverse elde c stability damping mping oscillation nic flow	ease; distribution unli betract entered in Block 20, 11 different chnical Information Cen If necessary and identify by block num sting interference splitter plates yaw damping as a fun	mited. At from Report) Ater (DTIC). mbor) ction of angle of attack (+ 1
Approve 17. DISTRIBUT 18. SUPPLEME Availat 19. KEY WORD dynamic pitch c yaw dan forced transor 20. ABSTRACT	ed for public rele TION STATEMENT (of the el ENTARY NOTES ble in Defense Te (Continue on reverse eide c stability iamping nping oscillation nic flow (Continue on reverse eide f	ease; distribution unli betract entered in Block 20, 11 different chnical Information Cen If necessary and identify by block num sting interference splitter plates yaw damping as a fun If necessary and identify by block num	mited. At trom Report) Ater (DTIC). Anter (DTIC). Ater (DTIC). Ater (DTIC). Ater (DTIC). Ater (DTIC).
Approve 17. DISTRIBUT 18. SUPPLEME Availat 19. KEY WORD dynamic pitch c yaw dan forced transon 20. ABSTRACT > The c	ed for public rele FION STATEMENT (of the el ENTARY NOTES ble in Defense Te s (Continue on reverse side c stability damping nping oscillation nic flow (Continue on reverse side f effects of sting s	ease; distribution unli betrect entered in Block 20, if different chnical Information Cen if necessary and identify by block num sting interference splitter plates yaw damping as a fun ff necessary and identify by block num support interference we	mited. no (from Report) nter (DTIC). nber) ction of angle of attack (+ 1 nber) re investigated on the measure-
Approve 17. DISTRIBUT 18. SUPPLEME Availat 19. KEY WORD dynamic pitch of yaw dan forced transor 20. ABSTRACT > The of ments of	ed for public relations STATEMENT (of the enternance of the entern	ease; distribution unli betrect entered in Block 20, if different chnical Information Cen If necessary and identify by block num sting interference splitter plates yaw damping as a fun H necessary and identify by block num support interference we yaw damping, pitching to	mited. no from Report) nter (DTIC). nber) ction of angle of attack (+ 1 nber) re investigated on the measure- moment slope, pitching moment
Approve 17. DISTRIBUT 18. SUPPLEME Availat 19. KEY WORD dynamic pitch c yaw dan forced transor 20. ABSTRACT > The c ments c and bas	ed for public rele TION STATEMENT (of the el ENTARY NOTES ble in Defense Te (Continue on reverse side oscillation nic flow (Continue on reverse side le effects of sting so of pitch damping, Be pressure. The	ease; distribution unli batract entered in Block 20, 11 different chnical Information Cen If necessary and identify by block num sting interference splitter plates yaw damping as a fun Hinecessary and identify by block num support interference we yaw damping, pitching model was a 15 percent	<pre>mited. mited. mited. miter (bric). mber) ction of angle of attack (+ 1 mber) re investigated on the measure- moment slope, pitching moment spherically blunt 7 deg cone. http:// deg cone.</pre>
Approve 17. DISTRIBUT 18. SUPPLEME Availat 19. KEY WORD dynamic pitch of yaw dar forced transor 20. ABSTRACT > The of ments of and bast The for to 1 3	ed for public rele TION STATEMENT (of the el ENTARY NOTES ble in Defense Te (Continue on reverse elde c stability damping mping oscillation nic flow (Continue on reverse side l effects of sting so of pitch damping, se pressure. The reed oscillation to and Roynolds must	ease; distribution unli batract entered in Block 20, 11 different chnical Information Cen If necessary and identify by block num sting interference splitter plates yaw damping as a fun If necessary and identify by block num support interference we yaw damping, pitching model was a 15 percent technique was used to of hore based on model bar	<pre>mited. mited. miter (DTIC). mber) ction of angle of attack (+ 1 mber) re investigated on the measure- moment slope, pitching moment spherically blunt 7 deg cone. btain data at Mach numbers 0.2 se diameter. of 0.2 million to</pre>
Approve 17. DISTRIBUT 18. SUPPLEME Availat 19. KEY WORD dynamic pitch of yaw dan forced transor 20. ABSTRACT > The of ments of and bas The for to 1.3 3.6 mt	ed for public relation FION STATEMENT (of the electron STATEMENT (of the electron STATEMENT (of the electron STATEMENT (of the electron Statement of the electron Statement o	ease; distribution unli betract entered in Block 20, if different chnical Information Cen if necessary and identify by block num sting interference splitter plates yaw damping as a fun If necessary and identify by block num support interference we yaw damping, pitching in model was a 15 percent technique was used to of bers, based on model bas tude of oscillation was	mited. (trom Report) Atter (DTIC). (diamondary of angle of attack (diamondary of attack (diamond
Approve 17. DISTRIBUT 18. SUPPLEME Availat 19. KEY WORD dynamic pitch of yaw dan forced transor 20. ABSTRACT > The of ments of and bas The for to 1.3 3.6 mil paramet	ed for public rele TION STATEMENT (of the el ENTARY NOTES ble in Defense Te (continue on reverse side c stability damping mping oscillation mic flow (continue on reverse side) effects of sting so of pitch damping, se pressure. The reed oscillation (and and Reynolds numbilition. The amplitition (continue)	ease; distribution unli betract entered in Block 20, if different chnical Information Cen If necessary and identify by block num sting interference splitter plates yaw damping as a fun If necessary and identify by block num support interference we yaw damping, pitching in model was a 15 percent technique was used to of bers, based on model bas tude of oscillation was .006 to 0.049. The tes	mited. mitrom Report) Atter (DTIC). mbor) ction of angle of attack (+ 1 mbor) re investigated on the measure- moment slope, pitching moment spherically blunt 7 deg cone. btain data at Mach numbers 0.2 se diameter, of 0.2 million to ±1 deg, and the reduced frequent t was conducted at two oscilla-
Approve 17. DISTRIBUT 18. SUPPLEME Availat 19. KEY WORD dynamic pitch c yaw dan forced transor 20. ABSTRACT > The c ments c and bas The for to 1.3 3.6 mil paramet tion for	ed for public rele TION STATEMENT (of the el ENTARY NOTES ble in Defense Te (continue on reverse side c stability damping nping oscillation nic flow (Continue on reverse side) effects of sting so of pitch damping, be pressure. The reed oscillation (and and Reynolds numbli lion. The amplities ter ranged from O requencies, nomine	ease; distribution unli batract entered in Block 20, if different chnical Information Cen if necessary and identify by block num sting interference splitter plates yaw damping as a fun if necessary and identify by block num support interference we yaw damping, pitching in model was a 15 percent technique was used to of bers, based on model bas tude of oscillation was .006 to 0.049. The tes ally 3.1 and 5.6 Hz. P	mited. mitrom Report) Atter (DTIC). mber) ction of angle of attack (+ 1 mber) re investigated on the measure- moment slope, pitching moment spherically blunt 7 deg cone. btain data at Mach numbers 0.2 se diameter, of 0.2 million to ±1 deg, and the reduced frequent t was conducted at two oscilla- itch damping data were obtained
Approve 17. DISTRIBUT 18. SUPPLEME Availat 19. KEY WORD dynamic pitch c yaw dan forced transon 20. ABSTRACT > The c ments c and bas The fon to 1.3 3.6 mil paramet tion fi	ed for public relation FION STATEMENT (of the electron STATEMENT (of the electron STATEMENT (of the electron Statement of	ease; distribution unli betrect entered in Block 20, if different chnical Information Cen If necessary and identify by block num sting interference splitter plates yaw damping as a fun H necessary and identify by block num support interference we yaw damping, pitching i model was a 15 percent technique was used to of bers, based on model bas tude of oscillation was .006 to 0.049. The tes hally 3.1 and 5.6 Hz. P	mited. At trom Report) Atter (DTIC). mber) ction of angle of attack (+ 1 mber) re investigated on the measure- moment slope, pitching moment spherically blunt 7 deg cone. btain data at Mach numbers 0.2 se (diameter, of 0.2 million to ±1 deg, and the reduced frequent t was conducted at two oscilla- itch damping data were obtained
Approve 17. DISTRIBUT 18. SUPPLEME Availat 19. KEY WORD dynamic pitch of yaw dar forced transor 20. ABSTRACT > The of ments of and bas The for to 1.3 3.6 mil paramet tion fr DD FOHM	ed for public rele TION STATEMENT (of the el ENTARY NOTES ble in Defense Te (Continue on reverse elde c stability damping mping oscillation nic flow (Continue on reverse elde effects of sting so of pitch damping, se pressure. The reed oscillation (and Reynolds numblion. The ampli) ter ranged from 0 requencies, nomine 1473 EDITION OF 1 NO	ease; distribution unli betract entered in Block 20, 11 different chnical Information Cen If necessary and identify by block num sting interference splitter plates yaw damping as a fun If necessary and identify by block num support interference we yaw damping, pitching in model was a 15 percent technique was used to of bers, based on model bas tude of oscillation was .006 to 0.049. The tes ally 3.1 and 5.6 Hz. P	<pre>mited. mited. miter (DTIC). mber) ction of angle of attack (+ 1 mber) re investigated on the measure- moment slope, pitching moment spherically blunt 7 deg cone. btain data at Mach numbers 0.2 se /diameter, of 0.2 million to</pre>
Approve 17. DISTRIBUT 18. SUPPLEME Availat 19. KEY WORD dynamic pitch of yaw dan forced transor 20. ABSTRACT > The of ments of and bas The for to 1.3 3.6 mil parameter tion fr DD 1 JAN 73	ed for public rele TION STATEMENT (of the el ENTARY NOTES ble in Defense Te (Continue on reverse side c stability iamping oscillation nic flow (Continue on reverse side) effects of sting so of pitch damping, be pressure. The reed oscillation the and Reynolds numbli lion. The amplific ter ranged from O. requencies, nomine 1473 EDITION OF 1 NO	ease; distribution unli betract entered in Block 20, if different chnical Information Cen if necessary and identify by block num sting interference splitter plates yaw damping as a fun if necessary and identify by block num support interference we yaw damping, pitching in model was a 15 percent technique was used to of bers, based on model bas tude of oscillation was .006 to 0.049. The tes ally 3.1 and 5.6 Hz. P	mited. At tran Report) Ater (DTIC). Ther ater (DTIC). Ther ction of angle of attack (+ 1 ther) re investigated on the measure- moment slope, pitching moment spherically blunt 7 deg cone. btain data at Mach numbers 0.2 se diameter, of 0.2 million to \$1 deg, and the reduced frequent t was conducted at two oscilla- itch damping data were obtained

JER

UNCLASSIFIED 3.4 20. at angles of attack of 0 to 28 deg, and yaw damping data were obtained at angles of attack of 0 to 20 deg. The effective sting length was varied from 1 to (1, 4) model diameters. The interference effects of two types of model wake splitter plates were also investigated. The data obtained from this test at the transonic test conditions agreed with the results extrapolated from previous tests at AEDC at supersonic-hypersonic test conditions. Accession For NTIS GRA&I \Box DOIC TAB Bosnoounced Justification B**-Distribution/ Availability Codes (Avail end/or Dist | Special

AL SUGURORY S

CONTENTS

		Page
	NOMENCLATURE	3
1.0	INTRODUCTION	5
2.0	APPARATUS	
	2.1 Test Facility	5
	2.2 Test Article	•6
	2.3 Test Mechanism	6
	2.4 Test Instrumentation	-
	2.4.1 Forced Oscillation Instrumentation	7
	2.4.2 Model Base Pressure Instrumentation	8
3.0	TEST DESCRIPTION	-
	3.1 Test Conditions and Procedures	
	3 1 1 Ceneral	8
	3.1.2 Data Acquisition	0
	2 Dete Boduction	9
		10
	3.3 Uncertainty of Measurements	10
4.0	DATA PACKAGE PRESENTATION	11
	REFERENCES	11

APPENDIXES

I. ILLUSTRATIONS

Figure

فبالطروف فكالمنابع الراجانات والقائي والإنتان تكافرهم والرابية فالترابية

•

١,

Į

•

1.	Model Details	13
2.	Boundary Layer Trip Details	14
3.	Details of Model Support Configurations	
	a. Interference Sting, LS/D = 1.0	15
	b. Clean Sting, $LS/D = 3.3$	15
4.	Splitter Plate Details	
	a. Plate 1	16
	b. Plate 8	16
5.	Details of Splitter Plate Configurations	
	a. Plate 1 Installed, LS/D = 1.0	17
	b. Plate 8 Installed, LS/D = 3.3	17
6.	Photographs of Splitter Plate Installation	
	a. Plate 1 Installed, LS/1) = 1.0	18
	b. Plate 8 Installed, LS/D = 3.3	18
7.	Model Installation Sketch in PWT Aerodynamic Wind Tunnel	
	(4T)	19
8.	Photograph of Model Installation in PWT Aerodynamic Wind	
	Tunnel (4T)	20
9.	Details of VKF 1.C Forced Oscillation Test Mechanism	21
10.	Photographs of VKF 1.C Forced Oscillation Test Mechanism	
	a. Overall View	21
	b. Close-up View of Balance Assembly	21
11.	Location of Base Pressure Orifices	22
12.	Data Verification Plots	23

II. TABLES

4.	Support Interference Kun Summary
	a. Basis Steady-State Measurements
	b. Basic Dynamic Measurements
	C. Calculated Parameters

1.	Tabulated Summary	Data		•	•			•	•						•			•		37
2.	Plotted Data	• • •	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	38

~ <u>2</u> `

Page

NOMENCLATURE

A	Reference area, model base area, 0.3491 ft ²
ALFI	Model support angle of attack, deg
ALPHA	Model angle of attack, deg
ALPHAD	Time rate of change of ALPHA, radians/sec
BETA	Model sideslip angle, deg
CLMA	-1 Slope of the pitching-moment curve, radian
CLMQ	Damping-in-pitch derivatives, ∂CLMT/∂(Q [^] D/2V) + ∂CLMT/∂ (ALPHAD•D/2V), radian ⁻¹
CLMT	Pitching-moment coefficient, pitching moment/QAD
CONFIG	Model configuration number
D	Reference length, model base diameter, 0.6667 ft
GAMMA	Phase angle between the forcing moment and the angular displacement, deg
INERTIA	Model moment of inertia about the pivot axis, 0.408 slug-ft ²
K	Average height of carborundum grit used on boundary layer trip (if zero, no trip is used), in.
L	Reference length, model base diameter, 0.6667 ft
LP	Distance between model base and beginning of plate, ft
LS	Distance between model base and sting flare, ft
М	Free-stream Mach number
MTF	Angular restoring moment of the cross-flexure pivot, ft-lb/rad
OMEGA-W	Wind-on angular frequency, radians/sec
P	Free-stream static pressure, psi or psf
PB, PB1, PB2	Ratio of base pressure to free-stream static pressure
PHIB	Balance roll angle, deg

PHIM	Model roll angle, deg
PHII	Model support roll angle, deg
PLATE	Plate number used (if zero, no plate is used)
PT	Free-stream total pressure, psfa
Q	Free-stream dynamic pressure, psf
Q [*]	Pitching velocity, radians/sec
RE	Free stream unit Reynolds number, ft ⁻¹
RED	Free-stream Reynolds number based on D
RFP	Reduced frequency parameter (OMEGA-W.D)2V, radian
RUN	Run number
THETA	Wind-on oscillation amplitude, ±deg
TT	Free-stream total temperature used in data reduction, deg R
v	Free-stream velocity, ft/sec

1.0 INTRODUCTION

The work reported herein was sponsored by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), Arnold Air Force Station, Tennessee, under Program Element 65807F, and Control Number 9R02-00-9. The results were obtained by ARO, Inc., AEDC Division (a Sverdrup Corporation Company), operating contractor for the AEDC. The test was conducted in the Propulsion Wind Tunnel Facility (PWT), Aerodynamic Wind Tunnel (4T) under ARO Project No. P41C-A9 from September 26 to October 3, 1979. This test provided data in support of the research project "AEDC Dynamic Stability Research," ARO Project Number V32F-09. The AEDC Research Monitor was Mr. Alexander F. Money, and the Test Project Monitor was Mr. Bob L. Uselton of ARO, Inc. This work is a continuation of the work reported in Refs. 1 and 2.

The objective of the test was to determine sting-support interference effects on the measurements of static and dynamic stability derivatives and base pressure. This included: (1) defining critical sting length by the measurement of pitch-damping derivatives for two frequencies of oscillation, (2) investigating the effect of sting length on yaw-damping derivatives as a function of angle of attack, and (3) investigating the effect of splitter plates, located behind the model, on pitch damping derivatives.

