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CHAPTER I

INTRODUCTION

1.1 Exponential Analysis as a Special Case

of Systems Identification

Exponential analysis attempts to characterize a waveform with a

sum of complex exponentials, that is, a s-m of damped sinusoidal corn-

ponents. Consider the class of linear processes whose impulse re-

sponses are representable as a sum of exponential components. If the

impulse response, possibly noise contamined, is given for a process in

this class, the transfer function of that process Can be estimated by M

applying a body of theory known as systems identification [1,2,3,4].

The impulse response can be expressed as the inverse transform (either

the inverse Laplace transform or the inverse z-transform) of the

partial-fraction expansion of this estimated transfer function. If

the waveform to be analyzed is assumed to be the impulse response

of a process of this class, then the systems identification technique

plus the process of partial-fraction expansion can be viewed as an

exponential analysis method. Hence, exponential analysis methods can

be equated to systems identification methods for the case of impulse

input to the process. The poles of the transfer function are the

damped resonances that characterize the waveform. The imaginary

parts of the poles are the angular frequencies of the sinusoidal com-

ponents and the real parts are the corresponding damping constants.

-I-{
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1.2 Motivation for Exponential Analysis and

a Survey of the Literature

Systems identification theory and exponential analysis find appli-

-. cations in such diverse fields as industrial controls, economic model-

ing and in the analysis of biological systems. Recently, these iden-

tification methods have found application in the extraction of the

singularity expansion method (SEM) description of a :ransient scatterer

from its time domain response as was first suggested by Mittra and Van

Blaricum [5]. SEM was developed by Baum 6, 7] from the insight that

the transient response of a scatterer resembles a sum of exponentially

damped sinusoids. The least-squares Prony's method was proposed by

Van Blaricum and Mittra (8, 9] as a means of obtaining the SEM descrip-

tion from the transient response of a scatterer. Pearson and Roberson

[10] have since developed and documented a method of obtaining the corn- T

plete SE4 description of a scatterer from transient response data.

Dudley [11] related Prony's method to a parametric system model and

proceeded to demonstrate a bias in the estimates of the system poles

inherent in least-squares Prony's method.

The parametric :odel employed by Dudley is a modified version of

the generalized nodel described by Eykhoff [1, 2], Astrom and Eykhoff

[3], and on pages 209-220 of Eykhoff [4]. The origin of the general-

ized model can be traced to Kalman in 1958 [121 who assumes noise-free

In input and output records of the process to be identified. This is the

assumption from w.ich the generalized model derives its validity. "ith

noise, this model is no longer valid, and the resulting transfer fmc-

tion estimate is slightly erroneous.

* -. ==- =- -rn -
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Steiglitz and McBride [131 introduced a so-called actual model

that differs from the Kalman or generalized model by using the model

output in place of the noise corrupted process output for the feedback

inherent in the model. The validity of the actual model does not break

down when noise is present in the process output. However, the estima-

tion of the parameters of the actual model is a highly nonlinear prob-

lem. One major reason for the generalized model's popularity is lin-

earity in the parameters allowing one-shot estimation. In contrast, an

iterative estimation procedure is required by the actual model.

Another related method is the pencil-of-functions method advocated

by Sarkar [14, 15]. The method was originally proposed by Jain and

Gupta [16] and elaborated on by Jain [17, 18, 191. In [15] Sarkar

indicates connections between Prony's method, the Wiener filter, and

the pencil-of-functions method.

One important property of the actual model is that when it is

used for exponential analysis, it produces a "best fit" to the wave-

form under analysis in the mean-square 3ense, that is, it minimizes

the mean-square error. Some other methods that have this property are

found in references [13,20,21,22,23].

1.3 The Contribution of the Present Work

The original intent of this work was to develop a noise tolerant,

efficient method for exponential analysis. The method was to find

direct application in extraction of the SEM description of a scatterer

from measured surface currents. A new noise tolerant method is presen-

ted in this doctament. Unfortunately, the method is laborious, and

hence, only partial success can be claimed with regard to the original

intent.



Perhaps the real contribution of the present work is the conceptu- ",,.

al groundwork which is a prerequisite for further improvements on ex-

ponential analysis methods. This groundwork is laid by defining a

general scheme that incorporates most, if not all, exponential analysis

methods and by defining the sources of difficulties for such methods.

This groundwork is established through a new formulation of an extended

generalized model and an extended actual model after Steiglitz and

"cBride (13]. The extension is to admit any set of linear filter =

functions to form generalized filter sections in the respective models.

Emphasis is placed on concept development rather than strict mathe-

matical rigor which would stifle such development.

In Chapter II one major source of difficulty with exponential --

analysis methods is defined. This difficulty is the parameter bias -

that Dudley (U] brought to light. An attempt is made to relate the

source of this so-called bias to the distinction made by Steiglitz

and kBride [13] between the true error model and the linear regres-

sion model. Also presented in Chapter II is the general identifica-

tion scheme that is used through the rest of this work.

Chapter III relates Prony's method and the pencil-of-functions

method to the general scheme of Chapter I. The various problems asso-

ciated with the pencil-of-functions method are discussed, and simple

remedies to those problems are proposed.

Chapter IV introduces a new method, called the adaptive method,

which is highly tolerant of the presence of noise in the waveform

under analysis.

Chapter V presents conclusions and indicates directions in which I "

future research may be fruitful.
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1.4 Notational Conventions

The following conventions of notation are observed:

1. The symbol "s" denotes the Laplace-transform variable. If the

transfer function of a process is a function of s, the process is

assumed to be a continuous-time process.

2. The symbol z" denotes the z-transform variable. If the transfer

function of a process is a functlon of z, the process is assumed

to be a discrete-time, sampled-data process.

