
ADA 094 218 FINAL REPORT
OF THE

SOFTWARE ACQUISITION
AND

DEVELOPMENT
WORKING GROUP

(Chairman, Mr. Victor E. Jones)

JULY 1980

PREPARED FOR THE
ASSISTANT SECRETARY OF DEFENSE

FOR
COMMUNICATIONS, COMMAND,
CONTROL, AND INTELLIGENCE

FINAL REPORT
OF THE

SOFTWARE ACQUISITION
AND

DEVELOPMENT
WORKING GROUP

(Chairman, Mr. Victor E. Jones)

JULY 1980

PREPARED FOR THE
ASSISTANT SECRETARY OF DEFENSE

FOR
COMMUNICATIONS, COMMAND,
CONTROL, AND INTELLIGENCE

FOREWORD

The Assistant Secretary of Defense for Communications, Command, Control,

and Intelligence established the Software Acquisition and Development Working

Group (SADWG) in February 1979 to address the difficult problem of controlling

software cost growth. The specific objectives of the working group included

determining the efficacy and cost effectiveness of current software acquisition

and development practices within the Intelligence Community, and ascertaining

areas which could benefit from better management controls. This report

presents the findings and recommendations of the working group.

Victor E.^ones
Chai rman^SADWG

il

ACKNOWLEDGEMENTS

The Assistant Secretary of Defense for Communications, Command, Control,

and Intelligence, Dr. Gerald P. Dineen, and the Deputy Assistant Secretary of

Defense for Intelligence Systems, Dr. James H. Babcock, under whose auspices

the SADWG operated, wish to extend their thanks for a job well done to the

following working group members whose time and dedication made this effort

possible:

Office of the Secretary of Defense - Mr. V. E. Jones, SADWG Chairman
Defense Intelligence Agency
National Security Agency
Central Intelligence Agency
Intelligence Community Staff
U. S. Army
U. S. Navy
U. S. Air Force
Rome Air Development Center

Mr. Roy Cox
Mr. Kermith Speierman
Mr. Richmond Wise
Mr. David Perlsteln
Colonel Jerry Timlan
Captain (Mac) McCutchan
LTC Bill Gray
Dr. Gerry Plante

Special thanks are also extended to the following organizations whose

detailed presentations to and in-depth discussions with the SADWG were

instrumental to the preparation of this report:

BOEING AIRCRAFT
COMPUTER SCIENCES CORPORATION
CONTROL DATA CORPORATION
FORD AEROSPACE
GENERAL ELECTRIC
GTE SYLVANIA
HRB SINGER
HUGHES AIRCRAFT
IBM
LOCKHEED MISSILE & SPACE COMPANY

LC3IC0N
MARTIN MARIETTA
NETWORK ANALYSIS CORPORATION
PLANNING RESEARCH CORPORATION
RCA
SOFTECH
SOFTWARE ENTERPRISES CORPORATION
SYSTEMS DEVELOPMENT CORPORATION
TRW SYSTEMS GROUP
UNIVAC

Finally, we are indebted for the services of INCO, INC., and in particular

Warren Polk and Barry Clapsaddle, for their splendid work in the preparation of

this report.

Ill

TABLE OF CONTENTS

SECTION I INTRODUCTION

A. BACKGROUND
B. CONCLUSIONS
C. RECOMMENDATIONS

SECTION II INDUSTRY COMMENTS

A. INTRODUCTION
B. DOCUMENTATION STANDARDS
G. REQUIREMENTS DEFINITION
D. SOFTWARE UNIQUENESS
E. SOFTWARE DEVELOPMENT MANAGEMENT
F. SOFTWARE LIFECYCLE COST ESTIMATING
G. HARDWARE CONSTRAINTS
H. CONTRACT TYPES
I. SECURITY CONSTRAINTS

SECTION III CASE HISTORIES

A. SUMMARY OF CASE HISTORIES
B. OVERALL EFFECTS
C. DOCUMENTATION STANDARDS
D. REQUIREMENTS DEFINITION
E. SOFTWARE UNIQUENESS
F. SOFTWARE DEVELOPMENT MANAGEMENT
G. SOFTWARE LIFECYCLE COST ESTIMATING
H. HARDWARE CONSTRAINTS
I. CONTRACT TYPES
J. SECURITY CONSTRAINTS

CASE HISTORY I

CASE HISTORY II

CASE HISTORY III

CASE HISTORY IV

APPENDIX A SUMMARY OF INDUSTRY COMMENTS

APPENDIX B CANDIDATE LIST OF SOFTWARE DEVELOPMENT COMMANDMENTS

APPENDIX C MEASURABLE MILESTONES

Page No,

1-1

1-1
1-3
1-7

2-1

2-1
2-1
2-3
2-6
2-12
2-16
2-20
2-21
2-23

3-1

3-1
3-1
3-2
3-2
3-2
3-3
3-4
3-4
3-4
3-5

3-6

3-17

3-22

3-24

A-l

B-l

C-l

iv

SECTION I

INTRODUCTION

A. BACKGROUND

The Assistant Secretary of Defense for Communications, Command, Control,

and Intelligence established the Software Acquisition and Development Working

Group in February 1979 to address the difficult problem of controlling software

cost growth—growth which is approaching 70% of total C3I system costs.

To find out why these costs are so high and escalating at an

ever-increasing rate, the SADWG set out to assess the effectiveness of current

regulations and guidance relative to software acquisition and development,

recommend approaches to improving the overall software acquisition and

development process, and identify problem areas requiring top-level attention.

The SADWG concentrated its efforts on the software development aspects of C3I

systems. Specifically, the SADWG:

o Invited software development corporations doing
business with the Intelligence Community to present
their views on the software acquisition and
development process, and associated problems.

o Studied actual case histories of software development
projects ranging in value from $100,000 to millions
of dollars.

The SADWG combined these inputs with their own in-depth experiences in C3I

software acquisition and development and, after performing extensive analysis,

detailed a series of conclusions which resulted in recommendations for

improving the acquisition and development process.

As noted, one of the major inputs to the SADWG's collection, collation,

and assessment of data on the software acquisition and development process was

obtained from detailed presentations and in-depth discussions with software

1-1

SECTION I

INTRODUCTION

A. BACKGROUND

The Assistant Secretary of Defense for Communications, Command, Control,

and Intelligence established the Software Acquisition and Development Working

Group in February 1979 to address the difficult problem of controlling software

cost growth—growth which is approaching 70% of total C3I system costs.

To find out why these costs are so high and escalating at an

ever-increasing rate, the SADWG set out to assess the effectiveness of current

regulations and guidance relative to software acquisition and development,

recommend approaches to improving the overall software acquisition and

development process, and identify problem areas requiring top-level attention.

The SADWG concentrated its efforts on the software development aspects of C3I

systems. Specifically, the SADWG:

o Invited software development corporations doing
business with the Intelligence Community to present
their views on the software acquisition and
development process, and associated problems.

o Studied actual case histories of software development
projects ranging in value from $100,000 to millions
of dollars.

The SADWG combined these inputs with their own in-depth experiences in C3l

software acquisition and development and, after performing extensive analysis,

detailed a series of conclusions which resulted in recommendations for

improving the acquisition and development process.

As noted, one of the major inputs to the SADWG's collection, collation,

and assessment of data on the software acquisition and development process was

obtained from detailed presentations and in-depth discussions with software

1-1

industry representatives. Specifically, SADWG invited 20 software development

corporations doing business with the Intelligence Community to present their

views on the overall effects of current policies and practices. In response to

this invitation, the corporations addressed the following problems as they

relate to C3I systems:

o Documentation Standards

o Requirements Definition

o Software Uniqueness

o Software Development Management

o Software Lifecycle Cost Estimating

o Hardware Constraints

o Contract Types

o Security Constraints

These problem areas received the top-level attention of the corporations.

Each corporate group consisted of both a corporate representative and experts

in the areas being addressed. These corporations spent many thousands of hours

in preparing presentations for and working with the SADWG and, as a result, the

SADWG collected and analyzed more than 3,000 pages of transcripts. This

information was synthesized into Section II, Industry Comments. It would be

safe to say that these comments represent a good cross-section of the software

expertise in this country today. The comments have not been quantified or

qualified in any way, and every attempt has been made to preserve the intent

and accuracy of industry views. In addition, the participating corporations

have reviewed a draft version of this report, and their review comments have

been incorporated in the final report. All of the participating corporations

feel the report accurately reflects their views on the software acquisition and

1-2

development process. A summary version of industry comments is contained in

Appendix A. This summary has been designed to allow readers easy access to the

major points presented.

Another major input to the SADWG was obtained from the investigation of

case histories of actual software development projects. These case histories

vividly illustrate the effect of problems on the current software acquisition

and development process, and demonstrate the need for better software

management at all levels of government. A summary and detailed discussions of

the case histories are presented in Section III of this report.

In the course of their analysis efforts, the SADWG studied a candidate

list of software development "commandments," which they felt merited inclusion

in this report (Appendix B). Although not all-inclusive, the list nonetheless

presents a reasonable set of "dos" and "don'ts" for software acquisition and

development. In addition, a list of measurable milestones for use in software

development is included as Appendix C.

B. CONCLUSIONS

It is common knowledge that software development projects rarely meet

cost-benefits originally projected, usually cost more than expected, and are

usually late. In addition, the software delivered seldom meets user

requirements, oftentimes is not usable, or requires extensive rework. SADWG's

analysis has shown that all facets of the software acquisition and development

process need varying degrees of improvement. The analysis has also shown that

software acquisition and development problems are not insurmountable, and that

the remedy for most of these problems is better management at all levels of

government. This remedy includes training software managers to effectively

control programs, and providing managers with the proper tools to monitor the

1-3

development process. In addition, there is a need to improve cost and schedule

estimating at all phases of project development, improve the productivity of

software development projects, and bring the maintainability of software

systems within reasonable cost limits.

The following conclusions reached by SADWG illustrate the depth of these

problems:

1. There are a multiplicity of standards within the government which

cause inefficiency and confusion. Currently, standards are not precise enough

to eliminate misunderstanding between contractors and the government. The

level of detail is often open to interpretation.

2. Projects, and subsequently contracts, often get started with

inadequate planning. Also, because of ambiguous or vague requirements, there

is often a lack of understanding between the government and contractor as to

what is to be delivered.

3. Software development projects are being conducted with a lack of good

management practices (i.e., poorly trained managers, inadequate record keeping,

insufficient management tools, and misdirection of emphasis at the various

development stages).

4. The government inadvertently impacts costs and schedules by

specifying hardware for a particular development before knowing whether the

hardware will meet the processing and performance requirements of the proposed

system. It has been shown to be very expensive to "shoe-horn" software into

minimally acceptable hardware configurations, particularly since hardware is

less expensive than software.

5. There is often a mismatch between the contract type and the

complexity of the work to be performed. The government has awarded complex

1-4

development efforts with fixed-price or heavy penalty contracts, placing both

the government and the contractor in high risk, situations unnecessarily. On

the one hand, the government is hesitant to make decisions on this type of

contract because of potential "out-of-scope" work and subsequent cost impacts.

On the other hand, the contractor adopts high risk development approaches in an

attempt to meet costs and schedules which, more often than not, fail.

6. Security requirements impact software development costs because work

cannot begin on a project until the required personnel have been cleared by the

agency for whom the work is to be performed. There are built-in delays

because interagency transfers of security billets take an inordinate amount of

time, and there are no interagency agreements on standards for the

investigation or authorization of security clearances. This impact is rarely

considered by the government and contractors in estimating costs and schedules.

These costs are difficult to estimate because delays for clearances depend on

the individual under consideration and the agencies involved.

7. Software development is unique. The software industry is the only

industry required to build usable products right the first time without benefit

of intermediate development stages such as prototyping. Although prototyping

is an accepted practice in other less complex industries, it is not in software

development. Without prototyping or some sort of intermediate development

stage, risk factors are significantly increased.

8. Because the government must estimate system costs often years in

advance of the actual procurement, the estimates are usually wrong. And

because contractors must bid on systems before they are designed, their

estimates are also usually incorrect. Neither the government nor contractors

have adequate means to estimate lifecycle costs with any reasonable degree of

1-5

accuracy. The current state-of-the-art in lifecycle cost estimating is grossly

inadequate.

