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APPROACHES FOR CONVERGENCE OF A BASIC ITERATIVE

METHOD FOR THE LINEAR COMPLEMENTARITY PROBLEM*

Jong-Shi Pang

Abstract. Iterative methods have been found very useful for solving many

large linear complementarity problems arising from applications. In this

paper, we formulate a basic algorithm and use it as a unifying framework

for the study of such methods. Next, we apply various strategies to in-

vestigate the convergence of the basic algorithm. Finally, we discuss the

possibility of extending the analysis presented here to treat other com-

plementarity and variational problems.
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1. INTRODUCTION

The linear complementarity problem has become a very important subject

in mathematical programming. Over the years, many methods have been proposed

for the numerical solution of the problem. These methods may be classified

as (i) direct, (ii) iterative or (iii) hybrid. Direct methods are based on

pivoting techniques and have the property of finite termination. Some of the

best-known direct methods are Lemke's almost complementary pivoting algorithm

[27], Cottle's principal pivoting algorithm [9] and the parametric version of

Graves' principal pivoting algorithm [8, 20]. Iterative methods generally

converge only in the limit. Hybrid methods are iterative in nature but use

some other (in many cases, direct) methods to solve subproblems.

Both the direct and iterative methods have their own advantages and

disadvantages. Typically, direct methods are most suited for small to

medium sized problems. Their efficiency tends to decrease as the problem

size increases. This is partly due to the fact that both the number of pivots

and the amount of work required in each pivot are expected to grow rapidly

with the problem size. Another disadvantage of direct methods for solving

large problems is the excessive amount of computer storage. On the other

hand, iterative methods usually require very little extra storage because

they often operate on the given data only. As a result of this nice feature,

iterative methods have become very useful for solving many large linear

complementarity problems arising from applications. See (10, 12, 13, 16, 361.

Our purpose in this paper is to continue our previous work in (381 to

develop a general convergence theory of iterative methods for solving the

linear complementarity problem. The basic framework used throughout the

analysis is built on the rather old concept of matrix splittings [411.
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Specifically, given a splitting of the matrix defining the linear com-

plementarity problem, a basic algorithm (in the sense of Zangwill [431) is

constructed which generates a sequence of iterates by solving some linear

complementarity subproblems. Depending on the properties of the splitting

involved, four different approaches may be used to establish the convergence

(to a desired solution of the given linear complementarity problem) of the

sequence generated. In what follows, we give an overview of these approaches.

The first approach, to be called the symmetry approach is based on the

assumption that a certain quadratic function can be used to monitor the

progress of the algorithm. Typically, this approach is used in the case when

the matrix defining the original linear complementarity problem possesses

some syunetry property (although the matrix itself need not be symmetric).

For instance, if the given complementarity problem arises as the set of

Karush-Kuhn-Tucker optimality conditions of a convex quadratic program, then

the objective function of the program is a natural candidate to be used in

the monitoring process. Some references on this approach are [5, 10, 11, 12,

13, 16, 30].

The second and third approaches were initially used by Ahn (3] in his

doctoral dissertation to establish the convergence of the PIES algorithm [21].

Both approaches are based on some standard contraction argument. One of

them involves "norm-contraction" and the other "vector-contraction". (More

detailed explanation of these two terms will be given later.) In the earlier

paper (381, the author has extended Ahn's work (4] and has established a

rather general convergence result (based on the vector-contraction approach)

for the basic algorithm mentioned previously. Later in the paper, this result

will be improved. Incidentally, the norm-contraction approach has also been
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used by Aganagic (11 in his convergence proof of a particular iterative

method for solving the linear complementarity problem with an asymnetric

matrix.

Finally, the fourth approach, to be called the monotone approach,

involves showing that the sequence of iterates is both nonincreasing and

bounded below (in the vector sense). Once these two properties are estab-

lished, the desired convergence of the iterates is obtained easily.

Typically, the monotonicity of the iterates is implied by some least-element

connection of the linear complementarity subproblems. See (371.

Once the convergence of the iterates is established, an equally important

question is how fast the convergence is, in other words, what the convergence

rate of the algorithm is. Typically, this rate may not be easy to obtain if

the symmetry or monotone approach is used. The two contraction approaches

usually give rise to a geofaetrical rate of convergence. In this paper, we

shall be concerned merely with the convergence of the basic algorithm and

shall not address its rate of convergence.

The organization of the rest of this paper is as follows. In the next

section, we formally introduce the basic algorithm and show how it includes a

block relaxation method for a certain strictly convex quadratic program as a

special case. In the four sections following Section 2, we investigate the

convergence of the basic algorithm using the four approaches outlined above.

Finally in the last section, we draw some concluding remarks concerning the

possibility of extending our analysis given here to treat other complementarity

and variational problems.
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2. THE BASIC ALGORITH(

Given an n-vector q and n by n matrix M, the linear complementarity

problem (q, M) is to find an n-vector x so that the conditions below are

sat is fied

u = q + Nx > 0 , x > 0 and uTx - 0

By a splitting of the matrix M, we mean the representation

M-B+C

where B and C are matrices of the same order as M. We denote such a splitting

by (B, C). In [38], we have introduced the following algorithm as a unifying

framework for the study of many iterative methods for solving the linear

complementarity problem (q, M).

Basic Alaorithm. Let (B, C) be a splitting of the matrix M and let E be an

0n by n nonnegative diagonal matrix with E i < I for all i. Let x be an

arbitrary initial vector. Generate the sequence of vectors Lx as follows.
k xk+l

Given x , let x be a solution to the complementarity problem

u q + Cxk + Bx > 0 , x > Exk  and uT(x - Ex)= . ()

Alternatively, the algorithm may be described in terms of the associated

algorithmic map ( where for each given vector y E Rn , G(y) is the set of all
k

solutions to the complementarity problem (1) with y replacing x . Using the

map Z, we may rephrase the algorithm as : xk+l E Q(xk). It is easy to show

that any fixed point of a , i.e., any vector y such that y E G(y), is a

solution to the linear complementarity problem (q, M).

