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1. INTRODUCTION

It is generally accepted that the transition of laminar flow to turbu-

lent flow in channels and boundary layers is preceded by amplification

of small-amplitude disturbances super-imposed on the steady laminar

flow. In the early stages, nonlinear effects are negligible, and fur-

thermore, if the slow variation of undisturbed flow with distance along

the flow is neglected - quasi-one-dimensional flow - the small disturb-

ances may be decomposed into Fourier components in time and streamwise

distance. The Fourier components satisfy the homogeneous Orr-Sommerfeld

equation, whose eigenvalues determine the stability of the Fourier com-

ponents.

The results from linear stability theory are applied in the prediction

of transition by Smith (Smith and Gamberoni, 1956; and Jaffe, Okamura

and Smith, 1970) and by Mack (1975). The Smith method is based on the

correlation of the amplitude ratio computed by linear theory with

experimental data on the transition Reynolds number. Transition is

assumed to take place when the computed amplitude for the most amplified

wave reaches eN with N ranging from 8 to 11. The Mack method, on the

other hand, is based on the magnitude of the computed amplitude. The

initial amplitude of a disturbance at the critical Reynolds number is

estimated from the power spectrum of free-stream turbulence, and the

subsequent amplitude is computed based on linear stability theory. Tran-

sition is assumed to take place when the computed amplitude reaches a

certain reference value. Mack applied the method to predict the effect

of freestream turbulence level on the transition Reynolds number and

obtained good agreement with the measured data.

These prediction methods apply linear stability theory which one fully

recognizes does not apply when the disturbance amplitudes are no longer

very small, and one would hope that, if nonlinear effects are included

A ________________
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in the computation, one could predict transition with better precision

and confidence. Inclusion of nonlinear effects, however, magnifies the

complexity by a large factor. We do not have the exact analytical solu-

tion and are forced to employ some approximation methods. Because the

problem is nonlinear, we cannot superimpose elementary solutions to

generate a new solution. Every plausible mechanism has to be studied

individually. Though, at present, the consensus among the people who

are investigating boundary-layer transition is that the three-dimen-

sional effects are an essential element in the nonlinear regime leading

to transition. The nonlinear stability of two-dimensional disturbances

has been investigated by many people, beginning with the pioneering work

of Stuart and Watson (1960), which is based on the expansion in small

amplitude and the first approximation is the linear stability theory.

The nonlinear stability theory is in reasonably good shape for confined

flows that are weakly unstable in the linear regime, for example, two-

dimensional Poiseullie flow (Itoh, 1977). The theory, however, has not

been worked out for boundary-layer flows, because the treatment of the

effect on the mean flow is more subtle in boundary-layer flows than in

the flow between parallel walls.

Quite apart from this analytical approach, numerical integration of the

Navier-Stokes equation was undertaken to study the stability of large

amplitude disturbances (Fasel, 1976; Murdock, 1977). Between the two

computations, however, there was some disagreement on the relative phase

between the fundamental-frequency component and the second-harmonic com-

ponent.

The present investigation was undertaken to establish a nonlinear sta-

bility theory for two-dimensional disturbances in boundary-layer flows.

The results of the present study serve as a check on the numerical

integration of the Navier-Stokes equation. This type of approach is

expected to give a good representation of the early development of the

nonlinear effect for a growing disturbance and, presumably, can provide

further insight into the boundary-layer transition process.

LO A.
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The basic assumptions made in the formulation are:

(1) The amplitude of disturbances is small.

(2) The rate of change of the undisturbed boundary layer with stream-

wise distance is small.

(3) The rate of amplification of disturbance is small.

The first assumption allows us to expand the solution in powers of small

amplitude. In the present work we retained terms to the third power of

the amplitude, but we did not calculate the third harmonic in our analy-

sis since it does not affect the form of the evolution equation to the
order we considered. The third assumption together with the second

assumption assures that the mean flow (disturbed as well as undisturbed)

variation with the streamwise distance is small, so that the disturbed

mean flow remains boundary-layer like.

Mathematical fo1mulation is presented in Section 2, the detailed discus-

sion of numerical method in Section 3, and the discussion of results in

Section 4.

9

,9
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2. FORMULATION OF NONLINEAR STABILITY PROBLEM

In this section we formulate a nonlinear stability theory for two-dimen-

sional disturbances in an incompressible boundary layer along a flat

plate, including the effect of non-parallelness of the mean flow. Our

starting point is the Navier-Stokes equation written in terms of the

streamfunction i:

(V2*)t + 4, (V2 *) - ,(V 2 y I y4, (2.1)
t y x x 1

with boundary conditions

=i 0 at y 0, +p I as y
y y

Here, x,y,t and ' are made dimensionless by dividing distances by a re-

fereoce length . (comparable with the boundary-layer thickness), time by

I/U. (U. freestream velocity) and streamfunction by UJ. R denotes the

-. Reynolds number U,,9/v.

The undisturbed flow changes very slowly with x, and we denote the rate

of change by a small parameter P. We introduce a slow variable

X = ix (2.2)

and then the basic flow is given by

T - (X,y) (2.3)

* so that

'p 0O(1) 'p x o

y ' x = 0(M



-5-

Furthermore, we assume that the perturbation depends on x and t (fast

variables) only through the complex phase angle e, defined by

x =k Ot = - (2.4)

The wave number k, however, depends on the slow variable X. We assume W

to be real, but k complex with a small imaginary part; namely we have a

spatial stability problem with a weak amplification rate.

