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NOMENCLATURE

ah  distance between midchord and elastic axis in semichords, positive

toward the trailing edge

c full chord length of airfoil

CZ lift coefficient

Cm moment coefficient about leading edge

Cy, slope of the lift coefficient curve

Cma slope of the moment coefficient curve

GJ torsional rigidity of wing section

kc  reduced frequency defined as wc/U

k (y+l)M, transonic flow parameter

M free stream Mach number

p ratio of the semispan to chord

q dynamic pressure defined as 1/2 pU2

U free stream velocity

Xangle of attack

S/(I-M0 2)1 / 2 , Prandtl-Glauert Number

ratio of specific heats

6xs  shock movement in chord per unit perturbation

S perturbation parameter

p free stream air density

-ratio of the maximum airfoil thickness to chord

* pdisturbance velocity potential

circular frequency of oscillation

(0) denote parameters corresponding to base flow

(1) denote parameters corresponding to calibration flow

viii
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SECTION I

INTRODUCTION

In recent years there is an increasing trend that aircraft be operated

at a speed in high subsonic or transonic regimes. In transonic flight,

small-amplitude oscillations of a wing can produce large variations in the

aerodynamic forces and moments acting on that wing. Moreover, phase differences

between the motion and the resulting forces and moments can be large. These

characteristics tend to increase the probability of encountering aeroelastic

instabilities. Thus, the transonic regime has become a sensitive one for aero-

elastic analysis. Studies in transonic aeroelasticity have begun recently.

In References I to 5, Yang et al. have conducted various aeroelastic

studies of airfoils in two dimensional transonic flows. In Reference 6,

Eastep and Olsen have conducted the flutter analysis of a rectangular wing

in three dimensional transonic flows. A state-of-the-art review on the

aeroelastic applications of transonic aerodynamics is given by Ashley in

Reference 7.

In transonic aeroelastic studies the computation of aerodynamic forces is

a major task. Previous transonic aeroelastic studies have shown that the

computer time required to compute the aerodynamic data is quite high. It is

due to the fact that the transonic aerodynamics depends on flow parameters such

as Mach number, angle of attack, airfoil configuration, reduced frequency, etc.

in a nonlinear fashion. Because of this, the aerodynamic computation has to be

repeated whenever any one of the above flow parameters is varied. Also

computations become more complicated when shocks are present.
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The linear subsonic and supersonic aerodynamic equations yield closed

form relations between aerodynamic forces and flow parameters. On the other

hand, nonlinear transonic aerodynamic equations do not directly yield any

such relations. Lack of such closed form relations has put restriction on

certain transonic aeroelastic studies. For example, in order to compute the

transonic divergence speed of a wing, it is required to know the aerodynamic

forces as a function of angle of attack.

Rtecently some techniques based on perturbation method have been developed

to avoid the repetition of the aerodynamic computation when flow parameters

are varied. Such techniques have also led to simple relations between aero-

dynamic forces and flow parameters. One such technique is to use the concept

of the strained coordinate perturbation procedure in obtaining the transonic

aerudynamic loads.

The basic concept of the method of strained coordinate perturbation is to

minimize the actual number of separate calculations required in a particular

application by extending, over some parametric range, the usefulness of each

individual solution determined by some computationally-expensive procedure.

Coordinate straining introduced into transonic aerodynamics as a means of

accounting properly for the movement of discontinuities (shock waves) due to

changes in some geometric or flow parameter is shown to result in an accurate

perturbation predictions in the vicinity of the discontinuity. Detailed studies

of using this method as an effective tool for reducing the computational

requirements in transonic aerodynamics has begun.
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The basic concepts of coordinate straining is given, for example, in

References 8 and 9. An evaluation of the strained coordinate perturbation

procedure as applied to nonlinear subsonic and transonic flows is given by

Stahara et al-in Reference 10.

In Reference 10. a procedure of defining a unit perturbation by employing

two nonlinear solutions which differ from one another by a nominal change

in some geometric or flow parameter, and then using that unit perturbation to

predict a family of related nonlinear solutions over a range of parameter

variation is discussed. Coordinate straining is used in determining the unit

perturbation to account for movement of shocks due to the perturbation. Based

on full potential solutions, perturbation results are presented for flows

past both isolated airfoils and compressor cascades involving a variety of

flow and geometry parameter changes in transonic regime. Comparisons with

corresponding "exact" nonlinear solutions indicate a good accuracy and range

of validity of such a method.

In Reference 11, Nixon illustrated a procedure of perturbing a transonic

flow with shock wave. The method is based on the use of a distorted airfoil

as the initial case rather than the real physical airfoil. The distortion is

chosen such that the shock location is unchanged by the perturbation. The

distorted airfoil is obtained by the use of a strained coordinate system. The

procedure yielded an algebraic similarity relation between related airfoils

with shock waves at different locations. Results are illustrated for a NACA

0012 airfoil and 10% thick parabolic arc at transonic M ach numbers. The

pressure distributions around the perturbed airfoils computed by using both

the extended integral equation method and the perturbation method compare well.

