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Abstract

Any real-valued nonlinear function in 0-1 variables can be

rewritten as a multilinear function. We discuss classes of lower and

upper bounding linear expressions for multilinear functions in 0-1

variables. For any multilinear inequality in 0-1 variables, we define

an equivalent family of linear inequalities. This family contains the

set of generalized covering inequalities defined by Granot and Hammer.

Several results concerning the relative strengths of inequalities within

this family are presented. An algorithm for the general multilinear

0-1 program is given, and computational experience with the algorithm

applied to randomly generat'd problems is discussed. The use of the

general procedure as an effective heuristic for multilinear 0-1 programs

is also demonstrated.
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LINEARIZING NONLINEAR 0-1 PROGRAMS

by

Egon Balas and Joseph B. Mazzola

1. Introduction

It is well known [16] that a real-valued function f(x) in 0-1

variables can be rewritten as a multilinear function in the same variables,

i.e.,

(1) f W E aj( x ) x i = 0 or 1, ic U Qj,J eN J LCQ j eN

where aj, JaN, are real numbers, and YT means product. Thus, without loss of

generality, when discussing nonlinear 0-I programs it is sufficient to con-

sider the general multilinear program

maximize E a J( IT x i
jcN0  iC % x

(MLP) E aij( T xi) . bk, kcK
jg k i g~j

xi  0 or 1, Q - U Qkj

where all coefficients are integer. Further, without loss of generality we

may assume that the objective function in (&ILP) is linear, since it can always

be linearized by introducing a new (integer) variable z and amending the

constraint set K by one new constraint involving z (or its binary expansion)

and the nonlinear part of the objective function.

The subject of nonlinear 0-1 prograimng or 0-I polynomial programming,

as it is sometimes called, has received a fair amount of attention in the

literature (see for example (1-4, 10-16, 18, 241). For a survey of the area,

-. see Hansen (191.
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Applications involving nonlinear 0-1 programming arise in various

areas. Such formulations have been used in modular design [8], [9], capital

budgeting under uncertainty [21], project scheduling [22], cluster analysis

(23], diagnostic testing [20], media selection (25], etc. Naturally,

quadratic zero-one programming and the quadratic assignment problem are

also examples of nonlinear 0-1 programs.

In this paper we present a new linearization for nonlinear functions

and inequalities in 0-1 variables, that does not introduce mew variables.

We then discuss an algorithm based on this approach, and computational

experience with it.

We begin by introducing a family of linear (and affine) upper and

lower bounding functions for the multilinear function f(x). Several results

defining classes of such functions are stated, and then properties of these

classes of bounding functions are discussed.

In the next section, we consider the multilinear inequality

(2) f(x) E E aj( T X) b,

where aj, jeN, and b, are integers, and introduce a family of linear

inequalities which is equivalent to (2). This family subsumes the

generalized covering inequalities for (2) introduced by Granot and Hammer

(161. We then investigate properties relating the strengths of inequalities

within this family, with the objective of obtaining a smaller cardinality

(or more compact) linearization. We also discuss the use of this lineariza-

tion on certain classes of multilinear inequalities implied by (2) in order

to obtain alternate linearizations of (2). Various examples illustrating

the fundamental concepts are presented.
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Following this, a general algorithm for solving multilinear 0-1

programs is presented in section three. This algorithm uses the new linearize-

tions introduced in section two, and it also has other new features.

Specifically, the effectiveness of the algorithm is greatly enhanced by

the incorporation of a heuristic to obtain near optimal solutions to the

0-1 linear relaxations at each iteration. Once a heuristic solution to the

current linear relaxation is feasible to (ML), the algorithm switches

to an exact solution technique. However, at that point the procedure can be

terminated if desired, i.e., the procedure can also be used as a heuristic

to find "good" solutions to large multilinear 0-1 programs.

In the final section, we present computational results with three

different versions of the algorithm. In particular, a version which uses

linear inequalities arising from the new linearization of section two is

compared with one which utilizes only generalized covering inequalities,

like the procedure of Granot, Granot and Kallberg (151 (see also [141).

The version steming from the direct application of the new linearization is

found to be superior to the generalized covering approach when applied to

multilinear 0-1 programs having more than a few terms per constraint, and

the difference in performance tends to increase with the number of terms.

Thus, our procedure opens up a neow class of multilinear 0-1 programs to

exact solution. Additionally, we present computational results concerning

the use of the procedure as a heuristic. Typically, the heuristic solutions

obtained were (guaranteed to be) within 37, of optimality, and for those

cases in which the optimal solution was known, the heuristic solution was

on the average within 0.25% of the optimal integer solution.



.4-

2. Uaoer and Lower Bounding Af fine Functions

Consider the multilinar function

(1) (x)- E a(17 x
J4N J ±Q

where xi - 0 or 1, icQ, JcN. For any M N, let QM =  U QJ, and let Q Q No

jem

q IQ,. Also, for any x 0,Iq, let Q(x) - (ieQIx - 1). Q(x) is often

referred to as the support of x. A function S(x) is said to be an upper

(lower) bounding function for f(x) if f(x) < g(x) (f(x) Z S(x)) for all

z g (o,11q.

In what follows, sumation over the empty set is always taken to yield

zero.

Theorem 1. Let f(x) be as in (1), with aj > 0, JeN, and for every MGN,

define

(3) g(x)- ( - a )x,- z (IQ I -l)a
ioM JcQM, i IQ j-)a,

Then every x c [ 0 , 13q satisfies the inequality

(4) M f(x) Z >

for every MZN, and (4)M holds with equality if and only if

(5) 0Jewiqj r-q(x) I MG [Ja~l qj\,Q(X) [ 1 : 1.

Proof. Let x , [O,1]
q be fixed. For any MrN, let QMtx) QMQ(x).

Then

f(x) -a
JeNIQ r.Q(x) J
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On the other hand,

(6 (I - 1.1+ IQ (10 >~
(6) g (X) - r aj< jQ 1 Q(x) 1 '

since MrN, QMW() VQ(x), and for all JcN, Q I a 1 and a > 0. Thus (4)M

holds for all MrN.

Further, for given x assume M satisfies (5), and let

N- £IeIIQ\Q(z)I=k), k - 0,1.

Then both sides of the inequality (6) are equal to

E. aj

i4M0

hence (4) M holds with equality.

Conversely, if for the given x, M does not satisfy (5), let

1*- lM\(?MtUbt) and bI* - ticv i--qxI

Then (6) becomes

L i + E (I Ii + IQ i (IQM(X) I)aj i 0 a i + a1
i ce J.&O j cN*J

or

(7) Eaj + ka 1 > O,

where

kj IQj\QM(x)i -1.

Now by the definition of H+ , k > 0 for all jcH , and since M

violates (5), we have

Thus (7) can be replaced by
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E a + E k a > 0,j ,N* j Ce+

:**e. (4)M holds as strict inequality.i

Remark 1. gMCx) - S(X)-

Proof. By applying the definition of g(x) to (J) for each JeM4.

Remark 2. For every x c (0,11q , there exists some M N such that

f(x) - gm(x).

Proof. Set M - £icNIQj Q(x)1. Then x and M satisfy (5), hence

f(x) - gM(x).lI

A set i of lower (upper) bounding functions p(x) for f(x) will be

called complete if for every x c [0,1]q there exists p c49 such that p(x) = f(x).

From Remark 2, the set Z - (gM(x)IM-NJ is complete. Since Z is fairly

large (141 - 21NI), it is of interest to find proper subsets of Z. that are

complete. Next we identify one such subset.

For any H a N, define

E - JcNIIQJ\Q MI - i i -1

where

p = maxIQJ\QMI}.

J CN

Clearly, MCE0 (M) for any M N. Further, denote

E(M) - Eo(0) UE1(M),

and note that for arbitrary subsets M1, 11M 2 , 1  M2 does not imply

I )# E(M2).
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Consider now the family

Z0- (SE (M) X) IMV'Nl

of lower bounding functions for f(x), whose cardinality is typically much

smaller than that of .

Theorem 2. Let f(x) be as in (1), with a > 0, JcN. Then 0 is a complete

set of lower bounding functions for f(x).

Proof. For a given x c (0,1) q , define L - OCNIQ j Q Q(x)]. Then

9E(L) c ew, and setting M - E(L) in (5) shows that f(x) = 9E(L)(x). Since

this is true for every x c (0Iqe is complete.j

Remark 3. For every lQ N, there exists some x e ( 0 ,ll q such that

f (x) - gC) (x).

Proof. For given MCN, let i be defined by Q(i) - U Q Then
CM

[JeNIQj i Q(X )]CE(M) Q (jcNIIQ i\Q (i) _< :5

and hence, from Theorem 1, f(i) - hE(M) (x)'l

Note that, while every lower bounding function in a is "attained" by

f(x) for some x c (0,11q , the same is not true in general with respect to

the larger family Z. Thus, let

f(x) - xIx2X 3 + x4x +x x' + xlx 5 + xx 5 + x3x ,

and choose M - (1,2), where Q = [,2,3), Q2  (4,5'1. Then the lower bounding

function

9(1, 2)(x) ' x. 2 +x 3 +x 4+ x - 3

is not equal to f(x) for any x £ (0,115.
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Next we illustrate the families ; and 3, on an example.

Example 1. Let

f(x) - 3xIx 2xx + x+x x.

