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Experimental analyses of behavioral phenomena usually emphasize

response rate as a datum operationalized by a succession of discrete events

in time. Such a series of discrete events in time is called an event time-

series. The most popular technique used by behavioral scientists to

characterize an event time-series is the cumulative record (Skinner, 1938),

although related techniques, such as frequency distributions of inter-event

intervals and inter-response-times per opportunity (Anger, 1956), have also

been used.

These techniques, particularly the cumulative record, have the

advantage that patterns of behavior in individual subjects can be examined

and compared in a strictly empirical fashion. One difficulty with the

cumulative record, however, is that it often contains so much information

that an Investigator is burdened to classify subjects or to evaluate the

effects of various treatments in a reliable quantitative fashion.

Numerical coefficients and specialized graphical displays which express

limited aspects of the data can often be useful in overcoming this

difficulty, especially when large amounts of data are involved.

Accordingly, the purpose of this technical report is to acquaint behavioral

scientists with several event tive-series techniques which have previously

been used by neurophysioloxists to study neuronal spike trains and which

my be useful in the study of behavioral events.

Renewal Processes DZ t

The simplest time-series process of discrete events observed by_ =i

throughout an arbitrary time period is known as a renewal process. cdre--

Ara utcn o
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renewal process is one in which the previous history of the process has no

effect on Its present state of activity, or, in other words, the length of

the present Inter-event interval Is independent of the lengths of any

preceding interval (Glaser and Ruchkin, 1976). All of the Information

necessary to characterize the process is contained in the frequency

distribution of between-event intervals.

One familiar renewal process is the Poisson process. In the Poisson

process, the probability of an event occurring within any interval of time

is proportional to the length of that interval and is independent of the

occurrence of previous events generated by the process (Glaser and Ruchkin,

1976). If a Poisson process is operative, the frequency distribution of

Inter-event intervals is exponential in shape, or In other words, it

declines in an exponential and monotonically decreasing fashion from the

smallest to largest bin of a frequency distribution histogram. In this

case, the single parameter or essential numerical descriptor of the

interval data set Is the average Inter-event interval. This parameter can

be computed from the total duration of the data sequence from the first

event to the nth event (Tn) by:

V - N/Tn(1

where V Is the average rate. Glaser and Ruchkin (p. 311) Rive the details

for the construction of a confidence interval for V. If an event time-

series Is generated by a Poisson process, the use of the IRTs/Op. technique

4ith such a series, ignoring sampling fluctuation, will result In a

constant IRM/Op. across class Intervals. This results from the fact that
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the IRTs/Op. estimate is essentially the ratio of frequencies in successive

bins of the frequency distribution histogram, and such a ratio is constant

when the frequencies decline exponentially. Exoonential frequency

distributions have been observed for intervals between lever presses when

rats were conditioned to lever press for reinforcements available every

three minutes (Mueller, 1950) as well as for inter-spike intervals for

spinal interneurones (McGill, 1963).

A more generally useful renewal process is the gamma process. This

process generates a frequency distribution which can be characterized by

two parameters, or two essential numerical quantities, a rate parameter (V)

and a shape parameter (r). The distribution function for the gamma

distribution is:

P (Z) - L (r)- 1  (VZ) r-I exp (A V) (2)

where P (Z) means the probability density of an interval of length Z, V is

the average rate, r is the shape parameter, and L (r) is a mathematical

function called the gamma function. The shape parameter determines, as its

name implies, the shape of the frequency distribution of Intervals. If

r - I, the frequency distribution of Intervals is exponential, and as r

approachesQo, the frequency distribution approaches the normal distri-

bution. Figure I shows the shape of the gamma distribution when r varies

and the scale i3 held constant. While the anma distribution is somewhat

imposing at first glance, it can be used to model Interval frequency

distributions with a wide variety of shapes using only two parameters, r

and V,. This distribution has been used to describe the frequency
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Figure 1. Examples of the gamma distribution for several values of the
shap. parameter, r. Adapted from Durand (1971).



distribution of Inter-spike Intervals for certain neurons (Kuffer,

Fitzhugh, and Barlow, 1957) and to describe the distribution of runway

latencies in rats (McGill, 1963).

