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CHAPTER I

INTRODUCTION

1.1 Exponential Analvsis as a Special Case

of Svstems Identification

Exponential analysis attempts to characterize a waveform with a
sum of complex exponentials, that is, a s'm of damped sinusoidal com-
ponents. Consider the class of linear processes whose impulse re-
sponses are representable as a sum of exponential compoments. If the
impulse response, possibly noise contamined, is given for a process in
this class, the transfer function of that process can be estimated by
applying a body of theory known as systems ideatificatiom [1,2,3,4].
The impulse response can be expressed as the inverse transform (either
the inverse Laplace transform or the inverse z-transform) of the
partial-fraction expansion of this estimated transfer function. If
the waveform to be analyzed is assumed to be the impulse response
of a process of this class, then the systems identification technique
plus the process of partial-fraction expansion can be viewed as an

exponential analysis method. Hence, exponential analysis methods can

be equated to systems identification methods for the case of impulse

input to the process. The poles of the transfer function are the
damped resonances that characterize the waveform. The imaginary
parts of the poles are the angular frequencies of the sinusoidal com-

ponents and the real parts are the corresponding damping constants.
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1.2 Motivation for Exponential Analysis and

a Survey of the Literature

Systems identification theoryvy and exponential analysis find appli-~

cations in such diverse fields as industrial controls, econcmic model-

ing and in the analysis of biological systems. Recently, these iden-
tification methods have found application in the extraction of the
singularity expansion method (SEM) description of a cransient scatterer
from its time domain respomse as was first suggested by Mitrra and Van
Blaricum [5]. SEM was developed by Baum [6, 7] from the insight that
the transient response of a scatterer resembles a sum of exponentially
damped sinusoids. The least-squares Prony's method was proposed by

Van Blaricum and Mitrra [8, 9] as a means of obtaining the SEM descrip-

tion from the transient resspomse of a scatterer. Pearson and Roberson
[10] have since developed and documented a method of obtaining the com-
plete SEM description of a scatterer from transient response data.
Dudley [11] related Prony's method to a parametric system model and

proceeded to demonstrate a bias in the astimates of the system poles

AL S

inherent in least~-squares Prony's method.

g

The parametric wodel employed by Dudleyv is a modified version of
the generalized nodel described by Eykhoff [1l, 2], Astrom and Eykhoff
{3], and on pages 209-220 of Eykhoff [4]. The origin of the general-
ized model cam be traced to Kalman in 1958 [12] who assumes noise-free
input and output records of the process to be identified. This is the
assumption from which the genmeralized model derives its validitv. With
noise, this model is no longer valid, and the resulting transfer fumc-

tion estimate is slightly erroneous.

]
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Steiglitz and MeBride [13] introduced a so~called actual model
that differs from the Kalman or generalized model by using the model

output in place of the noise corrupted process output for the feedback

inherent in the model. The validity of the actual model does not break

down when noise is present in the process output. However, the estima-

tion of the parameters of the actual model is a highly nonlinear prob-

lem. One major reason for the generalized model's popularity is lin-

earity in the parameters allowing ome-shot estimation. In contrast, an

iteratrive estimation procedure is required by the actual model.

Another related method is the pencil-of~-functions method advocated

by Sarkar [14, 15]. The method was originally proposed by Jain and

Gupta [16] and elaborated on by Jain [17, 18, 19]. 1In [15] Sarkar
indicates comnections between Prony's method, the Wiener filter, and
the pencil-of-functions method.

One important property of the actual wmodel is that when it is
used for exponential analysis, it produces a "best fit" to the wave-
form under analysis in the mean-square seunse, that is, it minimizes
the mean-square error. Some other metheds that have this property are

found in references [13,20,21,22,23].

1.3 The Contribution of the Present Work

The original intent of this work was to develop a noise tolerant,

efficient method for exponential analysis. The method was to find

direct application in extraction of the SEM description of a scatterer

from measured surface currents. A new noise tolerant method is presen-

ted in this doctment. Unfortunately, the method is laborious, and

hence, only partial success can bz claimed with regard to the original

intent.
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Perhaps the real contribution of the present work is the conceptu-
al groundwork which is a prerequisite for further improvements on ex-
ponential 2nalysis methods. This groundwork is laid by defining a
general scheme that incorporates most, if not all, exponential analysis
methods and by defining the sources of difficulties for such methods.
This groundwork is established through a new formulation of an extended
generalized =odel and an extended actual model after Steiglitz and
McBride {13]. The extension is to adnit any set of linear filter
functions to form generalized filter sections in the respective models.
Emphasis is placed on concept development rather than strict mathe-
matical rigor which would stifle such development.

In Chapter II one major source of difficulty with exponential
analysis methods is defined. This difficulty is the parameter bias
that Dudley [11] brought to light. An attempt is made to relate the
source of this so-called bias to the distinction made by Steiglitz
and McB8ride [13] between the true error model and the linear regres~
sion model. Also presented in Chapter 11 is the general identifica-
tion scheme that is used through the rest of this work.

Chapter III relates Prony's method and the pencil-of-functions
method to the gemeral scheme of Chapter IXI. The various problems asso-
ciated with the pencil-of-functions method are discussed, and simple
remedies to those problems are proposed.

Chapter IV introduces a new method, called the adaptive method,
winich is highly tolerant of the presence of noise in the waveiorn
under analyvsis.

Chapter V presents conclusions and indicates directions in which

future research may >e fruitful.
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1.4 Notational Conventions

The following conventions of notation are observed:

1. The symbol "s" denotes the Laplace-transform variable. If the
transfer function of a process is a function of s, the process is
assumed to be a continuous-time process.

2. The symbol "z'" denotes the z-transform variable. If the transfer
function of a process is a function of z, the process is assumed
to be a discrete-time, sampled-data process.