3. If a symbol for a transfer function appears alone, without the

appropriate variable enclosed in parenthesis, the symbol denotes

a "generalized" transfer function whose functional dependence is

not restricted in any way. To illustrate, a process can be given a

c-itinuous-time representation in which case the transfer function

could be a function of s, or the process can be given a discrete-

time representation, then the transfer function is a function of z.

If only the essence of the process is to be conveyed, without re-

gard to its particular representation, then the transfer function

is written without indicating its functional dependence.

4. An asterisk indicates the complex conjugate of the expression pre-

ceding it.

5. The symbol "T" raised above the expression it follows indicates the

transpose of the matrix or vector preceding it. -

6. A prime indicates the transpose conjugate of the matrix or vector

preceding it. A

Other symbols used in this work are defined when they are introduced

in the text.



CHAPTER II

ESTIMATION OF THE PROCESS TRANSFER FUNCTION

2.1 Introduction

The problem under consideration is the characterization of a sam-

pled, noise contaminated waveform, y(k), as a weighted sum of complex

exponentials of the form n

ym(k) A.z., k 0, M-1 (1)

where z exp(s T) and T is the time duration between successive

samples. The objective is to choose the A. and z. that best character-

ize the waveform. Usually the best characterization is assumed to be

the one that minimizes the mean-squared error between the waveform and

the characterization.

It is assumed that y(k) is the noise contaminated, impulse re-

sponse of the linear process with a nth order transfer function given by

blF +*"' + b F11 nn
a +aF + + a F " (2)
o 11 n n

The Fi are predefined functions of the transform variable. For example,

the F. could be polynomials in the transform variable. Later the F.

are related to filtering opera-ions, and for this reason, they are re-

ferred to as "filter transfer functions." With appropriate choices of

the ai, bi, and Fi, any transfer function can be represented in this

form. The reason this form is used is because the general parametric

model introduced in the next section also has a transfer function of

this form. The F are the transfer functions (which are not srecified

explicitly in order to remain completely general) of the filters that

make up the model.

-6-
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The problem can be restated as the estimation of (2). By expand-

ing the estimated transfer function in partial fractions and performing

an inverse transform, the desired characterization is obtained. The z.

or s. can be interpreted as the poles of (2) and the A are the corres-
2I i

ponding residues of (2). The zi and s. are related by z. exp(siT).

2.2 Two Parametric Models

Steiglitz and McBride describe two parametric models in terms of

which they interpret their identification procedure. A straightfor-

ward extension of these parametric models provides a framework that is I

broader in its applicability. They are specialized herein to describe

the Prony procedure (24], the so-called least squares Prony procedure

[9], and the pencil-of-functions method of Jain [191. The models are I
used further to provide a new iterative identification procedure that~I °

VE appears to be substantially more tolerant to noise-corruption in data

than existing schemes. The first, the actual or true model, is shown

in Figure I and has the transfer function

a 1I F I1 + .. n Fn
H = n (3)

0 o n n

The second model is called the approximate model and is shown in

Figure 2. The approximate model is derived from the actual model by

approximating the model output with the noisy process output as the

source of feedback in the model. It should be noted that (3) is not

-the transfer function of the approximate model. In fact, a transfer

function that serves as a useful approximation to the process transfer

function cannot be defined for the approximate model. These models

reduce to those of [13] if the F.'s are chosen in the form of rational

polynomials in the z-transform variable that have a zero at z 0.

--- e
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The o.ject of the identification process is to adjust the para-

meters of the model t no minimze the mean-squared error, 7 -

An estimate of the process transfer function is found by using those

minimizing parameters along with filter transfer functions, Fi, in

(3). Routinely, the parameters that minimize the error norm in the

approximate model are used in (3) even though it is the transfer func-

tion of a different model. The result is an estimate of the process

transfer function whose error depends upon tl strength of the noise

process "n".

Why bother with the approximate model if better estimates can be

had using the actual model? This question is quickly answered when

one attempts to estimate the parameters of the actual model. Because

the model output and the parameters are interdependent, the parameter

estimation problem is highly nonlinear, and must be solved by itera-

tive methods. In the approximate model, the parameter-invarianc pro- S

cess output replaces the model output, thereby making the problem

linear. Hence, the approximate model is widely preferred.

2.3 Estimation of the Model Parameters

An estimator is a rule for choosing the model parameter values in

a way that tends to minimize the error between the process output and

the model output. Two types of estimators are distinguished: discrete-

Itime and continuous-time.
The discrete estimator operates on sampled data and produces an

estimate of the pulse transfer function of the process. The discrete I
mean-square error is defined as E = e'e where e = [e(O) e(M-1)IA

is a column vector consisting of the sampled sequence. ti
Likewise, tne model output sequence and filter output sequences

_ "fl



are denoted as M-length vectors Y1, and Yj' ui for i=l,...,n, respec-

tively. The output of the approximate model can be expressed as

n -a2 y_ +.. ayZ
i=I 0 0

where

YI(O) ... yn(O) u (0) ... u (0)nn

YL y(M-M- ) U (M-) . . i

and 6 is the vector of model parameters

B [-a ... -a 8 a
n n

The process output is denoted by an M-length vector y. The error can

then be written as

- U
0I

It can be shown that the partial derivatives of E with respect to the

real parts of the parameters are

E Reci. 2 Re[-e y ,]
a Re 2 Re

oR 8.--U]
0

and 3E =2 Re[e'u.],

for j=l,...,n. A necessary condition that a set of parameters must

satisfy in order to minimize E is that the partial derivatives listed

above vanish. This leads to the set of normal equations

ev = 0,

e-u. = 0,

- - -J
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for j=l,..., n which can be written in matrix form as

e0R

or '[- ] 0=o
0

Solving this equation for - produces the discrete least-squares

estimator:

0 [V' ' (4)

The columns of il consist of the sampled filter outputs of the approxi-

mate model indicated in Figure 2. The filter output sequences can be

computed with a set of difference equations that characterize the dis-

crete filters, F..