The parameters of the gammia distribution can be estimated In several

ways (Durand, 1971; Cox and Lewis, 1966; Greenwood and Durand, 1960). One

simple way to estimate these parameters Is to consult a table provided by

Greenwood and Durand (1960). First the arithmetic mean of the Intervals

(Z) and the mean of the loge Intervals (In G) are calculated. The

following difference Is then obtained:

Y -Iin Z - In G (3)

The obtained value of Y Is entered in the n column of Greenwood and

Durand's (1960) Table 1, and the corresponding value of nis obtained.

When this value Is divided by Y, r Is obtained and is then divided Into Z

to obtain 1/V. Greenwood and Durand (1960) also Rive confidence intervals

for the estimates of r and I/V. Figure 2 shows the frequency distribution

of 320 Inter-cigarette Intervals collected from a single subject during a

ten-day experiment In a residential progranmed environment (Nellie, Ray,

and Emurian, 1980). The distribution is obviously not exponential. Its

mode Is not at the smallest frequency bin, and It does not decline in a

monotonic fashion. It does, however, resemble a ganen distribution with

0>1. The X's in Figure 2 show the predicted frequencies for each class

Interval when a gamma distribution Is fit to the data.

The gamma distribution Is not the only model that may describe an
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Figure 2. Frequency distribution of inter-cigarette intervals for
one subject. The X's correspond to theoretical frequencies
predicted by the gamma distribution model and the O's corres-
pond to theoretical frequencies predicted by the lognormal
distribution model.
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inter-event interval distribution. For example, the inter-event Interval

distribution may assume the familiar symmetrical, bell-shaped Gaussian or

normal form. In this case the two essential parameters which describe the

distribution are the mean and standard deviation. In general, however,

Inter-event Interval distributions are not symmetrical. The left-hand tail

of the distribution originates at zero or a value greater than zero, and

the right-hand tail is strongly skewed. This is the shape seen In Figure

2, and as was shown, the gamma distribution function can be used to model

such a distribution.

Another distribution function which can assume a shape comparable with

that in Figure 2 is the lognormal distribution. As the name of this

distribution suggests, the logarithms of the individual variates of a

lognormal distribution are normally or Gaussian distributed. In order to

estimate the parameters or essential numerical quantities which describe

this distribution, the mean and standard deviation of the logarithmically

transformed variables are computed. If the origin of the distribution

begins at some value greater than zero, this value is subtracted from each

observation prior to logarithmic transformation. If it Is desired to

compare the fit of the lognormal distribution to an empirical distribution,

the following values (Hahn and Shapiro, 1967) are computed:

- I* (4)

y XIS (5)

P Z nye +In (X-e) (6)
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A
X is the value of an observation fromt the series where S is the standard

deviation of the transformed observations, T is the mean of the transformed

observation, e is the origin of the series (>O), and Z is a unit normal

deviate, or the Z found In a standard Z table.

The use of (6) allows the cumulative probability associated with a

given X to be determined, and if the X's are the endpoints of the empirical

frequency distribution, the observed probabilities and the probabilities

predicted by the model can be compared. The open circles in Figure 2 show

the predicted frequencies for each class interval. It is apparent that the

lognormal distribution fits the empirical distribution of inter-cigarette

intervals better than the gamma distribution, at least for this single

subject. The parameters of the lognormal distribution were obtained as

described above. Each inter-cigarette interval was adjusted by subtracting

a constant, the adjusted Intervals were logarithmically transformed, and

the mean and standard deviation of the adjusted and transformed Intervals

were computed. The constant subtracted from each inter-cigarette interval

was equal to the smallest inter-cigarette interval in the distribution

minus one minute, or In this case, seven minutes. This constant was chosen

so that the fitted distribution would begin at essentially the smallest

value of the empirical distribution. One minute was subtracted fron th

smallest value of the distribution so that the problem of taking logarithms

of zero did not exist.

