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Abstract

kny real-valued nonlinear function in 0-1 variables can be
rewricten as a multilinear function. We discuss classes of lower aand
upper bounding linear expressions for multilinear functions in 0-1
variables. For any multilinear inequality in 0-1 wvariables, we define
an equivalent family of linesr inequalities. This family coantains the
set of generalized covering inequalities defined by Granot and Hammer.
Several results concerning the relative strengths of inequalities within
this family are presented. An dlgorithm for the general multilinear
0-1 program is given, and computational experieace with the algorithm
appliaed to randomly generatad problems is discussed. The use of the

general procedure as an effactive heuristic for multilinear 0-1 programs

is also demons:ra:edﬂ




LINEARIZING NONLINEAR 0-1 PROGRAMS
by

Egon Balas and Joseph B. Mazzola

1. Iatroduction
It is well kanowa [16] that a real-valued function f(x) in 0-1
variables can be rewritten as & multilinear function in the same variables,

i.e.,

&)) £(x) = T a(nm x,), x, =00rl, iec U Q ,
jeN ji.cQj 1 t jen 3

where ‘j’ jeN, are real numbers, and 7 means product. Thus, without loss of
generality, when discussing noalinear 0-1 programs it is sufficieat to con-

sider the general multilinear program

maximize I 'Oj( m x,)

i
jeN, 16Qy,
(MLP) L a . (m x,) < b, kek
ij 1" = "k’
je, T ieQ,
x, = Qorl,i¢Q » U ij

keK U {0}
N
where all coefficients are integer. Further, without loss of generality we
may assume that the objective function ia (MLP) is linear, since it can always
be linearized by fintroducing & new (integer) variable z and amending the
constraint set K by one new constraint iavolving z (or its binary expansion)
and the nonlinear part of the objective function.
The subject of nonlinear 0-1 programming or 0-1 polynomial programming,

as it is sometimes called, has received a fair smount of attention in the

litersture (see for example [1-4, 10-16, 18, 24]). For a survey of the area,

see Hansen (19].
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Applications involving nonlinear O-1 programming arise in various
areas. Such formulations have been used in modular design {8], [9], capital
budgeting under uncertainty [21], project scheduling [22], cluster analysis
(23], diagnostic testing [20], media selection [25], etc. Naturally,
quadratic zero-one programming and the quadratic assigmment problem are
also examples of amonlinear 0-1 programs.

In this paper we present a new linearization for noanlinmear functioas
and inequalities in O-1 variables, that does not introduce new variables.

We then discuss an algorithm based on this approach, and computatiomal
experience with 1it,

We begin by introducing & family of linear (and affine) upper and
lower bounding functions for the multilinear function £(x). Several results
defining classes of such fuanctions are stated, and then properties of these
classes of bounding functions are discussed.

In the next section, we consider the multilinear inequality

(2) £(x) = £ a,(m x)<b,
v 310

where aj, jeN, and b, are integers, and introduce a family of linear !

inequalities which is equivalent to (2). This family subsumes the

generalized covering inequalities for (2) introduced by Granot and Hammer

(16]. We then investigate properties relating the strengths of inequalities

within this family, with the objective of obtaining a snaller cardinality
(or more compact) linesrization. We also discuss the use of this lineariza-

tion on certain classes of multilinear inequalities implied by (2) in order

to obtain alternate linearizations of (2). Various examples illustratiag

the fundamental concepts are presented.
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Following this, a general algorithm for solving multilinear 0-1
programs 13 presented in section three. This algorithm uses the new lineariza-
ticas introduced in section two, and it also has other new features.
Specifically, the effectiveness of the algorithm is greatly eanhanced by
the incorporation of a heuristic to obtain near optimal solutioas to the
0-1 linear relaxations at each iteration. Oace a heuristic solution to the
current linear relaxation is feasible to (ML), the algorithm switches
to an exact solution technique. However, at that point the procedure can be
terminated if desired, i.e., the procedure can also be used as a heuristic
to find "good" solutions to large multilinear 0-1 programs.

In the final section, we present computational results with three
different versions of the algorithm. 1Ia particular, a version which uses
linear inequalities arising from the new linearization of section two is
compared with one which utilizes oaly generalized covering inequalities,
like the procedure of Granot, Grasot and Kallberg [15] (see also [14]).

The version stemming from the direct application of the new linearizatioa is
found to be superior to the generalized covering approach whea applied to
sultilinear 0-1 programs having more than a few terms per constraiat, and
the difference in performance tends to increase with the number of terms.
Thus, our procedure opens up a new class of multilinear O-1 programs to
exact solution. Additionally, we present computational resul:ts concerning
the use of the procedure as a heuristic. Typically, the heuristic solutioas
obtained were (guaranteed to be) within 3% of optimality, and for those
ﬁlscs in which the optimal solution was known, the heuristic solution was

on the average within 0.257% of the optimal integer solution.

vt s i
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2. Upper and Lower Bounding Affine Functions
Consider the multilinear function

(L £f(x) = £ a (nm "1)’
JeN jicQj

where x. = Q0 or 1, i¢Q

. j,_1|zN. For any MCN, let Q, = U Q,, and let Q = Qs

j’
jsM
q = |Q]. Also, for aay x ¢ {0,119, let Q(x) = {quxi = 1}. Q(x) is often
referred to as the support of x. A function g(x) is said to be an upper
(lower) bounding function for £(x) 1if £(x) < g(x) (f(x) > g(x)) for all
x ¢ {0,1}%,
In what follows, summation over the empty set is always taken to yield

Zero,

Theorem 1. Let £(x) be as in (1), with a, > 0, jeN, and for every MGN,

]
define

3 (3) (x) = £ (Z=——a,)x, - £ (|q,| -D)a
1 * 1€Q, jcnlquj T

j'
Then every x ¢ {0,1]}9 satisfies the inequality

(4)M £(x) > sM(x)

for every MG N, and (4.)M holds with equality if and only if
: (5) (1erlQ, s Jsme yav| o, \am | < 1)

Proof. Let x ¢ {0,1) be fixed. For any MSW, let Qu(x) = Q,NQ(x).
' Then

£(x) s Z—————— a..
jelQ, sQ@) ]

III L I..Iimw».“ﬁ,‘t;,,w..n-w.w —— A —— e =




On the other hand,

(6) @ = £@-lq|+lenq@phs, sT———a,, i
™ ja 11+ 19y 0y ] chle:Q(::)j !

since MSN, Q,(x) SQ(x), and for all jeN, lel 2 1anda; >0. Thus (4)

holds for all McN.
Further, for given x assume M satisfies (5), and let
4 = Uetfloew |-kl k= 0,1

Then both sides of the inequality (6) are equal to

L a
yaty I

hence (h)M holds with equality.

Conversely, if for the given x, M does not satisfy (5), let

M - MA@y UM, ) and w = (janule zam .

Then (6) becomes

£ a, + ¢t (1-jel+lenexs, < T a,+ £ a
yag, 37 gt 31 F 1N Da, e, 17 fa
or
M jcﬁ*aj+j>§n+kjajzo,
where

ey = |Qj\Qu(x)| -1.

>0 for all jeM+, and since M

Now by the definition of M', k j ;
1

violates (5), we have

wuMt 40,

Thus (7) can be replaced by
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T a , + % ka>0,
g 1 gt 1

i.e., (ls)M holds as strict inequality.|]

Remari 1. sM(x) = Z g{ }(x)

Proof. By applying the definition of g, (x) to {j} for each jeM.l||
Remark 2. For every x ¢ {0,1}9, there exists some MSN such that

£(x) = gy(x).

Proof. Set M = [jeN\QJ. SQ(x)}. Then x and M satisfy (5), hence
£(x) = gy().|l

A set @ of lower (upper) bounding functions p(x) for £(x) will be
called complete if for every x ¢ [0,1}q there exists p ¢ @ such that p(x) = £(x).
From Remark 2, the set £ = {gM(x)|M:N} is compiete. Since £ is fairly
large (|2| = Z‘N\), it is of interest to find proper subsets of £ that are
complete, Next we identify one such subset.

For any MG N, define

E () = [jen\\q 1 =1}, i=1,...,p,
where

p = max{{Q.\Q,]|}.
jpe 12\l
Clearly, M:EO(M) for any MGN, Further, denote
E(M) = EO(M) UEI(M) s

and note that for arbitrary subsets M, M SN, My # Mz does not imply

EQM,) # E(M,).




Consider now the family

2y = lagqqy @ fuenl

of lower bounding functioms for f£(x), whose cardinality is typically much
smaller than that of Z.

Theorem 2. Let f(x) be as in (1), with a, > 0, jeN. Then £0 is a complete

b
set of lower bounding functions for £(x).
Proof. For a given x ¢ (0,1}9, define L = {jeNle < Q(x)}. Then

SE(L) cio, aad gsetting M = E(L) {n (5) shows that f(x) = 88 (L) (x). Since

this is true for every x ¢ {0,1}9, £y is complete.||
Remark 3. For every MGN, there exists some x ¢ {0,1}q such that #

£(x) = SE(M) (x).

Proof. For given MSN, let x be defined by Q(X) = U Q

. Then
J
jeM

(1evle,sadlsEm < (eav|lo\e® ] < 11,

and hence, from Theorem 1, £(%X) = Bz ) .}
Note that, while every lower bounding function in £0 is "attained" by
£(x) for some x ¢ {0,1}9, the same is not true in general with respect to

the larger fawily £. Thus, let

f(x) = X X,%, + X,Xs + X%, * X;Xg + X,Xg + Xq%,,
and choose M = (1,2}, where Q = {1,2,3}, Q, = {4,5}. Then the lower bounding

function

gu,z}(x) 2 X txy b Xy F X b x -3

is not equal to £(x) for any x ¢ [0,1}5.
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Next we ifllustrata the families Z and io on an example.

Exampls 1. Let

£(x) = 3::11:21:3 + lexz‘L + X,%3X, .