The problem (I) is not in the exact form of a standard linear complemen-

tarity problem (q, M). However, by means of the simple translation of
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variables z = x - Ex , (1) is obviously equivalent to the linear complemen-

k k kc
tarity problem (q , B) where q - q + (C + BE)x

So far, we have not stated any condition on the splitting (B, C) to

guarantee that each linear complementarity subproblem (1) is solvable. From

now on, we simply declare this as a blanket assumption of the paper and will
k+l

not be concerned with the exact manner in which x is computed. The analysis

in the subsequent sessions will be devoted entirely on investigating the

convergence of the sequence Jx generated. (For practical purposes, the

splitting (B, C) should be such that each linear complementarity subproblem

(1) can be solved fairly easily.)

By appropriately choosing the splitting (B, C) and the diagonal matrix

E, we [38] have known how Mangasarian's iterative scheme (301 and the point

successive overrelaxation (SOR) method of Cottle, Golub and Sacher [171 cans be

cast as special cases of the basic algorithm described above. In what follows,

we demonstrate that the relaxation method of dea and Glowinski [51 specialized

to solve strictly convex quadratic programs with separable constraints is

also a special realization of our basic algorilthm. Specifically, consider

the quadratic program

minimize i vTQv + fTv subject to Fi vi ei , v 0, i 1,...,K (QP)

where the matrix Q is symmetric positive definite and the vector v is

partitioned into K subvectors vi (i - 1,...,K). Let the matrix Q - (Q ij)

and vector f - (f be partitioned accordingly. Then the relaxation method

of Cea and Glowinski works as follows. Let wi < 2 be positive scalars.
Gvnk k k+l - k+l.

Given v k (vi) , compute v - (vi ) by successively solving the quadratic

subprogram
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minimize k+l k + fi)]Tv (QP)
j < i Jv J > i ij j

subject to Fiv< ei and v i > 0

k+l

and letting vi  be its unique solution. The wi are the relaxation parameters.

To simplify the notations, let's fix K = 3. The Karush-Kuhn-Tucker

conditions for the program (QP) and the subprogram (QPi) can be formulated

k
respectively, as the linear complementarity problems (q, M) and (q Nii) where

q f1  M Q11  F1  Q1 2  0 Q13 0 (2)

-F 0 0 0 0 0

Q21 0 Q2 2  F2 Q2 3  0

0 0 -F2  0 0 0

30 0 Q3 3  F3

e3  00 b 0-F 3  0

and
k kl k FT

qi f i.+ E Q - .jv + -iv ( -to=Qivi Wi Ni Qiil/Wi Fi
j<i + j>i w)Qvk/w ' N..

eI  \-F 0 .
(i+ k+l (- i), =(if. T)

By letting %k+l be an optimal Lagrange multiplier of the subprogram (QPi),
i

it is easy to see that the vector xk+= (vk+l solves the linear

complementarity problem (1) with E = 0

B fQll/wl F 0 0 0 0 and C- Q 0 Q 0 0B- 11/ 1z /zzzo 2 o 1Q3 0

-F 0 0 0 0 0 0 0 0 0 0 0 0

Q 0 Q2/W F2T 0 0 0 0 Q 0 Q 0 (3)

0 0 -F2  0 0 0 0 0 0 0 0 0
Q/uJ T 0 0 0 0 4 3 Q 3 3 0•Q31 0 Q32 0 Q33 /W 3 F 3 0 0 0 0 33

F0 0 0 0 -F03 0

a\
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and where i - "(l-w)/w. . Note that (B, C) is in fact a splitting of

the matrix M given in (2). Consequently, we have shown that with this

particular splitting, our basic algorithm reduces precisely to the relax-

ation method of Cea and Glowinski. A noteworthy point here is that the

above matrix B is generally not such that all linear complementarity prob-

lems (r, B) are solvable. However, due to the special structure of B,

each subproblem (1) will have a solution if the original quadratic program

(QP) is feasible.

Basically, the above relaxation method of Cea and Glowinski is just one

member of the family of block SOR methods for solving convex quadratic

programs. Another version of such methods was first proposed in [121 and

recently refined in [13]. We have not been able to show whether this latter

version can also be cast in the form of the basic algorithm, except in the

case when the relaxation parameter does not exceed one. See (38]. This

is partly due to the fact that the relaxation step is performed in a slightly

different way from the one in the method of Cea and Glowinski. For more

discussion on the relationship between these two block SOR methods, see [11].

We should say a few more words about the basic algorithm before ending

this section. Matrix splittings are extremely useful in the study of

iterative methods for solving systems of linear equations [31, 411. The

construction of the basic algorithm is partly based on the belief that the

matrix splittings should be equally useful in the case of the linear com-

plementarity problem. Furthermore, because of its generality, one could

choose (provided that one knows how) the splitting that is most appropriate

for the individual problems. Hopefully, the various results established

in subsequent sections would then allow one to draw some affirmative con-

clusion about the convergence of the algorithm.
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3. THE SYMMETRY APPROACH FOR CONVERGENCE

Starting in this section, we shall derive some convergence results for

the basic algorithm presented in the last section. As mentioned in the

introduction, we shall follow four different approaches. In this section,

we give result based on the symmetry approach. The following is the main

convergence theorem of this approach. Recall that a copositive matrix M is

one such that x TMx > 0 for all x > 0 and a copositive-plus matrix is a

copositive matrix M which satisfies the implication: [x TMx = 0 , x > 0]

(M + M T)x = 0

Theorem 1. Let E be a nonnegative diagonal matrix with E.. < I and let
:ii

(B, C) be a splitting of M satisfying

(3.1) B=U+v+CT ;

(3.2) There exists a permutation matrix P and a nonempty index set a (with

complement A) such that

PoVP(Vo 0) PT C(C 0) P EP(E 0) and PU ( 0

where V is symmetric positive definite;

(3.3) Each of the linear complementarity subproblems (1) is solvable.