Then, the streamfunction assumes the following form:

0 = 4(O)(X,y) + 2 (nl(X,y) e + '(n)(x,y) e (2.5)

where C) denotes the complex conjugate. Substituting the above expres-

sion into equation (2.1) and collecting the terms with equal values of
n, we obtain the following infinite set of equations:

MEAN FLOW:

1 A 2 4(O)_ M'(Ao ) + *(0) Ao *0)
oJ y o X X 0o y

-)e'2nn "(-ink+PaX) - + (Yn)(ink+ma )An '(n)
n=1 ~ y x Bn y x n

() -( n) (iiia-n - *()
- (ink+O1X) 4n. 4' n)- (-i n*) , . (n) (2.6)

y 4'. ,' .

. . . I lr l l . . .. . . I I " . . . . . .. - ' ". . . . . .
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FUNDAMENTAL:

12 () 1) 1) () 1

+ (A ip y ikt3 (A AJ )oiji + V~ Al*;~1

2Ee NO +1 (-m'i ) (m)+(m)i(m+l)k+ 3 ]A~/,m+l)

m y

HIGHER HARMONICS: n 12

I 2,,(n) +fW (n)_ .()( (n) (0)(n
A n +iwA n* 1; ik+Iua x)A 0 +(A 0 (nkp )

o X )i n+

(n-(mm) '(M) - -i) m

~E1(n ~mk)ua -m -(in+.ia );(M) A (n+ (.8
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In these equations, the following notations are used:

3X = partial differentiation with respect to the slow variable X.

a = partial differentiation with respect to y.Y

A = 32 + (ink+P3X)2
n y

= 32 - n2k2 + Pin(kax+kX) + P232

Mean Flow Solution - Lowest Order:

To the lowest order, the mean-flow equation is

1 a4 32  - =y TYy T+ TX ly

for *(0) = F +.... Integrating once with respect to y, we obtain

P yyy- & + fx'*yy = P(X) (2.9)

which we recognize as the usual boundary-layer equation, after identify-

ing P(X) to be the pressure gradient imposed by the flow external to the

boundary layer.

Fundamental Component - Lowest Order

The fundamental comporent equation to the lowest order is the Orr-

Sommerfeld equation:

.~*(. (ak-k2 0J() (2.10)

W t
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and the solution is

*(1) = A(X)(II(y;XW) (2.11)

where A(X)(<O(11) is the amplitude function, and *(1) satisfies

LW(¢(1)) = 0. With the boundary conditions;

1(0) _ *(l(o) = *(1)(.) = 0.

Thus, we obtain the eigenvalue solution

,11) = ,11) (y;X,w) (2.12a)

k = k(X,w) (2.12b)

Second Harmonic Component

The equation for the second-harmonic component, generated by the above

fundamental component, is then

L (P 2))= (32-4k2 )2*(2)_2i 1*-)8-k)()k, (
R y y +--.

= ik2(X)[.(1)*)-(1()]+.

Therefore, to the lowest order, the second harmonic will be of the form:

€(2) = A2(X) *(2)(y;X,) (2.13a)

(2)= k[1).(1) - *) (.(1)]
L2( i y Iyy (2.13b)

")' ,
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Correction to Mean Flow:

Also, from the lowest-order fundamental component, we obtain the follow-

ing equation for the correction to the mean flow,

1 (0) T * ( 0) O + ( ( Ao'y ( ( + .yfyy X

UT-1-y- -k 1xYy "'y xy"

y i y

The neglected terms are of the order of u2 and e4/P.

Integrating once with respect to y, we get

1 () (0) (0) o+ f ,(0)
*1 yyy - fy IXy+OX *'yy -X ly + yyl X

IA e [ () ) . y 4k 0(1 + P1 (X) +...y i

where P1 (X) again is a term due to streamwise pressure gradient and will

be O( 2 ) for a flat-plate boundary layer. We assume JA1 2/p>>u 2, and

let

(0) =JA12-26 0j
C4O) = IAI2 e 1 $ O)(X,y) (2.15a)

Thus, the equation for *1O ) becomes

1 (0) -T ,()..*O (0) +T + to) (0)
o1 - ,oy I j o 2 x} fo-f~ ~)

W'yyyy xy x yy xy y y x iyy yO

t-k0(1}1 l  - ko(1} ( 1 )) - 4k 0(1);(1) (2.15b)

y ; y i y y

In this equation, we have neglected d/dX xnIAI compared with ki=Oix

since the former is of the order of u. Also, we have gone back to the

original x by multiplying through by u.
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Corrections to Fundamental Component:

The modification to the fundamental component consists of two parts:
one part due to the variation of i,,(1) and k with X, and the other part

due to nonlinear feedback. By putting

dA 1 kA + XA2W (2.16)

and

(1) = Af(1 ) + uA 11) + 1A1 2 A¢ 1 1  (2.17)

we obtain the following equations for the corrections *I1) and 41)
(1)(1)) = kjM( ( ) + Q((1) ,k) (2.18)

(1) ((1) Q(0 ()(2

L (.421 ) = xM(* 11 ) + iN(4(O), (l),,( 2 1) (2.19)

where,

M(O ( 1)=2wk ( +T4 (I '3k2,(I}1 4' k((1 )-k2t(l) (2.20a)

Q(TI (1 1)yfM -f(( )k() T (

yyx x yyy y yyx y

+ 2wk. 1 .+ T4 1) I3k2() 4 .. ..
x y yx x -yy w-k(() 2(

+[ n- 3kIj. ,(1) 21 40() -k#l (2.20b)



and

N(O), (1 , (2 )rie- '(1) (2yy4k2#(2) _' (2)(;(1)_W2,()
.-. yy y y

+ (1)(yy(2) . 4k2#( 2 )) _ 2k#(2)(;(1) -2jfy(k))

y;yy y yy;y y

+ ((1) - O(1) k40 1 A ) 1)~ (2.*200)

The boundary conditions for #1) (n - 1,2) are
n

(1)(0 ) ' #(1)(0 ) ' n(1)(.) ' 0n flyn

The equation LW(Ol)) - 0 with above boundary conditions has nontrivial
solutions (eigensolutions). Therefore, if the nonhomogeneous equations