If X-2n, (4) reduces to

0 Y

If 24<2n, a'Q is singular because insufficient data are

available to estimate 2n parameters.

The continuous estimator operates on continuous data. The

filters within the model are continuous in this case. The continuous

mean-square error is defined as

E = (e,' e*(t) e(t)dt

where tI and t2 define the interval on which the waveform exists. The

continuous least-square estimator has the form:

9 G a r (6a)
- 2n o-

where I
Ti e = ~~~[-aI  . -a I"" ],(b

Sn n(6b)

LW
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I = <.,Y ... <Y, Y <Y,U ... <Y,uI , (6c) I

and G< i (6d)

2n A

The inner product is defined as

Xl = t) X2(t) dt (6e)

The continuous estimator results from the minimization of the

error in much the same way the discrete estimator does, and therefore, -

the deriviation for the continuous estimator will not be presented.

The parameters of the actual model can be estimated by an iter-

ative procedure using a modification of the estimators described above.

This procedure involves replacing the process output with the model

output as the feedback source within the model. Specifically, if

L- L LYmi replaces Y1 a. replaces a,, and 8. replaces S. in (4) and (6),

for i = 1,..., n, a technique of iterative improvement results. The

th L Lparameters of the L iteration, aL and $., are estimated in terms of

the most recent model output, yL. An initial estimate of the process

is required to start this procedure. The approximate model can be used

to provide this estimate. Nothing is known about the convergence

characteristics of this procedure. However, Steiglitz and McBride [13]
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do mention that, in general, this procedure fails to converge if the

initial parameters are far from the optimum values.

E-



CHAPTER III M

EXISTING METHODS

-M

3.1 Introduction

By necessity the models described in the previous chapter are

quite general since they must serve as a common ground for the two

existing methods that are examined in this chapter. Prony's method

and the pencil-of-functions method are shown to be special cases of

the estimation method for the approximate model. Each method corres- tm

ponds to a particular choice of filters within the model.

3.2 Prony's Method

In 1795 a method for exponential analysis was 
invented by A

R. Prony [24]. The method was implemented by hand calculations. A

Prony's method has since found numerous applications and has sometimes A

been published without reference to its inventor. Van Blaricum [25]

has compiled a large though abridged bibliography of Prony's method.

Van Blaricum and Yfittra [8,9] conducted a well documented investiga-

tion of Prony's method and proposed some useful extensions of the

technique. Lager, et al. [26] have suggested a "sliding-window Prony"

procedure as a means of reducing the noise sensitivity of the method.

Although Prony's method is computat-onally efficient, Dudley [11]

demonstrated that the least-squares version [9] can produce biased pole

values that differ significantly from the "best"pole values unless the

noise component of the waveform is small. The "best" pole values are

those that best fit the waveform. Prony's method results from the I
approximate model. It follows that the bias is nothing more than the

slight error that is incurred by the use of the approximate model.

° -15-
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?ronv's method results from the approximate model under the

following assumptions:

1. a 
M.

2. F. F (Z) z.

3. The model input is an impulse at k 0.

The assumption of % -1 implies that the parameters are normalized rel-

The other methods examined in this work are normalized relative to

a, that is, a =1 is assumed. Since M 2 n, (5) may be used to00

estimate the parameters. In this case,

T

( y(0) * y(2n-l)I

y(l) *.y(n)

y (n+1) *. (2n)

y(2n) *'y(3u-l

The rank of 2 is, at most, n. Renee, with some rearranging the

following equation results:

y (0) ... .y(n-1) [MO ]~
y (n-1) ... L(n-) a IJ Z(n-i)

L:L
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System (7) is equivalent to Prony's method for estimating the poles of

a waveform. The poles of the process may be determined from the i ..

The 3. must be determined by other means. See, for instance, reference

fll]. A straightforward way of determining the A. of (1) is to use

the poles to form exponential basis functions which are used in linear

combination to form a least-squares fit to the data. The A. are the
1

coefficients of this linear combination. The A. may also be found I
from the a. and 8i, once these parameters are known, as simply the

21

residues of H .

Examples of the performance of Prony's method under a variety of

conditions are found in sufficient detail elsewhere [8, 11] and, for

this reason, wili not be given here. AN

3.3 The Pevcil-of-Functions Method

The pencil-of-functions method was originally proposed by Jain

and Gupta [16] before Prony's Method became well known. In this

section the pencil-of-functions method is derived as a special case

9 of the approximate model presented in Chapter II in contrast to its

usual derivation from the so-called pencil-of-functions concept [19].

Additional material on the ;encil-of-functions method is contained

in references [14, 15, 17]. A discrete version of the method is

described in reference [18].