3. 1If a symbol for a transfer function appears alone, without the
appropriate variable enclosed in parenthesis, the symbol denotes
a "generalized" transfer function whose functional dependence is
not restricted in any way. To illustrate, a process can be given a
¢r 1tinuous-time representation in which case the transfer function
could be a function of s, or the process can be given a discrete-
time representation, then the transfer function is a function of z.
If only the essence of the process is to be conveyed, without re-
gard to its particular representation, then the transfer function
is written without indicating its functional dependence.

4. An asterisk indicates the complex conjugate of the expression pre-
ceding it.

5. The symbol "T" raised above the expression it follows indicates the

transpose of the matrix or vector preceding it.

6. A prime indicates the transpose cnrnjugate of the matrix or vector

preceding it.

Other symbols used in this work are defined when they are introduced

in the text.
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CHAPTER 1II

ESTIMATION OF THE PROCESS TRANSFER FUNCTION

2.1 Introduction

The problem under comnsideration is the characterization c¢f a sam-

pled, noise contaminated waveform, y(k), as a weighted sum of complex

exponentials of the form

yg (k) = zA zJ, =0, ..., M1 (1)
j=1
where zj = exp(sz) and T is the time duration between successive

samples. The objective is to choose the Aj and zj that best character-

ize the waveform. Usually the best characterization is assumed to be

the one that minimizes the mean~squared error between the waveform and

the characterization.

It is assumed that y(k) is the noise contaminated, impulse re~

sponse of the linear process with a nth order transfer function given by
+-no
l 1 + b F

. (2)
o s &
a + alFl + + arfF

H=

The Fi are predefined functions of the transform variable. For example,
the Fi could be polynomials in the transform variable. Later the Fi

are related to filtering opera:ions, and for this reason, they are re-

ferred to as "filter transfer functioms." With appropriate choices of

the ds bi’ and Fi’ any transfer function can be represented in this
form. The reason this form is used is because the general parametric

model introduced in the next section also has a transfer function of

this form. The Fi are the transfer functions (which are not srecified

explicitly in order to remain completely general) of the filcers that

make up the model.
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The problem can be restated as the estimation of (2). By expand-
ing the estimated transfer function in partial fractions and performing
an inverse transform, the desired characterization is obtained. The z;
or s, can be interpreted as the poles of (2) and the Ai are the corres-
ponding residues of (2). The zy and s; are related by zi = exp(siT).

2.2 Two Parametric Models

Steiglitz and McBride describe two parametric models in terms of
which they interpret their identification procedure. A straightfor-
ward extension of these parametric models provides a framework that is
broader in its applicability. They are specialized herein to describe
the Prony procedure [24], the so-called least squares Prony procedure
[9], and the pencil-of-functions method of Jain [19]). The models are

used further to provide a new iterative identification procedure that

appears to be substantially more tolerant to noise-~corruption in data

than existing schemes.

The first, the actual or true model, is shown

in Figure 1 and has the transfer function

B F. + ++« +8F
H = 11 nn (3)
m o +oF. 4+ +aF :
o 1'1 nn

The second model is called the approximate model and is shown in

Figure 2.

The approximate model is derived from the actual model by
approximating the model output with the noisy process output as the

source of feedback in the model. It should be noted that (3) is not

the transfer function of the approximate model. In fact, a transfer

function that serves as a useful approximation to the process transter

function cannot be defined for the approximate model. These models

reduce to those of [1l3] if the Fi's are chosen in the form of rational

polynomials in the z-transform variable that have a zero at z = 0.

s
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The o>ject of the identification process is to adjust the para-

a2

H
..
H ad

meters of the model ro minimize the mean-squared asrror, E =

An estimate of the process transfer function is found by using those
minimizing parameters along with filter transfer functioms, F,, in
(3). Routinely, the parameters that minimize the error norm in the

approximate model are used in (3) even though it is the transfer func~-

tion of a different model. The result is an estimate of the process

trangfer function whose error depends upon ti-= strength of the noise

T AT

i
f

T 1t

process ‘'a".

Why bother with the approximate model if better estimates can be -

had using the actual mcdel? This question is quickly answered when o

D A

one attempts to estimate the parameters of the actual model. Because %%
the model output and the parameters are interdependent, the parameter . ?%;
estimation problem is highly nonlinear, and must be solved by itera- L ézg
tive methods. In the approximate model, the parameter=invarianc pro- .- §%§

i=

cess output replaces the model output, theveby making the problem

linear.

Hence, the approximate model is widelv preferred. .

2.3 Estimation of the Model Parameters g?

An estimator is a rule for choosing the model parameter values in

&

a way that tends to minimize the error between the process output and

i

the model output. Two types of estimators are distinguished: discrete-

time and continuous-time.

The discrete estimator operates on sampled data and produces an

estimate of the pulse transfer function of the process. The discrete

B 4

mean-square error is defined as E = ¢”e where e = [e(0) ... e(M-—l)]T

”

is a column vector consisting of the sampled sequence.

Likewise, tne model outrput sequence and filter output sequences
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are denoted as M-length vectors y, and Yio Yy for i=1,...,n, respec-

tively. The output of the approximate model can be expressed as

n -
a, ¥, tB.u. qe

i—i )
Y,n = z = = m
- i=1 o o
where
o L
(0 ... 'y (0 w0 ... u (0)
Q= . . . .
s

yl(M-l) cee yn(M-l) ul(M-l)... un(M-l)
ho -

and 8 is the vector of model parameters

8= [~ ... -8

T
) 81 ...en] .