Suppose also that the initial vector x is nonnegative and satisfies

T o
rk

Then every accumulation point of the sequence .x k generated by the basic

algorithm solves the linear complementarity problem (q, M). Moreover, if

in addition, the condition below is satisfied

(3.4) The matrix A., - (V + C + C T)_ is copositive-plus and there exist
1 2

vectors y1 and y2 so that
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q + Am yet > 0 (4i)

and

2 T  2y> 0 and q- U y > . (4ii)

Then the sequence I ]x is bounded and therefore has an accumulation point

which solves the linear couplementarity problem (q, M).

We point out several remarks about the above theorem. First of all, in

order to satisfy all the conditions (3.1)-(3.4), the matrix M need not be

symmetric or positive semi-definite, although it must be copositive-plus (if

(3.4) holds). In fact, the matrix M after a principal rearrangement is given

by

( T (5)

which is bisymmetric. Second, the matrix V must be symmetric positive semi-

definite by condition (3.2), whereas B needs not be so. Third, it is easy to

see that the matrix M in (2) with the splitting (B, C) defined in (3)

satisfies conditions (3.1) and (3.2) of the theorem. In fact, it suffices

to choose
/ T o/o o W '

U o 0 0 0 0 V \-,

F 0 00 0 0 /1 0

0 0 0 F2  0 0 22
2u 2 22

0 0 -F2  0 0 0 0

3T 2-w30 00 0 0 F3  W3  33\j : 3
o 0 0 0 -F 0.

The requirement that each relaxation parameter w. E (0, 2) is needed in order

for the submatrix
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/ 2--2
w Q11

2-w2

22

2 - 3

2w 332-3 /

to be positive definite. As noted in the last section, condition (3.3) holds

if the quadratic program (QP) is feasible. As for condition (3.4), the matrix

AC = Q is positive definite (and thus copositive-plus) by assumption. The

system (4i) is consistent for the same reason. The consistency of the system

(4ii) is implied by the existence of a Slater point in the program (QP).

In essence, this last condition (consistency of (4ii)) is not required in
k

the proof of convergence of the sequence of primal vectors v in the relax-

ation method of Cea and Glowinski. It is needed in order for the sequence

of optimal multipliers to converge as well.

The main convergence results obtained by Mangasarian [30] for his

iterative scheme are special cases of Theorem 1. In fact, as pointed out in

[38], Mangasarian's scheme is a special case of our basic algorithm with

E = (I-X)I and the splitting (B, C) given by

B = (Xui) + K and C = (M- K) D(w*)iD

where D is a positive diagonal matrix, K is a strictly triangular matrix,

0 < X < I and n* > 0. (In the original statement of the algorithm,

Mangasarian allows the matrices D and K to vary from one iteration to the

next. In essence, we could do the same thing in our basic algorithm. That

is, we could let the splitting (B, C) depend on the iteration. However for

the sake of simplicity, we choose not to include this generality in the

treatment.) In stating his algorithm, Mangasarian requires that there



exists a Y > 0 such that

y T(w* D + K- Iy 2 y!Iy!1 for ally.

obviously, this last condition is equivalent to the positive definiteness

of the matrix

V =2(Xw*) -1D +KT+K-MT

If M is symmetric (this is a crucial assumption in Mangasarian's proofs),

then~ so is V. It is now easy to see that conditions (3.1) - (3.3) are

satisfied (of is the entire index set ft..n and P is the identity matrix).

Condition (3.4) reduces to the one in Theorem 2 of [30].

0 rk
Proof of Theorem 1. First note that by the choice of x ,the sequence xI

is nonnegative and satisfies

T k
-O %,x~ 0 for all k >O

We shall let the quadratic function

f(x) = q T~ + ixT Mx

monitor the progress of the algorithm. By the structure (5) of M, it follows

that

f(x) -q Tx + TA x

We now show that the sequence rtf(x k)) is nonincreasing. In fact, we have

f(x )-1 f (x) k (q + k T ( + k+l _ A ~(x k -_xk

- (q+ C k + CT ,k-fl T (xk+1 k ) *k+1l k )T V k+l _Xk)

k T k+l k+I T k+l k k+l TA k-Il Tk.
-(qa + C,,x,+VC)x Ux (x -x )Cj- (x' (u x -Ux)

i k+lltT V xk+l xk
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k T k+l k+l T k+l k k
( + _T, o + M +U x ) [(x Ex) + (E - I)x ]O

( k+lT( - UT xk+l "  (q U Tkk+1 k) v(k+l k)

<. (xk+l kT k+l k

where the next to last inequality follows from the fact that x solves the

linear complementarity problem (1) and from the observation made at the start

of the proof concerning the sequence Lxkx.

Now let x* be an accumulation point of the sequence xk I and let fx k J

be a subsequence converging to x*. As noted in [301, the sequence ff(xk)

must then converge. It therefore follows that

k -1 k
lim x = lim xa = x* (6)

For each k., we havei

k k-1 k k. k. k.-1
u J =O-c+ x + Bx x+B >O, x J >_E_ X (71)

kj k. kj

u q8 + Bx > 0 x > 0 (7ii)

and k k k .-l k kj

(u )T(x - jE x ) JT 0 (7iii)

By passing the limit kj - and using (6), we conclude immediately that x*

solves the linear complementarity problem (q, M).

Suppose now that the condition (3.4) also holds. It suffices to show

that the sequence fxk) is bounded. We first show that CX01 is. Suppose not.