The pencil-of-functions method results from the approximate model

under the following assutions:

1. a = .
0

2. F. - Fi(s) (1is)

3. The matrix G 9n 1 , defined in what follows, is singular.

Note that the approximate model reduces to the generalized model [1,3,

MEN_ _ _ - - -_--
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41 under the first assumption; thus, it follows that thQ pencil of-

functions method may be derived from the generalized model. The esti-

mator embodied in equation (6) may be used to estimate the transfer

function of the process, and the poles of the process may be esti-

mated as the zeros of the denominator of (3), viz.,

+=0 -

or Is + lS +""+ =0 . (8)

The -. may be found using the estimator of (6). By applying Cramer's

rule to system (6), it can be shown that

Mi  0 1 /A00  (9)

where A denotes the cofactor formed by deleting rtw p+ and column
PC

q+l of the matrix,

(~~> ~'~Y K"'>K"'1> ... <~U

G2n+1 =10)

In this case G2n+! has only pure real elements. If G 2n+ is also

singular, the following relation holds among the cofactors:

-pp - pp -

This relation is oroved in the Avendix. The pencil-of-functions method

assumes that G2n+ is singular and makes use of (8), (9), and (11) to

2n~[
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form the following characterlqtic equation for the process:

Sn + S n 0 (12)
C'000 0 0 00

IL may be shown that, in general, G2n+l is nonsingular because y cannot

be expressed as a linear combination of the yi and u. under the fz ..ow-

ing conditions of imperfect modeling:

1. y has a random noise component. -

2. The model order, n, is less than the order of

the process or waveform being modeled.

3. Both 1 and 2.

If any of the above conditions apply the set of functions,

S ={Y, Y' " Yn' lUV I Un

is linearly independent, and due to this fact, the Gram matrix (27],

G~ formed from those functions of S is nonsingular. Otherwise,

for conQitions of perfect modeling, the functions of S are linearly =

dependent, G is singular, and (11) holds.

Thus, if the process can be modeled perfectly, that is, with no

error, then (12) is equivalent to (8). However, if the process cannot

be modeled perfectly, (11) no longer holds and (12) becomes less

accurate than (8) for estimating the parameters of the approximate

model. Since the para-ter values of the approximate model are trans-

planted into the true model, it is not clear if the a. or the / ..T
1 2.1 00

more accurately portray the process after this transplant. In the

next section numerical evidence is presented that indicates that the a.

provide better estimates. However, since the a. and the V/Ao7 are
1 12.00

computed in extremely different ways, the results may not indicate the

true situation due to inaccuracies in computation.
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Aside from the problem mentioned above the pencil-of-functions

method has two other difficulties of which only one has a simple

remedy.

The difficulty that has a simple remedy is related to the use of

integrators for the filters within the system model. The continuous-

time integrators cannot be implemented exactly by any algorithm. When

approximate integrators are cascaded as they are in the pencil-of-

functions method, large errors accumulate quickly and the intended

result destroyed after a number of integrations. This difficulty can

be resolved by cascading discrete integrators to obtain filters with

pulse transfer functions given by

F- F (z) - ( - (ii

which can be implemented on a digital computer with no error by using

the difference equations:

yi(k) = yi(k-l) + y,_l(k)

and u. (k) u (k-1) + u (k)

The variable Z is defined as

1L
z

and z is the z-transform variable. When discrete integrators are used

the discrete pencil-of-functions method results. The poles of the pulse

transfer function of the process may be estimated as F

*This feature of the pencil-of-functions method has been consistently

observed in numerical implementations. This encroachment of systematic
errnr is inconsistent with generally accepted interpretation of numeri-
cal integration processes and has not been explained analytically, to
date.

E--9-- --
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1-Z

where Z. is the ith zero of

iZn + -a1 Zn - + "-" +a n =0 (13) 13

and the a. are found by use of equation (4).

If the continuous inner product (6e) is replaced with the discrete

inner product, -2m

* =(k) x (k) (14)

k= 0
D D D D

a n = a G where G2  and r are formedItcnb-honta - = 2nG-

with the discrete inner product (14) in the same way that G and r are £z

formed with the continuous inner product (6e). Then,

D

S--(15)

where A D denotes the cofactor formed by deleting row p+1 and column
- pq

D G D

qi o G is and G is the Gram matrix formed with the discrete

innr podut i th sae wy G2n~ isformed with the continuous

inner product. Equation (15) follows from Cramer's rule in the same

way equation (9) does. As before the relation,

ADD
P = (16)

DD
pp P

holds if G D is singular. Combining (13), (15), and (16) yields the A
2n+.

characteristic equation of the system:

D D D
- Z n + - n-l + "+ n

0 _ n 0 (17)
D D D

Ag 00 00

00 + ~ v
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Equation (17) is the equivalent of (12) for the discrete method. The

choice of positive radicals in (17) follows from arguments counterpart

to those nut forth by Jain [19] for the continuous case.

Estimates of the poles of the Laplace transfer function of the pro-

tess, s., are related to the zeros of (13) amd (17) by

Zn(l-Z.
1 -

i T

In the next section the discrete version of the pencil-of-functions V
method is tested on noisy data and the performance of equation (13) is~compared to that of (17) in order to demonstrate the superiority of (13) -

in estimating the system poles.

Now attention is turned to the second difficulty with the method

that does not have a simple remedy. This difficulty is related to

the attenuation of the higher frequency modes of the process output by

the repeated integrations applied to the output waveform. It can be

verified that an integrator is simply a first order filter whose

Laplace transfer function has a pole at the origin in the s-plane.

Such a filter tends to suppress the higher frequencies present at its

input. The higher frequency suppression phenomenon is illustrated in

Figure 3. Normally, when an exponential function is integrated re- -

peatedly, components consisting of powers of time exist in the higher

integrals as well as the original exponential function components.

In Figure 3 the components of powers of time have been subtracted from

the integrated waveforms in order to make the attenuation of the higher

modes more evident. The first waveform is a hypothetical waveform pro-

vided for analysis. The waveforms that follow are the integrals of

increasing order of the first waveform and display the increasing

dominance of the fundamental mode or the mode of lowest frequency.

_ - . .. - - - . .. -- _ -i -l = _ - . .. - ,- ,- -



-23-V

0'02-

0*3 A

60

FAA



-24- 1

Further integrations yield nearly identical waveforms. The integrated M

waveforms tend to become linearly dependent at higher model orders.