The model was a 15 percent spherically blunt 7 deg cone. Data were obtained at a constant model oscillation amplitude of \pm 1 deg, using the VKF (von Karman Facility) 1.C Forced Oscillation Test Mechanism. Two frequencies of oscillation, nominally 5.6 Hz and 3.1 Hz, were tested. At the high frequency, both pitch-damping and yaw-damping data were obtained as a function of angle of attack (0 to 28 deg) at Mach numbers 0.2 to 1.3. At the low frequency, pitch-damping data were obtained at angles of attack of 0 to 20 deg at Mach numbers 0.2 to 0.9. The effective sting length was varied from 1 to 3.4 model diameters by extending a conical flare to various stations along the sting. Two model wake splitter plates were also investigated. The Reynolds number based on model diameter ranged from 0.2 x 10⁶ to 3.6 x 10⁶ and the reduced frequency parameter varied from 0.006 to 0.049.

A microfilm copy of the final data has been retained in the PWT at AEDC. Inquiries to obtain copies of the test data should be addressed to AEDC/DOT, Arnold Air Force Station, Tennessee 37389.

2.0 APPARATUS

2.1 TEST FACILITY

The Aerodynamic Wind Tunnel (4T) is a closed-loop, continuous flow, variable-density tunnel in which the Mach number can be varied from 0.1 to 1.3 and can be set at discrete Mach numbers of 1.6 and 2.0 by placing nozzle inserts over the permanent sonic nozzle. At all Mach numbers, the stagnation pressure can be varied from 400 to 3400 psfa. The test section is 4-ft square and 12.5 ft long with perforated, variable porosity

(0.5- to 10-percent open) walls. It is completely enclosed in a plenum chamber from which the air can be evacuated, allowing part of the tunnel airflow to be removed through the perforated walls of the test section. The model support system consists of a sector and boom attachment which has a pitch angle capability of -7.5 to 28 deg with respect to the tunnel centerline and a roll capability of -180 to 180 deg about the sting centerline. A more complete description of the tunnel may be found in Ref. 3.

2.2 TEST ARTICLE

The model was a flat base 7-deg half angle cone with a nose bluntness ratio (nose diameter to base diameter) of 15 percent. The moment reference axis was located on the model pivot axis at 60.9 percent of the model length aft of the model nose. The model was constructed of stainless steel and had a total weight of 30.4 lbs and a moment of inertia about the pivot axis of 0.408 slug-ft². A sketch of the model and external dimensions is shown in Fig. 1.

Rings of stainless steel coated with carborundum grit were used as boundary layer trips at some of the test conditions. These trip rings were spotwelded to the model just behind the model nose. Trip details and the location on the model are shown in Fig. 2.

The model, when mounted to the Test Mechanism (described in Section 2.3 below), had an effective sting length of 3.4 model diameters and an effective sting-to-model diameter ratio at the model base of 0.22. The effective sting length was shortened by positioning a conical flare (Fig. 3) at 3.3, 3.0, 2.5, 2.0, 1.5, or 1.0 model diameters to the rear of the model base. The flare was mounted to the motor housing such that it did not touch the sting forward of the motor housing. This eliminated the possibility of the flare's changing the sting frequency characteristics or model tare damping. This sting configuration and the associated conical flare components were designed and bulit at AEDC by the VKF, and were also used during the Ref. 1 and 2 tests.

Two types of model wake splitter plates, which attached to the conical flare, were also investigated. A circular clamp was attached to the long plates (No. 8 Plates) to minimize vibration at the forward end of the plates. Neither the clamp or the plates touched the sting. Plate details are shown in Fig. 4, and plate installation details are shown in Figs. 5 and 6.

A sketch of the model installation is presented in Fig. 7. A photograph showing a typical model-sting configuration in the test section is shown in Fig. 8.

2.3 TEST MECHANISM

The VKF 1.C Forced Oscillation Test Mechanism (Figs. 9 and 10) utilizes a cross flexure pivot, an electric shaker motor and a onecomponent moment beam which is instrumented with strain gages to measure the forcing moment of the shaker motor. The motor is coupled to the moment beam by means of a connecting rod and flexural linkage which convert the translational force to a moment to oscillate the model at amplitudes up to ±3 deg (depending on flexure balance) and frequencies from 2 to 8 Hz. The cross flexures, which are instrumented to measure the pitch/yaw displacement, support the model loads and provide the restoring moment to cancel the inertia moment when the system is operating at its natural frequency. The moment beam is not subjected to the static loads, and can be made as sensitive as required for the dynamic measurements.

Two different sets of cross flexure pivots were used to obtain data at the high and low oscillation frequencies. The high frequency (\approx 5.6 Hz) was obtained with the 0.150 in. thick cross flexures, having a stiffness of 466 ft-lb/rad. These were used for Runs 4 to 199, inclusive. The low frequency (\approx 3.1 Hz) was obtained with the 0.100 in. thick cross flexures, having a stiffness of 141 ft-lb/rad. These were used for Runs 200 to 270, inclusive. The same moment beam was used throughout the entire test. It has a thickness of 0.046 in., and is capable of measuring a total moment of 9.8 inch-lbs.

The cross flexure pivot, moment beam, and flexural linkage assembly, which is referred to as the Balance Assembly (Fig. 10b), is supported by a long, slender cylindrical sting with a 1 deg taper. The sting is instrumented with strain gages to measure the static and oscillatory deflections of the sting in both the pitch and yaw planes.

A penumatic- and spring-operated locking device is provided on the balance to hold the model during tunnel start-up and shut-down. More detailed information regarding the VKF 1.C Forced Oscillation Test Mechanism may be found in Ref. 2.

2.4 TEST INSTRUMENTATION

2.4.1 Forced Oscillation Instrumentation

The forced-oscillation instrumentation (Ref. 4) utilizes an electronic analog system with precision electronics. The control, monitor, and data acquisition instrumentation are contained in a portable console that can be easily interfaced with the instrumentation of the various wind tunnels at AEDC.

The control instrumentation provides a system which can vary the oscillation amplitude of the model within the flexure limits. The oscillation amplitude is controlled by an electronic feedback loop which permits testing of both dynamically stable and unstable configurations.

Data are normally obtained at or near the natural frequency of the model flexure system; however, the electronic resolvers permit data to

be obtained off resonance. All gages are excited by d-c voltages, and outputs are increased to optimum values by d-c amplifiers. Typical balance outputs from an oscillating model are composed of oscillatory components (OC) superimposed on static components (SC). These components are separated by bandpass and lowpass filters. The SC outputs are used to calculate the static moment coefficients and static sting deflections. The OC outputs are input to the resolver instrumentation and precise frequency measuring instrumentation. The resolvers utilize very accurate analog electronic devices to process the OC signals and output d-c voltages. The output d-c voltages are porportional to the amplitude squared, the in-phase and quadrature (90 deg out-of-phase) balance components (forcing torque), and the in-phase and quadrature sting components. An analog-to-digital (A/D) converter converts these outputs to digital signals. The data are recorded for a period of time selected from approximately 2 to 60 sec at a sample rate appropriate for the type test and wind tunnel.

2.4.1 Model Base Pressure Instrumentation

Model base pressures were measured with 2 Sunstrand (Kistler) 314D Servo pressure:transducers located on the tunnel plenum chamber wall. The locations of the orifices with respect to the model and sting are shown in Fig. 11.

3.0 TEST DESCRIPTION

3.1 TEST CONDITIONS AND PROCEDURES

3.1.1 General

A summary of the nominal test conditions at each Mach number is listed below.

<u>M</u>	PT, psfa	TT, deg R	Q, psf	P, psf	V, ft/sec	<u>REx10⁻⁶,ft⁻¹</u>	REDx 10 ⁻⁶
0.2	400	554	11	389	230	0.24	0.16
	820*	550	22	797	230	0.50	0.33
	2000	566	54	1945	232	1.18	0.78
	3200	586	87	3112	236	1.81	1.20
	3600*	593	98	3501	238	2.00	1.33
0.4	870	553	87	779	454	1.00	0.67
0.6	410	558	81	321	671	0.64	0.43
	1300	549	257	1019	6 6 6	2.08	1.99
	1630*	569	322	1278	678	2,50	1,16
	3200*	581	632	2508	685	4.77	3.78
0.8	1320	555	38 8	866	870	2.49	1.56
0.9	1260*	556	422	745	965	2.49	1. £ 6
	2800*	603	93 9	1656	1 0 05	5.00	3.B3
0.95	800	550	283	448	1005	1.64	1.09
	1020	554	360	571	1 0 09	2.07	1.38
	12 20	556	431	683	1011	2.46	1. £4
	1600	560	5 65	895	1014	3.20	2.73
	2200	567	778	1231	1021	4.33	2.88
	2800	578	990	1567	1030	5.37	3.58

*Primary Test Conditions

M	PT, psfa	TT, deg R	Q, psf	P, psf	V, ft/sec	<u>REx10⁻⁰,ft⁻¹</u>	REDx 10
1.10	1200*	555	476	562	1140	2.51	1.£7
	2640*	600	1047	1236	1185	4.99	3.33
1.20	1200	5 56	499	495	12 22	2.53	1.18
1.30	1300*	556	555	469	12 99	2.73 ,	1.12
	1600	568	683	577	1313	3.26	2.17
	2200	578 [.]	939	794	1325	4.39	2.52
	2560*	588	1093	924	1336	4.99	3.33
	2700	591	1153	974	133 9	5.23	3.48
					•		

*Primary Test Conditions

The reduced frequency parameter at the high oscillation frequency (\approx 5.6 Hz) ranged from 0.008 radians at Mach number 1.3, to 0.049 radians at Mach number 0.2. At the low oscillation frequency (\approx 3.1 Hz), it ranged from 0.006 radians at Mach number 0.9, to 0.027 radians at Mach number 0.2.

The variables for each configuration are listed in Table 1. The Test Summaries, which contain all configurations tested and the variables for each, are shown in Tables 2 and 3. Table 2 contains the summary of the model boundary layer and trip effectiveness investigation (Runs 26 to 46), and Table 3 contains the summary of the support interference investigation (Runs 49 to 269).

Testing procedures in the yaw oscillation plane were identical to those in the pitch plane, except that the entire forced oscillation mechanism was rolled +90 deg (PHIB = 90).

3.1.2 Data Acquisition

After establishing tunnel conditions and model attitude, the model was unlocked, and brought to a constant oscillation amplitude of ±1 deg by using the Forced Oscillation Control System. The system was allowed to stabilize at the system resonant frequency before data were recorded. At each angle of attack, generally two data points were taken. Data were obtained over a 60 second time interval at each data point. The balance and sting gage outputs and frequency instrumentation were read from the forced oscillation instrumentation console by a Digital Data Acquisition System (DDAS), at a rate of approximately 54 samples per second.

The Automatic Model Attitude Positioning System (AMAPS) was used to control the model position. A list of model angle of attack requirements were programmed into the AMAPS prior to the test. After data were obtained at a given angle of attack, the AMAPS was manually activated, and the model was automatically pitched to the next angle of attack on the AMAPS list.

3.2 DATA REDUCTION

Data from the DDAS were combined with tunnel model attitude and base pressure instrumentation data and sent directly to a DEC-10 System Computer. Average values of the balance and sting gage outputs were calculated by the computer, and used in conjunction with the remaining DDAS outputs to calculate the dynamic derivatives. Both the SC and OC sting gage outputs were used to correct the data for sting bending effects. The method used to reduce the data is given in Refs. 4 and 5.

A print-out of each reduced data point was obtained approximately 2 minutes (Real Time) after the DDAS sent the unreduced data to the computer. Summary data were printed-out at the conclusion of each angle of attack sweep. Reduced data were also plotted during the test, using the IBM-370 computer Interactive Graphics System, which received the reduced data from the DEC-10. Usually, the data were available for plotting on the IBM-370 Graphics System within the same amount of time (2 minutes Real Time) as the reduced data print-out. This enabled close monitoring of the data during the angle of attack sweep, and allowed cross plots (cross checks) to be made with similar configurations obtained earlier in the test.

3.3 UNCERTAINTY OF MEASUREMENTS

In general, instrumentation calibrations and data uncertainty estimates were made using methods recognized by the National Bureau of Standards. Measurement uncertainty is a combination of bias and precision errors defined as:

$$U = \pm (B + t_{q5}S)$$

where B is the bias limit, S is the sample standard deviation, and t_{95} is the 95th percentile point for the two-tailed Student's "t" distribution, which for degrees of freedom greater than 30 is equal to 2.

Estimates of the measured data uncertainties for this test are given in Table 4a. With the exception of the Test Mechanism, data uncertainties are determined from in-place calibrations through the data recording system. Static load hangings on the Forced Oscillation Mechanism simulated the range of loads and deflections anticipated during the test, and measurement errors are based on differences between applied loads and deflections and corresponding values calculated from the mechanism calibration. Load hangings to verify the sting and balance calibrations are made in the tunnel prior to testing using a special calibration model.

Propagation of the bias and precision errors of measured data through the calculated data were made in accordance with Ref. 6. Uncertainties in the calculated tunnel parameters are given in Table 4b, and uncertainties in the dynamic parameters are given in Table 4c.

The quoted uncertainties are based upon steady-state operation and do not reflect the effects of the wind tunnel environment. In some instances the damping data (CLMQ) will show slightly larger scatter in the repeatability, usually on the order of about 5-10 percent. Also, the large quoted uncertainties for CLMA are the result of the small magnitude of the measurement and the fact that the wind-on measurement level is about the same level as the wind-off measurement (particularly at lower angles of attack).

4.0 DATA PACKAGE PRESENTATION

The Data Package includes tabulated and plotted data, data notes, run logs, and nomenclature. The tabulated data includes summary data, point-by-point data, wind-off tare data. and torque calibration data. Plotted data include (1) individual plots of CLMQ, CLMA, CLMT, and PB2 as functions of angle of attack, and (2) comparison plots which depict sting length ratio (LS/D), Reynolds number, frequency, and splitter plates effects. A sample of the Tabulated Data and Plotted Data is presented in Appendix III.

Verification plots of the pitch-damping data and base pressure ratio data are shown in Fig. 12. The plots indicate good agreement between the extrapolation of the present results $(0.2 \le M \le 1.3)$ and the previous supersonic-hypersonic results $(2.0 \le M \le 8)$ reported in Refs. 1 and 2.

REFERENCES

- Uselton, B. L. and Cyran, F. B. "Critical Sting Length as Determined by the Measurement of Pitch-Damping Derivatives for Laminar, Transitional, and Turbulent Boundary Layers at Mach Number 3 for Reduced Frequencies of 0.0033 and 0.0056," AEDC-TR-77-66, July 1977.
- Uselton, B. L. and Cyran, F. B. "Sting Interference Effects as Determined by Measurements of Dynamic Stability Derivatives, Surface Pressure, and Base Pressure for Mach Numbers 2 through 8," AEDC-TR-79-89, to be published.
- Test Facilities Handbook (Eleventh Edition). "Propulsion Wind Tunnel Facility, Vol. 4." Arnold Engineering Development Center, June 1979.
- Burt, G. E. "A Description of a Pitch/Yaw Dynamic Stability, Forced Oscillation Test Mechanism for Testing Lifting Configurations." AEDC-TR-73-60, June 1973.
- 5. Schueler, C. J., Ward, L. K., and Hodapp, A. E., Jr. "Techniques for Measurements of Dynamic-Stability Derivatives in Ground Test Facilities." AGARDograph 121 (AD669227), October 1967.
- 6. Thompson, J. W. and Abernethy, R. B. et al. "Handbook Uncertainty in Gas Turbine Measurements." AEDC-TR-73-5 (AD755356), February 1973.

APPENDIX I ILLUSTRATIONS

- A.

.

Fig. 1. Model details

Not to Scale

All Dimensions in Inches

Trip	<u>Grit Size</u>	Average Height of Grit, in.
1	#60	0.012
2	#36	0.020
	•	

Fig. 2. Boundary layer trip details.

,

b. Clean sting, LS/D = 3.3 Fig, 3. Details of model support configurations.

All Dimensions in Inches

Fig. 🖌 Splitter Plate Details

•

ر Fig. 5. Details of Splitter Plate Configurations.

a. Plate 1 installed, LS/D = 1.0

b. Plate 8 installed, LS/D = 3.3

Fig. 6 Photographs of Splitter Plate Installation

Figure 8. Photograph of Model Installation in PWT Wind Tunnel (4T)

a. Overall View

APPENDIX II

TABLES

۰.