Then

=5x1+4x2+4x3+3x - 10

&

8(1,2,3}

3[1’2} 5x1 + 3x2 + 3x3 +2x, - 8

&~

8{2,3} le + x, + X, + 3x4 - 4
3{1,3} = 3!1 + 4x2 + 4x3 + x& - 8
81} = 3::1 + 3x2 + 3x3 - 6
r ‘ 3{2} = le + 2x4 - 2
g{3} = X, * x4+ x, - 2
LI = . 0

A complete system of lower bounding functions comsists of

%o = 18(1,2,3) 812} S}

since for all Mc({1,2,3}, M # {2}, 9, we have E(M) = {1,2,3}.| !

Next we turn to upper bounding linear functions for f£f(x). Let @

be a mapping that associates to every Qj’ jeN, some ier, i.e., o(Q,) = i(j)cQJ.,

]
and let § be the set of all such mappings.

Theorem 3. Let £(x) be as in (1), with aJ. > 0, jeN. For 9¢¢, define

h (x) = Z ax s
® jeN F RN 6D

where i(j) = ca(Qj). Then every x ¢ (0,1} satisfies the inequality

®),, £(x) < h(x)

for every ©e ¥, and (8), holds as equality 1{f and only if




(9) 1(i) er\Q(x)

for all jeN such that Qj\Q(x) 0.

Proof. For a given x¢ {0,1}9, define M = {j eNle SQ(x)}. Then for

every 9¢d,
(10) f(x) = ¥ aj (by the choice of M)
jeM
= jEM ajxi(j) (where i(j) = @(Qj))
< jEN ajxi(j) = hq:(x) (since aj >0, jeN),

i.e., (8)@ is satisfied.
If 1(j) er\Q(x) for all jeN such that Qj\Q(x) # 0, then X gy = 0,
¥ jeN\M, and the inequality in (10), hence in (8)@, holds as equality.

Conversely, if i(j) eQ, NQ(x) for some jeN\M, then x = 1 and (S)Q holds

]

as strict inequality, since a

i(3
3 >0, jeN. Since this argument applies to
every x ¢ {0,1}9, the proof is complete.||

Remark 4. If £(x) is as in (1) but with a, < 0, jeN, then for every

3
ved, hcn(X) is a lower bounding linear function for f£(x).
Proof. Applying Theorem 3 to -f(x) yields -f(x) < “hg(x), ¥ ced.
Remark 5. For every ® ¢4 there exists some x ¢ (0,1}% for which
f(x) = hcp(x)‘
Proof. Both x = 0 and x = ¢, wheare e = (1,...,1), produce equality
in (8)(9 for all 9eé.
Remark 6. For every x ¢ (0,1}, there exists some ©¢@ such that
£(x) = b (x).
Proof. Use any mapping satisfying Q(Qj) €Q

that QJ\Q(x) # 0; then (8):9 holds as equality.||

j\Q(x) for all jeN such




Thus the family

U= [hq,(X)ls'JcQ}

of upper bounding functioms for f(x) is complete in the above defined sense.
There is actually a more general class of upper bounding linear functioas
for £(x), namely

Remark 7. Let xji’ i eQ, jeN be nonnegative numbers satisfying

(11) T A, =1, jeN,
ieq, 3%
]
and define
a(h,x) = £ a, (X A, .x).
joN jist i

Then every x ¢ {0,1}? satisfies the inequality
£(x) < h(},x)

for every A > 0 satisfying (11).

Proof. For any x, define Q(x) as before; then

f(x) = = a.

jeN\QjGQ(x) ]

and

h(\,x) = & aj(:k O
jeN ierﬂQ(x) ]

=3 a2 (L A+

a (= L)
yelQ SQG0) ] teQ, it ch'\ij-'-Q<x)j i, Qe It

>SET " a. = £(x).|]
jeN\QjGQ(x)

The family % introduced earlier consists of those h(A,x) such that

F. for L = 1(J)
My =
@ for 1 # 1(J).
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Since the set % i3 complate and already very large (not excluding

repetitions, |% = © |Q
jen 3

class of functions defined in Remark 7, but rather move in the opposite

\), we will not consider further the more general

direction of identifying a proper subset of % that is complete.

For any 9 ¢ %, define

I(p) = {i eQ\i = $(Qj) for some jeN}.

We will say that a mapping ¢ ¢ ¢ i3 sequence-related if there exists a

permmutation < 11,...,1m > of the elemeats of I(9), with the property that for

k=1,...,m, ik = ¢(Qj) for all jeN such that i st but iL £Q, for 4L = 1,...,k-1.

b

We will say that s ..,im > is the sequence associated with the

=< i

® 1

mapping $. To put it differently, a mapping 9¢§ is sequence-related if it
can be generated as follows: choose some i¢Q and set i = Q(Qj) for all
jeN such that 1 er; then remove £rom Q all subsets Qj containing i, and

apply the procedure to the redefined set Q, stopping when Q becomes empty.

Let Ql = {1,2,3}, Q2 = {1,4,5}, Q3 = {2,5}. Then each of .

Example 2.

the mappings

3@Q) =1, ©,@Q,) =5, Q) =5
93(Q) =1, 930Q) =4, #3(Q) =2

is sequence-related, with the associated sequences {1,2}, {5,1} and {4,1,2}

respectively; but the mapping

9, Q) =1, @(Q) =5, 2,Q;) =2

is oot sequencae-related, since for any permutation of the indices 1,5,2, the
first index does not represent all sets Qj in which it is contained (1 is

contained in Q1 and Q2, S in Q2 and Q3, 2 in Q1 and Q3).H
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let &' = [eaeﬁ\cp is sequence-related}, and

Y = thy(x) o ed ],
It can be shown (see below) that %’ is a complete set of upper bounding
functions for f(x). However, it turns out that §' can be further restricted
without losing completeness.

Let V be an arbitrary set with |V| = v, and let # be the set of all
permutations of the elements of V. For any SV, a permutation pe& will be
said to represent in € the 2-partition (S, V\S) of v, if every element of S
precedes every element of V\S in p. In other words, the permutation
P =<i,,...,1 >represents the partition (S, N\S) if i, €S and i, PRAY

imply k < 4. A set of permutations PS& will be called representative (of

the 2-partitioas of V), if for every ScV, the partition (S, V\S) is

represented in P,

Example 3. Representative sets of permutations for Vl = {1,2,3} and

v, = {1,2,3,4} are P, and B,

P1:12* P2:123*

13 % 124 *

2.3 % 134 %

3% % 234 *

14 %%

24 % *

34 % *

4 * * *

where a star in some pe¢ Pi stands for an arxbitrary element of V, not yet

i

used ia p.j|
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While the cardinality of ¢ is v!, that of a representative subset
-1
PC? is only 2° .
Consider now the set of sequence-related mappings %’. For any S<Q,

we say that a mapping $¢§’, with associated sequence s_ = < Lseenig >

Q
represents the 2-partition (S, Q\s), if sqp is a subsequence of some permuta-
tion p = < jl""’jq > of the elements of Q, that represents (S, Q\s). A
sat Y’ of sequence-related mappings will be called representative (of the
2-partitions of Q) {f every 2-partition of Q is represented in Y.

Now let Y3’ be representaiive, and define
‘L(o = {hq,(x) EXR3P

Theorem 4. Let £(x) be as in (1), with a, > 0, jeN. Thea 'UO s a complete

b

set of upper bounding functions for f£(x).
Proof. For an arbitrary x ¢ {0,1}q let 9 ¢ ¥ be the mapping that

. represents the partition (Q\Q(x), Q(x)) of Q (here, as before,

Q(x) = [j €Q‘xj = 1}), let sw - < i'l""’im > be the sequence associated

with ¢, and let p = < jl,...,jq > be a permutation of the elements of Q that

represents (Q\Q(x), Q(x)), such that s _ is a subsequence of p,

9
Now if imeQ'\Q(x), then iLsQ\Q(x) for 4L = 1,...,m, and hw(x) = 0 = f(x).
Otherwise, let h and k, respectively, be the greatest integers such that
1, €Q\Q(x) and §_€Q\Q(x). Then Q\Q(x) = {J;,..., 4}, and {i,,...,1, }SQ\Q(x0),
£1h+1,....im}GQ(x). Denote
r 1
No = (Jele@delty, .. 1 1y,

S

N, = {chlcp(Qj)c[i.h_._l,...,:Lm}JL ,
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Clearly, NOUN‘L = N. Since ¢ is related to the sequence S iL‘éQj

for 4 ¢{1,...,h} and jeN;, heace Q, €Q(x) for all jeN,. Therefore Qj\Q(x) =

b

implies cho, which in turn implies ®(Q,) ¢Q\Q(x); {.e., condition (9) of

]

b
Example 4. As in example 1, let

Theorem 3 holds for all jeN such that Q,\Q(x) # #. Therefore £(x) = h(a(x).i[

f(x) = 3x1x2x3 + lex4 + x2x3xa.

The set & of all mappings that associate to each of the sets Q ., j = 1,2,3,

3
one of its elements, contains lQl‘ X \QZ‘ X \Q3| = 18 elements, and the

corresponding 18 upper bounding functions hv(x), 9 ¢ ¢, happen to be pairwise
distinct. However, a complete set 7.(0 of upper bounding functions is defined

by the representative set of sequence-related mappings associated with the

set P, of Example 2 (vhere Q = {1,2,3,4] plays the role of v,):

h (x) = 5x, + x

¢1 1 2

hq’z(x) = le + x4
h¢3(x) = 5x, + x,
hca(x) = sz + 2x,
h_:ps(x) = 4x3 + 2xa
h%(x) = 3x, + 3x,.

The mappings B k=1,...,6, correspond to the following

permutations p ¢ P2:

k 1 2 3 4 5 6

peP |12 3+* 134 * 1 4 % % 2 34 * J 4 %* % 4 * % *
124 * 2 4 * *
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Where a mapping corresponds to more than one p¢P, as for k = 1,4,
%

2

this is because different permutations coataining a certain subsequence
< 11,...,im > give rise to a single mapping 9 ¢ Y related to that subsequence.
Thus, ia the case of kK = 1, s

= < 1,2 >, and in the case of k = 4, s_ = < 2,4 >,

@ @
At this point we mention that there is another class of upper bounding
(affine) functions for £(x), that one can derive by using the following
observation.
Let Q be a set whose elements are ordered in some arbitrary way,
Q= {1,...,q)}, and let a be an arbitrary positive scalar. Then, denoting

x, = 1l - x, for 1¢Q, one can write

- g-1 - q-2 - -
(12) -a 7 ox, sa(x W x +x . T X, F...+xx +x, -1).
16Q i 1 a1 i qli-l i x21 1

Note that the right hand side of (12) has q = |Q| variable terms (each
one containing exactly one complemented variable) aad a constaat term.