The process ottput is denoted by an M-length vector y. The error can

then be written as

Q8

e=e- y -

a
o

It can be shown that the partial derivatives of E with respect to the

real parts of the parameters are

3E rd
= 2 Rel-
3 Rea Ceyy s
o
o
and JE = -
3ReR. 2 Re[EEj]’
J a
o

for j=1,...,n. A necessary condition that a set of parameters must
satisfy in order to minimize E is that the partial derivatives listed

above vanish. This leads to the set of normal equatiomns

2y =0
e’u, =0,
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for j=1,..., n which can be written in matrix form as

)

’-e.;_o

[e]
Y

Q)
A
=

or -yl=0 .

il [’ i
=]
[

Solving this equation for § produces the discrete least-squares

estimator:

i

il

» 3= [Q‘Q]-1 Q‘aox . (4)

The columns of 2 consist of the sampled filter outputs of the approxi-~

i

mate model indicated in Figure 2. The filter output sequences can be -
computed with a set of difference equations that characterize the dis- %V
crete filcers, Fi’
If M=2a, (4) reduces to
8 =q71 g -
- o L ;

If M<2n, Q°Q is singular because insufficient data are

[ s R

=

available to estimate 2n parameters.
The continuous estimator operates on continuous data. The

filters within the model are continuous in this case. The continuous

mean-square error is defined as -

E = e, =/‘2e*(t) e(t)dt

51

where tl and t2 define the interval on which the waveform exists. The

continuous least-square estimator has the form:

-1
=7 Gzn ao x (6a)

w
|

3

i

GOGANM Mhg

¢




e

[

1)

~13-

r= [<Y,y]> <}’,.}'l> <Y,ul> <y,un> ]T ,  (6¢)
<yl,y> <yn,y> <“1’3’1> e o
<yl;yn> Co .

2n . . (6d)

<§l,u£> ... .

and G

_<y1:un> - <un’un>

The inner product is defined as

t
<x1,x2> = f zx: (t) X,() dc . (6e)
1

The continuous estimator results from the minimization of the
error in much the same way the discrete estimator does, and therefore,
the deriviation for the continuous estimator will not be presented.

The parameters of the actual model can be estimated by an iter-
ative procedure using a modification of the estimators described above.
This procedure involves replacing the process output with the model
output as the feedback source within the model. Specifically, if
yLT replaces v., a? replaces a,, and B% replaces 3, in (4) and (6),

mi i i i i i
for i = 1,..., n, a technique of iterative improvement results. The
th | . L L . s
parameters of the L~ iterationm, a; and 51’ are estimated in terms of
L-1 P . -
the most recent model output, AN An initial estimate of the process
is required to start this procedure. The approximate model can be used

to provide this estimate. Nothing is known about the convergence

characteristics of this procedure. However, Steiglitz and McBride {13]

A Y
g

i
!
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do mention that, in general, this procedure fails to converge if the .

initial parameters are far from the optimum values.




CHAPTER III

EXTSTING METHODS

3.1 Introduction

By necessity the models described in the previous chapter are
quite general since they must serve as a common ground for the two
existing methods that are examined in this chapter. Prony's method
and the pencil-of-functions method are shown to be special cases of
the estimation method for the approximate model. Each method corres-
ponds to a particular choice of filters within the model.

3.2 Prony's Method

In 1795 a method for exponential analysis was invented by
R. Prony [24]. The method was implemented by hand calculatioms.
Prony's method has since found numerous applications and has sometimes
been published without reference to its inventor. Van Blaricum [25]
has compiled a large though abridged bibliography of Prony's method.
Van Blaricum and Mittra [8,9] conducted a well documented investiga-
tion of Prony's method and proposed some useful extensions of the
technique. Lager, et al. [26] have suggested a "sliding-window Prony"
procedure as a means of reducing the noise sensitivity of the method.

Although Prony's method is computationally efficient, Dudley [11]
demonstrated that the least-squares version [9] can produce biased pole
values that differ significantly from the "best"pole values unless the
noise component of the waveform is small. The "best" pole values are
those that best fit the waveform. Prony's method results from the

approximate model. It follows that the bias is nothing more than the

slight error that is incurred bv the use of the approximate model.

-15-
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Prony's method results from the approximate model under the
following assumptions:
1. a =1.

i
2. Fi = Fi(z) z.

KR Y

S

3. The model input is an impulse at k = 0.

4., M = 2n.
The assumption of Gnal implies that the parameters are normalized rel-
ative to Gn which is a distinguishing characteristic of Prony's method.
The other methods examined in this work are normalized relative to
@» that is, @ =1 is assumed. Since M = 2n, (5) may be used to

o
estimate the parameters. In this case,

9= [—ul A Y -1 31 sue Bn]T ’
3 = [30) -+ y(20-1)]%,
(1) - () :
: : ] 0
. . I
and © = v(n) <++ v(2n-1) i .
y(n+l) <<« v(2n) !}
: S
. . i
y(2n) .o y(3u—l);

The rank of 2 is, at most, n. Hence, with some rearranging the

following equation results:

v(0) ...v(n-1) a, v(n)
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System (7) is equivalent to Prony's method for estimating the poles of
a waveform. The poles of the process may be determined from the «

-t

The 3i must be determined by other means. See, for instance, reference

[11]. A straightforward way of determining the Ai of (1) is to use

the poles to form exponential basis functions which are used in linear
combination to form a least-squares fit to the data. The Ai are the
coefficients of this linear combination. The Ai may also be found
from the ey and Si, once these parameters are known, as simply the
residues of Hm.

Examples of the performance of Prony's method under a variety of
conditions are found in sufficient detail elsewhere [8, 11] and, for
this reason, will not be given here.

3.3 The Pencil-of~Functions Method

The pencil-of-funcrions method was originally proposed by Jain
and Gupta {16] before Prony's Method became well known. In this
section the pencil-of-functions method is derived as a special case
of the approxzimate model presented in Chapter II in contrast to its
usual derivation from the so-called pencil-of-functions comcept [19].
Additional material on the gencil-of-functions method is contained
in references [l4, 15, 17]. A discreta2 version of the method is

described in referernce [i8].

The pencil-of-functions method results from the approximate model
under the following assumptions:

=l.
0

F.=F (s) = (l/s)i.
i i

The matrix G defined in what follows, is singular.