The Gram matrix, G r then tends to singularity and the method

becomes unstable. The suppression phenowenon occurs in both the

discrete and continuous methods. In fact, even for very modest model

orders, the method can become numerically ill-conditioned to a degree

that special care must be taken to assure accurate inversion of G or
2na

G.The examples of the next section illustrate the increasing ill-

condition with increasing model order by computing the condition number

D
of G

2n"__

3.4 Numerical Examples of the Pencil-of-Functions Method

In the first example, impulse input to the system is assumed and

the discrete method is applied in the analysis of a waveform consisting

of 50 samples defined by:

4

y(k) = _ A.eSjkT + n(k) k = 0,1,-..,49

where A = S, s 1- + jl0,

A =1, s jl0,

A =1, s3 =-1.5 + j30,
A= 1, s -1.5- j30,

4 54

n(k) is a Gaussian distributed white noise sequence of 50 samples, and

T = 1/49. The signal-to-noise ratio is 30 dB, where signal-to-noise

ratio (SNR) is defined by: L

SNR (dB) = 20 log (18)
10
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4max sA ej k T  (maximum magnitude of

and = uncorrupted waveform)
j=l

a = standard deviation of noise.

Four poles are requested. Thirty Monte Carlo runs are made where each

run uses a different noise sequence. Figure 4 shows the resulting

s-plane pole estimaL_- for all Monte Carlo runs overlaid onto a common

plot. In Figure 4(a), the poles are estimated with the roots of equa- Al

tion (17), and in Figure 4(b), the poles are estimated with the roots I
of equation (13). The reader is reminded that the residues of both

poles are of unit amplitude thus leading to the conclusion that the

apparent deterioration of pole accuracy with increasing frequency is an

artifice of the process.

In the second example the same analysis is carried out for a

higher model order. The waveform is given by:

6
y(k) A.esjkT + n(k) , k 0,1,--,49

j=l

where A =, s 5 =-2 + j5O,

A =1, s =-2 - j50,

6 6

and all other details remain unchanged from the first example. Six poles

are requested. Figure 5 shows the resulting S-plane pole estimates. In

Figure 5(a) the poles are estimated with the roots of (17), and in Fig-

ure 5(b) the poles are estimated with the roots of (13).

2n is averaged over the thirty Monte Carlo

runs and displayed in Figures 4 and 5. The condition number is defined

by [28]:
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Condition number = i!G2Dni Ii[G . I!

where I i II denotes the Cheb-,shev matrix norm defined by:

N
l<i<N Z-I iii

-j=l

and a.. is the element of the ith row and j th column of the N-dimensional

matrix A. The larger the condition number, the more ill-conditioned the

matrix A.

The results of these examples demonstrate that better pole esti-

mates are obtained by using (13) instead of (17). The increasing con-

dition number from the first to the second example indicate that the

method is becoming rapidly ill-conditioned as the order of the method is

increased. The results of a third example for which an eighth order M

method was used to analyze a noise corrupted waveform composed of eight

exponential components are not presented because the method became so

ill-conditioned that the intended result was completely destroyed.

It was found that the pencil-of-functions method becomes ill-

conditioned for the analysis of waveforms containing many poles. Even

though the results of these examples do not apply to the continuous

version of the method directly, it is known that in the limit as T

approaches zero the discrete method approaches the continuous method,

and hence, there is a measure of similarity in the two methods. This " f'
measure of similarity is felt to be sufficient to claim that the con-

tinuous version of the method becomes ill-conditioned at higher order.

I:



Chapter IV

THE ADAPTIVE IMETHOD

4.1 Introduction

The adaptive method is an iterative method which is quite tolerant

of noise in thewaveform undergoing exponential analysis. The original

idea for this method was inspired by the pencil-of-functions concept

due to Jain (17]. In this chapter, the adaptive method is derived, not

from the pencil-of-functions concept as it was originally, but rather

from the parametric models of Chapter II. Formulating the method in

I- this way is not only simpler but yields greater insight into the

method's nature.

4.2 An Adaptive Filtering Scheme

The adaptive method results from the identification scheme of

Chapter II under the following assumptions:II. : =1.
t5L 0

2. Fi z
z

3. The model input is a unit sample at k = 0 (discrete
. impulse).

The unique feature of the method is that the filter poles, zi , may be

adjusted to any value in the z-plane. An adaptive technique for ad-

justing the filters consists of first initializing the filters to

-29- I
Li
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F

arbitrary values in the z-plane and repeating the following steps:

1. Find an estimate of the process transfer function
using the current filters in the model.

2. Set each filter pole to one pole of the estimated
transfer function.

This process is repeated until the a. approach zero.

It is shown in the next section that the poles of the process

can be estimated during the course of iteration by

z
- Ziz= + . (19)

removing the need for finding the roots of a polynomial. The filter

poles are updated to z. on each iteration. When the a. approach zero,

the pole updating ceases and the method converges. At each iteration,

the ai are found by using equation (4). At convergence the s-plane

poles, s i , can be obtained from the filter poles by

Zn z.