Thus for any £(x) of the form (1) with aj > 0, jeN, usiang (12) one can
write

-£(x) = pd(x,;).

where Pa is a multilinear function of the variables x, and their complements

;;, 1€Q,, jeN, with coefficients a, > 0 and with \le terms for each jeN.

3 3
The subscript o refers to the particular ordering of the sets Qj' jeN, which
was used in (12) to derive pa(x,;). Taking any o and applying Theorem 1,
one can derive a family of lowar bounding functions sM(x,;) for pa(x,;),

one for each set of the form M = where Mj ;Qj' JeN. Substituting

Uu ¥,
_ yon . _
for X, icQj, jeN, one obtains the corresponding functions sM(x) (= 3M(x,x))
in the variables X and by changing signs, the affine upper bounding functions

- QM(x) for £(x).
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For a given £(x) of the form (1), there are = (lQ |!) different func-
oN

tioas Py (x, x) such that p (x, x) = - £(x), and for each ¢, there are ZlQ”
lower bounding functions gq(x X) (not necassarily all distiact) for gd(‘x x),
hence upper bounding functions - gM(x) for £(x). However, as stated in the

next theorem, every such upper bounding affine function is dominated by some

linear fuacti{on i{n the class U.

To simplify the notation, we will assume that £(x) has & siangle term,

i.a., the equation - £(x) = pq(x,;) is as in (12). In view of Remark 1, this
implies no loss of generality. Further, we shall let each of the ‘Q\ = q
terms of Pa(x’;) be indexed by the index of its (unique) complemented variable.

Theorem S. Let MSQ, M = [11,...,im}, with { < i, whenever k < 4. Then

x, < - in(!)
m

for every x ¢ {0,1}%.

Proof. Applying Theorem 1 to pa(x,;), we obcain the lower bouading

function
ik-l
(Xx)'l[!:(x T x, - (1, - 1)) -1)
‘M k=1 Lk i=l L k
or
m Lk'l
(x) sm~afg (x, - L x + -2) +1).
by kel L ge1 } p
Therefore
By (x) = ax, +ag(x)
m
where
1 -1 a1 Lot
R T A AR R P
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and to prove the theorem we have to show that o(x) >0 for all x ¢ {0,1}%.

Note that fork =1,,...,m - 1,

ik-l = -1 1f x, = 1, i = 1,...,1’.k -1, and x, =0
Lk ~2+x, =~ T X, Y
L 1= > 0 otherwise

and
= Q0 if x, = 1, 1 = 1,...,1m -1

i=1 > 1 otherwise

Since xik = 0 for some k e{l,...,ik - 1} excludes x = Li=1,...,4, -1

for any 4 > k, at most one term under the summation sign {an (13) can be negative,

and if there axists such a term, then

Thus for any x ¢ {0,119, ox) > 0, hence - EM(x) > ax, A

The ralation (12) can be used in the reverse di:ection too; i.e., in
order to derive a set of lower bounding functions for some f£(x) as in (1),
with ’j > 0, jeN, one can use Theorem 3 to derive a set of upper bounding
linear functions ha(x,;) for pa(x,;) = -« f(x), and then substitute for —i’ i,
to obtain a2 set of functions 6¢(x), whose negatives, - Sw(x), are lower
bounding functions for £(x). In this case one recovers the lower bounding
function gN(x), by using the mapping ¥ which associates to the index set of
each term of pa(x,;), the index of its complemented variable. The functions
gM(x), M%N, can be recovered by using the same mapping for jeM, while for
jeN\M one uses a mapping that produces a lower bounding function identically

equal to zero. Whea the number of terms of pa(x,;) corresponding to the jth
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term of £(x) is even, this is accomplished by any mapping that produces
pairwise complementary images. When it is odd, one has to use the construc-
tion of Remark 7 to find a lower bounding function that vanishes for all
x ¢ {0,1}%.

All other lower bounding functions that one obtains via this procedure
are uninteresting, because they caannot take on a positive value for any
x ¢ {0,1}9,

We conclude this section by combining the above results to derive a

family of lower bounding fuactions for £(x) as in (1), with coefficients ‘j

of arbitrary sign. Let

N = (yer|a, >0} . N = {geNja; <0},
and

£(x) = L a, mx

+
£(x) = ¢ .
jeN” it

a, m
ch"' ji.eQ

xi s

b

For every Ma N+, let

g = I ——=apx - T (Q] - Da

16, jeM[1eQ, jeM 3

as in Theorem 1. Let ¥ be the family of mappings ¢ that associate to every

Qj’ jeN~, some ~. ¢Q,, and for every Pe¢d , let

3

hq,(x) - I

jo L)

where 1(j) = 9(Q,), jeN . The function h;(x) differs from the function h_(x)

b

of Theorem 3 only in that here the coefficients a, are negative,

]
Theorem 6. Let £(x) be as in (1). Then every x ¢(0,1}% sacisfies

)y 5 £(0) 2 gy(®) + b (x)

AP " St




rl-
5
|
r
]
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for every M:N+ and every ¥¢ 3”. Further, (11»)M 9 holds as equality if

and oaly {f
(15) (rev’le, samiens et loaml < 1)

and for all jeN such that Q. \Q(x) # 9,

]
(16) 1(4) ¢Q,\Q(x)

3

Proof. Since N'UN" = N, we have

£(x) = £7(x) + £ (x);

From Theorem 1, for every M:‘N+

an £ 2 g, (x);

and from Theorem 3, for every 9ed

(18) £ (x) > h;(x). ' 1

Then adding (17) and (18) yields (14).

Now (17) holds as equality if and only if (15) is satisfied (Theorem 1),
whila (18) holds as equality i{f and oanly if (16) is satisfied for all jeN
such that Qj\Q(x) # 0. (Theorem 3). But a vector x ¢ (0,1}? that satisfies
both (17) and (18), satisfies (M)M’c with equality Lif and oaly Lf it
satisfies with aquality both (17) aad (18).]

Next we define & subfamily of the lower bounding functions iantroduced
in Theorem 6, that i3 complete.

For every M:N+, let E(M) be defined as in Theorem 2, and let |

:4; = {SE(M) (x) |Msn*}.
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Further, let ¥ i be a representative set of sequence-related

oappings as defined earlier, and let
?,(a = [h;(x)lcpc'i"}.
Finally, define the set
Bo = [gE(M)(x) + h;(x)lMGN+ and eV }.

Theoren 7. Bo is a complete set of lower bounding functions for £(x).

Proof. Since ig and ‘L(a are complete, for every x ¢ {0,1]? there exists

-

0
£ (x) = h;(x). But then 8z M) (x) + h;(x) eEO and £(x) = 8 ) (x) + h;(x),

l

Example 5. Consider the function

some 8g (M) (x) si'; such that £'(x) = g ) (x), and some h;(x) €% . such that

heace 3° is complete.

f(x) = 8x1x2x3 - 2x1x2 + 51:3::516 - X,Xg + Ax2x4.

The set [g of lower bounding functioms for f+(x) is

8x, + 12x, + 13x, + 4x, + 5x +5x6-30,

1 2 3 4 5 !
8z, + 12x, + Bx, + 4x, - 20, i
Sx3 + st + Sx6 - 10, é
432 + ltxa -4, f
0; “:

while the set ‘L(a of lower bounding funmctions for £ (x) is ‘*

- 2x1 - X,,

- 27:1 - Xg»

- 382. |
Hence a complete set /30 of lower bounding functions for £(x) consists of

the 15 functions obtained by adding any of the 5 functions in i; to aay of

. the 3 functions in %
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3. Linearizing Multilinear Inequalities in 0-1 Variables

In this section we linearize the multilinear inequality

2) fx) = T a,(m x)<b
jeN jist

by defining a family ¥ of linear inequalities, equivalent to (2) in the sense
that a 0-1 vector x satisfies £(x) < b if and only if it satisfies the linear
inequalities in ¥, This family is shown to contain the family of generalized
covering inequalities defined by Granot and Hammer [16]. We then present
several results which relate the strengths of inequalities in ¥, and which
are useful for obtaining a smaller family of linear inequalities equivaleat
to (2). We first give some definitions.

An ipequality A is said to dominate an inequality B if every nonnegative
x satisfying A also satisfies B. Fufther, inequality A strictly dominates
inequality B if {in addition to A dominating B, there exists some point x
such that X satisfies B but not A. We shall also find it useful to define
the following weaker notion of dominance.

An inequality A is said to c-dominate an inequaliry B if every 0-1
point x satisfying A also satisfies B. Further, if A c-dominates B and
there exists some 0-1 point satisfying B but not A, then A is said to strictly
c-dominate 8. It is easily verified that an inequality A can c-dominate
an inequality B without A dominatiang B.

We continue to use the notation introduced earlier. In particular,
N+, N, f+(x) and £ (x) are as in Theorem 6.

A set McN {3 said to be a cover for the inequality (2), if

zla,[>b- £ a,.
jeM jar- 4

-
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A cover M is said to be mipnimal, if T i{s not a cover for any T E M.

It follows from this definition that a set M:N+ is a cover for the

inequality
2" £ () <b
if
L a,>b.
jat

Theorem 8. Let
C = {(MsN'|X is a cover for (2},

and let gM(x), h;(x) and ¢ be as in Theorem 6. Them x¢ {0,1}q satisfies (2)

if and only if it satisfies

19y o sy +h (®) <b

for every M¢C and ®¢d .