More sophisticated and efficient procedures exist for fitting

lognormal distributions (e..&., Aitchison and Brown, 1957), but the simple
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procedure outlined above seemed to produce a fairly good fit to the

empirical frequency distribution, certainly a better fit than that obtained

with the gamma distribution. While only one subject's data are shown in

Figure 2, it seems reasonable to suggest that both gamma and lognormal

distributions be considered as potential models for distributions of

Inter-behavioral events which have shapes similar to that seen in Figure 2.

Serial Dependence

Not all event time-series can be classified as a renewal process. In

some event time-series, for example, the length of any particular inter-

event interval is devendent on the length of previous inter-event

intervals. In most such cases, the type of dependence is assumed to be

linear, and it is characterized in terms of the interval autocorrelation

function. The autocorrelation is defined as follows:

rk =4Xt Xt+k/4Xt2 (4)

where n is the total number of intervals, 2t is the deviation of the tth

interval from the mean interval and k Is the "lag". Lag refers to the

number of intervals between the present Interval and its comparison

interval. For example, when lag-I autocorrelation is under consideration,

the relationship between imnediately successive intervals is being

examined. When lag-k autocorrelation is under consideration, the linear

relationship between successive intervals separated by k-I intervening

Intervals is being examined. A plot of rk for k-1, 2, . . . p is called an

autocorrelation function, and p is usually selected to be no greater than
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N/1O to N/4 (N-total nunber of intervals), since fewer and fewer intervals

are involved in the computation of rk as k increases.

When an event time-series is produced by a renewal process, the

expected value of all autocorrelations of lag-l and greater is equal to

zero. Because of this, the autocorrelation function is often used to test

the hypothesis that the intervals of an event time-series are generated by

a renewal process. Because of the extrenely non-normal nature of most

Inter-event interval distributions, Cox and Lewis (1966) recommend that the

intervals first be ranked before computing the autocorrelation function.

Ranking the intervals also minimizes the effect of gaps in the data on

autocorrelation estimates.

Figure 3 shows the ranked autocorrelation estimates for laps 1 to 5

for the inter-cigarette interval series used to construct Figure 2. When n

is large, an approximate standard error for Rk isTI/n and Rk/r1/n is

approximately distributed as Z, or is unit-normal distributed. None of the

five autocorrelations is equal to twice their standard error, and so the

hypothesis that their true value is zero cannot be rejected.

One problem with this analysis with the present data set is that the

extremely long inter-cigarette intervals corresponding to the subjects'

sleep time are included in the series of intervals. It is possible that

these long intervals could alter the autocorrelation estimates in such a

way as to obscure the "true" pattern of autocorrelation occurring among

intervals within each day. For this reason the ranked lag-l autocor-

relation was estimated for each daily series of intervals. The daily
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ranked lag-l autocorrelations ranged from -.363 to +.210 and their weighted

mean was -.113. This value was barely significant. The approximate

standard error was found by noting that the variance of a weighted

combination of independent random variables is equal to the sum of each

variable's variance multiplied by the square of the weight applied to that

variable. This latter analysis suggests that a small negative relationship

exists between the successive inter-cigarette intervals.

If stronger correlation exists between the intervals, a time-series

model can sometimes profitably be fit to the series, and the parameters of

the model can be used to characterize the behavior of the series. Althoueh

the identification and estimation of time-series models are beyond the

scope of the present discussion, it is worth noting that time-series can

often be modeled with the autoregressive process:

Xt - B1 X t 1 + R2 Xt-2 + 1 . . . Bp Xt. p + et (5)

where the tth interval expressed as a deviation from the mean is It, the

B's are linear weights, and et is random error. Weiss, et al. (1966)

suggested that Interresponse time for rats trained to lever press on a DRL

20 sec schedule could be modeled with an autoregressive process where the

value of p was equal to 1. Equation (5) indicates that Xt is equal to a

weighted combination of P previous intervals plus random error. It is

possible to estimate the autoregression weights of coefficients with

ordinary multiple regression computer programs, and the selection of the

number of lagged values of Xt to be used in the autoregression equation can

be determined with standard stepwise selection procedures. Other methods
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Figure 3. Rank autocorrelations for lags 0 to 5 for the inter-
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are more commonly used, however. The prospective user of time-series

analysis should consult specialized sources before undertaking this task

(e.B., Jones, 1976; Box and Jenkins, 1970; Chatfield, 1976).