9. Everyone agrees that software development productivity must be

increased on the part of both the government and contractors. One method of

increasing productivity is through the use of available productivity tools.

However, because productivity tools are not well understood and difficult to

use. Instead of enforcing their use, the government only pays them lip service.

At present , there is no easy method to quantify the value of productivity

tools. Such a method needs to be developed.

10. In addition, the SADWG concluded that because C3I systems are unique,

they are affected by a unique set of acquisition and development problems.

Specifically, the following factors, in addition to those described above, have

direct bearing on how these systems are managed and implemented:

a. "Finished" requirements do not exist with military software

systems because requirements are constantly changing, and the

systems, as a result, are never "complete."

b. C3I systems generally have a development cycle of more than five

years before becoming operational.

Due to the unique nature of C3I systems (generally one of a kind and

software dominant), "package" procurements, which include data collection and

analysis through testing and maintenance of the system, should be avoided. In

a "package" software system, problems in one phase of development often have a

rippling effect in subsequent phases of development, impacting completion of

original requirements. Rather than contracting for the entire system, it would

be better to break the acquisition process into multi-phases. In a multi-phase

strategy there are several distinct phases, each with its own confidence level

1-6

relative to cost and technical risk. The acquisition of C3I systems lends

itself well to this type of procurement.

C. RECOMMENDATIONS

Based on the conclusions presented earlier, the SADWG has identified

recommendations that will improve the overall software acquisition and

development process. It is anticipated that from these recommendations a list

of action items will be formulated and forwarded to the Assistant Secretary of

Defense for Communications, Command, Control, and Intelligence.

The following recommendations have been listed in order of relative

importance for implementation purposes only.

1. Multi-phased contracting for software development should be

encouraged on large, complex, multi-year development programs.

- Suggested phases for this type of contracting include:

Phase 0 - Concept Definition; Time and Material or
Cost-Plus-Fixed-Fee contracts

Phase 1 - Requirements Analysis, Definition, and
Preliminary Design; Cost-Plus-Fixed-Fee
contracts

Phase 2 - Implementation, Maintenance, and
(To Enhancements; Firm-Fixed-Price
Phase n) contracts.

2. More effort should be placed on concept formulation and development

of adequate requirements definition.

The government should understand what the system is to
do before embarking on design and code of a system.

Users should become involved in this stage.

Schedule pressures and obligating funds within fiscal
constraints should not preclude adequate requirements
definition.

1-7

Methodologies for requirements and design traceability
should be firmly established, and Preliminary Design
Review (PDR) should not be passed without one. This
eliminates "code searching for design and design
searching for requirements" syndrome.

3. The government should re-examine its approach to software

development, and encourage the use of risk-reduction techniques.

Prototyping high risk, segments should be encouraged,
and the resulting software should not be deliverable.

The use of available automated project management
aids should be encouraged.

More emphasis should be placed on configuration
management and quality assurance.

The government should encourage the development of
tools to detect errors as early as possible, and thus
minimize the rippling effect of undetected errors.

4. The government should attempt to reduce the multiplicity of standards

which exist among services/agencies.

If more than one standard is required, the reasons for
it must be well established.

Each agency/service should participate in streamlining
the number of standards.

Once standards are established, a single focal point
should be responsible for changes or deviations.

5. The government should investigate, and invest in the development of,

adequate software lifecycle cost estimating techniques.

Although lifecycle cost models are still in the
infancy stage of development, the government should
nonetheless encourage the use of these models as one
input to better cost estimating.

Research should be encouraged to define software
metrics more apropriate to lifecycle cost estimating
than the current metric (i.e., number of
instructions).

1-8

The government should encourage contractors to be
consistent in reporting pertinent cost data.

The government should establish guidelines for the
standard definition of metric terms (i.e., complexity,
productivity).

6. The government should establish education and training courses and

guidelines for program managers.

These courses should reflect software engineering
material on a continuous basis. The courses should
also inform program managers how to prepare adequate
cost and schedules for their projects with full
appreciation of trade-offs available to them in their
planning.

Program managers should be encouraged to maintain
compre hensive historical data on projects under their
purview.

Guidelines for evaluating and determining the adequacy
of requirements, design, program specification,
implementation, testing, etc., should be instituted.

7. The government should encourage the inclusion of independent software

validation and verification (V&V) as part of the system specification.

Optimally, V&V should be accomplished by someone other than prime contractors.

By including V&V in the system specification, the
amount of V&V necessary will be delineated, thus
avoiding overkill.

Independent V&V ensures impartiality, and should be
used in each contract phase.

8. The government should encourage the use of independent cost

estimating during concept development.

Whenever possible, models and simulations should be
used to determine cost and concept/design feasibility.
Based on preliminary cost analysis, a design-to-cost
approach should be encouraged.

9. The government should allow contractors the flexibility of offering

alternative hardware configurations for software development projects when

1-9

these configurations can be proven to be more cost-effective.

- Specific hardware specifications should not be
mandated in a Request for Proposals (RFP).

Guidelines for cost effective hardware trade-offs
should be established.

The government should encourage the use of
"computational plenty" in considering development
approaches.

10. To circumvent costly and time-consuming security constraints, the

government should encourage the following practices:

Clearly designate position functions which require
clearances, rather than requiring clearances for all
project personnel.

- Invest in unclassified hardware test beds and test
data sets (many unclassified projects require
clearances only for access).

Separate classified work from unclassified work.

- The majority of software developments do not involve
security considerations, hence the government's
blanket security demands should be scrutinized.

1-10

SECTION II

INDUSTRY COMMENTS

A. INTRODUCTION

This section contains comments presented by Industry to the SADWG. These

comments have not been quantified or qualified in any way, and every attempt

has been made to preserve the intent and accuracy of industry views.

B. DOCUMENTATION STANDARDS

1. Virtually every government agency handles the development
of software using different standards despite the fact that
regulations such as DoD 5000.29 exist.

2. Standards are not precise enough to eliminate
misunderstandings between contractors and the government;
for example, the level of detail in documentation is often
a question of interpretation.

3. The vast number of different standards and guidelines
decreases the value of standards. It is impossible to be
familiar with all of them.

4. Each agency/service (and smaller activities in many
instances) implement DoD standards in their own way. This
results in confusion for contractors, and probably
decreases the synergism possible throughout all DoD.

Perhaps the most prevalent difficulty with the software acquisition and

development process seen by the software industry representatives is the lack

of a consistent software standard not only among the various government

agencies, but also often within a single agency. The current multiplicity of

standards promotes gross inefficiency and adds significantly to the cost of

software.

Current standards are generally inadequate. This has caused many of the

agencies/services to conduct their own studies to improve them. Many of the

industry representatives indicated that they have been Involved, in one way or

another, in these previous studies. As a result of all this activity, industry

2-1

feels nothing has really happened except that a numher of different standards

have been developed by the various agencies and services, and each of these

standards addresses the particular concerns the agency/service had at the time

of the study. It was generally believed that having each agency/service

develop its own standards is not the most cost-effective way to do things.

However, adopting a single standard for all services and agencies is not

necessarily the solution to this problem. For although some standard must be

implemented, it must be flexible enough to conform to the wide range of program

types and sizes. Or, if a variety of standards are used, then they must be

similar in scope and function in order to allow contractors and government

personnel to move from one to another without traumatic, devastating results to

both the cost and schedules of individual projects.

Concomitant with the recommendations for streamlining sets of software

documentation standards, is the need for uniform definitions of software

elements. Although it's only a matter of semantics, this deficiency can

nonetheless cause a great deal of confusion. And confusion, once again, leads

to cost and schedule overruns or, even worse, to incorrect design and

development.

If definitions for such things as a unit, program, module, routine, task,

element, and subsystem are standardized, then many of the problems associated

with the use of inconsistent terms will be solved. However, as with

documentation and software standards, if a standard is imposed, it is useless

if not enforced — enforced for both vendors and government personnel.

In addition, standards do not adequately address the question of the level

of detail required. Oftentimes, these same standards require too much

production of little used documentation with no agreement between government

2-2

and Industry on the right amount.

Industry is also concerned that the government, in attempting to correct

the standards problem, may impose overly restrictive development policies.

Each contractor has its own development process with personnel trained in that

process. Therefore, the government should concentrate on what is to be

delivered instead of the actual development process, because retraining

personnel to follow one specific process over another is costly.

C. REQUIREMENTS DEFINITION

1. Requirements documents are usually too ambiguous or vague
and subsequent documents produced from these requirements
are inadequate.

2. Although technical people and system users may agree on
specific requirements, technical people find it difficult
to describe the system to be delivered in terms of
requirements and therefore exclude the user in the process
of translating requirements to the final system. This
often leads to user dissatisfaction with the delivered
system because trade-offs were made which the user either
did not under or, because he was not part of the process,
did not want.

3. Requirements are constantly changing and often force
overruns; management doesn't know how to handle this
problem in relation to modifying original budget and
schedules. Not all modifications to original budgets and
schedules are overruns but are the result of honest
requirement changes.

4. "Finished" requirements do not exist with military software
systems because they are constantly changing; military
software systems are never "complete."

5. System developments are too long; C3l systems generally
have a development cycle of up to 14 years before a system
is operational. Other systems take 5-6 years. When things
take this long, you forget what you started out to do —
few people remember the initial requirements and the
cost-benefits to be derived. Because these development
cycles are so long, requirements, more often than not, are
obsolete before the system is completed.

2-3

In the definition phase, there is often a lack of clearly defined

requirements; vague requirements fail to fulfill users' expectations or do so

only at an exorbitant price. Industry representatives agreed that the content

and quality of requirements documents should be improved. Currently these

documents are too ambiguous or vague and do not convey an adequate

understanding of what is to be provided. Part of the problem stems from a lack

of understanding of what is a requirements document. For example, requirements

should be stated in as much detail as possible and should be organized as to

which are necessary and which ones are simply desirable. In practice,

everybody wants everything. However, if all requirements have equal weight,

developers don't have much leeway in designing systems within reasonable cost.

Conversely, requirements can be too specific and, therefore, box

designers into techniques and methods incapable of performing the required

functions. Requirements, if they are to accomplish their purpose, must be

clear and concise, and relate what the exact need is, not how it should be

fulfilled.

It is generally believed and accepted that if a good requirements document

is not available, then the program should be stopped and one should be written.

As already mentioned, what constitutes a good document needs careful review. A

general rule for their preparation states that requirements should be

decomposed until the next level of detail adds nothing to the acquisition phase

currently in progress.

However, C3I systems are unique, and it is difficult to write adequate

requirements for the following reasons:

a. People involved don't know what the requirements are except
in broad general terms.

2-4

b. C3I requirements for ADP systems support are constantly
changing, and therefore it is difficult to write a finished
set of requirements.

c. C3I systems take many years to develop and changes are
inevitable.

Once the actual implementation of a project is undertaken, software

industry representatives feel that the biggest problem, endemic to virtually

all C3I systems, is that requirements continually change. However, stopping

changes is not the solution to this problem. For if it is mandated that

requirements cannot be changed, the end-products may be useless to users.

Changes are often simply the result of design; that is, as design progresses,

parameters are enlarged or shrunk and requirements as a result are changed.

Changes can, however, be accomplished in an orderly manner and their

impact minimized. Also, many changes can be foreseen before design if

stringent system requirements reviews are conducted. By employing baselines

for the requirements, if changes are necessary then a formal change-control

mechanism can be used. Software industry representatives feel that if these

recommendations are imposed and enforced, changes to requirements will not

necessarily result in cost overruns and schedule slippages.

In dealing with government procurements, actual users and customers are

rarely the same organizations. For example in a typical procurement, a user

outlines a requirement and turns it over to a particular procurement agency for

action. The requirement is then translated into an RFP, through various

channels, and a procurement subsequently is made. From the moment the

requirement statement leaves the user's hands, the details are open to

subjective interpretation. And in not a few cases, misinterpretation has

become catastrophic, resulting minimally in dissatisfaction, delays, and

changes.