Proof. From Theorem 6, if x¢ (0,1} satisfies (2), then

gy (®) + h;(x) <f(x) <D

for every ®¢ & and every M=N+, hence every Me¢C. This proves the 'only if"
part of the Theorem. To prove the "if'" part, suppose £(X) > b for some

£¢{0,1}%. From Theorem 7, there exists M

0 =N+ and @0 ¢ §" such that

(20) guo(ﬁ) + h;o(i) = £(X) > b,

i.e., X violates the inequality (19)M . It remains to be shown that M,
0°%0
is a cover for (2+). We have




z lajl 2 gy (®) (from the definition of g, )
0 "o

j ey

§ >b - h_ (%) (from (20))
%

>b (since - h_ (%) >0),
%0

hence Mo is a cover for (2+).H
Let 8 be the system of linear inequalities (19)M,¢, for all M¢C and -

®c¢é . According to Theorem 8, the system 3 is equivaleant to (has the same

solution set as) the nonlinear inequality (2). As one may suspect from

Theorem 7, § is not a minimal set with this property. Indeed, for M;N+,

let E(M) be defined as in Theorem 2; and let ¥ &% be a set of representative

sequence-relatad mappings, as in Theorem 4, We thea have

Theorem 9. Theorem 3 remains true if the system (19), ., F¢ 3 and McC
v

is replaced by

(21) - hcp(x) <b,

for avery MeC and ve¥ .
Proof. Along the same lines as the proof of Theorem 8, using the
fact that, from Theorem 7, there exists MOGN+ and % ¢ ¥ such that

Bequy) ® * h%(i) = £(®).

Since ¥~ is a proper subset of 3, and different sets MSN  uader
certain conditions give rise to the same set E(M), the system SO of linear

inequalities (21)M 2’ MeC, 9c¢¥ , is a proper subset of S, and usually of
?

much smaller cardinality.
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Example 6. Coansider che inequality (2) with f(x) as in Example 5

and b = 8, {.e.,

+ Sx,%X_X b4

4 3%5%g = %1%, = XX < 8.

8x1x2x3 + 4x2x

Denoting Q, = {1,2,3}, Q, = {2,4}, Q; = (3,5,6}, Q, = {1,2}, q = {2,5],
the subsets of N = {1,2,3} that are covers for (2+) are M; = {1,2}, M, = {1,3},

M3 = (2,3}, MZ = {1,2,3}. They correspond to the functions

1 2

gMZ(x) = 8x1 + 8x2 + 13x3 + st + Sx6 - 26

3M3(x) = hxz + Sx3 + Axa + st + Sx6 - 14

gM4<X) = 8x1 + 12x2 + 13x3 + 4x4 + st + Sx6 - 30.

ng(x) = 8x, + 12x. + 8x3 + a-x4 - 20

Further, the set ¥~ consists of the mappings @1, P @3, 9,, giviag

rise to the 4 functions

h; (x)

- 2x1 - %X

h (x) = - 2%, - x

@2 1 5

h°3(X) = - 3x2

Xy = o -
h%() ZH xs.

Thus the system 3 equivaleat to (2) consists of the 16 linear inequalities

gMi(x) + hqa(x) £8, i= 1,2,3,4; § =1,2,3,4

However, since ¥ = {cpl, 2, cpa} and EQY,) = {1,2}(= M), E(M,) = EQMy) =

EQM,) = {1,2,3)}(= M,), the smaller system S, equivalent to (2) comsists of the 6

inequalities
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1 + llx2 + 8x
6x1 + 12x2 + 8x3 + Axa - X

8x, + 9x, + 8x3 + &xa <28

6x + 4x, < 28

3
28

IA

5

6x, + 1llx_ + 13x +4x4+5x +5x6 38

1 2 3 S

6x1 + 12x2 + 13x3 + 47:4 + 4x5 Sx6

8x1 + 9x2 + ].3x3

IA

< 38

+ 4%

|

4+5x5+5x < 38.

It is sometimes useful to consider instead of the nonlinear inequality

(2), an equivalent system of (nonlinear) inequalities whose coefficients are
all positive. This is easily accomplished by replacing E-(x) in (2) with
the family of lower bounding functions h;(x), cpe‘i'-, and then complementing
xj, jeN-.

Theorem 10. A vector x ¢ [O,l}q satisfies (2) if and only if it satisfies
|x £ a,

+
(22) £(x)+ £ |a
® jav d

<D -
jarm 4D =

where i(j) = @(Qj), for every 9e¥ . :

Proof. The '"only if" part follows from the fact that

(23) L a

oy R £

for all 1(j) = @(Qj), De¥Y . The "if" part follows from the fact that the
set of lower bounding functions h;(x), @s‘f-, for f-(x), is complete; hence

{f for some % ¢ {0,1}9
~ 4+, - _ A
f£(x) = £ (x) + £ (X) >0,

then there exists o, ¢ ¥ such that, putting 1(j) = 9 Q)

3

ij_ 3 gy = £ R >0 - £ ),

i.e., X violates (22)@ Al
0
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Remark 8. Theorem 10 remains true if ¥ {s replaced by % .

Proof. Since ¥ ¢, the "Lf" part is obviously true; the "only if"

1

|

part follows from the fact that (23) holds for 9e¢d .

Note that if we first replace (2) by the family (22)¢, 9ed and then
generate the sets Sq, of linear inequalities equivalent to each inequality (22):3,
we end up with a set § * U_- Scp of linear inequalities that is a proper
superset of the one obcai::: when we generate the set 3 directly from (2).
The reason for this is that, applying Theorem 8 to an inequality (22)@, we
will generate a linear inequality for every cover MG N for (22)q:, hence for
(2); whereas applying it to the inequality (2), we generate linear inequalities
oanly for covers MeN for (2+). It is easy to see that if M, SN and M, SN
are covers for (2), we may have Ml # M?_, but M10N+ =M AN". On the other
hand, M';N+ is a cover for (2) if and only if MUN {s a cover for (22)@,
# 9¢¥ . Thus the system of linear inequalities 8, obtained by applying
Theorem 8 directly to (2), is that subsystem of S_,_ whose inequalities
correspond to those covers M&N such that N <M,

Yext we turn to another way of using complements of the variables.
1f we restate the system (19) by complementing the variables X, i cQM, this
operation can be combined with a (trivial) strengthening of some inequalities.
For any 9¢ Q-, we will denote

Q = {ieQ]it = 1(j) for some jeN},

where, as before, 1(j) = :;(Qj).

Theorem 11. The vector x ¢ {O,I}q satisfies (2) if and only if it satisfies

M
X

(24) £ X + £ 8.x, >0
M =
P ieQM S § “Q@ i1 o}

for every M¢C, ©¢i , where

1



o - m{ag, S .

} ] ile ?
t je|1sQ i R

and

Bi=min{qg, T/ Ll 1eQ .

jeN~|i=1(¢j) 7

Proof. Substituting for gM(x) and h;(x) in (19)M © their expressions
H

in terms of the coefficients aj, jeN, yields

M, ¢

(19" T (/= a,)x, + L a,x, <b+ £ (|| - Da,,
, 16qy JeM]1eQ, Tty 1) jeMlj‘ 25

where 1(j) = w(Qj), jeN, as before. Substituting 1 - ;i for x., 1¢Q,,

and - lajl for a_, jeN , and collecting terms for each i €Q, then changing

3
the sign of the inequality, produces

r a, «b,

(25) T (T——— a)F + E (T——— la,)x, >
SRR # jau 3

1eQ je|ieq I 16Q, jeN"[i=i(j) -

since

> O S— aj)ls L (Q.la; .
1eQy jeM\ier jem 33

Finally, since all coefficients of (25) are positive, each coefficient
whose value exceeds that of the right hand side can be reduced to the value
of the latter, without cutting o%5f any 0-1 point x satisfying (25).“

Note that if for some i ¢Q, and jeN  we have L = 1(j), then (ZA)M,Q
has a term in ;1 and one in X . Each such pair can obviously be reduced to a

single temm, with a corresponding adjustment of the constant on the right

hand side. This in turn allows a further strengthening. We denote

Qg = {LeQylt # 1()), ¥ Jea}

. - A !
QI - Li.eQM\i = 1(j) for some jeN , and o > 31}
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Q(; = {i cQ\QMli = {(j) for some jeN }

Q; = {i eQM\i = 1(j) for some jeN and B, > a’i‘}

and let QF = Q;UQ;, Q" = qjuQ;.

Remark 9. The inequality (24»)M @ implies
?

(Zt‘a)M,ca £ VY.x, + & Y% 2 Yoo

ieQ"' ii 1¢Q"
where
Yo = EBX{O, Qg - + Bi -z dh.{}
ieQ i¢Q7
1 1
and
Y, = min{y,, v,} 1eQUQ
i o) i ’ ’
with
o
: +
3 M ieQ
3 , ﬁ ay Si 1
Y, =
13 1 -
; Bi i sQo
: M . -
\Py "o 1eQ

Proof. For i eQ;,

¥ - LM -
ap x, +B;x = (o - By)x + By

while for i cQ; ,
- M M
9 X T Bx = By - aE oy
Substituting these expressions iato (24)M o yields
?

L. v/ x + T Yx 2V
gt T e W2

and replacing ‘(,: with min{yo, y{} produces (26),, ol

’*
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Theorem 12. For MSN', denote C(M) = MUN .

(1) If C0) 1is a minizal cover for (2), thea a; = ap, ¥ 1 ¢Qy, and
Bi = ag, % 4{ cQcp in (24)M’Q.

(11) If C(M) is a minimal cover for (2) and i(j) eQ\QM, ¥ jeN
then (26)M,¢ is the same as (ZQ)M’¢, and is of the form

27) r x, + L x >1,
M, 1@t b 1"t

(ii1) If C(M) is a minimal cover for (2) and i(j) cQM for some jeN-,
then (26)1\1,:p is vacuous.

Proof. (i) Let C(M) be a minimal cover for (2). Then

(28) £ Ja,lgp- = a; + |a

3 ¥ keMUN
jeC(M) jeN=

o

and therefore, for any itQL.

D a2 min|a, |
jeMlier keM
> ¢ M
> a, - b = % (from (28)),
ja

M M
which proves that ag * &y, i eQM.

