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Abstract.
large linear complementarity problems arising from applicatioms.

Iterative methods have been found very useful for solving many
In this

paper, we formulate a basic algorithm and use it as a unifying framework

for the study of such methods. Next, we apply various strategies to in-

vestigate the convergence of the basic algorithm., Finally, we discuss the

possibility of extending the analysis presented here to treat other com=-

plementarity and variational problems. _
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1. INTRODUCTION

The linear complementarity problem has become a very important subject
in mathematical programming. Over the years, many methods have been proposed
for the numerical solution of the problem. These methods may be classified
as (i) direct, (ii) iterative or (iii) hybrid. Direct methods are based on
pivoting techniques and have the property of finite termination. Some of the
best-known direct methods are Lemke's almost complementary pivoting algorithm
[27], Cottle's principal pivoting algorithm {9] and the parametric version of
Graves' principal pivoting algorithm [8, 20]., Iterative methods generally
converge only in the limit. Hybrid methods are iterative in nature but use
some other (in many cases, direct) methods to solve subproblems.

Both the direct and iterative methods have their own advantages and
disadvantages. Typically, direct methods are most suited for small to
medium sized problems. Their efficiency tends to decrease as the problem
size increases. This is partly due to the fact that both the number of pivots
and the amount of work required im each pivot are expected to grow rapidly
with the problem gize. Another disadvantage of direct methods for solving
large problems is the excessive amount of computer storage. On the other
hand, iterative methods usually require very little extra storage because
they often operate on the given data only., As a result of this nice feature,
iterative methods have become very useful for solving many large linear
complementarity problems arising from applicatioms. See (10, 12, 13, 16, 36].

Our purpose in this paper is to continue our previous work in [38] to
develop a general comvergence theory of iterative methods for solving the

linear complementarity problem, The basic framework used throughout the

analysis is built on the rather old concept of matrix splittings [41].
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Specifically, given a splitting of the matrix defining the linear com-
plementarity problem, a basic algorithm (in the sense of Zangwill [43)) is
constructed which generates a sequence of iterates by solving some linear
complementarity subproblems. Depending on the properties of the splitting
involved, four different approaches may be used to establish the convergence
(to a desired solution of the given linear complementarity problem) of the
sequence generated. In what follows, we give an overview of these approaches.

The first approach, to be called the symmetry approach is based on the
assumption that a certain quadratic function can be used to monitor the
progress of the algorithm, Typically, this approach is used in the case when
the matrix defining the original linear complementarity problem possesses
some symmetry property (although the matrix itself need not be symmetric).
For instance, if the given complementarity problem arises as the set of
Karush-Kuhn-Tucker optimality conditions of a convex quadratic program, then
the objective function of the program is a natural candidate to be used in
the monitoring process. Some references on this approach are [5, 10, 11, 12,
13, 16, 30].

The second and third approaches were initially used by Ahn [3] in his
doctoral dissertation to establish the convergence of the PIES algorithm [21].
Both approaches are based on some standard contraction argument. One of
them involves ''morm-contraction' and the other 'vector-contraction". (More
detailed explanation of these two terms will be given later.) 1In the earlier
paper [38], the author has extended Ahn's work [4] and has established a
rather general convergence result (based on the vector-contraction approach)

for the basic algorithm mentioned previously. Later in the paper, this result

will be improved. Incidentally, the norm-contraction approach has also been
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used by Aganagic [1] in his convergence proof of a particular iterative
method for solving the linear complementarity problem with an asymmetric
matrix.

Finally, the fourth approach, to be called the monotone approach,

involves showing that the sequence of iterates is both nonincreasing and
bounded below (in the vector sense). Once these two properties are estab-
lished, the desired convergence of the iterates is obtained easily.
Typically, the monotonicity of the iterates is implied by some least-element
connection of the linear complementarity subproblems, See [37].

Once the convergence of the iterates is established, an equally important
question is how fast the convergence is, in other words, what the convergence
rate of the algorithm is. Typically, this rate may not be easy to obtain if
the symmetry or monotone approach is used. The two contraction approaches
usually give rise to a geofmetrical rate of convergence. In this paper, we
shall be concerned merely with the convergence of the basic algorithm and
shall not address its rate of convergence.

The organization of the rest of this paper is as follows. In the next
section, we formally introduce the basic algorithm and show how it includes a
block relaxation method for a certain strictly convex quadratic program as a
special case. In the four sections following Sectiomn 2, we investigate the
convergence of the basic algorithm using the four approaches outlined above.
Finally in the last section, we draw some concluding remarks concerning the

possibility of extending our analysis given here to treat other complementarity

and variational problems,
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2. THE BASIC ALGORITHM

Al Given an n-vector q and n by n matrix M, the linear complementarity
problem (q, M) is to find an n-vector x so that the conditions below are

satisfied
u=gq+Mx > 0, x 20 and uTx =0,
By a splitting of the matrix M, we mean the representation
M=B +C }

where B and C are matrices of the same order as M, We denote such a splitting

by (B, C). 1In [38], we have introduced the following algorithm as a unifying

PR s o A 1SS0

framework for the study of many iterative methods for solving the linear

complementarity problem (q, M).