1			
CONFIGURATION	LS/D	MTF	FREQUENCY, Hz
1	3.4	466	5.6
2	3.3		
2 A	3.0		
3	2.5		
4	2.0		
5	1.0		1
6	1.5	•	Y
19	3.3	141	3.1
19A	3.0		
20	2.5		
21	2.0		
22	1.0		
00	15	•	•

TABLE 1. CONFIGURATION IDENTIFICATION

TABLE 2.MODEL BOUNDARY LAYER AND TRIP EFFECTIVENESSRUN SUMMARY

CONFIG 1LS/D = 3.4PITCHOSCILLATIONOSCILLATIONFREQUENCY\$5.6 Hz

RUN	M,	PT, psfa	RED ×10 ⁻⁶	BOUNDARY LAYER TRIP No.	K, in	ALPHA, deg
26	0.60	1300	1.4	NONE		0
27		1300	1.4			15
28		1300	1.4			0.15.26
29		3200	5.2			0,25
30		410	0.4			Ó
31.	0.95	1020	1.4	·		
32		1020	1.4			0->24
_33		1020	1.4			0
		2800	3.6			
		2200	2.9			
		1600	2.1			
	1	800	1.1			
34	1.30	1300	1.8			
<u>.</u>		2200	2.9			
		2700	3.5			
_35	0.20	3200	1.2			
		2000	0.8			
		400	0.2	1		
40	1	3200	1.2	ຊ	0.020	
41	0.95	2800	3.3			
. 42	1.30	2700	3.5			
·	•	2200	2.9	P	<u> </u>	
45	0.95	2800	3.3	1	0.012	
46	1.30	2700	3.5		<u>_</u>	$\left \frac{1}{1} \right $
	<u> </u>	1600	2.2		<u> </u>	
					•	

0

	TABLE 3		
SUPPORT	INTERFERENCE	RUN	SUMMARY
N	O TRIDS USED		

RUN.	SPLITTER PLATE No.	CONFIG	LS/D	Μ,	RED × 10 ^{-C} ,	OSILLATIO PLANE	RFP, per råd.	ALPHA, des
49	NONE	2A	3.0	0.95	1.4	PITCH	0.011	0-+24
50		i			1.6			0
51				V	1.6		1	0-20
52				0.20	0.3		0.049	0
53				0.40	0.7		0.025	
54				0.60	1.7		0.016	
55				0.80	1.7		0.013	
56				0.80	1.7		0.013	0-20
64	 			0.90	1.7_		0.012	0-20
65	\downarrow			1.10	1.7		0.010	0
66				1.20	1.8		0.009	0
67		1	<u> </u>	1.30	1.8		0.009	0-20
71		3	2.5	0.20	0.3		0.049	0
בר				0.60	1.7		0.016	·
73	 			0.90	1.7_		0.012	
74_				1.10	1.7		0.010	· ·
75	 	1		1.30	1.5		0.009	<u> </u>
79		5	1.0	0.20	0.3		0.049	0- 20
80				0.40	0.7		0.025	0
81	<u> </u>			0.60	1.7	L	0.017	0,4
83		╏──┤──┥		0.60	1.7	·	0.017	0-20
84			· ·	0.80	1.7		.0.013	0
85				0.90	1.7	· ·	0.012	0-20
8.7	<u> </u>	┠──┤───┤		1.10	_1.7_		0.010	0-+20
88		├		1.20	1.8		0.009	0
89				1.30	1.8		0.005	0-> 20
90				1.30	3.3		0.008	<u> </u>
91		┟──┤──┤		0,90	3.3		0.011	
92		┝═┥═┥		1.10	3.3		0.009	
93	<u> </u>	┝╌┟─┤		0.60	3.2		0.016	
94		┝╼┛┛┥	<u> </u>	0.20	1.3		0.047	Y
		┝						
	ł	; J						

RUN	SPLITTER PLATE No.	CONFIG	LS/D	Μ,	REDV10-4	OSCILLATION PLANE	RFP, per rad.	ALPHA, deg
98	NONE	4	2.0	0.20	0.3	PITCH	0.048	0
99				0.60	1.7		0.016	
100				0.60	1.7		0.016	
101				0.90	1.7		0.012	
102				1.10	1.7		0.010	
103				1.30	1.8		0.009	
104				1.30	3.3		0.008	
105				1.30	3,3		0.008	
106				1.10	3.3		0.009	
107				0.90	3.3		0.011	
.108				0.60	3.2		0.016	
109			1	0.20	1.3		0.046	9
113	•	6	1.5	0.20	0.3		0.048	0-20
114				0.60	1.7		0.016	
115				0.90	1.7		0.012	
116				1.10	1.7		0.010	0
רוו				1.30	1.8		800.0	0-+20
118		ŀ		1.10	3.3		0.009	0
119	·	1	•	0.20	1.3		0.046	0-+20
123		3	2.5	1.10	1.7		0.010	0
128		2	3.3	0.60	1.7		0.017	0-120
129				0.90	1.7		0.012	0
130				0.90	1.7		0.012	12,20
131				1.10	1.7		0.010	Ŏ
132		1	1	1.10	1.7	1	0.010	0-+20
137		5	1.0	0.60	1.7	YAW	0.017	
139		·		1.10	1.7		0.010	
141				1.30	1.8		0.008	
145		2A	3.0	1.10	1.7		0.010	
<u></u>]				1.30	1.8		0.009	
148	1		1	0.60	1.7	7	0.017	
			·			·		
				_				

TABLE 3. ContinuedNO TRIPS USED

. . 28

TABLE 3. ContinuedNO TRIPS USED

RUN	SPLITTER PLATE No.	CONFIG	L\$/D	. М,	RED×/0,	DSCILLATION PLANE	RFP per rad	ALPHA, deg
160	NONE	2	3.3	0.20	0.3	PITCH	0.050	0-+20
161		1		0.60	1.7		0.016	0
162				0.60	1.7		0.016	0-+20
163	1			0.90	1.7		0.012	
166	8			0.20	0.3		0.049	
167				0.60	1.7		0.016	
168	1			0.90	1.7		0.012	1
204	NONE	19		0.20	0.3		0.027	0-16
205				0.20	0.3		0.027	4,20
206				0.60	1.7		0.009	0-20
207				0.60	1.7		0.009	0
208				0.90	1.7		0.006	0-020
212		21	2.0	0.20	0.3		0.027	0-+20
213				0.60	1.7		0.009	0
214			1	0.90	1.7		0.006	0
217		22	1.0	0.20	0.3		0.027	0-+20
218				0.60	1.7		0.009	0-+20
233				0.20	0.3		0.027	0
234				0.20	1.3		0.027	0
235				0,60	3.2		0.009	0
236				0.60	1.7		0.009	0-+20
237				0.90	1.7		0.006	0-+20
241	1			0.20	0.3		0.027	0,4,8
252				0.20	0.3		0.027	020
253				0.60	1.7		0.009	0.12.20
254				0.90	1.7		0.006	0(12,20
257	NONE	23	1.5	0,20	0.3		0.027	0
258				0.60	1.7		0.009	
259				0,90	1.7		0.006	
262		סב	2.5	0.20	0.3		0.027	
263	1	20	2,5	0.60	1.7		0.009	
				• `				

29

TABLE 3. Concluded

RUN	SPLITTER PLATE No.	CONFIG	ls/d	Μ,	REDYJOC	OSCILLATION PLANE	RFP, per rad	ALPHA, Jes
264	NONE	20	2.5	0.90	1.7	PITCH	0.006	0
267		19A	3.0	0.20	0.3		0.027	
268				0.60	1.7		0.009	
269	1	¥	<u> </u>	0.90	1.7		0.006	
					•			

NO TRIPS USED

TABLE 4. ESTIMATED UNCENTAINTIES

٠

•

2 18

i

a. Basic Steady-State Measurements

	Precis	ton Index		ñ		Uncer	tainty				
		(2)		-	B)	+ 912	19597		Trae of	Tree of	Method of
presenter Des (gaat los	Reading of Barding	Unit of -sture Mersure	Degree of Ereedom	Percent of Reading	lo Jinu -oture Jaon	Percent of Bailing	Unit of Measure- Went		Measuring Device	Recording Device	Calibratio
PT, ps ta	+ \$10.01\$	0.15) ±0.7	30 30	±(0.113	+ 1) ±2.9	±{0.2\$	+ 1.3) ±1.3	0 to 1500 1500 to 4000	Datametrics Barocel Model 538AX-93 0-4000 PSFA	Datametrics Elec- tronic Manometer C-1018	In-place calibratio with a precision pressure standard
TT,deg R		10.1	15		±0.55		±0.77	410 to 610	Dual Chromel- Alumel Thermo- couples	Newport Model 2600KF Digital Thermometer	Voltage standard substitution using a stirred ice bath
PB, ps ta		±1.0	32	±(0.145	(1 +	±(0.14 \$	(6 +	0 to 2160	Sunstrand(Kistler) 314D Servo Pres- sure Transducer	Preston Amplifier used with a Preston G-MAD-3 for A/D Conversion	In-place calibration with a precision pressure atandard
ALPI, deg	2(0.0145	(\$00.0 +	~		±0.029	±(0.03±	+ 0.038)	-8 to 27	Clifton Precision	Theta Model C-5280	In-place calibration
Pall, deg		±0.04	•		±0.300		±0.390	1160	Products Nodel CG-10-AS-1 SYNCHRO Transmitter	Digital Indicator	by comparison to an inclinometer
FREQUENCY, RZ	0.0025		64		o	10.0		0 to 10	A/D Frequency Converter Built by VKF	Digital Data Acqui- sition System(DDAS)	Compared with a Fre quency Standard
WODEL ANGULAR DIS- PLACENENT ABOUT THE PLVOT AXIS, deg a. 0.10 in. thick		0.024	8				0.048		Bonded Strain Garage		Static Londine
b. 0.15 in. thick cross flexures		0.017	ŝ				0.034	ţ			
STING ANGULAR DIS- PLACEVENT, deg		9.006	2				0.014	ŧľ	*	•	
							· · · · · · · · · · · · · · · · · · ·				-

VI-16 (8/79)

i,

TABLE 4. Continued b. Basic Dynamic Messurements

	36	atton	Moment		pading .			• •	
. -	Ketho	Calibi	In-place Loading		Static L			· · · ·	
	jo ot	Recording Device	Digital Data Acqui- sition System(DDAS)				-	•	talte) Printing 1971
	Tvee of	Measuring Device	Bonded Strain Gages						
			0 to 0.62	0 to 0.62	0 to 50	£3	Ę		
	tainty t955)	lo tinu Diuzedi Indii	0.0002	1000.0	0.70	0.048	0.034		
ENENT"	Uncer ±(B +	Percent of Baibash							
TED KEASURI	8)	lo jinU -DiukeeM Jaem		<u>. </u>					
VII ISTIMA	ê	Percent of Baiding							
115-10		Degree of Freedom	10	ន	32	36	32		יין קין
STEA	sion Index (S)	Unit of —asure fing	0.0001	5.2×10 ⁻⁵	0.35	0.024	0.017		
	Preci	Jashan Do Percent							
		Paraseter Designation	O'IT-OF-PHASE TORQUE, ft-1bs	IN-PHASE TORQUE.	IN-PHASE STING KONENT, II-IDS	THETA deg	b. 0.15 in. thick cross flexures		

TABLE 4. Continued c. Calculated Parameters

1

	770018101 (8)	Index		æ	.	Uncer ±(B +	tainty t953)		- H	EST 1710ms
94Cc	B u 1	35 71.6- 70 0	000 Jo 8	jue Sol	01 17e- 1 n	3a 3a	01 UTC- 1			
V. ft/aec	10 10 10	aran JinU JinU	Degree	Perc of bread	ətt Stall	Perce lo ibsad	ttaU zseM nem	Range	×	RED x 10-6
		3.5	-		13.6		20.6	230	9	6
		1.2			6		6.1	238	;	
							50	678 685	9. 0	
							, 4	695	6.0	1.1
		5.0			2 8		9 9 7 6	1005		0, 0 7
			-		1.7		2.03	1185		
		5.0			2.5		200	1336	1.3	8.5
RED # 10-6		0.005	\uparrow		0.020		0.030	0.3	0.2	
		0.007			0.027		0.041	C . 1		
		0.002			010.0		0.014	1.7	9.0	
		0.001			0.006		0.008	1.7	6.0	
		100.0	_		600.0		010.0	3.3		
		100.0			0.006		0.007	1.1	1.1	
	_	100.0			0.005		900.0	 	1.3	
		100.0	-		0.007		800.0	3.3		
		99.0			2.6		6. 6.	22	0.2	0.3
		18.0			. T.		0.4	98 322	9. 9	
		0.83			3.4		5.1	632		3.2
		0.53			6.1		3.0	422	6. 0	
					0 V N -			938	-	
		84.0					9.0	1047	:	
		0.33			1.2		1.8	555	E.1	1.8
	-	0.35			1.4		2.1	1093		3.3
~~										_

| || ||

TABLE 4. Continued c. Continued

		IVALS	24-24	TE TSTIN	ATTEN NEASING	SEW ENT			Ŀ	
	Preci	aion Index (S)			(B)	Unce ±(B	rteinty + t953)			IST SNOLT
Perignation Designation	Percent of Antone	lo iinU -erusseM inem	Degree of Freedom	Percent of Anding	Jo JinU - JuessM Jues	Percent of yaibsef	lo jinU DiusseM Jnem	PARANETER RANGE	*	RED 8-01
P. pat		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.014 0.016 0.016 0.016 0.013 0.013		0.020 0.020 0.030 0.030 0.030 0.030	8 4 8 8 4 8 8 9 9 9 1 1 8 9 9 9 1 1 9 9 9 9 1 1 9 9 9 9 9 1 1 9 9 9 9	0.0	31.12
		0.005 0.005 0.005 0.005			0.016		0.016 0.026 0.016	ຍ ແ ຍ ແ ຍ ແ ຍ ຍ	1.1	
Job, Allela		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.000	0 5 5 5 5 5 5 5 5 5 5 5 5 5		00-8-8-8 00-0-0-0-0 00-0-0-0-0-0 00-0-0-0-
Abernetby, R. B. et al. Abernetby, R. B. et al. Maite Acros	. and Thong	аов, J. W .y 1973.		dbook Vac	certainty 1	In Gas Tur	bine Neve	ur esets . "		