Also, for any ieQ, and keN~ such that i = i(k), from (28) we have

T— s, 218l 2 = .i-b.ag,

JeN~|1=1(§) 1eM
t.e., 8, = ag, ¥ jeN",

(1) If £(3) ¢Q\Qy, ¥ joN°, then QT UQ = 9, and v, = o, 1 Q"
M 1771 i i
i 31' 1¢Q". Thus, 1f this condition holds and C(M) is a minimal
cover for (2), then (26)M 2 is the same as (24),, @ and it is of the form
’ Lay
(27)M,¢'
(1i1) If C(M) is a minimal cover for (2), then form (1), (26)‘ ®
tly

‘_is of ;hl form

lae,




Now if 1(j,) €Qy for some j ", then Yo = O and hence y = 0,

1" uQ".|

Note that C(M) is a cover for (2) if and only if M is a cover for (2+),
If C(M) is a minimal cover for (2), then M is a minimal cover for (2+); but the
converse is not true. On the other hand, if M {s a minimal cover for (2+) and
laj\ 2 ma a, for all jeN , then C(M) is a minimal cover for (2).

ieM
Example 7. Consider the inequality

£(x) = 3x;xy x5 + Ixyx, + 4xyX, = 2X X Xg = KXo - bx XX, < 2,

and let the sets Qi, i=1,...,6, be numbered from left to right. Choosing
L

M = {1,2,3} and @ such that i(4) = 1, i(5) = 1(6) = 3, one obtains the

inequali'ty (of the form (24), q,)
’

7x1+6x2+3x +7x4+2xl+5x > 8,

3 3

After reducing the terms involving the pairs (;1, xl) and (;3, x3),

one obtains

5%, + 6% +7;4+2x

1 2 23

3

which in turn implies the inequality (of the form (26)M ¢)
’

3x, + 3x, + 3x, +2xy >3,

Now let M = {2} and 9 as above; then C(M) is a minimal cover for

r‘ £(x) < 2, and 1(3) eQ\M, ¥ jeN . The corresponding inequality
X, + %, + % +x321

is of the fomm (27)M e since M and @ satisfy the condition of Theorem 1z.ii
?
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Thus, when MSN' and et are chosen such that C(M) is a minimal cover
for (2) and 1(4) € Q\Qy for all jeN , (ZG)M,q: takes on the form (27)M,¢ of
: a generalized set covering inequality. While the generalized set coveriag

inequalicties (27)M o all correspond to minimal covers MGN+, the remaining
1]

generalized set covering inequalities implied by (2), corresponding to minimal
covers M¢N+, can be derived by applying Theorem 11 to the family of in-
equalities (22)(9, pey¥ (with M a minimal cover for (22)¢), rather than

}‘ directly to (2). The set of all generalized set covering inequalities
corresponding to minimal covers for (2) has been shown by Granot and Hammer
[16] to be equivalent to (in the sense of having the same 0-1 solutions as)
the nonlinear inequality (2). Thus, whatever additional inequalities Theorem
11 produces, beyond the generalized set covering inequalities (27), come from

covers other than minimal. In the context of linear inequalities, it is kaown

[5,6] that canonical inequalities derived from minimal covers can usually be
strengthened, and can never be weakened, by extending the covers. Uanfortunately
in the case of nonlinear inequalities, only the first part of this statement

is true: extending a minimal cover may weaken the inequality associated with it,

Example 8. To show that extending a minimal cover can actually weaken

the inequality derived from the cover, let

7xzxsx6 + 6x1x3x& + szxa + 2x1x3 <12,

with Q, = (2,5,6}, Q, = (1,3,6}, Q; = (2,4} and Q, = [1,3}. Applying Theorem 11

and using the minimal cover M = {2,3,4]}, we obtain the inequality

X, +x

1 2+x3+x4_>_1
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Extending now the minimal cover M to {1,2,3,4}, we obtain the inequality

8x1 + 8x2 + 8x3

+ 8x4 + 7x5 + 7x6 > 8,

which is actually weaker thaa (c-dominated by) the first inequality.ll
Fortunately, the phenomenon illustrated by Example 8 can be precisely

characterized.

Next we address the practically significant question as to when an _
inequality (ZA)M’Q,, where M ¢C, can be strengthened by expanding the set M.

As seen from the previous discussion, the presence of indices i eQMﬂQQ
denotes a certain "weakness' of the inequality, since it offers a trivial
way of strengthening it. We will therefore assume that, to start with, M
is chosen such that QMch: = @, and that M is expanded into & set R such that
QROQ:p = @ too.

Theorem 13. Let M¢C, S:N"\M, R = MUS, and let M and S be such that QRCQ_. = 0,
< hd

For T:QMUQ# define

I(T) = (TN QU (QS\QM)

and
AT =y - T of - = 8, -
ie’rmu 1eTr‘».Q¢,
Then the inequality
(24) R = R
R E o x + T Bx 29

1.eQR ichp
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c~dominates (24)M {f and only if
(29) o (\m)nqj\ - Da, <a(0)
j¢s

for all I:Q\‘UQQ (including T = @) such that A(T) > 0.

Proof. From the definitions,

R_ M
=g + T a
% " % jes 3
and for L ¢ QS\QM'
R M
(30) of = wafag + T &, T _—— a ]
1 1 yeslta ]
=3 a..
jes|ie, J

To prove the "only if" part of the Theorem, suppose conditiocn (29) is

violated for ‘1:*'<:QMUQo such that A(T*) > 0. Then let x° be defined by

Q(x®) = (Q\T*) UQ,NTH).

If T* # @, then A(T*) > O implies alf < ag, ¥1 cI‘*ﬂQ\l; hence for all

i cT*ﬂQM,

(31) a’:-a’:+= a, .
jsS\i.er J

From the choice of Q(xo),

-0 ~ .
QE) = T(T%) UQ,\I*) U [N QUQY]1 -

Thus we have




=34

R
z @ =+ S S— ai +.4______ B

E
1€QR iﬁQw i i 1eI(T*) ieT*FQQ

[ d

i

(32) -:a *S _ B +Z (S a,)

L1eT*Q,, 1€T*MQ, LeI(T*) jeslicQj ]
::°1+:B + T |t naq,la,
LeT*Q,, Ler+nQ_ 1S it
M R

(33) 2o+ T a =g
AR R

where (32) follows from (30), (31), while the inequality (33) comes from the
assumption that (29) is violated for T*., Thus x° satisfies (ZA)R. However,

T a’f;%z 80 =S +::3<a

i i1 % " 0°
1eQ, 1ng LeT*Q, 1¢T m

since A(T*) > 0. Thus x° violates (ZA)M, hence (24)R does not c-dominate (ZA)M.
To prove the "1{£f" part of the Theorem, suppose (29) holds for all
TGQMUQ:: such that A(T) > 0. Then lat x* ¢ {0,1}% be any vector that violates

(ZA)M, and define

Q
= (QQE) U (@, NQx*)).

We have

:“}1{*: 8, = T a’,‘%iu- £ aix;<,g,
1¢19MQ,, Le1orQ . 16Q, ‘ 16Q,

since x* violates (ZQ)M. Thus A(To) > 0. Further, if T™° 4% 9, then aw<<;3,

# 1 cr°nQM, and (31) holds for all i ¢T°DQM. Also, (30) holds for all

i ‘QS\QM'




f
l
l
t
{
‘

From the choice of To,

QRﬂQ(;*) s1(1°%)

and
o
f = n .
QgﬂQ(x*) T Q:p
Therefore we have
£ af;-;_‘_z 51"1'5:&5*;0_34
° o
isQR 1sQ¢ 1eI(TO) ieT FQQ
(34)
- T JMesz— 3, + T |t laj
LeT°MQ, ©  1eTOMQ ies i
M P
M R
(35) <ag+ L a3, =aqa,

jes

where (34), just like (32), follows from (30), (31), and the strict inequality
(35) follows since (29) is assumed to hold for T°.

Thus x* violates (24)., i.e., (24), c-dominates (za)x,ﬁ

At this point, it should be noted that when attempting to strengthen
an inequality (24)M by expanding the cover M, it is not always possible to
do so sequentially by introducing one new term at a time, as the following
example {llustrates.

Example 9. In the inequality

8x1x2 + lexs + lex6 + 4x2x3x4 + x%g + %% < 12,

let the sets Q,, j = 1,...,6, be indexed from left to right. Taking

jl
M= {1,2,3,4}, we obtain the inequality

10:1 + 10X, + 4x. + 4x

2 3 s * st + st > 10.
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If we attempt to expand M by setting R = MU {5}, condition (29) is not
met for T = {3,5}. Similarly, 1f we set R = MU {6}, (29) is violated for
T = {4,6}. However, if we set R = MU (5,6}, then (29) is satisfied for all
T such that A(T) > 0.]|

We now focus on the case when C(M) is a minimal cover for (2), i.e.,
when q? = Bj = “g for all i eQM and jeQ¢.

Corollary 13.1. Let MSN' and SSN'\M be such that Q1 Q, = 9, where
R = MUS, and let C(M) be a minimal cover for (2). Then the inequality

R = R
(2% L a,/ x, + L Bx 2a
R iCQR i™t i€Q¢ i1 0

c-dominaces.(ZA)M if and only if

(36) ST <y
i cQs\QM
Further, (2&)R strictly c-dominates (24)M if and only if (36) holds

and either

(37) % < %

ﬁrsmmkaQw or
R
(38) By < g

for some < eQQ.

Proof. If C(M) is a minimal cover for (2), then since af = Bj = ag,
% 1eQy, 15Q, it follows thac A(T) >0 tmplies T = § and 4(T) = an. Furcher,

since I(f) = QS\QM’ condition (29) of Theoremx 13 becomes

<:zto4

2 (1%\Q)NQ,| - La
EACAIPLINEESH
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S e r I (S_—a)<a+ L a =a,

16Q.\Q 0 e

1eQq\Qy jeS]ier

which is (36). Thus (36) i3 necessary and sufficient for (24)R to c~dominate
(24)M.

Assume now that (2/4»)R strictly c-dominates (24)M. Then there exists
x° ¢ {0,1}9 that satisfies (24), (which implies Q(x) # 9), but not (24);.
Then there exists either k eQ(xo) ﬂQM such that (37) holds, or 4 eQ(xo) ﬁQw
such that (38) holds.

