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Abstract

E
We have initiated a program to study the resonances in the

* acoustic reflection coefficient of a layered ocean bottom,

patterned after the resonances of sound reflection from fluid

or elastic layers1 '2. Computer programs have been written for

obtaining the reflection coefficient from multilayered fluid or

elastic media, with constant or linearly depth-dependent sound

velocities in each layer. Resonances are evident in the reflection

coefficient both as functions of frequency and of angle of incidence,

and are shown to depend on the properties of the layered ocean

bottom. Results will be presented in the form of three-dimensional

graphs.

Reproduction in whole or in part is permitted for any purpose of the United
States Government.
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Introduction

Calculated reflection coefficients for the reflection of

acoustic signals from the ocean floor exhibit in general a compli-

cated structure consisting of more or less regular sequence of

peaks and dips. A typical example 3 is provided by Fig. 1 which

shows the bottom reflection loss versus grazing angle for a 518-m-

thick turbidite layer of 20 Hz.

Features as these can usually be attributed to resonance

-phenomena of some sort, and it is often found that the resonance

structure, i.e. the distribution and widths of the resonance peaks,

contains all relevant information about the interacting medium

involved. Thus it appears logical to use knowledge about the reso-

nance structure obtained from measurements to gain access to proper-

ties of the interacting medium, i.e. to solve the inverse scattering

problem or the inverse reflection problem, as the case may be. So

far few attempts have been made to apply this approach to sound

reflections from the ocean floor, where it might be providing a

valuable tool for acquiring information about the structure and the

properties of the reflecting medium.

We have initiated a program of systematically exploring the

feasibility of applying the resonance approach to sound reflections

from layered media in such a way that it can be directly used for

solving the problem of ocean bottom reflections. First attempts

along these lines can be found in References 1 and 2 where the

cases of a liquid and an elastic layer embedded in a liquid medium

were considered. Here, we would like to disucss another simple

*bIo
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case, somewhat more relevant to ocean bottom acoustics, that of a

liquid layer embedded between two different liquids.

Realistic models of the ocean floor must of course, besides

layering, also include shear wave propagation, attenuation and

density and velocity gradients. The implication of these compli-

cations for the resonance formalism will be briefly discussed at

the end of this investigation. An example of the effects of adding

shear wave propagation e.g., is already provided in Fig. 1 where

the major effect is seen to be increased absorption. Adding more

realistic features to the simple model we are presenting here will

of course considerably increase the complexity of the analysis

and the number of parameters to be dealt with. However, as will be

shown, there is sufficient redundance in the information provided

by the resonance analysis in our example that it can be expected

that more realistic cases can also be treated satisfactorily.

Resonance Theory for the Three Fluid Case

The example chosen here for demonstrating the application of

the resonance formalism is that of a liquid layer embedded between

two different liquid, semi-infinite media, as indicated in Fig. 2.

The reflection coefficient for this case is given by Brekhovskikh
4

and can be rewritten in the form
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with

~~' ~ ~ ~ (2 UZ1/~1  
8(2 /Cs) cesS. (2

where

S ? o(3)

are the layer impedances expressed in terms of the sound speeds

ci and the densities T. It is assumed here that ZPZ 2> Z3 ,

which corresponds to the case of a sediment layer embedded

between the ocean and a high density substratum. The parameters

chosen are c3 = 1500 m/s, c2 - 2544 m/s, c1 - 5495 Ws

- 1 g/cm3 , t,- 2.2 g/cm 3 ,- 2.6 g/cm3

If the square of the reflection coefficient is plotted in a three-

dimensional graph simultaneously vs. the frequency-thickness product

fd and the incident angle e3 one obtains a surface, parts of which

are shown in Figs. 3 through 5. The surface is seen to consist of a

series of ridges and valleys which run almost parallel to the 13

axis for low frequency-thickness products and curve away more and

more from the 3 - axis as the value of fd is increased.

3-Forcontan a3 one observes a regular sequence of maxima

and minima. For constant frequency-thickness products there is

little structure as a function of angle for values of fdf5KHz-m.

At around 5 KHz-m the first minimum appears (Fig. 3) and from then

on the increasing curvature of the ridges and valleys leads to a

growing number of maxima and minima of IR1 2 along lines of constant

fd (Fig. 4).

' 4
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Fig. 5 shows the surface of Fig. 4, covering the range of fd

between 20 and 25 kiN-m, plotted upside down (thus actually

showing the square of the transnsbson ooefficient). This clearly

reveals the existence of sharp ridges reminiscent of forms

describing resonance-type processes. It is therefore suggestive

to interpret the transition coefficient as a series of resonances

(or the reflection coefficient in terms of anti-resonances) and

to apply the resonance formalism developed in other areas of

physics to the problem at hand, namely the analysis of the inverse

reflection problem, and thereby simplifying its solution.