3



In Reference 12, Nixon extended the fundamental concept of Reference 11

to two-dimensional lifting flows and three-dimensional lifting flows with

multiple, intersecting shock waves. The application of strained coordinate

perturbation method in computing the steady transonic aerodynamic loads when

Mach number and angle-of-attack are varied is illustrated. From this method,

transonic steady-state aerodynamic solution at any given value of a parameter

can be expressed as a function of the solutions obtained at two different

values of the same parameter. The solutions required are termed as base and

calibration solutions, respectively. The procedure is based on the assumptions

that shocks are neither created nor destroyed within the range of variation

of the parameter (Mach number or angle-of-attack) and the perturbation of the

parameter is small. Using the method, simple algebraic expressions were derived

for lift, pitching moment and drag coefficients in transonic regime. The method

was illustrated for a 10% thick parabolic arc and a NACA 640410 airfoil at

transonic Mach numbers.

In Reference 13, Nixon compared the strained coordinate interpolation method

used for transonic flow in Reference 12 with normal interpolation/extrapolation

procedures. It was found that both methods are essentially equivalent in

smooth regions of the solution. However, the normal linear extrapolation may

not be applicable in the region just behind the shock wave. The strained

coordinate method does move the shock and its associated shock foot singularity

to the correct location and scales the strength of the singularity according to

linear interpolation.
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Based on the strained coordinate perturbation procedure the computational

time required for transonic aeroelastic studies can considerably be reduced

when parameters such as Mach number, angle-of-attack, thickness, etc. are

varied. Using the developments, for example, in Reference 12, the repetition

of steady state aerodynamic computations can be avoided when flow parameters

are varied. Thus, there will be considerable reduction in the computational

time for aeroelastic studies using the steady state computations. For

example, in computing static divergence speed of a wing only steady state

aerodynamic data is required.

Transonic unsteady computations based on time integration, indicial

and harmonic methods require fairly accurate steady state initial conditions.

It is noted that in both indicial and harmonic methodsthe unsteady solution

is treated as a small linear perturbation about a nonlinear steady state

solution. When flow parameters are varied in unsteady computationsthe

required steady state initial conditions can be economically obtained by

using the strained coordinate perturbation method.

Certain aeroelastic computations require the aerodynamic forces as a

function of flow parameters. For example, in computing static divergence

speed of a wing, it is necessary to know the aerodynamic forces as a function

of angle-of-attack. Such functions for transonic regime can be obtained by

the strained coordinate perturbation method.

In this study, some preliminary applications of the strained coordinate

perturbation procedure in transonic aeroelasticity are investigated. The

main emphasis is on reducing the computational time in transonic aeroelastic
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studies. The developments in Reference 12 are used for this purpose.

First, the use of the strained coordinate perturbation method in computing

the steady and unsteady aerodynamic pressure distributions for varying flow

parameters were studied. As a computational example, a parabolic arc was

selected. Variations of angle-of-attack, Mach number and thickness were

considered. The aerodynamic solutions at base and calibration values of the

flow parameter were computed by using the transonic code LTRAN2 developed by

Ballhaus and Goorjian (Reference 14).

For a 6% parabolic arc at Mach number 0.8, the steady and unsteady

aerodynamic pressure coefficients were computed at angle-of-attack 0.80 by

strained coordinate perturbation method. This was based on the base and

calibration angles-of-attack equal to 0.4' and 0.60, respectively. The aero-

dynamic results obtained at angle-of-attack 0.80 by strained coordinate

perturbation method were compared with those directly obtained by LTRAN2.

The comparison is good.

For the 6% parabolic arc at zero angle-of-attack, the steady and unsteady

aerodynamic results were computed at Mach number 0.86. This was based on

the base and calibration Mach numbers equal to 0.854 and 0.856, respectively.

Present results are compared with those directly obtained by LTRAN2. The

comparison is good.

For a 6.5% thick parabolic arc at Mach number 0.85, aerodynamic pressure

coefficients were computed by strained coordinate method, The base and

calibration thicknesses were 6% and 7%, respectively. Present results compare

well with those obtained directly by LTRAN2.

6
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Finally, the use of the strained coordinate perturbation method in

computing the transonic divergence dynamic pressure of a typical slender

straight wing with conventional airfoil is illustrated. Since two-dimensional

aerodynamics were used in obtaining the aerodynamic loads, the aeroelastic

equations were derived by using strip theory. The solution for divergence

dynamic pressure was obtained by Rayleigh's method (Reference 15).

As a computational example, a 10% thick parabolic arc airfoil section

was selected. By using the aerodynamic force coefficients computed by the

strained coordinate perturbation method, the effect of Mach number on transonic

divergence dynamic pressure was studied. These results were compared with

those obtained by linear subsonic aerodynamic theory.

Based on the present procedure a computer program to post process

LTRAN2 aerodynamic data for strained coordinate perturbation method was

written. The listing with user's manual is given. This program creates new

steady state initial conditions for LTRAN2 by using the base and calibration

steady state solutions obtained by LTRAN2 for varying the flow parameters.

