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ABSTRACT

Established, steady-state flow beyond the entry region in a duct with

periodic wall geometry is hypothesized as spatially periodic. Spatially

periodic flow is considered to be attained when the flow and heat transfer

in any cycle of periodic wall geometry is identical to the cycle before

and after it. Thus, a two-dimensional duct with periodic wall geometry

may have its established flow far from the entrance predicted by a numeri-

cal solution over a cycle of the geometry.

A corrugated duct and a parallel plate duct with repeated rib rough-

ness were selected for numerical modeling. These duct configurations are

of interest in heat exchanger designs and other components in propulsion

systems.

A numerical method, utilizing the general finite-difference program

TEACH from Imperial College, was successfully developed to solve for fully

established, laminar flow in a corrugated duct. This method was sub-

sequently applied to predict laminar flow and heat transfer downstream

in a parallel plate duct with repeated ribs as surface roughness elements.

Results for the corrugated duct reveal the presence of large recir-

culation zones at Reynolds numbers greater than about 50. The average

friction factor varies inversely with the Reynolds number at low flow

rates. It then passes through a minimum, as the Reynolds number is varied,

and increases, apparently approaching an approximately constant value co

responding to the development 
of the recirculation zones. 
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Results for the rough duct are preliminary, but indicate reasonable

results may be obtained. Both the flow field and the temperature dis-

tribution in the solid place are determined, thereby providing means to

predict the heat transfer behavior when the thermal resistance in the

fluid and the thermal resistance in the wall are of the same order of

magnitude.

I
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NOMENCLATURE

Symbol Definition

a Distance between corner regions, m

Dh Hydraulic diameter, m

f Friction factor

g Corrugated channel gap, m

HMaximum width of corrugated channel, m

h Rib height, m

k Thermal conductivity, W/m-OC

z Contour co-ordinate, m

L Mean distance between corresponding planes, m
m

mMass Flow Rate, kg/s

N Number of nodes cross-stream
a

Nu Nusselt Number

p Pressure, N/m2

aP Average pressure drop between corresponding planes

Pe Peclet number (Pe = RePr)

Pr Prandtl number

Average heat flux into cell, W/m2-s

/ 2 _Imposed heat flux on plate, WM.-s

Local heat flux at fluid-plate interface, W/M2 s

Re Reynolds number

s Rib separation

1
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NOMENCLATURE--Continued

Symbol Definition

S'i Momentum source in x-momentum equation, N/m
3

x

Siff Momentum source in y-moentum equation, N/m
3

y

Energy source in energy equation, W/m3ST~

T Temperature, 0C

u Velocity in x-direction, m/s

v Velocity in y-direction, m/s

w Rib width, m

x Cartesian co-ordinate direction

y Cartesian co-ordinate direction

yq. Distance from centerline to plate wall, m

y Thickness of plate, m

P Density, kg/m
3

IViscosity, kg/m-s

Ym  Tolerance of core computer program

Yv  Overall computer program tolerance

Kinematic viscosity, m 2 /s

A Resistance coefficient

Subscripts

av Average value

b Boundary value

B Bulk value

f Fluid value

i Nodal index

I
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NOMENCLATURE--Continued

Subscripts

Symbol Definition

int Internal plane value

Nodal index

p Plate value

w Wall or local value

Superscripts

a Denotes plane immediately upstream of corresponding plane

b Denotes plane immediately downstream of corresponding plane

* Correction value

Non-dimensionalized value

* Estimated value
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CHAPTER 1

INTRODUCTION

When studying the flow in ducts, there arise some problems for

which a numerical finite-difference method is the only means of obtaining

a solution, albeit approximate. One class of such problems, important

for the convective heat transfer in advanced concepts for shipbound pro-

pulsion, concerns flow downstream of the entry region in two-dimensional

ducts with repeating geometry.

The repetition of a geometrical characteristic is outlined in

Fig. 1-1. The two-dimensional duct is formed by a pair of parallel plates

with square ribs fastened to the surfaces perpendicular to the flow. A

rib on one surface opposes a counterpart on the ocher surface.

Flow I
- -I~ I

Fig. 1-1. Duct with Repeating Geometry

This duct can be divided into geometric units which are identical

to one another. The vertical dashed lines separate the duct segment in

Fig. 1-1 into two identical geometric units which will be referred to as

'cells' in the remainder of this report.



2

Established flow is considered attained when the flow pattern in

any cell is independent of the entry region effects and identical to the

flow in cells upstream and downstream of itself. It is hypothesized the

repeating geometry produces a repeated flow pattern, i.e., a spatially

periodic flow.

This report deals with the development and application of a nu-

merical technique incorporating a general computer program for two-

dimensional, recirculating flows to produce a solution for the flow in

such cells. Since the cell flow pattern may be assumed representative

of the flow in the duct beyond the entrance region, ducts whose L/Dh

f ratio is large may have their dominant pressure drop and heat transfer

characteristics predicted by a cell solution. Solving for the flow in

a cell rather than a more extensive solution involving the entrance re-

gion then becomes an attractive means for obtaining useful engineering

information at reduced computational costs.

The numerical technique developed in this report will be applied

to two problems. The first problem is concerned with flows in corru-

gated channels and fractures; the second problem is concerned with flows

between ribbed parallel plates. These problems will be titled by the

names of the computer programs developed to solve them: CRACFLO and

RUFF respectively.

d
I
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1.1 Problem Statement for CRACFLO

For compact heat exchangers using plate-fin geometrics, one means

of augmenting heat transfer is use of a corrugated surface for the plate

[Kays and London, 1964]. This geometry is sketched in Figure 1-2.

Studies of heat exchangers with corrugated wall channels are few

in number. General friction factors and Nusselt numbers for a single

corrugated wall channel geometry are presented by Belabarodov and Volgin

(1971]. The friction factors were determined for a Reynolds number

range of 5000 to 45,000. The Nusselt numbers were found for 4000 < Re

< 45,000. A definition of the Reynolds number was not provided in the

paper.

Two other papers [Goldstein and Sparrow, 1975 and 1977] investi-

gate the mass and heat transfer in corrugated wall channels. The invest-

igations limit study to the first two cycles of the corrugated channel

beyond the entrance and do not provide pressure drop or friction factor

data. The range of Reynolds numbers in these studies was from 150 to

8550 where

Re B HB (1-1)

The symbol H is the maximum channel width as shown in Figure 1-2 (c).

Only one geometry was investigated.

Data for three corrugated wall geometries are presented by Kays

and London, [1964]. Average friction factors and Stanton-[Prandtl] 2/3



See Fig. 4-11.

a) Plate-fin heat exchanaer geomietry
with corrugated surface

b) Conceptualized fracture

I

c) Corrugated wall channel

* Fig. 1-Z. Conceptualized Fracture and Corr-agatod

* Wa.ll Channel Schemacics

.....
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number products are presented for the Reynolds number range of 300 to

10,000. The Reynolds number is based on a hydraulic diameter defined by:

D - 4 (minimum flow area) (streamwise length)h (transfer surface area) (1-2)

This brief review represents the sum of the literature on corru-

gated wall channels located by the author. Very few geometries have been

studied and the data are incomplete as average friction factors have not

even been presented for laminar flow in all cases.

A related problem is the flow in fractures. There arises, on

occasion, a need or desire for average friction factor versus Reynolds

number or average friction factor versus geometry relationships for frac-

tures and cracks. One such case is for cracks which may occur in pres-

surized components of power systems [Button et al., 1978].

A crack in a pressurized component is a warning of impending

failure. If gases escaping through this crack may be detected, an early

warning of the component's failure is available. The construction of a

leak detector to serve as a warning device requires an estimate to be

made of the leak rate of gases through a crack. The leak rate is depen-

dent on, among other things, the average friction factor.

Flow in rock fractures is another case where the prediction of

the average friction factor is desirable. The Dry-Rock geothermal pro-

ject is a means for extracting energy by circulating water in a fracture

system in hot, dry rock deep below the surface of the earth [McFarland,

1
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1975]. The overall flow impedance of the fracture system is important

since it determines the pumping power required to flow water through

the fracture system. The local fracture impedance has importance when

investigating the circulation patterns of the flow.