Then

g(1,2,3 " 15x + 42 + 4x3 + 3x4 - 10

g(1,2) - 5x I + 3x2 +3x3 + 2x 4 - 8

9(2,3) , 2x, + x2 + x3 + 3x4 " 4

- 3x + 4x2 + 4 x3 + x4 - 8

g~l) - 3xi + 3X2 + 3x3 - 6

9(2) - 2xI +2z4 - 2

9(3} x2 + x3 + x4 - 2

gU 0
00

A complete system of lower bounding functions consists of

W- 1 1-(l,2,31, 9(211 g0 )'

since for all MC (1,2,3], M # £2], 0, we have E(M) - (1,2,31.I1

Next we turn to upper bounding linear functions for f(x). Let cp

be a mapping that associates to every Qj, JeN' some icQj, i.e., ';(Q) U i(j)cQj,

and let 4 be the set of all such mappings.

Theorem 3. Let f(x) be as in (1), with a. > 0, JcN. For e etg, define2

h x) Z x. i(j),

where L(j) U Then every x c 0,1 }q satisfies the inequality

f(x) _ h (x)

for every 9et, and (8). holds as equality if and only if
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(9) 1(j) \ Q\Q(x)

for all JeN such that Qj\Q(x) A 0.

Proof. For a given xe (0,1)], define M = £jcNIQ j CQ(x)j. Then for

every ; e

(10) f(x) E a (by the choice of M)JCM aj

JCM axi(j) (where i(j) - p(Q

< E a x h (x) (since a. > 0, jcN),
je i(j)

i.e., (8) is satisfied.

If i(j) eQj\Q(x) for all jeN such that Qj\Q(x) # 0, then xi(j) = 0,

JcN\, and the inequality in (10), hence in (8)V, holds as equality.

Conversely, if i(j) eQj flQ(x) for some jcN&\, then xi(j) - 1 and (8) holds

as strict inequality, since a > 0, jeN. Since this argument applies to

every x c (0 the proof is complete.1

Remark 4. If f(x) is as in (1) but with a < 0, jeN, then for every

q el, h (x) is a lower bounding linear function for f(x).

Proof. Applying Theorem 3 to -f(x) yields -f(x) < -h (x), I z e -.j

Remark 5. For every pel there exists some x £ (0,114 for which

f(x) h1 (x).

Proof. Both x = 0 and x u e, where e (l,...,l), produce equality

in (8) C for all q€c.

Remark 6. For every x c (0,1} q , there exists some q c4 such that

f(x) - h (x).

Proof. Use any mapping satisfying p(Q%) CQ\,Q(x) for all JeN such

that Q \Q(x) A 0; then (8) holds as equality.jl
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Thus the family

t( - (h,!x 9 W <19C

of upper bounding functions for f(x) is complete in the above defined sense.

There is actually a more general class of upper bounding linear functions

for f(x), namely

Remark 7. Let ji, i cQ, JeN be nonnegative numbers satisfying

(E) % ji , jEN,

and define

h(%,x) Z aj jixi).

jem i6Q~ i

Then every x c O,llq satisfies the inequality

f(x) < h(%,x)

for every X > 0 satisfying (11).

Proof. For any x, define Q(x) as before; then

f(x) = 2 a.

and

h(%,x) E Z 5 - i
jN iQj rQ(x)

7Y -a j( E xj.) + : aj j )
JCNIQ j QQ(x) J CQjii jNIQ j OtQ Wx) iCQj 1 Q Wx)

> - • j a,, f(X).il
JCNIQ j QQ(x)

The family 1( introduced earlier consists of those h(X,x) such that

J5 for i i(j)
ji f, for 1. i(j).
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Since the set ?4 is complete and already very large (not excluding

repetitions, Iul - I IQn ), we will not consider further the more generalJ aN
class of functions defined in Remark 7, but rather move in the opposite

direction of identifying a proper subset of ?2 that is complete.

For any cp c , define

I(Cp) - (i c Q i -C(Q) for some jeN).

We will say that a mapping p c § is sequence-related if there exists a

permutation < i m,...i > of the elements of I(q), with the property that for

k - Lk - c(Qj) for all jeN such that Lk Qj but it9Q for 1 - l,...,k-l.

We will say that s, < i1 .* i > is the secuence associated with the

mapping V. To put it differently, a mapping P e is sequence-related if it

can be generated as follows: choose some i cQ and set i (Qj) for all

j&N such that i eQj; then remove from Q all subsets Qj containing i, and

apply the procedure to the redefined set Q, stopping when Q becomes empty.

Example 2. Let Q1 - (1,2,3), Q2 = [1,4,5), Q3 = (2,5. Then each of

the mappings

CRl(Ql ) - , l(Y2 = 1, Vl(Q 3 )  2

'2 (Ql)- I, c 2 (Q2 ) - 5, ;2(Q3) - 5

C3 (Q1 ) 1 , 3 (Q2 ) -4, c 3(Q3 ) = 2

is sequence-related, with the associated sequences (1,2), (5,1) and "4,l,2)

respectively; but the mapping

"4(Q1 1, P4(Q2) 5 5, q4(Q3) 2 2

is not sequence-related, since for any permutation of the indices 1,5,2, the

first index does not represent all sets Q. in which it is contained (1 is

contained in Q and Q21 5 in Q2 and Q3 2 in Q1 and Q3).!

I~l/ll l/ I1.
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Let [' [q CtIP is sequence-related}, and

It can be shown (see below) that U' is a complete set of upper bounding

functions for f(x). However, it turns out that 0' can be further restricted

without losing completeness.

Let V be an arbitrary set with IVI = v, and let 9 be the set of all

permutations of the elements of V. For any S QV, a permutation p c, will be

said to rearesent in19 the 2-partition (S, V\S) of V, if every element of S

precedes every element of V\S in p. In other words, the permutation

P= <il,...,i >represents the partition (S, VS) if i k  and i, cv\

imply k < t. A set of permutations Pc6 will be called representative (of

the 2-partitiona of V), if for every SaV, the partition (S, V\S) is

represented in P.

Example 3. Representative sets of permutations for V1  (1,2,3) and

V2  (1,2,3,4} are P and P21

P 12 2 2: 1 23

13* 124*

23* 134*

3* 234*

14*

2 4**

34**

4 **

where a star in some p e P, stands for an arbitrary element of V, not yet

used in p.1j

______
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While the cardinality of Q is v!, that of a representative subset

PCO is only 2v  .

Consider now the set of sequence-related mappings V'. For any S QQ,

we say that a mapping q;c , with associated sequence s - < il ... 9i M > ,

represents the 2-partition (S, Q\S), if s is a subsequence of some permuta-

tion p = < Jl'''*J q > of the elements of Q, that represents (S, Q\S). A

set Y(C§' of sequence-related mappings will be called representative (of the

2-partitions of Q) if every 2-partition of Q is represented in T.

Now let Y C§' be representative, and define

Theorem 4. Let f(x) be as in (1), with aj > 0, jcN. Then ts a complete

set of upper bounding functions for f(x).

Proof. For an arbitrary x c [0,l q let ce be the mapping that

represents the partition (Q\Q(x), Q(x)) of Q (here, as before,

Q(x) = 0i cQixj . 1]), let sf- < il,...,i m > be the sequence associated

with v, and let p - < jl q > be a permutation of the elements of Q that

represents (Q\Q(x), Q(x)), such that s is a subsequence of p.

Now if i cQ\Q(x), then i ,cQ\Q(x) fort - l,...,m, and h,(x) a 0 - f(x).

Otherwise, let h and k, respectively, be the greatest integers such that

ih cQ\Q(x) and JkcQ\Q(x). Then Q\Q(x) ( j...., , and i.,., QQ(x),

(ih+l,...,im -_Q(x). Denote

No " CI(Q)~
N0 - {iNlc(Q 1)C 1 .

N1 -{j6NI(e'h+l, .. 3i'm4
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Clearly, No UN1 - N. Since V is related to the sequence s., i iQ

for 'L 1,...,h) and JcN1 , hence QjiQ(x) for all JcN1 . Therefore Qj\Q(x) -

implies JaN%, which in turn implies C(Q ) cQ\Q(x); i.e., condition (9) of

Theorem 3 holds for all JcN such that Q \Q(x) # 0. Therefore f(x) - h (x).iL

Example 4. As in example 1, let

f(x) - 3xx2x3 + 2Xlx4 + x2x3x4..

The set 4 of all mappings that associate to each of the sets Qj, j - 1,2,3,

one of its elements, contains XlI X 2 x IQ1 - 18 elements, and the

corresponding 18 upper bounding functions h (x), c€ e, happen to be pairwise

distinct. However, a complete set of upper bounding functions is defined

by the representative set of sequence-related mappings associated with the

set P2 of Example 2 (where Q = (1,2,3,41 plays the role of V2):

hl( - 5x1 + x2

h (x) 5x 1  + x 4.
hC3 1

h '4(x) - 4x 3 + 2x4
h Wx)- 4x 3+2

h "6x) - 3x3 + 3x4.

The mappings qkc k - I,...,6, correspond to the following

permutations p a P2:

k 1 2 3 4 5 6

pp 1 23* 34* 4** 234 * 34** 4***

124 * 2 4**
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Where a mopping 'Vk corresponds to more than one p c P2 as for k a 1,4,

this is because different permutations containing a certain subsequence

< il,...,i m > give rise to a single mapping p¢Y related to that subsequence.

Thus, in the case of k - 1, s. a < 1,2 >, and in the case of k - 4, s. = < 2,4 >.

At this point we mention that there is another class of upper bounding

(affine) functions for f(x), that one can derive by using the following

observation.