Basic Algorithm. Let (B, C) be a splitting of the matrix M and let E be an

n by n nonnegative diagonal matrix with E,, < 1 for all i, Let x° be an

ii
1 arbitrary initial vector. Generate the sequence of vectors {xk} as follows, 4
g 4
1 Given xk s let xk+1 be a solution to the complementarity problem
] u=gq+ ka +Bx20, x2 Exk and uT(x - Exk) =0, (1)

Alternatively, the algorithm may be described in terms of the associated

algorithmic map G where for each given vector y € R® s G(y) is the set of all ;
solutions to the complementarity problem (1) with y replacing xk . Using the

# map G, we may rephrase the algorithm as : xk+1 € G(xk). It i{s easy to show

3 that any fixed point of G , i.e., any vector y such that y € G(y), is a
solution to the linear complementarity problem (q, M).

The problem (1) is not in the exact form of a standard linear complemen-

tarity problem (q, M), However, by means of the simple tranglation of
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variables z = x - E.xk » (1) is obviously equivalent to the linear complemen-

tarity problem (qk, B) where qk =q+ (C+ BE)xk .

So far, we have not stated any condition on the splitting (B, C) to
guarantee that each linear complementarity subproblem (1) is solvable. From
now on, we simply declare this as a blanket assumption of the paper and will

not be concerned with the exact manner in which xk+1 is computed. The analysis

in the subsequent sessions will be devoted entirely on investigating the
convergence of the sequence [xk} generated. (For practical purposes, the
splitting (B, C) should be such that each linear complementarity subproblem
(1) can be solved fairly easily.)

By appropriately choosing the splitting (B, C) and the diagonal matrix
E, we [38] have known how Mangasarian's iterative scheme {30] and the point
successive overrelaxation (SOR) method of Cottle, Golub and Sacher {17] can be
cast as special cases of the basic algorithm described above. 1In what follows,
we demonstrate that the relaxation method of Céa and Glowinski [5] specialized
to solve strictly convex quadratic programs with separable constraints is
also a special realization of our basic algorithm. Specifically, comsider

the quadratic program

minimize & viQv + £y subject to F.v. <e , V

A2 20, i=1,...,k (QP)

SR §

where the matrix Q is symmetric positive definite and the vector v is

partitioned into K subvectors \ (L =1,...,K). Let the matrix Q = (Qij)
and vector f = (fi) be partitioned accordingly. Then the relaxation method
of Cea and Glowinski works as follows. Let w, < 2 be positive scalars.

i
k#l _ Kk

Given vk = (v:) , compute Vv (v1+1) by successively solving the quadratic

subprogram




T k - k+l -
- - - 4] +
minimize % viQ,v, - [,y wi(j . Qijvj + 1 Zy j p £ )] v, (QB,)
subject to Fivi < e and v, >0
and letting vlfn' be its unique solution. The w, are the relaxation parameters.

To simplify the notations, let's fix K = 3. The Karush-Kuhn-Tucker
conditions for the program (QP) and the subprogram (QPi) can be formulated

respectively, as the linear complementarity problems (q, M) and (ql;, Nﬁ) where

1= [f M=/Q, F Q, 0 Q4 0 (2)
e -F, 0 0 0 0 0
T
£ Qpy 0 Qy F, Qy O
ez 0 0 "Fz 0 0 0 |
[ T
£ / Q; 0 Q3, 0 Q3 T
e/ 0o 0o b 0 -F, O
and
K k1 k T
= f + L + .. - =
U j<1Qii 1T s Qij j T (Lme)Qyy /oy ) b Ny = Qg /e Fy
.
3
ei "Fi 0 " 1

k+
By letting )‘i 1 be an optimal Lagrange multiplier of the subprogram (QPi),

it is easy to see that the vector xk+1 = (vk"'1 , k-H') solves the linear
complementarity problem (1) with E = 0 » %
T .
B = Jo, F 0 = /3 ’
/ 1'% 1 0 0 0 and C w1Q11 0 le 0 Q13 0
{ -Fl 0 0 0 0 0 0 0 0 0 0 0
! ]
T ~ (3)
I;‘ Q; O Qu,f, F; 0 0 0 0 %0, 0 Q, O
':.\ 0 0 -F2 0 0 0 0 0 0 0 0 0 !
\ T :
Qy, O Q; O Q33/w F, 0 0 0 0 20,4 0
\

Yo 0 0 0 -F, 0 \oooooo
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and where mi = -(l-u)i)/wi . Note that (B, C) is in fact a splitting of
the matrix M given in (2). Consequently, we have shown that with this
particular splitting, our basic algorithm reduces precisely to the relax-
ation method of Céa and Glowinski. A noteworthy point here is that the
above matrix B is generally not such that all linear complementarity prob-
lems (r, B) are solvable. However, due to the special structure of B,
each subproblem (1) will have a solution if the original quadratic program

(QP) is feasible.