The basic assumption of the resonance formalism is that in

the vicinity of a resonance the amplitude for a process is described

essentially by a Breit-Wigner resonance form plus some slowly

varying background. Following this idea, the transmission coefficient

can be expanded around the maxima and then written approximately as

a sum of resonance shapes, the reflection coefficient being

correspondingly represented by a sum of antiresonance shapes, obtained

by expanding the exact form around its minima. The sum over the

resonances (or antiresonances) is to be taken only symbolically

since the expansion is assumed to be valid only in the immediate

vicinity of each resonance position, but is expected to fail at large

distances away from the resonances where the individual resonance

shape is simply expected to approach the background. For the assumed

case of Z3 < Z2 < Z1 the minima of the reflection coefficient (1) are

found to be given by the condition cosr -0,i.e.

o • ,l)/ , ,,.o :...(4)



Linearizing around these positions with respect to leads

to the following resonace expression for the reflection

coefficient:

________(5)

with

F .A ____" -- : (6)

Interpreting s the resonance halfwidth, the expressions

in the denominators of (5) are recognized as the standard reso-

nance denominators leading to the well-known Breit-Wigner reso-

nance shapes. Using Snell's law and the definition for

given in (2), the resonance condition (4) can be written as

Sin- i 2 , , 2... (7)

where nd = c3/c2.

d 3



Two Types of Resonances

For the specific example chosen, the relation between

the frequency-thickness variable fd and the incident angle 03

as given by (7) is shown in Fig. 6 for various values of n. As

this figure shows, one obtains regularly spaced resonances for

the variable fd at constant values for the angle 8 3, and, if the
frequency-thickness product is held constant, irregularly spaced

resonances as a function of angle (indicated in Fig. 6 by

circles for a few values of fd). For a more detailed discussion

of the two types of resonances identified above, it is convenient

to introduce new variables. For the case of the frequency-

thickness resonances the reflection coefficient is rewritten as

R = - P(8)
-4-±

where the definitions x - 2lrfd/c3,

= AL/(,." L _v 'ao' (9)

and

= ( a +nd (10)2.

for the amplitudes and the half-widths were used.
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One thus finds that the width of the fd- resonances is

independent of the order n but that it depends on the angle

, being largest at normal incidence and decreasing with angle.

The spacing of the resonances

)K" (11

is found to increase with angle.

For the square of the reflection coefficient one obtains

i -f l 1 2 - _ _ _+_G_%__ _ _ _ _ _( 1 2

,,, [-x,,)'+ r1/4

Fig. 7 compares the prediction of the resonance approximation (12)

with the exact expression for IRI2  obtained by squaring Eq. (1).

It is seen that the agreement is excellent in the vicinity of the

resonances and that the approximation fails as expected between

the resonances.

The angular resonances are conveniently discussed in terms

of the variable

w 3 =/X ) LA (13a

according to which the resonance positions are obtained as

-- " (13

For cosa one obtains in the vicinity of Ym the expansion

i '
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COO~ cc' +o~, (13c)

A% (13d)

The reflection coefficient can thus be written as

ff- h 1 G (14)

where the definition

= (ilow/% ( C ,- -/ )' (15)

for the halfwidth was used.

The comparison of IR12 obtained from Eq. (14) with

the exact result is shown in Fig. 8 for fd=const=50 kHz-m.

Again the agreement in the vicinity of the resonances is

excellent.

Relation between Resonance Parameters and Layer Parameters

The importance of the resonance approximation lies in the

fact that it facilitates solving the inverse scattering problem.

The quantities characterizing the resonances (positions and

widths) can, in principle at least, be easily measured. On the

other hand, the theoretical expressions relating these quantities

to the parameters characterizing the reflecting layers are

known (explicit expressions will be given below). Hence

. \
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The experimentally measured quantities can be directly related to

the properties of the reflecting medium.

By measuring the critical angle 9 cr' the minimum value Rm

of the reflection coefficient, the spacing and width of the fd-reso-

nances at some angle and the position and width of an angle resonance

at a particular frequency, all the parameters describing the

reflecting medium for the particular case considered (i.e.

cis C2, F 1' f 2 'd) can be deduced.