Let Q be a set whose elements are ordered in some arbitrary way,

Q - [t,...,q], and let a be an arbitrary positive scalar. Then, denoting

x, 1 - x i for icQ, one can write

_ q-1 q-2
(12) -a i -a(rq V xi q = 1. +..+ -1).

iCQ qi-l q-1 i- L + .2x '

Note that the right hand side of (12) has q - IQI variable terms (each

one containing exactly one complemented variable) and a constant term.

Thus for any f(x) of the form (1) with a. > 0, JCN, using (12) one can

write

-fx) - p (,:),

where p is a multilinear function of the variables x and their complements

xi, i cQj, JN, with coefficients aj > 0 and with IQ terms for each JN.

The subscript a refers to the particular ordering of the sets Qj, JcN, which

was used in (12) to derive p f(,x). Taking any o and applying Theorem 1,

one can derive a family of lower bounding functions &M(x,X) for p (x,x),

one for each set of the form MH U M where M QJ, JeN. Substituting
-N jis i

for xi, iCQj, JCN, one obtains the corresponding functions '(:) (x ) (i,x))

in the variables xi, and by changing signs, the affine upper bounding functions

- .(z) for f(,c).
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For a given f(x) of the form (1), there are i j!) different func-jcN (QQLt

tions p (x,x) such that p (x,x) = - f(x), and for each a, there are n 2 1

- JN
lower bounding functions g(x,x) (not necessarily all distinct) for p (xx),

hence upper bounding functions - for f(x). However, as stated in the

next theorem, every such upper bounding affine function is dominated by some

linear function in the class 14.

To simplify the notation, we will assume that f(x) has a single term,

i.e., the equation - f(x) - pa(x,x) is as in (12). In view of Remark 1, this

implies no loss of generality. Further, we shall let each of the IQI - q

terms of p (xx) be indexed by the index of its (unique) complemented variable.

Theorem 5. Let MCQ, H - wl,...i], with ik < i whenever k < L. Then

ax <-

for every x € (0,Ia 
q

Proof. Applying Theorem I to p (x,x), we obtain the lover bounding

function

m iki

&H(x) &[ E (.+ E x - ( ikl)) l]k,.l Lk -l'

or

m i k l

( x ) a( E: ( z - E x . + +) ] .
k-I "k i-1

Therefore

.5 M~ W ax ± + a a Cx)

where

i -l M-1

(13) 1"W - (im . I - X + r ( x x
Latl lcual ik i0I
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and to prove the theorem we have to show that a(x) > 0 for all x c 0,1} q .

Note that for k - 1,...,m - 1,

tk- i -1 if x 1, i , l,.,k - 1, and x - 0

i-i > 0 otherwise

a nd

m 0 if xi = I, £ - l,...,i m - 1
i- i - i

i-l > I otherwise

Since x 0 for some keti,..., - 11 excludes x. 1, ... 1

for any 1. > k, at most one term under the sumation sign in (13) can be negative,

and if there exists such a term, then

i -1
m

im -I- xi>l.
i-I

Thus for any x £ (0 , 11
q , a(x) 0, hence - _>(x) axi .1

m

The relation (12) can be used in the reverse direction too; i.e., in

order to derive a set of lower bounding functions for some f(x) as in (1),

with a > 0, JeN, one can use Theorem 3 to derive a set of upper bounding

linear functions h (x,;) for p (x,) - f(x), and then substitute for x., * i,

to obtain a set of functions 6 (x), whose negatives, - 5P(x), are lover

bounding functions for f(x). In this case one recovers the lower bounding

function g.,(x), by using the mapping p which associates to the index set of

each term of pa(x,x), the index of its complemented variable. The functions

g(x), M5N, can be recovered by using the same mapping for jCM, while for

JcN\M one uses a mapping that produces a lower bounding function identically

equal to zero. When the number of terms of p (x,x) corresponding to the Jth
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term of f(x) is even, this is accomplished by any mapping that produces

pairwise complementary images. When it is odd, one has to use the construc-

tion of Remark 7 to find a lower bounding function that vanishes for all

x c oI*q.

All other lower bounding functions that one obtains via this procedure

are uninteresting, because they cannot take on a positive value for any

x 6 (0,1} q .

We conclude this section by combining the above results to derive a

family of lover bounding functions for f(x) as in (1), with coefficients a

of arbitrary sign. Let

N- £JCNaj >03 , - £i I a < 01,

and

f (x) N+ aj JT x i  fW(x) = a x i

je iCQ jN C"

For every -CW, let

(x) . a x z (IQ I - 1)a j

ieQ1M jCMIiCQ i jeM

as in Theorem 1. Let I- be the family of mappings V that associate to every

Q. j cN', some ". cQj, and for every 9€c.', let

h (x) a x
j CN" aji (j)

where i(J) - V(Q), JcN. The function h_(x) differs from the function h (x)

of Theorem 3 only in that here the coefficients a are negative.

Theorem 6. Let f(x) be as in (1). Then every x c(O, 13q satisfies

(14) , f(x) Z sm(x) + h'(x)'M, CP
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for every MN + and every V c §-. Further, (14) holds as equality if

and only if

and for all JuN" such that Q \Q(x) # 0,

(16) i(J) 9 Q J,\Q(x)

Proof. Since N+UN - N, we have

f(x) - k+Cx) + f (x);

From Theorem 1, for every MCN+

(17) f4 (x) > (x);

and from Theorem 3, for every V CO-

(18) f (x) > h (x).

Then adding (17) and (18) yields (14).

Now (17) holds as equality if and only if (15) is satisfied (Theorem 1),

while (18) holds as equality if and only if (16) is satisfied for all JcN"

such that Q \Q(x) # 0. (Theorem 3). But a vector x c 0,1] q that satisfies

both (17) and (18), satisfies (14)MC with equality if and only if it

satisfies with equality both (17) and (18).11

Next we define a subfamily of the lower bounding functions introduced

in Theorem 6, that is complete.

For every MQN4. , let E(M) be defined as in Theorem 2, and let
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Further, let Y" QI" be a representative set of sequence-related

mappings as defined earlier, and let

Finally, define che set

so (g= x + h_(x)M~Ne and cpe'~].

Theorem 7. 20 is a complete set of lower bounding functions for f(x).

Proof. Sine and'U are complete, for every x c [Olqthere exists

some z such that f (x) - sE(m)(x) and some h-(x)t( 0 such that

f Wx - h-(x). But then &F h(x) c50 and f(%) - hM()+ h()
soCe (M()(x sc h ) f(x) +Z hM (0

hence 30 is complete.I

Example 5. Consider the function

f(x) = 8Xx2%3 - Zxlx 2 + 5x3xs56 - x2 x5 + 4x2 14.

The set e of lower bounding functions for f+(x) is

8x + 12x 2 + 13x3 + 4x4 + 5x 5 +5x 6 - 30,

81 + 12x + 8x3 + 4x4 - 20,

5%3 + 5x5 + 5x6 -10,
4x2 +4 4z - 4,

0;

while the set ?.0 of lower bounding functions for f'(x) is

- 2x1 - 129

- 2xI - x5 ,

- 3x2 .
2*

Hence a complete set J0 of lower bounding functions for f(x) consists of

the 15 functions obtained by adding any of the 5 functions in to any of

the 3 functions in
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3. Linearizina Multilinear Inequalities in 0-I Variables

In this section we linearize the multilinear inequality

(2) f(x)- a(rT x)<b
JcN iQ -

by defining a family 7 of linear inequalities, equivalent to (2) in the sense

that a 0-I vector x satisfies f(x) < b if and only if it satisfies the linear

inequalities in 7. This family is shown to contain the family of generalized

covering inequalities defined by Granot and Hamer (161. We then present

several results which relate the strengths of inequalities in:;, and which

are useful for obtaining a smaller family of linear inequalities equivalent

to (2). We first give some definitions.

An inequality A is said to dominate an inequality B if every nonnegative

x satisf7ing A also satisfies B. Further, inequality A strictl7 dominates

inequality B if in addition to A dominating B, there exists some point';

such that x satisfies B but not A. We shall also find it useful to define

the following weaker notion of dominance.

An inequality A is said to c-dominate an inequality B if every 0-I

point x satisfying A also satisfies B. Further, if A c-dominates B and

there exists some 0-1 point satisfying B but not A, then A is said to strictly

c-dominate S. It is easily verified that an inequality A can c-dominate

an inequality B without A dominating B.

We continue to use the notation introduced earlier. ln particular,

N , fe(x) and f (x) are as in Theorem 6.

A set MeN is said to be a cover for the inequality (2), if

E ja I >b Z a
i LM i JCff J
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A cover M is said to be minimal if T is not a cover for any T M.

It follows from this definition that a set HN+ is a cover for the

inequality

(2+) (x) < b

if
E a >b.
jcHm

Theorem 8. Let

- is a cover for (2+)),

and let g,(x), h-(x) and I- be as in Theorem 6. Then x €O,l]q satisfies (2)

if and only if it satisfies

(1 9 )MH gm(x) + h-(x) < b

for every Mca and Vcpg.