Basically, the above relaxation method of Cea and Glowinski is just one
member of the family of block SOR methods for solving convex quadratic

programs. Another version of such methods was first proposed in [12] and

recently refined in [13]. We have not been able to show whether this latter

version can also be cast in the form of the basic algorithm, except in the

case when the relaxation parameter does not exceed one. See ([38]. This

is partly due to the fact that the relaxation step is performed in a slightly

different way from the one in the method of Cea and Glowinski. For more

discussion on the relationship between these two block SOR methods, see [l1].
We should say a few more words about the basic algorithm before ending 1

this section., Matrix splittings are extremely useful in thevstudy of

iterative methods for solving systems of linear equatioms [31, 41]. The

construction of the basic algorithm is partly based on the belief that the

matrix splittings should be equally useful in the case of the linear com- ég

plementarity problem, Furthermore, because of its generality, one could .

choose (provided that one knows how) the splitting that is most appropriate
for the individual problems. Hopefully, the various results established
in subsequent sections would then allow one to draw some affirmative con-

clusion about the convergence of the algorithm,

R
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3. THE SYMMETRY APPROACH FOR CONVERGENCE

Starting in this section, we shall derive some convergence results for

the basic algorithm presented in the last section., As mentioned in the

AR

introduction, we shall follow four different approaches. In this section,
we give result based on the symmetry approach, The following is the main
convergence theorem of this approach. Recall that a copositive matrix M is

one such that xTMx 2 0 for all x > 0 and a copositive-plus matrix is a

copositive matrix M which satisfies the implication: [xTMx =0, x>0]=

M+MHx =0 .

Theorem 1. Let E be a nonnegative diagonal matrix with Eii <1 and let %
(B, C) be a splitting of M satisfying

(3.1) B=U+V+cCF ;

(3.2) There exists a permutation matrix P and a nonempty index set & (with

complement B) such that t

T T T - ! T -
P VP v 0 P cP c 0 PEP = [E 0} and P UP 0 Uds\‘
T
o o}, o o], 0 o “Upg oI)

where Vaa is symmetric positive definite;
(3.3) Each of the linear complementarity subproblems (1) is solvable.
Suppose also that the initial vector x° is nonnegative and satisfies
qB - U:B x; 20.
Then every accumulation point of the sequence {xk} generated by the basic

algorithm solves the linear complementarity problem (q, M). Moreover, if

in addition, the condition below is satisfied

(3.4) The matrix Aaa = (V+C+ CT)au is copositive~plus and there exist

vectors y; and yg so that
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1
9y + Aau Yo > 0 (41i)
and
2 T 2 .
y,20 and g = Upg¥y > 0. (4ii)

Then the sequence {xk} is bounded and therefore has an accumulation point
which solves the linear couplementarity problem (q, M),

We point out several remarks about the above theorem. First of all, in
order to satisfy all the conditions (3.1)-(3.4), the matrix M need not be
symmetric or positive semi-definite, although it must be copositive=-plus (if
(3.4) holds). In fact, the matrix M after a principal rearrangement is given
by

Aua Uaa

, (5)
T
-qu 0
which is bisymmetric. Second, the matrix V must be symmetric positive semi-
definite by condition (3.2), whereas B needs not be so, Third, it is easy to

see that the matrix M in (2) with the splitting (B, C) defined in (3)

satigfies conditions (3.1) and (3.2) of the theorem. 1In fact, it suffices

to choose
=70 F 0 0o o0 0\ I \\
U=y 1 oV oy Q3
/ -F, 0 0 0 0 O ‘-\ 0 \\
! T \ 2=-w '
0 0 o F. O O 2
\ © 0 -F, 0 0 0 ,-" 0
o 0 o o0 o0 Fr —-Qz-w3
\\ 3 w3 33
\ 0 0o o0 o0 -F, 0 0 .

The requirement that each relaxation parameter w, € (0, 2) is needed in order

for the submatrix




2 =W
3 /
w, Q33 /

to be positive definite. As noted in the last section, condition (3.3) holds
if the quadratic program (QP) is feasible. As for condition (3.4), the matrix
Aaa = Q 1s positive definite (and thus copositive-plus) by assumption. The
system (4i) is consistent for the same reason. The consistency of the system
(4ii) is implicd by the existence of a Slater point in the program (QP).
In essence, this last condition (consistency of (4ii)) is not required in
the proof of convergence of the sequence of primal vectors vk in the relax-
ation method of Céa and Glowinski. It is needed in order for the sequence
of optimal multipliers to converge as well.