Then by Lemma 3 in [30], we may deduce that there exists a vector z* satisfying

0 0 z* > 0 , q Tz* < 0 and (z*)T AOW , 0

By the assumed property of A.., we obtain Az* =0 . But this would contradict

the consistency of the system (4i). Hence £x1 must be bounded. Finally, we
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show that rX3is bounded. Suppose not; then there is a subsequence rX

such that JI " -- The normalized subsequence £xi/!!IN hsa

accumulation point z* . With no loss of generality, we may assume that

k k 0 k.
z "J/ IZOJ z* . Since the sequence x,, is bounded, it has an accumulation

point z*. By considering a suitable subsequence if necessary, we may

k. k.
assume that xJ - z* . Dividing (7i) by Iz j!j and passing the limit k. -J

we obtain

B z* > 0 (8)

Moreover, we have from (7iii)

(I - )z*j T B = 0

which implies by the fact that I-E is a positive diagonal matrix

(z*) T B z*=0

Similarly, we obtain from (7ii) and (7iii)

(z*)T [% +BB z,  =0.

=U =-T itTfllo
Since Bo = UC3 - BB T, it follows that (z fq5 0. This together with

(8) and the fact that zg 0 , would contradict the consistency of the system

(4ii). The contradiction completes the proof of the theorem.
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4. THE NORM-CONTRACTION APPROACH FOR CONVERGENCE

An implication of the assumptions of Theorem i is that the matrix M

must be bisymmetric with a zero diagonal block. In this and the next two

sections, we derive some convergence results by replacing the symmetry

requirement with some other assumptions. We first review some matrix con-

cepts (31].

If A is a symmetric positive definite matrix, then it has a unique

TI
Cholesky factorization A = (A1 ) (Aa)T where Ai denotes the Cholesky factor

(or square root) of A. The &p-norm (1 < p < ) of the matrix A is defined

by

!IA! = max,, . Ax ll

where fix ( E Ix.I) 1 / is the 4p-norm of an n-vector x. (Note:i=li

1x1I max Ix.i .) The H lder inequality (311 states that
1<i~n

ITyl <5 !1j jy!j where - + - 1
y I x p q p q

with equality holding if and only if x is a scalar multiple of y. We denote

by P(A) the spectral radius of the matrix A. It is known that p(A) p Il

for all p E[l, -1.

Theorem 2. Let (B, C) be a splitting of the n by n matrix M such that

(4.1) B - U + V where U is skew-symmetric;

(4.2) There exists a permutation matrix P and a nonempty index set 0 (with

complement ) such that

PTV .. .. 0 P T CP . . 0 )

__________0 V 0 0---.
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with V O being syumetric positive definite and V,, symmetric positive semi-

definite;

(4.3) Each of the linear complementarity subproblems (1) with E - 0 has a

solution;

4. C= (v )T < 1 for some p Eli-1

Then any accumulation point of the sequence fxk } generated by the basic

algorithm with E = 0 is a solution to the linear complementarity problem

(q, M). Moreover, if in addition, the condition below is satisfied

(4.5) There exists a vector y2 such that

2 q UT  2

then the sequence LxkI is bounded and therefore has an accumulation point

which solves the problem (q, M).

Before proving the theorem, we discuss some implications of its assump-

tions. First of all, the matrix M, after a principal rearrangement, is of

the form

T~ (9)
uV +vC + Ua U

which is similar to (5). However, the properties of the two diagonal blocks

in the two forms are quite different. In (5), the two diagonal blocks are

symmetric (in fact, one of them is zero). They are not in (9). On the other

hand, it can be shown easily that if p = 2 in condition (4.4), the matrix

Vow+ C., and thus A., - V= + C= + U= is positive definite (see [31 e.g.,)

The corresponding diagonal block in (5) may not even be semi-definite. The

whole matrix in (9) is positive semi-definite. Summarizing, we could say
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that in the present case, we are trading symmetry of the splitting (B, C)

with a stronger form of positive definiteness (condition (4.4)).

In [31, Ahn noted that the PIES algorithm can be applied to a linear

complementarity problem with a bisymuetric matrix. In general, such a

linear complementarity problem is of the form

- q, + M A )X, jxlj 0 wTX uw Tx2 -o0

~w2/ q 2 -A N ~x2) 1x 2

The PIES algorithm operates by solving a sequence of linear complementarity

problems

wq + Mi~k~ +~ AT ixl> x > 0, T XawT - 0

\w 2 J q( N -o) x k / x- A NI 2 /

where M and N are the diagonal parts (assumed positive) of M and N respectively.

Note that each such subproblem is a strictly convex quadratic program. It is

easy to see that the PIES algorithm is a special case of our basic algorithm

with E - 0

B AT and C= (M-^ 0

-A 0 N-ti .

Obviously with o chosen as the entire index set, P the identity matrix

U- (:A T~ and V - (M 0)

conditions (4.1) and (4.2) are satisfied. Condition (4.3) holds because the

matrix B is positive definite. Finally, with p a 2, (4.4) is precisely the

norm condition derived for the convergence of the PIES algorithm 13].

(Condition (4.5) is void in this instance because is empty.)
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The matrix in (9) is also bisymmetric. This does not imply, however,

the PIES algorithm applied to the linear complementarity problem ( , M)

where M is the matrix in (9) will converge. One reason is that the norm

assumption required in the convergence proof of the PIES algorithm would

imply that R should be positive definite. In general, M is only semi-

definite.

Another special case of Theorem 2 is Aganagic's convergence result for

his iterative scheme (I]. As noted in [38], Aganagic's scheme corresponds

to our basic algorithm with E - 0 ,

B---I and C - M-I

where w* is a positive parameter. Specialized to this splitting, condition

(4.4) becomes 'JI - w*M~j < I which is precisely the one required by Aganagic.
p

As a final remark on the conditions of Theorem 2, we point out that

since the matrix B is positive semi-definite, condition (4.3) is equivalent

to the feasibility of each of the subproblems (1) [7].