7



SECTION II

STRAINED COORDINATE PERTURBATION EQUATIONS

In this section, the strained coordinate perturbation equations are

presented. The equations are based on the assumptions that shocks are

neither created nor destroyed during perturbation and the order f the

perturbation is small. The main objective is to obtain from two or more

solutions an algebraic relation that connects the flow variables for a range

of one or more parameters, thus leading to a rapid computation of these

related flows. The effect of shock movement during perturbation is accounted

by using the procedure given in Reference 12.

Equations are presented for two-dimensional transonic inviscid flow

governed by small-disturbance conditions.

The basic steady-state equation in a scaled form is given by

oxx + 0zz = xxx (1)

where (x,z) is a Cartesian Coordinate System, with x aligned with the airfoil

chord and related to the physical coordinate system (x,z) by the transformation

x = X, z = 8z (2)

where, if M. is the freestream Mach number, then

= 1.0/(l - M.2) 1/2  (3)

The potential 0 (x,z) is expanded as a series in small parameter c such

as

0 (x,z) 0 0o (x',z) + e 01 (x6,z) + .... (4)

8--down



where x' is the strained coordinate. Shock is assumd to be normal to the

freestream, thus only x coordinate straining is required. Following the

discussion given in Reference 12 the strained coordinate system is defined by

X = X' + L 6Xs (x') (5)

where, if x, is the location of the shock in the (x',z) coordinates, then

x I(W) = X' X); 0< X' < 1 (6a)

5 s

(x') = 0; x'>l, x'<O (6b)

and E6x s is the amount by which the shock moves during the perturbation.

If by some method, say finite difference, two solutions termed as base

and calibration are known, then an expression for the disturbance velocity

potential can be expressed as
(o)

*x(x
'z) = 0x) (x',z) [l - e6xsx lx(x')] +

CO x,(x',z) .... (7)

where

ox (X"1Z) = (1 ,z) - xo (x',z) [1 - c06xSXlx,(x,)]

x x' + Eo6xSxl(x')

x = x' + £6x sxl(X')

C 0 6x = the change in the shock location between base and
calibration solutions

(o)

x= base solution

(1)x =calibration solution
x

9



The expressions for the perturbations e and co depend on the flow or

geometry parameter perturbed. Following the discussion given in Reference 12

for Mach number variation the expressions for c and co can be written as

S= (T+l)M (y+l)mN (y+1)Mo (8a)

l)M I )M qYl) (8b)

where y = ratio of specific heats

Mo = freestream Mach number of base flow

M, = freestream Mach number of calibration flow

M, = current freestream Mach number

q = the exponent in the transonic parameter taken to be 2

For angle-of-attack variation the expressions for c and co can be written

as

C = a - o  (9a)

E = t - Lo (9b)

where

ot = current angle-of-attack

a1 = calibration angle-of-attack

(o = base angle-of-attack.

10
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For thickness variation the expressions c and co can be written as

S TO - (1Oa)

O= To (lOb)

where T = current ratio of maximum thickness to chord of airfoil

T= ratio of maximum thickness to chord for calibration airfoil

t= ratio of maximum thickness to chord for base airfoil.

Based on the Equation 7 expressions for lift and moment coefficients

can be written as

=s 2  k.)(0)c .= + k )(o)c (11a)4 2  (0)LB (2) C+-- (I) - k(o) Cm  (llb)

m k a 2) Cm o2mC

where Ct, Ct0 and CE1 are lift coefficients corresponding to current, base

and calibration values of the flow parameters, respectively; Cm , Cmo and

CmI are the moment coefficients corresponding to current, base and

calibration values of the flow parameters, respectively; the transonic flow

parameter k is defined as (y+l) t!, and (o) and (1) denote computations

made at base and calibration values of the flow parameters~respectively.

[ "
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SECTION III

APPLICATION TO STEADY AND UNSTEADY COMPUTATIONS

It is a common practice to conduct parametric studies in transonic

aeroelasticity. Usually flow parameters such as Mach number and angle

of attack are varied. In such cases the repetition of steady state

computations can be avoided by using the strained coordinate perturbation

method. Thus, there will be direct saving in the computational time for

aeroelastic studies that depend on the steady state computations.

The unsteady computations based on time integration, indicial and

harmonic methods depend on accurate steady state initial conditions. For

given values of flow parameters, the steady state computation requires about

25 to 50 percent of computer time in transonic computer codes such as

LTR.AN2. Considerable amount of computer time can be saved by computing the

steady state initial conditions from the strained coordinate perturbation

method.

In this section, results are shown to illustrate the use of the strained

coordinate perturbation method in steady and unsteady computations when Mach

number, angle-of-attack and thickness ratio are varied. The airfoil considered

is a parabolic arc. The Mach numbers considered were in the transonic

range. The base and calibration solutions were obtained from LTRAN2 by

using a finite difference mesh with 119 horizontal grid points and 79

vertical grid points.

a. Mach Number Variation

A parabolic airfoil of 6% maximum thickness-chord ratio at zero angle

of attack was considered. Based on the base and calibration Mach numbers

equal to 0.854 and 0.856, respectively, results for Mach number 0.86 was

12



obtained by strained coordinate perturbation method. They are compared

with those obtained directly from LTRAN2.