The main convergence results obtained by Mangasarian [30] for his
iterative scheme are special cases of Theorem 1. In fact, as pointed out in

[38], Mangasarian's scheme is a special case of our basic algorithm with

E = (1-A)I and the splitting (B, C) given by
-1
B = (Awt) D +K and C=(M-K) - (Aw*)'lp

where D is a positive diagonal matrix, K is a strictly triangular matrix,
0<A<1and v* >0, (In the original statement of the algorithm,
Mangasarian allows the matrices D and K to vary from one iteration to the
next. In essence, we could do the same thing in our basic algorithm. That
is, we could let the splitting (B, C) depend on the iteration. However for
the sake of simplicity, we choose not to include this generality in the

treatment,) In stating his algorithm, Mangasarian requires that there
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3 exists a Y > 0 such that
y [w®) 1D + K - %]y >ylyl? forally .

obviously, this last condition is equivalent to the positive definiteness
of the matrix

V = z(xuﬂc)'1D+KT+x-MT .

If M is gsymmetric (this is a crucial assumption in Mangasarian's proofs),
tiien so is V. It is now easy to see that conditions (3.1) ~ (3.3) are
satisfied (« is the entire index set {1,...,n} and P is the identity matrix).

Condition (3.4) reduces to the one in Theorem 2 of [30],

Proof of Theorem 1. First note that by the choice of x°, the sequence 'ka}

is nonnegative and satisfies

T k
-Uaaxdzo for all kZO .

8
We shall let the quadratic function
_ T T
f(x) = 9%y + x5 Mx
monitor the progress of the algorithm. By the structure (5) of M, it follows

that

T T
£(x) 9oy + %xa Ao{axa .

We now show that the sequence {f(xk)} is nonincreasing. In fact, we have

f(xk+1) _ f(xk) - (qd+wa¢l;)T(xk+l _ xk)a+i‘(xk+1 - xk)T A (xk+1 - xk)

[ - [ 4

k T k+1. T, k+l _k k+1 k. T k+tl k
= (qcx+cadxa+(V+C )mrxa 1) (x -x )a-%(x -X )a Vm(x - X )a

a4 < TN RIS 3

- k T k+1 k+1. T, k+1 k k+1.T k+l T
= (qa+ccxaxd+(V+C )ddxd +U°thB ) T (x -x)a- (xa ) (Jaexa -Uaex

k+1 T k+l k
- 3O ] v T,

. e e ap @ mrn T = e ——————  vee e s o e o e
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=12~
- <qa+cmx§+<V+cT)mxc',‘,“+uqax§“)T{< e + (2 - D],
+ (x:ﬂ"l)'r[(qB zﬂ - (9~ Upg T 1-3a T - X Va2,
< - B k)g vw(xkﬂ_x SPTR

where the next to last inequality follows from the fact that xk+1 solves the
linear complementarity problem (1) and from the observation made at the start
of the proof concerning the sequence {xk}.

Now let x* be an accumulation point of the sequence ka} and let {xkj}
be a subsequence converging to x*., As noted in [30], the sequence {f(xk)}

must then converge. It therefore follows that

k,-1 k
limx ] = limxd =x¥ . (6)
For each kj, we have
k kj-l kj kj kj kj-l
Yo 3- 9 * Con¥y”  *Bua®a T Bag% 20 X7 2 By (71)
k kj kj
B =qg + Baaxa 20 xB 2 0 (7i1)
and
k k.-1 k
it - j = j T 32 ces
Uy ) (xa Eauxa ) (u ) X3 0. (7iii)

By passing the limit kj - ® and using (6), we conclude immediately that x*

s solves the linear complementarity problem (q, M).

Suppose now that the condition (3.4) also holds. It suffices to show

1 that the sequence {xk} is bounded. We first show that {xg} is. Suppose not,

Then by Lemma 3 in [30], we may deduce that there exists a vector z% satisfying

Tox <0 and (2%)T A_z* =0 ,

] 0#2520, q2%< a) Sada ;

By the assumed property of Aaa’ we obtain Aaazg = 0 . But this would contradict N

the consistency of the system (4i)., Hence [xz} must be bounded. Finally, we
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show that { k} is bounded. Suppose not; then there is a subsequence {xaj}

such that ”xsj” - ® , The normalized subsequence {x:j/”x:j”} has an
accumulation point zg . With no loss of generality, we may assume that
z;j/”z;j” - zg . Since the sequence xzj is bounded, it has an accumulation
point z; . By considering a suitable subsequence if necesgsary, we may
assume that x:j - zx . Dividing (7i) by ”z:j” and passing the limit kj - ®

we obtain

Byg 2520 (8)
Moreover, we have from (7iii)

T -
[a - Eau)z;] Baezg =0

which implies by the fact that I-Equ is a positive diagonal matrix

(z§)T BaB zg =0 .