T '

and the A. =  .
3. 1

4.3 Estimation of Process Poles from Transfer Function Parameters

As usual, the poles of the process transfer function can be

estimated as the poles of (3). However, to estimate the poles, a

polynomial in z is needed. To find this polynomial the numerator and

denominator of (3) are multiplied by the product of all filter denomi-
n

nators, that is, by ( The required polynomial is the de-.1 (Z-Z.).
i--u

nominator of the expression that results after the multiplications

I

____ _____ - ~ -i -~~= =~--
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indicated above are carried out and terms of equal degree have been

combined in the denominator. Although it can be done, the formulation

of the polynomial coefficients on a digital computer requires some

small computational burden. But another method exists for estimating

the poles that bypasses this complication as well as the necessity for

finding the roots of a polynomial. For the sake of discussion, assume

that the filter poles have been adjusted to nearly coincide with the

process poles and examine the behavior of the (i+l) term of the de-

nominator of (3) when the variable z approaches the value of the i

process pole. It is observed that the (i+l) term can become arbitrar-

th .hily large if the i filter pole is arbitrarily close to the i process

pole. It is then possible to write a simplified expression for the

denominator of (3) which is approximately equivalent when z is equal

th
to the i process pole, viz.,

(I z

1 + - , (21)z-z

th
where all other terms other than the (i+l) term in the denominator

of (3) are negligibly small. If

a, i+ (22)

.

where is the value of z for which the equality holds, then z i is a

reasonable estimate of the i process pole. Equation (19) is obtained

by solving (22) for zi . The approximations of (21) and (22) follow

from observing that near convergence of the z. all of the a. except - ?

which is fixed as unity, vanish. Therefore, the a term dominates

along with the (i+!) term as argued above.
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4.4 Numerical ExamDles of the Adaptive "-ethod

The first example of the adaptive method uses a simple first-order

model to analyze a sequence consisting of three samples. Because

of the example's simplicity, hand calculations and concrete numbers

csn be displayed.

The sequence to be analyzed is L
{y(k), k=0,1,21 = {2,1,21 M

it can be shown that @

ym(k) (a constant sequence) h p e u

minimizes the mean-squared error between y and y if the problem is

restricted to a first-order solution. Therefore, the expected results PO

of this analysis after the adaptive method converges are: A1 - and

z1 = 1. Let the initial filter pole, z., be set to one. One might

expect that the method would be convergent imaediately in this case.

However, the method, in fact, will not converge at this value of z.

due to the error introduced by the use of the approximate model.

The convergent value of z should be slightly perturbed from the U09

expected value.

The estimator of equation (4) is applied to obtain estimates of

a and 8I . In this case,

ii
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2 1

and the system that must be solved is

The estimates are Ci- 1  4=.713an t01=.42. The estimate of

the process pole is

Zl= 1 i 14 ~ 1.077.
l+c 1-1/14 13

The esti-nates above constitute the results of the first iteration.

For the second iteration the filter pole is updated to 1.077 and the

same procedure is repeated for iterations two through five. The

results for all iterations are displayed in Table 1.

Next, the iterative scheme for the actual model set forth in

Chapter II is simultaneously combined with the adaptive filtering

scheme and is applied to correct the biased value just obtained with

the approximate model. An initial estimate of the process transfer

function is required to start this estimation procedure. The para-

meters obtained with the approximate model at convergence are used

to form this initial estimate. The initial pole is 1.077. The

most recent model output sequence is computed for the n th order ase

by using the following difference equations in the order indicated:

u (k) = u(k) + z.u.(k-l),

n
1: (8iU 1(k)W-oti ZiYmi (k-1))

y (k)- - )

m n

+I
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Table 1 Estimates using the approximate model.

Iteration

number 1 ~ -2-
1 7.143 x 102  1.429 1.077

2 2.711 x 10- 1.539 1.077
32.279 x 10o6 1.539 1.077
4-4.245 z~ 10 -7 1.539 1.077

-75 2.954 x 10 1.539 1.077

Table 2 Sequences on the first iteration of the estimation scheme
for the actual model.

k u (k) ym(k) yml(k)

0 1 1.539 1.539

1 1.077 1.658 3.316

2 1.160 1.785 5.356
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i

y(k) Ym(k) + ziymi(k-l).

th
These equations are valid for the n order model. For the first

order (n=l, i=l) model that is considered here, the equations are

u(k)= u(k) + zlu (k-l),

U(k) a zl m ( k - 1 )

Y (k) = 1 + (-
m l+ a

Yml(k) Ym (k)+ z (k-),

and are used to compute the results shown in Table 2. From the results

of Table 2.

159 1.000D- 3316 1.077]
.356 1.160

and the system which must be solved is

F2.051 11.323 aj 7 106
I 11.323 3.50 5.3971

The estimates are a z +5.97:xi0-Q and 1 1.732. The estimate of
11

the process pole is

1 ^ 1.077
Zl 1 + a1  1 + .05973 1.017.

The estimates just found constitute the results of the first itera-

tion using the estimation scheme for the actual model. The filter

pole is updated to 1.017 and the same procedure is repeated several

more times to obtain the results shown in Table 3.

The results in Table 3 indicate that the estimation procedure for

the actual model has indeed converged to the expected parameter values

- -
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Table 3 Estiiaates u- lie actual model.

Iteration 1

1 5973 -2

2 -2.053 x 102  1.705 .996

31.163 x 10 1.669 .997

42.349 x 10O 1.663 1.000f
55.878 x 10- 1.665 1.000

6 -5.633 x 10 ~ 1.667 1.000

7 -7.76 x10~ .6671.00
8 -1.56 x 10 ~ 1.667 1.000

9 21.032 x i065 1.667 1.000

10 2.36 x 1i- 6  1.667 1.000A

12 -2.289 x 101.667 1.000

14 2.861 x 108 1.667 1.000
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whereas the results in Table 1 clearly show that the procedure for the

approximate model does not. However, the magnitude of the error that

the use of the approximate model introduces in the estimated pole

value is relatively small. A

The results of the next example provide further evidence that,

indeed, the error in the parameter estimates are small when adaptive

filters are used in the approximate model.

To illustrate the performance of the adaptive method on measured

data, the method was applied in the extraction of the natural resonance

of the electrical transient response of a thin cylinder in free space.

Figure 6 shows the responses of the cylinder at five points along its

length which were measured by techniques described in reference [29].