Figure 1 shows the steady state pressure coefficient curve obtained

by strained coordiante perturbation method for M4 = 0.86 by using Equation

7. The values for e and co were obtained by Equations 8a and 8b as 0.0748

and 0.0240, respectively. The amount of shock movement e06xs between the

base and calibration Mach numbers was equal to 0.02 chord. The computational

time required to obtain this curve was about 5 seconds on CYBER 74 computer.

In Figure 1, the steady state pressure curve obtained directly from LTRAN2

is also shown. The curve obtained by strained coordinate perturbation method

agreeswell with that obtained by LTRAN2. There are some discrepancies near

the shock. They may be due to the lack of fine enough grid near the shock.

Based on the base and calibration steady state solutions obtained at

Mach numbers 0.854 and 0.856, respectively, initial conditions for Mach

number 0.86 were computed by the strained coordinate perturbation Equation 7.

This was carried-out by using a computer program given in the Appendix. Using

this steady state initial condition, unsteady results were computed by the

time integration procedure of LTRAN2. The reduced frequency kc was assumed

as 0.1.

Figure 2 shows two sets of unsteady pressure curves obtained by using the

present initial condition and the initial condition directly obtained by LTRAN2.

The curves were obtained at non-dimensional time wt equal to 18.06 radians,

where w is the circular frequency of oscillation.

In Figure 2, it can be observed that results obtained by the two methods

agree well. Slight discrepancies in the initial steady state conditions

obtained by the present method do not have any influence on the unsteady pressure

13
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Figure 1. Effect of Mach Number Perturbation for 6% Thick Parabolic
Arc on Steady Pressure Curves at M = 0.86.
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Figure 2. Effect of Mach Number Perturbation for 6' Thick Parabolic
Arc on Unsteady Pressure Curves at M - 0.86.
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curve. Similarly, unsteady lift and moment coefficients compared well

between the two methods.

It was noticed that to obtain unsteady results for 3 cycles, the

present method required about 60% of the computer time required for direct

LTRAN2 computations. Based on the same base and calibration Mach numbers,

steady and unsteady results can be obtained for Mach numbers, say, between

0.85 and 0.86. Thus, there can be a considerable saving in the computer time

if additional aeroelastic computations have to be conducted in this range.

b. Angle -of-Attack Variation

The 6% thick parabolic arc at M = 0.8 was considered. Steady and

unsteady aerodynamic results for angle-of-attack 0.80 was obtained by

strained coordinate perturbation procedure. The base and calibration angles-

of-attack were equal to 0.40 and 0.60, respectively. Present results are

compared with those directly obtained by LTRAN2.

The values for c and c. were obtained from Equations 9a and 9b as 0.4

and 0.2, respectively. Since there is no shock, the value for Lo6X s is

equal to zero.

Figure 3 shows the steady pressure curves obtained by both present

procedure and LTRAN2. The agreement between the methods is excellent. The

computational time required for the present procedure was about 5 seconds on the

CYBER 74 computer.

Based on the base and calibration solutions, steady state initial

conditions for unsteady computation was obtained by Equation 7 for angle-

of-attack 0.80. This was carried-out by usimg the computer program given in the

Appendix. Using this initial condition, unsteady computations were conducted

at reduced frequency kc = 0.1 by pitching the airfoil at the midchord.

16



0. 06, M 0 0.8, ~=0. 80
-0.4 UPPER

SURFACE

-0.3

-0.2

LU

'-0.1
U

0.2

>-0.0

0.1 0.4 0.681.

x/c
Figure 3. Effect of Angle of Attack Perturbation for 6% Thick

Parabolic Arc on Steady Pressure Curves at a 0.80.
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From unsteady computations it was found that the present method gives

results identical to those obtained by LTRAN2 directly. This is because

of the excellent comparison obtained between the two corresponding steady

state curves.

It was noticed that to obtain unsteady results for 3 cycles, the present

method required about 40% of the computer time required for direct LTRAN2

computations. Based on the same base and calibration angles-of-attack, steady

and unsteady results can be obtained for angles-of-attack, say, between 0.00

and 1.00 from the present procedure. Thus, there can be considerable saving

in the computer time if aeroelastic computations have to be conducted in

this range.

c. Thickness Variation

A parabolic arc airfoil at Mach number 0.85 with zero angle-of-attack

was considered. Based on base and calibration maximum thickness to chord

ratios equal to 0.06 and 0.07, respectively, results for maximum thickness

to chord ratio equal to 0.065 was obtained by strained coordinate perturbation

method. They are compared with those obtained directly from LTRAN2.

Figure 4 shows the steady state pressure coefficient curve obtained by

strained coordinate perturbation method for T = 0.065 by using Equation 7.