Two prediction methods available [McFarland, 1975; McFarland and

Murphy, 1976] use the D'Arcy relation for hydraulic diffusion to simplify

the governing equations. The D'Arcy relation is based on a friction

factor-Reynolds number relationship similar to that for laminar flow

between parallel plates. Nemat-Nasser and Ohtsubo [1978] assumed a lam-

inar parabolic profile to occur across the fracture gap, neglecting the

rough character of the surface.

Therefore, current predictions of flow patterns in cracks and,

consequently, the extraction of thermal energy from them are based on a

simplified model of the local fracture impedance. It is desirable to

determine the local fracture impedance more realistically to improve the

accuracy of predictions.

The local flow in a fracture may be assumed to exhibit two-

dimensional behavior in regions suitably far removed from the inlet or

outlet. Fractures do not exhibit repeating geometry, but have the poten-

tial for their average characteristics to be approximated by a repeating

geometry. A conceptualized fracture and corrugated wall channel are

shown in Figure 1-2. An approximation of the fracture may be achieved

through careful selection of a corrugated wall channel geometry. The

l1
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average characteristics of a crack or fracture may then be estimated by

performing a numerical solution of the flow in a cell of the corrugated

wall channel.

Therefore, it is desirable to obtain an understanding of the

flow of fluids within a corrugated wall channel. Furthermore, since flow

in compact heat exchangers and fractures is often in the laminar flow

regime, a solution for laminar flow is sought. Program CRACFLO has been

developed to provide a solution for established, laminar flow in cor-

rugated wall channels and, in particular, to provide average friction

factors based on calculated pressure drops.

Program CRACFLO utilizes two geometric units or cells. These

cells are shown in Figure 1-2 (b) delimited by the dashed lines. The

two cell section is shown rotated 45 degrees clockwise in Figure 1-3.

Characteristic dimensions given in this figure are g, the channel gap

width, and a, the distance between the corner regions. The geometric

restrictions for this problem are: i) the corrugations must include

90 degrees, i.e., square corners and 2) the distance between the corner

regions, a, cannot be less than zero.

To enable modeling of many possible fracture geometries, the

length a is variable while g is held constant. The geometry is then

characterized by the ratio a/g. The flow is characterized by a Rey-

nolds number
O UB g

Re B (1-3)

where UB represents the bulk velocity through the duct.
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Due to the unique geometry, the corresponding planes in Figure

1-3 do not separate cells whose flow patterns are identical, but rather

are mirror images of each other. Computational difficulties or an in-

validation of the assumptions of periodic flow do not result, however.

The application of the periodic boundary conditions to this problem will

be discussed in the Analysis section.

1.2 Problem Statement for RUFF

The usage of artificially roughened surfaces for enhancing heat

transfer has been under investigation for some time (Bergeles, 1978].

This report will be concerned with a type of roughness referred to as

transverse or repeated ribs.

The ribs are rectangular in shape and affixed to, or integral

with, a flat plate. The geometry to be investigated is similar to that

shown in Figure 1-4. The dimensions shown are the rib height, h, the

rib length, 1, the rib separation, s, the plate thickness, yp, and the

wall to centerline distance, y.

Though considerable data exist for repeated rib roughness, there

remains uncertainty in predicting the performance of a particular re-

peated rib surface. There have been attempts to reduce data to a general

correlation [Webb, 1978] and to provide a means for optimizing a rough-

ness configuration, (Lewis, 1975 a,b]. These methods, however, provide

the designer with average characteristics of the rough surfaces and have

their own uncertainties.
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Fig. 1-3. Schematic for Corrugated Duct
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a) Overview Schematic

h

y ,

b) Dimensioned Schematic

Fig. 1-4. General Drawings for a
Repeating Rib Geometry
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A heat exchanger designer may desire knowledge of the local

values of the Nusselt number and where potential hot spots may occur.

Additionally, the designer may wish to have a convenient means of pre-

diction and optimization at his disposal in order to allow him to survey

many designs without laborious usage of graphs, correlations or experi-

ments.

A general numerical program is potentially a convenient means of

prediction and optimization. The program may be constructed to provide

the detailed information the designer may desire as well. The overall

performance of a repeated-rib surface may be estimated by a numerical

solution of the flow and heat transfer in a cell if the entry region is

of negligible overall importance. Detailed information for much of the

duct may be provided as well.

This report continues an effort to develop a numerical program

solving for the flow and heat transfer in a cell begun by Short [1977].

The latest program to be developed is titled program RUFF.

Program RUFF utilizes a two cell approach as described in

Chapter 3 and solves only for constant property, laminar, incompressible

flow. The solution domain is shown in Figure 1-5. This figure is ap-

proximately to the scale of a planned experiment. Since the duct shown

in Figure 1-4 is symmetric about the centerline, it is only necessary

to solve from the wall to the centerline. The energy equation is solved

both in the fluid and the plate.
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Fig. 1-5. Solution Domain for Program RUFF
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Extensions beyond Short's work include calculation of local

friction factors and Nusselt numbers, a more flexible scheme for assign-

ing the numerical grid - allowing easier geometry definition - and a

stable solution method.



CHAPTER 2

ANALYSIS

2.1 Governing Equations

The problems considered in this report are assumed to involve

steady state, recirculating, laminar incompressible flows with constant

properties. The fluid medium is presumed to be a Newtonian fluid.

The governing equations for the CRACFLO and RUFF program in a

cartesian coordinate system are:

Continuity:

au 3v
- +-~ (-1)

+ y (2

X-moment um:

S u + v j L - + @2'+- a2u + (2-2)

Y-momentum: r~[ av12v a2v
a a y - ay ax + + (2-3)

Energy:

r v.T] k a2T+ 32T 1 1
pc Lu +v y - + [J +LST  (2-4)

It has been assumed in the energy equation that viscous dissipation is

negligible.

14
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The governing equations are solved such that conditions of period-

icity as described by Short (1977] and separately by Patanker, Liu and

Sparrow [1977] are imposed.

2.2 Equation Non-Dimensionalization

Problem CRACFLO

The non-dimensionalization of the momentum equations for problem

CRACFLO will be illustrated using the x-momentum equation. The non-

dimensional variables are:

-x P __ur

--
X=g =pU--

y X . _ (2-5)
- U B(25y g u

uB

Introducing equations 2-5 into equation 2-2 yields

+ "v- - 2 a " + - + SX (2.6)
ay x Re PL Ba

where the Reynolds number is
PUB g

Re = - (2.7)

The controlling parameters in problem CRACFLO may now be seen to be the

Reynolds number and the geometry ratio, a/g.

I
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Problem RUFF

The non-dimensionalization of the momentum equations for problem

RUFF will be illustrated using the x-momentum equation. The non-

dimensional variables are:

- x
X W - p=

B

u=yLU (2-8)

U B

Introducing equations 2-8 into equation 2-2 yields

U -- ++ L 2 2:u+ a2-U + (2-9)
ax ay ax Re 1 a32  a72 J PUB

where
PU y

Re - (2-10)

The energy equation is non-dimensionalized using equations 2-8

and the non-dimensional expression for temperature:

T -T
Y M. o (2-11)

q,'/f
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where ' is the imposed heat flux, yi the distance from the plate wall

to the centerline and kf the fluid thermal conductivity. 
The non-

dimensional energy equation in the fluid is

.1,,

-3 T-a 1 92T a T'f (2-12)

ax ay Re Pr PC~ p pU B

The non-dimensional energy equation in the plate is different:

fT f (2-13)
Re Pr ay2  ap PC pUB4

The controlling parameters that describe problem RUFF are seen to

be: the Reynolds number, the Prandtl number, the duct geometry and the

ratio, kp/kf.

All planar sources of heat such as p or are non-

dimensionalized as follows:

q Re Pr

2.3 Boundary Conditions for CRACFLO

Two solution cells for the CRACFLO program are shown in Figure 1-3.

The corresponding planes are shown in dotted lines and are numbered 1, 2

and 3. The heavy solid lines represent impermeable, stationary boundaries.

For the solid boundaries, the no-slip boundary conditions

U boundary -0
(2-14)

V boundary 0

are applied.

I
p . . .
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It is necessary to hypothesize the form of the velocity solution

to provide boundary conditions at the corresponding planes 1, 2 and 3.