(2.18) and (2.19) are to have solutions, the terms on the right hand

side must be orthogonal to the elgensolutions of the homogeneous equa-
tion (hereinafter this is referred to as the solvability condition),

which yields:

1()Qdy

k - J - (2.21)
"#()*M dy

0

dy

- 0 (2.22)

f MO1 )* dy
0

where (I* is the solution of the adjoint problem



1 4 )32k) t(1l* Jrfkj w)32-k2 )2 ,(1*4 (1* 0 (2.23)
*y 2 yy yj

wi th

M*(0)= (1)*() (1* 0
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SUMMARY:

We summarize the mathematical problems that need to be solved:

(1) Fundamental-Mode Elgenvalue and Elgensolution

L(1)k 1 2 k2 2 4(1)

LW 0'(fl o ay" 2 o

-i (kOTy-w),y'1 k2 (I kOf o-y (I)]

=0

with ,(I) ( =y(1)(O) 0 ; - 0 as y +-

Here LW is the Orr-Somerfeld linear differential operator.

(2) Adjoint Orr-Sommerfeld Problem

( 0~ 32 k0/ O \Y - 'y 0

+ 2k a20a.1)*]0 y2 y

subject to the boundary conditions, ,(1)() - *(0)

(* (Y) + 0 as y + -and with ko obtained from (1).
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(3) Correction to Fundamental Mode and Determination of Amplification

Factor k1 Due to Non-Parallel Effects

(1), (1)(1)LW(# 1  0) - k1 M( + Q(

with boundary conditions identical tothose for #

ik is determined from the solvability condition:

f o'()" dy

kl I k 1(O1) +(1)*,ko0) a _ -
fM#(11* dy

where 0

,($(1)1 i[2wkt(1) +f (,-1)3k2(1) - 1yyy#()]

+ (4k(l)k2 *(1)
0 yy 0

and
j a d ( ( 1)) (1)0

2 xk (l ) + x A x t(1 )  x ( )

+ yfl -1; ox - k0kox*

1 ft #*(1) + 2k #*(1) -4k'#( 1 )- 6k2k * (1)
I o yyX Xoyy oX ox

+ r *(1) . I- (0(1) . k2, (I))
yyx y xyyy 0 y

_ . . ... . - . . , _ iUm "" . . . - '- -
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(4) Equations for f*i) and k

f(1) and kox appearing in Q are obtained by solving the equation

L (l),k o = {M kox + P}

subject to the boundary conditions identical to those for

Of the terms on the right hand side, P is defined by

p = iko[xy (1) k2 k T(1)) - €(1yy

M is as defined in (3).

(5) Second Harmonic Mode

( ) =F((1)k)L2w 1 , 2ko ) = F '2( 0( l k o )

where L2. is the Orr-Sommerfeld operator with ko obtained from (1)

and F2 lll,k o) = - ikoL[ ()y ( yy (

with

*(2)(0) = ,(2) (0) = 0, (2)(y) +0 as y +
y
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(6) Correction to Mean Flow Due to Fundamental Mode and

Non-Parallel Effects

G( ( 0 1)  F F1l¢( ( ko )

where

(0 ) (0) (0) + .j 01() -10)G(O T yx0y "yy x y yx xyy

1 0)(0)- ,(0)" ,(0) + 2koi(yy y -Ty 0

0 0

y

+ 
2k

oi y

subject to the boundary conditions,

F,(ll~,o) =0 at y )

)(0 for all x =x
) + 0 (as y + a)

For the initial condition we arbitrarily choose;
9

,(0) = 0 at x xI , for all y.

ma.
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(7) Correction of Fundamental Mode and Determination of Landau

Constant X, Due to Nonlinear Effects

L (0l',k0) = xM( 11 ) + i N (0)(1)

where M and N are defined below. The boundary conditions are iden-

tical to those for O) ."

The Landau Constant X is determined from the solvability condition

that the right-hand-side of the above equation has to be orthogonal

to O(U). Thus, we have

I,k) = oM.dy

where 0

k (1) (2) 20( 2) - (2), (1) - 2 -(R))

oy yy 0 _ yy oy

+ ioj(1)((2) - 4k20(2)) + ko (0)
(0 (1)y k2 ()

-k 0 (0) 11( }
0 yyy

and M is as defined in Problem (3) and kox is determined by the

solvability condition to be

fc M P ,(1)* dy

k kox,' f @1) dy
= 0 f 14 *(1
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(8) The Amplitude Equation

Ax = k0i A + k 1A + X A
2 A

subject to the appropriate initial condition for A. The quantities

ko, kI and X are determined in Problems (1), (3) and (7), respec-

tively. By expressing A in the polar form

A = IAI e 4

and substituting into equation (2.16), we obtain the following

equations for the amplitude IAI and phase *:

JAIX = (-koi+k r) IAI + Xr A13

X = k1i + i A12

Here the subscript "r' and "i" refers to the real and imaginary

components of the complex quantities k and X.

We shall briefly discuss the types of mathematical problems with which

we are dealing. In the fundamental mode equation, there are three

parameters appearing in the equations: R, w, ko . Since we are inter-

ested in spatially amplified solutions of the Orr-Sommerfeld equation,

two of the parameters, R and w, are given and ko is to be determined.

In this form, the fundamental mode equation is a nonlinear problem, with

ko being the eigenvalue which is treated as an additional dependent

variable. The type of system is a two-point boundary value problem

(2PBVP), since the boundary conditions on (i (and its derivatives) are

imposed on both ends of the computational interval.

.................... __....