The values for E and Eo were obtained from Equations lOa and lOb as 0.005

and 0.01, respectively. The amount of shock movement co6xs between the base

and calibration thickness ratios was equal to 0.08 chord. The computational

time required to obtain this curve was about 5 seconds on CYBER 74 computer.
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Figure 4. Effect of Thickness Perturbation for 6.5% Thick Parabolic
Arc on Steady Pressure Curves at M = 0.85 and a = 0.00.
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In Figure 4, steady state pressure curve obtained directly from LTRAN2

is also shown. The agreement between two curves is good. There is some

discrepancy near the shock. It may be due to lack of a fine grid near the

shock.

Based on the base and calibration steady state solutions obtained at

thickness ratios 0.06 and 0.07, respectively, initial conditions for thickness

ratio equal to 0.065 was computed by the strained coordinate perturbation

Equation 7. This was carried out by using a computer program given in the

Appendix. Using this steady state initial condition, unsteady results were

computed by time integration procedure of LTRAN2. The reduced frequency kc

was assumed as 0.1.

Figure 5 shows two sets of unsteady pressure curves obtained by using

present initial conditions and initial conditions directly obtained by LTRAN2.

The curves were plotted at non-dimensional time wt equal to 18.06 radians.

In Figure 5, it can be observed that results obtained by the two methods

agree well. Slight discrepancies in the initial steady state conditions

obtained by present method do not have any influence on unsteady pressure curve.

Similarly, the unsteady lift and moment coefficients compared well between the

two methods.

It was noticed that to obtain unsteady results for 3 cycles, the present

method required about 60% of the computer time required for the direct LTRAN2

computations. Based on the same base and calibration thickness ratios, steady

and unsteady results can be obtained for thickness ratios, say, between 0.05

and 0.08 from present procedure. Thus, there can be considerable saving in

the computer time if additional aeroelastic computations have to be conducted

in this range.
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21

__ __ _



SECTION IV

APPLICATION TO THE

TRANSONIC DIVERGENCE PROBLEM

Based on the strained coordinate perturbation method, computational

time required for transonic aeroelastic studies can considerably be reduced.

One such study where this method can be used is in computing the transonic

static divergence speeds of slender straight wings.

In this study, the transonic divergence dynamic pressure of a typical

slender straight wing with conventional airfoil is computed by using the

method of strained coordinates. The required base and calibration aero-

dynamic solutions were obtained by LTRAN2. Since two-dimensional aero-

dynamics was used in obtaining the aerodynamic loads, the aeroelastic

equations were derived by using strip theory. The solution for divergence

dynamic pressure was obtained by Rayleigh's method (Reference 15).

As a computational example, a 10% thick parabolic arc airfoil section

was selected. First, the use of the method of strained coordinateswas

illustrated at a transonic Mach number of 0.8 for varying angle-of-attack.

Then the effect of Mach number on transonic divergence dynamic pressure was

studied for various positions of the elastic axis. These results were compared

with those obtained by linear subsonic theory.

a. Formulation of Divergence Equations

It is assumed that the wing is slender and straight so that the three

dimensional effects of the aerodynamics can be neglected and that strip theory

can be used in deriving an expression for the static divergence dynamic

pressure. Assuming that the wing torsional deformation pattern is invariable.
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with respect to the load distribution and using Rayleigh's method an

expression for the static divergence dynamic pressure can be written as

P

GJJ(o df d
qD = 

(12)

f {CU (I + ah)/ 2 + Cmaf 2d
0

where qD = 1/2 pU2, is the divergence dynamic pressure; p, density of the air;

U, flight speed; GJ, torsional rigidity of the wing section assumed to be

constant along span; p, ratio of the span to chord; f, divergence mode shape

expressed as a function of &; , is the ratio of the distance measured in

full chords from the root to a span station; c, full chord length of the

wing assumed to be constant along the span; C k, slope of the aerodynamic

lifting force with respect to the angle-of-attack; Cma, slope of the aero-

dynamic pitching moment (measured about the leading edge) with respect to

the angle-of-attack; and ah, position of the elastic axis measured in semi-

chords from the midchord (positive towards trailing edge).

For the subsonic and supersonic flows the aerodynamic equations are

linear and the aerodynamic force coefficients, C, and Cm, depend on the

angle-of-attack linearly. Hence, Equation 12 can be integrated once an

expression for f(&) is assumed. On the other hand, for the transonic flows,

the aerodynamic equations are non-linear and the aerodynamic force coefficients,

C. and Cm, depend on angle-of-attack in a non-linear fashion. Hence, it is

required to express C2 and Cm as a function of angle-of-attack in order to

integrate Equation 12. Such expression can be derived for transonic flows
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by using the method of strained coordinates.

Assuming that perturbation in the angle-of-attack is small and the shock

is neither created nor destroyed within the range of the perturbation, Cz

and Cm can be expressed as (See Equations Ila and lNb)

C9 = C + (E/c ° ) (CZ Ci ) (13)

C o=C

CM = Cm  + (E/C0) (Cm Cm ) (14)

where Ck and Cko are calibration and base lift coefficients, respectively;

Cm, and Cm° are calibration and base moment coefficients (measured about the

leading edge), respectively; e - a-o; co 01 - ao; 011 is the calibration

angle-of-attack; and ao is the base angle-of-attack.