2-5

Several solutions which might help circumvent these difficulties include

obtaining the user's approval at the system requirements reviews, guaranteeing

user approval with purchase description, and keeping a user representative

involved throughout the development cycle. Indeed, a majority of the software

industry representatives concluded that it is essential for the ultimate user

to maintain constant communications with both the procuring agent and the

contractor during all stages of the acquisition process. This ensures user

satisfaction and protects contractors from being caught in an awkward

disagreement between user and procuring agency.

D. SOFTWARE UNIQUENESS

1. The government lacks the understanding that software
configures the whole system much like mortar between
bricks, and is much more expensive than hardware.

2. Because software developments produce only paper from the
requirements phase through the coding phase, which is often
2-3 years in process, software projects are difficult to
manage. This problem is compounded by the government's lack
of adequate tools to manage software developments. Because
of ill-management, deficiencies in the software system
often remain undetected until the system is built.

3. More than 60% of lifecycle costs are spent after the system
is built, not in building it. These costs are attributable
to errors introduced in the requirements, design, and
development phases that remain undetected until the system
test phase.

4. The software industry is required to develop error-free
systems on a one-time basis. This is almost an impossible
task. Other industries such as construction, computer
hardware, tank building, and ship building develop
prototypes. Prototyping is an accepted practice in these
industries and hardware development. Software, however,
which is often far more complex, is rarely prototyped and,
if costed in a competitive bid, that bid Is unlikely to
win.

2-6

5. Because management fails to appreciate the Importance of
adequate testing, design problems receive priority and
testing Is kept to a minimum with resulting consequences.

6. Hardware Is developed at the manufacturer's site In a
friendly environment while more complex software is usually
developed at the customer's site In an often pressure
environment.

7. The government does not take full advantage of software
transportability where applicable; hence the same software
Is developed over and over again. Unlike hardware,
software costs are confined to the Initial Investment plus
maintenance.

As a further recommendation for designing software systems. Industry

representatives Identified the concept of prototyping; that Is, building an

actual model of the proposed system to verify design. Prototype construction

Is different than simulation. In prototyping, an algorithm Is actually coded

and tested. A simulation only simulates an algorithm. Software prototype

construction Is not an accepted practice at this time and. If bid in response

to an RFP, would not stand up under competitive pressures. There is a need to

make prototype construction of software systems more cost-beneficial —

currently it is not.

However, Industry presented some strong arguments In favor of prototyping

software systems. It was estimated that better than 60% of the lifecycle costs

of major systems is attributable to errors Introduced in the requirements,

design, and development phases. Errors result in redundant effort. The

earlier the error is introduced (i.e., requirements phase), the more costly the

error is to fix due to the rippling effect. Industry suggested that the

government put emphasis on risk-reduction efforts. Such efforts would detect

and fix errors in the earliest phases of a program. Everyone agreed that

software development is currently a high risk area. In the government's

2-7

situation, risk, is the likelihood of cost exceeding original estimates. In

industry's situation, risk is related to profits and, if not controlled, will

result in loss of a business. One such risk-reduction effort is prototype

construction of software systems.

Prototyping has, for a long time, been an accepted practice in the design

of hardware. However, few people recognize the importance of prototyping in

the design of software. And yet, by all accounts, software development is far

more difficult and expensive than hardware. The problem is largely one of

changing accepted practices.

Not all software systems, however, require prototyping; only those which

are extremely complex and involve new technology. Software industry

representatives agree that although prototyping is expensive, in certain

instances it is well worth the expenditure. However, all also agree that

software produced for a prototype should not be delivered to the government,

for software prototypes mean very little if not seen in light of their

development purposes.

According to the software industry representatives, test plans are often

validated too late in the development cycle. By postponing the test plan

approval, the nature of the test can be affected, and schedule slippages can

occur. For example, if the acceptance test plan is not completed until the end

of the development cycle, then often the test will focus not on the original

requirements but only on the subsequent design. Also, in obtaining approval of

the test plan from the government, precious time can be lost and time, at this

point in the project lifecycle, is an extremely critical factor.

To speed up test preparation and validation, software industry

representatives have suggested that at least a first draft of the test plan be

2-8

completed for Preliminary Design Review (PDR). The test plan can, of course,

be updated as the project progresses. But by having a draft already prepared,

time will be saved and the integrity of the test will remain intact.

Although significant strides have been made in software technology,

similar accomplishments are not evident in software productivity. Software

industry representatives have been attempting, through a variety of means, to

close the gap between technology and productivity. Several areas currently

being investigated include the use of the programmer's workbench; automated

design aides; automated documentation tools; top-down methodologies; and

programming design languages. These methodologies, tools, and languages,

although still relatively new, have shown great potential for increasing

productivity.

Even with advanced techniques, software development is still treated by

many as a magical process. This is, of course, a transient problem. For, as

more personnel with software development training move into senior management

positions, software will cease being seen as a magical process and become

viewed more as a science.

Also, there is a lack of visible milestones in software development.

Therefore, software industry representatives have proposed that other types of

milestones be imposed; that is, measurements (Appendix B) instead of actual

component pieces should be monitored, making the process more visible.

As previously discussed, software industry representatives feel that C3I

systems are different from other types of software developments. Specifically,

C3I software systems usually are large and complex; involve high technology;

are turnkey; demand low error rates; and have the user and buyer associated

with the requirements. These characteristics make C31 systems unique, and

2-9

software industry representatives believe special measures must be taken in the

software management, acquisition, and development process to handle this

uniqueness. The recommendations presented by the software industry

representatives are a major step towards confronting problems associated with

the current process.

Other industry comments related to software are presented below:

a. Software is not a visible product; hardware is.

Individual hardware components are no more visible to the end user

than are individual program instructions. Only the outer package is visible —

the hardware box or the software capabilities. We must come to understand that

unexplained and perhaps seemingly excessive costs for "invisible" products are

not limited to software. (What are the cost components of a Rolls Royce? The

product is visible, but why it is so much more expensive than a Chevrolet?) In

fact, an experienced software cost estimator could probably better deduce the

development cost of a system by analyzing its programs than an automotive

engineer could deduce the cost of a Rolls Royce by taking it apart.

b. Once hardware is fielded it is correct and never changes
(except for corrective or preventive maintenance); software
bugs are continually being corrected.

If the statement were true for hardware, Detroit would never recall

cars and computer configurations would never change. The statement for

software is marginally true — most large systems do contain bugs. However,

many function as reliably as hardware — man-rated systems and those having

high consumer visibility, for example. Many software bugs are only of an

annoying, rather than catastrophic, nature, but we tend to blow them out of

proportion because we feel that software is easier to fix than hardware.

Hardware systems contain the same typei of annoyance bugs as do software

2-10

systems—the windows in your car leak when it rains and Master Charge has been

dunning you to pay a credit balance already paid.

c. Software never "rusts" (once it's correct, it stays right);
hardware wears out.

The statement is true for hardware. Software systems do degrade with

time, particularly as data bases gradually become corrupt and deteriorate.

(One may argue that software permitting data base corruption is not correct,

but software is rarely completely correct anyway, and could theoretically be

rated in terms of amount of data lost for each system failure, for example,

just as hardware is rated in terms of life expectancy under various operating

conditions.)

d. Software is more difficult to configuration manage than hardware
because it's easily duplicated and modified.

This is true, but the problem is one of approach and degree rather

than kind. Users of fielded hardware seldom modify it themselves, but

everybody changes a software package they receive. Enforcing central

maintenance eliminates unmanageable fielded software variability. Even so,

the easy modification of software encourages the use of different versions for

the same purpose. But this only changes the degree of configuration management

required, not the kind. Buy a new car and watch how the dealer has to manage

the configuration of what options are required by others, what options are

included in others, and what options are excluded by others.

e. Personnel shortfalls influence software quality and development.

In the area of personnel requirements, a majority of the software

industry representatives expressed concern about software personnel shortfalls.

In some cases, the shortfalls, particularly in the California area, are quite

serious. The software industry is not immune to current economic constraints.

2-11

Specifically, the voluntary 7% wage guideline has had an extremely adverse

effect on personnel requirements. For example, if a contractor is prohibited

from raising salaries more than 7%, software personnel will quit and go to

another company which can hire them at a higher than 7% level. This constraint

is, of course, temporary. Also, colleges and universities continue to turn out

higher numbers of trained computer personnel each year which may alleviate this

shortfall in the future. But until then, the industry is faced with severe

shortages nationwide, provoking highly competitive hiring practices among

contractors — hiring practices nurtured by the 7% guideline.

E. SOFTWARE DEVELOPMENT MANAGEMENT

1. Government ADP program managers are not trained to manage
ADP development programs.

2. Government personnel are often unable to evaluate a good
design and relate that design to requirements due to lack
of technical depth and management aids.

3. Many government managers often fail to make decisions or
consistently change their decisions, and thus adversely
impact contractor productivity.

4. Government procuring agencies are inadequately staffed (or
lack technical support) to manage software development
efforts.

5. Few records are kept concerning the history of past
programs that can be used on future programs—"lessons
learned." There are no guidelines for recording this
data at present, with the result that information learned
from past experience is lost.

6. Government agencies spend the majority of development funds
on design, code, test, and maintenance, and usually spend
little money on verification and validation, configuration
management, quality assurance, documentation, etc.

7. There are no adequate tools for tracing requirements
through the development lifecycle, and no easy-to-use
process to determine the degree to which designs meet
stated requirements.

2-12

8. The government attempts to foreshorten schedules
unreasonably, making on-time accomplishment of a project
highly unlikely, and is often unaware of the risk
introduced as a result of those actions.

9. Industry does not have, nor will the government allow
(mostly because of security), integration, testing, or
configuration management groups across projects. Each
project is treated as a separate entity. The government's
reasoning is that each project is different and, therefore,
an overall group would be inefficient.

10. Competitive procurements encourage contractors to offer
maximum technical effort for the dollars; however, by doing
so, contractors tend to skimp on supporting services such
as management, configuration management, quality assurance,
etc., because the government minimizes the importance of
these efforts.

As an outgrowth of the need for standards for software documentation,

development, and definition of terms, it is readily apparent that a need exists

for training all personnel involved in the software acquisition and development

process. It was learned through the briefings given by the software industry

representatives that virtually all of the contractors have undertaken some form

of training not only for program managers but also for programmers and senior

level management.

Yet no comparable approach to training has been implemented on the part of

the government. Training is perhaps the most important aspect to reorganizing

the software acquisition and development process. For if program personnel are

well versed in the nuances of the process, a great deal of the confusion,

inefficiency, and inconsistency prevalent in software acquisition and

development will be alleviated.

The phase between Critical Design Review (CDR) and acceptance test is

usually the longest time period of the development cycle; it is also the phase

which has the fewest number of formal reviews. Software industry

2-13

representatives believe this lack of review during the crucial development

cycle results In significant problems. For example, without reviews or even

baseline points, little visibility of the development is possible. And when

development takes place out of sight, the end-product usually does not meet the

user's requirements. Also, schedules cannot be monitored if no reviews are

conducted, and the customer is unable to measure the contractor's performance.

Several recommendations have been made by software industry

representatives to bridge the gap between CDR and acceptance test. First of

all, review points should be implemented during the development cycle and

customer representatives should be encouraged to attend. By using hierarchical

implementations, both contractors and the government can measure performance

against established criteria; that is, by using structured walk-throughs,

integration ready reviews, and subsystem tests, work already accomplished and

work to be done can be Identified.

Concomitant with the idea of hierarchical Implementation is incremental

acceptance. Instead of waiting until the end of the development cycle to test

everything at once, parts should be tested as they are completed. In this

manner, if a problem is detected at an incremental test, usually it can be

solved without greatly impacting cost and schedule. However, if a component is

found to be defective during acceptance test, the entire project would likely

be adversely affected.

Problems in the management process are further compounded by the demand to

adhere to often unrealistic development schedules. These demands not only

allow insufficient time to solidify requirements but also Insufficient time for

the actual design to be completed at a detailed level. Thus, coding often

begins even before the design has been approved. To alleviate these problems.