-19-

The adjoint problem (2) has the same form as the fundamental mode pro-

blem, except that the eigenvalue ko is known in advance from the solu-

tion of the fundamental mode problem, since the operators L, and L. can

be shown to have the same eigenvalue. On the other hand, the second

harmonic problem (5) is an inhomogeneous 2PBVP, not an eigenvalue prob-

lem. Finally, the correction to the mean flow (3), in contrast to the

other three above-mentioned problems, is a linear partial differential

equation (PDE), similar in form to the boundary layer equation. Thus,

in addition to the boundary conditions, initial conditions have to be

specified for (0).

The remaining two problems of determining X and k, are pure quadra-

tures. Since the integrands are going to be approximated on some compu-

tational grid, the integrals can be approximated by applying some simple

quadrature rules, like the trapezoidal rule, to the integrands and

integrating the exponential tails analytically from the end of the com-

putational interval to infinity.

The functions OR)and 0(1) can be computed as follows. Note first

that the differential operator Lw(ko ) appearing in problems (3) and (7)

is singular and the solvability conditions simply force the right-hand

sides to be orthogonal to the eigensolution of L,(k ) so that nontrivial

solutions exist. However, 2) and 0(1) are only determined up to the

addition of an arbitrary multiple of 0(1) since (1) is the eigen-

solution of L (k ) . Hence, we need to specify normalization conditions

for them in order to remove this degree of freedom. To be consistent

with the assumed form of the expansion for the total stream function *,

such a condition could be that 41) and 0(1) should be orthogonal to the
1 2

eigensolutin of LW(k0 ) :

.(1)*BOj1)dy 0, f. l *B l0

0 0
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where B is the operator defined by (see Appendix for the orthogonality

condition)

B = 4k (D2-k2) + iR U(D2-3k2) + 2wko-U] , D d

Therefore, the desired solution can be recovered by

S(I) = 0*1)(computed) - Cl) 0 (1)

S(1) = 0 l)(computed) - C 2) 0(1)

where

cI)= 4/')B(  (computed) dy/f *

0 0

and C I) is obtained by placing 41) (computed) instead of (1) (com-

puted).

From the above brief description, we see that at least three of the

first four problems are 2PBVP. It turns out that if we attempt to solve

the distortion of the mean flow equation by some marching technique
(e.g., the methods of lines, to be discussed later), a sequence of 2PBVP

has to be solved. Since these four problems constitute the major por-

tion of the overall computational problem, it becomes immediately obvi-

ous that we need an accurate and efficient 2PBVP solver that is able to

handle the different types of 2PBVP that we have discussed above. In

the next section, we shall discuss in some detail the choice of such a

solver.

.. . .... . ... . .. . .....
r 

li ... .. ... . ....
.. ... . .

.' . .. 
. ..
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3. NUMERICAL METHODS FOR TWO-POINT BOUNDARY VALUE PROBLEM

A classical technique for solving the Orr-Sommerfeld equation is to use

a shooting scheme together with the Runge-Kutta method on a uniform mesh

(e.g., Reynolds and Potter (1967), Ling and Reynolds (1973)). The pre-

sence of linearly independent solutions with vastly different growth

rates, is usually handled by some sort of filtering to maintain the in-

dependence of the computed solution (e.g., Kaplan (1964), Scott and

Watts (1975)). There are also other methods that do not take the ini-

tial-value problem approach but rather solve the boundary value problem

directly using finite difference methods (e.g., Thomas (1953), Osborne

(1967), Orszag (1971)). Gersting and Jankowski (1972) discussed a com-

parison of the performance of these methods on the Orr-Sommerfeld pro-

blem.

The development of modern numerical methods for general nonlinear 2PBVP

has greatly advanced in the past decade (see, for example, the surveys

by Keller (1975) and Keller (1976)). We now have available powerful

packages of computer codes designed for a large class of 2PBVP, of which

the Orr-Sommerfeld and related problems are particular cases. Many of

these packages incorporate adaptive mesh selection techniques and can

handle rather sharp boundary layers efficiently. A very high order of

accuracy can be achieved through the use of extrapolation techniques.

Reliable error estimates are sometimes available and nonlinearity is

routinely handled. We choose to use one of these packages for the 2PBVP

with which we are concerned.

The solver we use is called PASVA3, the original version of which Is

described in Lentini and Pereyra (1977). We shall briefly describe its

underlying methods and capabilities here.
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PASVA3 is based on the finite difference method and is applicable to

first order systems of the form

dX
Tf= f(t,X) , t c (a,b) ,

subject to the boundary conditions of the form:

g(X(a),X(b)) = 0 .

where f and g can be quite general nonlinear functions, but sufficiently

smooth so that the above problem has an isolated solution. The method

of solution utilizes a global finite difference approximation rather
than a shooting method. Through the use of the trapezoidal rule approx-

imation, the differential equation is approximated by a system of

(generally nonlinear) algebraic equations to be solved for the unknown

function values on the grid. Newton's method and variants of it are
used to find the solution to this algebraic system. The Jacobian matrix

that results has a special block structure and an efficient elimination

scheme is devised to exploit this structure. The Jacobian matrix is
also used to obtain a higher order accuracy (higher than the second
order accuracy of the basic trapezoidal rule approximation) through the

use of a procedure called deferred correction. Since the factorization

of the Jacobian matrix has to be computed only infrequently, high order

accuracies can be achieved with very minimal costs. Even more important

than that is the availability of accurate error estimates for the com-
puted solution through the use of the same Jacobian matrix. Accurate

error estimates are extremely valuable because they allow us to assign a

confidence level to the computed results. Such error estimates are
noticeably absent in previously published computations related to the

Orr-Sommerfeld equation. The last significant feature of the code that

we shall mention is the ability to automatically and adaptively select a

good mesh for the problem. This feature allows the code to resolve mild
boundary layers (region of relatively sharp changes in the solution)
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efficiently and at the same time reduce the computer storage required

for a given accuracy. A crude adaptive mesh selection procedure was

first used by Hughes (1972) on the Orr-Sommerfeld problem.