Equations 13 and 14 lead to simple expression for Cz. and Cm as

C- = (Ckl C 0 )/(a, - ao) (15)

Cm" = (Cm, Cm0 )/(a - ao) (16)

Since CiO and Cm given by Equations 15 and 16 are independent of a,

Equation 12 can be integrated for a known function of f(E). This function

should approximately represent the divergent mode that satisfies the boundary

conditions, namely, f(O) 0 and f'(p) 0. One such function is given by

f(E) = 2C/p - (C/p)2  (17)
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Substituting Equations 15, 16 and 17, into 12 and integrating yields

qD = 15/6A (18)

where qD = qD p2 c/GJ, non-dimensional static divergence dynamic pressure

and A = (C, - CRO) (1 + ah)/2(a1 - ao + (Cm - Cm0)/(a - OLC ) (19)

b. Results

The Mach numbers considered in this study are in transonic range for the l0

thick parabolic arc.

First, a case with angle-of-attack varying from 00 to 1.00 at Mach number

0.80 was considered to illustrate the use of the method of strained coordinates.

Lift and moment coefficients were computed by both the finite difference and

the strained coordinate methods and they are compared.

Figure 6 shows the plots of lift coefficient Cz versus angle-of-attack

obtained by both finite difference and strained coordinate methods. The curve

for strained coordinate method was based on base and calibration angles-of-attack

equal to 0.2' and 0.8', respectively. The corresponding results for the

pitching moment coefficient (about the leading edge) are shown in Figure 7.

In both Figures 6 and 7, the aerodynamic computations at base and calibration

angles-of-attack were also made by the successive line over relaxation method.

Results in Figures 6 and 7 show that the method of strained coordinates

agree well with the finite difference method. The level of agreement is better

for lift coefficients when compared to that for moment coefficients. The

total computational time required by the method of strained coordinates was

about 1/5 of that required for the finite difference method. Also the method

of strained coordinates assumes simple relations between the aerodynamic force
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Figure 6. Variation of Lift Coefficient With Angle of Attack for 101
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coefficients and the angle-of-attack.

The application of the method of strained coordinates in computing the

transonic divergence characteristics was considered next. The characteristics

of the static divergence dynamic pressures for varying Mach number at various

values of the position of elastic axis were obtained. The base and the

calibration angles were assumed as 0.20 and 0.60, respectively. The Mach

numbers considered were 0.76, 0.78, 0.79, 0.80, 0.805, and 0.81, respectively.

Table 1 shows the lifting force and pitching moment (about the leading

edge) coefficients obtained at base and calibration angles-of-attack for six

Mach numbers. It is observed in the table that both the coefficients increase

non-linearly with increase in Mach number. In the same table corresponding

coefficients obtained by linear aerodynamic theoryarealso given for

reference. The differences in the values are mainly due to the presence

of shocks.

Based on the aerodynamic coefficients given in Table 1 and using Equation

18, static divergence dynamic pressures were computed. The values for the

position of elastic axis were assumed as 0.0, -0.1, and -0.2. Figure 8 shows

the plots of divergence dynamic pressure parameter qo versus Mach number. In

the same figure the corresponding results obtained by the subsonic theory

are also shown.

In Figure 8, it is observed that the static divergence dynamic pressure

obtained by transonic aerodynamics increased with the increase of Mach number.

The increase is more rapid at higher Mach numbers. Also the static divergence

dynamic pressure increases as the elastic axis move towards leading edge from

the mldchord. The curves shift to the left as the elastic axis moves toward

the leading edge from the midchord.
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TABLE IAERODYNAMIC COEFFICIENTS FOR 10% THICK

PARABOLIC ARC AT VARIOUS MACH NUMBERS

Lift Coef. Ck Moment Coef. Cm
MACH--T - ,

NUMBER CASE i 0.20' c 0.60 0.2' 0.6'

0.760 1 0.03893 0.11710 -.01139 -.03426

2 0.01074 0.03222 -.00268 -.00806

0.780 1 0.04308 0.13033 -.01314 -.03994

2 [-0.01116 0.03347 -.00280 -.00837

0.790 1 0.04699 0.14380 -.01503 -.04681

2 0.01139 0.03416 -00285 -.00854
0.800 1 0.57 .75 -.01945 -.06275

2____ 0.01164 0.03491 -.00291 - .00873

0.805 1 0.06222 0.19965 -.02382 -.07989

2 1 0.01177 0.03530 -.00294 -.00882

0.810 1 0.07322 0.25171 __ -.03050 __-.11251

2 0.01190 0.0357 -.00298-.09

1. Transonic Method

2. Subsonic Method
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Figure 8 shows that the results obtained by subsonic theory do not

agree with those obtained by the present transonic theory, especially at

higher Mach numbers. Also agreement becomes bad as the elastic axis moves

towards the leading edge. The discrepancies are mainly due to the presence

of shocks which are incorporated only in the transonic theory. It is noted

that the rapid changes in the divergence dynamic pressures at the higher

Mach numbers are due to the movement of the shock towards the trailing edge.