Proof. From Theorem 6, if x c O,l}q satisfies (2), then

SH(x) + h (x) < f(x) < b

for every c c 4" and every M N4 , hence every H ca. This proves the "only if"

part of the Theorem. To prove the "if" part, suppose f(i) > b for some

j 4 (0,11 q . From Theorem 7, there exists M0  N+ and C € § -- such that
m0

(20) go(:i) + ho (i) - f(R) > b,
09

i.e., i violates the inequality (1 9)M 0, 0  It remains to be shown that MO

is a cover for (2 +). We have
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l~aa gm (from the definition of SO)

> b - h o() (from (20))

> b (since - h CO) > 0),

hence M0 is a cover for (2+ ).II

Let 9 be the system of linear inequalities (19)M,v, for all M ca and

c 0 According to Theorem 8, the system 3 is equivalent to (has the same

solution set as) the nonlinear inequality (2). As one may suspect from

Theorem 7, S is not a minimal set with this property. Indeed, for M9N

let E(M) be defined as in Theorem 2; and let ?.'Q§" be a set of representative

sequence-related mappings, as in Theorem 4. We then have

Theorem 9. Theorem 8 remains true if the system (19) M,, ; e and M c C

is replaced by

(21) M, :P gE()(x) - h (x) < b,

for every Me 0 and vc .

Proof. Along the same lines as the proof of Theorem 8, using the

fact that, from Theorem 7, there exists M0CN and 0 me Y such that

SE(o)(+) + hO(i) - f~i).I

Since Y is a proper subset of 4', and different sets McN under

certain conditions give rise to the same set E(M), the system 30 of linear

inequalities (21),, MeC,, cpeY_, is a proper subset of 3, and usually of

much smaller cardinality.
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Example 6. Consider the inequality (2) with f(x) as in Example 5

and b 8 5, i.e.,

8x1x 2 X3 + 4x2x4 + 5x3x5x6 - 2x1x2 - x2x5 < 8.

Denoting Q1  (1,2,3), Q2 = (2,4), Q3 = [3,5,6), Q4  ( 1,2), Q5 = (2,5},

the subsets of N+ ( 1l,2,31 that are covers for (2+ ) are X.. ,2., , =

M3 - (2,3}, M4 = (1,2,3). They correspond to the functions

g (x) - 8xI + 12x 2 + 8x3 + 4x4 - 20

&M2(x) = 8x I + 8x2 + 13x 3 + 5x5 + 5x6 - 26

gS3(x) i 4x 2 + 5x3 + 4x4 + 5x S + 5x6 - 14

g,4(x) - 8xI + 12x2 + 13x3 + 4x4 + 5x5 + 5x6 - 30.

Further, the set 4" consists of the mappings cp V 2' c3' 4, giving

rise to the 4 functions

h( ) = - 2xl x2

h 2(x) = - 2xI - x5

h" (x) - - 3x2

h 4(x) 2x 2  - 35

Thus the system S equivalent to (2) consists of the 16 linear inequalities

am (x) + h- (x) < 8, i - 1,2,3,4; j - 1,2,3,4

However, since Y - (CP1, 2 , q3 and E(MI ) - (1,21(i MI), E-2 ) - E(M3 ) =

E(MX ) 4 £l,2,31(- M 4) , the smaller system gO equivalent to (2) consists of the 6

inequalities

/" I I,
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6xI + llx 2 + 8x3 + 4x4 <28

6x + 12x + 8x 3 + 4x4 - 5< 28

8xI + 9x2 + 8x3 + 4x < 28

6x1 + llx 2 + 13x3 + 4x4 + 5x5 + 5x6 < 38

6xI + 12x 2 + l3x3 + 4x4 + 4x5 + 5x. _< 38

8x1 + 9x2 + 13x3 + 4x 4 + 5x5 + 5x6 _ 38.11

It is sometimes useful to consider instead of the nonlinear inequality

(2), an equivalent system of (nonlinear) inequalities whose coefficients are

all positive. This is easily accomplished by replacing f (x) in (2) with

the family of lower bounding functions h (x), cp cY', and then complementing

xi, jeN.

Theorem 10. A vector x e (0,I}q satisfies (2) if and only if it satisfies

(22) f+(x) + Z ajalxi(.) < b - aj,
j CN" jcN"

where i(j) - p(Q.), for every z¢Y

Proof. The "only if" part follows from the fact that

(23) alxi(j) < f(x)
j CN

for all i(J) - (Q), . The "if" part follows from the fact that the

set of lower bounding functions h (x), vcy, for f-(x), is complete; hence

if for some c [0,114

f(i) - f+( ) + f'(x) > b,

then there exists ;0 C Y  such that, putting i(j) -O(Q )

Z a a f (i) > b- f+(x)j aji(j)

i.e., x violates (22)
10
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Remark 8. Theorem 10 remains true if Y is replaced by I

Proof. Since . the "if" part is obviously true; the "only if"

part follows from the fact that (23) holds for v e4.1i

Note that if we first replace (2) by the family (22), c 0" and then

generate the sets S of linear inequalities equivalent to each inequality (22),

we end up with a set &. - U of linear inequalities that is a proper

superset of the one obtained when we generate the set S directly from (2).

The reason for this is that, applying Theorem 8 to an inequality (22)V, we

will generate a linear inequality for every cover MCN for (22)., hence for

(2); whereas applying it to the inequality (2), we generate linear inequalities

only for covers M QN+ for (2+). It is easy to see that if D1JQN and M2 QN

are covers for (2), we may have M # M., but M fN M2 flN. On the other

hand, M-N + is a cover for (2) if and only if MUN- is a cover for (22)

F 64 . Thus the system of linear inequalities 9, obtained by applying

Theorem 8 directly to (2), is that subsystem of S+ whose inequalities

correspond to those covers MCN such that N'CH.

Next we turn to another way of using complements of the variables.

If we restate the system (19) by complementing the variables xi, i CQM' this

operation can be combined with a (trivial) strengthening of some inequalities.

For any v e we will denote

Q- [icQji i(j) for some

where, as before, i(j) -t(Qj).

Theorem 11. The vector x e (0,ljq satisfies (2) if and only if it satisfies

- M(24) , E 0(i xi + r ixi > 1o

for every M e 0, z e , where

0 =  Z akJ '
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M min( M 5:--QMa1. 0 , CM I LL Q1 M

and

Smina61J N iai(j)a , iQ.

Proof. Substituting for SM(x) and h (x) in (19)M their expressions

in terms of the coefficients a,, jr&N, yields

(19')M, E _7_ a i a .)i + E axi (J) b + E (II -

iM Mi&Q1 i jcN j &

where i(j) = c(Q), jcNf, as before. Substituting 1 - xi for x., i CQMD

and - a1 I for a j eN , and collecting terms for each i z Q,, then changing

the sign of the inequality, produces

(25) (_ a.)- + r (z .. ajl)x i > Z a. - b,
eQ,1  jl ieQ J ieQ jCN-ji-i(j) .3M

since

a )l = Z iQjla.
iCQM jeMjiCQ1  jem

Finally, since all coefficients of (25) are positive, each coefficient

whose value exceeds that of the right hand side can be reduced to the value

of the latter, without cutting off any 0-1 point x satisfying (25).j

Note that if for some i eQM and jN we have i -i(j), then (2)M,-

has a term in xi and one in x . Each such pair can obviously be reduced to a

single term, with a corresponding adjustment of the constant on the right

hand side. This in turn allows a further strengthening. We denote

'I li QM i(j), * JCN'

+ i a1l " QMi£ i(j) for some JcN, and a > 3t
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Q- t iQ\Q, i i(j) for some j.N']

Qj [icQ.li - i(j) for some jcN arid >cy M)

and let Q+ Q+UQI Q - QUQ 1

Remark 9. The inequality (24 )M.9 implies

(26) M x + y x  >M, iCQ i £ iCQ jj 0 O

where

y0-mrj0+ 0 - CQ-

and

Y, mify (Y, iCQ +UQ-,

with

i 0.

I

Yi I

Proof. For i e QI'

m- m i
ati x + x =x

while for i eQ'

M--

m~~ - -
a i x i + x1z U ( i ) x +  a,

Substituting these expressions into (24) M, yields

z ix i + Y Vi Xi > 'Y0

i + iCQ"

and replacing y with min(YO, Y¥) produces (26 ) ;j
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Theorem 12. For M N , denote C(M) - MU N.

(i) If C(M) is a minimal cover for (2), then a,- ae. M O cQ1 ' and
M

a£ 0 1O CQ -c in (24)MV .

(ii) If C(M) is a minimal cover for (2) and i(j) cQ\QM, JCN

then (26)M, p is the same as (2 4)M,V' and is of the form

(27) x + E x >
M,V £C+ i icQ -

(iii) If C(M) is a minimal cover for (2) and i(j) cQ M for some JCN,

then (26) M, is vacuous.

Proof. (i) Let C(M) be a minimal cover for (2). Then

(28) E laj 1:b - E a ,akl , k MU"J CC(M) - J oN- '

and therefore, for any icQM,

a minja-.

Sa -b (from (28)),
JaM J 0Z

which proves that a- , i CQM.

Also, for any i c V and keN" such that i a i(k), from (28) we have

Ia I a j L al " b M

JCNjIimi(j) uKM

i.e., 5, a Clo * JaN

(ii) If i(j) CQ\Q14 * jcN, then Q UQ " 0, and y i . ail i cQ

Y, S Oil i cQ. Thus, if this condition holds and C(M) is a minimal

cover for (2), then (26)1,w is the same as (24) M,, and it is of the form

(27)X,;7.

(ii) If C(M) is a minimal cover for (2), then form (i), (24) M,

is of the form



-30-

M- Ha oi + , a Ox i - :0 '

Now if i(J.) ¢QM for som J tcN-, then yo - 0 and hence Y, - 0,

Note that C(M) is a cover for (2) if and only if M is a cover for (2+).