Proof of Theorem 2. For k > 1, we have

k -qcxk-I +Bk> k (kTk
u B 0q+ , x >0 , (u ) Tx 0

k+l + Cxk + Bxk+l k+l (uk+l) T xk+lu - q+=0 , x >0 ,u )x 0.

Hence it follows that

o0> (xk+l xk)T (uk+l . uk - (xk+l _ k)T [B(xk+l. xk + Cxk -k-l>

By (4.1) and (4.2), we obtain

(x (x k T V xk+l k) k kx k k (xkT x k-l
Henc by<(+ x ieult, ix)< (xf o-llows t

Hence by H lder's inequality, it follows that

. . . .F . . '. . L - ., L = - . .
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11,i k+l - k)~ 11y ~v(k -1 11lV~~(x X p Y. w( e

wher an 00 [l ~( Tip Since y < 1 a standard contraction argument

gives immediately

Moreover, the sequence [%~) is bounded for the same reason. The rest of the

proof resembles that of Theorem 1 and is not repeated here.

Remark. It is easy to see from the above proof that Theorem 2 remains valid

if condition (4.4) is replaced by the following one:

< 2'

where X is the least eigenvalue of the matrix V .. In fact, one can even

drop the syimmetry assumption on Vif (4.4)' holds with

- min Tx Vx)
1 -1 l =~
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5. THE VECTOR-CONTRACTION APPROACH FOR CONVERGENCE

In this section, we establish a convergence result of the basic algo-

rithm by using a vector-contraction arguement. To start, we review some

more matrix concepts.

Let M be a real square matrix. Its comparison matrix M - (M ) is
ij

defined by

M lJ IMiJi for i- j

'-IMijI for i j i

Obviously, M is a Z-matrix, i.e., it has nonpositive off-diagonal entries.

If M is a P-matrix as well, i.e., if A has all principal minors positive,

then M is said to be an H-matrix [421. It has been proved in f34] that H-

matrices with positive diagonal entries are themselves P-matrices. In

particular, if M is an H-matrix with positive diagonals, then the linear

complementarity problem (q, M) has a unique solution for all vectors q (391.

It is obvious that principal submatrices of H-matrices are themselves H-matrices.

A Z-matrix which is also a P-matrix is known as a K-matrix [19]. An

equivalent way to define an H-matrix is to say that its comparison matrix is

a K-matrix. If M is a K-matrix, then M " exists and is nonnegative. If

M and N are both Z-matrices such that M < N and M is a K-matrix, then so

is N and M > N . See [19] for more details on these and other properties

of K-matrices.

If M and N are two nonnegative matrices, then p(M) < P(N). If M is

any matrix, by IMI we denote the matrix whose entries are the absolute

values of those of M. Similarly, if x is a vector, by IxI we denote the

vector whose components are the absolute values of the ones in x.
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The following convergence result was proved in [38].

Theorem 3. Let E be a nonnegative diagonal matrix with E < 1 for all i.

Let (B, C) be a splitting of the matrix M such that

(5.1) B is an H-matrix with positive diagonal entries;

(5.2) P( max(DE, CJ)) < 1 where B is the comparison matrix of B and D

is the diagonal part of B.

Then each of the linear complementarity subproblems (I) has a unique solution.

Moreover, the sequence Lxk } generated converges to the unique solution of

the linear complementarity problem (q, M).

The theorem below shows that condition (5.2) can be replaced by a weaker

one.

Theorem 3'. Theorem 3 remains valid if condition (5.2) is weakened to

(5.2)' There exists a matrix G with p(G) < 1 such that for any index set of

(with complement 8)

G> 1 0E m 1 ( 10 )
Oct i Be Coo I ICSO,

Before proving Theorem 3', we show that if condition (5.1) holds, then

(5.2) implies (5.2)' but not conversely. In fact, we claim that (10) holds

with G B max(DE, fCf). To prove this, note that the product matrix in

(10) is equal to

E 0 (11)
.- l+ Ic~ 1)^lISSi (=BceEM + I OV B-1

: Since
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< (Di 0) and max (DE C (D= ECIC 0

we obtain

max(DE , C!) D 0 ) D Cl E o 0 )
Scr B a I l I cSS

It is easy to see that the matrix in the right side of the above inequality

is precisely the one given in (11). This establishes our claim that (10)

holds with G B i-i max(DE , jCJ). To show that condition (5.2)' does not

necessarily imply (5.2), consider the data

B- ( -) c ( 1 ) and E=( 04

It is easy to see that condition (5.2)' holds with

G (lj 1/4)

On the other hand, we have

Smax(DE , ) c )
and p(B max(DE , ICI)) = i

It has been proved in [381 that the assumptions of Theorem 3 imply that

the original matrix M must be an H-matrix with positive diagonals. (This

is why the linear complementarity problem (q, M) has a unique solution.) In

what follows, we show that the same conclusion about the matrix M remains

valid if condition (5.2) is replaced by (5.2)'. Indeed, if (5.2)' holds,
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then by taking ce to be the empty set, we obtain p(B1' ICI) - P(G) < 1.

This implies that B - I CI is a K-matrix. By the same argument used in

Corollary 3.5 of [381, we may easily deduce that M is an H-matrix with

positive diagonals.

