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A New Method

I for Solving Linear

I Inequalities

Abstract

This paper describes a new method for finding nontrivial solutions
AX4r &

of the inequality 1O where A is an mxn matrix of rank n.

The method is based on the observation that a certain function f

has a unique minimum if and only if the inequality fails to have a

nontrivial solution. Moreover, if there is a solution, the direction

of divergence of an attempt to minimize f will converge to a

solution. The technique can also be used to solve inhomogeneous

inequalities and hence linear programming problems, although no

claims are made about competitiveness with existing methods.
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A New Method

for Solving Linear

Inequalities

G.W. Stewart

1. Introduction

In this note we outline a method for solving linear inequalities of the

form

(1.1) Ax > b,

where A is an mxn matrix of rank n. Since any linear programing

problem may be case in this form, the method is also a new method for

linear programming.

The heart of the method is a technique for either solving the

homogeneous inequality

(1.2) Ax > 0, x 0,

or determining that no solution exists. The underlying idea is simple.

Consider the function

T(1.3) f(x) - 1 exp(-Ax)

where I- (1,1,...,l) T and for any vector y

exp(y) - (.71, *Y2,...,.Ym).

We shall show that one of two things must happen if f is minimized

iteratively. If (1.2) has no solution, then f(x) has a unique minimum

to which the iteration met converge. If (1.2) has a solution, then the

iterates will grow unboundedly in such a way that a solution can be computed

from thn. toW Ito
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The next two sections of this note will be devoted to the homogeneous

inequality. In the last section we shall treat the general linear inequality

(1.1).

2. Preliminaries

TWe shall use the following notation. Let ai denote the i-th row of

A. For any vector x set

P(x) - (i: six > 01,

TZ(x) -{i: a x 01,

T
N(x) - {i: aix < 01.

If x is a solution of (1.2), then N(x) - 0. If x1  and x2  are

solutions, then x1 + x2  is a solution and

P(x1 + x2) = P(xl)u P(x2),

Z(x1 + x2) = Z(xl)n Z(x2).

It follows that if there exists a solution to (1.2), then there exists a

solution x for which the cardinality of Z(x) is minimal. This minimally

active solution need not be unique, but the sets P P(x ) and Z Z~x* ) are.

A transformed version of the problem will be needed in the sequel. Suppose

that (1.2) has a solution and let x be a minimally active solution.

Without loss of generality, we may assume that the rows indexed by Z are

the last rows of A; i.e.

.X * A

where AIx >0 and A2x =0. Since x € 0, it follows that A2 has a

nontrivial null space. Let V - (V1 V2) be an orthogonal matrix with the
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columns of V1  spanning the null space of A2. If we set

(2.1) B m Iyii ii
and

U V- u Vix,

then the inequality (1.2) becomes

(2.2) Bu B [l1 B12 ] 0

0 B2 u 2

Here both B and B22 have full column rank. Moreover, the minimally

active solution u corresponding to x satisfies

(2.3) Bu * > 0, u2 -

3. Homogeneous inequalities.

We begin by establishing some elementary facts about the function f

defined by (1.3). Clearly f is bounded below by zero. its gradient and

Hessian are given by

f'(x) - -A exp(-Ax).

and

f"(x) - ATD(x)A,

where
T T T

D(x) - diag(e a l x , ea2X,...,esmx).

Since D(x) is positive definite and A is of full column rank, f"(x)

is positive definite. It follows that f is strictly convex and can have at

most one local minimum, which, when It exists, is also a global minimum

(2 , 13.4.6, 14.2.7]. Sufficiezt conditions for the existence of a minimum

are contained n the following theorem.
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Theorem 3.1 If (1.2) has no solution then f has a minm=.

Proof. It is sufficient to show that f(x) - + w as ix! - -

(any norm) [2,54.3.3]. For any x with jlxll" 1 set
T.

¢(x) - min {ax: i cN(x)}.

Since (1.2) has no solution, N(x) is nonempty and ¢(x) < 0. Clearly

*(x) is continuous. Hence

e - sup O(X) < 0.
lxli- 1

Now for any x # 0

f(x) > e ix  > e

i 1(x)

which establishes the theorem.

The condition in Theorem 3.1 is also necessary. However, for the purpose

of this note we must take a more detailed look at the properties of f when

(1.2) has a solution. This is most conveniently done in terms of the trans-

formed system (2.2) and the associated function

g(u) - 1Texp (Bu)

- IT exp (B1 1u1 + B1 2u2) + jTexp (B2 2u2)

N g1 (u) + g2 (u2 ).

Lama 3.2. The system

(3.1) B22u 2 > 0

has no nontrivial solution. Hence g2 (u 2) has a unique minimum

(3.2) y - $2 (u).

i ~~~~~~~~ ... II ... 2.........
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Proof. Suppose u2  Is a nontrivial solution of (3.1). Because B22

is of full rank, B2 2 u2 yf 0 and hence B22u2 has at least one positive

component. From (2.3) it follows that there is an o > 0 such that

B 11U1 + B12u2 • 0.

Hence the vector ua'I
u=

u2

is a solution of (1.2) with Z(u) a proper subset of Z(u*), which

contradicts the minimality of Z(u ). The existence of a unique minimum now

follows from Theorem 3.1.