The foregoing discussion dealt with the autocorrelation between the

intervals separating the successive events of an event time-series.

Sometimes the autocorrelation between the successive events themselves is

examined. Figure 4 shows how the autocorrelation between events can be

estimated. In this figure the horizontal axis is time and each vertical

line marks the occurrence in tine of a behavioral event. The event

autocorrelation at a one-ninute lag can be generated by displacing the

figure one minute in time and counting the number of times that events from

the two figures coincide. This frequency of coincidence is proportional to

the event autocorrelation with a one-minute lag. This procedure can be

repeated for a wide variety of lags and the plot of the resulting frequency

of coincidences has been called the post-event histogram, the event

autocorrelogran (Sayers, 1971) and the intensity function (Cox and Lewis,

1966).

The post-event histogram represents the probability of events

occurring at various times following an arbitrarily selected event.

Another way to think of this technique is as a probability forecastine

function. When a behavioral event occurs, the post-event histoRram can be

used to predict the probability of subsequent events occurring at various

times afterwards. Figure 5 shows the post-event histograms for the

cigarette event series, and for comparison, the post-event histograms for
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Figure 4. Graph of a hypothetical event-series and of the same series
displaced ahead in time by one minute. Arrows mark coinci-
dences between events of the original and displaced series.
The coincidences of each lag are summed to produce the post-
event histogram.
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Figure 5s. Post-event histogram (presented as a frequency polygon)
for a series of Inter-cigarette Intervals. The numbers
along the abscissa are in units of five minutes.
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Figure 5b. Post-event histogram (presented as a frequency polygon)
for a series of cardiac inter-beat intervals. The numbers
along the abscissa are in units of .2 sec.
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the cigarette event series, and for comparison, the post-event histogram

for a series of sixty successive heart beats. The post-event histogram for

cigarette events rises suddenly at 20 minutes and stays more or less

constant, with minor irregularities, for the remaining 225 minutes. In

contrast the post-event histogram for the heart bents shows a marked

periodicity, alternating between probabilities of zero and close to 1.0 for

much of the histogram. This periodicity in the post-event histogram is

characteristic of regularly occurring processes. It should be noted,

however, that periodicities in the post-event histogram are not, in

themselves, evidence for autocorrelation among the Inter-event intervals.

Instead, the periodicity is often due to the shape of the inter-event

interval distribution. Distributions with a prominent model interval tend

to produce "peaky" post-event histograms.

The actual production of the post-event histograms in Figure 5 was not

achieved with the computational procedure described above. Instead the

following alternative computational procedure was used. The n(n-l)/2

possible intervals between all events were measured and a frequency

distribution was constructed using these intervals. While this is tedious

with hand calculations, it is simple to Implement with a computer. If the

frequency of intervals falling within each bin of the frequency

distribution is divided by n (the total number of intervals in the event

time-series) the transformed frequencies can be interpreted as

probabilities. If the average rate is subtracted from the transformed

frequencies, the resulting values can he interpreted as the autocovariances

among events at various laRs. Inspection of the post-event histogram of
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inter-cixarette intervals revealed that the sequence of events is fairly

Irregular, after an initial latency period, and the probability of

subsequent events Riven the occurrence of any arbitrary event varies fro"

only 10% to 15% over various time lags. It should be noted that if marked

periodicity is seen in a post-event histogram, spectral analysis can be

used to find the dominant frequency of the periodicity and to determine how

much of the variance in the event series is accounted for by this frequency

(see Glaser and Ruchkin, 1976; Sayers, 1971; Cox and Lewis, 1961).

Relationships Between Event Time-Series

The relationship between two behavioral event tine-series has often

been investigated by plotting the cumulative records of the several event

time-series concurrently (e.A., Catania, 1966). While this technique

allows the possibility of discerning a wide variety of possible

relationships between the two series, this technique, as in the utnivariate

or single-series case, can produce so much information that statements

about the presence and nature of dependencies between several series become

very difficult.