The cylinder was excited by a 500 picosecond burst of radiation that is

normally incident to its axis. The cylinder of 60 centimeters long and

approximately 1 centimeter in diameter. The waveform consists of 512

samples and has a time step of .9775xi0-  seconds. The first 109 sam-

ples are ignored since the forcing wavefront impinging on the cylinder

corrupts this portion of the natural response. The preprocessing incre-

ment is 10 samples. This means that every 10 adjacent samples are p

averaged to form one sample of the preprocessed waveform beginning at

sample 110. The preprocessed waveform then has the integer portion of

-11(512-109)/10 or 40 samples with a time step of (10) •(.0775x10 - ) -

.9775xi0- I 0 seconds. The estimation procedures for both the approx-

imate model and the actual model were applied to the preprocessed
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waveforms and the results for each case is shown in Figure 7. The

extracted poles from all responses are shown overlaid in Figure 7.

Although the data appear to be free of noise, the signal to noise

ratio is estimated to be between 15 dB and 20 dB by observing the

model error. The noise is thought to arise from such phenomenon

as reflections on the transient range and in the probe cabling al-

though no tests were made to confirm this. It should be pointed

out that the poles obtained with the actual model actually minimize

the mean-squared error, and therefore provide the best least-squares

fit to the preprocessed responses. If better parameter estimates are

to be found, more must be known about the noise that corrupts the

waveforms. It is interesting to note that the results obtained with

the approximate model and those obtained with the actual model are

almost identical. One has to strain to see the difference. Many

other cases have been studied whose results have confirmed the trend

of nearly identical pole estimates. In many practical cases, one may

choose to use the results from the approximate model without bothering

to refine those estimates further by using the estimation procedure

for the actual model. This may be a wise choice, particularly in view

of the fact that the adaptive estimation procedure for the actual

model does not converge in many cases where the adaptive procedure

for the approximate model does converge.

In the next several examples, the analysis of numerically generated

transient data is examined. The transient data were obtained using

the time domain computer code 1MD [30]. The structure modeled by

TW D was a thin cylindrical scatterer. This structure was chosen

LI-
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because of the availability of comparative results obtained by Tesche

[31]. The true pole values for the first six odd harmonic modes

of the cylinder obtained by Tesche with an integral equation technique

are listed in Table 4. These values are the theoretical values which

are used for comparison in the examples that follow.

The first three examples with the TWTD data illustrate the results

that can be obtained with the adaptive method at three different

signal-to-noise ratios (SNR): 25 dB, 20 dB, and 15 dB. Figure 8

illustrates a noise contaminated TWTID waveform consisting of 256 samples

with a 15 dB SNR where SIR is defined in the spirit of equation (8).

The time step is 0.68020 x 10 seconds. The waveform is that of the

current versus time history at the center of a one-meter cylinder which

is excited by a voltage source offset approximately 15 centimeters from

the center. The voltage source has a Gaussian-pulse time history where

pulse width referred to the l/e level of the function is approximately .6

nanoseconds. Although the cylinder has an infinite number of modes, j

only the first four low frequency modes dominate the response since

the excitation is band limited. Figure 9 shows the results of the

estimation procedures for both the actual model and the approximate

model for five Monte Carlo runs where each run uses a different

noise sequence. The noise is Gaussian distributed and uncorrelated.

The first 60 samples are ignored to exclude the influence of the driv-

ing voltage. The waveforms are preprocessed before being analyzed

with a preprocessing increment of 5 samples beginning at sample 70.

N NAI4
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Table 4 Cylinder pole values predicted by Tesche (31]

sL/ c[
Real Imag

-0.082 0.926

-0.147 2.874

-0.188 4.835

-0.220 6.800 R

-0.247 8.767 _

-0.270 10.733
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Figures 10 and 11 show the pole estimates for the same data with SNR's

of 20 and 25 dB, respectively. Tables 5 and 6 tabulate the pole

values corresponding to Figure 9; Tables 7 and 8 correspond to Figure

10; and Tables 9 and 10 correspond to Figure 11.

Several things should be pointed out about these results. First,

even though there are four dominate modes in the data only three pole

pairs are requested for the 15 and 20 dB cases. Only three pole pairs

are requested because the eighth order method often diverges. In

several of the Monte Carlo runs not all of the poles are in conjugate

pairs. However, most of the unmatched poles had values close to those

reported by Tesche. The runs which did not converge are so labeled.

Nonconvergent runs usually produce pole estimates that differ dras-

tically from Tesche's results. Hence, a reasonable procedure to 9

handle the case where the method converges but yields unmatched poles

might be to simply assume that each unmatched pole possesses a con-

jugate companion pole. In fact, a promising procedure to eliminate

this problem would be to increase the model order once for each un-

matched pole at convergence, introduce the appropriate conjugate pole,

and continue the iteration imtil, hopefully, convergence is achieved

with all poles occurring in conjugate pairs.

For the 25 dB case four pole pairs are requested and four con-

jugate pole pairs converged in each case except one which diverged.

The results for the offset-driven data indicate that the adaptive

method is able to provide useful results even in noise levels of

around 15 dB and even if the convergent poles are not in conjugate

pairs.
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In the next two examples the adaptive method is applied in the

analysis of the noise contaminated TTD data, the current at the center

of a one-meter cylinder. The exciting voltage generator has a Gaussian

time history with a pulse width at the l/e level of approximately .3

nanoseconds. Hence, che center-driven waveform contains components

which are higher in frequency than the offset-driven waveform. Figure 1

12 displays the noise-contaminated center-driven waveform with a 20 dB

SNR. The noise is Gaussian distributed and uncorrelated. The first 69

samples are ignored to exclude the influence of the driving voltage.