Proof of Theorem 3'. Given k > 1, let 01 c= of where

r k+lI k kl k-1ofi2(x -x ) > 0 and x. E. x.J

Then the complement of of is 5 1 ~ U B82 with

81 = fi: (kx ..,k)>0 and (Bxk+ +q+Cxk) 03o

k+l k k k-l
92 = fi:(x .x).<0 and (Ex + q +Cx ).=0j

For an index i E or V we have

ikl k,.xk+lxk< k xk-I E..1_i)-
xi~~ ~ !5EixIi 11

Similarly, we may deduce that for i E c

Moreover for an index i E 51 ,we have

-xkl kiW k+I_ x k < [-C(x kx k-1. E Bij(x 1  -x k))/
1kI. xl i xk < ro k .. + k/

which implies

BiIk+ xk1  jCi.j 1xk k- 1 1+~ j k+l -x

or equivalently ~II~
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Here B. and denote respectively, the i-th row of the matrix B and3ee ~ .- 1 .I

C. By a similar argument, we may show that (13) holds for i E 02"

Hence, combining (12) and (13), we obtain

9( is: 59. -x~ xk[ 1= catiI 531, IXk  x 'l5

Since the matrix

Be issB )

has a nonnegative inverse, we obtain by (10)

Bx Bek I Ceci o\k55 k

The rest of the proof resembles that of Theorem 3.2 in [38] and is not

repeated here.
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6. THE MONOTONE APPROACH FOR CONVERGENCE

In this section, we shall derive a convergence result for the basic

algorithm by exploiting a certain monotonicity property of the iterates.

To start, we state a known result of this kind and refer to [371 for its

proof.

Theorem 4. Let E be a nonnegative diagonal matrix with E.. < 1 and let

(B, C) be a splitting of M with B a Z-matrix and C nonpositive. Let x0

be a feasible vector to the linear complementarity problem (q, M). For

k > 0, let x k+ be the least solution of the linear complementarity sub-

problem (1). Then the sequence fxkI converges to a solution of the linear

complementarity problem (q, M).

We should explain the terminology used in the above theorem. First

of all, the feasible set of the linear complementarity problem (q, M) is

S = fx : q + Mx > 0 , x >0)

Vectors in S are called feasible vectors to (q, M). It is known [40] that

if M is a Z-matrix and if the problem (q, M) is feasible, i.e., if the set

S is nonempty, then (q, M) has a least solution x* satisfying x* < x for

all vectors x E S. Implicit in the statement of Theorem 4 is the assertion

k+l o
that each x exists if x is chosen to be feasible.

An implication of the assumed property of the splitting (B, C) in

Theorem 4 is that the matrix M = B + C must itself be a Z-matrix. In what

follows, we extend the theorem so that this Z-property of M need not be

necessary. To provide the framework for this extension, we review some

pertinent background results.



-25-

A real square matrix B is hidden Z if there exist Z-matrices X and

Y such that the following two conditions hold

(6.1) BX = Y

T T
(6.2) r X + s Y > 0 for some vectors r, s > 0

Hidden Z-matrices were introduced by Mangasarian [28, 29] and later studied

intensively in [14, 32, 33, 34, 351. The following are some useful

properties of such matrices. Their proofs can be found in the cited refer-

ences.

(i) The matrix X in (6.l) is nonsingular.

(ii) There exist complementary index sets o and B such that the matrix

(X , X '

has a nonnegative inverse.

(iii) For every vector p for which the linear complementarity problem

(p, B) is feasible. the problem (p, B) has a least solution x*, least

with respect to the cone ordering induced by the polyhedral cone generated

by the matrix X; that is, x* is characterized by the property that

X-l 1 *<X (componentwise) for every x E S

We are now ready to state the main convergence result of this section.

Theorem 4'. Let E be a nonnegative diagonal matrix with E < 1 and let

(B, C) be a splitting of the matrix M such that

(6.3) B is a hidden Z-matrix;
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(6.4) There exists a vector b such that Cx < b for every x feasible to

the problem (q, M);

(6.5) CX < 0 where X is the matrix in condition (6.1).

Let x be a feasible vector to the linear complementarity problem (q, M).

For k > 0, let x k+  be the least solution of the linear complementarity

subproblem (1), least with respect to the ordering specified in property

(iii) above. Then the sequence cx converges to a solution of the problem

(q, M).

Remark. Condition (6.4) is satisfied if for instance, the matrix C is

a nonpositive combination of the rows of the matrix )
k+1Proof of Theorem 4'. We show that x exists and is feasible to the

linear complementarity problem (q, M). By means of an inductive argument,k k
we may assume that this is true for x . Since x is feasible to the problem

(q, M), it is certainly feasible to the subproblem (1). Hence, according

k+l
to property (iii) mentioned above, x exists and

X-1 k+l X-1 kXx <Xx . (14)

To show that x k+  is feasible to (q, M), observe that

x k+> Exk > 0

and

q + Mx k+l . q + CX(XX k )+Bk+l >q+CX(X' xk + Bxk+l

= q + Cxk + Bxk+1 > 0

where the first inequality follows from (14) and condition (6.5). Con-

sequently, x k1 is feasible to (q, M). Now, the sequence X "-1 x k is

I-
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nonincreasing. We show that it is bounded below as well. Letting

k - k
w =X x , we have

Xwk kXw=x >0

and by letting p = q + b

Ywk  Bxk > -(q + Cx k -P

where the last inequality holds because each x is feasible to the

problem (q, M). By property (ii), it follows that

Y5 C Y 85 -P8 "

Consequently, the sequence 1w and thus txk) , converges. It is obvious

that the limit of (xk ) solves the linear complementarity problem (q, M).

This completes the proof of the theorem.
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7. SOME CONCLUDING REMARKS

In this paper, we have described four different approaches to establish

the convergence of a basic iterative method for solving the linear complemen-

tarity problem. Here, we would like to discuss the possibility of extending

the analysis to treat other complementarity and variational problems.

Let f be a mapping from R7 into itself and let K be a subset in R7.