Computational Domain

We used a general rectangular finite difference grid (Figure 3-1) on

which the problems listed in Section 1 are to be solved. This grid is

non-uniform in general.

y

YN

x. XL

Figure 3-1. The Computational Grid

On this grid, the dimensionless mean flow stream function T (and its de-

rivatives) are to be given, depending on the value of the Reynolds num-

ber and the kind of problem itself. Also, appropriate initial condi-

tions are to be given at x = x, and appropriate boundary conditions to

be given on y = yl and y = yN. This formulation of the computational

domain is quite general, and can handle boundary layer flows, Poiseuille

flows and Couette flows. For example, 3 for plane Polseutlle flow with
walls at y1 = -1, YN = 1, "(y) - y -- is known exactly. For Blaslus

flow with Reynolds number R, the dimensionless mean-flow stream func-

tion at a point (x,y) is given by

- S. -
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T(x,y) = 3)n)
(3.1)

and f satisfies the following 2PBVP:

2 f''" + ff =0 (3.2)

(32
f(0) = f'(0) - 0 , f'() = I.

The function f(n) Is calculated using PASVA3. The mean-flow ion the

grid can then be calculated from (3.1) by interpolation from a table of

f vs. n. The value of YN is chosen so that the corresponding values of

n at all x-stations are large enough to contain most of the boundary

layer. Usually, a value of n about 10 is sufficient.

The placement of the y mesh points is determined by the adaptive mesh

selection procedure in PASVA3 when we use it to solve the fundamental-

mode problem at x = x, to a given accuracy. If the mean flow does not

vary with x too strongly, this mesh should be good enough for all sub-

sequent x-station fundamental modes. This mesh should also be fairly

good for the second harmonic and the distortion of mean flow equations
because the fundamental mode constitutes the forcing functions for those

equations. Our experience seems to indicate that a mesh selected this

way is more than adequate for all the three other problems (including

the adjoint problem). Notice that, in principle, it is not necessary to

use the same mesh in y for all x-stations; its choice is for conveni-

ence, especially in connection with the marching scheme for solving the

distortion of mean flow problem (6).
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The placement of the x-mesh is to be specified by the user. It can be

non-uniform, but for solving the problem (6), the x-mesh should be fine

enough to resolve the variations in the x-direction, of ,(O),kok 1 and A

but not too fine in order to save computational effort.

The marching scheme for the distortion of the mean flow equation will be

described in Section 3.2 and the correct specification of the boundary

conditions will be discussed in Section 3.3. In the next section, we

shall describe how we handle the eigenvalue problem (1).

3.1 Treatment of the Eigenvalue Problem

As we have mentioned, problem (1) is an elgenvalue problem; both
,(1) and k0 are to be determined. The approach taken by many people is

to drop one boundary condition at one end of the computational interval

and impose a normalization boundary condition at the other end, thus

making the new problem inhomogeneous, allowing a solution to be easily

computed for a given estimate of ko. An iterative scheme is then used

to find the correct value of ko so that the dropped boundary condition

is satisfied. The adjusting of ko can be done by Newton's method, for

example. We have chosen another approach which, as discussed In Keller

(1976), is to view ko as an extra unknown (in addition to *) and intro-
duce an extra equation

d 0  0 (3.3)

since ko is constant independent of y and an extra normalization bound-

ary condition for *U) such as

,(1) (y = 1 . (3.4)
yy

-J
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The "inflated" system becomes inhomogeneous because of (3.4) and is of

the form suitable for PASVA3. In effect, both 0(1) and ko are obtained

through the use of Newton's method that is built-in in PASVA3. This

greatly simplifies the computer programming in the actual implementa-

tion.

REDUCTION TO FIRST ORDER SYSTEMS

PASVA3 accepts only real first order systems of 2PBVP. However, the

problems listed in Section 1 are all of higher orders and are complex in

general. Therefore, these equations have to be reduced to equivalent

real first order systems before PASVA3 can be applied. Except for the

distortion of mean flow problem (6), this can be done rather straight-

forwardly. We shall present these reductions in this section.

Fundamental Mode Equation

If we define u = (0 (1) *0(1) *(1) *(1) k )T then the Orr Sommerfeld

~f , ,ne=( I yy I yyy, o t

equation, together with (3.3), reduce to the following system of five

first-order equations:

U2

du u

- u4  - ()(3.5)

ctu 1 + au3

O
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where

Ul= ()

u2 = f'), ...etc.

ty

further,

'- w)(5 i- u) u- i u5 ,

and

=1 R(u5 iy- W) +2 u 2

To reduce (3.5) to a real system, we introduce the real and imaginary

parts of u as

+ t ,(3.6)

where v and z are real.

Then, (3.5) is equivalent to

T= z m f (£ + i Z) ( l ,z 3.7)

where Re and Im denote the real and imaginary parts. This is a real

first order system of order 10 to which PASVA3 can be directly applied.

The system (3.7) is nonlinear and PASVA3 requires the computation of the

Jacobian of the right hand side F in (3.7). From (3.7) it follows that,

in block form,
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ae f ae f

3F
j

JIM f Jim f
-r-- -T-

Since f(y) is an analytic function in , each submatrix can be computed

easily from

af at af at

af
Now, I is easily computed from (3.5) as

0 0 0 0 0
af 0 0 1 0 0

0 0 1 0

0 0 0 J

where

Y = IR[T~ +~ 2 u,(u5 jy-w)]- R ;sjyyy- 4 U

1i R 54 u5 u3

Hence, the Jacobian of E is given by

mi
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0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 (3.8)

a r 0 a8r  0 Yr -Q. 0 -8i 0 "Yi
J= 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

CL 0 O0 Yi ar 0 Or 0 Yr
0 0 0 0 0 0 0 0 0 0

where the subscripts r and I on a, 8, and Y denote the real and ima-

ginary parts, respectively. In the actual implementation, the vector

F and the matrix J can be easily calculated as a function of X and A

(i.e., g), using complex arithmetic if that is available.