Similarly, we obtain from (7ii) and (7iii)
(z%)" [qq + B, 2*] = 0
g % B '

Since B, = U , it follows that (zg)qu =0 . This together with

T
8 " Y T 7 Pga ,
(8) and the fact that z% 3 0 , would contradict the consistency of the gystem
53

(4ii). The contradiction completes the proof of the theorem.
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4, THE NORM-CONTRACTION APPROACH FOR CONVERGENCE

An implication of the assumptions of Theorem 1 is that the matrix M
must be bisymmetric with a zero diagonal block., In this and the next two
sections, we derive some comvergence results by replacing the symmetry
requirement with some other assumptions, We first review some matrix con-
cepts [311].

If A is a symmetric positive definite matrix, then it has a unique
Cholesky factorization A = (Aé) (A%)T where A% denotes the Cholesky factor
(or square root) of A. The 4{p-norm (1 < P £ ® of the matrix A is defined

by

T Nl Tyl 1 -
lx"y] < ‘pr fy.lq where =+ 1

a =

with equality holding if and only if x is a scalar multiple of y. We denote
by P(A) the spectral radius of the matrix A, It is known that p(A) < ”AﬁP

for all p €[1, =].

Theorem 2. Let (B, C) be a splitting of the n by n matrix M such that
(4.1) B =U + V where U is skew-symmetric;

(4.2) There exists a permutation matrix P and a nonempty index set & (with
complement B) such that

PvP = v, 0\, PleP= [cg O

o
<3
4
™
o
o
-
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with an being symmetric positive definite and VBB symmetric positive semi-

definite;

(4.3) Each of the linear complementarity subproblems (1) with E = 0 has a

solution;

hy=% ATy ©
(4.4) Voer Cor (un) ip <1 for some p €[1, =] .

Then any accumulation point of the sequence {xk} generated by the basic
algorithm with E = 0 is a solution to the linear complementarity problem

(q, M). Moreover, if in addition, the condition below is satisfied

(4.5) There exists a vector yi such that

2 T 2
Yy 2 0 and 9 - Uéeya > 0,

then the sequence {xk} is bounded and therefore has amn accumulation point
which gsolves the problem (g, M).

Before proving the theorem, we discuss some implications of its assump-
tions. First of all, the matrix M, after a principal rearrangement, is of
the form

Vau + Cau + Uau UQB

(9)

v +U

T
" Uyg s * Usp

which is similar to (5)., However, the properties of the two diagonal blocks
in the two forms are quite different. In (5), the two diagonal blocks are
symmetric (in fact, one of them is zero). They are not in (9). On the other
hand, it can be shown easily that if p = 2 in condition (4.4), the matrix

+ Cpy and thus Ay = Vo * Cor * Vo is positive definite (see [3] e.g.,)

vdd o

The corresponding diagonal block in (5) may not even be semi-definite, The

whole matrix in (9) is positive semi-definite, Summarizing, we could say
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that in the present case, we are trading symmetry of the splitting (B, C)
with a stronger form of positive definiteness (condition (4.4)).

In [3], Ahn noted that the PIES algorithm can be applied to a linear
complementarity problem with a bisymmetric matrix. In general, such a
linear complementarity problem is of the form

wl = [q) +[n AT x 120, 'xl) 20, w{xl - ngz =0,

(wz q, -A N x (

The PIES algorithm operates by solving a sequence of linear complementarity

problems
{wl) = ql + (M-ﬁ)xl{ + ﬁ AT) (xl\ 2 0 ’ 'xl !,t 2 0 R w'{xl - w';xz
-~ k -~ / !
192! %! (N-1x; A N X, %, |

where M and N are the diagonal parts (assumed positive) of M and N respectively.
Note that each such subproblem is a strictly comvex quadratic program. It is
easy to see that the PIES algorithm is a special case of our basic algorithm

with E = 0 ,

-

B= [ M A and c= lui o

-A R 0 N-N!.
Obviously with o chosen as the entire index set, P the identity matrix

u= [0 A and v= | M 0
-A 0 0N
conditions (4.1) and (4.2) are satisfied. Conditiomn (4.3) holds because the

matrix B is positive definite. Finally, with p = 2, (4.4) is precisely the

norm condition derived for the convergence of the PIES algorithm [3].

(Condition (4.5) is void in this instance because B is empty.)

=0
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The matrix in (9) is also bisymmetric, This does not imply, however,
the PIES algorithm applied to the linear complementarity problem (q, ﬁ)
where ﬁ is the matrix in (9) will converge. One reason is that the norm

assumption required in the convergence proof of the PIES algorithm would

imply that M should be positive definite. 1In general, M is only semi-
definite.