The waveforms are preprocessed before being analyzed with a preprocess-

ing increment of 5 samples, beginning at sample 70. Figures 13 and 14

show the pole estimates for the center-driven TWTD data with SN's of _

20 and 25 dB, respectively. Tables 11 and 12 tabulate the pole values _

corresponding to Figure 13; and Tables 13 and 14 correspond to Figure

14.

The results for the center-driven data display the sensitivity

of the higher frequency modes to noise. This sensitivity is probably

due to a lower relative degree of coupling to the higher frequency

modes for the center-driven case. That is, the higher frequency modes

are relatively weak for the center-driven case and are more easily

corrupted by the noise. For the data with a 25 dB SNR five pole pairs

are extracted with success. As usual, a few Monte Carlo runs diverged.

T L
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The preprocessing of the waveforms was done primarily to reduce

the number of samples that the method is required to process in order

to improve e.'ficiency. The preprocessing also reduces the noise level

of the waveform although the information content of the waveforms re-

mains the same. The performance of any method should be judged by how

well it uses available information instead of by how large a SNR it can

tolerate.

Attempts to analyze waveforms consisting of highly damped expo-

nential components, such as the transient responses of a sphere, were

not successful. The adaptive method does not converge for such wave-

forms which display double pole characteristics, that is, waveforms

w1 - components of the form t exp(st). Slight modifications to the

-adaptive method might allow the analysis of such waveforms. The de-

scription of these modifications will have to wait until further study

is completed in this direction.
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Chapter V

CONCLUSIONS AND FUTURE DIRECTIONS

This document has related three identification methods, namely

the pencil-of-function method, Prony's method, and the adaptive

method to the general identification scheme presented in Chapter II.

Each method results, fundamentally, from a certain choice for the fil-

ters in the general identification model. A meaningful way to sum-

marize the relation between the three methods is to plot the transfer V

functions of their respective filters as shown in Figure 15. It should

be pointed out that the filters of Prony's method and the pencil-to-

functions method are cascaded, while the filters of the adaptive method

are not. The poles of the discrete filters have been mapped into the

S-plane with the mapping defined by: z = exp(sT). The filters of

Prony's method treat all frequencies in an equal manner; the filters

of the pencil-of-functions method are preferential to the low fre-

quencies; those of the adaptive method possess Passbands which

are adjustable.

The adaptive method is a new method which, in many cases, pro-

vides excellent poles estimates under difficult conditions. The

method is unique in that a solution to a polynomial is not required

to find estimates of the process poles. The method, in effect,

"swallows" the polynomial solver in its own iterative Dole-searching

-63-
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Figure 15 Illustrative plot of the magnitudes of the transfer
functions of each method as a function of frequency.
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scheme. The adaptive method is thought to be closely related to the

method of Steiglitz and McBride [19] since both models filter the in-

put and output records with filters whose poles are the most recent

estimates of the process poles. However, the method of Steiglitz and

McBride does not provide pole estimates but only estimates of the

process transfer function during the course of iteration. The primary

utility of the adaptive method, in the author's opinion, lies in re-

finement of predetermined poles.

The pencil-of-function method was found to be ill-conditioned for 4

the identification of high order processes. Although the method can

provide superior estimates of low-order processes. It is shown that

use of the ii/ oI in place of the a. was less accurate in general,

than using equation (4) or (6) to estimate the a. for the approximate

model. Since the parameter values themselves are transplanted into

the actual model, it is not clear if the VAii/Z00 or the a. more

accurately portray the process after this transplant. But there is no

reason to believe the /A iiA provide a better estimate after the

transplant and every reason to believe that they do not.

Dudley [11] indicated that the noise sensitivity of least-squares

Prony's method was due to parameter bias. In this document, the

parameter bias has been related to the transplanting of parameters

from the approximate model to the true model. Past workers have

applied an ad hoc technique that partially alleviates the noise sen-

sitivity of Prony's method. This technique consists of setting

U1 2n (no redundant data) and setting the model order, n, de-

- W .



liberately high to make M large. Since 'M is the number of samples

used in the estimation procedure, a large value of M corresponds to A

using a lot of data. Hence, this ad hoc technique uses a large

amount of data just as least-squares Prony's method does but does

not suffer from the parameter bias of the least-squares method. Un-

biased parameters result because when M = 2n, the least-squares pro-

cedure reduces to a curve-fitting procedure which must be unbiased.

One side effect of this technique is that extra "curve-fitting poles"

which do not correspond to process poles are introduced in the desired

exponential representation.

The general identification scheme presented in this work

opens up a whole range of possible techniques that can be invented

simply by making different choices for the filters within the identi-

fication model. One direction in which future research may be fruit-

ful is in inventing schemes, other than least-squares schemes, to com-

bine more data than is necessary to determine the model parameters.

Such a scheme could, perhaps, be realized with certain choices for -1

the filters in the identification model.

I
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APPENDIXM

Theorem: If G is a singular, complex. or real, N I dimensionalA

matrix, then a~ .A. A. A for ary~ i or j, where A denotes the
iijji iijji pqIth t

element of the p row and the q column of adj G (that is, the

cofactor of gpq

Proof: Since G is singular, det 0=0O. Also, from the identity I

I detG =G adj G, it follows that GadjG =0. E~ach column of adj G -

then must be a solution of Gx =0. Since all solutions of Gx = 0

are collinear, it follows that the columns of adj G are also collinear.23

Hence,

X'*yl x9y2  x

X2 1  '2Y2 x2yN T
adjG =xy(23)

2cxIyl x,%Y32 . ~N

T T -
where is a solution of Gx=O and y=[ LYIY9 ... is ijie

vector required for equality of (23). Then, A. .A. (x y.)(x y.
ii] 2.J J i . AM
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