41 1

TABLE 4. Concluded c. Concluded

Presentes Description Uncertainty Liter Condition Presentes 01.3 Uncertainty 10.3 Uncertainty Presentes 01.3 Uncertainty 10.3 Uncertainty Presentes 01.3 Uncertainty 10.3 Uncertainty Presentes 01.3 Uncertainty 10.3 10.4 Description 01.3 11.0 45 + 113 10.0 0.000 Description 01.3 11.0 45 + 113 10.0 0.000 Description 01.3 11.0 45 + 113 10.0 0.000 Description 10.3 11.1 11.1 11.1 11.1 0.000 Description 11.1 11.1 11.1 11.1 11.1 0.000 Description 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 <th>Precision Lutter Lutter Lists Lutter Li</th> <th>Presentation Description Bits Unserticity Taser Conditions Presentation Distribution <tdd< th=""><th>Percention Exercision Bits Humanity Attention Exercision Attention Constitution Percention Exercision Exercision</th><th></th><th></th><th>STEAL</th><th>7-ST</th><th>VIE ESTIM</th><th>ATED KRASU</th><th>REMENT</th><th></th><th></th><th></th><th></th><th></th><th></th></tdd<></th>	Precision Lutter Lutter Lists Lutter Li	Presentation Description Bits Unserticity Taser Conditions Presentation Distribution Distribution <tdd< th=""><th>Percention Exercision Bits Humanity Attention Exercision Attention Constitution Percention Exercision Exercision</th><th></th><th></th><th>STEAL</th><th>7-ST</th><th>VIE ESTIM</th><th>ATED KRASU</th><th>REMENT</th><th></th><th></th><th></th><th></th><th></th><th></th></tdd<>	Percention Exercision Bits Humanity Attention Exercision Attention Constitution Percention Exercision			STEAL	7-ST	VIE ESTIM	ATED KRASU	REMENT						
Percention Displaying Partnetter Displaying Displaying Manuality Displaying Displaying Displaying	Partnetter Partnetter Partnetter Partnetter <t< th=""><th>Parameter Description <thdescription< th=""> <thdescription< th=""> <</thdescription<></thdescription<></th><th>Parameter District of a second field Distric field <thdistrield< th=""> Dis</thdistrield<></th><th></th><th>Prech</th><th>sion Index (3)</th><th></th><th></th><th>(B)</th><th>Unce. ±(8</th><th>rtainty + t95S)</th><th></th><th>н </th><th>1237 CON</th><th>DITION</th><th>5</th></t<>	Parameter Description Description <thdescription< th=""> <thdescription< th=""> <</thdescription<></thdescription<>	Parameter District of a second field Distric field <thdistrield< th=""> Dis</thdistrield<>		Prech	sion Index (3)			(B)	Unce. ±(8	rtainty + t95S)		н 	1237 CON	DITION	5
CLAMO, Frad ⁻¹ C. 4. Degree (1.1.1.) M. M	CLAND, 145 CLAND, 145 CLAND, 145 CLAND, 145 CLAND, 145 CLAND,	CLURD, FEET D <thd< th=""> D <thd< th=""> D <thd< th=""> <thd< <="" th=""><th>CLAND, FEG DEF <thdef< th=""> DEF <thdef< th=""> <thdef< th=""><th>Parameter Designation</th><th>Яu วุข</th><th>10 1 1 1</th><th>30 20</th><th>Яu зa</th><th>10 16-11</th><th>91 31</th><th>10</th><th>•</th><th></th><th></th><th>1</th><th></th></thdef<></thdef<></thdef<></th></thd<></thd<></thd<></thd<>	CLAND, FEG DEF DEF <thdef< th=""> DEF <thdef< th=""> <thdef< th=""><th>Parameter Designation</th><th>Яu วุข</th><th>10 1 1 1</th><th>30 20</th><th>Яu зa</th><th>10 16-11</th><th>91 31</th><th>10</th><th>•</th><th></th><th></th><th>1</th><th></th></thdef<></thdef<></thdef<>	Parameter Designation	Яu วุข	10 1 1 1	30 20	Яu зa	10 16-11	91 31	10	•			1	
GLMQ, Fred ⁻¹ 0.2 1.0 (5 + 1)5 0.2 0.1 0 CLMQ, Fred ⁻¹ 1 2 0.2 0.2 0.2 0.2 0.3 CLMQ, Fred ⁻¹ 1 2 0.2 0.2 0.2 0.3 0.3 0.3 CLMQ, Fred ⁻¹ 1 2 2 0.2 0.2 0.3 0.3 0.3 1 1 2 2 1 1 1.7 0 0.001 2 2 2 1 1 1.7 0 0.001 2 2 2 1 1 1.7 0 0.001 2 2 1 1 1 2 0.2 0.3 0.1 2 2 1 1 1 1 1 0 0.002 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 3 1 2 1 1 1 <	G.M.L., deg 0.2 1.0 15 + 13 0 0.7 0 0.011 C.MQ, red ⁻¹ 1 2 1 0 0 0 0 0 0 C.MQ, red ⁻¹ 2 2 1 1 1 0 0 0 0 0 0 C.MQ, red ⁻¹ 2 2 1 1 1 0 0 0 0 0 0 0 2 2 1 1 2 1 1 1 0<	GAUXLA, Ideg C.3 0.2 1.0 (5 + 1)5 0 0.7 0 0.017 CLMQ, rad ⁻¹ 1 2 4 -5.5 0.2 0.2 0.7 0 0.017 2 2 2 4 -5.5 0.2 1.7 0 0.017 2 2 2 5 -5.5 0.2 1.7 0 0.017 2 2 2 5 -5.5 0.6 1.7 0 0.017 2 2 5 -5.5 0.6 1.7 0 0.017 2 2 5 -5.5 0.6 1.7 0 0.017 2 2 5 -5.5 0.6 1.7 0 0.017 2 2 2 5 5 0.6 1.7 0 0.017 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1	G.M.D., Ideg C.M. J. I 0.2 1.0 (5 + 15) 0.2 0.0 G.M.M., Fad ⁻¹ 1 2 + -5 0.3 1.7 0 0.00 C.M.M., Fad ⁻¹ 2 + -5 0.3 1.7 0 0.00 2 2 5 -5 0.3 1.7 0 0.00 2 2 5 -5 0.3 1.7 0 0.00 2 2 5 -5 0.3 1.7 0 0.00 2 2 5 -5 0.3 1.7 0 0.00 2 2 5 -5 0.3 1.7 0 0.00 2 2 2 2 1 1 1 0 0.00 2 2 2 2 2 0 1.1 1 0 0.00 2 2 2 2 2 0.3 1.7 0 0.00 2 1		Percel of fbas#	71nU unneM aom	Degree	Perce Sendi	11nU vereM nee	Percen of Readin	jinU varsM Jaom	PARAMETER RANGE	. 🗯	R.E.O x 10 ⁻⁶	ALPEA	£
CuldQ.red ⁻¹ 2 10 1.7 0 0.01 1 2 4 -5.5 0.5 1.7 0 0.01 2 4 -5.5 0.5 1.7 0 0.01 2 5 0.5 1.7 0 0.01 2 5 0.5 1.7 0 0.02 2 2 4 -5.5 0.5 1.7 0 0.02 2 2 5 0.5 1.7 0 0.02 2 2 5 0.5 1.7 0 0.02 2 1 1 2 0.5 1.7 0 0.02 2 1 1 2 0.5 1.7 0 0.02 2 1 1 1 2 0.5 1.7 0 0.02 2 1 1 1 1 1 1 0 0.03 3 1 1 1 1 1 1 1 0 3 0.01 0.01 0.01 0.01 0.01 0.01 0 3 1 1 1 1 1 1 0	CudQ.red ⁻¹ 1 2 0.2 0.2 0.3 0 0.049 1 2 2 1 1 2 0.0 1.7 0 0.049 2 2 2 1 1 1 2 0.5 0.5 0.7 0 0.049 2 2 2 1 1 2 1 1 0 0.019 1.7 0 0.019 2 2 2 1 1 2 1 1 0 0.019 2 2 2 1 1 2 1 1 0 0.019 2 2 2 1 1 2 1 1 0 0.019 2 2 2 1 1 1 1 1 0 0.019 2 2 1 1 1 1 1 1 1 1 1 0 0.014 2 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1	CLURG, FAG ⁻¹ 1 1 2 0.0 0.04 2 1 1 2 0.0 0.04 2 2 1 1 1 0.0 0.04 2 2 1 1 1 0.0 0.04 2 2 1 1 1 0.0 0.04 2 2 1 1 1 0.0 0.04 2 2 2 5 0.0 0.0 0.0 2 2 2 1 1 1 0.0 0.0 2 2 2 2 0.0 0.0 0.0 2 1 1 2 0.0 0.0 0.0 2 1 1 1 2 0.0 0.0 2 1 1 1 1 1 0.0 0.0 2 1 1 1 1 1 1 0.0 0.0 2 2 1 1 1 1 1 1 1 0.0 2 1 2 1 1 1 1 1 1 1 0.0 2 <t< th=""><th>CLUQ, rag⁻¹ 1 1 2 0.2 0.2 0.3 0.0 0.0 1 1 2 1 1 2 0.2 0.2 0.3 0.0 1 1 2 1 1 1 2 0.2 0.3 0.0 2 2 1 1 2 1 1 1 1 0 0.00 2 2 1 2 1 1 2 1 1 0 0.00 2 2 1 2 1 2 1 1 1 0 0.00 2 1 2 1 2 1 1 1 1 1 0 0.00 2 1 2 1 1 2 1 0 0.00 2 1 2 1 1 1 1 1 0 0.00 1 1 1 2 2 2 2 0 0 0.00 1 1 1 1 1 1 1 0 0.00 1 1 1 1 1 1 1 0 0</th></t<> <th>GALLA, deg</th> <th></th> <th>¢.4</th> <th></th> <th></th> <th>0.2</th> <th></th> <th>0.1</th> <th>45 + 135</th> <th></th> <th></th> <th></th> <th></th>	CLUQ, rag ⁻¹ 1 1 2 0.2 0.2 0.3 0.0 0.0 1 1 2 1 1 2 0.2 0.2 0.3 0.0 1 1 2 1 1 1 2 0.2 0.3 0.0 2 2 1 1 2 1 1 1 1 0 0.00 2 2 1 2 1 1 2 1 1 0 0.00 2 2 1 2 1 2 1 1 1 0 0.00 2 1 2 1 2 1 1 1 1 1 0 0.00 2 1 2 1 1 2 1 0 0.00 2 1 2 1 1 1 1 1 0 0.00 1 1 1 2 2 2 2 0 0 0.00 1 1 1 1 1 1 1 0 0.00 1 1 1 1 1 1 1 0 0	GALLA, deg		¢.4			0.2		0.1	45 + 135				
Claik, red ⁻¹ 2 4 5 0	Image: constraint of the second se	CLMM.red ⁻¹ 2 4 -5.4 0.0 1.7 0 0.00 2 2 5 0.5 0.5 0.5 0.5 0.5 0.5 2 2 5 0.5 0.5 0.5 0.5 0.5 0.0 2 2 5 0.5 0.5 0.5 0.5 0.5 0.0 2 1 1 2 2 2 0 0.0 0.00 2 1 1 2 1 1 0 0.00 2 1 1 2 1 1 0 0.00 2 1 2 1 2 1 1 0 0.00 2 1 2 1 2 1 1 0 0.00 2 1 2 1 2 1 1 1 0 0.00 2 1 2 1 2 1 1 1 0 0.00 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 <td< td=""><td>CLMM, Fad⁻¹ 2 4 5 9 0</td><th>CLMQ, rad-1</th><td>(*</td><td></td><td> </td><td>9</td><td></td><td>10</td><td></td><td>-5.5</td><td>6</td><td>0</td><td>ſ</td><td>010</td></td<>	CLMM, Fad ⁻¹ 2 4 5 9 0	CLMQ, rad-1	(*			9		10		-5.5	6	0	ſ	010
CLMA.rad ⁻¹ 2 4 -53 0.0 1.1 0.000 2 2 1 1 1.7 0 0.003 2 2 1 1 1.7 0 0.003 2 2 1 1 1.7 0 0.003 2 1 1 1 1.7 0 0.003 2 1 1 2 1.7 0 0.003 2 1 1 2 1.7 0 0.003 2 1 1 2 1.7 0 0.003 2 1 1 2 1.1 1.7 0 0.003 2 1 1 2 2 0 0.003 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>CLMF, Fad⁻¹ 21 1 4 -5 0<td>CLMM.FIG⁻¹ 2 1 1 1 0 0.012 2 1 1 2 1 1 1 0 0.012 2 1 1 2 1 1 1 0 0.012 2 1 1 2 1 1 1 0 0.012 2 1 1 2 1 1 0 0.012 2 1 1 2 1 1 0 0.012 2 1 1 2 2 0 1 0 0.012 2 1 1 2 2 0 0 0 0 3 1 1 1 1 1 0 0 0 3 1 1 1 1 1 1 1 1 1 0 0 3 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1</td><td>CLMM.rad⁻¹ 2 1 5 0.0 1.7 0.000 CLMM.rad⁻¹ 21 21 11 2 -5 0.3 1.7 0 0.000 CLMM.rad⁻¹ 21 21 11 23 -5 0.3 0.3 0.3 0.3 CLMM.rad⁻¹ 21 21 11 23 -5 0.3 0.3 0.3 0.3 CLMM.rad⁻¹ 13 11 23 -5 0.3 0.3 0.3 0.3 0.3 CLMM 2 11 23 -0 0.3 0.3 0.3 0.3 0.3 CLM 2 2 11 23 26 0.3 0.3 0.3 0.3 0.3 13 12 2 13 14 -0.03 0.3 0.3 0.3 0.3 14 1 1 1 1 1 1 1 1 1 1 0 0.03 15 1</td><th></th><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>1 1 1 1</td><td>90</td><td>1.7</td><td>••</td><td>0.017</td></td>	CLMF, Fad ⁻¹ 21 1 4 -5 0 <td>CLMM.FIG⁻¹ 2 1 1 1 0 0.012 2 1 1 2 1 1 1 0 0.012 2 1 1 2 1 1 1 0 0.012 2 1 1 2 1 1 1 0 0.012 2 1 1 2 1 1 0 0.012 2 1 1 2 1 1 0 0.012 2 1 1 2 2 0 1 0 0.012 2 1 1 2 2 0 0 0 0 3 1 1 1 1 1 0 0 0 3 1 1 1 1 1 1 1 1 1 0 0 3 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1</td> <td>CLMM.rad⁻¹ 2 1 5 0.0 1.7 0.000 CLMM.rad⁻¹ 21 21 11 2 -5 0.3 1.7 0 0.000 CLMM.rad⁻¹ 21 21 11 23 -5 0.3 0.3 0.3 0.3 CLMM.rad⁻¹ 21 21 11 23 -5 0.3 0.3 0.3 0.3 CLMM.rad⁻¹ 13 11 23 -5 0.3 0.3 0.3 0.3 0.3 CLMM 2 11 23 -0 0.3 0.3 0.3 0.3 0.3 CLM 2 2 11 23 26 0.3 0.3 0.3 0.3 0.3 13 12 2 13 14 -0.03 0.3 0.3 0.3 0.3 14 1 1 1 1 1 1 1 1 1 1 0 0.03 15 1</td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>1 1 1 1</td> <td>90</td> <td>1.7</td> <td>••</td> <td>0.017</td>	CLMM.FIG ⁻¹ 2 1 1 1 0 0.012 2 1 1 2 1 1 1 0 0.012 2 1 1 2 1 1 1 0 0.012 2 1 1 2 1 1 1 0 0.012 2 1 1 2 1 1 0 0.012 2 1 1 2 1 1 0 0.012 2 1 1 2 2 0 1 0 0.012 2 1 1 2 2 0 0 0 0 3 1 1 1 1 1 0 0 0 3 1 1 1 1 1 1 1 1 1 0 0 3 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1	CLMM.rad ⁻¹ 2 1 5 0.0 1.7 0.000 CLMM.rad ⁻¹ 21 21 11 2 -5 0.3 1.7 0 0.000 CLMM.rad ⁻¹ 21 21 11 23 -5 0.3 0.3 0.3 0.3 CLMM.rad ⁻¹ 21 21 11 23 -5 0.3 0.3 0.3 0.3 CLMM.rad ⁻¹ 13 11 23 -5 0.3 0.3 0.3 0.3 0.3 CLMM 2 11 23 -0 0.3 0.3 0.3 0.3 0.3 CLM 2 2 11 23 26 0.3 0.3 0.3 0.3 0.3 13 12 2 13 14 -0.03 0.3 0.3 0.3 0.3 14 1 1 1 1 1 1 1 1 1 1 0 0.03 15 1							•		1 1 1 1	90	1.7	••	0.017
CLML, rad ⁻¹ 21 1 23 -5.3 1 1 1 0 0.000 21 13 21 11 23 -5.3 0.6 1<7	Claim, rad ⁻¹ 2 1 2 1	CLMM.red ⁻¹ 2 1	CLMM, FEG ⁻¹ 2 -5:3 0:3 0:3 0:3 0:3 0:3 2 2 2 2 2 0:3 0:3 0:3 0:3 0:3 2 1 1 2 -0.05 0:3 0:3 0:3 0:3 1 1 2 -0.05 0:3 0:3 0:3 0:3 0:3 1 2 2 -0.05 0:3 1:1 1:3 0:3 0:3 1 1 2 2 -0.05 0:3 1:1 0:3 1 1 2 1 1 1:3 0:3 0:3 1 1 1 1 1 1:4 0:3 0:3 0:3 1 1 1 1 1 1:4 0:3 0:3 0:3 1 1 1 1 1 1 1 0:3 0:3 1 1 1 1 1 1 0:3 0:3 1 1 1 1 1 1 0:3 0:3 1 1 1 1 1 1 1 0:3 1 1 1 </td <th></th> <td></td> <td></td> <td>_</td> <td>N N</td> <td></td> <td>••</td> <td></td> <td>80 9 80 9 80 9</td> <td>6</td> <td>1.7</td> <td>00</td> <td>0.012</td>				_	N N		••		80 9 80 9 80 9	6	1.7	00	0.012
ZLML, rad ⁻¹ 2 1	Zimu, rad ⁻¹ Z Z <thz< th=""> Z Z</thz<>	CLMM.rad ⁻¹ 2 1 2 0.6 1.7 0 0.005 CLMM.rad ⁻¹ 21 11 23 -5.5 0.6 1.7 0 0.005 1 2 2 2 15 -0.005 0.6 1.7 0 0.005 1 2 2 2 2 2 0 0.005 0.1 0 0.005 1 2 2 2 2 0 0.011 0 0.011 0 0.011 1 2 2 15 -0.005 0.1 0 0.005 1 2 2 15 -0.005 0.1 0 0.005 1 2 2 0 0 0.01 0 0.01 1 1 1 1 1 1 1 1 0 0.005 1 1 1 1 1 1 1 1 1 1 0 0.005 1 1 1 1 1 1 1 1 1 1 0 0.01 1 1 1 1 1 1 1 1 0 0 </td <td>CLMM.red⁻¹ 2 2 1 1 5 5 5 0.6 1/7 0 0.005 CLMM.red⁻¹ 13 11 13 11 5 5 0.6 1/7 0 0.005 1 13 12 11 5 5 -5.8 0.6 1/7 0 0.005 1 13 12 13 12 14 -0.010 0.9 1/7 0 0.005 1 13 12 12 12 14 -0.010 0.9 1/7 0 0.005 1 13 12 12 12 14 0 0.01 0.1 0 0.005 1 1 1 1 1 1 1 1 1 1 0 0.005 1 1 1 1 1 1 1 1 1 1 1 1 0 0.005 1</td> <th>-</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>• • •</td> <td></td> <td>-2- -2-</td> <td>1</td> <td>80</td> <td>00</td> <td>600.0</td>	CLMM.red ⁻¹ 2 2 1 1 5 5 5 0.6 1/7 0 0.005 CLMM.red ⁻¹ 13 11 13 11 5 5 0.6 1/7 0 0.005 1 13 12 11 5 5 -5.8 0.6 1/7 0 0.005 1 13 12 13 12 14 -0.010 0.9 1/7 0 0.005 1 13 12 12 12 14 -0.010 0.9 1/7 0 0.005 1 13 12 12 12 14 0 0.01 0.1 0 0.005 1 1 1 1 1 1 1 1 1 1 0 0.005 1 1 1 1 1 1 1 1 1 1 1 1 0 0.005 1	-						• • •		-2- -2-	1	80	00	600.0