Conversely, if there exists k,eQM such that ai < ag, then x* ¢ {0,1}q
defined by Q(x*) = {k} satisfies (24«»)M but not (24)R; and an analogous
argument holds if there exists 4 eQCp such that BL < ag.H

An important practical consequence of Corollary 13.1, which is used

in the Algorithm of the mext section, can be stated as follows. Like in

section 2, we define for M< N+

£ 00 = (e'|lo\eyl = 1}, 1=0,1,...0,

where p = 1;:;_‘_ \Qj\QM\, and denote E(M) = E, Q) UEI(M).
Corollary 13.2. Let M, S and R be as in Corollary 13.1. If SSEM),
then (24)R c-dominates (ZA)M.

Proof. Let SSE(M) and denote S, = SﬂEi(M), i=0,l. Then S =5_,US

i 0 1’
and
0 for jeso
|\ NQ, | =
- 1 for jes,
Hence
(39) e aj<af)‘+zaj,
iGQs‘\QM jses 1 jes

i.e., (36) is satisfied.|
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Thus any minimal cover MeN for (2+) can safely be extended to
include all temms {n E(M), without weakening the inequality (ZA)M. However,
we can often go beyond E(M), as will be clear when we restate Corollary 13.1
in slightly different form.

Corollary 13.3. Let M, S and R be as in Corollary 13.1, and let

Ri = RﬂEi(‘M), {=1,...,p. Then the inequality (24)R c-dominates (24)M if

and oanly if

p
(39 T [t-1 L aj]<2 aj-b.
i=2 JCRi JtRo
Further, (21«-)R strictly c~dominates (265)M if and only if (39) holds

and either

(40) a4 >b
ch\kéQj

for some k sQL , OT
(41) z aJ + T a
jer jen- [4=1(3) 4
for some 4 eQrg.
Proof. We show thar conditions (39), (40) aund (41) are equivalent
to conditions (36), (37) apd (38) of Corollary 13.1.

For i ¢ QS\QM’

QR =TT 2 A, (= _ aj, since for jeR\S, 1£Q,),

t jes{i, 7 jer|isq i
while
R
@, 3 X a, -« b,
0 yer 4

Thus condition (36) amounts to

-

e Y
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(462) = aRi = T \(QS\QM)f\Qj\a. < z a, - b = ag .
19Q.\Q,, JeR I jer |

P
Now R = 150 R , and for jeR,, 1(QS\QM)r1le =i, i =0,1,...,p.
Hence from (42) we have

p p
£ a,-b>3% (1 £ a,)- ¢ (Z aj)

it
jer, ] 1=2 jeR, i=2  JeR,
P
= 2 [(i‘l) E a.] ’
{=2 jeR, J

which {8 pcecisely (39). Thus (39) is equivalent to (42), hence to (36), and

this proves the first statement,

On the other hand, (37) can be restated as

S a , < L a,-b
jeR\ker I jer

which is equivalent to (40). Also, (38) can be written as

== la,} < £ a, -,

jen[e=t(i) 1 jer 3
which is the same as (41). This proves the second statement.||

Condition (39) of Corollary 13.3 gives the precise exteat to which a
+
minimal cover M for (2 ) (such that QMI’\Qcp = f) can be extended beyond the
sets EO(M) and EI(M)’ into sets Ei(M) for i > 2. This is extensively used
in the Algorithm described in section 4,
In particular, using Theorem 10 to replace the inequality (2) by the

set of inequalities




- ~ - . ¥
o gl®y gy S =D Jor

(22) @)+ £ |a

where 1(j) = ®(Q,), jeN , we have

3

Corollary 13.4. Let M be a minimal cover for (22)@, let SSN\M,

R =MUS and R, = RﬁEi(M), i{=0,1,...,p. Assume M and S are such that

i
RﬂN"‘ﬂQa a §. Then the inequality

(43) i r s Bk >R
R i i i1 0
1eQpy+ LeQpy-

c-dominates the imequality

(43)y —x+EI_—_x 21
icQMﬂN+ 1eQ, N ‘

if and only if

~

]
(44) L [(1-1) £ a,J< £ a, -b;

- s
i=2 jeRi JGRO

and (43)R strictly c-dominates (43)M if and only if (44) holds and there

exists k cQM such that

(45) T a, >hb.
jeR\thj J
Proof. By specializing Corollary 13.3 to inequality (ZZ)Q.H
The following example illustrates the usefulness of these results

for obtaining a more compact equivalent linear system to a nonlinear inequality

(2) than the set of generalized covering inequalities.




A

Example 10. Cousider the inequality

(46) 10x,xg + 9Xyxg + 8xq4%, + 8x;X, + 8x.x, + 5x,%5 < 20.

There arr: 20 minimal covers M for (42), and the corresponding sets Q‘4
£

are shown in the table below.

Minimal Cover (M) Sﬁ Replaced by

# 1 123 789 B
2 12 6 89 D
3 1234 8§ 9 B
4 12 5 8 9 D
5 1 3 6 9 E
6 1 34 7 9 E
7 123 5 7 9 B
8 1 34 9 E
9 12 6 9 D
10 1234 9 B
11 123 6 7 8 B
12 234 8 o]
13 23 5 78 o
14 234 6 8 B
15 2 56 8 D
16 2345 8 c
17 1 34 E
18 23 7 B
19 2345 7 C
20 1 3456 B

Applying the Corollaries to minimal covers 20, 19, 15, and 17,

respectively, we obtain the linear inequalities
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(A) 1s§1+14§ + 16x. + 8x, + 5xg + 8x, + 8x, + 9% + 10x, > 28

2 3 5 6 8 9
(8) 10x, + 10x, + 8x, + 5x, + 8x, + 9%y >10
() 12x, + 1222 + 5% + 8x, + 9xg + 10xy > 12
(D) 1“;1 + l4x, + sEL,‘ + s§6 + 8;7 + 10xy > 14,

which c-dominate all the set covering inequalities corresponding to the
minimal covers, Whereas a system of 20 set covering inequalities were
previously required to linearize (46), the system of four inequalities a)-(D)

We conclude this section by considering whether the multilinear

is equivalent to (46).

inequality (2) can best be linearized by applying the relevant results directly
to inequality (2) in the manner previously described, or alternatively applyinog
them to an equivalent set of inequalities implied by (2). Ia particular, if

we consider (2) to be a linear inequality in the 0-1 variables

y.= T x, , jeN

I,

and denote it by (2)y, then w.l.0.g. we may assume that aj > 0 for all jeN,

and that a, 2a, 2 ... 2a_. Then applying the results of (61, [5], we can

1
replace (2)y by the equivalent set of canonical inequalities

R Ty . <ls]l -1, seX.

jee(s) 3

Here £(S) is the extension of S, defined as

e(s) = su{geMs|j < 5,3,
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with jl = mén j; while X {s the family of strong covers for (2)y, where
a minimal cover § is called strong if there exists no minimal cover T # §
such that |T| = |S| and €(S) =€(T).

For any given S ¢X, rewriting (47)s ig terms of x, we can linearize it
using the above results. If we do this for every S ¢J, we obtain a new
linearization of (2), different from the one discussed earlier. Naturally,
the question arises as to how this new linearization compares with the one
discussed above. Both approaches were implemented and tested, and the computa-
tional results are reported inm section 5.

In [5], a procedure was given for strengthening canonical inequalities
of the form (47)s by increasing their left hand side coefficients that satisfy
a certain condition. Though the strengthened inequality strictly dominates and
sometimes strictly c-dominates the canoanical inequality (a7)s, it is not
necessarily true that linearizing the strengthened inequality is preferable
to linearizing the inequality (47)5. We have derived some sufficieat coadi-
tions for the linear inequality associated with a certain cover M for the
strengthened inequality, to dominate the linear inequality associated with
the same cover M for the canonical inequality (47)5. However, in our computa-
tional experiments we found that the particular sufficient condition that

we have implemented was rarely satisfied; therefore we have not pursued any

further the idea of using strengthened inequalities instead of the family (47).

4, An Algorithm for Solving Multilinear 0-1 Programs

Next we address the multilinear 0-1 program

Max T ¢.x
1eQ i7i
MLR) L a8 (" x)<b , ki
JeNkkjier 1 k
bi
x = Oorl, ixQ




blem

where

Q= U Q
keX
jeNk

ki

The algorithm that we present below, like the one by Granot, Granot

and Kallberg [15], generates some linear inequalities implied by the comstraint
set of (MLP), and solves the resulting linear 0-l1 program, which is a relaxa-
tion of (MLP). At iteration t, let this linear 0-1 program be denoted (Pc)'

If an optimal solution to (P:) is feasible for (MLP), then it is optimal for
(MLP) and we stop. Otherwise we generate a new set of linear inequalities
implied by the constraints of (MLP), such that the new inequalities cut off

the solution to (Pt)’ and solve the linear 0-1 program (P_,,) obtained from

t+l
(Pc) by adding the new inaqualities. Since at every iteration the solution
to the current problem (Pt) is cut off, the algorithm is obviously finite.
Qur procedure differs from that of [15, 14] mainly in that we use a more
compact linearization, based on the theory of sections 2-3. To be more
specific, we start with a set covering inequality associated with a minimal
cover, but then use Theorem 13 and its Corollaries to extend the cover so
as to obtain as strong an inequality as the conditioans of the Corollary permit.
Experience shows that the proportion of minimal covers that be extended is
very high (907 is a typical case) and tends to increase with the aumber of
terms per coastraint. Since the use of extended covers tends to produce
smaller cardinality linear equivalents of each ancnlinear inequality, it can
also be expected to reduce the number of iterations needed to solve (MLP).
This is indeed the case, except for problems with very few terms per |

constraint, as shown by the computational experience discussed in the next

section. |

. e e e -
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While the procedure outlined above is finite, it may take many
iterations. We found it therefore preferable not to solve (Pt) exactly
at every iteration, but use a heuristic to fiad an approximate solution.

We proceed this way until, at some iteration t, an approximate solution to
(Pt) is found to be feasible to [MLP). At that point we replace the heuristic
by an exact algorithm. The particular heuristic that we use on the sequence
of linear 0-1 programs (Pt) is the Pivot and Complement procedure of Balas

and Martin (7). When we switch to an exact algorithm, we use a branch and
bound/implicit enumeration procedure implemented by C. H. Martin.