For a two-dimensional duct, we hypothesize the velocity solution to be

u(x,y) - u(x,Y)entry + U(XY)periodic (2-15)

region

Since we are interested only in the solution for the established vel-

ocity field where the effects of u(x,Y)entry are negligible, it is

.4 region
U(XY)periodic which provides the boundary conditons.

Periodic flow in this case means steady flow with time, but peri-

odic in space. That is, the flow in one solution cell is identical to

the flow in all other cells beyond the entry region. The corresponding

planes separate the duct into solution cells. At these corresponding

planes, the hypothesis of periodic, established flow results in the follow-

ing conditions which must be met for the CRACFLO problem:

-v(x,g + a) = u(g + a, g + a - x) = -v(x + g + a,O)

-u(x,g + a) - v(g + a, g + a - x) - -u(x + g + a,O)
(2-16)

3v (x,g + a) v (g + a, g + a - x) - 3v (x + g + a,O)

3 -u (x,g + a) - 3v (g + a, g + a - x) - 3u (x +- g + a,O)
3x y ax

These conditions cannot be imposed directly because the velocities and

gradients are unknown and must be determined as part of the solution pro-

cedure.

The energy equation is not solved in CRACFLO, thereby removing the

need for boundary conditions on it.I,
I!

- I1



19

2.4 Boundary Conditions for RUFF

Two solution cells are shown, for program RUFF in Figure 1-5. The

heavy solid lines denote stationary, impermeable boundaries and the dot-

ted lines represent corresponding planes.

For the solid boundaries, the no slip boundary conditions,

Uboundary 0

(2-17)
Vboundary 0

are applied at the fluidplate interface. At the external edge of the plate

(y 0) a prescribed heat flux, is imposed.

At the centerline, we impose conditions of symmetry:

u (x,y + yp) . 0
y

._v (x,y, + yp) = o (2-18)3 y

T (x,7, + yq) .

To provide boundary conditions at the corresponding planes, it is

necessary to hypothesize the form of the velocity and temperature solu-

tion (Short, 1977]. We may hypothesize solutions such as:

u(x,y) - u(x,y)entry + U(XY)periodic

region

T(x,y) - T(xY)entry + mx + T(x,y)periodic (2-19)

region

The term mx in the temperature distribution accounts for the continuous

increase in temperature level due to the imposed heat flux.

I
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Since we are interested in established flow where the effect of

the entry region term is negligible, equations (2-19) become:

u(x,y)fully = u(x,y) periodic

developed
(2-20)

T(x,y) fully -mx + T(x,y)periodic

developed

The spatially periodic condition of the velocities implies that

flow in one solution cell is identical to the flow in all other solution

cells beyond the entrance region. The postulated periodic flow yields

the remaining boundary conditions for the two momentum equations:

u(0,y) = u(s +w,7) = u(2s + 2w,y) (2-21a)

v(0,y) = v(s +w.y) = v(2s + 2w,y) (2-21b)

3_u (0,y) _au (s +wy) a _u (2s + 2w,y) (2-21c)
3x x x

3v (O,y) 3 3v (s +w,y) L 3v (2s + 2w,y) (2-21d)
3 x x ax

The boundary conditions for the energy equation follow from much

the same reasoning, except the addition of energy must be treated. Since

energy is being added to the fluid, the bulk temperature of the fluid is

continuously rising so it is impossible to relate scalar temperatures in

the same manner as scalar velocities, equations (2-21a) and (2-21b).

As a result of a constant heat flux applied to the exterior of the

plate, the bulk temperature of the fluid increases almost linearly, lead-

ing to the term, mx, in the hypothesized temperature solution. The con-

ditions of periodic flow yield as a consequence identical temperature

iI
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profiles at corresponding planes when the temperatures are non-

dimensionalized by the difference between the bulk fluid temperature and

the wall temperature at these planes

= wT T - (2-22)

TB Tw  TB Tw T3 - Tw

We know that the bulk temperatures of the fluid are related linearly be-.

tween any two corresponding planes, i.e.,

TB - TB +m + J)
0  B (+(2-23)

T B - T BQ)+ M(2s + 2w)

If we were to assume that T, and Tw are also linearly related by the same

constant, m, equation (2-22) is satisfied identically. It is the condi-

tion of all temperatures at corresponding planes being linearly related

that will be used to provide one streamwise boundary condition on the

energy equation:

T(O,y) = T(s + w,y) - m(s + w) - T(2s + 2w,y) - m(2s + 2w) (2-24)

Another boundary condition at the corresponding planes is pro-

vided by differentiating equation (2-24) with respect to x

T(0 T w,y) -+w_
(O4y (5 3T_(2s + 2w,y) (2-25)

X 73x x



CHAPTER 3

NMERICAL TECHNIQUE

The primary difficulty in solving problems with periodic boun-

dary conditions is that the values of velocity and temperature on :he

upstream and downstream corresponding planes are unknown. Typically

all values and/or fluxes are known on the boundaries in numerical prob-

lems. This chapter concerns itself with the method used in programs

CRACFLO and RUFF to impose periodic boundary conditions.

3.1 Historv

There are a number of numerical techniques to impose periodic

boundary conditions. All methods have a common action. The methods

act upon those boundary velocities which are subject :o periodic boun-

dary condiciins in an orderly fashion seeking those boundary values

which are correct according to the physics of the problem. The boundary

temperatures are similarly treated in cases where the energy equation is

solved.

A total of five methods have been investigated by the author.

These will be briefly described in the chronological order of cheir in-

vestigation. The term "updating," used in the following discussion is

defined as any rational process by which the upstream and downstream

boundary conditions are altered in an attempt to affect a solution.

The first technique was the one-cell successive substitution

method of Short (1977]. This method was found to be unstable in the

22"
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sense that it produced a divergent solution. Later, this instability

was determined to be due to updating the upstream and downstream boun-

dary conditions every iteration.

The second technique was a sensitivity matrix method invented

by the author but related to Newton's method (Cebeci and Bradshaw,

1977, sec. 4.2.2]. This method utilized a matrix of sensitivity co-

efficients produced by perturbing a test flow field for a particular

geometry. The sensitivity matrix provided linear relationships be-

tween changes in the boundary velocity values and changes in the vel-

ocities on the internal plane. These relationships furnished a means

of updating to obtain periodic boundary conditions. The sensitivity

matrix method required more accuracy and execution time of the com-

puter program than appeared economically feasible.

The third technique was the internal plane method. This method

utilizes the velocities on the internal plane directly to provide new

values on the boundary planes, This method is stable and applicable

to both the CRACYLO and RUFF problems. One drawback is the require-

ment for considerable execution time. However, this method was sel-

ected to solve the CRACFLO and RUFF problems, partly due to its reli-

ability.

The fourth technique is called a stabilized one-cell succes-

sive substitution method. This is the method of Short [1977], stabil-

ized by updating only every ten iterations. Though the solution

domain is half that of the internal plane update method, execution

time is greater due to a lower convergence rate.
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The fifth technique is that of Patankar, Liu and Sparrow [1977].

This method utilizes a cyclic tridiagonal matrix in the streamwise di-

rection to impose periodic boundary conditions directly as part of the

solution of the finite difference equations rather than separately as is

done in the first four methods. The author was unable to construct an

operable version of this method for testing. While the application of

this method to CRACFLO presents difficulties, the cyclic tridiagonal

matrix method may be an excellent alternative for RUFF. However, since

the TEACH program uses an upwind differencing procedure for strong con-

vection, this technique may not be effective when there is dominant out-

flow at the downstream boundary. The Internal Plane Method, abbreviated

IPM, will now be discussed in detail. The other four methods are cover-

ed in more detail by Faas [1979; Appendix D].

3.2 Internal Plane Method

The IP method is, in a sense, a fusion of the method of Short

[1977] and certain elements of the sensitivity matrix method mentioned

above. The IP method uses two cells sharing a common corresponding

plane and requires the external corresponding planes to have identical

scalar values of velocity. It also uses the internal plane to provide

information leading to the estimation of new boundary values.

The IP method will be treated in detail using the solution do-

main of program CRACFLO as an example. The geometry is repeated in

Fig. 3-1. The dotted lines numbered 1, 2 and 3 are the corresponding

planes. Planes 1 and 3 are the boundary planes and plane 2 is the inter-

nal plane. The internal plane is a mirror image of the boundary planes,

with point A corresponding to point A'.