Club, rad ⁻¹ 2 1 5 -5.8 0.9 1.7 0 0.005 7 1 1 2 1 1 2 0 0.005 0.2 0.3 0 0.005 7 1 1 1 2 2 1 1 0 0.005 9 0 0.01 1 1 1 1 0 0.01 9 1 1 2 3 0 0.01 0.1 0 0.01 9 1 1 1 1 1 0 0.01 0 0.01 1 2 3 1 1 1 1 0 0.01 0 0.01 0 0.01 0 0.01 0	Claim 2 1 5 -5.8 0.9 1.7 0 0.005 7 13 2 11 53 -0.055 0.2 0.3 0.001 3 13 12 11 15 -0.055 0.9 1.7 0 0.001 3 14 -0.055 0.5 1.7 0 0.011 0 0.012 13 12 12 16 -0.055 0.2 0.3 0 0.012 14 0.011 0.1 0.2 0.3 0 0.021 0 0.001 15 12 12 16 0 0.023 0.1 0 0.021 15 1 1 1 1 1 0 0.011 0 0.010 16 1 1 1 1 1 1 1 0 0.010 17 1 1 1 1 1 1 0 0.010 0 0.010 11 1 1 1	Club, rad ⁻¹ 2 1 5 -58 0.9 1.7 0 0.006 7 7 1 1 53 -0.006 0.2 0.3 0.004 7 1 1 1 53 -0.006 0.2 0.3 0.004 1 1 1 2 28 -0.006 0.2 0.3 0.004 1 1 1 1 1 1 0 0.004 1 1 1 1 0 0.004 0.2 0.3 0.004 1 1 1 1 1 0 0.004 0.004 0.004 1 1 1 1 1 1 0 0.004 0.004 1 1 1 1 1 1 1 0 0.004 1 1 1 1 1 1 1 1 1 1 1 0 0.004 1 1 1 1 1 1 1 1 1 1 1 0 0.004 1 1 1 1 1 1 1 1 1 1 1 <	Club, rad ⁻¹ 2 1 5 -5.8 0.9 1.7 0 0.006 Club, rad ⁻¹ 21 11 53 -0.016 0.3		2 01			• •		9		-5.5	0.0		00	0.009
CLMM.FIG ¹¹ 21 11 23 -0.005 0.2 0.3 0.010 7 7 1 1 1 1 1 1 0 0.01 6 1 1 1 1 1 1 1 0 0 6 1 1 1 1 1 1 0 0 0 6 1 1 1 1 1 1 1 0 0 0 6 1 1 1 1 1 1 1 1 0 0 7 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>Club.red⁻¹ 21 11 23 0005 0.22 0.3 0 0.017 13 1 1 1 1 1 1 0 0.01 13 1 1 1 1 1 1 0 0.01 13 1 1 1 1 1 0 0.01 14 0 0.01 0 0.01 0 0.01 15 1 1 1 1 1 0 0.01 18 1 1 1 1 1 1 0 0.01 18 1 1 1 1 1 1 1 0 0.01 19 0 0 0 0 0 0 0 0 11 1 1 1 1 1 1 1 1 0 0 11 1 1 1 1 1 1 1 1 0 0 11 1 1 1 1 1 1 0 0 0 0 11 1 1 1 1 1 1 1 <td< td=""><td>Clath.red⁻¹ 21 11 23 -0.005 0.2 0.3 0 0.017 7 7 1 1 1 1 1 7 0 0.012 7 7 1 1 1 1 1 7 0 0.012 1 1 1 1 1 1 1 7 0 0.012 1 1 1 1 1 1 1 1 0 0.013 1 1 1 1 1 1 1 1 0 0.014 1 1 1 1 1 1 1 1 1 0 0.014 1 1 1 1 1 1 1 1 1 0 0.014 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0.014 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0</td></td<></td></t<> <td>Claim 21 11 23 -0.005 0.2 0.3 <th0.3< th=""> <th0.3< th=""> <th0.3< th=""> <th0.3< th=""></th0.3<></th0.3<></th0.3<></th0.3<></td> <th></th> <td>7</td> <td></td> <td>1</td> <td>-</td> <td></td> <td>5</td> <td></td> <td>-5.8</td> <td>6.0</td> <td>1.7</td> <td>• •</td> <td>0.006</td>	Club.red ⁻¹ 21 11 23 0005 0.22 0.3 0 0.017 13 1 1 1 1 1 1 0 0.01 13 1 1 1 1 1 1 0 0.01 13 1 1 1 1 1 0 0.01 14 0 0.01 0 0.01 0 0.01 15 1 1 1 1 1 0 0.01 18 1 1 1 1 1 1 0 0.01 18 1 1 1 1 1 1 1 0 0.01 19 0 0 0 0 0 0 0 0 11 1 1 1 1 1 1 1 1 0 0 11 1 1 1 1 1 1 1 1 0 0 11 1 1 1 1 1 1 0 0 0 0 11 1 1 1 1 1 1 1 <td< td=""><td>Clath.red⁻¹ 21 11 23 -0.005 0.2 0.3 0 0.017 7 7 1 1 1 1 1 7 0 0.012 7 7 1 1 1 1 1 7 0 0.012 1 1 1 1 1 1 1 7 0 0.012 1 1 1 1 1 1 1 1 0 0.013 1 1 1 1 1 1 1 1 0 0.014 1 1 1 1 1 1 1 1 1 0 0.014 1 1 1 1 1 1 1 1 1 0 0.014 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0.014 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0</td></td<>	Clath.red ⁻¹ 21 11 23 -0.005 0.2 0.3 0 0.017 7 7 1 1 1 1 1 7 0 0.012 7 7 1 1 1 1 1 7 0 0.012 1 1 1 1 1 1 1 7 0 0.012 1 1 1 1 1 1 1 1 0 0.013 1 1 1 1 1 1 1 1 0 0.014 1 1 1 1 1 1 1 1 1 0 0.014 1 1 1 1 1 1 1 1 1 0 0.014 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0.014 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0	Claim 21 11 23 -0.005 0.2 0.3 <th0.3< th=""> <th0.3< th=""> <th0.3< th=""> <th0.3< th=""></th0.3<></th0.3<></th0.3<></th0.3<>		7		1	-		5		-5.8	6.0	1.7	• •	0.006
CLUT 2 2 2 2 2 1 <	1 2 2 2 2 1	CLAT 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0001 1 1 1 1 1 1 1 1 1 1 0 0001 1 1 1 1 1 1 1 1 1 0 0001 1 1 1 1 1 1 1 0 0001 1 1 1 1 1 1 1 0 0001 1 1 1 1 1 1 1 0 0001 1 1 1 1 1 1 0 0001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The second se	CLMA, rad ¹¹	21			ĩ		53		-0.005	0.2	0.3	0	0.049
CLUT 2 $\begin{bmatrix} 1 \\ 2 \\ 4 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ <	CLAT 3 1 1 0 0.010 0.11 1.7 0 0.010 2 12 12 12 13 14 17 13 14 0 0.010 2 12 12 12 12 12 13 14 0 0.011 05 17 17 0 0.010 1 1 1 1 1 1 1 1 1 0 0.011 05 17 17 0 0.010 0 0.010 0 0.011 0 0.011 0 0.011 0 0.011 0 0.011 0 0.011 0 0.011 0 0.011 0 0.011 0 0 0.011 0 0.011 0 0.011 0 0 0.011 0 <th0< th=""> 0 <th0< th=""></th0<></th0<>	Curr 2 1 2 1 <td< td=""><td>CLAT 2 12 36 40.011 0.1 0.1 0.1 0.1 CLAT 3 12 12 16 -0.031 17 0 0.035 CLAT 3 12 12 16 -0.031 17 0 0 0.035 CLAT 3 12 12 18 -0.031 0.1 0.2 0.3 0 0.035 CLAT 3 -0.011 0.5 0.3 0.3 0 0.035 1 1 1 1 1 1 1 0 0.035 1 1 1 1 1 1 1 1 0 0.035 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 4.2 2.0 0.011 0.017 0.012 2 3 1 1 1 1 1 1 1 1 1 1 2 3 2 3 1 2 1 1 1 1 1 1 <th1< th=""> 2 3 <</th1<></td><th></th><td>51</td><td></td><td></td><td>~ ~</td><td></td><td>28</td><td></td><td>+0.075</td><td>9.0</td><td></td><td>00</td><td>0.017</td></td<>	CLAT 2 12 36 40.011 0.1 0.1 0.1 0.1 CLAT 3 12 12 16 -0.031 17 0 0.035 CLAT 3 12 12 16 -0.031 17 0 0 0.035 CLAT 3 12 12 18 -0.031 0.1 0.2 0.3 0 0.035 CLAT 3 -0.011 0.5 0.3 0.3 0 0.035 1 1 1 1 1 1 1 0 0.035 1 1 1 1 1 1 1 1 0 0.035 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 4.2 2.0 0.011 0.017 0.012 2 3 1 1 1 1 1 1 1 1 1 1 2 3 2 3 1 2 1 1 1 1 1 1 <th1< th=""> 2 3 <</th1<>		51			~ ~		28		+0.075	9.0		00	0.017
13 12 13 12 13 12 13 12 13 12 13 12 13 <th13< th=""> 13 13 <th< td=""><td>13 12 36 $+0.029$ 1.2 1.6 0 0.000 4 1 2 36 $+0.017$ 0.2 1.7 0 0.002 4 1 2 36 $+0.017$ 0.6 1.7 0 0.006 6 1 1 3 -0.011 0.6 1.7 20 0.006 1 1 1 3 -0.012 0.6 1.7 20 0.006 1 1 3 -0.017 0.6 1.7 20 0.006 1 1 3 -0.012 0.6 1.7 20 0.010 1 1 3 -0.023 0.9 1.7 12 0.010 3 1.11 1</td><td>2 2 8 +0.009 1.3 1.6 0 0.009 2 12 12 12 16 0 0 0 0 4 1 1 1 1 1 0 0 0 0 4 1 1 1 1 1 0 0 0 0 4 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1<</td><td>CLAT 1 2 8 +0.029 1.3 1.4 0 0 0.000 CLAT 3 12 12 36 +0.011 0.5 0.3 0.3 0 0.000 CLAT 3 12 12 18 +0.011 0.5 1.7 0 0.006 CLAT 3 12 18 +0.012 0.5 0.3 0.3 0 0.006 1 1 1 1 1 1 1 1 1 0 0.006 1 1 1 1 1 1 1 1 1 1 0 0 1 <td< td=""><th></th><td>و</td><td></td><td></td><td>• 01</td><td></td><td>2</td><td></td><td>-0.031</td><td> رو رو</td><td>4 ~4</td><td>30</td><td>010.0</td></td<></td></th<></th13<>	13 12 36 $+0.029$ 1.2 1.6 0 0.000 4 1 2 36 $+0.017$ 0.2 1.7 0 0.002 4 1 2 36 $+0.017$ 0.6 1.7 0 0.006 6 1 1 3 -0.011 0.6 1.7 20 0.006 1 1 1 3 -0.012 0.6 1.7 20 0.006 1 1 3 -0.017 0.6 1.7 20 0.006 1 1 3 -0.012 0.6 1.7 20 0.010 1 1 3 -0.023 0.9 1.7 12 0.010 3 1.11 1	2 2 8 +0.009 1.3 1.6 0 0.009 2 12 12 12 16 0 0 0 0 4 1 1 1 1 1 0 0 0 0 4 1 1 1 1 1 0 0 0 0 4 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1<	CLAT 1 2 8 +0.029 1.3 1.4 0 0 0.000 CLAT 3 12 12 36 +0.011 0.5 0.3 0.3 0 0.000 CLAT 3 12 12 18 +0.011 0.5 1.7 0 0.006 CLAT 3 12 18 +0.012 0.5 0.3 0.3 0 0.006 1 1 1 1 1 1 1 1 1 0 0.006 1 1 1 1 1 1 1 1 1 1 0 0 1 <td< td=""><th></th><td>و</td><td></td><td></td><td>• 01</td><td></td><td>2</td><td></td><td>-0.031</td><td> رو رو</td><td>4 ~4</td><td>30</td><td>010.0</td></td<>		و			• 01		2		-0.031	رو رو	4 ~4	30	010.0
CLAF 3 12 10 -0.011 0.54 0.7 0 0.005 CLAF 3 12 18 -0.011 0.54 1.7 0 0.005 1 1 1 3 -0.011 0.54 1.7 0 0.005 1 1 1 3 -0.011 0.54 1.7 0 0.005 1 1 1 3 -0.021 1.1 1.7 0 0.017 1 1 1 3 -0.021 0.5 1.7 0 0.016 1 1 3 -0.021 0.54 1.7 0 0.017 1 1 1 3 -0.021 0.5 1.7 0 0.016 1 1 1 3 -0.021 0.5 1.7 12 0.016 1 1 1 3 -0.021 0.5 1.7 12 0.016 1 1 1 3 -0.021 0.5 0.7 12 0.016 2 2 1.7 1 1.7 12 0.016 3 3 1.1 1.7 12 0.016 <tr< td=""><td>Curr 3 12 10 $+0.011$ $0.6.5$ 1.7 0 0.002 1 1 1 1 1 1 1 0 0.001 0.6 1.7 0 0.005 1 1 1 1 1 1 1 1 0 0.005 1 1 1 1 1 1 1 1 0 0.005 1 1 1 1 1 1 1 1 0 0.005 0 0.005 0</td><td>CLAT 3 1 9 -0.011 0.6 17 0 0.027 CLAT 3 12 18 -0.011 0.6 17 17 0 0.034 CLAT 3 12 18 -0.011 0.6 17 12 0 0.034 1 1 3 -0.012 0.9 17 12 0 0.044 1 1 3 -0.021 0.13 13 14 19 0.044 1 1 3 -0.021 0.13 17 12 0.044 1 1 3 -0.021 0.13 17 12 0.044 1 1 3 -0.021 0.13 17 12 0.012 2 2 1 3 -0.021 0.13 17 12 0.012 2 2 1 3 2 0.022 0.3 17 12 0.012 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1</td><td>CLAT 3 12 10 40.101 0.5 1.7 0 0.005 CLAT 3 12 12 18 40.101 0.5 1.7 0 0.005 CLAT 3 12 12 18 40.011 0.5 1.7 0 0.005 1 1 1 3 -0.011 0.5 1.7 0 0.005 1 1 1 3 -0.023 0.9 1.7 12 0.010 2 11 1 3 -0.021 0.101 0.5 1.7 0 0.005 3 2 2 2 0.012 0.011 1.7 12 0.011 3 12 1 1 3 2 1.7 0 0.012 3 2 2 2 2 0.011 0.10 0.17 12 0.010 3 3 3 1</td><th></th><td><u>ہ</u></td><td></td><td></td><td>9 <u>5</u></td><td></td><td>8 22</td><td>_</td><td>+0.029</td><td></td><td>1.8</td><td>0</td><td>0.009</td></tr<>	Curr 3 12 10 $+0.011$ $0.6.5$ 1.7 0 0.002 1 1 1 1 1 1 1 0 0.001 0.6 1.7 0 0.005 1 1 1 1 1 1 1 1 0 0.005 1 1 1 1 1 1 1 1 0 0.005 1 1 1 1 1 1 1 1 0 0.005 0 0.005 0	CLAT 3 1 9 -0.011 0.6 17 0 0.027 CLAT 3 12 18 -0.011 0.6 17 17 0 0.034 CLAT 3 12 18 -0.011 0.6 17 12 0 0.034 1 1 3 -0.012 0.9 17 12 0 0.044 1 1 3 -0.021 0.13 13 14 19 0.044 1 1 3 -0.021 0.13 17 12 0.044 1 1 3 -0.021 0.13 17 12 0.044 1 1 3 -0.021 0.13 17 12 0.012 2 2 1 3 -0.021 0.13 17 12 0.012 2 2 1 3 2 0.022 0.3 17 12 0.012 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1	CLAT 3 12 10 40.101 0.5 1.7 0 0.005 CLAT 3 12 12 18 40.101 0.5 1.7 0 0.005 CLAT 3 12 12 18 40.011 0.5 1.7 0 0.005 1 1 1 3 -0.011 0.5 1.7 0 0.005 1 1 1 3 -0.023 0.9 1.7 12 0.010 2 11 1 3 -0.021 0.101 0.5 1.7 0 0.005 3 2 2 2 0.012 0.011 1.7 12 0.011 3 12 1 1 3 2 1.7 0 0.012 3 2 2 2 2 0.011 0.10 0.17 12 0.010 3 3 3 1		<u>ہ</u>			9 <u>5</u>		8 22	_	+0.029		1.8	0	0.009
CLNT 3 1 9 -0.011 0.9 1.7 0 0.006 1 2 18 $+0.008$ 0.2 0.3 20 0.011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0.06 1 1 1 1 1 1 1 0 0.01 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0.01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1	CLUT 3 1 9 -0.011 0.9 -0.011 0.9 0.011 0.9 0.001 1 1 1 1 1 1 1 2 0 0.011 0 0.011 0 0.001 0 <td>Curr 3 12 18 -0011 0.9 1.7 0 0.006 1 1 1 2 3 -0011 0.6 1.7 0 0.001 1 1 1 3 -0001 0.6 1.7 20 0.011 1 1 1 1 3 -0001 0.6 1.7 12 0.001 1 1 1 1 3 -0001 0.6 1.7 12 0.001 1 1 1 3 -0001 0.6 1.7 12 0.011 1 1 1 3 -0001 0.6 1.7 12 0.011 2 2 1 1 3 -0002 0.9 1.7 12 0.011 3 1 1 1 3 -0002 0.9 1.7 12 0.012 3 1 1 1 1 1 1 12 0.01 3 2 1 1 1 1 1 12 0.01 3 2 1 1 1 1 1 1 1 4 2</td> <td>Curr 3 1 9 -0.011 0.9 1.7 0 0.006 1 1 1 1 1 1 1 1 1 1 0 0.001 1 1 1 1 1 1 1 1 1 1 1 0 0.001 1 1 1 1 1 1 1 1 1 1 1 1 0 0.001 1 1 1 1 1 1 1 1 1 1 1 0 0.001 1<</td> <th></th> <td>1.</td> <td></td> <td></td> <td>4 es</td> <td></td> <td>01</td> <td></td> <td>101-0+</td> <td>9 M</td> <td>0.1</td> <td>0 0</td> <td>0.027</td>	Curr 3 12 18 -0011 0.9 1.7 0 0.006 1 1 1 2 3 -0011 0.6 1.7 0 0.001 1 1 1 3 -0001 0.6 1.7 20 0.011 1 1 1 1 3 -0001 0.6 1.7 12 0.001 1 1 1 1 3 -0001 0.6 1.7 12 0.001 1 1 1 3 -0001 0.6 1.7 12 0.011 1 1 1 3 -0001 0.6 1.7 12 0.011 2 2 1 1 3 -0002 0.9 1.7 12 0.011 3 1 1 1 3 -0002 0.9 1.7 12 0.012 3 1 1 1 1 1 1 12 0.01 3 2 1 1 1 1 1 12 0.01 3 2 1 1 1 1 1 1 1 4 2	Curr 3 1 9 -0.011 0.9 1.7 0 0.006 1 1 1 1 1 1 1 1 1 1 0 0.001 1 1 1 1 1 1 1 1 1 1 1 0 0.001 1 1 1 1 1 1 1 1 1 1 1 1 0 0.001 1 1 1 1 1 1 1 1 1 1 1 0 0.001 1<		1.			4 es		01		101-0+	9 M	0.1	0 0	0.027