Another deviation from the above outline is that we found it convenient
to periodically remove some of the linear inequalities generated earlier.

This i{s done according to a particulai procedure so as to insure that con-
vergence is maintained.

Finally, to facilitate the search for minimal covers and their extensions,
used in the linearization procedure, we start the algorithm by ordering cnce
and for all the terms of each constraint according to decreasing absolute
values of their coefficients.

As a starting solution we use the optimal solution to the unconstrained
®211f ¢, >0 and x° = 0 otherwise.

i i i
A flowchart of the algorithm is shown in fig. 1.

problem, i.a., x° defined by x

The heart of our procedure is of course the generation of linear
inequalities. Since the conditions of Theorem 13 and its corollaries do not
uniquely datermine the '"best' inequality that meets them, we have to describe
the particular algorithm that we use to generate the inequalities.

First, it should be stated that at every iteration we generate one
linear inequality from every inequality of (MLP) violated by the current

solution xo, except for the first {teration, when we generate one linear

A




o A L s b 00 €1

Reorder terms

!

lif ¢

L >0

0 otherwise

Set

yes ){Find optimal solution x°

to linear 0-1 program

Generate new

linear inequalities

Drop some old

Stop:
oLP)
solved

linear inequalities

Heuristic
or

Exact?

Find approximate solution x°
to linear 0-1 program

Fig. 1. Flowchart of the algorithm
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inequality (using the cover M = N) from every constraint of (MLP), whether
violated or not (the exception was adopted as a result of computational

axperimenting). To describe the procedure, let

(2) L a(m x)gb
v e,

be one of the inequalities violated by x°, and let la; | 2 [azl > .2 a .

Denote

Prx®) = | 20 = 1},

i
icQj
P (x%) = {jeN 7| x: = 0},
T 1eQ
; b
| with
2x®) = P Ur (%)
and define
37(x°) = {¢e<§'lxz(j) =0, ¥ §ep"(x%)}.
1f x° violates (2), it also violates the inequality
(22) £ a(n x)+ T la|X, . <b(=b- T a) -‘
¥ jen* ji.er S R et jeN"

for every v ¢ (x°), and 37(x°) # 9 by definition. Thus, given x°’ and the

family of inequalities (22)°,<ae§(x°) (corresponding to a particular

the following sequence of steps:

3 inequalicy (2)), violated by x°, our cut generating algorithm coansists of
L 1. Finding a convenient minimal cover MQN, i.e., such that x°
|

violates the generalized covering inequality corresponding to M.




-48-

2. Extending M to a maxiwal set R::f'satisfying the condition (44).

3. Choosing & convenieat mapping P¢ 3 (x°), i.e., one that avoids as
much as possible producing nonzero coefficients for complementary pairs of
variables, and including N \M in R.

A discussion of each step follows.

1. Let P(x°) = {11,...,ic} be ordered by the same rule as N, i.e.,
Lk < ik+1' k=1,...,6 =1, Let je{l,...,t] be the largest integer such that
[ij, ij+1""’it} is a cover, and let Le{j, j + 1,...,t} be the smallest

integer such that

M= {ij, ij+1,...,iL}

is a cover for (2). Thea, obviously, M is minimal. Also, M is a minimal

cover for (22);’ for any $ed (x°). Further, for any 9 ¢3 (x°), M satisfies
the requirement of Corollary 13.4, i.e., Mf1N+(1W§ = f; and for amy such 9, ;

the generalized covering inequality

TR eI k21
LeQyre L Q-

corresponding to M 1s violated by <°.

2. Coastruct the exteasion R of M as follows. Define

E, () = {jeN

\Qj\QMi =i}, 1=0,1,...,p,

and set E(M) = E (M) UE;(M). Note that N GEQ®). First include in R the
sat E(M)f\N+. Next, for {=2,...,p, consider the elements of Ei(M) (which

all belong to N+) in order of increasing a,, and include into R as many as

J
can be included without violating condition (44). If all jeiiﬂﬁ) can be

included, set i —= i + 1 and repeat. Otherwise stop with the last alement of

EL(M) whose inclusion into R does not lead to a violatioa of (4&).
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3. To choose the mapping ¢ Q'(x°), for jeN O M, let @(Qj) be the

first index { ¢Q, such thac xz = 0. For jeN \M, let R be the extended sat

b

resulting at the end of step 2 and let a?. ieQu {0}, be the corresponding
coefficient values, where R and the ai are updated by combining variables

and their complements whenever such pairs occur. Since it is possible for

either X, ot x; (but never for both) to appear in the resulting inequality

+ - o
(ZA)R’¢, we partition Q into QR’ QR and Q , where

Q; = {1 eQRl;,._ appears in (ZA)R,QI ,
Q; = {{ gQR\xi appears in (ZQ)R’$} s
and

o + -
Q 'Q\(QRUQR).

We then choose i(j) = G(Qj) according to the following rule:

1f Qj\QR # 0, let i(j) be the first index in Qj\QR.

- R R
nQ, # 0, let i = h wh = Qe
3 QR /] a (H where %, ?:gg ag

If Q \QR = @ but Q? 2Q

3

R
Otherwisa, let {(j) = k, where % * min af.
ier

Once 1(j) is selected, set R - RU{i(§)}, update a?(j) and ag, as well as
Q;, Q; and Q° (combining variables, if necessary), and proceed to the next jeN M,

Having generated the linear inequality, we eliminate the complemented
variables, i.e., restate the inequality in the original variables, and add
it to the current linear 0-1 program.

Next we i{llustrate the procedure on an example,

Example 11. Consider the multilinear inequality

(48) 16x2x4x5 - 10x2x6 + 10x1x2x3 + lexs - éx5x7 - 4x3x5 <1,
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which is violated by x° = (1,1,1,0,1,1,0). We have Q = {2,4,5}, Q, = (2,6},
Q = {1,2,3}, q, = (1,5}, Qg = {5,7}, Q; = {3,5}. Further, N" = (1,3,4,6],
N~ = {2,5}, and

PT(x%) = (3,6,6}, P (x% = {5} 2(x°) = [3,4,5,6}).
The corresponding inequality with positive coefficients is (in general

form)

(49) 16x2x4x5 + 10!1(2) + 10x1x2x3 + lexs + axi(s) + 4x3x5 <15,

where 1(2) and £(5) depend oa the choica of Q)QQ-(XO). Siace in this case
é'(xo) is the set of those ¢ such that ¢(Q5) = i(5) = 7, only the choice of
1(2) remains open.

l. We identify the minima! cover M = {3,4,5]} for (48), which is also

a minimal cover for (49). We have

QW = {192’395}! QMPN- = {7}:
and applying Theorem 11 to (49), we obtain for the minimal cover M the
generalized covering inequality

(50) Xyt Ry b xgtxg +x, 2 1

violated by x°.

2. We ideantify the sets

E, ) = {3,4,5,6} , E () = {1,2},

and since E (M) = P for 1 > 2, we have R = EQ0) NN" = (1,3,4,6].

3. For j = 5 (jeN NM), we set 1(5) = 7, since x; = 0, and update R

by facluding {5}. For j = 2 (JeN \M), we sat i(2) = 6, since Q,\Qg = {6,




and update R by including {2}. Thus R = {1,2,3,4,5,6}, and by applying

Theorem 11 to (49) (with 1(2) = 6 and 1(5) = 7), we obtain for the extended

cover R the inequality

(51) 15%, + 26x, + 14x,

1 + 4x, > 34

- —
+ l6x4 + ..5x5 + 10x6 7

which is also violated by xo, and which strictly c-dominates the generalized
covering inequality (50).}

As mentioned earlier, we found it necessary to periodically remove
inequalities from the linear 0-1 program in order to keep its size within
manageable limits. The cut dropping procedure operates as follows., The set V
of all inequalities generated during the procedure is partitioned into
3 subsets. V1 contains exactly one inequality generated at each iteration,
namely the one derived from the most violated comstraint of (MLP). Cuts ima
V1 are never removed, as a guarantee that every solution to the linear 0-1
program generated during the procedure is cut off by at least cone inequality.
V2 consists of all inequalities associated with extended covers and not
contained in Vl’ whereas V3 consists of the remaining inequalities (i.e.,
those associated with minimal covers that could not be extended).

Wh .aever the number of inequalities in the linear 0-1 program attains
a predetermined threshold value A, all inequalities in V3 not binding at the
current solution are dropped. The subset V3 is our first preference for
dropping, since it usually consists of the weakest inequalities of the current
system. If removing the nonbinding inequalities in V3 is not sufficient for
accommodating all the inequalities generated at the current iteration, then

the noanbinding inequalities in V, are also dropped. Finally, if removing all

2




the nonbindiag inequalities of V3 and V2 is still insufficient, we drop an
appropriate number of binding inequalicies in V3 and, if necessary, in VZ.

This completes the description of the main version of our algorithm,
henceforth called Algorithm I. Two additional versioms of the algorithm were
implemented, which will aow be briefly described.

Algorithm II differs from Algorithm I in that it generates linear
inequalities not directly from an inequality (2) of (MLP), but from an extended
canonical inequality implied by (2)Y, as described at the end of section 3.

The choice of the inequality (2), respectively (Z)y’ as well as that of the

minimal cover M, is the same as in Algorithm I. Another minimal cover C is

then identified, such that kC\ = \M] and €M) <€(C) (preferably, but not

necessarily, C # M). The cut generating procedure described above is then

applied to the cancnical imequality defined by £(M) and expressed in terms

of x, for which M is still ; minimal cover. Everything else is as in Algorithm I.
Finally, Algorithm III differs from the other two versioas by the

fact that it derives only generalized covering inequalities corraesponding to

minimal covers, without attempting to strengthen them by extending the covers.

For this version, the choice of the minimal cover is done differently, namely

by setting M = (il,...,ik}, where k is the smallest integer such that M is

a cover. As a result, M (which is of course minimal) is of smaller cardimality
than the cover selected in Algorithm 1 which in the absence of the extension
procedure is preferable. The supaeriority of this choice of minimal cover for this
particular algorithm was unequivocally supported in the computational testing.