2-14

it has been recommended that schedules should be driven based on historical

data and similar sized programs. If schedules are to be defined in this

manner, the necessity for having an experiential or historical data base is

even more evident.

However, the problem of unrealistic schedules cannot be assigned

completely to the government. For contractors, in RFPs, readily concur with

government plans in attempts to win contracts. It isn't until contracts have

been awarded and development undertaken that the unreality of a schedule

becomes publicly known. And by then, unfortunately, it is often too late to

amend.

Schedules, if they are to perform their required functions, must not be

prepared based on what the user or procuring agency believes or wants it to be,

but instead on a realistic evaluation of the current effort in view of previous

undertakings of similar dimensions; historical data or past experiences are

essential ingredients. If through investigation and the development of a

lifecycle cost model it is ascertained that a proposed schedule cannot be met,

then this information can be made known prior to a point of no return, and

alternate schedules can be implemented.

This problem is further compounded when the RFPs are disseminated because

contractors are expected, if they hope to win the contract, to write proposals

detailing schedules, manpower, and methodologies within a certain, often

inadequate, tlmeframe. It is highly unlikely, without advance information,

that contractors, in what is essentially an overnight proposal, can accommodate

sufficient analysis, evaluation, and trade-offs. Within these time and

informational limitations the result is often a proposal, as one contractor

explicitly stated, steeped in a little more than plain science fiction.

2-15

Indeed, the plans set forth in the best proposals rarely bear the slightest

resemblence to the finished product.

To alleviate this situation, software industry representatives have

recommended submitting the RFP to a non-bidding contractor or independent cost

and planning estimator. This contractor would then prepare a proposal as if he

were attempting to win the contract. However, since the contractor is

ineligible to actually compete, his cost estimates, time schedules, and

technical discussions and approaches will perhaps be more realistic, having

been prepared from a different perspective than those of competing contractors.

If the resulting proposal is within the time, budget, and technical factors

previously ascertained by the government, then the non-bidder's proposal can be

used to compare competing proposals and actual contract performance after the

proposal period has ended.

F. SOFTWARE LIFECYCLE COST ESTIMATING

1. Government, and to a large extent industry, has little
understanding of how to estimate software development cost
and schedules with any quantifiable degree of confidence.

2. The current state-of-the-art in cost estimating has as its
basis the number of instructions and cost per instruction.
Cost per instruction varies with system complexity and
ranges from $3.00 per instruction to $250.00 per
instruction, and is by itself a poor measure. It is
difficult to estimate the number of instructions prior to
design. Estimating "horror stories" are well known but
government and contractors have not become any better at
it.

3. Available cost estimating models are rarely used by the
government because of their cost and government and
contractor's inability to qualify output.

4. Standards do not adequately address the lifecycle; for
example, can software maintainability be quantified and
placed in a standard?

2-16

5. The current state-of-the-art in cost estimating is more art
than science. A need exists for a set of cost estimating
metrics that are consistent with the level of detail or
phase in which the project is currently involved. Software
cost estimating techniques, although primitive at this
time, have been developed for use in cost estimating the
implementation phase (phase following design). Little or
nothing has been done for the other phases.

6. The further a system is from the implementation phase, the
higher the risk of cost estimating. When doing cost
estimating, the uncertainty of risk is a function of how
far away the system is from being implemented. Currently,
budget estimating is done years in advance of system
implementation.

7. There is a lack of understanding of how to estimate
software costs (cost estimating accuracy is directly
proportional to an understanding of the problem). Accurate
cost estimation requires good requirements analysis and
design — both are currently lacking.

8. Cost cannot be accurately estimated until a design is
complete. In today's environment, neither the government
nor the contractor can reasonably estimate the cost of a
system prior to design.

9. Congress establishes program development budgets without
the knowledge that program costs cannot be accurately
determined until after design. In addition, the estimates
they receive do not include accurate estimates of the total
lifecycle costs, with the net effect that programs meeting
requirements appear to be overruns, when in fact the case
might be that the programs are meeting "realistic" budgets.

Program budget estimating is grossly inadequate. Budget figures are

estimated years before the true software development costs are known. Industry

representatives agree that the further one is from the implementation of a

system the more uncertain one is of a cost estimate. They seem to agree that

an accurate cost estimate cannot be developed until after the design of a

system is complete, has been validated, and critical design areas are

prototyped.

2-17

However, this means that in most development programs accurate cost

estimates cannot be developed until more than three years after the original

estimates were made. Industry representatives also feel that the budget

estimates fail to include all the factors that can impact cost and schedules

(i.e., security constraints) and rarely encompass total lifecycle cost (i.e.,

maintenance).

A key factor in preparing cost estimates for budgets and subsequently for

contract support, and one which is still in the infancy stage of development,

is software cost estimating aids. With these aids, the government and

contractors will be able to develop more adequate cost, schedule, and quality

tradeoffs, and hopefully come up with more reliable front-end estimations. The

software cost estimating aids, if carefully prepared, can also provide better

management tools for in-process predictions and control. RCA's Price-S, the

Putnam cost estimating model, and variations on both of these have been the

primary aids assessed by the software industry representatives.

The current state-of-the-art in cost estimating models is predicting the

number of instructions for a particular system and estimating factors such as

complexity, productivity, computer resources available, experience with

developing similar systems, etc. This estimating cannot be done with any

degree of confidence. It was recognized that there is a need to define a set

of software metrics that could form the basis for better cost estimating. It

was recommended that the government start initiatives in this important area.

By underestimating required products and legislating unrealistic

schedules, both cost and productivity suffer. It is to these two areas, cost

and productivity, that current software cost estimate models are aimed. The

lifecycle costs of software are divided into three periods or phases of the

2-18

total acquisition and development process: (1) operation which includes

reliability, correctness, efficiency, integrity, and usability; (2) revision

which includes maintainability, flexibility, and testability; and (3)

transition which includes portability, reusability, and interoperability.

However, all software lifecycle models are subject to a plethora of

difficulties. For example, although there is a high correlation between the

number of instructions and the final cost of a product, it is extremely

difficult to ascertain the precise number of instructions at the outset of a

program. Also, few opportunities exist to examine the conditions which affect

a program before making estimates. In the collection of cost data, there is

little uniformity with the result being that the cost data collected is often

incomplete. Another problem which adversely impacts the accuracy of software

lifecycle models is that little attention is given to the time span of a

proposed program and a clear understanding of what is maintenance and what are

enhancements.

Although it is difficult to isolate and quantitatively measure the impact

of problems which influence software cost, these factors must be identified if

aids like a software lifecycle model is to perform its required functions. It

must be noted that factors affecting lifecycle cost models are never constant

from one program to another.

Although currently available cost estimating models are admittedly

imperfect, it was generally suggested that the government should use them as

one input to developing cost estimates. However, caution was expressed in this

recommendation.

Estimates of 60% to 80% of lifecycle cost were presented as being spent

after the system is built, not in building it. These cost are due to errors in

2-19

the specification of requirements, deficiencies in design, and/or errors in

coding. The earlier the error is introduced the more costly it is to fix due

to the rippling effect. Since pertinent data is not kept on software

development programs, and that which is kept is suspect, it is difficult to

determine exactly what is happening.

As a starting point for employing a software lifecycle cost model,

the importance of maintaining an historical data base or library is readily

apparent. For example, if a contractor has information in his possession which

reflects previous in-depth program experience, this information may be put to

use as input for deriving current and future lifecycle costs. Also, in

preparing a lifecycle cost model, separate estimates of all software must be

obtained. These results can then be documented and examined in accordance with

such things as instruction count, similarity/transportability, and development

time. Using these variables, several models can be run and the results audited

and compared to previous estimates.

G. HARDWARE CONSTRAINTS

1. The use of government-specified hardware, in some
instances, unnecessarily constrains contractors and
definitely impacts cost, which at present is not fully
understood. This requirement also eliminates contractors'
proposals for possibly better and more cost-effective
hardware/software combinations.

2. The government often uses standardized hardware without
consideration of cost impacts on software development. Any
hardware deficiencies/limitation3 must be made up by the
software regardless of the fact that software is generally
much more expensive than hardware. Sometimes physical
limitations prevent software developers from building
systems to meet stated requirements, or from building
systems economically.

3. GAO contracts for hardware to be bought, often years in
advance of actual use, regardless of what kind of
software/application it will be used for; thus failing to
fully exploit new technologies as they become available.

2-20

4. Use should be made of the incixpensive availability of
"computational plenty" to build systems; it is very
expensive to "shoe-horn" software into minimally acceptable
hardware configurations, particularly since hardware is
less expensive than software development.

Current GAO hardware procurement practices, software industry

representatives feel, unnecessarily constrain software developers. Hardware

and software are purchased separately, sometimes years apart. Since hardware

is usually procured first, unmindful of its eventual use, software developers

are forced to fit the hardware available. Since the cost of software is

generally much greater than that of hardware, software costs are increased even

more when hardware is dictated. The problem is further compounded because in

these mass GAO buys, new technologies are rarely considered.

With the rapid rise in the cost of software and the advancements in

technology, software industry representatives recommend that hardware be

procured to fit specific software. Also, a software contractor may be able to

offer a more cost-effective hardware/software combination for a particular

application. Software industry representatives believe these recommendations

would not only reduce costs, but also update procurement procedures to keep

pace with current situations.

H. CONTRACT TYPES

1. Often contract types do not fit the C3I environment. For
example, it is not possible for the government to develop
the detailed specifications required for firm-fixed-price
contracts in an environment of constantly changing
requirements.

2. The government needs to rethink the process of procuring
systems in "packages." "Package" systems include data
collection and analysis through testing and maintenance of
the system. In a "package" system, problems in one phase
of development have a rippling effect in subsequent phases

2-21

of development, causing these subsequent phases to be
short-changed, thus impacting the completion of original
requirements.

3. Contracts do not permit the construction of test tools
because of prohibitive cost. Software tools, because they
interface deeply into the code, are single-project
oriented, and if they cannot be used on more than one
development, the government doesn't want to pay for them.

4. Software is never truly free of discrepancies and,
consequently, clauses that say all discrepancy reports will
be cleared up before acceptance are not reasonable. Such
clauses should read that all critical discrepancy reports
should be corrected before delivery, but some reasonable
number of minor discrepancies may remain.

In the acquisition stage of the overall process, many of the software

industry representatives made recommendations concerning the types of contracts

that should be employed on various developments. Specifically, it has been

suggested that Fixed Price contracts should not be used on development

programs. Indeed, several contractors asserted that C3I systems, because of

their uniqueness, are not conducive to Fixed Price contracts at all. Often in

performing Fixed Price contracts, the contractor necessarily focuses on the

cost of the development, while the customer, quite rightly, is more concerned

with the progress of the development. This division of primary interests

results in products limited to strict interpretations of the specifications,

and products that do not change with changes in requirements.

In developing C3I systems, software industry representatives feel that

cost-type contracts should be used. Only when the job is clearly production

work should Fixed Price contracts be employed; that is, when the work is low

risk, the requirements are firm, and no R&D is involved. Some of the software

industry representatives futher recommended, for the development of C3I

systems, that cost plus incentive contracts be used, and that the contractor be

2-22

involved in determining exactly what the incentive should be. Thus, the

contractors will become directly responsible for the terms of contracts and

perhaps have a greater vested interest in the contract's successful completion-

However, one facet of the cost-type contract is of concern to software

industry representatives. Specifically, the current practice of negotiating

Best and Final on a cost-type contract among a number of contractors often

leads to significant cost and schedule overruns. When contractors are

solicited to submit Best and Final proposals, they must reevaluate their

initial cost and attempt to further reduce it. However, the margin for

reevaluation is often extremely narrow, and the final costs are, therefore,

unchecked by any cost-realism criteria. Proposals rarely capture precise cost

data. Combine this with the narrowing process prevalent in Best and Final

negotiations and the results can be catastrophic to the project. To circumvent

these difficulties, software industry representatives have recommended that,

first, a winning contractor should be selected and then negotiations for Best

and Final costs should be conducted. If done in this manner, the contractor

will be more reticent about trimming costs below the level required to

successfully complete the contract.