Curr 3 12 18 $+0.008$ 0.2 0.03 0.017 20 0.012 0.01 1.7 12 0.017 1 1 1 1 1 1 1.7 12 0.017 1 1 1 1 1 1.7 12 0.017 1 1 1 1 1.7 12 0.017 1 1 1 1.7 12 0.012 1 1 1.7 12 0.012 1 1.7 12 0.012 0.5 1.7 1 1.7 12 0.027 0.2 1.7 12 2.2×10^{-5} 1.7×10^{-6} 1.7×12 0.005 1.7 12 0.005 8.3×10^{-6} 1.1×10^{-4} 1.3×10^{-6} 1.7×12 0.005 1.7 12 0.005 8.3×10^{-6} 1.1×10^{-6} 1.7×10^{-6} 0.010 1.7×12 0.005 8.3×10^{-6} 1.7×10^{-6} 1.7×10^{-6} 1.7×12 0.005 4.5×10^{-5} 1.0×10^{-6} 1.7×10^{-6} 1.7×10^{-6} 1	Curr 3 12 18 $+0.006$ 0.3 20 0.349 1 1 1 1 3 -0.023 0.3 17 12 0.012 1 1 1 1 3 -0.023 0.3 17 12 0.013 1 1 1 1 3 -0.023 0.3 17 12 0.013 1 1 1 1 3 -0.023 0.3 17 12 0.013 3 1 1 1 3 -0.023 0.3 17 12 0.013 3 1 1 1 1 1 1 1 1 1 1 1 1 3 -0.023 0.3 12 0.013 3 1 1 1 1 1 12 0.012 3 1 1 1 1 1 12 0.012 3 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 3 3 2 1 1 1 1 1 <td>CLAT 3 12 18 +0.008 0.2 0.3 20 0.017 1 1 3 -0.021 0.6 1.7 12 0.010 1 1 3 -0.021 0.6 1.7 12 0.010 3 12 8 +0.022 0.3 12 12 0.010 3 12 8 +0.021 0.17 12 0.010 3 12 8 +0.021 0.17 12 0.010 3 12 8 +0.021 0.17 12 0.010 3 12 8 +0.021 0.17 12 0.010 3 12 8 1.7x10⁻⁴ 2.1x10⁻⁴ 1.7x10⁻⁴ 0.017 0.6 1.7 12 0.006 8 3x10⁻⁶ 1.1x10⁻⁴ 1.3x10⁻⁴ 1.3x10⁻⁴ 0.017 0.6 1.7 12 0.006 8 8.1x10⁻⁶ 1.1x10⁻⁴ 1.1x10⁻⁴ 0.012 0.9 1.7 12 0.006 1 1.1x0⁻⁶ 1.1x10⁻⁶ 1.1x10⁻⁶ 0.012 0.9 1.7 1.7 1 1.2x10⁻⁶ 1.1x10⁻⁶ 1.1x10⁻⁶</td> <td>CLUT 3 12 18 +0.008 0.2 0.3 20 0.017 1 1 1 3 -0.021 0.6 1.7 12 0.012 1 1 1 3 -0.021 0.6 1.7 12 0.012 1 1 1 3 -0.021 0.6 1.7 12 0.012 2 1 1 3 -0.021 0.6 1.7 12 0.012 2 2 1 1 3 -0.021 0.6 1.7 12 0.012 3 1 1 1 3 -0.021 0.6 1.7 12 0.012 2 2 2 1 1 3 -0.021 0.6 1.7 12 0.012 2 2 1 1 1 1 12 0.014 0.17 12 0.005 3 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 3 5 1 1 1 1 1 1</td> <th></th> <td>4</td> <td></td> <td></td> <td>-1</td> <td></td> <td>6</td> <td></td> <td>110.0-</td> <td>6.0</td> <td>1.7</td> <td>0</td> <td>0.006</td>	CLAT 3 12 18 +0.008 0.2 0.3 20 0.017 1 1 3 -0.021 0.6 1.7 12 0.010 1 1 3 -0.021 0.6 1.7 12 0.010 3 12 8 +0.022 0.3 12 12 0.010 3 12 8 +0.021 0.17 12 0.010 3 12 8 +0.021 0.17 12 0.010 3 12 8 +0.021 0.17 12 0.010 3 12 8 +0.021 0.17 12 0.010 3 12 8 1.7x10 ⁻⁴ 2.1x10 ⁻⁴ 1.7x10 ⁻⁴ 0.017 0.6 1.7 12 0.006 8 3x10 ⁻⁶ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 1.3x10 ⁻⁴ 0.017 0.6 1.7 12 0.006 8 8.1x10 ⁻⁶ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 0.012 0.9 1.7 12 0.006 1 1.1x0 ⁻⁶ 1.1x10 ⁻⁶ 1.1x10 ⁻⁶ 0.012 0.9 1.7 1.7 1 1.2x10 ⁻⁶ 1.1x10 ⁻⁶ 1.1x10 ⁻⁶	CLUT 3 12 18 +0.008 0.2 0.3 20 0.017 1 1 1 3 -0.021 0.6 1.7 12 0.012 1 1 1 3 -0.021 0.6 1.7 12 0.012 1 1 1 3 -0.021 0.6 1.7 12 0.012 2 1 1 3 -0.021 0.6 1.7 12 0.012 2 2 1 1 3 -0.021 0.6 1.7 12 0.012 3 1 1 1 3 -0.021 0.6 1.7 12 0.012 2 2 2 1 1 3 -0.021 0.6 1.7 12 0.012 2 2 1 1 1 1 12 0.014 0.17 12 0.005 3 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 3 5 1 1 1 1 1 1		4			-1		6		110.0-	6.0	1.7	0	0.006
MP.red-1 7.1k10 ⁻⁴ 2.8x10 ⁻³ 4.2x10 ⁻³ 2.9001 0.01 1.7 12 0.012 3 -0.021 0.3 1.3 1.4 1.7 12 0.012 3 1.2 $2.8x10^{-3}$ 1.2 $2.8x10^{-3}$ $4.2x10^{-3}$ 1.7 12 0.012 3 $7.1x10^{-4}$ $1.7x10^{-4}$ $2.8x10^{-3}$ $4.2x10^{-3}$ 0.049 0.2 0.3 12 12 0.001 3 $2.2x10^{-6}$ $1.7x10^{-4}$ $2.1x10^{-4}$ 0.017 0.017 0.017 1.7 12 0.005 8 $3x10^{-6}$ $1.1x10^{-4}$ $1.3x10^{-4}$ 0.017 0.017 0.017 1.7 12 0.005 9.5x10^{-6} $9.5x10^{-5}$ $1.7x10^{-4}$ $1.2x10^{-4}$ 0.017 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.0 0.017 0.011 1.7 1.7 1.2 1.0 0.012 1.7 1.7 1.2 0.005 $0.0.02$	Image: Constraint of the image is a state in the image in the image is a state in the image in the image in t	MPrred-1 2.2x10 ⁻⁵ 2.2x10 ⁻⁵ 1.7x10 ⁻⁶ 1.77 12 0.000 8.3x10 ⁻⁶ 1.1x10 ⁻⁶ 1.1x10 ⁻⁶ 1.1x10 ⁻⁶ 1.1x10 ⁻⁶ 1.7x10 ⁻⁶ 1.77 12 0.000 8.3x10 ⁻⁶ 1.1x10 ⁻⁶ 1.1x10 ⁻⁶ 1.1x10 ⁻⁶ 1.1x10 ⁻⁶ 1.77 12 0.000 9.3x10 ⁻⁶ 1.1x10 ⁻⁶ 1.1x10 ⁻⁶ 1.1x10 ⁻⁶ 1.1x10 ⁻⁶ 1.77 12 0.000 1.2x10 ⁻⁶ 1.2x10 ⁻⁶ 1.2x10 ⁻⁶ 1.2x10 ⁻⁶ 0.012 0.01 1.77 1.77 1.2x10 ⁻⁶ 1.2x10 ⁻⁶ 0.000 0.01 0.	MPF.rad ⁻¹ 7.1k10 ⁻⁴ 2.8k10 ⁻³ 4.2k10 ⁻³ 0.001 0.6 1.7 12 0.001 2 1 1 1 1 1 1 12 0.001 3 -0.0721 0.1 0.6 1.7 12 0.001 3 -0.0721 0.1 0.6 1.7 12 0.001 3 1 1 2 8 0.001 0.6 1.7 12 0.001 3 2.0001 0.6 1.7 12 0.001 0.6 1.7 12 0.001 3 2.8k10 ⁻⁵ 1.7k10 ⁻⁴ 2.8k10 ⁻⁵ 0.017 0.6 1.7 12 0.005 8.3k10 ⁻⁶ 1.1k10 ⁻⁴ 1.7k10 ⁻⁴ 1.1k10 ⁻⁴ 1.2k10 ⁻⁵ 0.012 0.3 1.7 15 0.005 6.3k10 ⁻⁶ 1.7k10 ⁻⁶ 1.1k10 ⁻⁶ 1.7k10 ⁻⁶ 1.7k10 ⁻⁶ 1.7 1.7 1.7 1.7 1.1 1.7 1.7 1.1 1.7 1.1 1.7 1.1 1.7 1.1 1.7 1.1 <td< td=""><th>CIAT</th><td>e -</td><td></td><td></td><td>12</td><td></td><td>18</td><td></td><td>+0.008</td><td>0.2</td><td>0.3</td><td>20</td><td>0.049</td></td<>	CIAT	e -			12		18		+0.008	0.2	0.3	20	0.049
Image: Second state of the	Image: Second state of the state of th	Image: Second state of the	Image: Second state Image: Second state<					n -		4 6		+0.012	9.0	1.7	20	0.017
12 12 2 12 2 12 0.067 1.3 1.4 19 0.009 2 12 2 8 -0.020 0.2 0.3 12 1.7 12 0.009 2 2 1 1 2 2 0.010 0.6 1.7 12 0.009 2 2 2 2 4 2 1.7 12 0.001 2 2 2 1.7 1.7 1.7 1.7 1.2 0.005 8 3 2 1.10^{-6} 1.710^{-6} 2.1×10^{-6} 1.7 1.006	12 12 2 12 0.067 1.3 1.4 19 0.009 2 12 12 6 $+0.020$ 0.3 12 0.007 2 2 2 8 -0.020 0.3 12 0.007 2 2 2 8 2 1.7 12 0.007 8 $3x10^{-6}$ $1.7x10^{-4}$ $2.8x10^{-6}$ $1.7x10^{-4}$ $2.1x10^{-4}$ 0.017 0.6 1.7 12 0.005 8 $3x10^{-6}$ $1.7x10^{-4}$ $2.1x10^{-4}$ 0.017 0.6 1.7 12 0.005 8 $3x10^{-6}$ $1.1x10^{-4}$ $1.3x10^{-4}$ 0.017 0.6 1.7 15 0.005 4 $2x10^{-6}$ 0.010^{-5} 0.010^{-6} 1.7	Image: Second state of the	Image: Section of the section of th		•			44		າຕ 		-0.021			12	010.0
The second se	MPF.red ⁻¹ 7.1x10 ⁻⁴ 2.8x10 ⁻³ 4.2x10 ⁻³ 4.2x10 ⁻³ 1.7 12 0.001 0.6 1.7 12 0.005 MPF.red ⁻¹ 7.1x10 ⁻⁴ 2.8x10 ⁻³ 4.2x10 ⁻³ 4.2x10 ⁻³ 0.017 0.6 1.7 15 0.005 $3.2x10^{-6}$ 1.7x10 ⁻⁴ 2.1x10 ⁻⁴ 0.017 0.6 1.7 15 0.005 $8.3x10^{-6}$ 1.1x10 ⁻⁶ 2.1x10 ⁻⁴ 0.017 0.6 1.7 15 0.005 $8.3x10^{-6}$ 9.0x10 ⁻⁵ 0.010 ⁻⁴ 0.017 0.6 1.7 15 0.005 $4.3x10^{-6}$ 9.0x10 ⁻⁵ 0.010 ⁻⁶ 0.012 0.9 1.7 15 0.005 $4.3x10^{-6}$ 9.0x10 ⁻⁵ 9.0x10 ⁻⁵ 0.008 0.012 0.1 1.7 1.7 $4.3x10^{-6}$ 9.2x10 ⁻⁵ 9.0x10 ⁻⁵ 0.008 0.02 0.3 1.7 1.7 $4.3x10^{-6}$ 9.2x10 ⁻⁵ 0.008 0.01 0.1 1.7 1.7 $4.3x10^{-6}$ $6.0x10^{-5}$ $6.9x10^{-5}$ 0.008 0.9 <td>MPF.rad-1 7.1x10⁻⁴ 2.8x10⁻³ 4.2x10⁻³ 4.2x10⁻³ 1.7 12 0.003 0.17 15 0.005 2.2x10⁻⁵ 1.7x10⁻⁴ 2.8x10⁻³ 4.2x10⁻³ 0.049 0.2 0.3 12 0.005 8.3x10⁻⁶ 1.7x10⁻⁴ 2.1x10⁻⁴ 0.017 0.6 1.7 15 0.006 8.3x10⁻⁶ 1.1x10⁻⁴ 1.1x10⁻⁴ 1.1x10⁻⁴ 1.3x10⁻⁴ 0.017 0.6 1.7 15 0.006 4.2x10⁻⁶ 9.0x10⁻⁵ 1.1x10⁻⁴ 1.3x10⁻⁴ 0.012 0.9 1.7 15 0.006 4.2x10⁻⁶ 9.0x10⁻⁵ 1.0x10⁻⁶ 0.008 1.7 1.7 15 0.006 1.2x10⁻⁶ 9.0x10⁻⁵ 1.2x10⁻⁶ 0.008 1.7 1.7 1.7 1.7 1.2x10⁻⁶ 1.7x10⁻⁵ 2.5x19⁻³ 0.009 0.6 0.3 0.7 1.7 1.7 1.2x10⁻⁶ 1.7x10⁻⁵ 1.2x10⁻⁶ 0.009 0.6 0.3 0.7 1.7 1.7 1.2x10⁻⁶ 0.0009 0.0</td> <td>MPF.rad-1 7.1x10⁻⁴ 2.8x10⁻³ 4.2x10⁻³ 4.2x10⁻³ 0.020 0.2 0.3 12 0.020 arP.rad⁻¹ 7.1x10⁻⁴ 2.8x10⁻³ 4.2x10⁻³ 0.017 0.6 1.7 15 0.005 arg.rad⁻¹ 7.1x10⁻⁴ 1.7x10⁻⁴ 2.1x10⁻⁴ 0.017 0.6 1.7 15 0.005 arg.rad⁻¹ 2.5x10⁻⁶ 1.1x10⁻⁴ 1.1x10⁻⁴ 1.3x10⁻⁴ 0.017 0.6 1.7 15 0.006 arg.rad⁻¹ 2.5x10⁻⁶ 9.0x10⁻⁵ 1.1x10⁻⁴ 1.3x10⁻⁴ 0.017 0.6 1.7 15 0.006 arg.rad⁻¹ 7.9x10⁻⁵ 9.0x10⁻⁵ 1.0x10⁻⁴ 0.017 0.6 1.7 1.7 1.7 arg.rad⁻¹ 1.7x10⁻³ 2.5x19⁻³ 0.009 1.7 1.7 1.7 1.7 branets 4.5x10⁻⁶ 0.010⁻⁵ 0.009 0.01 0.1 1.7 1.7 branets 4.5x10⁻⁵ 0.010⁻⁵ 0.009 0.01 1.7 1.7 1.7 branets 4.5x10⁻</td> <th></th> <td></td> <td></td> <td></td> <td> ș</td> <td></td> <td>n ,</td> <td></td> <td>-0.067</td> <td></td> <td>1.4</td> <td>19</td> <td>600.0</td>	MPF.rad-1 7.1x10 ⁻⁴ 2.8x10 ⁻³ 4.2x10 ⁻³ 4.2x10 ⁻³ 1.7 12 0.003 0.17 15 0.005 2.2x10 ⁻⁵ 1.7x10 ⁻⁴ 2.8x10 ⁻³ 4.2x10 ⁻³ 0.049 0.2 0.3 12 0.005 8.3x10 ⁻⁶ 1.7x10 ⁻⁴ 2.1x10 ⁻⁴ 0.017 0.6 1.7 15 0.006 8.3x10 ⁻⁶ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.017 0.6 1.7 15 0.006 4.2x10 ⁻⁶ 9.0x10 ⁻⁵ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.012 0.9 1.7 15 0.006 4.2x10 ⁻⁶ 9.0x10 ⁻⁵ 1.0x10 ⁻⁶ 0.008 1.7 1.7 15 0.006 1.2x10 ⁻⁶ 9.0x10 ⁻⁵ 1.2x10 ⁻⁶ 0.008 1.7 1.7 1.7 1.7 1.2x10 ⁻⁶ 1.7x10 ⁻⁵ 2.5x19 ⁻³ 0.009 0.6 0.3 0.7 1.7 1.7 1.2x10 ⁻⁶ 1.7x10 ⁻⁵ 1.2x10 ⁻⁶ 0.009 0.6 0.3 0.7 1.7 1.7 1.2x10 ⁻⁶ 0.0009 0.0	MPF.rad-1 7.1x10 ⁻⁴ 2.8x10 ⁻³ 4.2x10 ⁻³ 4.2x10 ⁻³ 0.020 0.2 0.3 12 0.020 arP.rad ⁻¹ 7.1x10 ⁻⁴ 2.8x10 ⁻³ 4.2x10 ⁻³ 0.017 0.6 1.7 15 0.005 arg.rad ⁻¹ 7.1x10 ⁻⁴ 1.7x10 ⁻⁴ 2.1x10 ⁻⁴ 0.017 0.6 1.7 15 0.005 arg.rad ⁻¹ 2.5x10 ⁻⁶ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.017 0.6 1.7 15 0.006 arg.rad ⁻¹ 2.5x10 ⁻⁶ 9.0x10 ⁻⁵ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.017 0.6 1.7 15 0.006 arg.rad ⁻¹ 7.9x10 ⁻⁵ 9.0x10 ⁻⁵ 1.0x10 ⁻⁴ 0.017 0.6 1.7 1.7 1.7 arg.rad ⁻¹ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.009 1.7 1.7 1.7 1.7 branets 4.5x10 ⁻⁶ 0.010 ⁻⁵ 0.009 0.01 0.1 1.7 1.7 branets 4.5x10 ⁻⁵ 0.010 ⁻⁵ 0.009 0.01 1.7 1.7 1.7 branets 4.5x10 ⁻					ș		n ,		-0.067		1.4	19	600.0
MTP,rad-1 1 3 -0.022 0.9 1.7 15 0.005 MTP,rad-1 7.1x10 ⁻⁴ 2.2x10 ⁻⁵ $1.7x10^{-4}$ $2.1x10^{-4}$ 0.049 0.2 0.3 1.7 15 0.005 8.2x10 ⁻⁵ $1.7x10^{-4}$ $2.1x10^{-4}$ 0.017 0.6 1.7 15 0.005 8.3x10 ⁻⁶ $1.1x10^{-4}$ $1.3x10^{-4}$ 0.017 0.6 1.7 15 0.005 8.3x10 ⁻⁶ $1.1x10^{-4}$ $1.3x10^{-4}$ 0.012 0.9 1.7 1.7 $4.2x10^{-6}$ $7.9x10^{-5}$ $8.8x10^{-5}$ 0.009 1.3 1.8 1.7 $4.2x10^{-6}$ $1.7x10^{-3}$ $2.5x19^{-3}$ 0.027 0.2 0.3 0.3 $4.2x10^{-6}$ $9.2x10^{-5}$ $1.2x10^{-6}$ 0.006 0.9 1.7 1.7 $4.5x10^{-6}$ $6.0x10^{-5}$ $6.9x10^{-5}$ 0.006 0.9 1.7 1.7	MFP,rad-1 I I 3 -0.022 0.99 1.7 15 0.005 MFP,rad-1 7.1k10 ⁻⁴ 1.7k10 ⁻⁴ 1.7k10 ⁻⁴ 2.1k10 ⁻⁴ 0.017 0.6 1.7 15 0.005 8.3k10 ⁻⁵ 1.7k10 ⁻⁴ 1.7k10 ⁻⁴ 1.7k10 ⁻⁴ 1.3k10 ⁻⁴ 0.017 0.6 1.7 15 0.005 8.3k10 ⁻⁶ 9.3k10 ⁻⁶ 0.017 0.61 1.1 1.7	MUP.rad-1 1 1 2 8x10 ⁻⁴ 2 8x10 ⁻⁴ 2 8x10 ⁻⁴ 2 1 <td>MPF.rad-1 7.1x10⁻⁴ 1 2.8x10⁻³ 4.2x10⁻³ 0.049 0.2 0.3 1.000 8.3x10⁻⁶ 1.7x10⁻⁴ 2.1x10⁻⁴ 1.7x10⁻⁴ 2.1x10⁻⁴ 0.017 0.6 1.7 15 0.006 8.3x10⁻⁶ 1.1x10⁻⁴ 1.1x10⁻⁴ 1.1x10⁻⁴ 1.3x10⁻⁴ 0.017 0.6 1.7 15 0.006 8.3x10⁻⁶ 9.0x10⁻⁵ 1.1x10⁻⁵ 1.1x10⁻⁴ 1.3x10⁻⁴ 0.017 0.6 1.7 15 0.006 1.2x10⁻⁶ 9.0x10⁻⁵ 9.0x10⁻⁵ 9.0x10⁻⁵ 0.009 1.1 1.7 4.2x10⁻⁶ 1.7x10⁻³ 2.5x19⁻³ 0.007 0.3 1.7 1.2x10⁻⁶ 1.7x10⁻³ 2.5x19⁻³ 0.007 0.3 1.7 1.2x10⁻⁶ 1.2x10⁻⁶ 1.2x10⁻⁶ 0.009 1.7 1.7 1.2x10⁻⁶ 0.006 0.6 0.9 1.7 1.7 1.2x10⁻⁶ 0.006 0.006 0.006 0.07 0.17 4.5x10⁻⁶ 0.0008 0.6 0.9 1.7 1.7 1.2x10⁻⁶ 0.0006 0.006 0.9 1.7 1.7 1.2x10⁻⁶ 0.0006 0.006 0.</td> <th></th> <td>n n</td> <td></td> <td></td> <td>N 6</td> <td></td> <td></td> <td></td> <td>+0.020</td> <td>00</td> <td></td> <td>32</td> <td>0.027</td>	MPF.rad-1 7.1x10 ⁻⁴ 1 2.8x10 ⁻³ 4.2x10 ⁻³ 0.049 0.2 0.3 1.000 8.3x10 ⁻⁶ 1.7x10 ⁻⁴ 2.1x10 ⁻⁴ 1.7x10 ⁻⁴ 2.1x10 ⁻⁴ 0.017 0.6 1.7 15 0.006 8.3x10 ⁻⁶ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.017 0.6 1.7 15 0.006 8.3x10 ⁻⁶ 9.0x10 ⁻⁵ 1.1x10 ⁻⁵ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.017 0.6 1.7 15 0.006 1.2x10 ⁻⁶ 9.0x10 ⁻⁵ 9.0x10 ⁻⁵ 9.0x10 ⁻⁵ 0.009 1.1 1.7 4.2x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.007 0.3 1.7 1.2x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.007 0.3 1.7 1.2x10 ⁻⁶ 1.2x10 ⁻⁶ 1.2x10 ⁻⁶ 0.009 1.7 1.7 1.2x10 ⁻⁶ 0.006 0.6 0.9 1.7 1.7 1.2x10 ⁻⁶ 0.006 0.006 0.006 0.07 0.17 4.5x10 ⁻⁶ 0.0008 0.6 0.9 1.7 1.7 1.2x10 ⁻⁶ 0.0006 0.006 0.9 1.7 1.7 1.2x10 ⁻⁶ 0.0006 0.006 0.		n n			N 6				+0.020	00		32	0.027