The other ingredients of Algorithm III are the same as those of I and II.
Algorithm III should be viewed as our version of the Granot and Granot algorithm
[14]; the differences from the latter (improvements ia our view) haviag been

adopted in order to make it comparable with Algorithms I and TI.




Algorithm 1, which i{s by far the most efficient of the three procedures
implemented, was also run in the heuristic mode, i.e., by removing all steps
subsequent to the finding of a feasible solution to (MLP). The purpose of
this exercise was to obtain information on the quality of the solutions

obtainable by such an approach.

5. Computational Results

The algorithms discussed above were coded in FORTRAN and tested on a
DEC 20/60 on a series of randomly generated test problems.

The first set of test problems consists of 60 multilinear 0-1
programs, 5 in each of 12 classes that differ among themselves ia the number
of terms per constraint. The number of constraints and variables (denoted by
@ and n respectively) is the same in all of these problems (m = 10, n = 30),
and the number of terms per comstraint is randomly drawn from a uniform
distribution on the interval [3, T], where T is shown in Table 1. The
constraint coefficients akj are integers uniformly distributed on [~ 5, 15],
while the bk are integers drawn from a uniform distribution on (0.3Sk, O.SSk),
where S = Zj akj' The cost coefficients °j are uniformly distributed integers
on [1, 20]. Finally, the number of variables per term is uniformly distributed
on {2,6]. The results are shown in Table 1.

All test problems were run under two kinds of limitations, shown in
the tables: a time limit (3, 5 or 10 minutes, depending on the phenomenocn
studied) and a limit of 150 on the number of iterations, hence on the number
of nonremovable inequalities generated, due to space limitations. The latter
limit is different from the threshold value A that triggers the cut dropping
routine. Ir. Algorithms I and II, after some experimentation A was set to 2n,
i.e., twice the number of variatles; whereas in Algorithm III computational

tests indicated a higher value, and A = 150 was adopted.
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All CPU times reported are exclusive of input/output time and the
preprocessing time required to sort the (absolute values of the) coefficients
of the multilinear comstraints. The maximum input time for any of the test
problems was 0.416 seconds, and the maximum preprocessing time was 0.093

seconds.

Table 1. Number of problems solved and average CPU time gsecondsz.1’2'3
Algorithm T Algorithm II Algorithm III

m a T No. Solved Time No. Solved Time No. Solved Time
10 30 10 5 38.7 5 16.8 5 17.9
10 30 20 5 4.2 5 4,2 5 2.6
10 30 30 5 91.8 4 77.0 3 122.3
10 30 40 5 57.8 3 81.7 3 85.2
10 30 50 5 95.2 2 110.7 2 112.1
10 30 60 4 56.5 2 109.9 1 165.8

1. 5 problems per class.
2., Time averaged for all 5 problems

3. Limit set to 3 minutes CPU time or 150 iterations per problem.

Table 1 shows that although Algorithm III performs somewhat better than
Algorithm I on the problems with T = 10 and T = 20 (i.e., with 5 and 10
constraints on the average, respectively), its performance quickly deteriorates
for higher values of T, as reflected in the sharply decreasing number of
problems solved within the limits allowed. At the same time, the performance

of Algorithm 1 is only moderately affected by the increase of T. As to
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Algorithm II, its performance is not better than that of III on the problems

with small T, and considerably worse than that of Algorithm I on the problems

with large T. Thus the performance of Algorithm II will not be further pursued.
Table 2 compares the performance of Algorithms I and III on the same

set of problems with a time limit of 10 instead of 3 minutes.

Table 2. Number of problems solved and average CPU time (seconds).1’2’3

Algorithm I Algorithm III
m a T No. Solved Time No. Solved Time
10 30 10 5 38.7 5 17.9
10 30 20 S 4.2 5 2.6
10 30. 30 5 91.8 5 257.5
10 30 40 5 57.8 3 253.2
10 30 S0 5 95.2 2 333.4
10 30 60 5 81.7 2 344.9

1. 5 problems per class.

2. Time averaged for all 5 problems.

3. Limit set to 10 minutes CPU time or 150 iterations per problem.

The results show an even sharper coatrast between the sensitivity of
the two algorithms to an increase in the number of terms per coanstraints.
We conclude that the more compact linearization based on the theory of
sections 2-3 definitely pays off for problems with more than 20 terms per

constraint.




In Table 3 we compare the average number of iterations aand cuts

(linear inequalities) generated, in order to better understand the difference
in the performance of the two algorithms. We see that as T is increased
from, say, 30 to 60, the number of iterations and cuts increases by more
than 3007 for Algorithm III, as opposed to 10-157% for Algorithm I. On the

other hand, while the percentage of covers that can be extended (in Algoritim I)

Table 3. Number of iterations and of cuts.l’z’3
Algorithm I Algorithm III
z a T Iterations Cuts  Percent Covers Iterations  Cuts
Extended
10 30 10 6.6 32.6 89.0 9.0 32.4
10 30 20 4.2 25.2 94.6 6.8 27.4%
10 30 30 8.8 41.0 9.2 26.0  108.0
10 30 40 9.2 38.6 95.1 57.2 212.0
10 30 50 9.6 41.8 98.9 78.2 340.6
10 30 60 10.2 45,6 98.8 100.0 455.2

1. 5 problems per class,
2. Values averaged for all 5 problems,

3. Limit set to 10 minutes CFU time or 150 itarations per problem.

increases with T, the increase is only modest, since this percentage is high

to begin with (i.e., for all problem classes). This modest increase cannot
fully accouat for the sharply increasing differeace in the number of iterations
required by the two Algorithms. What the table does not show, however, is

that as the number of terms per constraint increases, not only does the per-

centage of covers that can be extended increase, but more importantly, there
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is a significant incressa in the extent to which every minimal cover can
be extended: with more terms per constraint, many more indices are included
in the extension of each cover.

In Tables 4 and 5 we illustrate the effect of an increase in the number
of variables and constraints, respectively, on the performance of Algorithm I.

Table 4. Effect of an increase in the number of variables (Algorithm 121’2'3

m a T No. Solved Time Iterations Cuts Percent Covers
(seconds) Extended

10 30 30 5 : 91.8 8.8 41.0 94.2

10 40 30 4 104.6 11.6 43.6 96.6

10 50 30 4 82.5 9.2 40.2 95.1

.

1. S5 problems per class,
2. Values averaged for all 5 problems,.

3. Limit set to 3 minutes CPU time or 150 iterations per problem.

Table 5., Effect of an increase in the number of constraints (Algorithm 0123
m n T No. Solved Time Iterations ‘ Cuts Percent Covers
(saconds) } Extended
5 30 30 5 5.5 6.0 17.4 95.2
10 30 30 5 91.8 8.8 : 41.0 94.2
|
15 30 30 3 183.9 12.6 i 68.2 | 96.0
20 30 30 2 1 253.8 . 29.2 1 l44.6 93.1

!

l. 5 problems per class.
2. Values averaged for all 5 problems

3. Limit set to 5 minutes CPU time or 150 iterations par problem.
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Table 4 shows that as the number of variables increases from 30 to
40 to 50, the number of problams that the algorithm is able to solve within
3 minutes and 150 iterations drops from 5 to 4. This is of course to be
expectad, since the number of variables increases to the same extent in the
linear 0-1 program as in (MLP). Table 5 shows a steady deterioriation of
performance as the number of constraints increases. This is due to the
fact that the number of inequalities in the linear equivalent of (MLP)
sharply rises with the number of constraints of (MLP), hence so does the
number of iterations required to generate a relevant subset of the linear
inequalities.

In the last two tables we finally examine the performance of Algorithm I
in the heuristic mode. When used as a heuristic, Algorithm I stops at the
first (approximate) solution of the linear 0-1 program (found by Pivot and

Complement) that is feasible to (MLP).

Table 6. Algorithm I in the heuristic model’2’3
m a T No. i Iterations Time Proximity Proximity
solved | (seconds) to to

! LP bound Integer
i Optimum
l

10 30 20 5 i 4.2 2.0 1.7% 0.12%

10 30 30 s | 7.4 7.6 2.9% 0.16%
1

10 30 40 5 I 6.8 4.6 2.47% 0.07%

10 30 50 5 E 8.6 10.1 2.2% 0.00%

10 30 60 5 10.0 ‘ 15.4 : 2.7% 0.22%

1. 5 problems per class
2, Values averaged for all 5 problems,

3. Limit set to 3 minutes CPU time per problem.
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The linear programming solution to the last linear 0-1 program (more
precisely, the lowest value of any LP solved during the procedure), rounded
down to the nearest integer, provides an upper bound for thae optimum of
(MLP), which we call the LP bound. This bound is guaranteed, but in most
cases not tight. For the problems of Table 6 the integer optimum is also
known, so the quality of the heuristic solution can be measured against the
actual optimum. For the problems of Table 7 this i{s not the case, and the

only measure available is the LP bound. On both counts, the quality of the

solutions obtained by using Algorithm I in the heuristic mode seems excaellent,

and the computational effort is modest.

Table 7. Additional tests with the heu:g§£151’2’3’
m n T i No. Solved Iterations Time Proximity
(seconds) to LP
optimum
10 30 70 4 29.0 64.1 2.47%
10 40 30 5 2.1 16.9 2.9%
10 50 30 , 5 8.8 - 19.5 1.8%
10 50 40 % 5 10.2 26.5 1.87%
10 50 50 | 5 11.4 E 29.1 1.5%
5100 30 5 } 8.2 é 14.8 0.7%
5100 50 5 E 15.4 i 65.6 | 0.8%
5 150 30 | 5 : 6.8 ’ 16.9 E 0.4%

1. 5 problems per class.
2, Values averaged for all 5 problems.

3. Limit set to 3 minutes CPU time per problem.

4. Average for the 4 solved problems,




R ——

-0~

We conclude from this computational study that Algorithm I, based

on the linearization of sections 2-3 1is an efficient procedure for solving
multilinear 0-1 programs to optimality. In particular, problems having more
than 20 terms per comnstraiant have now been opened up to exact solution. The
use of the first phase of the algorithm as a heuristic is also an attractive
option for problems with many constraints and/or variables, in that high

quality solutions can be obtained at a modest computational cost.
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