2n+1’

Note that the approximate model reduces to the generalized model [1,3,

ot A S

st
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4] under the first assumption; thus, it follows that the peacil of-
functions method may be derived from the generalized model. The esti~
mator embodied in equation (6) may be used to estimate the transfer
funcrion of the process, and the poles of the process may be esti-

mated as the zeros of the denominator of (3), viz., .

1), ... FAR
1+ % (s)+ * %2 (s) =0

or 1" + 2 Sn-l 4+ e+ a3 =0, ¢:)) 1.
1 n

The @, 3ay be found using the estimator of (6). 3By applying Cramer's

rule to system (6), it can be shown that

AL s

i

!!i = :’!01/300 9)

I

ML

|
RS LA IRA R

where Apc denotes the cofactor formed by deleting r:w p+l and column

I

g+l of the matrix,

Y’Y:> Y,y 5... Yoy Fou ) oee y,;—-= ok
S AR

ORIt

- = -

Coni1 = <?n’i> : : : -(10)

&y 5

RS & R

In this case G23+1 has only pure real elements. If G2n+1 is also

singular, the following relation holds among the cofactors:

.

hY II:..

ra ag .

A —‘\fé an
“Pp pp

This relation is proved in the Appendix. The pencil-of-funcrions zethod

assumes that G2n+1 is singular and makes use of (8), (9), and (1i) to
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form the following characteristic equation for the process:

) A 8
zgg 0 4 _ALl_ N R (12)
00 00 00

It may be shown that, in general, is nonsingular because y cannot

G2n+l
be expressed as a linear combination of the vy and u, under the f: .low-
ing conditions of imperfect modeling:
1. y has a random noise component.
2. The model order, n, is less than the order of
the process or waveform being modeled.

3., Both 1 and 2.

If any of the above conditions apply the set of functioums,

S={y’ yl’ -.o’yn, ul’--;’un} ,
is linearly independent, and due to this fact, the Gram matrix ([27],
G2n+1’ formed from those functions of S is nonsingular. Otherwise,

for conaitions of perfect modeling, the functions of S are linearly

dependent, is singular, and (11} holds.

G2n+l
Thus, if the process can be modeled perfectly, that is, with no
error, then (12) is equivalent to (8). However, if the process cannot
be modeled perfectly, (11) no longer holds and (12) becomes less
accurate than (8) for estimating the parameters of the approximate
model. Since the param~ter values of the approximate model are trans-
planted into the true model, it is not clear if the @, or the /31;7322
more accurately portray the process after this transplant. In the
next section numerical evidence is presented that indicates that the ey
provide better estimates. However, since the % and the /K;;TZ;; are

computed in extremely different ways, the results may not indicate the

true situation due to inaccuracies in computation.




Aside from the problem mentioned above the pencil-of-functions
method has two other difficulties of which only one has a simple
remedy.

The difficulty that has a simple remedy is related to the use of
integrators for the filters within the system model. The continuous-
time integrators cannot be implemented exactly by any algorithm. When
approximate integrators are cascaded as they are in the pencil-of-
functions method, large errors accumulate quickly and the intended
result destroyed after a number of integrations.® This difficulty can
be resolved by cascading discrete integrators to obtain filters with

pulse transfer functions given by

. A AL
Fi=F@ = (z-l) - (z)

which can be implemented on a digital computer with no error by using
the difference equations:

v.
"1

(k) = y;(k=1) +y,_, (k)

and ui(k) ui(k-l) + u_ k) .

1

The variable Z is defined as

1
Z=l';,

and z is the z—-transform variable. When discrete integrators are used
the discrete pencil~-of-functions method results. The poles of the pulse

transfer function of the process may be estimated as

*This feature of the pencil-of-functions method has been consistently
observed in numerical implementations. This encroachment of systematic
error is inconsistent with generally accepted interpretation of numeri-
cal integration processes and has not been explained analytically, to
date.
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where Zi is the ith zero of

n n-1 _ ... = 13
1z + @ Z + + @ 0 (13)

and the , are found by use of equation (4).
If the continuous inmer product (6e) is replaced with the discrete

inner product,

Me
D _ ~ .
<‘1’ > = EE X %, ®) . (14)
k=0

D
It can be shown that EP = Q°y and ng =Q“Q where ng and r are formed

with the discrete inner product (14) in the same way that Gzn and r are

formed with the continuous inner product (6e). Then,
D
A
0i
% 77D (15)
A
00
where A;; denotes the cofactor formed by deleting row p+l and column

D .
20+l is the Gram matrix formed with the discrete

inner product in the same way G

D
g+l of G2n+l’ and G
ont1 1S formed with the continuous
inner product. Equation (15) follows from Cramer's rule in the same

way equation (9) does. As before the relationm,

AP 22

= (16)
22 22
PP PP

holds if cz’;ﬂ is singular. Combining (13), (15), and (16) yields the

characteristic equation of the system:
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Equation (17) is the equivalent of (12) for the discrete method. The
choice of positive radicals in (17) follows from arguments counterpart

to those nut forth by Jain [19] for tue continuous case.

Estimates of the poles of the Laplace transfer function of the pro- }
Caess, si, are related to the zeros of (13) azd (17} b7y
in(l-Z.
i T :

In the next section the discrete version of the pencil~of-functions
method is tested on noisy data and the performance of equation (13) is
compared to that of (17) in order to demonstrate the superiority of (13) !
in estimating the system poles. {

Now attention is turned to the second difficulty with the method
that does not have a simple remedy. This difficulty is related to
the attenuation of the higher frequency modes of the process output by
the repeated integrations applied to the output waveform. It can be f
verified that an integrator is simply a first order filter whose
Laplace transfer function has a pole at the origin in the s-plane.
Such a filter tends to suppress the higher frequencies present at its
input. The higher frequency suppression phenomenon is illustrated in
Figure 3. Normally, when an expomential function is integrated re~-

peatedly, components consisting of powers of time exist in the higher -

integrals as well as the original exponential function components.