Another special case of Theorem 2 is Aganagic's convergence result for
his iterative scheme [1]. As noted in [38], Aganagic's scheme corresponds

to our basic algorithm with E = 0 ,

1 1
B = =1 and C=M-=x

where w* i1s a positive parameter. Specialized to this splitting, conmdition

(4.4) becomes HI - w*MHp < 1 which is precisely the one required by Aganagic.
As a final remark on the conditions of Theorem 2, we point out that

since the matrix B is positive semi-definite, condition (4.3) is equivalent

to the feasibility of each of the subproblems (1) [7].

Proof of Theorem 2. For k > 1, we have

Py

uk = q+ka-1+Bxk20 » kaO , (uk)Txk =0

e e emdlso , Moo, Wi T L

0.

Hence it follows that
+ -
03 (xk+1 - xk)T(uk+1 . uk) - (xk+1 . xk)r[B(xk 1 - xk) +C(xk - xk 1) ]

By (4.1) and (4.2), we obtain

3Ty ("k+1'*k)a < L Ty T L Ky <- (x<*1 . xk)f,cmuk L} t

k1| k
xQW

(x

Hence by HOolder's inequality, it follows that
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i‘ k _ xk-l ]

l! i (xk+1 - Xk)a”p <v f‘!vm(x )d’p

Avm

where v = ”un eV e

lp . Since Y <1 , a standard contraction argument

gives immediately

1im(x<*? -,xk)a =0,
1o

Moreover, the sequence {x:} is bounded for the same reason. The rest of the

proof resembles that of Theorem 1 and is not repeated here.

Remark, It is easy to see from the above proof that Theorem 2 remains valid

if condition (4.4) is replaced by the following one:

“.4)" leygl, <A

where A is the least eigenvalue of the matrix Ve In fact, one can even

drop the symmetry assumption on Voor if (4.4)' holds with

A= ' mﬁn (x; Vaaxa)% .
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5. THE VECTOR-CONTRACTION APPROACH FOR CONVERGENCE

In this section, we establish a convergence result of the basic algo-
rithm by using a vector-contraction arguement. To start, we review some
more matrix concepts.

Let M be a real square matrix. Its comparison matrix M = (ﬁij) is

defined by

| for i = j

r
8 I
Z-[Mijl for 1 # j .

Obviously, Mis a Z-matrix, i.e., it has nonpositive off-diagonal entries.
If M is a P-matrix as well, i.e,, if M has all principal minors positive,

then M is said to be an H-matrix [42]. It has been proved in [34] that H-

matrices with positive diagonal entries are themselves P-matrices. TIn
particular, if M is an H-matrix with positive diagonals, then the linear
complementarity problem (q, M) has a unique solution for all vectors q [39].
It is obvious that principal submatrices of H-matrices are themselves H-matrices.
A Z-matrix which is also a P-matrix is known as a K-matrix [19]. An
equivalent way to define an H-matrix is to say that its comparison matrix is i
a K-matrix., If M i{s a K-matrix, then H-l exists and is nonnegative, If
M and N are both Z-matrices such that M < N and M is a K-matrix, then so
is N and M-l > N"l. See [19] for more details on these and other properties
of K-matrices.
If M and N are two nonnegative matrices, then p(M) SPN). IfMis
any matrix, by |M[ we denote the matrix whose entries are the absolute

values of those of M, Similarly, {f x is a vector, by [x[ we denote the

vector whose components are the absolute values of the ones in x.
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The following convergence result was proved in [38].

Theorem 3. Let E be a nonnegative diagonal matrix with E; < 1 for all 1.

i
Let (B, C) be a splitting of the matrix M such that

(5.1) B is an H-matrix with positive diagonal entries;

(5.2) iJ(ﬁ-1 max(DE, lC[)) < 1 where B is the comparison matrix of B and D

is the diagonal part of B.

Then each of the linear complementarity subproblems (1) has a unique solution.
Moreover, the sequence {xk} generated converges to the unique solution of
the linear complementarity problem (q, M).

The theorem below shows that condition (5.2) can be replaced by a weaker

one.

Theorem 3'., Theorem 3 remains valid if condition (5.2) is weakened to

(5.2)' There exists a matrix G with p(G) < 1 such that for any index set &

(with complement 8)

(10)

A

¢z (1 o)}t [E, o
’ (lcaal lcgg ]

Before proving Theorem 3', we show that if condition (5.1) holds, then

BBa BBB

(5.2) implies (5.2)'but not conversely. In fact, we claim that (10) holds

with G = ﬁol max(DE, [C[). To prove this, note that the product matrix in

(10) is equal to

Eau 0

(11)
571 3 . y 371
Bag (“Bgafam * 1Cql) Boo [Cagl / -
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BE [Dyy O and max(DE , |c!)3 [./ Do Eoar 0
Bga  Bgp \‘Caa‘ Cgg! |
we obtain
87! max(oe , lc|) 3 Dpy © -1 Doy Eaa 0
B Pag |Caq |Ca!