If C(M) is a minimal cover for (2), then M is a minimal cover for (2+); but the

converse is not true. On the other hand, if M is a minimal cover for (2 + ) and

a >IZ mn a i for all JcN-, then C(M) is a minimal cover for (2).
i em
Example 7. Consider the inequality

f(x) -3xIx2X3 + 312x4 + 4xlx4 - 2xlx5x6 - x3x5 - 4x lx3x 6  2,

and let the sets Qi, i - 1,...,6, be numbered from left to right. Choosing

M - £.,2,3) and 9 such that i(4) - 1, i(5) = i(6) = 3, one obtains the

inequality (of the form (24)M,)

7xI +6x 2 +3 3 +7x 4 +2x I + 5x 3 >8

After reducing the terms involving the pairs (xl, x1) and (x3, x3) ,

one obtains

1 .+ 6x2 + 7 4 + 2x3 > 3

which in turn implies the inequality (of the form (26)M,

3x I + 3x2 + 3%, + 2x3 > 3.

Now let M - (2) and q as above; then C(M) is a minimal cover for

f(x) < 2, and i(J) eQ\X, * jeN'. The corresponding inequality

x2 + X3 + X1 + x-3

is of the form (2 7 )Mc, since H and c satisfy the condition of Theorem 12j1

_
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Thus, when MN and P eY are chosen such that C(M) is a minimal cover

for (2) and i(j) cQ\Q, for all jcN, (26), takes on the form (2 7 )M of

a generalized set covering inequality. While the generalized set covering

inequalicies (27)M, all correspond to minimal covers MeQN + , the remaining

generalized set covering inequalities implied by (2), corresponding to minimal

covers ML + , can be derived by applying Theorem 11 to the family of in-

equalities (22) , c e Y" (with M a minimal cover for (22) ), rather than

directly to (2). The set of all generalized set covering inequalities

corresponding to minimal covers for (2) has been shown by Granot and Hammer

[161 to be equivalent to (in the sense of having the same 0-1 solutions as)

the nonlinear inequality (2). Thus, whatever additional inequalities Theorem

11 produces, beyond the generalized set covering inequalities (27), come from

covers other than minimal. In the context of linear inequalities, it is known

[5,61 that canonical inequalities derived from minimal covers can usually be

strengthened, and can never be weakened, by extending the covers. Unfortunately

in the case of nonlinear inequalities, only the first part of this statement

is true: extending a minimal cover may weaken the inequality associated with it.

Example 8. To show that extending a minimal cover can actually weaken

the inequality derived from the cover, let

7x2x5x6 + 6xIx 3 4 + 5x2x4 + 2xlx3 < 12,

with Q 1 2,5,63, Q2 - [1,3,4), Q3 - £2,41 and Q4 - [1,3). Applying Theorem 11

and using the minimal cover M - (2,3,4), we obtain the inequality

x1 +X 2 +x 3 +x 4 >
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Extending now the minimal cover M to (1,2,3,41, we obtain the inequality

8x+ 8x x3 + 8 x5+ 7x > 8,

which is actually weaker than (c-dominated by) the first inequality.11

Fortunately, the phenomenon illustrated by Example 8 can be precisely

characterized.

Next we address the practically significant question as to when an

inequality (24)X,V, where M €O, can be strengthened by expanding the set M.

As seen from the previous discussion, the presence of indices i c QMlQ

denotes a certain "weakness" of the inequality, since it offers a trivial

way of strengthening it. We will therefore assume that, to start with, M

is chosen such that Qm -0C , and that H is expanded into a set R such that

QR n QZP 1 too.

Theorem 13. Let M c, S Q N+1 , R - M.US, and let M and S be such that Q Q = .
R

For TZQMUQV define

(T) (Tn QM)U (Qs\QM)

and

MJ M

a (T) - H - -CrM* CjQP0
i cTfl J"  icT rQ

Then the inequality

(24 ) R -
R aR xi +igQ1 2

R iCQ I
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c-dom.iaaes (24) if and only if

(29) - (I(T) fl - 1)a < a(t)
J6S

for all T.,ZMUQ C (including T - )such that a(T) > 0.

Proof. From the definitions,

R a M + E a
110 "o a

and for £ € S\QM,

(30) a min a (+ Z a, a

0 1 a.. s Cj S iicli Q

To prove the "only if" part of the Theorem, suppose condition (29) is

viola ted for T* QU such that A(T*) > 0. Then let x be defined by

Q(x ) - (Q\T*)u(q CnT*).

M M

If T* A 0, then a(T*) > 0 implies of < Oo, a . T*Ql; Mhence for all

i € T* nQM'

(31) a . + a

From the choice of Q(x 
),

Q(7) - I (T*) U(Q \T*) U Q\( RUQ).

Thus we have
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Sxi  + x ix at 1 + 7icQ1  icq i¢:I:(T*) £ j , fQ

(32) a M+" + C a.)
i CT*rQM  i T*fQ iCI(T*) JeSjicQ J

M
Oi + I T*) Q Iaj

i IT*M X  i CTlf-i JCS a

(33) M R aR

10 its J

where (32) follows from (30), (31), while the inequality (33) comes from the

assumption that (29) is violated for T*. Thus x0 satisfies (24)R, However,

M-o o - M
a x + E x 2 1 < &

JM : ii Li £ I. 0'

SC i . Q L i iCT* iTQ.

since A(T*) > 0. Thus x 0violates (24)M, hence (24 )R does not c-dominate (24)M .

To prove the "if" part of the Theorem, suppose (29) holds for all

TZQM UQV such that 1(T) > 0. Then let x* 9 O,ljq be any vector that violates

(24)M9 and define

T (Q1 \Q(x*))U ( fQ(x*)).

We have

M- M

icT° 1  T iCTorQ C i CQM  i cQ0

since x* violates (24) 4. Thus a(T0 ) > 0. Further, if To A 0, then a<%

st c lQ14, and (31) holds for all i T° XQI. Also, (30) holds for all
SQ qs\Qx.1

~I
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0
From the choice of T

Q n Q(x*) Q T(T° )

and

Q flQ(x*) - T0 n Q

Therefore we have

R - R
t IQR i cQV ic l(T ° ) £ iCT°rQ

(34)
M .6 a IT~,QJ

ic~ M° i cT°M e cS

(35) < O+ E a. MR
jeS 3

where (34), just like (32), follows from (30), (31), and the strict inequality

(35) follows since (29) is assumed to hold for T0 .

Thus x* violates (2 4 ). , i.e., (2 4 )R c-dominates (24)M.J

At this point, it should be noted that when attempting to strengthen

an inequality (2 4 )M by expanding the cover M, it is not always possible to

do so sequentially by introducing one new term at a time, as the following

example illustrates.

Examole 9. In the inequality

8xIx 2 + 5X x5 + 5x1x6 + 4x2x3x -+ x3x5 + x4x6 < 12,

let the sets Qj, j - 1,...,6, be indexed from left to right. Taking

M fl,2,3,4}, we obtain the inequality

lO1 + lOX2 + 4x3 + 4x4 +5X5 +5X6 10.
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If we attempe to expand M by setting R = MU 5), condition (29) is rot

met for T - (3,5. Similarly, if we set R - MU [6), (29) is violated for

T - (4,61. However, if we set R , MU (5,61, then (29) is satisfied for all

T such that A(T) > 0.11

We now focus on the case when C(M) is a minimal cover for (2), i.e.,

when OtM0 for all ie and JeQ

Corollary 13.1. Let McN+ and SQNNM be such that QRIQ O - 0, where

R - MUS, and let C(M) be a minimal cover for (2). Then the inequality

icQR  iCQ%

c-dominates (24 ) if and only if

(36)R Ri 
s\QM 

ai 
< 

20Further, (24)R strictly c-dominates (24)M if and only if (36) holds

and either

(37) R < R

c'k ~0

for some k c QM2 or

(38) .t < aR

for some t c Q

Proof. If C(M) is a minimal cover for (2), then since Of.- O. ao

% i C QM2 j C %', it follows that a(T) > 0 implies T - 0 and a(T) 0 Further,

since 1(0) Q S\- , condition (29) of Theorem 13 becomes

E (IQ\Qm)nQ I - l)a < 20

or
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R M
= x ~ a) < a+ Ea

i CS\Q,, icQS\QM JeSjiCQ 0 j es aJ

which is (36). Thus (36) is necessary and sufficient for (24 )R to c-dominate

(24).

Assume now that (2 4)R strictly c-dominates (24) Then there exists

ox [0, 1 ]
q that satisfies (24)M (which implies Q(x° ) A 0), but not (24)R'

Then there exists either k eQ(x0 ) nQ,, such that (37) holds, or , tQ(x0 ) nQP

such that (38) holds.

R RConversely, if there exists k cQM such that ak < cO, then x* z

defined by Q(x*) - (k) satisfies (24)M but not (24)R; and an analogous

argument holds if there exists t, e Q such that P < aR.L1

An important practical consequence of Corollary 13.1, which is used

in the Algorithm of the next section, can be stated as follows. Like in

section 2, we define for MZN+

E (M) ai jN .Qj\QM. i, i

where p - max+ IQ j\Q M and denote E(M) E0 (M) UE1 ( ) .

Corollary 13.2. Let M, S and R be as in Corollary 13.1. If SzE(M),

then (24)R c-dominates (24)M .