Theorem 3.2. The function g satisfies

(3.3) g(u) > inf S(v) - y

where y Is defined by (3.2). Moreover, if u(k) is any sequence with

g(u W y then

1. u (k)+u2
(3.4) 2 2

2. B11uI ( o{-ln[g(u(k)) - fj)

Proof: For any vector u we have

(3.5) g(u) - gl(u) + g2(u2) > 92 (u2) >

On the other hand if we define

au

Then

Ila S(u)a - 1rn 51 (u) +82(u' 2

-0 y - y.
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This establishes (3.3).

To establish (3.4), let u(k ) be any sequence with g(u (k ) y.
(k))

Then in view of (3.5) we must have g2(u2 () y which implies (3.4.1).

Now since we must have g,(u (k)) < g(u(k)) - y, it follows that

exp(-B 2u2 (k)) 0 exp(-Blu(k)) < g(u (k)) -

where ) denotes componentwise multiplication. Hence

exp(-B u(k)) < g(u(k)) y]exp( B u (k)

or

(kk)(3.6 Bl~l~ ) >- lng~u k)) - - 12u2 .

Since u 2(k) is converging,(3.6) is equivalent to (3.4.2).

We are now in a position to describe a method for solving the system (1.2).

Let p be a diverging sequence of radii and for each k let x(k) be the

solution to

(3.7) minimize f(x),

subject to Ii l2 < %,

where I I 2 denotes the usual Euclidean norm. The convexity of f and the
constraint insure that x (k) is uniquely defined.

Now if (1.2) has no solution, theorem 3.1 assures us that for some finite

k the solution x (k) will lie in the interior of the constraint.

On the other hand, if (1.2) has a solution, each x(k) will lie on the

boundary of the constraint (i.e. IIx(k)I 2 - pk ) . Moreover, from (3.4) it

follows that the components of Ax(k ) corresponding to p will diverge to
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+ M while the components corresponding to N will converge. Once N has

been recongnized, we can compute the transformation V to the u-coordinate

system [cf.(2.1)]. For each k we then compute trial solutions of the form
-(k) T Vl~ (k) Vu(1)

~(k) (k)k

(i.e. the vectors obtained by setting u(k). 0 so that A(k) - 0). It is

possible that initially the x may not be solutions, owing to the supresgion

of the terms B1 2 u2 (k) in A (k); but (3.4.3) insures that ultimately

B 2(k) = A (k)> O, and at that point (k) s a solution.

There are a number of observations to be made about this method.

Remark 1. The method produces a minimally active solution. This will

be important in the next section.

Remark 2. We have not specified any particular algorithm for solving

the constrained problem (3.7). However, we note that it is about as nice a

problem as one could wish for. Within the constraint f is uniformly convex,

and its first and second derivatives are easily computed. The constraint is

not only convex, but the projection onto its boundary is trivially computed.

Finally, in the passage from pk to Ok+l, the vector pk+lx(k)/ Ix(k) 2

makes a natural starting point from which to find x (k+l).

Remark 3. Strictly speaking the method is not an iterative method, but

a finitely terminating method with an inner calculation-- the solution of (3.7)

that will almost certainly be done by iterative techniques. A true iteration

(k). u.(k)'may be obtained by observing that the vectors x'k) ix g converge to

a solution of (1.2). However, the solution thus obtained may not be minimally

active, since there is nothing to prevent the components of AIx(k) from
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diverging at different rates. The author conjectures that this will not

happen if for the sequence x(k) generated by (3.7).

Remark 4. A possible alternative is to turn an unconstrained minimization

method loose on f and see what happens. This will clearly be satisfactory

when (1.2) has no solution, since most well constructed minimization methods

are globally convergent when applied to convex functions. Unfortunately

for the case where (1.2) has a solution, the divergence properties of

minimization methods have not been well studied. Not only may the iteration

produce a solution that is not minimally active, but one must deal with the

possibility that it may produce values uniformly greater than the infimum y.

Nonetheless, the simplicity of the resulting class of methods makes the analysis

well worth undertaking.

Historical note. The method described in this note has its origins in

the maximum likelihood analysis of log-linear models. Specifically, one

is given a vector n of independent Poisson random variables with

E(n) = exp(Ub), where U is a matrix, often of formidable size. Up to a

constant, the log-likelihood function for any estimate of E(n) is

(3.8) t(n, b) - nUb - ITexp(Ub),

which is seen to be an elaboration of our f. When some of the elements of

n are zero, the maximum likelihood estimate of the corresponding means may also

be zero, in which case an iteration for maximizing (3.8) must diverge, since

Ub estimates the logarithm of the means.

Haberman [1, Theorem 2.3] has given a necessary and sufficient geometric

condition for the existence of a maximum of (n,b). In the course of work on
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the numerical analysis of log-linear models, the author reduced this conditon

to the nonexistence of a solution of (1.2), where A will generally have

dimensions much smaller than U. It was then an easy matter to recognize that

the inequality corresponded to a trivial log-linear model with a log-likelihood

function that is essentially -f. Thus the existence or nonexistence of a

solution of (1.2) is equivalent to the nonexistence or existence of a minimum

of f.

4. Coda - inhomogeneous inequalities.

It is easy to see that the inequality (1.1) is equivalent to the

existence of a solution of the inequality

with n > 0, in which case x - y/n. Since the method of §3 produces

minimally active solutions, when applied to (4.1) it will either produce a

solution with n > 0, or it will produce one with Y1 -0 or indicate no

solution, in which case (1.1) has no solution.
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