It is easy to see that the matrix in the right side of the above inequality
is precisely the one given in (11). This establishes our claim that (10)
holds with G = ﬁ-l max(DE , |C|). To show that condition (5.2)' does not

necessarily imply (5.2), consider the data

B = 1 -3 Cc= % 0 and E=[3% 0
-3 1 , 0 % 0 3

It is easy to see that condition (5.2)' holds with

G= | & 1/4
/6 %

On the other hand, we have
ﬁ-l max(DE , IC]) = %
~=1
and p(B = max(DE , ICI)) =1,
It has been proved in [38] that the assumptions of Theorem 3 imply that
the original matrix M must be an H-matrix with positive diagonals. (This
is why the linear complementarity problem (q, M) has a unique solution.) 1In

what follows, we show that the same conclusion about the matrix M remains

valid if condition (5.2) is replaced by (5.2)'. Indeed, if (5.2)' holds,
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then by taking o to be the empty set, we obtain p(ﬁ-l lc!) <P(G) < 1.
This implies that B - ICI is a K=matrix. By the same argument used in
Corollary 3.5 of [38], we may easily deduce that M is an H-matrix with

positive diagonals,

Proof of Theorem 3'. Given k > 1, let @ = @, J o, where

1 2
“1 = {i. (xk+1-xk). >0 and xl.ﬂ-1 = E..xl.(}
i= i ii%i
az = {i: (xk+1-xk). < 0 and xlf = E..xl.c-l} .
i i ii%i

Then the complement of o is 8 = 51 U 82 with

B, = li: ™ -2, 20 and B 4+ e, =0}
B, = fi: (xk+]-'-xk)i<0 and (Bxl< +q+ka.1)i=0} .
For an index i € @, , we have
k+1 k k+l k k k-1 k k-1
lx -X li xi -xig Eii(xi-xi ) gEii [x b4 Ii . (121)
Similarly, we may deduce that for i € a ;
3
k+tl  k k _k-1 §
[x -x li. < By lx -X li (12i1i)
Moreover for an index i € Bl , we have
Kl kg L kHL ko _ o ok kel o K+l k

which implies

k k-1 k+1 k
I R T R el I LT B PR

i1 1% i J

or equivalently
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Here Bi- and C, denote respectively, the i-th row of the matrix B and

i.
C. By a similar argument, we may show that (13) holds for i € 52.

Hence, combining (12) and (13), we obtain

'I 0 | ;'xk+1 -

\, x]y| € [E 0 [x -
A - k+1 k
| Byg Bgg! \lx - x|

k [k k-1
l - x|y

B |Caql 194! ( [ - xk-lls e

Since the matrix

I 0
Bgy Bag
has a nonnegative inverse, we obtain by (10)

ka+1‘xkl < ;'/I 0 | -1 Ew 0 lxk_xk-'l' <G [xk-x
lﬁﬂcx ﬁBB )

The rest of the proof resembles that of Theorem 3,2 in [38] and is not

|oq ] 1Gg]

repeated here,

k-ll
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6. THE MONOTONE APPROACH FOR CONVERGENCE

In this section, we shall derive a convergence result for the basic
algorithm by exploiting a certain monotonicity property of the iterates. i
] To start, we state a known result of this kind and refer to [37] for its

proof.

Theorem 4. Let E be a nonnegative diagonal matrix with Eii <1 and let

(B, C) be a gplitting of M with B a Z-matrix and C nonpositive. Let xo

be a feasible vector to the linear complementarity problem (q, M). For

+
k >0, let xk 1 be the least solution of the linear complementarity sub-

problem (1). Then the sequence {xk] converges to a solution of the linear
complementarity problem (q, M).

We should explain the terminology used in the above theorem. First
of all, the feasible set of the linear complementarity problem (q, M) is

S=1{x:q+M 20, x> 0} .

Vectors in S are called feasible vectors to (q, M). It is known [40] that
if M is a Z-matrix and if the problem (q, M) is feasible, i.e., if the set
§ is nonempty, then (q, M) has a least solution x* satisfying x* < x for
all vectors x € S, Implicit in the statement of Theorem 4 is the assertion
that each xk+1 exists if x° is chosen to be feasible.

An implication of the assumed property of the splitting (B, C) in
Theorem 4 is that the matrix M = B + C must itself be a Z-matrix. In what
follows, we extend the theorem so that this Z-property of M need not be

necessary., To provide the framework for this extension, we review some

pertinent background results,
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A real square matrix B is hidden Z if there exist Z-matrices X and

Y such that the following two conditions hold

(6.1) BXx =Y

(6.2) rTX + sTY >0 for some vectors r, s >0 .

Hidden Z-matrices were introduced by Mangasarian {28, 29] and later studied
intensively in [14, 32, 33, 34, 35]. The following are some useful
properties of such matrices. Thelr proofs can be found in the cited refer-

ences.