Second Harmonic Equation

This equation is linear and its reduction to a first order system can be

carried out in an analogous, but much simpler, way than for the funda-

mental mode equation. With *)and ko computed from the fundamental

mode problem, the forcing function F2 on the right hand side of equation

can be easily calculated. Now if we define the vector

(, * (2) *(2) ,(2) \T

y yy yyy /
where the notation ( )T denotes the tranpose.

Then it is easily seen that the fourth-order equation for 4(2) is equiv-

alent to

V
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U4

iu 1 + Ou3 + F2

where

a =-8i R T-w) k2 -2i R ko~ -16k0(310

and

B = 2i R (k j -w) + 8 k2  (3.11)oy 0

To further reduce (3.9) to a real system, we again define the real and
imaginary parts of u as j~= + i Land rewrite (3.9) as

v2

v3

v4

d Re( au +OU F)

z2

z3

z4

Ilm(au1 +ou3+F2)

The Jacobian matrix is easily computed from (3.9) as
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0 0 0 0 0 0 0

0 0 1 0 0 0 O 0

0 0 0 1 0 0 0 0

J = r  0 a r  0 ai 0 -0 0

(3.12)

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

L %i 0 5i  0 (1r  0 a r 0 _

where the subscripts r and i denote the real and imaginary parts, re-

spectively, of a and $ as defined in equation (3.10) and (3.11).

Adjoint Equation

Analogous to the previous two equations, the reduction of the adjoint

equation can be carried out as follows. Defining

u =( (1 )* ' ( I)* 
10 ( i }* 0 ( I}* 

T

y ,% , "yyy

we get

dM u2

u4

Qu1I+ Ou 2  YU 3

where a=-i R(koTy-w) k2
-k 4

a 2 1 k oR yy (3.13)

and

Y =i R (ko  + 2 ko2

00 000

00100000
m=.....0 0 0 1 0 0 00. -
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Defining Q = v + i 4 as before, the real system is

v2

v3

v4

T-zRe(au 1 +Ou2 +YU3) (3.14)

z2

z3

z4

Im( au1 +Bu2+YU 3 )

and the Jacobian matrix is

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 (3.15)

J a r Or Yr 0 -ai -i -Yi 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
i ai Yi 0 r Or Y1r 0

using the same notation as before.

Notice that ko is a known quantity (obtained from the fundamental mode

computation) in the above formulation, and thus the problem is linear.
To make the problem inhomogeneous, a boundary condition at one end of
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the computational interval is dropped, and an extra inhomogeneous nor-

malization boundary condition is imposed at the other end of the inter-

val. Since the fundamental and the adjoint problems have the same

eigenvalue, the dropped boundary condition should be automatically

satisfied. This condition should be checked after the computation.

More details on boundary conditions will be discussed in Section 3.3.

3.2 Distortion of Mean Flow Equation

This problem is an initial and boundary value problem (IBVP) for a par-

tial (rather than ordinary) differential equation. Since the equation

is of parabolic type and the variation in the x-direction is not expec-

ted to be large, implicit schemes (e.g., Crank-Nicolson) are more effi-

cient than explicit methods. Implicit methods, however, necessitate the

solution of a linear algebraic system of equations at each x-station.

PASVA3 can be used to solve this linear system, thus utilizing the

service of its efficient elimination scheme. Even more important than

this is the achievement of high order accuracies through the deferred

correction procedure built-in in PASVA3. We shall next show how this

method can be applied to the distortion of mean-flow equation and how

PASVA3 can be used in conjunction with the method.

First notice that the right hand side F1 in the problem (6) is real by

definition and so is (0) . We first approximate the x-derivatives

of ,ON) by two-point centered-difference approximations, centered

at x n+1/2= (xn + xn+l)/2 and also approximate the coefficients

at xn+i/ 2 by averaging. Specifically, we approximate the partial dif-

ferential equation for *O) by

p1
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(k n+l n- 1 , (0) n+1 + kn , (0)oi y oi yy

n(1 iy+l+ ( 0)n+l n (O)n)

k +y k ~y

where the superscripts n and n+l correspond to the x-stations. Now mul-
tiplying by 2R and collecting ters with superscript (n+1) on one side,

we get,(o )n+i +(1+an+1 \_(O)n+l ( n+1 (3.16)

y+ 3 yy 2 1 A- )y y y

where 1  
_ ) (+) (o)n(an an+1) (0 n

Hn1 .() n, 0)n a +  n a 0

=R -yyy + a 2 yy + 1F n)

-R [Fr + F r] (3.17)

where the coefficients In (3.16) and (3.17) are given by
Yy 3 ., 2 "-

• i~~w h r ; , , :. . . - m l . . . iB i l- ". . .I I 
'

'
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n+= R( n+1 n)/ Ax
0o (T yy n

- n+l n+l- n+l
ay - yx + 2 R

nn1 n (3.18)

Sn1 kn+1 - n+1

4 oi "yy

These coefficients are all known quantities since and its derivatives

are given quantities. The equation (3.16) (with appropriate boundary

conditions) is in the form of a linear 2PBVP, with the right hand side

function Hn+l known at the y-grid points at x = xn. Thus, PASVA3 can be

called on to solve this 2PBVP if we keep the same y-grid at x = x,+, as

at x = xn,  Of course, in this fashion, we cannot exploit the adaptive

mesh selection capability of PASVA3, unless we provide some accurate

interpolation routine for Hn+l. As explained before, using the same y-

grid for all x-stations is adequate for near-parallel flows and the com-

puter programming is kept simple this way. On the other hand, high

order accuracies (in y) can still be achieved by the deferred correction

procedure in PASVA3, though the accuracy in the x-discretization is

second order.