Proof. Let SQE(M) and denote SM SnE.(M), i - 0,1. Then S S SI'

and

IN \Q, I for JeSo
for JeS1

Hence

(39) 7 R a 1< 0 M+ Z a 1 ,

icQs'\QM a i  aj & 1S

i.e., (36) is satisfied.ii
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Thus any minimal cover QN + for (2 +) can safely be extended to

include all te--ms in E(M), without weakening the inequality (24 )M' However,

we can often go beyond E(m), as will be clear when we restate Corollary 13.1

tn slightly different form.

Corollary 13.3. Let H, S and R be as ia Corollary 13.1, and let

Ri = R (1), i , 1 ... ,p. Thea the inequality (24 )R c-dominates ( 24 )M if

and only if

p
(39) 1 [(i - 1) Z a.] < Z a. - b.

i-2 jeR£ %

Further, (24 )R strictly c-dominates (24 )M if and only if (39) holds

and either

(40) a. > b
jcRlkAQ

for some k cQM. or

(41) 1 a + a
Je jcw -i(j) -

for some tzQ

Proof. We show that conditions (39), (40) and (41) are equivalent

to conditions (36), (37) and (38) of Corollary 13.1.

For i c Q S\QM

a. aj, since for JcR\S, IkQ1 ),
C i CQS j a RicQ

while

Rao Z a - b.

Thus condition (36) amounts to
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(42) Ri z (Qs\QM) aQj'aj < Z a. - b aR
i CQs\QM j CR SMjz 0~

Now R - U R., and for jR i ,  Qs\QM),lQ) i1 0,,...,p.

Hence from (42) we have

p p
a. - b > E (i Z a.) - Z ( Z a )

Jiff2 cR. 3 i22 j cR.

p
, (i - 1) E a.]
i-2 J iR

which is p.ecisely (39). Thus (39) is equivalent to (42), hence to (36), and

this proves the first statement.

On the other hand, (37) can be restated as

,' a < E a. -b
j e lkeQj i .j.R J

which is equivalent to (40). Also, (38) can be written as

B 1 )aj < Z a - b,

J CN- 4.(j ) JcR

which is the same as (41). This proves the second statement.i

Condition (39) of Corollary 13.3 gives the precise extent to which a

minimal cover M for (2+ ) (such that Q n Q. 0 0) can be extended beyond the

sets E0 (M) and E1 (M), into sets Ei(M) for i > 2. This is extensively used

in the Algorithm described in section 4.

In particular, using Theorem 10 to replace the inequality (2) by the

set of inequalities
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(22) f (x) + la i8 x i(j) < b (, b - Z a Y- ,

where i(j) - (Qj), jcN, we have

Corollary 13.4. Lee H be a minimal cover for (22) , let S ZN\M,

R MUS and R l RjE () , i - 0, 1,..., p. Assume M and S are such that
+i

RN fnQ , . Then the inequality

(43) aX+ of X > C
R 'Q~ £ i iC L-

c-dominates the inequality

(43) x + X > 1• +b l I  icxQMI 2

if and only if

p*
(44Z i ) Z a] < Z aj -b;

i=2 i cR. j SR0

and (43) R strictly c-dominates (43)M if and only if (44) holds and there

exists k s Qc such that

(45) a. > b.
JcRIkAQ1  j

Proof. By specializing Corollary 13.3 to inequality (22) W1

The following example illustrates the usefulness of these results

for obtaining a more compact equivalent linear system to a nonlinear inequality

(2) than the set of generalized covering inequalities.
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Example 10. Consider the inequality

(46) loxIx9 + 9xx 8 + 8x3x7 + 8xIx 6 + 8x3x4 + 5x2x5 < 20.

There arc 20 minimal covers M for (42), and the corresponding sets QX

are shown in the table below.

Minimal Cover (M) QM Replaced by

#1 123 789 B

2 12 6 89 D

3 1234 89 B

4 12 5 89 D

5 1 3 67 9 E

6 1 34 7 9 E

7 123 5 7 9 B

8 1 34 6 9 E

9 12 56 9 D

10 12345 9 B

11 123 678 B

12 234 78 C

13 23 5 78 C

14 1234 6 8 B

15 12 56 8 D

16 2345 8 C

17 1 34 67 E

18 123 567 B

19 2345 7 C

20 123456 B

Applying the Corollaries to minimal covers 20, 19, 15, and 17,

respectively, we obtain the linear inequalities
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(A) 18X1 + 14X2 + 16X +8x 4+3x 3+ 8x 6 + 8x 7 + 9 +l16x > 28

(B) io + lox- + 8x4 + 5-s  + 8X7 +9 8 > 0

(C) 12 1+ 12; +5x+ 8_X6 + 9x 8+ lox >12

(D) 14x 1  + 1473 + 87% + 8X6 + 877  + I 9 > 14,

which c-dominate all the set covering inequalities corresponding to the

minimal covers. Whereas a system of 20 set covering inequalities were

previously required to linearize (46), the system of four inequalities (A)-(D)

is equivalent to (46).II

We conclude this section by considering whether the multilinear

inequality (2) can best be linearized by applying the relevant results directly

to inequality (2) in the manner previously described, or alternatively applying

them to an equivalent set of inequalities implied by (2). In particular, if

we consider (2) to be a linear inequality in the 0-1 variables

j T xi , JeN
.1

and denote it by (2) then w.l.o.g. we may assume that a > 0 for all jeN,

and that a > al > ... > a . Then applying the results of (61, (5], we can

replace (2) by the equivalent set of canonical inequalities

(47) < Is - I , sC.
j a e(S)

Here s(S) is the extension of S, defined as

e(S) S U jcN\S Ij < j 1 ),

V|
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with J, - min j; while X is the family of strong covers for (2) where
S

a minimal cover S is called strong if there exists no minimal cover T # S

such chat JT - ISJ ande(s) e(T).

For any given S .K, rewriting (47)S in terms of x, we can linearize it

using the above results. If we do this for every S c3(, we obtain a new

linearization of (2), different from the one discussed earlier. Naturally,

the question arises as to how this new linearization compares with the one

discussed above. Both approaches were implemented and tested, and the computa-

tional results are reported in section 5.

In (51, a procedure was given for strengthening canonical inequalities

of the form (47)S by increasing their left hand side coefficients that satisfy

a certain condition. Though the strengthened inequality strictly dominates and

sometimes strictly c-dominates the canonical inequality (47)S, it is not

necessarily true that linearizing the strengthened inequality is preferable

to linearizing the inequality (47) . We have derived some sufficient condi-

tions for the linear inequality associated with a certain cover M for the

strengthened inequality, to dominate the linear inequality associated with

the same cover M for the canonical inequality (47) . However, in our computa-

tional experiments we found that the particular sufficient condition that

we have implemented was rarely satisfied; therefore we have not pursued any

further the idea of using strengthened inequalities instead of the family (47).

4. An Algorithm for Solving Multilinear 0-1 Programs

Next we address the multilinear 0-1 program

Max E c xi

CMLP) a k:( = '- x i L b k  I keK

JeN k iCQ kj

x~, -0 or 1, ic-Q
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where

kcK

The algorithm that we present below, like the one by Granot, Granot

and Kallberg (151, generates some linear inequalities implied by the constraint

set of (MfLP), and solves the resulting linear 0-1 program, which is a relaxa-

tion of (MLP). At iteration t, let this linear 0-1 program be denoted (P).

If an optimal solution to (Pt) is feasible for (MLP), then it is optimal for

(MLP) and we stop. Otherwise we generate a new set of linear inequalities

implied by the constraints of (MLP), such that the new inequalities cut off

the solution to (P ), and solve the linear 0-1 program (Pt+l) obtained from

(P t) by adding the new inequalities. Since at every iteration the solution

to the current problem (P ) is cut off, the algorithm is obviously finite.

Our procedure differs from that of [15, 14] mainly in that we use a more

compact linearization, based on the theory of sections 2-3. To be more

specific, we start with a set covering inequality associated with a minimal

cover, but then use Theorem 13 and its Corollaries to extend the cover so

as to obtain as strong an inequality as the conditions of the Corollary permit.

Experience shows that the proportion of minimal covers that be extended is

very high (90% is a typical case) and tends to increase with the number of

terms per constraint. Since the use of extended covers tends to produce

smaller cardinality linear equivalents of each nonlinear inequality, it can

also be expected to reduce the number of iterations needed to solve (MLP).

This is indeed the case, except for problams with very few terms per

constraint, as shown by the computational experience discussed in the next

section.
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While the procedure outlined above is finite, it may take many

iterations. We found it therefore preferable not to solve (Pr) exactly

at every iteration, but use a heuristic to find an approximate solution.

We proceed this way until, at some iteration t, an approximate solution to

(P t) is found to be feasible to U4LP). At that point we replace the heuristic

by an exact algorithm. The particular heuristic that we use on the sequence

of linear 0-1 programs (P )is the Pivot and Complement procedure of Balas

and Martin £71. When we switch to an exact algorithm, we use a branch and

bound/implicit enumeration procedure implemented by C. H. Martin.

Another deviation from the above outline is that we found it convenient

to periodically remove some of the linear inequalities generated earlier.

This is done according to a particular procedure so as to insure that con-

vergence is maintained.

Finally, to facilitate the search for minimal covers and their extensions,

used in the linearization procedure, we start the algorithm by ordering once

and for all the terms of each constraint according to decreasing absolute

values of their coefficients.