I
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ytv
A

gl a
...................

Fig. 3-1. CRACFLO Geometry

The general numerical technique of IPM is to estimate initial val-

ues of u and v velocities at the planes I and 3 and to solve for the flow

field numerically. The influence of the duct geometry as well as the

boundary conditions determines the u and v velocities at plane 2. Hence,

these u and v velocity values become better estimates of the actual vel-

ocity values that satisfy the periodic boundary conditions.

These deduced values are then substituted for the previous boun-

dary velocity values and the process is repeated until periodic boundary

conditions are met. The process of starting with a set of boundary values

and ending with their replacement with values from the internal plane will

be referred to as a "cycle." This process is distinct from an iteration

of the core program.

Many details have been omitted above and require further discus-

sion. A simple model using four nodes cross-stream will be used for pur-

poses of illustration. Figure 3-2 shows the location and title of the

various pertinent velocities. The subscript "b" denotes a boundary vel-

ocity, the subscript "int" an internal plane velocity, the superscript
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"a" refers to an upstream boundary, and the superscript "b" to a down-

stream velocity. The superscripts "a" and "b" are necessary due to the

staggered grid utilized by TEACH, the program which is a basis of

CRACFLO and RUFF.

The first step taken by program CRACFLO is to initialize the

variable fields and the boundary conditions. The u and v velocities are

initially set to zero except for the boundary velocities Vb,n which are

initialized to represent a parabolic velocity prcfile whose flow direc-

tion is the same as shown in Figure 3-2. The subscript "n" may take on

the values 1, 2, 3 or 4 in this example.

The core program uses the initial boundary conditions to solve

for u and v velocities and pressures within the solution domain until a

convergence criterion ym is met.

The core program utilizes a convergence criterion based on the

calculated mass flow imbalance over the solution domain. A mass flow

imbalance of a nodal control volume is referred to as its residual mass

source. The core program is considered converged when the absolute sum

of the mass residual sources of the nodal control volumes is less than

a certain fraction of the mass flow rate through the solution domain.

Mathematically this is

Srnodal _
source (3-)

where ym is the chosen fraction of the mass flow rate.

-IILd
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Core program convergence is complicated by the ability to achieve

a desired tolerance value of Ym when the estimated boundary velocity val-

ues are far from those of periodic flow. This situation is almost always

the case for the initial boundary values. This complication is solved by

selecting an initial tolerance, Yminit, which is sufficiently large to

allow convergence to be achieved with initial boundary values. This value

is reduced as the program proceeds by a preset constant, R, prior to the

commencement of the next cycle. The tolerance is reduced until a mini-

mum tolerance, Ymin, is reached or exceeded. The value of Ym is then

fixed at Ym . for all subsequent cycles.

Once the core program has converged, the program then checks for

overall convergence. Overall convergence is determined by comparing how

well the deduced boundary values satisfy the periodic boundary conditions.

Ideally, one condition to be met is

-v b M Uin t  (3-2)

where the subscript "b" refers to a value on the boundary planes and the

subscript "int" refers to a value on the internal plane. Since the in-

ternal plane is rotated 900 with respect to the boundary plane, we must

compare u velocities on one plane with v velocities on the other with

the appropriate correction of sign.

Experience with the program shows that the streamwise velocities

apparently dominate the physics of the flow to such an extent that sat-

isfying equation (3-2) results in the satisfaction of the remaining peri-

odic boundary conditions as detailed in chapter two. This dominance is
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exploited to provide overall convergence criteria which are relatively

simple to apply. Overall convergence is considered to be achieved when

Ibn_ - Uintn < (3-3)

Ivb,nl - Yv

where the subscript "a" refers to a particular corresponding node on the

internal and boundary planes and Y is a tolerence value. This criterion

must be met by every pair of corresponding velocities before overall con-

vergence is considered accomplished. If overall convergence is accom-

plished, then the program prints the variable arrays and local flow angles

then stops. if the convergence criteria are not met, the program proceeds

to perform an update of the trial boundary values.

The program numerically integrates the velocity profile at the

internal plane to determine the mass flow rate, mint, across it. A flow

correction factor, F is calculated by

iref

F (3-4)
C m.in

where ref is calculated from the Reynolds number and fluid properties.
ref

Next the velocities at the internal plane are used to replace

those at the boundaries as follows:

v~ -F u1 a a ub = vb
c int,l ,l - Vintl I b,l int,l

v -F u Ua a ub vb

b,2 c int,2 b,2 Vint,2 b,2 int,2
(3-5) (3-6) (3-7)

a a b b
F U -' v u -v

b,3 c int,3 a,3 int,3 Ub,3 int,3

v -F u ua a b b
b,4 c int,3 b.4 inc,4 Ub, - vin, 4

Vn
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where it may be seen the purpose of F is to scale the velocity profileC

at the internal plane to conserve the overall mass flow rate.

The correction factor, Fc, is printed every update as an indica-

tion of how the solution procedure is working. The correction factor

should approach a constant value of one as the program moves toward

overall convergence. This is Qbserved in all cases.

The program then reduces the value of the core program convergence

criteria, ym, by a factor of R. If this results in the value of Ym being

reduced below a minimum value, Ymm, the value of Ym is set to Ymmin .

The core program then solves for the u and v velocities and pres-

sures with the new boundary values on the boundary planes. The process

is repeated until overall convergence is reached. A flow chart of the

entire process is shown in Figure 3-3.

3.3 Application of the IP Method to RUFF

The IP technique is applidd to RUFF in a straight-forward fashion

comparable to CRACFLO insofar as the velocities are concerned. Additional

calculations are required to enforce periodic boundary conditions on the

energy equation as detailed in chapter two.

Overall convergence of RUFF is reached when the following is at-

tained

lUbn - uint'n < (3-8)

iVb,n - v

In order to maintain a constant mass flow rate, the streamwise

velocities are corrected at each update by a correction factor Fc as

ic
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Solve core program
until criterion

6 r nodal
sources

M.
i n

is met

Check to see
Print if overall

variable Yes convergence

lists vb~ jf nt

b t,n

STOP is met jNo
Calculate

Update boundary
values with F C
Reduce y m with
R unless at (M mn

Fig. 3-3. General Flowchart for CRACFLO
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defined in equation (3-4). The update performed is shown below

%,n F UFint,n (3-9)

a a
Vb,n Vintn (3-0)

b b
Vb,n v int,n (3-11)

The superscripts "a" and "b" refer to the upstream and downstream

boundary and internal values respectively as related in the CRACFLO ex-

ample and shown in Figure 3-4.

A constant heat flux is applied to the outer edge of the ribbed

plate in program RUFF. This requires the bulk temperature of the fluid

between corresponding planes to increase with x by the incremental amount,

m, defined by

BT q
:) -M p (3-12)Tx cp P p UCUBYq

where 4" is the imposed heat flux, c the fluid specific heat, T the
p p B

bulk temperature of the fluid and U B the bulk fluid velocity.

The specification of the fluid bulk temperature at any section

of the computational cell means the bulk temperature at any corresponding

plane of the duct is also specified. Selecting an inlet bulk temperature

for an upstream boundary condition automatically determines the bulk tem-

perature at the downstream boundary. These bulk temperatures must remain

fixed regardless of the boundary temperature profiles to maintain overall

i
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conservation of energy. The boundary temperature profiles are updated

such that the inlet and outlet bulk temperatures conserve energy as fol-

lows.

When Ruff initializes the temperature field for a particular prob-

lem, the bulk temperatures at the two internal corresponding planes, TBa

and TBb, are recorded. Two internal planes are required for the tempera-

tures as was necessary for the v-velocities because of the staggered grid

used in program TEACH.

The energy equation is solved in each cycle after the momentum

equations are solved for the velocity field. This is possible since the

fluid properties are not temperature dependent in program RUFF; thereby

the momentum equations are decoupled from the energy equation. The energy

equation is solved to an accuracy where the sum of the individual nodal

energy imbalances is less than a specified fraction of the imposed heat

transfer through the wall, that is,

Y.I'nodal I 1
sources - p x (3-13)

where Y is the tolerance fraction and A - 2(S + W). (In the present

version of the program the units are incorrect on the righthand side due

to an oversight when constructing the code. Operationally, this diffi-

culty has had little effect on program performance.)