A reduction of (3.16) to first order system is necessary before PASVA3

can be appl ;ed. If we define

r()n+1, ( 0) n+1 (0)fn+ T

= ,' , yy

then (3.16) reduces to
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z2

dzd z3 (3.19)

n+1 (a + a n+l a n+1 + Hn+1
So 1 2 1 )z2 -a 3  z 3

and the Jacobian matrix is:

J ( a)0 0 1 (3.20)-an+1 / an+1 an+l\ n+

-0a 2  1a ) 3 +

3.3 Boundary Conditions

The specification of the problems will not be complete without appro-

priate boundary and initial conditions. These conditions depend on the

type of mean flow and the computational domain of a specific problem.

In this section, we shall consider two kinds of flows: plane Poiseuille

flow and Blasius flow over a flat plate.

3.3.1 Poiseuille Flow

Let the walls be at y = ±1. Then the computational domain could be

either [-1,11 or the half-width [0,1] for solutions symmetric with re-

spect to the mid-channel. The no-slip condition at the walls reduces to

the condition that the stream function and its first derivative should

be zero there.

For the domain [0,1], the appropriate boundary conditions are, for the

symmetric fundamental mode problem:
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,(1)(o) = (1yy(O) =

yyyy 
(3211 )  (3.2)

and the normalization boundary condition could be taken to be

1()(0) = 1 (3.22)

Then the second harmonic mode is anti-symmetric about y = 0, and the

appropriate boundary conditions are

,(2)(0) (2)(0) = 0 (3.23)

*(2)(1) = *(1)(1) = 0 . (3.24)

The boundary conditions for the adjoint problem are the same as for the

fundamental mode problem.

For the distortion of mean flow, the appropriate boundary conditions

on O) should be:

0 )(0) 0; (0 = 0

(3.25)

0;°)(i) = 0

For the perturbed mean flow in a channel, we can specify either (I) no

change in the total volume flow through the channel or (ii) no change

in the pressure drop between two stations, x = x, and x2 say, along the
channel. For the case (i) the boundary condition is

0(x, = 0 (3.26)
9,

9

L ' j
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and then the partial differential equation for *(0) contains a non-zero

function P(x) (negative pressure gradient) whose value is to be deter-

mined so that the last mentioned condition for ,(o) is satisfied. For

the case (ii) the boundary condition for *(0) is

0(O)(x,l) = 0, independent of x (3.27)

and the value of P(x) in the PDE is determined to satisfy the above

boundary condition everywhere along the channel. The value of 0 is to

be determined so that the imposed pressure condition is satisfied:

x P(x)dx = 0 (3.28)

Only in the temporal problem, in which the mean-flow perturbation is

independent of x, the last condition reduces to

P(x) = 0 (3.29)

3.3.2 Blasius Flow

At the wall, the no-slip boundary conditions become

*(O) = €'(0) = 0 (3.30)

() (2) ad* (0w)er

where * is any of the functions 1), (, d 1)* However,

the boundary conditions at the other end of the computational interval

(i.e., y = yN) , which is physically of the form

lrm 0(y) = 0 , (3.31)
y+oW

requires more careful treatment.

r
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First of all, the computational interval should really. be semi-infinite,

but for practical reasons, a finite interval must be used instead.

Second, the perturbations vanish at infinity. The fundamental mode

equation, when evaluated outside the boundary layer has four linearly
independent basic solutions, two of which decay while the other two

grow, all exponentially. We want our computed solution at the finite

end point to be composed of only the two decaying basic solutions in

order to satisfy condition (3.31). This "outgoing wave" condition can
be derived quite easily for the Orr-Sommerfeld problem. The following

brief description is adapted from Keller (1976).

Consider a nth-order linear 2PBVP of the form

du
= A(y) u (3.32)

on the semi-infinite interval y > 0 , where the limit

lim A(y) = A, (3.33)
y+-

is assumed to exist.

Let the elgenvalues of A,, be denoted by Xj, let I and i be the inde-
pendent left and right eigenvectors of A. corresponding to Xj that is,

(3.34)

Then

("iX ti =X TA -T AA r I= 0

and hence
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,T r=0 ifi *j

(3.35)
0 if i = .

Now every solution of dp/dy = A.jA has the form
nX

j(y) = F ajrj e J  (3.36)
J=1

To ensure that the solution decays at -, we have to require aj = 0 for

those j's with Re X > 0 . By the use of (3.35), this condition can be

expressed as:

lim u(y) = 0 if Re X > 0.

Therefore, the proper boundary condition for the finite problem, with

right end point b, should be

IT u(b) = 0 if Re X > 0 (3.37)

Note that the often-used boundary condition of setting some components

of u(b) to zero is inaccurate if the desired solution decays very

slowly, unless the value for b is taken to be large enough, which is

obviously undesirable for efficiency considerations.

For the fundamental mode problem, if we define

9 = [0(j), 0(1) 1 (1) 1 ( )jT

9 then we have

djq
Ty- A(y) MA

where

I-=
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A(Y) = 0 0 1 0
0 0 0 1

L 0 0 0

and

a =-i R (k o wy-) k2 - R -- yyy - ko
2

8= 1 R(k o y -w) + 2 ko y 0

Since

limr Y(y) = 1 and lim Yy(y)= 0
y- y+ y

for Blasius flow,

A= 0 1 00
0 0 0 1

am0 0. 0

where

= - i R (k -w) k2 - k
0 0 0

83 = i R (k -w) + 2 k2

The eigenvalues of A. are easily calculated to be

1 = ko, I2 = -ko, X3 =y, )4 =-y (3.38)

where
y k ko + i R (ko-w) ,and Re(ko) Re(y) > 0

' . . . I. .. . . . .. . . . .. . . . . . ... . . .. I l i .. ... . . . . . . . . . . . . . .. . . . .. . . . ." . . ..0
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The corresponding left eigenvectors are

-koY2 k -k2Y k2y
0 0 0 0

_ 2 'y2 2 42 42

1 2 1 3  0 , 1 4 £ 10(3.39)ko -ko 0-

The eigenvalues A1 and A3 have a positive real part. The corresponding

left eigenvectors should be used in the boundary condition (3.37).