As a starting solution we use the optimal solution to the unconstrained

problem, i.e., x 0defined byx 0 =1I if a > 0 and xi0 = 0 otherwise.

A flowchart of the algorithm is shown in fig. 1.

The heart of our procedure is of course the generation of linear

inequalities. Since the conditions of Theorem 13 and its corollaries do not

uniquely determine the "best" inequality that meets them, we have to describe

the particular algorithm that we use to generate the inequalities.

First, it should be stated that at every iteration we generate one

linear inequality from every inequality of (1LP) violated by the current

solution xo, except for the first iteration, when we generate one linear
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inequality (using the cover M - N) from every constraint of (L.P), whether

violated or not (the exception was adopted as a result of computational

experimenting). To describe the procedure, let

(2) Z a(rr x b
yeN i eQ.

J0

be one of the inequalities violated by x0 , and let Ia,[ > [a2 1 > ....> a n1.

Denote

-() - iCN'I IT 10 - 13,

with

P (x ) P (x) U P" (M°)

and define

4'(xo) - L 4.1xo(J) 0, jcP'(x ).

If xO violates (2), it also violates the inequality

(22) Z a ( r i) + Is J;LJ) <( b (- b - a a.)
(22CNJ a i CQ ij -

for every v c -(x 0 ), and g(x ° ) A 0 by definition. Thus, given x0 and the

family of inequalities (22) , cp (x0 ) (corresponding to a particular

inequality (2)), violated by x° , our cut generating algorithm consists of

the following sequence of steps:

1. Finding a convenient minimal cover McN, i.e., such that x0

violates the generalized covering inequality corresponding to M.
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2. Extending M to a maximal set R 7 + satisfying the condition (44).

3. Choosing a convenient mapping 9 cp (x °0), i.e., one that avoids as

much as possible producing nonzero coefficients for complementary pairs of

variables, and including N' in R.

A discussion of each step follows.

I. Let P(x°) = il,...,i= t be ordered by the same rule as N, i.e.,

ik< ik+l , k - l,...,t - 1. Let jCl,...,t} be the largest integer such that

Li, ij+l,... ,i t is a cover, and let , [j, j + 1,...,t} be the smallest

integer such that

M - (is, ij+l, .... ,it'

is a cover for (2). Then, obviously, M is minimal. Also, M is a minimal

cover for (22) for any pe §(x 0 ). Further, for any cp c 1-(x 0), M satisfies

the requirement of Corollary 13.4, i.e., HfnN+ nW 0 0; and for any such V,

the generalized covering inequality

i x i iM X"

0corresponding to M is violated by x

2. Construct the extension R of M as follows. Define

Zi (1)- LJCN IQj\QMi - i - 0, l,...,p,

and set E(M) - E0 (M) UE( ). Note that N QE(M). First include in R the

set E(M)N + . Next, for i -2,...,p, consider the elements of E (M) (which

all belong to X+) in order of increasing ai, and include into R as many as

can be included without violating condition (44). If all JQci( ) can be

included, set i - i + 1 and repeat. Otherwise stop with the last element of

E i(M) whose inclusion into R does not lead to a violation of (44).
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3. To choose the mapping v e (x°), for j cN -M, let p(Q ) be the

first index igQe such that x0 - 0. For j cN\\M, let R be the extended sat

Rresulting at the end of step 2 and let v., i cQU 0, be the corresponding

coefficient values, where R and the a. are updated by combining variables

and their complements whenever such pairs occur. Since it is possible for

either xi or xi (but never for both) to appear in the resulting inequality

(24) we partition Q into QR' Q and Q 0 where

Q+ - (icQai appears in (24

R Li IQRIXi appears in (24)R,;' ,

and

o R

We then choose i(j) - (Q ) according to the following rule:

If Q \QR A 0, let i(j) be the first index in Q \,QR"

if Q \Q 0 but Q Q n Q- 0, let i(j) = h where R = max aR"

R ROtherwise, let i(j) = k, where k 0 minai"

Once i(j) is selected, set R - RU [i(j)}, update R and 3, as well as=i(j)+ - an 0
QR' Q and Q (combining variables, if necessary), and proceed to the nextC j t .4.

Having generated the linear inequality, we eliminate the complemented

variables, i.e., restate the inequality in the original variables, and add

it to the current linear 0-1 program.

Next we illustrate the procedure on an example.

Example II. Consider the multilinear inequality

(48) 16x 2x'x5 - 10x 2 x 6 + lox x2x3 + 5x1 X5 -
4x x7 + 4x3x5 < ,

.-Mo
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which is violated by x° - (1,1,1,0,1,1,0). We have Q, = (2,4,5), Q2 = (2,61,
3 (1,2,31, Q4 " (,5), Q L5,7), Q (3,53. Further, N+ - (1,3,4,63,

X - (2,s3, and

P+(x ° ) - [3,4,6), P'(x ° ) a (53 P(x ° ) - (3,4,5,6).

The corresponding inequality with positive coefficients is (in general

form)

(49) 16x2X5 + ; lxxx + 5x X + 4 ,(5) + 4 15,
2 ()+ 1 2 3 1 5 i() x ,

where i(2) and i(5) depend on the choice of V '(x°). Since in this case

(x) is the set of those q such that q(Qs) 5 i(5) a 7, only the choice of

i(2) remains open.

1. We identify the minimal cover M f (3,4,53 for (48), which is also

a minimal cover for (49). We have

Q aN - 1,2,3,53, a~n (7),

and applying Theorem 11 to (49), we obtain for the minimal cover M the

generalized covering inequality

(50) x + x 2 +X 3 + x 5 + X7>

0violated by x

2. We identify the sets

Eo(M) - (3,4,5,61 , E (M) a (1,2),

and since Ei(M) for i > 2, we have R a E(M) nN+ - [1,3,4,6).

03. For j - 5 (JcN nX), we set i(5) - 7, since X7  0 0, and update R

by including [53. For j - 2 (JcN'\M), we set i(2) = 6, since Q2\QR - [63,
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and update R by including (2). Thus R - (1,2,3p4,5,619 and by applying

Theorem 11 to (49) (with 1(2) =6 and i(3) = 7), we obtain for the extended

cover R the inequality

(51) 15x1 + 26x +14-X3 +16-X4 + 25-X +1lx6+4x7>3

which is also violated by x 0, and which strictly c-dominates the generalized

covering inequality (5)1

As mentioned earlier, we found it necessary to periodically remove

inequalities from the linear 0-1 program in order to keep its size within

manageable limits. The cut dropping procedure operates as follows. The set V

of all inequalities generated during the procedure is partitioned into

3 subsets. V 1contains exactly one inequality generated at each iteration,

namely the one derived from the most violated constraint of (IILP). Cuts in

V 1 are never removed, as a guarantee that every solution to the linear 0-1

program generated during the procedure is cut off by at least one inequality.

V 2consists of all inequalities associated with extended covers and not

contained in VI, whereas V 3 consists of the remaining inequalities (i.e.,

those associated with minimal covers that could not be extended).

Wb-,aever the number of inequalities in the linear 0-1 program attains

a predetermined threshold value A1, all inequalities in V 3 not binding at the

current solution are dropped. The subset Vis our first preference for

dropping, since it usually consists of the weakest inequalities of the current

system. if removing the nonbinding inequalities in V 3 is not sufficient for

accommodating all the inequalities generated at the current iteration, then

the nonbinding inequalities in V 2 are also dropped. Finally, if removing all
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the nonbinding inequalities of V3 and V2 is still insufficient, we drop an

appropriate number of binding inequalities in V3 and, if necessary, in V2.

This completes the description of the main version of our algorithm,

henceforth called Algorithm I. Two additional versions of the algorithm were

implemented, which will now be briefly described.

Algorithm II differs from Algorithm I in that it generates linear

inequalities not directly from an inequality (2) of (MLP), but from an extended

canonical inequality implied by (2) as described at the end of section 3.

The choice of the inequality (2), respectively (2)y, as well as that of the

minimal cover M, is the same as in Algorithm I. Another minimal cover C is

then identified, such that IC - JMI and e(M) Qe(C) (preferably, but not

necessarily, C A M). The cut generating procedure described above is then

applied to the canonical inequality defined by P(M) and expressed in terms

of x, for which M is still a minimal cover. Everything else is as in Algorithm 1.

Finally, Algorithm III differs from the other two versions by the

fact that it derives only generalized covering inequalities corresponding to

minimal covers, without attempting to strengthen them by extending the covers.

For this version, the choice of the minimal cover is done differently, namely

by setting M - (il,..., 1, where k is the smallest integer such that M is

a cover. As a result, M (which is of course minimal) is of smaller cardinality

than the cover selected in Algorithm I which in the absence of the extension

procedure is preferable. The superiority of this choice of minimal cover for this

particular algorithm was unequivocally supported in the computational testing.

The other ingredients of Algorithm IIA are the same as those of I and II.

Algori:hm III should be viewed as our version of the Granot and Granot algorithm

(141; the differences from the latter (improvements in our view) having been

adopted in order to make it comparable with Algorithms I and I1.
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Algorithm 1, which is by far the most efficient of the three procedures

implemented, was also run in the heuristic mode, i.e., by removing all steps

subsequent to the finding of a feasible solution to (MLP). The purpose of

this exercise was to obtain information on the quality of the solutions

obtainable by such an approach.

5. Comoutational Results

The algorithms discussed above were coded in FORTRAN and tested on a

DEC 20/60 on a series of randomly generated test problems.