The temperature profiles at the internal corresponding planes

are integrated to determine the bulk temperatures, TBl and TB2, at those

planes. Temperature correction factors, TC1 and TC2 , are then produced

using the bulk temperatures, TBa and TBb, deduced when RUFF was initial-

ized:
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T TBI (3-14)

ci TBl

T T- Bb(3-15)Tc2 T B2

The temperature boundary conditions are then updated upstream and

downstream by the following process:

B,n cl int,n (3-16)

Tb  Tb

B,n c2 int,n (3-17)

A general flowchart for RUFF is shown in Figure 3-5.

3.4 Confidence Tests

Program CRACFLO

Several tests of program CRACFLO were conducted to determine a)

the uniqueness of the numerical solutions found, and b) the effect of re-

fining the grid mesh. The latter test is also known as a test of grid

independence.

When discussing the tests, a convenient way of expressing the

grid refinement is by the number of nodes cross-stream, NN. The number

of nodes cross-stream is the number of nodes on a corresponding plane that

lie between the solid walls. For example, the number of nodes cross-

stream shown in Figure 3-2 is four. (When a particular number of nodes

cross-stream is mentioned in the following, the reference is to a specif-

ic grid scheme that was used and not to one of many other grid schemes
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Initialize program

variables and boundary

conditions

Solve core program
momentum equations
until criterion

sources• .- Ym

m in
is met

Solve core program
energy equation until
criterion}I r

enodal -<!Ye-

sources

is met

Check to see if
Output overall convergence

variable Yes I U ub n " intn

liststbn - y

IUb,nI

is met

No
STOP Calculate

_FC =ref
F

Update boundary values mint

using Fc, Tcl and Calculate

Tc2 Reduce Tm with TBa
2. ._ TO "ZT

R unless at Tm  T

min TBb

Fig. 3-5. General Flowchart for RUFF
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that satisfy the requirement of having the specified number of nodes

cross-stream.)

The uniqueness tests were conducted with a grid having 12 nodes

cross-stream, a Reynolds number of 100 and a geometry ratio, a/y - 0.5.

Instead of the usual parabolic profile as initial inlet and outlet bound-

ary velocity profiles, a sine curve and slug flow profile were used. The

direction of the flow was identical in all three cases. All three cases

yielded identical flow fields, pressures and average friction factors.

Additionally, a slug profile with reversed sign was used at the

inlet and outlet as an initial velocity profile. That is, the direction

of the flow through the solution domain was reversed. The Reynolds num-

ber was identical with the previous tests. The resulting flow field was

the inverse of the previous flow fields mentioned above and the average

friction factor was identical. Program CRACFLO, to the extent it was

tested, exhibited the ability to attain a unique solution for a unique

Reynolds number and geometry ratio.

Solutions were found for Re - 100, a/g - 0.5 and 6, 12, 24 and 36

nodes cross-stream for a grid independence test. The solution for 36

nodes cross-stream did not reach full convergence; it had progressed far

enough to determine the average non-dimensional pressure drop between

corresponding planes but not the finest details of the flow.

The values of the average non-dimensional pressure drop between

corresponding planes versus the number of nodes cross-stream for the above

solutions are plotted in Figure 3-6. They show a definite trend towards

an asymptotic value with increasing grid refinement, indicating a grid
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independent solution can be obtained. This manner of plotting results

of the grid independence demands more of the numerical technique in per-

formance than other means of plotting the solution results such as against

the total number of nodes in the solution domain. Hence the trend indi-

cated in the plot is stronger evidence than may first appear.

Plotted as well in Figure 3-5 are the results for a grid indepen-

dence test for Re = 10 and a/g = 0.5. Results of both grid independence

tests are summarized in Table 3-1 and Table 3-2. Additionally, velocity

profiles from the internal corresponding planes for the solution for

Re - 100, a/g - 0.5, are plotted in Figure 3-7. Due to the staggered

grid used in program TEACH, there are no values plotted in Figure 3-6

for y/g - 0.0 and y/g = 1.0. Any points apparently at these surfaces

are actually for a y/g value very close to the wall. To emphasize the

region near the wall, a non-uniform grid was used in all cases.

The results of the grid independence tests indicate that a grid

having 12 nodes cross-stream is sufficient to produce accurate average

non-dimensional pressure drops for Re < 10. For the results presented,

a grid having 24 nodes cross-stream is used for Re > 10 as a compromise

between accuracy and economy.

The necessity for using more nodes cross-stream for Re > 10 seems

to stem from the growth of the recirculation zones. Above Re 1 10, the

recirculation/separation zones grow to intersect and cross the correspond-

ing planes. The appearance of this reversed flow at these planes injects

a flow structure of finer scale than a 12 nodes cross-stream grid can

adequately model. The solution is to refine the grid, in this case to a

grid of 24 nodes cross-stream.
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Program RUFF

A limited test of program RUFF was performed. This test was to

execute program RUFF with the rib height set to zero, i.e., as a parallel

plate geometry. Analytical values of the Nusselt number and friction

factor for laminar flow between parallel plates are widely available in

existing literature [Kays, 1966]. These are:

Nu = 8.235

6 (3-18)
Re

where the Reynolds number in equation (3-18) is based on half the distance

between the plates (one fourth of the hydraulic diameter) as it is in pro-

gram RUFF.

Program RUFF was executed with Re = 100 and a grid of 40 x 25

nodes, of which 40 x 18 are in the fluid and the remainder are in the

solid plate. The results were:

Nu = 8.28

f = 0.0604

Nu - 8.28
w

f = 0.06w

where the subscript w indicates a local value at the wall. Only one local

value of each is tabulated; all were essentially identical.

The value of the local and average Nusselt number is 0.5% larger

than the analytical value. This is considered acceptable by the author.

The friction factor, both local and average, calculated from

equation (3-18) is 0.06. The local friction factors calculated by pro-

gram RUFF agree very well, varying only in the fifth significant figure.

.. ., .. ....I. .. -......... ........ . ...2 , ;. ...
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The average friction factor has a similar accuracy. The error for both

local and average friction factors is 0.7% and is considered acceptable

by the author.

A solution for laminar flow in a duct with repeated rib roughness

was generated following this test. The results are presented in the next

chapter. The grid used had non-uniform spacing with 40 nodes in the

x-direction and 25 nodes in the y-direction. The region between the plate

and centerline was allocated 18 nodes, in the y-direction, with 5 nodes al-

located over the rib height.

3.5 Stability and Convergence

Neither program exhibited any tendency towards instability under

any conditions used in the course of the author's research. The core

program has its own stability requirement as described by Faas [1979;

Appendix A] and was stable under all conditions.

Program CRACFLO exhibited the ability to converge towards a solu-

tion. The convergence rate, however, was lower than the author preferred.

The execution time with a grid of 24 nodes cross-stream, Re = 100 and

a/g - 0.5 was 188 seconds or 0.11 seconds per node on a CDC CYBER 175.

The execution time with 12 nodes cross-stream, Re = 10, and a/g = 0.5 was

27.7 seconds or 0.047 seconds per node.

Program RUFF also exhibited the ability to converge uniformly to

a solution, but had an even slower convergence rate. The execution time

for the problem investigated was 257 seconds or 0.29 seconds per node on

a CDC CYBER 175. The 24 nodes cross-stream case for CRACFLO mentioned

above had a grid of 57 x 33 compared to RUFF which has 40 x 25.
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3.6 The Core Program

The core program used in both program CRACFLO and RUFF is program

TEACH developed by Gosman at the Imperial College, London, England. Pro-

gram TEACH is documented by Gosman and Ideriah (1976] and Gosman and Pun

[1973] and is described in the open literature by Khalil, Spalding and

Whitelaw [1975], as well as being extensively documented by Faas [1979].

In general, TEACH solves the momentum and energy equations in

terms of their primative variables for two dimensional, recirculating

flows. It is necessary to have a program capable of handling recirculat-

ing flows as they often occur for rough walls. A further advantage of

program TEACH is believed to be its usage of a hybrid differencing tech-

nique which uses central or upwind differencing locally according to the

local flow conditions resulting in greater overall accuracy.