In Figure 3 the components of powers of time have been subtracted from
the integrated waveforms in order to make the attenuation of the higher
modes more evident. The first waveform is a hypothetical waveform pro-
vided for amalysis. The waveforms that follow are the integrals of

increasing order of the first waveform and display the increasing

dominance of the fundamental mode or the mode of lowest frequency.
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Figure 3.

Successive integrals of a hypothetical waveform.




Further integrations yield nearly identical waveforms. The integrated
waveforms tend to become linearly dependent at higher model orders.

The Gram matrix, GZn or G;L’ then tends to singularity and the method

becomes unstable. The suppression phenomenon occurs in both the
discrete and continuous methods. In fact, even for very modest model
orders, the method can become numerically ill-conditioned to a degree

that special care must be taken to assure accurate inversion of G2n or
D

G2n' The examples of the next section illustrate the increasing ill-
condition with increasing model order by computing the condition number
D

2n’

3.4 Numerical Examples of the Pencil-of-~Functions Method

of G

In the first example, impulse input to the system is assumed and
the discrete method is applied in the analysis of a waveform consisting

of 50 samples defined by:

4
y(k) = Z AjesjkT + n(k)

-1 + jlo,
-1 - jlo,
-1.5 + 330,

-1.5 - j30,

n(k) is a Gaussian distributed white noise sequence of 50 samples, and

T = 1/49. The signal-to-noise ratio is 30 dB, where signal-to-noise

ratio (SNR) is defined by:

SWR (dB) = 20 log,, g%
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voct uncorrupted waveform)
J=

g standard deviation of noise.

Four poles are requested. Thirty Monte Carlo runs are made where each
run uses a different noise sequence. Figure 4 shows the resulting
s~plane pole estimai. . for all Monte Carlo runs overlaid onto a common
plot. In Figure 4(a), the poles are estimated with the roots of equa-
tion (17), and in Figure 4(b), the poles are estimated with the roots
of equation (13). The reader is reminded that the residues of both
poles are of unit amplitude thus leading to the conclusion that the
apparent deterioration of pole accuracy with increasing frequency is an

artifice of the process.

In the second example the same analysis is carried out for a

higher model order. The waveform is given by:

6
) = 35 4T 0, k=0,1,-0009
3=l

where AS =1,

Ag

g = -2 + j50,

l, = -2 - jso,

%6
and all other details remain unchanged from the first example. Six poles
are requested. Figure 5 shows the resulting S-plane pcle estimates. In
Figure 5(a) the poles are estimated with the roots of (17), and in Fig-

ure 5(b) the poles are estimated with the roots of (13).

The condition number of G;; is averaged over the thirty Monte Carlo

runs and displayed in Figures 4 and 5. The condition number is defined

by [28]:
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- Condition number = i!GZnig [;[Gzn] I .
;Z where Ii '{l denotes the Cheb:'shev matrix norm defined by:

-

| llal] = 2225 S ]
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il
it

A

and aij is the element of the ith row and jth column of the N-dimensional
— matrix A. The larger the condition number, the more ill-conditioned the

matrix A.

The results of these examples demonstrate that better pole esti-

mates are obtained by using (13) instead of (17). The increasing con~

dition number from the first to the second example indicate that the

method is becoming rapidly ill-conditioned as the order of the method is

increased. The results of a third example for which an eighth order

method was used to analyze a noise corrupted waveform composed of eight

exponential compoments are not presented because the method became so

ill-conditioned that the intended result was completely destroyved. s

It was found that the pencil-of-functions method becomes ill-

W

conditioned for the analysis of waveforms containing many poles. Even

though the results of these examples do not apply to the continuous

]

-

version of the method directly, it is known that in the limit as T

5 oo

approaches zero the discrete method approaches the continuous method,

and hence, there is a measure of similarity in the two methods. This

measure of simjlarity is felt to be sufficient to claim that the con-

tinuous version of the method becomes ill-conditioned at higher order.



Chapter IV

THE ADAPTIVE METHOD

4.1 Introduction

The adaptive method is an iterative method which is quite tolerant
of noise in the waveiform undergoing exponential analysis. The original
idea for this method was inspired by the pencil-of-functions concept
due to Jain [17]. In this chapter, the adaptive method is derived, not
from the pencil-of-functions concept as it was origimally, but rather
from the parametric models cf Chapter II. Formulating the methed in
this way is not only simpler but yields greater insight into the
method's nature.

4.2 An Adaptive Filtering Scheme

The adaptive metnod results from the identification scheme of

Chapter II under the following assumptionms:

3. The model input is a unit sample at k = 0 (discrete

impulse).

The unique feature of the method is that the filter poles, z,, may be

adjusted to any value in the z-plane. An adaptive technique for ad-

justing the filters consists of first initializing the filters to
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arbitrary values in the z-plane and repeating the following steps:

1. Find an estimate of the process transfer function
using the current filters in the model.

2. Set each filter pole to one pole of the estimated
transfer function.

This process is repeated until the a; approach zero.
It is shown in the next section that the poles of the process
can be estimated during the course of iteration by

2

i 1+a,
1

z 19)

removing the need for finding the roots of a polynomial. The filter
poles are updated to ;i on each iteration. When the @ approach zero,
the pole updating ceases and the method converges. At each iterationm,
the a, are found by using equation (4). At convergence the s-plane

poles, s;» can be obtained from the filter peles by

and the A. = B_.
i i

4.3 Estimation of Process Poles from Transfer Function Parameters

As usual, the poles of the process transfer functisn can be
estimated as the poles of (3). However, to estimate the poles, a
polynomial in z is needed. To find this polynumial the numerator and

denominator of (3) are multiplied by the product of all filter dencmi-

n
I (z=2.).
i=1 *

nominator of the expression that results after the multiplications

nators, that is, by The required polynomial is the de-
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indicated above are carried out and terms of equal degree have been
combined in the denominator. Although it can be done, the formulation
of the polynomial coefficients on a digital computer requires some
small computational burden. But another method exists for estimating
the poles that bypasses this complication as well as “he necessity for
finding the roots of a polynomial. For the sake of discussion, assume
that the filter poles have been adjusted to nearly coincide with the
process poles and examine the behavior of the (i+1)th term of the de-
nominator of (3) when the variable z approaches the value of the ith
process pole. It is observed that the (i+1)Ch term can become arbitrar-

th _

ily large if the i~ filter pole is arbitrarily close to the ith process

pole. It is then possible to write a simplified expression for the
denominator of (3) which is approximately equivalent when z is equal
to the ith process pole, viz.,

a,2

i
1+ zz, (21)

where all other terms other than the (i+l)th term in the denominator
of (3) are negligibly small. 1If

a, z.
ii_y (22)