The variational inequality problem (f, K) is to find a vector x E K such that

T
(y - x) f(x) > 0 for all y E K.

It is known [261 that if K is a (convex) cone, then the above variational

problem is equivalent to the generalized complementarity problem: find

x E K such that

f(x) E K* and f(x) T X 0

where K* is the dual cone of K, i.e.,

K* = iy E Rn : y x > 0 for all x E K.

Obviously, the linear complementarity problem (q, M) is a special case of

the generalized complementarity problem with f(x) = q + Mx and K being the

nonnegative orthant of Rn.

There are at least two families of iterative methods for solving the

variational inequality problem (f, K). One of them involves the idea of

function splitting. More precisely, let f(x) - g(x) + h(x) . Then given

k k+l
x , let x solve the problem:

(y - x)T (g(x) + h(xk) >0 for all x EK . (15)

Presumably, the function g should possess certain desirable structure which

would allow this latter subproblem to be solved more easily than the given
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problem (f, K). An example of such splitting is where g(x) x and

h(x) - f(x) - x. As pointed out in [61, under this latter splitting, the

subproblem (15) is equivalent to finding the projection of the point
k fk )

x - f(x ) on the set K. Convergence of this projection scheme can be

established (by a contraction argument) under some strong monotonicity and

Lipschitz continuity properties on f. See [2, 6, 18].

Another approach of iterative methods for solving the variational

inequality problem (f, K) consists of solving a sequence of subproblems of

the form : find x E K so that

(y - x) T fk(x) 0 for all y E K (16)

where f k(x) is an approximation of the given function at the current iterate.

Examples of such methods include the family of Quasi-Newton methods (which

include the Newton method) studied recently in [17, 24, 25] and the PIES-

type algorithms (21, 22, 231. In these examples, f k(x) is either affine

or such that the subproblem (16) is equivalent to (and therefore can be solved

as) a convex programming problem.

As a future research project, we intend to develop a general unifying

framework for the study of various iterative methods for solving the vari-

ational inequality problem (f, K). Such a study would include the unification

and possible strengthening of known convergence results. That this effort

is potentially fruitful is strongly suggested by the work of the present

paper and the many special instances which currently exist in the literature.



REFERENCES

I. M. Aganagic, "Iterative methods for linear complementarity problems,"
Tech. Report SOL78-10, Systems Optimization Laboratory, Dept. of
Operations Research, Stanford University (Sept. 1978).

2. M. Aganagic, "Variational inequalities and generalized complementarity
problems," Tech. Report SOL78-11, Systems Optimization Laboratory,
Dept. of Operations Research, Stanford University (Sept. 1978).

3. B.-H. Ahn, Computation of market equilibria for policy analysis: The
proiect independence evaluation system (PIES) approach, Garland
Publishing Inc., (New York 1979).

4. B.-H. Ahn, "Computation of asymmetric linear complementarity problems

by iterative methods," manuscript of a paper (July, 1979).

5. J. Cea and R. Glowinski, "Sur des Methodes d'optimisation par relaxation,"
R.A.I.R.O. R-3 (1973) 5-32.

6. D. Chan and J. S. Pang, "The generalized quasi-variational inequality
problem," Working paper 2-80-81, G.S.I.A., Carnegie-Mellon University
(Aug., 1980).

7. R. W. Cottle, "Note on a fundamental theorem in quadratic programming,"
Journal of Society Industrial Applied Mathematics 12 (1964) 663-665.

8. R. W. Cottle, "Monotone solutions of the parametric linear complementarity
problem," Mathematical Programing 3 (1972) 210-224.

9. R. W. Cottle and G. B. Dantzig, "Complementary pivot theory of mathe-
matical programming," Linear Algebra and its Applications 1 (1968)
103-125.

10. R. W. Cottle and M. S. Goheen, "A special class of large quadratic
programs," in 0. L. Mangasarian, R. R. Meyer and S. M. Robinson eds.,
Nonlinear Programming 3, Academic Press (New York 1978) 361-390.

11. R. W. Cottle and M. S. Goheen, "A special class of large quadratic
programs," Technical Report SOL76-7, Systems Optimization Laboratory,
Dept. of Operations Research, Stanford University (April, 1976).

12. R. W. Cottle, G. R. Golub and R. S. Sacher, "On the solution of large,
structured linear complementarity problems: The block partitioned case,"
Applied Mathematics and Optimization 4 (1978) 347-363.

13. R. W. Cottle and 3. S. Pang, "On the convergence of a block successive
overrelaxation method for a class of linear complementarity problems,"
M.S.R.R. 462, G.S.I.A., Carnegie-Mellon University (July, 1980).

14. R. W. Cottle and J. S. Pang, "On solving linear complementarity problems
as linear programs," Mathematical Prosrammini Study 7, North-Rolland
(Amsterdam 1978) 88-107.



15. R. W. Cottle and R. S. Sacher, "On the solution of large, structured
linear complementarity problems: The tridiagonal case," Applied
Mathematics and Optimization 3 (1977) 321-340.

16. C. W. Cryer, "The solution of quadratic programing problems using
systematic overrelaxation," SIM Journal on Control 9 (1971) 385-392.

17. B. C. Eaves, "A locally quadratically convergent algorithm for computing
stationary points," Tech. Report, Dept. of Operations Research,
Stanford University (May, 1978).

18. S.-C. Fang, "An iterative method for generalized complementarity problems,"
Mathematics Research Report 79-11, Dept. of Mathematics, University of
Maryland Baltimore County (Oct., 1979).

19. M. Fiedler and V. Ptak, "On matrices with nonpositive off-diagonal

elements and positive principal minors," Czech. Journal of Mathematics
12 (1962) 382-400.

20. R. L. Graves, "A principal pivoting simplex method for linear and
quadratic programming," Operations Research 15 (1967) 482-494.