Modifications of program TEACH for the author's research were

minimal. The only change of note was the addition of FORTRAN code to

subroutine LISOLV. This code allows LISOLV to perform alternating line-

by-line solutions sweeping from left to right and then top to bottom.

The change was originally made in program CRACFLO because the main

flow direction of the fluid was from left to right and top to bottom,

but was retained for RUFF when it was found it increased the convergence

rate.



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Problem CRACFLO

The Reynolds number based on the gap width g and the geometry

ratio, a/g, are the controlling parameters for problem CRACFLO. Utilizing

the IP method, we constructed program CRACFLO and flow solutions were

produced wherein these parameters were varied. The average friction

factor based on the pressure drop between corresponding planes was deter-

mined for each pair of Reynolds number and geometry ratio investigated.

Definitions

The average friction factor used in this report is defined as

AP

P- L (4-1)

where g is the gap width, L the mean distance between correspondingm

planes and AP is the average pressure drop between correspondingcp

planes defined by

I( Z dt. F()d Z
AP (4-2)

cp g g

where the circled number subscript indicates the corresponding plane

where the integration is performed and Z is a length variable aligned

with the plane. In the program the pressure drop between the next two

corresponding surfaces is also calculated to provide insight into the

progress of the solution procedure.

44uI
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The distance L is defined in Figure 4-1 as the distance along them

dashed line connecting the intersecting centerplanes from A to A'. For

the case illustrated, in Figure 4-1:

a/g 0.5
(4-3)

L = (1.0 + a/g)g = 1.5g
m

A

............

Lm

.... +... ..........

Fig. 4-1. Definition of Lm

One may note that as a -- , the effect on the average friction factor

caused by the corner regions, which correspond to the constant 1.0 in

equation (4-3), becomes smaller and smaller. Hence as a approaches ,

the average friction factor should approach that for laminar flow between

parallel planes. The lower limit for a in the present version of CRACYLO

is a value of 0.0.

Several geometries for a corrugated channel are presented in

Figure 4-2 to give the reader an impression of the various shapes which

can be calculated by the program. As a/g increases, the situation ap-

proaches a series of parallel plate ducts connected at right-angle bends.

The Reynolds number used in this report is defined by:

Re - -- (4-4)

IU
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a/g =0.0

a/g 0.5

a/g -1.0

Fig. 4-2. Sample Geometries
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This definition was chosen because g was selected as the characteristic

length by which all other lengths would be non-dimensionalized in problem

CRACFLO.

Effect of Reynolds number on f with a/g held constant

A series of computer solutions yielding average friction factors

was performed holding the geometry ratio constant while varying the Reyn-

olds number. Two geometries were investigated; one having a geometry

ratio of 0.5 and the other a geometry ratio of 0.0. The latter repre-

sents the lower limit of geometry ratios which can be calculated.

The average friction factors for these two geometries are plotted

against the Reynolds number in Figures 4-3 and 4-4. Noticeable in both

figures is the non-linear shape of the curves (on logarithmic coordinates)

and the presence of a minimum. The typical behavior of laminar flows in

ducts yields friction factor curves that are inversely proportional to the

Reynolds number so they form straight lines with negative slopes on log-

arithmic coordinates as shown in Figure 4-4 (Knudsen and Katz, 1958].

Laminar wake flow about a circular cylinder - as well as other

blunt bodies - has a drag coefficient curve, shown in Figure 4-6, similar

to the curve in Figure 4-2. (However, Figure 4-6 is a semi-logarithmic

plot.) Figure 4-5 also relates the behavior of the coefficient of drag

to the recirculation zones or wake behind the cylinder. This observation

suggests the possibility that recirculation zones in the corrugated duct

may control the behavior of the average friction factor at higher Reynolds

numbers.
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The effect of the recirculation zones

The effect of the recirculation zones will be investigated at a

constant geometry ratio, a/g - 0.5. A series of diagrams indicating the

local flow angles in the corrugated channel aids in interpreting the size

and effect of the recirculation zones. These flow angle diagrams are

shown in Figures 4-2, 4-8, 4-9 and 4-10. All flow diagrams are plotted

from the results of a 12-node cross-stream grid. A finer grid solution

is not warranted as the gross details are of primary interest here.

The flow field in Figure 4-6 is representative of the flow for

Re < 10. The recirculation zones are almost non-existant, hence the flow

follows the boundaries closely and moves uniformly downstream with little

or no separation or reversed flow. This flow structure is similar to

Stokes' flow and it is, therefore, not surprising that the average fric-

tion factor curve is nearly linear for Re < 10 on a logarithmic plot

[Schlichting, 19681.

The recirculation zones grow as the Reynolds number is increased.

At Re = 25 the friction factor curve has diverged from its linear appear-

ance. The recirculation zones have grown to over 1/2 2 in diameter as

shown in Figure 4-8. A small secondary recirculation zone, represented by

a single arrow, has appeared between the major eddy and the corner. A

small separation region also occurs behind the convex corner over which

the fluid flows.

Figure 4-9 shows the flow field concurrent or nearly concurrent

with the minimum in the average friction factor. The primary recircula-

tion zones have grown to a diameter of approximately 3/4 g and are con-

nected with the separated flow behind the convex corner. The secondary

recirculation zones have grown as well but are still small.
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A flow field for a Reynolds number above 
that corresponding to

the minimum average friction factor is shown in Figure 4-10. The primary

recirculation zones have grown slightly and little change is observable

in the small secondary recirculation zones.

The flow field for Re > 100 is represented by Figure 4-11. The

primary recirculation zones have not changed noticeably, but the secon-

dary recirculation zone has grown about 150 percent over its size in

Figure 4-9. In both cases the main through flow streamlines appear to

cross the duct relatively directly and to concentrate near the far wall

after passing over a corner.

A relationship between the average friction factor and the recir-

culation zones may now be inferred. The recirculation zones are small or

non-existent at low Reynolds numbers, consequently the average friction

behaves like the friction factor for Stokes' flow. The recirculation

zones grow as the Reynolds number increases and begin to affect the over-

all flow. This effect is characterized by the decrease in slope of the

average friction factor curve.

The average friction factor reaches a minimum approximately con-

current with the stabilization of the primary recirculation zone size.

Hereafter, the secondary recirculation zone grown preferentially and

appears to account for the behavior of the average friction factor above

Re , 100. At the higher Reynolds numbers the main throughflow becomes

more concentrated and resembles a two-dimensional jet passing through a

series of expansions and contractions or connected asymmetric 2-D nozzles

and diffusers. The approximately constant friction factor corresponds to
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the loss coefficient for comparable geometries at high Reynolds numbers

[Vennard and Street, 1975, sec. 9.14].

The presence of these recirculation zones may account for the

differences between Figure 4-3 and the upper curve of Figure 4-12 excerpt-

ed from Kays and London [1964]. This w~iy fin geometry was selected

since it most closely resembles the geometry which produced Figure 4-3,

i.e., a geometry ratio of 0.5. The fins of Figure 4-12 would corres-

pond to a geometry ratio of a/g 1 1 or slightly higher. The wavy fin

has corner angles greater than 90 degrees whereas the corrugated channels

of problem CRACFLO all have 90 degree bends. Additionally, the corners

of the wavy fin are rounded but the corrugated channel corners are sharp.

These differences in geometry would tend to reduce the size of

the recirculation zones by providing a more streamlined shape with less

turning of the flow. The rounding of the corners would eliminate the

secondary recirculation zones in the concave corners and would reduce

the separation at the convex corners. Thus, it is not surprising that

Figure 4-3 does not resemble the upper curve of Figure 4-12.

Curve Fits and Error Analysis

The average friction factor curves have been correlated for the

range 10 < Re < 1000. The resulting curve fit is a third-order poly-

nomial of the form:

f - c0 + c1 log Re + c2 (log Re) 2 + c3 (log Re) (4-5)

.1.. . " . . . .. . . . Il l ... . I. . . -!11 . .. -. z , - b II
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where the constants are:

a/& = 0.0 a/g = 0.5

cO = 3.7107 c0 = 5.0625

c = -4.2743 c1 = -6.633

c2 = 1.7052 c2 - 3.2271

c3 = -0.22362 c3 = -0.46658

The accuracy of these correlations are within 7 percent of the

results provided by the computer solutions. If the computer predictions

are assumed to be approximately 10% low based on figure 3-5, then the

overall accuracy is in the range -3.7% to -16.3%.