WP,red ⁻¹ 7.1x10 ⁻⁴ 2.8x10 ⁻³ 0.049 0.2 0.3 2.2x10 ⁻⁵ 1.7x10 ⁻⁴ 2.1x10 ⁻⁴ 0.017 0.6 1.7 2.2x10 ⁻⁶ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 0.017 0.6 1.7 8.3x10 ⁻⁶ 1.1x10 ⁻⁶ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 0.012 0.9 1.7 8.3x10 ⁻⁶ 9.0x10 ⁻⁵ 1.0x10 ⁻⁴ 0.010 1.1 1.7 4.5x10 ⁻⁶ 7.9x10 ⁻⁵ 8.8x10 ⁻⁵ 0.009 1.3 1.8 1.2x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.027 0.3 0.3 4.5x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.006 0.9 1.7 4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 1.2x10 ⁻⁶ 0.006 0.9 1.7	urb.rad-1 7.1k10 ⁻⁴ 2.8x10 ⁻³ 4.2x10 ⁻³ 0.049 0.2 0.3 2.2x10 ⁻⁶ $1.7x10^{-4}$ $2.1x10^{-4}$ 0.017 0.6 1.7 8.3x10 ⁻⁶ $1.7x10^{-4}$ $1.7x10^{-4}$ $1.3x10^{-4}$ 0.017 0.6 1.7 8.3x10 ⁻⁶ $1.1x10^{-4}$ $1.1x10^{-4}$ $1.3x10^{-4}$ 0.012 0.9 1.7 8.5x10 ⁻⁶ $9.0x10^{-3}$ $8.8x10^{-6}$ 0.009 1.3 1.8 4.2x10 ⁻⁶ $1.7x0^{-3}$ $2.5x19^{-3}$ 0.009 1.3 1.8 1.2x10 ⁻⁶ $1.7x0^{-3}$ $2.5x19^{-3}$ 0.008 0.6 1.7 4.5x10 ⁻⁶ $6.0x10^{-5}$ $6.9x10^{-5}$ 0.006 0.9 1.7	WP.red-1 7.1x10 ⁻⁴ 2.8x10 ⁻³ 4.2x10 ⁻³ 0.049 0.2 0.3 2.2x10 ⁻⁶ 1.7x10 ⁻⁴ 2.1x10 ⁻⁴ 0.017 0.6 1.7 8.3x10 ⁻⁶ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.012 0.9 1.7 8.3x10 ⁻⁶ 9.0x10 ⁻⁵ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.012 0.9 1.7 8.3x10 ⁻⁶ 7.9x10 ⁻⁵ 9.0x10 ⁻⁵ 1.0x10 ⁻⁴ 0.012 0.9 1.7 8.3x10 ⁻⁶ 9.2x10 ⁻⁶ 9.2x10 ⁻⁵ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.027 0.3 1.7 8.8x10 ⁻⁵ 1.2x10 ⁻⁶ 1.7x0 ⁻³ 2.5x19 ⁻³ 0.008 0.3 1.7 8.5x10 ⁻⁶ 9.2x10 ⁻⁵ 1.2x10 ⁻⁶ 1.2x10 ⁻⁶ 0.008 0.6 1.7 8.5x10 ⁻⁶ 1.2x10 ⁻⁶ 0.006 0.9 0.9 1.7 8.5x10 ⁻⁶ 0.2x10 ⁻⁵ 0.006 0.9 0.9 1.7	MPF,rad-1 7.1x10 ⁻⁴ 2.8x10 ⁻³ 4.2x10 ⁻³ 0.049 0.2 0.3 2.2x10 ⁻⁵ 1.7x10 ⁻⁴ 2.1x10 ⁻⁴ 1.7x10 ⁻⁴ 0.017 0.6 1.7 8.3x10 ⁻⁶ 0.3x10 ⁻⁶ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 1.17 8.3x10 ⁻⁶ 9.0x10 ⁻⁵ 1.1x10 ⁻⁴ 1.0x10 ⁻⁶ 0.012 0.9 1.7 8.3x10 ⁻⁶ 9.0x10 ⁻⁵ 9.0x10 ⁻⁵ 1.0x10 ⁻⁶ 0.012 0.9 1.7 8.3x10 ⁻⁶ 1.1x10 ⁻⁶ 1.1x10 ⁻⁵ 8.8x10 ⁻⁵ 0.009 0.3 1.7 9.2x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.005 0.3 1.7 1.2x10 ⁻⁶ 0.010 ⁵ 1.2x10 ⁻⁶ 0.006 0.3 1.7 1.2x10 ⁻⁶ 0.006 0.9 0.006 0.3 1.7 1.2x10 ⁻⁶ 0.0006 0.006 0.9 1.7 1.7 1.2x10 ⁻⁶ 0.006 0.9 0.9 0.7 1.7 1.2x10 ⁻⁶ 0.006 0.9 0.9 1.7 1.7 1.2x10 ⁻⁶ 0.		-	ľ						-0.022	6.0	1.7	12	0.006
2.2x10 ⁻⁵ 1.7x10 ⁻⁴ 2.1x10 ⁻⁴ 0.017 0.6 1.7 8.3x10 ⁻⁶ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.012 0.9 1.7 5.5x10 ⁻⁶ 9.0x10 ⁻⁵ 1.0x10 ⁻⁴ 0.012 0.9 1.7 6.5x10 ⁻⁶ 9.0x10 ⁻⁵ 1.0x10 ⁻⁴ 0.010 1.1 1.7 1.5x10 ⁻⁶ 7.9x10 ⁻⁵ 8.8x10 ⁻⁵ 0.009 1.3 1.8 1.2x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.027 0.2 0.3 1.2x10 ⁻⁶ 9.2x10 ⁻⁵ 1.2x10 ⁻⁶ 0.006 0.9 1.7	2.2x10 ⁻⁵ $1.7x10^{-4}$ 2.1x10 ⁻⁴ 0.017 0.6 1.7 8.3x10 ⁻⁶ $1.1x10^{-4}$ $1.1x10^{-4}$ $1.1x10^{-4}$ $1.3x10^{-4}$ 0.017 0.6 1.7 5.5x10 ⁻⁶ $9.0x10^{-5}$ $1.0x10^{-4}$ 0.012 0.9 1.7 4.5x10 ⁻⁶ $7.9x10^{-3}$ $8.8x10^{-5}$ 0.009 1.3 1.8 1.2x10 ⁻⁶ $1.7x10^{-3}$ $2.5x19^{-3}$ 0.0027 0.2 0.3 1.2x10 ⁻⁶ 0.008 0.009 0.6 1.7 4.5x10 ⁻⁶ $6.0x10^{-5}$ $6.9x10^{-5}$ 0.006 0.9 1.7	2.2x10 ⁻⁵ 1.7x10 ⁻⁴ 2.1x10 ⁻⁴ 0.017 0.66 1.7 8.3x10 ⁻⁶ 1.1x10 ⁻⁴ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.012 0.9 1.7 5.5x10 ⁻⁶ 9.0x10 ⁻⁵ 1.1x10 ⁻⁴ 1.0x10 ⁻⁴ 0.010 1.1 1.7 4.5x10 ⁻⁶ 7.9x10 ⁻⁵ 8.8x10 ⁻⁵ 0.009 1.3 1.4 1.2x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.007 0.2 0.3 1.2x10 ⁻⁶ 1.7x10 ⁻⁵ 9.2x10 ⁻⁵ 1.2x10 ⁻⁶ 0.009 1.3 1.7 4.5x10 ⁻⁶ 1.7x10 ⁻⁵ 9.2x10 ⁻⁵ 0.009 0.6 1.7 4.5x10 ⁻⁶ 0.010 ⁻⁵ 6.9x10 ⁻⁵ 0.006 0.9 1.7	2.2x10 ⁻⁵ 1.7x10 ⁻⁴ 2.1x10 ⁻⁴ 0.017 0.6 1.7 8.3x10 ⁻⁶ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.012 0.9 1.7 5.5x10 ⁻⁶ 9.0x10 ⁻⁵ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.012 0.9 1.7 4.3x10 ⁻⁶ 7.9x10 ⁻⁵ 1.1x10 ⁻⁴ 1.0x10 ⁻⁴ 0.012 0.9 1.7 4.3x10 ⁻⁶ 7.9x10 ⁻⁵ 8.8x10 ⁻⁵ 0.009 1.3 1.8 4.3x10 ⁻⁶ 1.7x10 ⁻⁵ 8.8x10 ⁻⁵ 0.009 0.3 1.7 1.2x10 ⁻⁶ 1.7x10 ⁻⁵ 9.2x10 ⁻⁵ 1.2x10 ⁻⁶ 0.005 0.3 1.7 A.5x10 ⁻⁶ 9.2x10 ⁻⁵ 6.0x10 ⁻⁵ 6.9x10 ⁻⁵ 0.006 0.7 1.7 Abbraatby, R. B. et al. and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Meas uresents." 0.005 0.9 1.7	RP, rad-1		7.1x10-4			2.8x10 ⁻³		4.2×10 ⁻³	0.049	0.2	0.3		Ì
8.3×10^{-6} 1.1×10^{-4} 1.3×10^{-6} 0.012 0.9 1.7 5.5×10^{-6} 9.0×10^{-5} 9.0×10^{-5} 1.0×10^{-4} 0.010 1.1 1.7 4.5×10^{-6} 7.9×10^{-5} 8.8×10^{-5} 0.009 1.3 1.8 4.2×10^{-6} 1.7×10^{-3} 2.5×19^{-3} 0.027 0.2 0.3 1.2×10^{-6} 9.2×10^{-5} 1.2×10^{-6} 0.008 0.6 1.7 4.5×10^{-6} 6.0×10^{-5} 6.9×10^{-5} 0.006 0.9 1.7	8.3x10^6 1.1x10^4 $1.3x10^{-6}$ 0.012 0.9 1.7 5.5x10^6 9.0x10^5 $9.0x10^{-5}$ $1.0x10^{-6}$ 0.012 1.1 1.7 4.5x10^6 $9.0x10^{-5}$ $8.8x10^{-5}$ 0.010 1.1 1.7 4.5x10^{-6} $1.7x10^{-3}$ $2.5x19^{-3}$ 0.009 1.3 1.8 1.2x10^{-6} 0.009 0.6 1.7 $1.7x10^{-3}$ $2.5x19^{-3}$ 0.009 0.6 1.7 4.5x10^{-6} $9.2x10^{-5}$ $9.2x10^{-5}$ $1.2x10^{-6}$ 0.008 0.7 0.7	B.3x10 ⁻⁶ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.012 0.9 1.7 5.5x10 ⁻⁶ 9.0x10 ⁻⁵ 9.0x10 ⁻⁵ 1.0x10 ⁻⁴ 0.101 1.1 1.7 4.5x10 ⁻⁶ 7.9x10 ⁻⁵ 8.8x10 ⁻⁵ 0.009 1.3 1.8 1.2x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.007 0.2 0.3 1.2x10 ⁻⁶ 1.7x10 ⁻⁵ 2.5x19 ⁻³ 0.009 1.7 1.7 4.5x10 ⁻⁶ 9.2x10 ⁻⁵ 1.2x10 ⁻⁶ 0.009 1.7 0.3 1.7 4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 5.5x19 ⁻³ 0.008 0.6 1.7 4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 6.9x10 ⁻⁵ 0.006 0.9 1.7	8.3x10 ⁻⁶ 1.1x10 ⁻⁴ 1.3x10 ⁻⁴ 0.012 0.9 1.7 5.5x10 ⁻⁶ 9.0x10 ⁻⁵ 9.0x10 ⁻⁵ 1.0x10 ⁻⁴ 0.010 1.1 1.7 4.5x10 ⁻⁶ 1.5x10 ⁻⁶ 7.9x10 ⁻⁵ 8.8x10 ⁻⁵ 0.009 1.3 1.8 4.5x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.007 0.2 0.3 1.7 1.2x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.009 1.3 1.8 4.5x10 ⁻⁶ 9.2x10 ⁻⁵ 8.8x10 ⁻⁵ 0.009 0.3 1.7 4.5x10 ⁻⁶ 0.009 0.6 1.7 0.009 1.7 Abbraetby, R. B. et al. and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Meas uresents," 0.0008 0.9 1.7		_	2.2×10 ⁻⁵			1.7×10 ⁻⁴		2.1x10 ⁻¹	0.017	9.0	1.7		
5.5x10 ⁻⁶ 9.0x10 ⁻⁵ 1.0x10 ⁻⁴ 0.010 1.1 1.7 4.5x10 ⁻⁶ 7.9x10 ⁻⁵ 8.8x10 ⁻⁵ 0.009 1.3 1.8 4.2x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.027 0.2 0.3 1.2x10 ⁻⁶ 9.2x10 ⁻⁵ 1.2x10 ⁻⁶ 0.006 0.9 1.7 4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 6.9x10 ⁻⁵ 0.006 0.9 1.7	5.5x10 ⁻⁶ 9.0x10 ⁻⁵ 1.0x10 ⁻⁴ 0.010 1.1 1.7 4.5x10 ⁻⁶ 7.9x10 ⁻⁵ 8.8x10 ⁻⁵ 0.009 1.3 1.8 4.2x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.027 0.2 0.3 1.2x10 ⁻⁶ 9.2x10 ⁻⁵ 1.2x10 ⁻⁶ 0.008 0.7 1.7 4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 6.9x10 ⁻⁵ 0.008 0.9 1.7	5.5x10 ⁻⁶ 9.0x10 ⁻⁵ 1.0x10 ⁻⁴ 0.010 1.1 1.7 4.5x10 ⁻⁶ 7.9x10 ⁻⁵ 8.8x10 ⁻⁵ 0.009 1.3 1.8 4.5x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.027 0.2 0.3 1.2x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.009 0.6 1.7 4.5x10 ⁻⁶ 9.2x10 ⁻⁵ 1.2x10 ⁻⁶ 0.009 0.6 1.7 4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 1.2x10 ⁻⁶ 0.008 0.6 1.7	S.Sx10 ⁻⁶ 9.0x10 ⁻⁵ 1.0x10 ⁻⁴ 0.010 1.1 1.7 4.5x10 ⁻⁶ 7.9x10 ⁻⁵ 7.9x10 ⁻⁵ 8.8x10 ⁻⁵ 0.009 1.3 1.8 4.5x10 ⁻⁶ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.027 0.2 0.3 1.2x10 ⁻⁶ 1.7x10 ⁻⁵ 9.2x10 ⁻⁵ 1.2x10 ⁻⁶ 1.7 Abbraetby, R. B. et al. and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Meas uresents," 0.006 0.9 1.7			8.3×10 ⁻⁶			1.1×10-4		1.3×10 ⁻⁴	0.012	6.0	1.7		
4.5x10^{-6} 7.9x10^{-5} $8.8x10^{-5}$ 0.009 1.3 1.8 4.2x10^{-6} 1.7x10^{-3} 2.5x19^{-3} 0.027 0.2 0.3 1.2x10^{-6} 9.2x10^{-5} 1.2x10^{-6} 0.006 0.9 1.7 4.5x10^{-6} 6.0x10^{-5} 0.006 0.9 1.7	4.5x10^6 7.9x10^5 8.8x10^5 0.009 1.3 1.8 4.2x10^4 1.7x10^3 2.5x19^3 0.027 0.2 0.3 1.2x10^6 9.2x10^5 $1.2x10^{-6}$ 0.006 0.9 1.7 4.5x10^6 6.0x10^5 $6.9x10^{-5}$ 0.006 0.9 1.7	4.5x10 ⁻⁶ 7.9x10 ⁻⁵ 8.9x10 ⁻⁵ 0.009 1.3 1.8 4.2x10 ⁻⁴ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.027 0.2 0.3 1.2x10 ⁻⁵ 9.2x10 ⁻⁵ 9.2x10 ⁻⁵ 1.2x10 ⁻⁴ 0.009 0.6 1.7 4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 6.0x10 ⁻⁵ 0.006 0.9 1.7 Aberaetby, R. B. et al. and Thoepson, J. W. "Handbook Uncertainty in Gas Turbine Meas urgenents." 0.006 0.9 1.7	4.5x10 ⁻⁶ 7.9x10 ⁻⁵ 8.9x10 ⁻⁵ 0.009 1.3 1.8 4.2x10 ⁻⁴ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.027 0.2 0.3 1.2x10 ⁻⁵ 9.2x10 ⁻⁵ 9.2x10 ⁻⁵ 1.2x10 ⁻⁶ 0.009 0.6 1.7 Abbraetby, R. B. et al. and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Meas urements," 0.006 0.9 0.0 1.7			5.5×10 ⁻⁶			9.0×10 ⁻⁵		1.0×10 ⁻⁴	0.010	1.1	1.7		
4.2×10^{-6} 1.7×10^{-3} 2.5×19^{-3} 0.027 0.2 0.3 1.2×10^{-5} 9.2×10^{-5} 1.2×10^{-6} 0.009 0.6 1.7 4.5×10^{-6} 6.0×10^{-5} 6.9×10^{-5} 0.006 0.9 1.7	4.2x10 ⁻⁴ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.027 0.2 0.3 1.2x10 ⁻⁵ 9.2x10 ⁻⁵ 1.2x10 ⁻⁴ 0.009 0.6 1.7 4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 6.9x10 ⁻⁵ 0.006 0.9 1.7	4.2x10 ⁻⁴ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.027 0.2 0.3 1.2x10 ⁻⁵ 9.2x10 ⁻⁵ 1.2x10 ⁻⁴ 0.009 0.6 1.7 4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 6.9x10 ⁻⁵ 0.008 0.9 1.7	4.2x10 ⁻⁴ 1.7x10 ⁻³ 2.5x19 ⁻³ 0.027 0.2 0.3 1.2x10 ⁻⁵ 9.2x10 ⁻⁵ 1.2x10 ⁻⁴ 0.009 0.6 1.7 Abbraetby, R. B. et al. and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Meas urements," 0.006 0.9 1.7			4.5x10 ⁻⁶			7.9×10 ⁻⁵		8.8×10 ⁻⁵	600.0	1.3	1.8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2x10 ⁻⁵ 9.2x10 ⁻⁵ 1.2x10 ⁻⁴ 0.008 0.6 1.7 4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 6.9x10 ⁻⁵ 0.008 0.9 1.7	1.2x10 ⁻⁵ 9.2x10 ⁻⁵ 1.2x10 ⁻⁴ 0.009 0.6 1.7 4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 6.9x10 ⁻⁵ 0.006 0.9 1.7 Aberaetby, R. B. et al. and Thoepson, J. W. "Handbook Uncertainty in Gas Turbine Meas urements." 0.006 0.9 1.7	1.2x10 ⁻⁵ 9.2x10 ⁻⁵ 1.2x10 ⁻⁶ 0.009 0.6 1.7 4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 6.9x10 ⁻⁵ 0.006 0.9 1.7 Abbraetby, R. B. et al. and Thoepeon, J. W. "Handbook Uncertainty in Gas Turbine Meas urements," 0.006 0.9 1.7			4.2x10 ⁻⁴			1.7×10 ⁻³		2.5x19 ⁻³	0.027	0.2	0.3		
4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 6.9x10 ⁻⁵ 0.006 0.9 1.7	4.5x10 ⁻⁶ 6.0x10 ⁻⁵ 6.9x10 ⁻⁵ 0.006 0.9 1.7	Aberaetby, R. B. et al. and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Meas urements."	Abernetby, R. B. et al. and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Meas urements."			1.2×10-5			9.2×10 ⁻⁵		1.2×10-4	600.0	9.0	1.7		
		Abernethy, R. B. et al. and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Meas urements."	Aberaetby, R. B. et al. and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Meas urements." AEDC-TR-73-5 (AD 755356), February 1973.			4.5x10 ⁻⁶			6.0x10 ⁻⁵		6.9×10-5	0.006	6.0	1.7		