By measuring the spacing

A - 2rAF A/

of the fd- resonances at some particular angle 93 one obtains the
ratio of sound velocities,

= 2 (C5/2-4A A + (16a

On the other hand, measuring the position Ym of an angle resonance

at a particular frequency f yields

t / (16b

or

" - . /(17a

because of

D..,-( >, .-,/ " i C3/2w'F I (17b
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Eqs. (16b) and (17b)can be solved for nd (or c2 ) and d. From the

critical angle ecr the sound speed c1 of medium 1 can be found:

Measurement of the halfwidth r/2 of the fd-resonances at some

fixed angle & 3 yields

The value of t can e.g. be found from the minimum Rm of the reflec-

tion coefficient at e 3:

- L(9

All other quantities being known in Eq. (18b) ,this equation can thus

be solved for S which yields

S can also be written as

Z-' j x X)I+T (21

which can be solved for (Z, ' 3) since S and ?' are known. From

the definition (3) of the impedances one finds:

S( I - ,.,3 ) ,/(2

Since nr is already assumed to be known, Eq. (22) thus yields i

The density 2 can then be found from the known value for -e2t
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= •(23)

For the case considered here, the information available is

clearly redundant since all parameters could be deduced without

involving the large amount of information contained in the angular

resonance except for the position of one of these resonances. Since

the positions and widths of the angular resonances vary with angle

it should in principle be possible to determine a much larger set

of medium parameters than the five parameters involved in the present

example. Thus one can hope to be able to solve the inverse reflec-

tion problem also for more realistic cases than the one considered

here.

Extension of the Resonance Approach to More Complicated Cases

Adding shear waves first to the substrate, then also to the sedi-

ment is seen from Fig. 1 to lead each time to significant changes in

the reflection coefficient. The major differences occur in the size

of the coefficients. The number of resonances remains the same, but

the widths and positions of the individual resonances change somewhat.

Taking absorption into account will lead esentially only to

reduced magnitudes of the reflection coefficient. Above the critical

angle, however, new resonances may appear which can provide additional

information on the reflecting medium.
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If one or more layers are added to the basic model described

in Fig. 2 the simple periodicity of the reflection coefficient with

frequency is no longer maintained and also the angular dependence

is expected to become more complicated. Fig. 9 shows the behavior

)ofIR1 2 if the fluid layer in Fig. 2 is replaced by two fluid layers,

each with thickness L/2 and with densities of 2 and 2.3 g/cm 3 , and

sound speeds of 2000 and 3000 m/s, respectively, the layers arranged

such that the impedance still increases with depth. It is evident

that there is a considerable amount of new structure which on the

one hand complicates the analysis, but which on the other hand can

be exploited to yield additional information.

It is seen that the pronounced resonance structure of the re-

flection coefficient found in the simple model is generally

maintained even after more realistic features are added so that the

resonance approach presented here is in principle still applicable.

The question of how to relate the resonance data in the more

complicated cases to the layer paramertersis presently under investi-

gation by us. Indications are that for a large class of cases the

resonance formalism demonstrated here on a simple example is indeed

a promising tool for identifying ocean bottom properties, provided

reflectivity measurements over a wide enough angle and frequency

range are available.
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Figure Captions

Fig. 1. Reflection loss versus grazing angle for a 518-m-thick
hypothetical turbidite layer at 20 Hz.

3

Fig. 2. Fluid layer embedded bewteen two different fluids with
incident and transmited sound wave.

Fig. 3. Square of reflection coefficient for the 3-liquid case,
plotted as function of the frequency-thickness product
fd between 5 and 10 kHz-m and incident angle (0° 63 200).

Fig. 4. Square of reflection coefficient for the 3-liquid case,
plotted as function of the frequency-thickness product fd
between 20 and 25 kHz-m and incident angle (004 93 * 200).

Fig. 5. Square of transmission coefficient for the 3-liquid case,
plotted as function of the frequency-thickness product fd
between 20 and 25 kHz-m and incident angle (004 03 6 200).

Fig. 6. Resonance positions for the three-liquid case. The circles
indicate the position of angle resonance for various
frequency-thickness products. The curves indicating the
resonance positions have not been drawn for all mode numbers n.

Fig. 7. The frequency-thickness resonances in the range between 45
and 50 kHz-m at e - 150 obtained by the resonange approxi-
mation are comparid with the exact value for fRI (dashed
line).

Fig. 8. The angle resonaces for fd - 50 kHz-m obtained by the
resonance approximation (full lines) are compared with the
exact value for JR1 2 (dashed line).
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Fig. 9. Square of reflection coefficient for the 4-liquid case
plotted as function of the frequency-thickness product
fd between 20 and 25 kHz-m and incident angle (004 934 150).
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