This accuracy was determined by the following method. The cor-

rect friction factor was defined as f0, the computer prediction as fl,

the friction factor found by the curve fit as f2 and the overall accuracy,

fo- f2e, as

= 0 2 (4-6)
fo0

The friction factors may be related by

f =f f0 (0.1) (4-7)

f2 1f f (0.07) (4-8)

Equations (4-7) and 4-8) were combined to relate f2 to f0

f f0 (0.09)(1.0 t 0.07) (4-9)
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Equation (4-9) was then substituted into equation (4-6) to estimate the

overall accuracy. Unfortunately, the accuracy of the computed results is

a subjective estimate and has errors of its own which presently cannot be

determined.

The effect of a/g of f1 Re held constant

The effect of varying the geometry ratio, while holding the Rey-

nolds number constant at Re = 250, was investigated using a grid having

12 nodes cross-stream. This spacing places the numerical value of the

computer results in question, but not necessarily the relative magnitudes.

The average friction factor is plotted against the geometry ratio

in Figure 4-13. The average friction factor rises to a maximum at

a/g = 1 and then decreases in an exponential fashion apparently approach-

ing a constant value as a/g increases. It was previously mentioned that

the average friction factor should approach the friction factor for laminar

flow between parallel plates as a - -. The trend toward a constant value

in Figure 4-13 supports this hypothesis but it appears that the corner

recirculation continues to dominate the pressure drop even at a/g " 10.

General Discussion

The results presented in this report are too incomplete to be of

great utility. The correlations may be of some aid but only for the two

geometries investigated. However, the potential of program CRACFLO to

serve as an aid in the engineering design of corrugated fin heat exchangers

in the future is not, by any means, to be overlooked.
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Perhaps the most useful observation to be made on the present

results is that laminar flow in a corrugated channel may not yield the

average friction factor - Reynolds number relationship

f = Re- 1 (4-10)

This observation has implications when one attempts to predict flow pat-

terns in a large rock fracture and flow through a crack in a pressure

vessel [Button et al. 1978). An actual crack may have sharp or jagged

walls generating recirculation zones which affect the local friction

factor as in a corrugated channel. The present practice of assuming a

D'Arcy relation or the presence of smooth walls to simplify the friction

factor calculation is expected to be in error unless the Reynolds num-

ber is very low.

4.2 Problem RUFF

The efforts to apply the IP method to problem RUFF were initi-

ated very close to the end of the authorts research. The direct conse-

quence was that results for only one condition - geometry, Prandtl and

Reynolds numbers and thermal conductivity ratio - were produced. The

discussion here will be brief as the limited results do not warrant a

lenathy discourse.

Program RUFF determines local and average friction factors and

Nusselt numbers in addition to the u and v velocities, pressures and

temperatures. All results are non-dimensional. The local friction

factors and Nusselt numbers are determined on the vertical sides of the

ribs as well as on the horizontal surfaces.
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De finitions

The local friction factor is defined as

f au (4-11)
-- w

where d is a unit vector perpendicular to the surface, u is the velocity

vector, and the subscript "w" indicates the values are determined at the

fluid-solid interface or wall.

The local Nusselt number is defined as

Nu - wy(-2w kf (Tw - TB) (4-12)

where ' is the local heat flux at the wall, Tw is the local wall temper-

ature, y is the greatest distance between the plate wall and centerline

(see Figure 1-5), kf is the thermal conductivity of the fluid and the

subscript "B" denotes a bulk quantity.

The average friction factor and Nusselt number are defined such

that they are more useful for general design considerations. The average

friction factor is defined by

f - 2y AP ) (4-13)
PU B (s+ w)

where AP is defined in equation (4-2) replacing g with y., s and w
cp

are the rib separation and rib width (see Figure 1-5); their sum is a rib

cell length.
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The average Nusselt number is defined by

%Tell y

Nu cl Y (4-14)

where 4411 JC 4w dY 4.5where "" qcell (s + w) (4-15)

Tw av (s + w + 2h) (4-16)

+ w TB dx

TB Cs + w) (4-17)
av

The integrals forq'" and T are performed along the contour of the
cell an wav

fluid - solid interface and Z is a co-ordinate for distances along the

contour.

The result of using AP and ll in these average quantities
cp cell

is to submerge the effect of the rib into them. This allows the heat ex-

changer designer to perform his job without concerning himself with

details, (which are available should they be of interest). One should

note that for a constant heat flux applied to the outside of the repeated-

rib plate, as is done in problem RUFF, that

cell

where the subscript "p" refers to the plate.
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Additional information provided by program RUFF is the local flow

angles and the maximum temperature in a plane perpendicular to the flow

direction. The latter allows the heat exchanger designer to locate the

hottest points in the heat exchanger and compensate as required.

The Reynolds number used in program RUFF is based on the wall to

centerline distance, y, because this is the characteristic length used

to non-dimensionalize the geometry

Results

A single solution was found for the following conditions

Re - 100 y = 1.0

Pr - 0.7 s - 0.25

fluid: air h - 0.04

plate: stainless steel w = 0.12

-p/kf k 724 yp 0.21

The dimensions are non-dimensional and derived from the actual dimensions

of a plate with repeated ribs to be used in an experimental test rig at

the University of Arizona.

A heat flux, applied to the external surface of the plate was

mdelled as well. One should consult chapter two for a discussion on the

non-dimensionalization of the energy equation and an explanation of how

4" was imposed.
p

The average Nusselt number calculated was 8.48 and the average

friction factor calculated was 0.07. For comparison, the Nusselt number

and friction factor for laminar flow between parallel plates at the same
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Reynolds number are 8.235 and 0.06, respectively, [Kays, 1966]. The cal-

culated average Nusselt number is 2.9% greater than that for laminar flow

between parallel plates. The calculated average friction factor is 16.7%

greater than the friction factor for laminar flow between parallel plates

which is a somewhat unexpected result. According to Schlichting [19681,

the roughness element investigated should have little effect on the fric-

tion factor in laminar flow. This might be attributable to a too permis-

sive overall convergence criterion resulting in a not fully converged

solution. The convergence criterion, yv' was 0.005.

The local Nusselt numbers are plotted in Figure 4-14. The

abscissa is the non-dimensional distance along the contour of the fluid-

plate interface measured from the upstream corresponding plane. One may

note the periodicity of the results and that the local Nusselt number is

negative at two points indicating heat transfer to the plate. This cor-

responds to the point in each rib indicated by the circled dot in Figure

4-16.

The local friction factors are plotted in Figure 4-15. The

abscissa is the same as was used in Figure 4-14. Here also one can note

the periodicity of the results and the negative values of the friction

factor. The negative values occur where recirculation is present and

simply implies flow in the negative direction.

The maximum temperature at all cross-sections occurs at the ex-

ternal surface of the plate where 4" is applied. This result is reason-
p

able and predictable.

how
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A plot of the local flow angles is presented in Figure 4-16 as an

aid for flow visualization. Only the region above the rib where the flow

is perturbed noticeably from a direction parallel with the centerline is

plotted. A small recirculation zone occurs before and after the rib,

the leeward recirculation zone being the larger.

The velocity profile at a boundary cross-section is plotted in

Figure 4-17. The co-ordinate yf is the distance from the fluid-plate

interface measured parallel to the y-axis. The position of this cross-

section relative to the rib can be reckoned from Figure 4-16 where the

left or right-hand boundary is the corresponding plane location. A lam-

inar parabolic profile is plotted as a solid line for comparison. The

effect of the rib can readily be seen and its influence extends essential-

ly to the centerline. Near the wall, the flow is still recovering from

the separation caused by passing over the rib.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions for Problem CRACFLO

A computer program has been successfully developed for numerical-

ly solving the fluid flow field subject to spatially periodic boundary

conditions in corrugated channels with right angle bends. Preliminary

results have been obtained.

The flow in this corrugated channel is seen to be more complex

than might initially be anticipated; it exhibits the formation of a large

primary recirculation zone and a small secondary recirculation zone as the

Reynolds number increases.