1724

1+
z
where ii is the value of z for which the equality holds, then Ei is a
reasonable estimate of the ith process pole. Equation (19) is obtained
by solving (22) for ;i’ The approximations of (21) and (22) follow
from observing that near convergence of the z; all of the @, except @ ,

which is fixed as unity, vanish. Therefore, the @y term dominates

along with the (:'.-!--l)th term as argued above.
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Numerical Examples of the Adaptive Method

The first example of the adaptive method uses a simple first-order
model to analyze a sequence consisting of three samplies. Because

of the example's simplicity, hand calculations and concrete aumbers

TR

csn be displayed.

The sequence to be analyzed is

TR

{y(k), x=0,1,2} = {2,1,2} .
it can be shown that

ym(k) = (a constant sequence)

wWiwn

minimizes the mean-squared error between y and Yo if the problem is

restricted to a firsteorder solution. Therefore, rthe expected results

=
=
=1
1;?,
=
=]
=
=
=
%
=
=
=1

of this analysis after the adaptive method converges are: A1 ='% and %
z, = 1. Let the initial filter pole, 2, be set to one. One might 5

g

expect that the method would be convergent immediately in this case.
However, the method, in fact, will not converge at this value of z, B

due to the error introduced by the use cf the approximate model.

T

The convergent value of z; should be slightly perturbed from the
expected value.
The estimator of equation (4) is applied to obtain estimates of

ey and 81. In this case,
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and the system that must be solved is

3810 [~a,| _f17
10 3 || 8 50"

-
The estimates are a1=—l/14=-.07143 and¢a=20/l4=l.429. The estimate of

the process pole is
>1

l+ul

R
1-1/14

5 = 2 14 -
zl = 13 1.077.

The estimates above constitute the results of the first iteration.
For the second iteration the filter pole is updated to 1.077 and the
same procedure is repeated for iterations two through five. The
results for all iterations are displayed in Table 1.

Next, the iterative scheme for the actual model set forth in
Chapter II is simultaneously combined with the adaptive filtering
scheme and is applied to correct the biased value just obtained with
the approximate model. An initial estimate of the process transfer
function is required to start this estimation procedure. The para-
meters obtained with the approximate model at convergence are used
to form this initial estimate.

The initial pole is 1.077. The

most recent model output sequence is computed for the nth order .ase

by using the following difference equations in the order indicated:

ui(k) = u(k) + ziui(k~l),
n
Z(aiui(k)-aiziymi(k-l))
v (k) = i=1
am n ’
1+ 7 ai
i=1

I -

s
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Table 1 Estimates using the approximate model.
Iteration
number -al Sl zl
1 7.143 x 1072 1.429 1.077
2 2.711 x 10°% 1.539 1.077
3 2.279 x 107° 1.539 1.077
A ~4.245 z 1077 1.539 1.077
5 2.954 x 1077 1.539 1.077
Table 2  Sequences on the first iteration of the estimation scheme
for the actual model.
k ul(k) ym(k) y ml(k)
0 1 1.539 1.539
1.077 1.658 3.316
1.160 1.785 5.356

v

1 oy

gt




Ymi(k) = Ym(k) + ziymi(k-l).

These equations are valid for the nth order model. For the first
order (n=1, i=1l) model that is considered here, the equations are
= 1
uy (k) = ulk) + z,u, (k-1),

fuy () - ajzyy, (k-1)
l1+a

ym(k) = )

= 19 |
y (0= y () + 2y (kD)

and are used to compute the results shown in Table 2. From the results
of Table 2,

1.539 1.000
¢ =1} 3.316 1.077 ¢ ,
5.356 1.160

and the system which must be solved is

42.051 11.323 ol 17.106
11.323  3.506 Bl 5.397

The estimates are al 2 +5.973%10"% and Bl = 1.732. The estimate of
the process pole is

2

A . 1077

1‘1+al'1+.05973

[ 4

= 1.017.

The estimates just found constitute the results of the first itera-
tion using the estimation scheme for the actual model. The filter
pole is updated to 1.017 and the same procedure is repeated several
more times to obtain the results shown in Table 3.

The results in Table 3 indicate that the estimation procedure for

the actual model has indeed converged to the expected parameter values

Fr )
W




Table 3

Estiwmates u-

e actual model.

Iteration - 8 z

number 1 1
1 -5.973 1.732 1.017

2 -2.053 1.705 .996

3 1.163 1.669 .997

4 2.349 1.663 1.000

5 5.878 1.665 1.000

6 -5.633 1.667 1.000

7 ~7.576 1.667 1.000

8 -1.697 1.667 1.000

9 2.032 1.667 1.000
10 2.346 1.667 1.000
11 9.632 1.667 1.000
12 -2.289 1.667 1.000
13 -1.717 1.667 1.000
14 2.861 1.667 1.000
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whereas the results in Table 1 clearly show that the procedure for the
approximate model does not. However, the magnitude of the error that
the use of the approximate model introduces in the estimated pole

value is relatively small.

The results of the next example provide further evidence that,
indeed, the error in the parameter estimates are small when adaptive
filters are used in the approximate model.