I. SECURITY CONSTRAINTS

1. Restrictive security requirements impact software
development costs but are rarely considered in cost
estimating and schedules. There is also a lack of
consistency in government clearance procedures which
results in unnecessary delays in transferring contractors'
clearances among agencies/services.

2. The shortage of cleared personnel makes them valuable
commodities, and as such they are susceptible to lucrative
offers from competitors. When these personnel leave,
valuable expertise is removed from projects and
productivity suffers.

2-23

3. While awaiting clearances or billets, personnel are not
productive.

4. The government is not flexible in moving people off of
projects. Many projects require that the work be done at a
government site and clearences are, therefore, necessary.
Also, because of security requirements, personnel are
assigned to a project for its duration. When the project
is over, they don't want to go to another classified
project for fear of being "pigeon-holed" again.

As a further inhibition to the timely and cost-effective completion of

contracts, software industry representatives identified problems with the

current personnel clearance process. Specifically, there are insufficient

intra-agency agreements on standards for the investigation or authorization of

security clearances. Consequently, when a vendor is awarded a contract, work

cannot begin until the required personnel have been cleared by that particular

agency despite the fact they may have been cleared by another. This can be

costly for the contractor and time-consuming for the government. This is

extremely frustrating when special-access billets are necessary and only a

certain, usually insufficient, number exist. When the project is over, the

billets are once again lost and the contractor must repeat the entire process

for subsequent efforts.

In examining these security requirements problems, software industry

representatives suggested that the process can be substantially expedited by

questioning the classification of certain aspects of projects. For example, if

system is to handle special access information, is it absolutely necessary to

require special access billets for personnel designing the system? All too

ften special access clearances are required needlessly, causing long delays

before work can begin. Furthermore, adJing an unnecessary requirement for

special access clearances compounds the problem of locating qualified personnel

in an already desperate shortage of experienced people.

2-24

a

o

SECTION III

CASE HISTORIES

A. SUMMARY OF CASE HISTORIES

The case histories contained in this section are representative of the

widespread problems associated with software development projects. SADWG

selected these particular case histories, which range in value from $100,000 to

millions of dollars, to emphasize that virtually identical problems occur

regardless of program size. Two of the case histories were extracted from a

GAO report studied by the SADWG.1/

B. OVERALL EFFECTS

1. Programs were cancelled after expenditures of millions of
dollars with little usable results.

2. Programs ran out of money before work was completed causing
more dollars to be budgeted than originally planned.

3. User requirements were not satisfied at all, partially
satisfied and/or systems delivered late, thus Impacting
important operational production.

4. The government and contractors wasted a great deal of
manpower and years in developing systems that were either
marginally effective or, in some cases, didn't work at all.

1_/ Contracting for Computer Software Development —
Services Problems Require Management Attention to Avoid Wasting
Additional Millions, a Report to the Congress Prepared by U.S.
GAO, Nov. 9, 1979.

3-1

DOCUMENTATION STANDARDS

1. Because documentation standards were deficient, the scope
and content of some technical documents became points of
contention between the government and contractors.

2. The documentation standards specified at contract award
were replaced with a more comprehensive standard calling
for greater detail. However, the contractor had already
prepared documentation under the old standard, and thus was
required to redo documentation. This double standard
resulted in a six month delay and an increase in cost, in
addition to causing other phases of the program to slip.

3. Government and contractor personnel were unable to reach a
common understanding of the scope of the design plan,
causing major program problems.

4. The government, because of schedule pressures, eliminated
documentation essential to successful software development.
In some instances, the government incorrectly scheduled

the delivery of documentation.

REQUIREMENTS DEFINITION

1. Requirements were too general and were therefore open to
subjective interpretation.

2. The government failed to acknowledge that design
requirements were inadequate. Well defined requirements
did not become available until one year after contract
award.

3. No clear understanding of the required capabilities existed
between the government and contractor before design and
implementation started.

SOFTWARE UNIQUENESS

1. Neither the government nor the contractor were able to
estimate with any quantifiable degree of accuracy the
amount of software (lines of code) to be developed.

2. Government managers and contractors often underestimated
levels of development complexity with the result that both
cost and schedules were impacted.

3-2

3. Difficulties were experienced in measuring progress in
software development and assessing the status of the
development.

F. SOFTWARE DEVELOPMENT MANAGEMENT

1. Government personnel, although technically competent, were
inadequately trained, ill prepared, and understaffed to
manage complex software developments.

2. No aids or tools were available to assist government
personnel in managing software developments.

3. Unrealistic government schedules for the development of
operational systems caused pressures and compressed
activity to the extent that many essential management and
technical reviews and validation steps were eliminated.

4. Both government and contractor management were inadequate
for the complexity of the programs involved. Often, only
a single design review was scheduled for the life of a
lengthy contract.

5. To meet government specified (unrealistic) schedules, high
risk approaches to development were initiated. These
approaches subsequently failed because neither the
government nor the contractor knew how to manage them or
comprehend the level of risk.

6. Government managers were unable to track programs and as a
result always found themselves in reaction modes (reacting
to adverse situations which have already occurred) rather
than in planning nodes (making decisions before adverse
situations occur and thus avoiding them). However, few, if
any, tools or aids were available to assist government
managers. In one instance, the government was totally
unaware of the level of complexity required for system
integration, and a preliminary design, subsequently,
described as "woefully inadequate," was produced. This
situation caused major problems for the entire program.

7. As a result of grossly underestimated costs, the
government, at contractor selection time, changed the
primary evaluation criterion from technical excellence to
cost. The project failed.

8. At one point in a contract, open action items totaled over
100, with approximately 25% six months old or more.

3-3

G. SOFTWARE LIFECYCLE COST ESTIMATING

1. Both the government and contractor grossly underestimated
cost and schedules. In addition, many cost factors were
either inadequately considered or, in some instances,
totally ignored.

2. A clear understanding of the GFE required for the program
did not exist between the government and the contractor.
It was also unclear whether the contractor was capable of
actually completing a successful system.

3. Lifecycle costs were based to some extent on estimated
number of instructions which, in all cases, was estimated
extremely low. For example, in one case, instructions were
estimated at 30,000 lines; the last estimate before
contract termination was 275,000 lines of code. In another
case, for a single component of the system, the estimate
was 17,000 — 200,000 lines of code were eventually
generated.

4. The software cost for one project began at $7M. Within
seven months, the cost was at $9.3M and still rising — a
$2. 3t4 overrun.

H. HARDWARE CONSTRAINTS

1. Because the government specified hardware was inadequate
for the proposed system, the software had to be modified to
compensate for hardware deficiencies. This situation
resulted in substantial increases in software development
costs and schedule delays.

2. Rigid government hardware specifications contributed
significantly to the degree of complexity required to
successfully complete the project (i.e., 96K core memory
was provided, 416K core memory was required).

3. The government had an inadequate understanding of the cost
of hardware versus software and, therefore, failed to make
cost-effective design trade-off decisions. Software
development costs much more than hardware.

I. CONTRACT TYPES

1. Because the government and contractor inadequately assessed
the risk involved in the project, an inappropriate type of
contract was selected for the work. As a result, the
government and contractor based subsequent decisions on a
faulty foundation and the project failed.

3-4

2. On one project, the selection of a Fixed Price Incentive
type contract should not have been made because the risk
level was too great. Problems resulting from this poor
selection of contract type caused major problems for both
the government and the contractor.

3. On another project, the selection of a Cost Plus Incentive
Fee contract with schedule slip incentive (which was
extremely steep) caused excessive schedule pressures. To
meet these pressures, the contractor adopted a high risk
development approach (software development parallelism),
and the project failed.

4. In the Project Management Plan, the government set hard
dates for certain milestones (i.e., IOC), predicated on a
specific contract award date. However, the contract award
date was five months late and the milestone dates were not
changed. Although it was impossible to meet the milestone
dates, substantial pressure resulted from efforts to meet
them. B

5. Budget related fiscal year pressures caused the
government, in some instances, to begin projects without
proper planning. As a result, both the contractor and the
government started off on the wrong foot.

SECURITY CONSTRAINTS

1. The impact of security requirements on cost, schedules, and
quality of products was not clearly understood by the
government and contractors.

2. Billet transfers between agencies took substantially longer
than expected.

3. A sufficient number of SI cleared personnel with the
required technical backgrounds were not supplied to the
project at appropriate times.

4. Because background investigations took longer than
anticipated, critical personnel were not available when
needed.

3-5

CASE HISTORY I

A. PROJECT SUMMARY

The government contracted for the design and implementation of a large

data processing system that would automate field station handling of

time-sensitive data to include identification, selection, extraction,

preparation, and dissemination of product and technical information to tactical

consumers. The contract was awarded in February 1976 and terminated in October

1978, after an expenditure of almost $13M. The original contract price was

$9.2M. The hardware developed and integrated by the contractor operated

properly and could be used by other government agencies. There was little, if

any, usable software delivered.

B. CONTRACT PERFORMANCE

The government awarded the contract in February 1976, exactly one year

after work began in developing the Functional Requirements for the proposed

system. The budget of $10.9M for contractor assistance was approved in June

1975. The government admits that they were under heavy time constraints, and

because of this pressure produced an inadequate Functional System Description

(FD) that was used as input to the subsequent Purchase Description (PD)

document. Likewise, a System Acquisition Plan (SAP) was not prepared.

However, in June of 1975, a draft PD of the system was given to seven

prospective bidders; the completed PD was distributed in August 1975 with the

RFP. Four responses to the RFP were initially evaluated as follows:

BIDDER COST $(M) SCHEDULE TECHNICAL

Contractor A
Contractor B
Contractor C
Contractor D

9.9
13.7
26.6
27.8

June 1977 Unacceptable
August 1977 Acceptable
September 1977 Acceptable
April 1978 Unacceptable

3-6

The government had questions concerning proposed technical solutions of

the offerees, and after these questions were clarified felt that Contractor A

could be made technically acceptable through negotiations. Contractor A was

awarded the contract because the government felt that the difference in

Contractor B's technical approach was not sufficient to justify the added

investment.

The source selection panel showed concerns, which were ignored, in the

following areas:

o Contractor A's technical proposal lacked detail concerning
hardware implementation.

o Contractor A's technical proposal lacked detail in the
software approach to the problem solution.

o Although Contractor A proposed a schedule to match the
government's request, government personnel estimated that
Contractor A would be six months behind in meeting it.

o The Evaluation Panel was concerned that Contractor A was
"buying in" to the particular business area.

The government, in selecting Contractor A, had certain problems,

inconsistencies, and pressures. For example, the source selection was

inconsistent with the selection criteria. The RFP stated that the award of

contract would be based on the best overall evaluated proposal consistent with

the evaluation factors listed, and the contractor must be rated "acceptable."

Cost was the least important of the evaluation factors stated in the RFP.

However, the government changed its selection criteria and omitted certain

procurement steps as illustrated by the following:

1. The contractor chosen (Contractor A) was initially evaluated as

unacceptable. Contractor A's offer was the least desirable technically.

3-7

2. Before the selection process was completed, cost (price) replaced

technical excellence as the prime selection criterion. However, no change was

made in the RFP as to priority of criteria, and the bidders were not notified.

On the basis of the new criterion. Contractor A was selected because Contractor

B and Contractor C's technical superiority were not commensurate with the

difference in cost.

3. Even though this was Contractor k'a first effort in the particular

application area, a formal pre-award survey was not accomplished.

In addition, the government had a budget problem. Their Independent

Government Cost Estimate (IGCE) of $10.9M was grossly inadequate. It was based

on earlier inapplicable estimates. The IGCE cost estimate favored Contractor

A, because although the government believed Contractor A's ($9.9M) estimate was

low, it was closer to the IGCE cost estimate than other bidders. It should be

noted that the estimate was developed prior to PD preparation and was not

updated.

A Fixed Price with Incentives (FPI) type contract was chosen by the

government because the technical risk in developing and integrating the

software was considered low. The incentives were negative incentives

concerning the schedule requirements. This was done despite a slip of five

months in the Contract Award Date. The award date was important to the

government because of specified "fixed" milestone dates. For instance, the

integration and test completion and the IOC milestones did not change from

those originally indicated in the Project Management Plan schedule even though

the contract was awarded later than anticipated.