The first set of test problems consists of 60 multilinear 0-1

programs, 5 in each of 12 classes that differ among themselves in the number

of terms per constraint. The number of constraints and variables (denoted by

m and a respectively) is the same in all of these problems (m = 10, n - 30),

and the number of terms per constraint is randomly drawn from a uniform

distribution on the interval [3, TI, where T is shown in Table 1. The

constraint coefficients a are integers uniformly distributed on [- 5, 151,kj

while the b k are integers drawn from a uniform distribution on (0 .3s., 0 .8 sk)'

where s =Z a kj. The cost coefficients c.j are uniformly distributed integers

on [1, 20]'. Finally, the number of variables per term is uniformly distributed

on [2,61. The results are shown in Table 1.

All test problems were run under two kinds of limitations, shown in

the tables: a time limit (3, 5 or 10 minutes, depending on the phenomenon

studied) and a limit of 150 on the number of iterations, hence on the number

of nonremovable inequalities generated, due to space limitations. The latter

limit is different from the threshold value A that triggers the cut dropping

routine. In. Algorithms I and 11, after some experimentation I was set to 2n,

i.e., twice the number of variables; whereas in Algorithm III computational

tests indicated a higher value, and a- 150 was adopted.
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All1 CPU times reported are exclusive of input/output time arnd the

preprocessing time required to sort the (absolute values of the) coefficients

of the multilinear constraints. The maximum input time for any of the test

problems was 0.416 seconds, and the maximum preprocessing time was 0.093

seconds.

Table 1. Number of problems solved and average CPU time (seconds).123

Algorithm I Algorithm 11 Algorithm III

m ai T No. Solved Time No. Solved Time No. Solved Time

10 30 10 5 38.7 5 16.8 5 17.9

10 30 20 5 4.2 5 4.2 5 2.6

10 30 30 5 91.8 4 77.0 3 122.3

10 30 40 5 57.8 3 81.7 3 85.2

10 30 50 5 95.2 2 110.7 2 112.1

10 30 60 4 56.5 2 109.9 1 165.8

1. 5 problems per class.

2. Time averaged for all 5 problems

3. Limit set to 3 minutes CPU time or 150 iterations per problem.

Table I shows that although Algorithm III performs somewhat better than

Algorithm I on the problems with T -10 and T - 20 (i.e., with 5 and 10

constraints on the average, respectively), its performance quickly deteriorates

for higher values of T, as reflected in the sharply decreasing number of

problems solved within the limits allowed. At the same time, the performance

of Algorithm 1 is only moderately affected by the increase of T. As to
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Algorithm 11, its performance is not better than that of III on the problems

with small T, and considerably worse than that of Algorithm I on the problems

with large T. Thus the performance of Algorithm 11 will mot be further pursued.

Table 2 compares the performance of Algorithms I and III on the same

set of problems with a time limit of 10 instead of 3 minutes.

Table 2. Number of peroblems solved and average CPU time (seconds). 
1 ,2 ,3

Algorithm I Algorithm III

m a T No. Solved Time No. Solved Time

10 30 10 5 38.7 5 17.9

10 30 20 5 4.2 5 2.6

10 30 30 5 91.8 5 257.5

10 30 40 5 57.8 3 253.2

10 30 50 5 95.2 2 333.4

10 30 60 5 81.7 2 344.9

1. 5 problems per class.

2. Time averaged for all 5 problems.

3. Limit set to 10 minutes CPU time or 150 iterations per problem.

The results show an even sharper contrast between the sensitivity of

the two algorithms to an increase in the number of terms per constraints.

We conclude that the more compact linearization based on the theory of

sections 2-3 definitely pays off for problems with more than 20 terms per

constraint.
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In Table 3 ye compare the average number of iteracions and cues

(linear inequzalities) generated, in order to better understand the difference

in the performance of the two algorithms. We see chat as T is increased

from, say, 30 to 60, the number of iterations and cuts increases by more

than 300% for Algorithm III, as opposed to 10-15%. for Algorithm 1. On the

other hand, while the percentage of covers that can be extended (in Algorithm 1)

Table 3. Number of iterations and of cuts. 
1 ,2 ,3

I Algorithm I I Algorithm III

m a T Iterations Cuts Percent Covers Iterations Cuts
____________ ~Extended___________

10 30 10 6.6 32.6 89.0 I 9.0 32.4

10 30 20 4.2 25.2 94.6 6.8 27.4

10 30 30 8.8 41.0 94.2 26.0 108.0

10 30 40 9.2 38.6 95.1 f 57.2 212.0

10 30 50 9.6 41.8 98.9 78.2 340.6

10 30 60 10.2 45.6 98.8 100.0 455.2

1. 5 problems per class.

2. Values averaged for all 5 problems.

3. Limit set to 10 minutes CPU time or 150 iterations per problem.

increases with T, the increase is only modest, since this percentage is high

to begin with (i.e., for all problem classes). This modest increase cannot

fully account for the sharply increasing difference in the number of iterations

required by the two Algorithms. What the table does not show, however, is

that as the number of terms per constraint increases, not only does the per-

centage of covers that can be extended increase, but more importantly, there
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is a significant increase in the extent to which every minimal cover can

be extended: with more terms per constraint, many more indices are included

in the extension of each cover.

In Tables 4 and 5 we illustrate the effect of an increase in the number

of variables and constraints, respectively, on the performance of Algorithm I.

Table 4. Effect of an increase in the number of variables (Alxorithm 1)1,2,3

m n T No. Solved Time Iterations Cuts Percent Covers
(seconds) Extended

10 30 30 5 91.8 8.8 41.0 94.2

t0 40 30 4 104.6 11.6 43.6 96.6

10 50 30 4 82.5 9.2 40.2 95.1

1. 5 problems per class.

2. Values averaged for all 5 problems.

3. Limit set to 3 minutes C1U time or 150 iterations per problem.

Table 5. Effect of an increase in the number of constraints (Al-gorithm 1)1,2,3

m n T jNo. Solved Time Iterations Cuts Percent Covers
____ ____ (seconds) __ _ _ Extended

5 30 30 5 5.5 6.0 17.4 95.2

10 30 30 5 91.8 8.8 1 41.0 94.2

15 30 30 3 183.9 12.6 68.2 96.0

20 30 30 2 253.8 29.2 144.6 93.1

1. 5 problems per class.

2. Values averaged for all 5 problems

3. Limit set to 3 minutes CPU time or 150 iterations per problem.



-58-

Table 4 shows that as the number of variables increases from 30 to

40 to 50, the number of problams that the algorithm is able to solve within

3 minutes and 150 iterations drops from 5 to 4. This is of course to be

expected, since the number of variables increases to the same extent in the

linear 0-1 program as in (QLP). Table 5 shows a steady deterioriation of

performance as the number of constraints increases. This is due to the

fact that the number of inequalities in the linear equivalent of (MLP)

sharply rises with the number of constraints of (MLP), hence so does the

number of iterations required to generate a relevant subset of the linear

inequalities.

In the last two tables we finally examine the performance of Algorithm I

in the heuristic mode. When used as a heuristic, Algorithm I stops at the

first (approximate) solution of the linear 0-I program (found by Pivot and

Complement) that is feasible to (MLP).

Table 6. Alzorithm I in the heuristic mode
1'2'3

m n T NO. Iterations Time Proximity Proximity
solved (seconds) to to

LP bound Integer
_ __ __ Optimum

10 30 20 5 4.2 2.0 1.77. 0.12%

10 30 30 5 7.4 7.6 2.97. 0.16%

10 30 40 5 6.8 4.6 2.4% 0.077.

10 30 50 5 8.6 1 10.1 2.2% 0.00%

10 30 60 5 10.0 15.4 2.77. 0.22%

1. 5 problems per class

2. Values averaged for all 5 problems.

3. Limit set to 3 minutes CPU time per problem.
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The linear programming solution to the last linear 0-1 program (more

precisely, the lowest value of any LP solved during the procedure), rounded

down to the nearest integer, provides an upper bound for the optimum of

(MLP), which we call the LP bound. This bound is guaranteed, but in most

cases not tight. For the problems of Table 6 the integer optimum is also

known, so the quality of the heuristic solution can be measured against the

actual optimum. For the problems of Table 7 this is not the case, and the

only measure available is the LP bound. On both counts, the quality of the

solutions obtained by using Algorithm I in the heuristic mode seems excellent,

and the computational effort is modest.

Table 7. Additional tests with the heuristic 
1 ,2'3'

m n T 1No. Solved Iterations Time Proximity
(seconds) to LP

optimum

10 30 70 i 4 29.0 64.1 2.4%

10 40 30 I 5 2.1 16.9 2.97%

10 50 30 I 5 8.8 19.5 1.8%.

10 30 40 5 10.2 26.5 1.8"i

10 50 50 5 11.4 29.1 1.5%

5 100 30 5 8.2 14.8 0.77.

5 100 50 5 15.4 65.4 0.87.

5 150 30 5 6.8 16.9 0.4%.

1. 5 problems per class.

2. Values averaged for all 5 problems.

3. Limit set to 3 minutes CPU time per problem.

4. Average for the 4 solved problems.
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We conclude from this computational study that Algorithm I, based

on the linearization of sections 2-3 is an efficient procedure for solving

multilinear 0-1 programs to optimality. In particular, problems having more

than 20 terms per constraint have now been opened up to exact solution. The

use of the first phase of the algorithm as a heuristic is also an attractive

option for problems with many constraints and/or variables, in that high

quality solutions can be obtained at a modest computational cost.
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