To illustrate the performance of the adaptive method on measured
data, the method was applied in the extraction of the natural resonance
of the electrical transient response of a thin cylinder in free space.
Figure 6 shows the responses of the cylinder at five points along its
length which were measured by techniques described in reference [29].

The cylinder was excited by a 500 picosecond burst of radiation that is

normally incident to its axis. The cylinder of 60 centimeters long and
approximately 1 centimeter in diameter. The waveform consists of 512
samples and has a time step of .9775):10"ll seconds, The first 109 sam-

ples are ignored since the forcing wavefront impinging on the cylinder

corrupts this portion of the natural response. The preprocessing incre-
ment is 10 samples. This means that every 10 adjacent samples are
averaged to form one sample of the preprocessed waveform beginning at
sample 110. The preprocessed waveform then has the integer portion of

(512-109)/10 or 40 samples with a time step of (10) -(.077Sx10-ll)

.9775x10"10 seconds. The estimation procedures for both the approx-

imate model and the actual model were applied to the preprocessed
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waveforms and the results for each case is shown in Figure 7. The

extracted poles from all responses are shown overlaid in Figure 7.

Although the data appear to be free of noise, the signal to noise

ratio is estimated to be between 15 dB and 20 dB by observing the

model error. The noise is thought to arise from such phenomenon

T e

as reflections on the transient range and in the probe cabling al-

though no tests were made to confirm this. It should be pointed

out that the poles obtained with the actual model actually minimize
the mean-squared error, and therefore provide the best least-squares

fit to the preprocessed responses. If better parameter estimates are

to be found, more must be known about the noise that corrupts the

T Tt

waveforms. It is interesting to note that the results obtained with

the approximate model and those obtained with the actual model are

N

= ' almost identical. One has to strain to see the difference. Many

other cases have been studied whose results have confirmed the trend

of nearly identical pole estimates. In many practical cases, one may

choose to use the results from the approximate mocdel without bothering

to refine those estimates further by using the estimation procedure

for the actual model. This may be a wise choice, particularly in view

=
=

of the fact that the adaptive estimation procedure for the actual

w

i

model does not converge in many cases where the adaptive procedure

I

i

for the approximate model does converge.

In the next several examples, the analysis of numerically generated

transient data is examined. The transient data were obtained using

the time domain computer code TWID [30]. The structure modeled by

IWID was a thin cylindrical scatterer. This structure was chosen
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because of the availability of comparative results obtained by Tesche

[31]. The true pole values for the first six odd harmonic modes

of the cylinder obtained by Tesche with an integral equation technique
are listed in Table 4. Thes2 values are the theoretical values which

are used for comparison in the examples that follow.

The first three examples with the TWID data illustrate the results
that can be obtained with the adaptive method at three different
signal~to-noise ratios (SNR): 25 dB, 20 dB, and 15 dB. Figure 8
illustrates a noise contaminated TWID waveform consisting of 256 samples
with a 15 dB SNR where SMR is defined in the spirit of equation (8).

The time step is 0.68020 x 10”10 seconds. The waveform is that of the
current versus time history at the center of a one-meter cylinder which
is excited by a voltage source offset approximately 15 centimeters from
the center. The voltage source has a Gaussian-pulse time history where
pulse width referred to the 1l/e level of the function is approximately .6
nancseconds. Although the cylinder has an infinite number of modes,
only the first four low frequency modes dominate the response since

the excitation is band limited. Figure 9 shows the results of the
estimation procedures for both the actual model and the approximate
model for five Monte Carlo runs where each run uses a different

noise sequence. The noise is Gaussian distributed and uncorrelated.

The first 60 samples are ignored to exclude the influence of the driv-
ing voltage. The waveforms are preprocessed before being analyzed

with a preprocessing increment of 5 samples beginning at sample 7C.
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Table 4 Cylinder pole values predicted by Tesche [31]

sL/c
Real Imag
-0.082 0.926
-0.147 2.874
-0.188 4.835
-0.220 6.800
-0.247 8.767

-0.270 10.733
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Figures 10 and 11 show the pole estimates for the same data with SMR's

of 20 and 25 dB, respectively. Tables 5 and 6 tabulate the pole

values corresponding to Figure 9; Tables 7 and 8 correspond to Figure

10; and Tables 9 and 10 correspond to Figure 11.

Several things should be pointed out abhout these results. First,

even though there are four dominate modes in the data only three pole

pairs are requested for the 15 and 20 dB cases. Only three pole pairs

are requested because the eighth order method often diverges. 1In

several of the Monte Carlo runs not all of the poles are in conjugate

pairs. However, most of the unmatched poles had values close to those

reported by Tesche. The runs which did not converge are so labeled.

Nonconvergent runs usually produce pole estimates that differ dras-~

tically from Tesche's results. Hence, a reasonable procedure to

handle the case where the method counverges but yields unmatched poles

might be to simply assume that each unmatched pole possesses a con-

jugate companion pole. In fact, a promising procedure to eliminate

this problem would be to increase the model order once for each un-
matched pole at convergence, introduce the appropriate conjugate pole,
and continue the iteration until, hopefully, convergence is achieved
with all poles occurring in conjugate pairs.

For the 25 dB case four pole pairs are requested and four con-
jugate pole pairs converged in each case except one which diverged.