When it is desirable to determine if occurrences of behavioral events

in one time-series are related to the occurrences of events in another

time-series, the cross-interval histogram is often useful (Perkel.

Gerstein, and Moore, 1967; Sayers, 1967). Fiture 6 shows a diagrammatic

representation of two concurrent event time-series. Each vertical bar

represents the occurrence of a behavioral event and the horizontal axis

represents time. After viewing such a figure, the question naturally
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Figure 6. Graph showing an inter-cigarette interval from a cigarette-
smoking event-series and a coffee-drinking event falling
within the inter-cigarette interval. W, corresponds to the
backward waiting time and W2 corresponds to the forward
waiting time.



20

arises as to whether the occurrences in time of the events of the two

series are related. The cross-event histogram technique Is designed to

deal with this question.

The cross-event histogram technique works by focusing on inter-event

intervals of one of the two series. After identifying an inter-event

interval, the data analyst, or computer, looks to see if an event of the

other event time-series fell within the inter-event interval. In Figure 6,

for example, an Inter-cigarette Interval begins at 1:00 and ends at 2:20.

A coffee-drinking event occurs within this interval at 1:20. The next step

in the analysis is to measure the interval between the beqinning of the

inter-cigarette interval and the time of the coffee-drinking event (WI) and

the interval between the time of the coffee-drinking event and the end of

the Inter-cigarette Interval 0W2). The Interval W1 is called the backward

waiting time and the interval W2 Is called the forward waiting tine.

Assuming that our two series are Independent, there will be no particular

place in the inter-cigarette Interval that the coffee-drinking event Is

likely to fall. In more precise terms, If we measure the W1 and W2

intervals for many Inter-cigarette intervals, the frequency distributions

of intervals WI and W2 should not differ systematically, Riven that the two

event time-series are independent. Conversely, if the frequency distri-

butions of Wl and W2 do appear systematically different, It Is prohable

that the two series are not Independent of one another. In practice, a

great many Inter-cigarette intervals would be analyzed. All possible W1

and W2 waiting time intervals would be measured and used to construct a

histogram like that shown In Figure 7.
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Figure 7. Cross-interval histogram for coffee-drinking events falling

within the inter-cigarette intervals.
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Since the use of the cross-interval histogram requires arbitrarily

choosing one of the two series for examination of the inter-event

Intervals, It Is usually recommended that the procedure be performed twice.

once for the inter-event intervals of each series.

The height of each bar on the right-hand side of Figuire 7 represents

the number of forward waiting times that fall in each class interval, and

the height of each bar on the left-hand side of the figure represents the

number of backward waiting time intervals that fall in each class interval.

When the two event time-series are independent, the left-hand and right-

hand sides of the cross-interval histogram should be mirror images of one

another. In order to decide whether the two sides of the cross-interval

histogram differ by more than chance, Sayer (1967) recommends the use of a

significance test which compares two frequency distributions, such as a

chi-square test. The outcome of this test must be Interpreted with

caution, however, since one of its basic assumptions is that the two

distributions being compared are independent.

Figure 7 shows the cross-interval histogram for coffee-drinking events

falling within inter-cigarette intervals. The distributions of the forward

and backward waiting times are clearly different. The backward waiting

times tend to cluster around the class interval of > 35 minutes, or, in

other words, the time between the beginninR Of the Inter-cigarette Interval

and the coffee-drinking event tends to be long. In contrast, the forward

waiting times tend to be short. In other words, the coffee-drinking event

tends to occur near the end of the inter-cigarette Interval. Figure 8
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shows the cross-interval histogram for cigarette-smoking events occurring

within inter-cof fee intervals. This figure shows that the backward waiting

tines for cigarettes within inter-coffee intervals tend to be shorter than

the forward waiting times.