]

APPENDIX II

SAMPLE OF TABULATED AND PLOTTED DATA

6 0.990 0.8636 0.8645 8 0.979 0.857 0.8540 8 0.979 0.8184 0.8208 6 0.974 0.8184 0.8208 6 0.974 0.8184 0.8704 6 1.007 0.8184 0.8704 8 0.975 0.7740 0.8105 8 0.975 0.7740 0.8709 8 0.975 0.7740 0.8719 0.8682 DATE COMPUTED 6-NV-79 TIME COMPUTED 15:27: 4 DATE RECORDED 15:27: 4 TIME RECORDED 17:5442 PROJECT NUMBER P41C-49 P82 1796.0 PB1 996.0 RFP GAMMA THETA
 7
 5.21774
 0.006418
 79.4

 9
 5.22406
 0.004402
 82.2

 5
 5.21796
 0.006418
 84.4

 5
 5.21196
 0.006478
 84.4

 5
 5.21196
 0.006588
 90.8

 1
 5
 5.22186
 0.006588
 90.8

 1
 5
 5.17882
 0.006588
 90.8
 8

 8
 5.17882
 0.006588
 90.8
 8
 8
 8
 5.20324 0.006416 .20511 0.006393 .21552 0.006411 1 1MEPTIA 40938 i SAMPLE 1. TABULATED SUMMARY DATA ۵ ະດີເ ເ ۷ PHTR 0.00 966.2 967.1 464.7 964.5 966.5 966.1 966.3 967.8 965.5 Ì 00.00 0 -7.592 -0.0142 -0.0143 1.6411268.8 557.1 474.7 -6.712 -0.0034 -0.0194 1.6711269.8 557.0 424.6 -8.753 0.0174 -0.0194 1.6711270.1 557.0 424.9 -8.442 -0.1443 -0.0725 1.6731270.1 557.0 426.1 -9.742 -0.1944 -0.0728 1.6731271.9 557.0 428.6 -9.043 -0.1941 -0.0784 1.6661264.2 556.9 423.6 425.9 476.0 K= .0000 474.2 1. .6667 1.4711269.2 557.1 -5.447 -0.6114 -0.0063 1.6661266.3 357.2 -6.654 -0.01/2 -0.00/4 1.6721270.3 557.2 1 ł M COVFIG A D . 4003 10 . 3491 . 6667 CI,NT REPAID PT 1 APVOLD AIP FORCE STATION, TENNESSEF Support Interference atomy - Pransmut Phase 8900 U- 5800 U- 818 -ł PRCPULSION WIND TINNEL FACILITY C1.4A CLMO 7.44 0.00 11.29 0.00 11.29 0.00 15.23 7.00 19.07 1.00 19.07 1.00 19.07 1.00 -0.10 - 0.30 ł ALPHA PETA 00-01 01-0-3.70 0.00 208 RUR ł i .(r

SYMBOL CONFIG LS/D PHIB Μ REDX10⁻⁶ RFP RUNS M 3.3 0 0.90 6.7 0.0064 0. 208

1..

SAMPLE 2. PLOTTED DATA

· 38

L