3-8

There were also conflicts in the scope of the effort (lines of code to be

written), hardware constraints (noted by all offerees except Contractor A), and

confusion as to the amount of change to existing software which was not cleared

up prior to start of contract.

At the time the contract was terminated, the government had estimated that

an additional $12M would be necessary to complete the development.

C FINDINGS

The findings presented below are the major reasons the government

terminated the contract.

1. The Purchase Description (PD) was deficient and caused problems on

the contract. The following critical issues were found to be contributing

factors:

a. The document was drafted without benefit of supporting documents

such as a concept of operations. Therefore, it was difficult for the

contractor's software designers to understand the operational

mission.

b. Additional requirements were added during the PD preparation

which were never a part of the functional system description.

c. A very tight schedule did not provide the opportunity to review

and validate the PD before issuance.

d. The PD contained rigid hardware specifications coupled with

general system performance specifications, producing inconsistencies

and contradictions.

e. System hardware selected was a complicated amalgamation of two

minicomputers (PDP-ll's) operating in a dual mode, a different

minicomputer (TI 960) driving a display and an in-house developed

3-9

microprocessor. The system used four different programming

languages. This level of complexity, and its impact on cost and

schedules, was not well understood.

2. The magnitude of the required software development effort was

underestimated by both the government and the contractor, causing schedule

delays and severe cost growth on the contract. The government and the

contractor were unable to estimate the size of the effort with any degree of

confidence, as can be seen from the following factors:

a. There were inconsistencies and confusion in the number of lines

of code required. At contract award, the contractor estimated 30,000

lines of code, and the government believed that the contractor was

estimating 60,000 lines of code. However, the government had

independently estimated that 110,000 lines of code needed to be

developed. Prior to terminating the contract, the contractor

estimated that 275,000 lines of code would have to be written and

integrated with 265,000 previously available lines of code, for a

total software package of 540,000 lines of code.

b. The contractor underestimated the modifications required to

available software (operating system for two directly coupled

mainframes. Data Base Management System, and Terminal Interface

Program). The need to modify this software was known to both the

government and the contractor prior to contract award; the contractor

believed he only had to make minor modifications to the software.

"Minor" was never clarified. However, the contractor was required to

make major modifications, and expend resources not originally

planned. In addition, because of these major modifications the

3-10

software was now hand-tailored and non-standard, and the effect of

the Increase on llfecycle cost was not considered.

c. Premature hardware specification by the government contributed

to increasing the difficulty of software development. For example,

although a 96K core memory was initially considered necessary, six

months into the contract, the contractor determined that 96K. was not

enough and a change order for 320K of additional core was executed.

During the competitive phase, other contractors had claimed that 95K

was insufficient. The issue was left unresolved.

3. An unrealistic schedule produced schedule pressures that caused

higher risk approaches to be taken. The related factors are as follows:

a. An overriding issue was the insistence by the government to

acquire operational capability as soon as possible. This schedule

pressure caused elimination of required documentation such as the

Concept of Operations Plan, the System Acquisition Plan, and a fully

developed Functional System Description. In addition, because of this

pressure, normal checks and balances such as a Preliminary Design

Review were omitted, and the PD analysis and validation was

deficient.

b. Prior to award, the acquisition team recognized that a 4-6 month

schedule slip could be expected of the contractor. Three of the four

bidders (the winning contractor was the exception) expressed

disagreement with the specified government schedule (despite very

strong statements in the RFP of the government's desire to stick to

the schedule). However, despite available contradictory information,

the government contracted according to its original schedule.

3-11

c. Because of the tight schedule, the contractor developed a high

risk approach of software parallelism to meet the schedule. This

risk was improperly assessed.

4. The development effort was performed using a Fixed Price Incentive

Fee (FPIF) type contract — the wrong type of contract for the effort for the

following reasons:

a. Substantial software development was involved.

b. Significant and difficult system integration was required.

c. The PD contained many general requirements that proved to be

subjective or open to much interpretation.

5. The contractor's management was inadequate during the critical first

year of the contract. Even though the contractor believed he had an eKcellent

system of internal management reviews, he acknowledged that such was not the

case on this contract during the Initial stages. The contractor and the FDR

team stated that the contract, during the first ten months, was managed in a

"cost-plus" mode. The contractor made a major mistake in accepting the

contract as a FPIF; the risk was too great. The contractor also had other

management problems, as can be seen from the following:

a. The contractor did not question or challenge any part of the PD

prior to award, because he thought by doing so he would lose the

contract. As a result, the contractor made too many incorrect

assumptions.

b. The contractor believed the government had accomplished a system

engineering design, but did not check or validate this design.

3-12

c. The contractor had considerable difficulty understanding the

government's direction and guidance on the status of certain contract

amendments.

d. Because of perceived clearance problems, the contractor believed

he did not have the traditional program control mechanism to provide

necessary contractor management overview.

6. Government contract management functions were lacking. For example,

only one design review was scheduled throughout the life of the contract. In

addition, a major milestone (Software Design Plan approval) was missed in June

1976, yet the management attention of both the government and the contractor

was not focused on it until November 1976. It was also unclear whether or not

the monthly reports provided by the contractor were used in any meaningful way

by the government in the early stages of the contract. It became evident that

the internal organization reporting was deficient, and hastily and irregularly

prepared during the critical first year of the contract. Other management

deficiencies noted are as follows:

a. Acquisition team manning apparently was insufficient to provide

the necessary technical and contractual direction. At one point,

open action items totaled over 100, with approximately 25% six months

old or over.

b. The involvement of the Contracting Officer was minimal.

c. There was a lot of internal pressure not to make any changes

in the PD because of the fixed price contract. The government was

concerned about "change-in-scope" claims. The contractor stated that

this resulted in his inability to receive needed guidance on

inconsistencies in the PD.

3-13

d. Although it was a fixed price environment, the contractor

asserted that the government was performing micromanagement to the

detriment of the contract.

e. The contractor estimated a loss at completion of $7M on a $9.2M

contract in March 1977 (contract was terminated in October 1978), and

yet there was no strengthening nor augmenting of the government

acquisition team.

7. The government management of the effort was deficient and caused

confusion. The Program Management Plan attempted to overlay a program

management organization on existing line organizations. The resulting

management was a mixture of matrix and line management styles without a clear

definition of which took precedence. The degree of control was constantly

challenged. Other management problems identified were:

a. The acquisition team was technically competent; however, they

were admittedly untrained, unprepared, and understaffed for an effort

of this type. Upper management involvement was minimal during the

critical first year of the effort.

b. Separating fiscal control and internal reporting responsibility

from the acquisition authority produced built-in controversy.

c. Although senior management was kept aware of the status of the

program on a regular and candid basis, little action was taken to

address problems.

8. Government management of the software problem and use of software

expertise was not well exercised. The System Acquisition Team did not have

representatives from the software organization integrated with the team; they

3-14

were simply called upon to help. Members of the acquisition team, while having

varying amounts of applications programming experience, were limited in their

system software experience. The contractor believed that the government

acquisition team did not perceive the size of the problem, and, as the

magnitude of the software job became apparent, the government took no

extraordinary steps toward enhancing its software expertise on the team.

Furthermore, nine months into the contract, the contractor performed a number

of system studies which produced a fairly consistent answer on the number of

lines of code required (270,000); yet again, the government did not exercise

any augmentation on the software team. The project had reached the point where

very little progress was being made relative to expenditure of resources.

9. Software documentation standards were deficient, contributing to the

continuous controversy of the adequacy of the contractor's System Design Plan.

The contractor and government could not reach a common understanding of the

scope of the Design Plan, which resulted in significant problems. The

documentation standard specified, LYN-6-70021A dated 10 December 1971, was much

less comprehensive than other standards available at the time (e.g.,

MIL-STD-490 and DoD Instruction 4120.7). In addition, the Final Computer

Software Design Plan was not scheduled for delivery until the actual system was

delivered — far too late in the project.

10. The contractor had problems in obtaining a sufficient number of

cleared personnel to work on the project. He failed to account for even normal

clearance lead-times in agreeing to a software design plan 90 days after

contract award. Therefore because of clearance problems, an adequate base of

critically needed expertise was unavailable, causing the contractor's

performance during the early steps to be subpar. Although the contractor

3-15

believed that the clearance processing time delineated below would be followed,

he had no substantial basis for this belief:

a. 120-150 days for persons who had no active SI clearance or

existing EBI.

b. 45-60 days for people identified to be expedited.

c. 60 days for those who had an existing EBI but no SI access.

The misunderstanding was further compounded in obtaining clearances for

personnel identified to be expedited because:

a. The contractor requested that 35% of his personnel clearances be

expedited, vice an expected norm of 10%.

b. There was general Increase in the average processing time

experienced at DIS for BI's.

In addition, clearances for the contractor's employees indoctrinated SI on

other agency's billets took an exceptionally long time to be granted by the

contracting agency.

3-16

CASE HISTORY II

A.. PROJECT SUMMARY

The government contracted for the design and implementation of a large,

real-time data processing system characterized by extremely high data

processing input/output rates. The data was to be processed and reports sent

to consumers within one hour after receipt of input by the automated system.

In April 1973, the government signed a multi-phase, CPIF contract for

$9.1M. The contract overran by $15M and was late by about 3 years.

B. CONTRACT PERFORMANCE

The project began in September 1972. In April 1973, an RFP study phase

was submitted to three contractors, with the government only committed to doing

the study phase. At the conclusion of the study phase, the government

evaluated the results of the three contractors and selected one to continue

through design and implementation of the proposed system.

The study contractors responded with t'.ieir interpretations of the problem,

design and code of critical algorithms, hardware configurations, and cost and

schedule estimates. The study contractor selected to continue was evaluated

on its past performance and management techniques. In retrospect the

government did not pay enough attention to evaluating the extent to which the

contractor was performing testing of software at the various development phases

and overall development methodology.

Also, the government continued gathering additional problem definition

data during the study phase, but elected not to present it to the study

contractors. This decision resulted in the hardware being selected before this

additional problem definition data was factored into the program. The hardware

3-17

resource margin was later discovered to be not enough to accommodate the

additional load. Therefore, the system design underwent changes during the

course of the contract, causing software problems and, subsequently, cost

iacreases. For example, it was essential to develop a dynamic file management

subsystem which had not been planned earlier. Also, there were many

modifications made to the operating system as a result of the additional

information and lack of original technical understanding.

The original estimate for software was about $7 million. At the

preliminary design review in November 1973, the contractor estimated a $2.3

million overrun in software which had already occurred by that date. This

generated considerable controversy. The surprise to the government was that

all three study contractors estimated approximately the same amount for

software development, and all three were incorrect (low). New specifications

were presented in May 1973, causing increased costs.

A problem arose regarding what to do with contractor personnel in phased

projects during the periods when government management is deciding how to

proceed. In this Instance it was felt that the contractor's study team was

small enough to retain and was able to proceed with work. In fact the team,

starting at 12 in number, expanded to 50 during this period.

The documentation standards being used were Inadequate. Therefore, in

January 1974, a military standard specification was injected which was very

useful in that it caused a point-by-point examination and established

testabilty of the system. This caused a slippage in the critical design review

to the summer of 1974.

3-18

The project had heavy penalties on schedules. The contractor pressured

the work force by expanding parallel activity, having smaller increments of

inspection, etc. In January 1975, the contractor projected an overrun, and the

government made a schedule relief offer which was turned down.

After a more vigorous review of the remaining work, the project was

rescheduled for another 6 months and delivery was set for November 1975.

Another overrun occurred. The project manager felt that adequate cost and

schedule information was received, but that techniques for inspecting this

information to detect problem areas were weak.

C. FINDINGS

The following points with regard to this case should be noted:

1. It was not clear until well into the program that the government had

the project under control.

2. The government and the contractor assumed that the problem was

state-of-the-art, as were the individual algorithms. However, system

integration vastly exceeded the state-of-the-art because of precision and speed

requirements.