21. W. W. Hogan, "Project independence evaluation system: structure and
algorithms," Proceedings of Symposia in Applied Mathematics of the
American Mathematical Society 21 (1977) 121-137.

22. C. L. Irwin, "Convergence properties of a PIES-type algorithm for non-
integrable functions," Tech. Report SOL77-33, Systems Optimization
Laboratory, Dept. of Operations Research, Stanford University (Dec., 1977).

23. C. L. Irwin, "Analysis of a PIES-algorithm," Symposium papers: Energy
Modelling and Net Energy Analysis, Institute of Gas Technology (1978)
471-483.

24. N. H. Josephy, "Newton's method for generalized equations," MRC Tech.
Report 1965, Mathematics Research Center, University of Wisconsin-
Madison (June, 1979).

25. N. H. Josephy, "Quasi-Newton methods for generalized equations," MRC
Tech. Report 1966, Mathematics Research Center, University of Wisconsin-
Madison (June, 1979).

26. S. Karamardian, "Generalized complementarity problem," Journal of
Optimization Theory and Applications 8 (1971) 161-168.

27. C. E. Lemke, "Bimatrix equilibrium points and mathematical programming,"

Management Science 11 (1965) 681-689.

28. 0. L. Mangasarian, "Linear complementarity problems solvable by a
single linear program," Mathematical Programming 10 (1976) 263-270.



29. 0. L. Mangasarian, "Solution of linear complementarity problems by
linear programming," in G. W. Watson ed., Numerical Analysis, Dundee
1975, Lecture Notes in Mathematics, No. 506, Springer Verlag
(Berlin 1976) 166-175.

30. 0. L. Mangasarian, "Solution of symmetric linear complementarity
problems by iterative methods," Journal of Optimization Theory and
Applications 22 (1977) 465-485.

31. J. M. Ortega, Numerical Analysis. A second course, Academic Press
(New York 1972).

32. J. S. Pang, "On cone orderings and the linear complementarity problem,"
Linear Algebra and its Applications 22 (1978) 267-281.

33. J. S. Pang, "Hidden Z-matrices with positive principal minors," Linear
Algebra and its Applications 23 (1979) 201-215.

34. J. S. Pang, "A new characterization of real H-matrices with positive
diagonals," Linear Algebra and its Applications 25 (1979) 163-167.

35. J. S. Pang, "On discovering hidden Z-matrices," in C. V. Coffman and
G. J. Fix eds., Constructive Approaches to Mathematical Models,
Academic Press (New York 1979) 231-241.

36. J. S. Pang, "A hybrid method for the solution of some multi-commodity
spatial equilibrium problems," M.S.R.R. 450, G.S.I.A., Carnegie-Mellon
University (Nov., 1979).

37. J. S. Pang, "The implicit complementarity problem: Part I," M.S.R.R.
458, G.S.I.A., Carnegie-Mellon University (April, 1980).

38. J. S. Pang, "The implicit complementarity problem: Part II," M.S.R.R.
459, G.S.I.A., Carnegie-Mellon University (April, 1980).

39. H. Samuelson, R. M. Thrall and 0. Wesler, "A partition theorem for
Euclidean n-space," Proceedings American Mathemetical Society 9 (1958)
805-807.

40. A Tamir, "Minimality and complementarity properties associated with Z-

functions and M-functions," Mathematical Programning 7 (1974) 17-31.

41. R. S. Varga, Matrix iterative analysis, Prentice-Hall Inc. (New Jersey 1962).

42. R. S. Varga, "On recurring theorems on diagonal dominance," Linear
Algebra and its Applications 13 (1976) 1-9.

43. W. I. Zangwill, Nonlinear programming: A unified approach, Prentice-Hall
Inc. (New Jersey 1969).

-~---. -



Unclassified

.CRT r CCUMENTAT1ON PAGE READ s.Wi.?,CNs
I2.O*Y MOEN . G0VT £%CCUL.Mf 464 31CMOIrE11 CAbS.04l§ NUMI.A
MSRR 466 -- O

Wo oNovember 1980

APROACD FOR ONERG PEEN RTASI RATIE. SFN404UPOMMda -PIENWOllMWli 13le. 119PNT Nue.&
- " " MSRR 466

E ~ Jong Shi/Pang 17a1-7- ;
I Pitbrh Pnsl va ni0

Graduate School of Industrial Administration
* Carnegie-Mellon University NR 047-043! Pittsburgh, Pennsylvania 15213

:-RC....41 C oTooIes __9 ...- _ _ _ _ _ _ _

Personnel and Training Research Programs
Office of Naval Research (Code 434) __.______"_

Arlington, Va. 22217 32
! mi romoso 41 MAC , A,-.,.,' aeW, hs uma CmO,,.OW1 oMj 11L .SgCUm'V Q.,., r. .w '

Approved for public release; distribution unlimited.

a
'
1UI buTlow STATIenut" me .mboeo~ eia 86.0* l 8. gg dto me" : i l "

* t

I Is. Key WOiOs ' dlmaim an 1 evwsl 1 I00806407 aW I400t *61 moo&

Iterative methods, linear complementarity problem, matrix snlittings,
j convergence.

IL. A45?NACfawfe -INMOOfPWO ,.,w t Of* A0SW a We IOWI Om~Fp W*4 XWOM

Iterative methods have been found very usi&fl, for solving many large linear
complementarity problems arising from applications. In this paner, we formu
late a basic algorithm and use it as a unifying framework for the study of
such methods. Next, we apply various strategies to investigate the conver-
gence of the basic algorithm. Finally, we discuss the possibilitv of ex-
tending the analysis presented here to treat other complementaritv and
variational problems. -

00 ' ""R 14n3 couies or 1 *ay, soi a %&r
gLN I3Ilt s66 C1 --- I eeICe,* e a



mm4