The cross-interval histogram, technique only indicates whether it is

likely that two event time-series are independent. If they do appear to be

independent, the process responsible for generating the dependency must be

investigated with other techniques. One simple way in which dependencies

can be generated between two event time-series is the case when the two

series are "in phase". Two event time-series are in phase when the

backward waiting time of one series is a constant fraction of the inter-

event Interval of the other series. Figure 9 shows the distribution of the

phase fractions across all subjects with respect to coffee-drinkinR events

falling within inter-cigarette intervals. This figure shows that 75% of

the phase fractions are greater than 50%. In other words, the cof fee-

drinking event tends to occur in the last half of the interval. This, of

course, would be expected from examination of Figure 7. The phase

fractions are not constant, however, but show a great deal of variability.

Figure 10 shows the distribution of phase fractions for cigarette-

smoking events falling within inter-coffee intervals. This figure shows

the converse of Figure 7. Phase-fractions for cigarette-smokinn events

falling within inter-coffee Intervals tend to be small, the greatest numher

falling within 0% to 25%. The cross-interval histogram and phase fraction

histogram for cigarette events within Intercoffee intervals show less
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Figure 8. Cross-interval histogram for cigarette-smoking events
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evidence of dependencies than the corresponding histograms for

coffee-drinking events falling within Inter-cigarette intervals. This

difference is due to the fact that the rate of cigarette smoking is much

higher than the rate of coffee drinking. Many cigarettes occur within each

Inter-coffee interval, forcing a more even distribution of waiting tines

and phase fractions than that seen for the corresponding histograms

involving coffee-drinking events within inter-cigarette intervals.

If the two event time-series are Independent of one another, the

frequency distributions of phase-fractions, disregarding sampling fluctu-

ation, should be flat, or in other words, show a uniform distribution.

This suggests that a chi-square goodness of fit test could be used to test

the hypothesis of dependence between the two series by comparing the

obtained distribution with a theoretic distribution having equal

frequencies at each class interval. Again, as in the case of the cross-

interval histogram, the results of this test must be Interpreted with

caution since Its assumptions may not be satisfied with the type of data

under consideration. There is nothing to prevent the investigator,

however, from computing a chi-square for either type of histogram for the

purpose of comparison and classification of subjects. In the present case

larger chi-square values Indicate a greater degree of dependency between

the two series than small values.

The cross-interval histogram and the phase-fraction histogram are

useful for detecting simple dependencies between two event time-series. An

easily computed chi-square value can be determined which characterizes the
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degree to which the shape of these histograms deviates from that which

would result if the two series were independent. These are not the only

techniques available for characterizing and detecting the dependencies

between two event time-series, however. Although these other nore complex

techniques are beyond the scope of this discussion, they are described In

Glaser and Ruchkin (1976) and Sayers (1971).

Discussion

When a series of behavioral events is observed, the dynamic properties

of that series and its possible relationship with other series are often of

interest. While the most successful procedure used to deal with problems

of this nature has been the cumulative record, techniques previously used

to analyze series of neuronal spikes, event time-series procedures, can

sometimes be used to reveal aspects of the data which are difficult to see

in a cumulative record. These techniques involve determining, for a sinale

series, the nature of the distribution of intervals in terms of both the

shape of the distribution and presence or absence of sequential

dependencies among intervals or events. When possible relationships

between several series are at question, the distribution of Intervals

across series, forward and backward waiting times, and the ratio of

backward waiting tine to Inter-event Interval (the phase fraction) can be

examined.

The techniques described In this paper are best applied to fairly long

series of events and to series which are "steady-state" In nature, or which

do not exhibit any noticeable trend or change In variance. The presence of
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trends In an event time-series distorts the shape of the distribution of

Intervals. The trend creates serial correlation among successive Intervals

which obscures the nature of the underlying process.

The examples cited within this technical report were chosen to

Illustrate the event time-series techniques with comparatively simple

series of events and straightforward response sequences which are highly

visable and easily assessed. The techniques themselves, however, have

obvious applicability to the analysis of series and Interdependencies which

may characterize complex organizational systems such as the steady-state

operational performance of a team unit whose mission requires coordinated

responding among team members as a function of external task demands and

Individual member contributions to mission goals. It is anticipated that a

more comprehensive appreciation of these methodological applications will

occur In terms of their relevance to the objectives of the current research

program with particular reference to Investigations of team performance

effectiveness.
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