3. The project was budget driven because beginning the contract during

the fiscal year was a driving force. The government felt that a more orderly

acquisition, unconstrained by fiscal year constraints would have generated much

more realistic target costs and eliminated some of the confusion and

misunderstandings that occurred at the start of project.

4. Although the government had clues of trouble early in the project, the

contractor did not acknowledge this trouble. The government believed that the

contractor recognized a messy situation, but assumed that plasticity of

schedules, costs, etc., would allow latitude to resolve them. The contractor

3-19

claimed that they did not believe that the schedule and cost were elastic. The

significant problems were: performing out-of-scope work on the promise of the

government's technical office to make the contract right after-the-fact, and a

significant underestimation of proposal time for the technical tasks.

5. Inadequate design requirements were a critical issue. Well-defined

requirements were not available until a year after contract start.

6. On the subject of incentive contracting, there were several critical

issues:

a. The pressure of incentive was great enough for the contractor to

agree to a price which was less than their estimate of the work.

b. On the subject of schedule-slip incentive, the contractor agency

must believe in its commitments. Yet, in this instance, for a

contract costing $100,000 per week, it was set up on the premise that

one week's schedule was worth $500,000 in overrun.

c. The schedule-slip incentive was so steep that it forced big

decisions to be made, rather then allowing for a series of smaller

ones.

d. The incentive fee structure constrained the contractor on

decisions for manpower loading.

7. The biggest flaw in the contract was pricing. The size of the

technical job was inaccurately estimated. Sizing was influenced by previous

experience on batch jobs, even though this system called for on-line

transaction processing activity. Although the entire system was estimated at

55,000 instructions, one component, estimated at 17,000 instructions, took

200,000 instructions.

3-20

8. There was too much inexperience, especially on the government side,

on incentive structures. The contractor also erred in applying incentives

based on batch projects on a transaction-processing project (which was new to

them in this instance).

9. No adequate definition of tha problem was made. Management

techniques were not vigorously applied until April 1975.

10. There were no government audits or walk-throughs exercised.

3-21

CASE HISTORY III

A. PROJECT SUMMARY

In this case, the contract was for the development of a major subsystem of

a large autooiated system designed to maintain and retrieve engineering data and

related Information to support the agency's engineering and procurement

function. The subsystem was designed to provide data to aid engineers In

reconstructing the original configuration of a major part of hardware assembly

before modifications were Introduced. The original cost and time of the

subsystem contract were to be $93,039 and 28 months. Contract modifications

and cost overruns Increased the final cost to $123,726 In 28 months.

B. CONTRACT PERFORMANCE

The contractor was to develop a formalized plan along with detailed

procedures for Implementation, as well as computer programs needed to establish

the subsystem. The subsystem was to be developed as a modification to an

earlier contract. The subsystem contract did not define standards or criteria

for measuring product quality. Timetables were provided within the contract

for completion of Individual requirements. Although no standard test data

package existed for acceptance testing, the contractor was required to

demonstrate the ability of the computer programs to operate and to correct or

replace any unsatisfactory work.

The software printed three reports. Agency officials stated that

requirements were Inadequately defined for one of the reports. A. contract

modification was required at a cost of $7,902 to correct this deficiency.

About 18 months into the contract period, a second modification was negotiated

which cost $19,044. Of this amount, about $10,000 was for correcting a

deficiency and the rest for adding another function. An agency programmer

3-22

stated that before the outputs could be used he had to write auxiliary computer

programs whose output supplemented the information shown on the

contractually-required reports.

Generally the contractor did not meet specified completion dates. The

agency delayed payments to the contractor for failure to meet the schedule.

About $3,741 was awarded to the contractor for cost overruns, bringing the

total amount paid over the original cost to $21,643, excluding the cost of

added functions.

System documentation seemed to be adequate, but the computer programs

themselves were not properly documented.

C. FINDINGS

The agency did not perform, or contract for, adequate system analysis

work. This is indicated by the fact that specifications were not adequately

defined to assure that the software would have the necessary capabilities.

Quality assurance and testing procedures in the contract were inadequate to

assure that the software would meet user needs without modification by agency

programmers. Documentation standards should have made program documentation

mandatory.

3-23

CASE HISTORY IV

A. PROJECT SUMMARY

The agency, which used non-uniform accounting systems, contracted for the

design and development of a centralized accounting system to increase

responsiveness, timeliness, accuracy, and to overcome inefficiencies in the

operation of 10 accounting offices within the agency. The cost and time spent

were estimated to be $958,682.40 and 27 months. After 30 months the system was

only about one-fourth complete, and the agency cancelled the contract.

Although the system was not complete, the agency paid about $981,200.

B. CONTRACT PERFORMANCE

At the time the contract was let, the agency had no formal design or

specification documents for the contractor to work from. The agency had

collected a list of concepts and standards which supposedly were the basis of a

conceptual design. The Cost Plus Fixed Fea contract obligated the contractor

to deliver a workable accounting system.

The contract called for three development phases. Each covered the

development of a major accounting subsystem, with the first phase to include

the overall system design. Each phase was further divided into conceptual

design, detail design, and implementation. The agency was to approve each

phase at completion. Under the terms of the contract, the contractor was to

develop a project control plan for such items as progress and cost reporting,

documentation review, and acceptance testing. The contractor was responsible

for formulating the criteria by which the agency would judge his performance.

The contract called for the contractor to submit proposed changes along with

the reasons for them to the agency for approval. The agency reserved the right

to make modifications it considered necessary to ensure that the system fit its

3-24

needs. System documentation requirements were fairly detailed, but guidance on

program documentation only referred the contractor to agency standards. No

subcontractors were involved.

In the first phase, the contractor was to develop a general design of the

overall system and also the design for one major subsystem. In the development

of this phase the contractor stated that he encountered two problems — (1) the

agency staff generally resisted the new system and (2) virtually none of the

existing accounting processes and procedures, which the new system was to

automate, was documented. When he submitted his report on the first phase, the

contractor assumed he could immediately start on the next phase, but agency

review of the report took about 250 staff-days. The contractor said that

agency delays and the low level of agency participation together added about

350 staff-days.

As the contractor entered the second part of the first phase, he still

encountered problems he blamed on (1) the poor quality of agency review and

agency staff participation, (2) agency indecision, and (3) agency changes in

direction. The contractor felt the changes deviated from earlier agreements

and that some of them could not be made. Some products were submitted for

agency approval three or four times. Disagreements arose over the amount of

documentation necessary, and the lack of existing agency procedures continued

to be a problem.

The contractor contended that the agency insisted on a system that was not

needs-oriented but one which was designed to satisfy many individual

preferences. To illustrate his point, he compared the excessive number of

management reports asked for in this system (188) to the maximum number of

reports (44) called for in four other agencies' accounting systems. The agency

3-25

director of systems admitted the general lack of direction and specifics in the

contract and stated that more definitive planning and guidance were needed to

let the contractor know what was expected.

To determine what, where, and how data would be stored and retrieved, the

contractor asked the agency to specify (1) the computer hardware to be used,

(2) the data base management system (DBMS) 1/ to be used, and (3) system

requirements, such as output reports and transaction coding. The agency took

about six months to provide guidance in these areas, and during that time, the

contractor proceeded to design conventional file structures and processing

routines.

When the agency finally decided on the DBMS, the design had to be

substantially reworked. The contractor said that even small changes generated

extensive reviews to determine all other areas which were affected and required

change. Of the six major reasons given by the contractor for overruns, three

dealt with changes that were constantly being made to both the requirements and

the operational environment and the impact those changes had on system

development.

1/A Data Base Management System (DBMS) is a computer software package which can

facilitate the management, manipulation, and control of data.

3-26

Agency officials maintained that the contractor's report reflected a general

lack of understanding of the job to be done, that deliverables were inadequate,

and that agency documentation standards were not followed. Conversely, the

contractor stated that agency staff assigned to work on the subject did not

understand the agency, its mission, or its needs.

After about 2-1/2 years, the agency had paid the contractor over $981,000.

The system was estimated to be only about one-fourth complete, and the time

frame had exceeded the original estimate by several months. At this point the

agency terminated the contract. The contracting officer said that the agency's

counsel had informally advised him that a precisely defined set of requirements

was never incorporated in the contract. Therefore, since neither party could

define the product, in their unofficial opinion, the agency could not force the

contractor to finish the system for the maximum cost allowed by the contract.

C. FINDINGS

Too many factors ware left to be subjectively determined outside the

provisions of the contract. This condition is evidenced by such things as

arbitrary changes, disagreements on various subjects, and the agency's

admissions that more specific requirements should have been given to the

contractor. These problems could have been avoided even if the exact

characteristics of the needed software were not known at the time the contract

was let.

First, user requirements, performance specifications, quality control

procedures, and documentation items required could have been specified in the

contract to establish a framework at the outset. Second, the agency should

have required the overall system design to be defined in a first phase to the

point that its adequacy could have been determined, approved, and frozen to

3-27

allow stable and systematic development before committing itself to the rest of

the contract.

Other factors which contributed to the failure of the contract included

the agency's failure to:

o Establish firm, realistic requirements and fix them.

o Render timely decisions and timely review of products.

o Promptly carry out responsibilities so that software
development was not delayed and so that the way was left
clear to invoke contract penalties against the contractor
if he failed to perform.

o Maintain adequate monitoring and tracking procedures which
would have avoided allowing the entire original contract
amount to be spent in the first of three development
phases.

o Define the user requirements served by the existing
accounting system.

o Create an environment which enhanced chances for success,
including consensus on agency needs, proper orientation of
agency staff, and provision of a strong focal point of
qualified agency staff to work with the contractor.

3-28

APPENDIX A

SUMMARY OF INDUSTRY COMMENTS

This appendix contains a summary of comments presented by industry to the

SADWG. These comments have not been quantified or qualified in any way, and

every attempt has been made to preserve the intent and accuracy of industry

views. For presentation purposes these comments are organized as follows:

o Overall effects of current policies and practices

o Problems

A. OVERALL EFFECTS OF CURRENT POLICIES AND PRACTICES

o Very few military software systems have been delivered on
original schedule, within original budget, meeting original
requirements, and achieving original cost-benefits.

o Every agency/service, in spite of the fact that there are a
number of policy directives like DoD 5000.29, establishes
their own. There is general misunderstanding by the
agencies/services of the intent of standards directives
like DoD 5000.29.

o Competitive procurements encourage contractors to offer
maximum technical effort for the dollars, with the result
that contractors skimp on providing important supporting
services such as management, configuration control, and
quality assurance. There are no guidelines as to
acceptable support requirements.

o Industry is discouraged by lack of results from the studies
conducted by the agencies/services concerning improvements
to ADP development practices. Industry has little
confidence in government doing anything because a number of
studies have been conducted and nothing has happened.

o Budget estimating for development systems is grossly
inadequate. Budget estimates are prepared long before it is
determined what is to be developed and the scope of
development.

A-l

Current state-of-the-art in cost estimating is more art
than science, for unless one can measure, quantify, and
process something, it isn't a scientific process, and this
we cannot do as yet.

Restrictive security requirements impact software
development costs, but are rarely taken into consideration.

The further one is from the implementation phase, the
higher the risk of cost estimating. When doing cost
estimating, the uncertainty of risk is a function of how
far away one is from being able to implement a system.
Currently, budget estimating is done years in advance of
system implementation.

Government program managers are either not trained at all,
or inadequately trained to manage ADP development programs.

Every agency/service does its own development to its own
schedules with little or no regard to transporting software
to other agencies/services with similar needs. Software
solving similar problems is developed over and over again.

Government is loathe to establish IV&V on programs unless
they are large and complex; thus, because of the lack of
adequate definitions for "large and complex," many systems
are developed without an adequate level of IV&V. If a
contractor bids an adequate level of IV&V in a competitive
bid, the chances are good he will not win.

The software industry is required to develop error-free
systems on a one-time basis. This is almost an impossible
task. Other industries such as construction, computer
hardware, tank building and ship building develop
prototypes. Although prototyping is an accepted practice
in these industries and in hardware development, software,
which is often far more complex, is rarely prototyped and,
if costed in a competitive bid, that bid is unlikely to
win.