As a consequence, the average friction factor passes through a

minimum as the Reynolds number is varied while the geometry ratio, indi-

cating the distance between successive bends, is held constant.

Correlations of the average friction factor as a function of Rey-

nolds number for the two geometry ratios investigated, 0.0 and 0.5,

were determined, The form of the fit is

f = c0 + c1 log Re + c2 (log Re)
2 + c3 (log Re)

3

where the values of the constants are

a/g = 0.0 a/g - 0.5

c0 = 3.7107 c0 . 5.0625

c I = -4.2743 cl . -6.633

= 1.7052 c2 = 3.2271

c 3  -0.22362 c 3 - 0.4665

70
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The accuracy of the curve fits are estimated as being in the range -4%

to -16%.

Additionally, the effect of varying the geometry ratio while

holding the Reynolds number constant on the average friction factor was

investigated. It was found that the average friction factor passed

through a maximum as the geometry ratio was varied and approached a con-

stant value as the geometry ratio grew large. The latter phenomena was

attributed to the lessened effect of the corner regions containing the

recirculation zones on the entire flow in duct between corresponding

planes.

Finally, the observed behavior of the average friction factor

in corrugated channels raises doubts on the applicability of using the

relation

f aRe
1

for calculating friction factors in cracks or fractures with rough walls.

5.2 Recommendations for Problem CRACFLO

Recommendations for further work on problem CRACFLO can be

grouped into three categories: a) further refinement and testing of

program CRACFLO, b) production of more extensive predictions for laminar

flow in corrugated channels, and c) application of program CRACFLO to new

problems.

Program CRACFLO suffers from a lack of versatility. The program

should be modified to have the following capabilities:
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1) Ability to accurately solve for flows with geometry
ratios to 25.

2) Ability to solve the thermal energy equation.

3) Ability to calculate local wall shear stresses or fric-
tion factors and local Nusselt numbers.

4) Ability to move the corresponding planes relative to the
corners.

5) Ability to solve for transitional and fully turbulent
flows as well as laminar flows.

6) Ability to perform solutions in less than 300 seconds

on a CDC CYBER 175.

The first and fourth modifications allow for further testing of

program CRACFLO, particularly to investigate the behavior of the average

friction factor as the geometry ratio becomes large. The remaining modi-

fications are to increase the utility of program CRACFLO with modifica-

tion six perhaps the most important as program CRACFLO presently requires

considerable execution time and is therefore expensive to use.

An important test of program CRACFLO is a laboratory experiment.

This experiment is crucial for establishing the validity of predictions

made by program CRACFLO. Minimum goals of the experiment would be:

a) Determine the length of the entrance region in a corru-
gated channel prior to the establishment of periodic
flow.

b) Obtain pressure drop data to allow comparison of the
average friction factors.

c) Perform flow visualization to chart the size and dev-
elopment of the recirculation zones.

The limited predictions presented in this report should be ex-

tended and new predictions produced. Average friction factors for a
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geometry ratio of 0.0 should be determined for 1 < Re < 10. New pre-

dictions of the average friction factor over the range 1 < Re < 1000

should be produced for geometry ratios of 1.0, 1.5 and 2.0. Inspection

of the geometries investigated by Kays and London [1964] indicates the

geometry ratio range 0.0 < a/g < 2.0 should cover most of the geometries

that might be found in industry. The suggested new work should be re-

garded as a minimum goal and more predictions as desirable.
A new application would be to apply the results of program CRACFLO

as input to a program predicting laminar flow in cracks. This application

requires a correspondence between rock fracture geometries and the geome-

try ratio to be determined. This would be a difficult task, but has poten-

tially great rewards for predicting the performance in applications such

as Hot-Dry-Rock geothermal reservoirs.

A second new application is to modify program CRACFLO to predict

the performance of corrugated absorber plates in air-cooled solar collec-

tors. The use of solar collectors for domestic heating is a contemporary,

but not a mature technology. Hence, there exists a need for investigat-

ing new methods to increase collector efficiency, and/or reduce the cost

per square meter or unit of collected energy. A corrugated absorber plate

may allow one or both of these goals to be attained by improving the per-

formance by heat transfer augmentation [McEligot and Bankston, 1979].

5.3 Conclusions for Problem RUFF

A program has been successfully developed for numerically solving

for laminar flow and heat transfer subject to periodic conditions in

parallel plate ducts with repeated rib roughness and a constant imposed

heat flux applied to the external plate surface.
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A single case was investigated. An average Nusselt number 3%

greater and an average friction factor 16.7% greater than those for lam-

inar flow between parallel plates were found. The average friction fac-

tor result is believed to reflect a not fully converged solution.

Local Nusselt numbers and friction factors were determined as

well. The results indicate that heat is transferred to the plate at the

base of the leeward side of the rib and that recirculation zones occur

before and after the rib.

The leeward recirculation zone is found to be larger than the

windward recirculation zone. The rib affects the velocity profile at a

plane approximately midway between it and the following rib, from the

wall to essentially the centerline.

5.4 Recommendations for Problem RUFF

Recommendations for further work on problem RUFF can be grouped

into two categories: a) further refinement and testing of program RUFF,

and b) application of program RUFF to problems.

Program RUFF was brought to an operational state by the author in

the course of his research, but many tests have yet to be performed. The

effect on the calculated flow field of the boundary plane location rela-

tive to the rib must be investigated. Grid independence tests must be

performed and the effect of alternate initial flow fields investigated.

The overall convergence criterion must be decreased until the average

friction factor becomes insensitive to it.

A major goal is to reduce the computational time presently re-

quired by program RUFF. The cyclic tri-diagonal matrix method mentioned

in Chapter 3 and described by Faas [1979; Appendix D] may provide a solu-
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tion to this problem. Another major goal is to modify RUFF to handle

transitional and turbulent flows as these are of greater interest.

The existing literature should be surveyed to find experimental

data to aid in verifying program RUFF and aiding in its development.

Conducting laboratory experiments may be necessary as well.

Program RUFF should eventually be used in the design and opti-

mization of heat transfer surface using repeated rib roughness to enhance

heat transfer. The current grid scheme of program RUFF restricts appli-

cation so only small roughness elements can be treated; modifications

should be made to allow roughness elements on the order of half the plate

spacing to be investigated. Other geometries, such as staggered ribs and

ribs on a single wall of the duct are extensions of program RUFF that

should be easily realized and of interest. Program RUFF may have appli-

cations in predicting flow in cracks as well as Program CRACFLO.
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Table 4-1. Friction factor as a function
of Reynolds number

for a/g = 0.0 and N n 24
n

Non-Dimensional ____

Reynolds 'umber, Re Pressure, pubL Friction Factor

10.0 0.9181 0.9181

50.0 0.2572 0.2572

100.0 0.194 0.194

250.0 0.183 0.183

500.0 0.186 0.186

1000.0 0.197 0.197

Table 4-2. Friction factor as a function
of Reynolds number

for a/g - 0.5 andN = 24
n

Non-Dimensional cD
Reynolds Number, Re Pressure, Ub-  Friction Factor

10.0 1.786 1.19

50.0 1.230 0.82

100.0 1.540 1.03

250.0 1.921 1.28

500.0 2.181 1.45

1000.0 2.41 1.61
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Table 4-3. Friction factor as a function
of Reynolds number

for alg - 0.5 and N n 12

Non-Dimensional APcp

Reynolds Number, Re Pressure Do, pU b Friction Factor

1.0 15.37 10.3

2.0 7.728 5.15

5.0 3.203 2.14

10.0 1.783 1.19

25.0 1.135 0.757

50.0 1.095 0.730

100.0 1.255 0.837

250.0 1.454 0.969

500.0 1.656 1.10

1000.0 1.861 1.24
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Table 4-4. Friction factor as a function

of geometry ratio,
a/g, for Re - 250 and N - 12

Non-Dimensional co

Geometry Ratio, a/g Pressure Drop, b Friction Factor

0.0 0.2857 0.286

0.5 1.454 0.969

1.0 2.165 1.08

1.5 1.968 0.787

2.0 1.608 0.536

5.0 1.258 0.210

10.0 1.601 0.146
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