The increase in the divergence dynamic pressures with the increase of

Mach number can further be explained as follows. The center of pressure

(CP) moves from the quarter chord towards midchord with increasing Mach

number. Thus CP moves towards the elastic axis which is located near mid-

chord for this study. As a result, the divergence dynamic pressure inlcreases

(See Equation 8-40 of Reference 15).
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SECTION V

CONCLUDING REMARKS

Based on the present study the following concluding remarks may be

made.

(1) The steady state pressure curves obtained by using strained coordinate

perturbation method compare well with those directly obtained by LTRAN2.

Some small discrepancies obtained near the shock are due to the lack of

a fine enough grid.

(2) The computational time required to compute the steady state pressure

curve by the strained coordinate perturbation method for a known base and

calibration solution is about 5 seconds on CYBER 74 computer.

(3) Untayresults based on the initial conditions obtained by the present

method compare well with those obtained directly by LTRAN2.

(4) The present procedure shows about 40 to 50% saving in the computer time

for typical unsteady computations required in aeroelastic analysis.

(5) Based on aerodynamic forces computed by the strained coordinate per-

turbation equations, transonic divergence speeds of slender straight wings

can be computed.

(6) Based on the present computations it is found that the divergence speed

of a slender straight wing with 10% thick parabolic arc section increase with

increase in Mach number. On the other hand, linear theory predicts a

different behavior.

(7) The present procedure can be extended to three dimensional steady and

unsteady transonic computations by using the corresponding developments in

strained coordinate methods.
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APPENDIX

A computer program to create the steady state initial conditions by

using the strained coordinate perturbation method is presented. This program

is compatible for LTRAN2. This program can create a new steady state initial

condition based on base and calibration steady state initial conditions obtained

by LTRAN2.

a. Description of the INPUT

(1) Initial DATA Card (415, 4FI0.4) one card to define following parameters.

Columns Description Variable

1-5 Number of mesh points in LMAX
vertical direction

6-10 Number of mesh points in JMAX
horizontal direction

11-15 Mesh point corresponding to JLE
leading edge

16-20 Mesh point corresponding to JTE
trailing edge

21-30 Distance of the shock from XSO
leading edge measured in chords
for base flow

31-40 Distance of the shock from XS1
leading edge measured in chords
for calibration flow

41-50 Value of the perturbation EP
parameter c (See Section II)

51-60 Value of the perturbation EPO
parameter co (See Section II)

(2) Mesh Card (8EI0.4)

Cards to define JMAX values of the X mesh points.
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(b) Description of Logical Files Used

TAPE 1 Contains steady state initial conditions from LTRAN2 for
base flow on INPUT

TAPE 2 Contains steady state initial conditions from LTRAN2 for
calibration flow on INPUT

TAPE 3 Contains the steady state initial conditions to LTRAN2
for the current flow on OUTPUT
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PROGRAM MAIN(INPUT, OUTPUT. TAPE5=INPUT, TAPES=OUTPUT. TAPE1,
1 TAPEe. TAPE3, TAPE4)
DIMENSION PU(119).PL(119),P(79,119),DUMYI(11)DUIY2(119).
1 X(1lS)PTX(119)

C
C PROGRAM TO CREATE STEADY STATE INTIAL CONDITIONS FOR LTRAN2
C BY STRAINED COORDINATE PERTURBATION METHOD
C JMAX=NUMBER OF HORIZONTAL GRID POINTS USED LTRAN2
C LMAX=NUMBER OF VERTICAL GRID POINTS USED IN LTRAN2
C JLE=HORIZONTAL GRID POINT OF LEADING EDGE
C JTE=HORIZONTAL GRID POINT OF TRAILING EDGE
C XSO=SHOCK POSITION IN BASE SOLUTION

*C X51=SHOCK POSITION IN CALIBRATION SOLUTION
C EP=UALUE OF PERTURBATION PARAMETER FOR CURRENT FLOW

*C EPO=UALUE OF PERTURBATION PARAMETER FOR CALIBRATION FLOW
C X=X COORDINATES OF HORZONTAL GRID POINTS
C NOTE - TAPEl SHOULD CONTAIN STEADY STATE INTIAL CONDITIONS
C OF BASE FLOW FROM LTRAN2
C TAPE2 SHOULD CONTAIN STEADY STATE INTIAL CONDITIONS
C OF CALIBRATION FLOW FROM LTRAN2
C ON OUTPUT TAPE3 WILL CONTAIN STEADY STATE INTIAL CONDITIONS
C OF THE CURRENT FLOW FOR LTRAN2
C INTIAL CONDITIONS FROM LTRAN2 ARE
C T=TIME
C GLIFT=LIFT
C PU=DISTURBANCE VELOCITY POTENTIALS OF UPPER SURFACE
C PL=DISTURBANCE VELOCITY POTENTIALS OF LOWER SURFACE
C P=DISTURBANCE VELOCITY POTENTIALS OF ALL GRID POINTS
C