The results for the offset~driven data indicate that the adaptive
method is able teo provide useful results even in noise levels of

around 15 dB and even if the convergent poles are not im conjugate

pairs.
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In the next two examples the adaptive method is applied in the
analysis of the noise contaminated IWID data, the current at the center

of a one-meter cylinder. The exciting voltage generator has a Gaussian

time history with a pulse width at the l/e level of approximately .3

Bl

I

%

[l

nanoseconds. Hence, che center-driven waveform contains components

m o

Y ng'm )

which are higher in frequency than the offset-driven waveform. Figure

ER——
|

12 displays the noise-contaminated center-driven waveform with a 20 dB

A

show the pole estimates for the center-driven TWTD data with SNR's of

SNR. The noise is Gaussian distributed and uncorrelated. The first 69 ;§
=3

samples are ignored to exclude the influence of the driving volrage. §;%
The waveforms are preprocessed before being analyzed with a preprocess- ;jé
ing increment of 5 samples, beginning at sampie 70. Figures 13 and 14 §7§
=

et

20 and 25 dB, respectively. Tables 11 and 12 tabulate the pole values

I

1
T RAIEa b

corresponding to Figure 13; and Tables 13 and 14 correspond to Figure

14.
The results for the center-driven data displav the sensitivity
of the higher frequency modes to noise. This sensitivity is probably

due to a lower relative degree of coupling to the higher frequency

»

modes for the center-driven case. That is, the higher frequency modes

are relatively weak for the center-driven case and are more easily

corrupted by the noise. For the data with a 25 dB SNR five pole pairs

are extracted with success. As usual, a few Monte Carlo runs diverged.
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The preprocessing of the waveforms was donme primarily to reduce
the number of samples that the method is required to process in order

to improve eZficiency. The preprocessing also reduces the noise level

of the waveform although the information content of the waveforms re-

mains the same.

The performance of any method should be judged by how

well it uses available information instead of by how large a SNR it can

tolerate.
Attempts to analyze waveforms consisting of highly damped expo-
nential components, such as the transient responses of a sphere, were

not successful. The adaptive method does not converge for such wave-

ST

forms which display double pole characteristics, that is, waveforms

" %m " wp» o [ii

w1 - components of the form t exp(st). Slight modifications to the

i

adaptive method might allow the analysis of such waveforms. The de-

scription of these modifications will have to wait until further study

is completed in this direction.
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Chapter V

T

i

: . CONCLUSIONS AND FUTURE DIRECTIONS

1 i o A

This document has related three identification methods, namely

the pencil-of-function method, Prony's method, and the adaptive

method to the general identification scheme presented in Chapter II.

Each method results, fundamentally, from a certain choice for the fil-

ters in the general identification model. A meaningful way to sum-

s AR

fRyY

marize the relation between the three methods is to plot the transfer

functions of their respective filters as shown in Figure 15.

It should
be pointed out that the filters of Prony's method and the pencil-to-

=
E=
=

functions method are cascaded, while the filters of the adaptive method

i

A A A

are not. The poles of the discrete filters have been mapped into the

S-plane with the mapping defined by: z = exp(sT). The filters of

Prony's method treat all frequencies in an equal manner; the filters
of the pencil-of-functions method are preferential to the low fre-

quencies; those of the adaptive method possess passbands which

are adjustable.

i s

,%%
The adaptive method is a new method which, in many cases, pro- =
vides excellent poles estimates under difficult conditions. The =
==

method is unique in that a solution to a polynomial is not required é%
to find estimates of the process poles. The method, in effect, %%
=

"swallows" the polynomial solver in its own iterative pole-searching E
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Figure 15

Illustrative plot of the magnitudes of the transfer
functions of each method as a function of frequency.
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scheme. The adaptive method is thought to be closely related to the

method of Steiglitz and McBride [19] since both models filter the in- P2

put and output records with filters whose poles are the most recent

tH

estimates of the process poles. However, the method of Steiglitz and

PR S —
L R M il

McBride does not provide pole estimates but only estimates of the
process transfer function during the course of iteration. The primary

utility of the adaptive method, in the author's opinion, lies in re-

finement of predetermined poles.

The pencil-of-function method was found to be ill-conditioned for

e

the identification of high order processes. Although the methad can

provide superior estimates of low~order processes. It is shown that

b

use of the yAii/Aoo in place of the @, was less accurate in general,

il

than using equation (4) or (6) to estimate the &y for the approximate
model. Since the parameter values themselves are transplanted into

the actual model, it is not clear if the ’3117300 or the ai more

S s s

accurately portray the process after this transplant. But there is no
reason to believe the /X;;7K;; provide a better estimate after the
transplant and every reason to believe that they do not.

Dudley [11] indicated that the noise sensitivity of least-squares
Prony's method was due to parameter bias. In this document, the =
parameter bias has been related to the transplanting of parameters
from the approximate model to the true model. Past workers have

applied an ad hoc technique that partially alleviates the noise sen-

sitivity of Prony's method. This technique consists of setting

1 = 2n (no redundant data) and setting the model order, a, de-

W oo i
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liberately high to make M large. Since M is the number of samples
used in the estimation procedure, a large value of M corresponds to
using a lot of data. Hence, this ad hoc technique uses a large
amount of data just as least-squares Prony's method does but does
not suffer from the parameter bias of the least-squares method. Un-
biased parameters result because when M = 2n, the least-squares pro-
cedure reduces to a curve-fitting procedure which must be unbiased.
One side effect of this technique is that extra "curve-fitting poles"
which do not correspond to process poles are introduced in the desired
exponential representation.

The general identification scheme presented in this work
opens up a whole range of possible techniques that can be invented
simply by making different choices for the filters within the identi-
fication model. One direction in which future research may be fruit-
ful is in inventing schemes, other than least-squares schemes, to com-
bine more data than is necessary to determine the model parameters.
Such a scheme could, perhaps, be realized with certain choices for

the filters in the identification model.
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Theorem: If G is a singular, complex or real, NxX dimensional

matrix, then 4,.A.. = A for ary i or j, where qu denotes the

13851 T 24153
th th R
element of the p  row aud the q = columm of adj G (that is, the

cofactor of )
€pq

Proof: Since G is singular, det G=0. Also, from the identity
I det G = G adj G, it follows that G adj G = 0. Each column of adj G
then must be a solution of Gx = 0. Since all solutions of Gx = 0

are collinear, it follows that the columns of adj G are also collinear.

Hence,

T, . T,
where x = [xlxz...xN] is a solution o§ GEfO and y= [leZ"'yN] is the

vector required for equality of (23). Then, AijAji = (xiyj)(xjyi) =

(xiyi)(xjyj) = AiiAjj.
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