(i) The matrix X in (6.1) is nonsingular.
(ii) There exist complementary index sets & and B8 such that the matrix
X

oY XGB

\ Yaa Yag

has a nonnegative inverse.

(iii) For every vector p for which the linear complementarity problem
(p, B) is feasible, the problem (p, B) has a least solution x*, least

with respect to the cone ordering induced by the polyhedral cone generated

S VY

by the matrix X; that is, x* is characterized by the property that

X-1 x* < X-l x (componentwise) for every x € § .,

We are now ready to state the main convergence result of this section.

. <1 and let
ii

(B, C) be a splitting of the matrix M such that

(6.3) B is a hidden Z-matrix;
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(6.4) There exists a vector b such that Cx < b for every x feasible to

the problem (q, M);
(6.5) CX < 0 where X is the matrix in condition (6.1).

Let x° be a feasible vector to the linear complementarity problem (q, M).
For k > 0, let xk+1 be the least solution of the linear complementarity
subproblem (1), least with respect to the ordering specified in property

k

(iii) above. Then the sequence {x } converges to a solution of the problem

(q, M).

Remark. Condition (6.4) is satisfied if for instance, the matrix C is

a nonpositive combination of the rows of the matrix (?) .

Proof of Theorem 4', We show that xk+1 exists and is feasible to the

linear complementarity problem (q, M). By means of an inductive argument,
we may assume that this is true for xk. Since xk is feasible to the problem
(q, M), it is certainly feasible to the subproblem (1). Hence, according
to property (iii) mentioned above, xk+1 exists and

S NS S (14)

To show that xk+1 is feasible to (q, M), observe that

and

q + Mt = g+ oxex”t &5 4ot > q+ cxx xS + p

=q+ka+Bxk+lgo

where the first inequality follows from (14) and condition (6.5). Con- i

sequently, xk+1 is feasible to (q, M). Now, the sequence ?x'l xk\ is
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nonincreasing. We show that it is bounded below as well, Letting

wk = x'l xk , we have

and by letting p = q +b ,

v = Bx® > -(q + ey 3 -p

where the last inequality holds because each xk"‘1 is feasible to the

problem (q, M). By property (ii), it follows that

k -1
LA b W 8 0
YBa YBE P ‘

Consequently, the sequence {wk} and thus {xk} , converges. It is obvious
that the limit of {xk} solves the linear complementarity problem (q, M).

This completes the proof of the theorem.

e e
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7., SOME CONCLUDING REMARKS

In this paper, we have described four different approaches to establish
the convergence of a basic iterative method for solving the linear complemen-
tarity problem, Here, we would like to discuss the possibility of extending
the analysis to treat other complementarity and variational problems.

Let f be a mapping from R" into itself and let K be a subset in R".

The variational inequality problem (f, K) is to find a vector x € K such that

(v -0 £(x) 30 forally €K .

It is known [26] that if K is a (convex) cone, then the above variational

problem is equivalent to the generalized complementarity problem: find

x € K such that
T
f(x) €EK* and f(x) x=0.

where K* is the dual cone of K, i.e.,

k* = {y € R® : yTx >0 for all x € K} .

Obviously, the linear complementarity problem (q, M) is a special case of
the generalized complementarity problem'wich f(x) = q + Mx and K being the
nonnegative orthant of R".

There are at least two families of iterative methods for solving the
variational inequality problem (£, K). One of them involves the idea of
function splitting. More precisely, let f(x) = g(x) + h(x)‘. Then given

xk , let xk+1 solve the problem:

(v - OF (g(x) +h(x)) 30 for all x €K . (15)

Presumably, the function g should possess certain desirable structure which

would allow this latter subproblem to be solved more easily than the given

!
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problem (f, K). An example of such splitting is where g(x) = x and
h(x) = f(x) - x. As pointed out in [6], under this latter splitting, the
subproblem (15) is equivalent to finding the projection of the point
xk - f(xk) on the set K, Convergence of this projection scheme can be
established (by a contraction argument) under some strong monotonicity and
Lipschitz continuity properties on f. See [2, 6, 18].

Another approach of iterative methods for solving the variational
inequality problem (f, K) consists of solving a sequence of subproblems of

the form : find x € K so that
T .k
(y =x) £(x) 30 for all y €K (16)

where fk(x) is an approximation of the given function at the current iterate.
Examples of such methods include the family of Quasi-Newton methods (which
include the Newton method) studied recently in [17, 24, 25) and the PIES-

type algorithms [21, 22, 23]. In these examples, fk(x) is either affine

or such that the subproblem (16) is equivalent to (and therefore can be solved
as) a convex programming problem.

As a future research project, we intend to develop a general unifying
framework for the study of various iterative methods for solving the vari-
ational inequality problem (f, K). Such a study would include the unification
and possible strengthening of known convergence results. That this effort

is potentially fruitful is strongly suggested by the work of the present

paper and the many special instances which currently exist in the literature.
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