READ(5, 1)LMAX, JMAX, JLE, JTE, XSO, XS1. EP, EPO
1 FORMAT(415,6F10.4)
DXS=XSI-XSO
URITECS. 6)LMAX, JMAX. JLE, JTE, XSO. XS1,DXS, EP, EPO

6 FORMAT(/5XP*NO OF UER MESH POINTS=*,I5,* NO OF NOR MESH PTS=*, IS,
1 * LE MESH PT=*,IS5,*TE MESH PT=*tI5 /5XP*BASE SHOCK POSITION=*
2,F10.4#*CAL SHOCK POSITION=*,FIO.4,* SHOCK DISPLACEMENT=*,F10.4/5XV
3, * EP=*,FlO.4,* EPO=*.FIO.4)
READ(6,7) (X(I), I=1,JMAX)

7 FORMAT(8E10.4)
WRITECS. 11)

11 FORfIAT(/5X.* X CO-ORDINATES*)
WRITE(6. 18)(X(I), I=1,JMAX)

18 FORMAT('5X. 10F12.6)
CONS=XSO* (1 *O-XSO)
DO 20 I=1,JMAX

20 TX(I)=O.O
DO 30 I=JLEtJTE

30 TX(I)=(X(I)*(1.O-X(I)))/CONS
WRITE(6, 31)

31 FORMAT(/5XP*DISTORSION COEF=*)
WRITE(6.36)(TX(I), I=1,JMAX)

36 FORMAT(/5X, 10F12.6)
REWIND 1
READ(1)TI.LMAXIPJMAX1,GLIFT1, (PU(J)vPL(J). (P(LpJ)pL=1vLMAX)9
1 J=1,JMAX)
WRITE(6,2)

2 FORMAT(/5Xo* DATA FROM TAPE1*)
WRITE(6,41 )TI.LMAXIPJMAXlGLIFT1

41 FORMAT('5XoFlO.4v2159FlO.4)
DO 10 11,PJMAX
WRITE(6916) ItPU(I),PL(I)

IS FORMAT(/5X*OFOR COLUMN=*. I5,*PU=*PE15.6o* PL=*PE15.6)
WRITE(6, 1?)(P(J, I)vJ=1. 10)

17 FORMAT (/5X, 10E12.4)
10 CONITINUE

REWIND 3
WRITE(3)(PU(I)o 11.JMAX)
WRITE(3)(PL(I)v 11,JMAX)
DO 40 11.#LMAX

40 WRITE(3)(P(IJ)#J=1,JMAX)
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REWIND 2
READ(2)T2#LIAX2#JIIAX2,GLIFT29 (PU(J)oPL(J)v(P(LvJ)9L=1.LMAX)v
I J1I.JIAX)
WRITE(6,2l)

21 FORMAT(/5XP* DATA FROM TAPE 2*)
WRITE(6,41 )T2, LrAX2, JtAX2.GLIFT2
DO 100 I=l,JMAX

100 URITE 6v17)(P(JvI)pJolv10)
RA=EP/EPO
REWIND 4
REWIND 3

C1=RA*DXS
READ(3) (DUMYlI I 11JMAX)
DO 200 I=1,JMAX

200 DUMY2(I)=DUrY1()*(1.-Cl*TX(l))+RA*(PU(I)-DUHY1(I).

WRITE(4)(Dumy2(i), I=l.JMAX)
READ(3)(DUMYI(I),I=1,JMAX)
DO 300 I=l,JMAX

300 DUMY2(I)=DUMYI(I)*(1.0-C1*TX(I))+RA*(PL(I)-DUMY1(I)*
1(l.0-DXS*TX(I)))
WRITE(4)(DUMY2(I), I=lPJMAX)
DO 500 I=1.LrIAX
READ(3)(DUMY1 (K)*K=19JMAX)
DO 400 J=I.JMAX

400 DUMY2(J)=DUtiYI(J)*(1.0-C1*TX(J))+RA*(P(IJ)-DUMYI(J)*
l(1.0-DXS*TX(J)))

500 WRITE(4)(DlUMY2(K),K=l,JMAX)
T3=T1+RA*(T2-T1)
GLIFT3=GLIFT1+RA*(GLIFT2-GLIFTI)

READ()(PU IILJMAX)

DO 600 I=1,LtIAX
600 READ(4)(P(IJ)*J=IPJMAX)

U4RITE(3)3LIAXlJiAX11..IFT3, (PU(J)9PL(J). (P(LJ)pL=19LMAX).
1 J=lJMAX)
REWIND 3
READ(3)T3#LMAXIoJMAX1,GLIFT39 (PU(JhvPL(J), (P(LJ)iL=1,LMAX),.
1 J=IJMAX)
WRITE(6.601)

601 FORMAT(,5X,* DATA TO BE WRITTEN ON TAPE 3*)
WRITE(6, 41 )T3,LMAX1.JMAXIPGLIFT3

DO 700 I=1,JMAX
WRITE(6.16)I.PU(I)#PL(I)

700 WRITE(S9 17)(P(JvI)vJ=lol0)
STOP
END
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