Proposals are usually "science fiction" written to win
contracts. Because requirements are constantly changing or
ill-defined, the contractor very seldom delivers what was
originally proposed.

The government contracts for computers, in a mass buy,
irrespective of what kind of application they will be used
for. Any hardware deficiencies/limitations must be made up
by the software regardless of the fact that software is
much more expensive than hardware. Sometimes physical

A-2

limitations prevent software developers from building
systems to meet stated requirements, or from building
systems economically.

o A clear understanding of what is to be developed at the
time of budget estimating does not now exist. Cost cannot
be accurately estimated until after a design is complete.
Currently, the government has no procedures to adjust
budget estimates based on later findings, with the net
effect that programs meeting requirements appear to be
overruns when in fact the case might be that the programs
are meeting "realistic" budgets.

o Government does not want to pay for configuration
management/control, which is the one management
technique/tool that would provide the most improvement to
software development.

o The government does not take full advantage of software
transportability where applicable, hence the same software
is developed over and over again. Unlike hardware,
software costs are confined to the initial investment plus
maintenance.

PROBLEMS

1. Documentation Standards

o Virtually every government agency handles the
development of software using different standards
despite the fact that regulations such as DoD 5000.29
exist.

o Standards are not precise enough to eliminate
misunderstandings between contractors and the
government; for example, the level of detail in
documentation is often a question of interpretation.

o The vast number of different standards and guidelines
decreases the value of standards. It is impossible to
be familiar with all of them.

o Each agency/service (and smaller activities in many
instances) implement DoD standards in their own way.
This results in confusion for contractors, and
probably decreases the synergism possible throughout
all DoD.

A-3

2. Requirements Definition

o Requirements documents are usually too ambiguous or
vague, and subsequent documents produced from these
requirements are inadequate.

o Although technical people and system users may agree
on specific requirements, technical people find it
difficult to describe the system to be delivered in
terms of requirements and therefore exclude the user
in the process of translating requirements to final
system. This often leads to user dissatisfaction with
to delivered system because trade-offs were made which
the user either did not understand or, because he was
not part of the process, did not want.

o Requirements are constantly changing and often force
overruns; management doesn't know how to handle this
problem in relation to modifying original budget and
schedules. Not all modifications to original budgets
and schedules are overruns but are the result of
honest requirement changes.

o "Finished" requirements do not exist with military
software systems because they are constantly changing;
military software systems are never "complete."

o System developments are too long; C3I systems
generally have a development cycle of up to 14 years
before a system is operational. Other systems take
5-6 years. When things take this long, you forget
what you started out to do. Very few people remember
the initial requirements and the cost-benefits to be
derived. Because these development cycles are so
long, more often than not, requirements are obsolete
before the system is completed.

3. Software Uniqueness

o The government lacks the understanding that software
configures the whole system much like mortar between
bricks, and is much more expensive than hardware.

o Because software developments produce only paper from
the requirements phase through the coding phase, which
is often 2-3 years in process, software projects are
difficult to manage. This problem is compounded by the
government's lack of adequate tools to manage software
developments. Because of ill-management, deficiencies
in the software system often remain undetected until
the system is built.

A-4

o More than 60% of lifecycle costs are spent after the
system is built, not in building it. These costs are
attributable to errors introduced in the requirements,
design, and development phases that remain undetected
until the system test phase.

o Although prototyping is an accepted practice in
hardware development, software is rarely prototyped
and, if costed in a competitive bid, that bid is
unlikely to win.

o Because management fails to appreciate the importance
of adequate testing, design problems receive priority
and testing is kept to a minimum with resulting
consequences. Hardware is developed at the
manufacturer's site in a friendly environment while
more complex software is usually developed at the
customer's site in an often pressure environment.

4. Software Development Management

o Government ADP program managers are not trained to
manage ADP development programs.

o Government personnel are often unable to evaluate a
good design and relate that design to requirements due
to lack of technical depth and management aids.

o Many government managers often fail to make decisions
or consistently change their decisions, and thus
adversely impact contractor productivity.

o Government procuring agencies are inadequately staffed
(or lack technical support) to manage software
development efforts.

o Few records are kept concerning the history of past
programs that can be used on future programs—"lessons
learned." There are no guidelines for recording
this data at present, with the result that information
learned from past experience is lost.

o Government agencies spend the majority of development
funds on design, code, test, and maintenance, and
usually spend little money on verification and
validation, configuration management, quality
assurance, documentation, etc.

A-5

o There are no adequate tools for tracing requirements
through the development lifecycle, and no easy-to-use
process to determine the degree to which designs meet
stated requirements.

o The government attempts to foreshorten schedules
unreasonably, making on-time accomplishment of a
project highly unlikely, and is often unaware of the
risk introduced as a result of those actions.

o Industry does not have, nor will the government allow
(mostly because of security), integration, testing, or
configuration management groups across projects. Each
project is treated as a separate entity. The
government's reasoning is that each project is
different and, therefore, an overall group would be
inefficient.

o Competitive procurements encourage contractors to
offer maximum technical effort for the dollars;
however, by doing so, contractors tend to skimp on
supporting services such as management, configuration
management, quality assurance, etc., because the
government minimizes the importance of these efforts.

Software Lifecycle Cost Estimating

o Government, and to a large extent industry, has little
understanding of how to estimate software development
cost and schedules with any quantifiable degree of
confidence.

o The current state-of-the-art in cost estimating has as
its basis the number of instructions and cost per
instruction. Cost per instruction varies with system
complexity and ranges from $3.00 per instruction to
$250.00 per instruction, and is by itself a poor
measure. It is difficult to estimate the number of
instructions prior to design. Estimating "horror
stories" are well known but government and contractors
have not become any better at it.

o Available cost estimating models are rarely used by
the government because of their cost and government
and contractor's inability to qualify output.

Standards do not adequately address the lifecycle; for
example, can software maintainability be quantified
and placed in a standard?

A-6

The current state-of-the-art in cost estimating is
more art than science. A need exists for a set of
cost estimating metrics that are consistent with the
level of detail or phase in which the project is
currently involved. Software cost estimating
techniques, although primitive at this time, have been
developed for use in cost estimating the
implementation phase (phase following design). Little
or nothing has been done for the other phases.

The further away from the implementation phase, the
higher the risk of cost estimating (the uncertainty of
risk is a function of how far away the system is from
being implemented).

There is a lack of understanding of how to estimate
software costs (cost estimating accuracy is directly
proportional to an understanding of the problem).
Accurate cost estimation requires good requirements
analysis and design both of which are currently
lacking.

Cost cannot be accurately estimated until a design is
complete. In today's environment, neither the
government nor the contractor can reasonably estimate
the cost of a system prior to design.

Congress establishes program development budgets
without the knowledge that program costs cannot be
accurately determined until after design and, in
addition, that the estimates they receive do not
include accurate estimates of the total lifecycle
costs.

6. Hardware Constraints

The use of government-specified hardware, in some
instances, unnecessarily constrains contractors and
definitely impacts cost, which at present is not fully
understood. This requirement also eliminates
contractors' proposals for possibly better and more
cost-effective hardware/software combinations.

The government often uses standardized hardware and
programming languages without consideration of cost
impacts on software development.

GAO contracts for hardware to be bought, often years
in advance of actual use, regardless of what kind of
software/application it will be used for; thus failing
to fully exploit new technologies as they become
available.

A-7

o Use should be made of the inexpensive availability of
"computational plenty" to build systems; it is very
expensive to "shoe-horn" software into minimally
acceptable hardware configurations, particularly since
hardware is less expensive than software development.

7. Contract Types

o Often contract types do not fit the C3I environment.
For example, it is not possible for the government to
develop the detailed specifications required for
firm-fixed-price contracts in an environment of
constantly changing requirements.

o The government needs to rethink the process of
procuring systems in "packages." "Package" systems
include data collection and analysis through testing
and maintenance of the system. In a "package" system,
problems in one phase of development have a rippling
effect in subsequent phases of development, causing
these subsequent phases to be short-changed, thus
impacting the completion of original requirements.

o Contracts do not permit the construction of test tools
because of prohibitive cost. Software tools, because
they interface deeply into the code, are
single-project oriented, and if they cannot be used on
more than one development, the government doesn't want
to pay for them.

8. Security Constraints

o Restrictive security requirements impact software
development costs but are rarely considered in cost
estimating and schedules. There is also a lack of
consistency in government clearance procedures which
results in unnecessary delays in transferring
contractors' clearances among agencies/services.

o The shortage of cleared personnel makes them valuable
commodities, and as such they are susceptible to
lucrative offers from competitors. When these
personnel leave, valuable expertise is removed from
projects and productivity suffers.

o While awaiting clearances or billets, personnel are
not productive.

A-8

The government is not flexible in moving people off of
projects. Many projects require that the work be done
at a government site and clearences are, therefore,
necessary. Also, because of security requirements,
personnel are assigned to a project for the duration.
When the project is over, they don't want to go to
another classified project for fear of being
"pigeon-holed" again.

A-9

APPENDIX B

CANDIDATE LIST OF SOFTWARE DEVELOPMENT COMMANDMENTS

1. Stop putting design in the computer program (CP) requirements

specification.

2. Stop applying preliminary design review (PDR) standards to the CP

requirements specification.

3. Stop planning to enter full-scale engineering development (FSED) with

the intent of not completing the specification of CP requirements until the

time of preliminary design review.

4. Stop contracting for the parallel generation of CP design and

completion of CP requirements specification.

5. Stop permitting contractors to design before successful system design

review (SDR).

6. Stop letting FSED contracts with unbaselined CP requirements

specifications (CP allocated baselines not established).

7. Stop letting combined definition and development contracts which do

not require baselining (either by the government or contractor) of CP

requirements specifications before starting design.

8. Stop permitting contractors to code before successful critical design

review (CDR) with the exception of prototype code.

9. Stop letting FSED contracts which call for delivery of the Program

Design Specification (PDS), but not for the Program Description Document (PDD)

and Data Base Document (DBD), thinking that the PDS contains all the CP design.

B-l

10. Stop letting combined definition and development contracts which do

not call for delivery of CP requirements specifications until the end of the

development phase.

11. Stop issuing new or revised software acquisition/maintenance policy,

directives, standards, regulations and instructions by DoD or its components,

without first having them independently validated by two organizations which do

not develop or maintain software, and without having areas in controversy or

conflict with existing standards, etc., identified explained and justified.

12. Start issuing changes to resolve controversies, conflicts and errors

in existing software directives, standards, regulations and instructions.

13. Start spending more effort in software management training

(particularly for software contracting), to apply what is already known and to

preclude application of misinformation.

14. Start requiring, and paying for, software cost, error and similar

data from contractors, prepared to government standards (to be developed), to

support improved software research, prediction and management.

15. Start requiring, and paying for, current cost and schedule estimates

to complete development, based on data available at key development milestones,

e.g., at CDRs.

16. Consider funding parallel development contractors through, e.g., CDR,

with remaining development awarded to the one with "better" design,

documentation, projected costs/schedules, etc.

B-2

17. Stop issuing RFPs or contracts for software which have not been

reviewed by someone with training and understanding covering problem areas such

as those identified above.

B-3

APPENDIX C

MEASURABLE MILESTONES

1. Requirements Specification Complete

2. Systems Requirements Review Committee
Requirements Specification Signoff
Systems/Subsystem Specification Complete

Preliminary Design Review (PDR)
Systems/Subsystem Specification Signoff
Data Base Specification Complete

Critical Design Review (CDR)

CDR Rework Complete

For each program:

Unit Development Folder (UDF) Initiated
Internal Program Specification Complete
Design (Program Specification) Signoff
Internal Design Walk Through/Signoff
Code Initiated

Code Complete (Error Free Compile)

Internal Code Walk Through/Signoff

Unit Test Plan Design

Unit Test Plan Signoff

Unit Testing Started (Run Against Test Plan)

Debug (Recycle Until Successful Test Execution)

Unit Test Execution/Signoff

Program Maintenance Manual (PMM) Documentation Complete

PMM Signoff

Program Specification Updates Complete (As Built Documentation)

Unit Development Complete/Integration Ready Review.

C-l