In terms of the original dependent variable, ,(1) and with D = d/dy,

condition (3.37) reduces to

CD-_k2) (D + Y) 0 = 0 j
(02 at y = YN (3.40)

(D2 _- 2) (D + k) 0C1

As Keller pointed out, these boundary conditions seem to have rarely

been used other than in shooting methods for the Orr-Sommerfeld prob-

lems, although related form such as

0(1) at) =0 (3.41)
= =y =

or ()=0 ay=YN(.2

(D + () 0

(D + ko) aty=Y (3.42)

have been used. Grosch and Orszag (1977) have found that conditions

like (3.41) and (3.42) can perform rather poorly.

L• m i
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In our formulation where ko is treated as an extra unknown as shown in

Section 5.1, an extra normalization boundary condition like

i1)(0) I
yy

have to be imposed. This completes the description of the boundary con-

ditions for the fundamental mode problem.

For the adjoint problem, it can be easily verified that the matrix A. is

the same as for the fundamental mode problem (i.e., the Orr-Sommerfeld

problem is self-adjoint at -), and hence the same boundary conditions
(3.40) should be used.

Boundary conditions for the second harmonic equation and the distortion

of mean flow equation can be derived in a similar fashion. The presence

of forcing terms in the differential equation requires a slightly dif-
ferent treatment.

9

4r
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4. NUMERICAL RESULTS

The numerical procedure described in the previous sections can be ap-

plied to very general classes of hydrodynamic stability problems. Our

main interest in the present report is to compute the solution for a

particular case of boundary-layer stability over a flat plate, and com-

pare the numerical results to those computed by Murdock (1977) using a

totally different approach. However, in order to have some feeling for

the performance and accuracy of the present numerical procedure, we also

applied the procedure to two cases where published results are avail-

able.

4.1 Plane Poiseuille Flow (Reynolds and Potter (1967))

Computations were performed for the case of R = 5772.12, w 0.2694879.*

This corresponds to the critical point on the neutral curve. Reynolds

and Potter (1967) also computed solutions for this case, but from a

temporal stability standpoint, in which R and k are given and

(complex, in general) is computed as the eigenvalue of the Orr-

Sommerfeld problem. But for points on the neutral curve, w is purely

real so the temporal solution is identical to the spatial stability so-

lution obtained by specifying a real value for w and computing the

generally complex ko as the eigenvalue. The wavenumber ko used by

Reynolds and Potter is 1.02071 and the frequency w as computed by them

is 0.2694879 + 01. Therefore, we solved the case with w - 0.2694379

(real) as input, and the eigenvalue ko as computed by us is

1.0207099 + 4.6032093 x 10- 7 i ,

which agrees with Reynolds and Potter's result to all significant digits

given.

* Note that our normalization differs from theirs by a factor of 3/2.
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Poiseujille, R=5772.12,w=.26949
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P~ iseujille, R=5772.12,wj=.26949
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This particular computation was done on a half-depth domain of [0,1]

starting with 50 uniformly spaced grid points. PASVA3 added 31 more

points and took about 2 seconds* to achieve an estimated relative error

of 10- 7 in 4 (1) and all its derivatives up to the third. As discussed

before, PASVA3 gives an estimate for the error

max lui(computed) - ui(exact)l , y E[ylYN]

for each component of the computed solution u. In this report, the

estimated relative error is defined as

max lui(computed - ui(exact)l

max lui (computed) I

The initial guess for the M(1) and its derivatives are simply constants

and not close to the exact solutions at all. The initial guess for ko
was unity. PASVA3 encountered no difficulties with convergence to the

correct eigenvalues and eigenfunctions. The computed (), (2, and
()* are plotted in Figures (4.3)-(4.3) where we show only every other

grid point. It is seen that PASVA3 does indeed put more grid points in

places where the functions change the most. These plots are indistin-

guishable from those computed by Reynolds and Potter.

4.2 Linear Stability of Blasius Flow (Jordinson (1970))

We also computed the stability solutions for Blasius flow over a flat

plate and compared them to three cases computed by Jordinson.

Jordinson's three cases, after transformation to our dimensionless vari-

ables (in our computation we scale lengths by the distance from the

leading edge whereas Jordinson scales by the displacement thickness),

are tabulated in Table-4.1.

The computer was a CDC Cyber 176.

,
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Table 4.1.

Case R w kor koi

1 38125.69 14.717 34.994 0.8964

2 120765.14 24.254 62.1799 -0.3837

3 336356.86 37.815 104.0077 -1.9211

Our computed results are tabulated in Table 4.2.

Table 4.2

Approximate
Case kor koi Ymax limax N Relative Error

kor koi

1 34.98617 0.905057 0.05 9.76 99 10-6 10-4

2 62.17120 -0.374498 0.03 10.43 95 10- 6  10-4

3 104.01196 -1.907428 0.015 8.7 97 10-6  10-4

All computations were started with 20 uniformly spaced grid points and

Ymax is chosen large enough so that it is effectively outside the bound-
ary layer thickness. The execution time for each case was about 1.5
seconds. Jordinson used a finite difference technique with 80 uniformly

spaced grid points and he claimed an accuracy of about five decimal

places which is equivalent to a relative error of about 10- 5 for the
three cases above. But on comparison of the results shown in Tables 4.1

and 4.2, we see that our results, in general, agree with Jordinson's to

about the same accuracy for kor but our k0i'S differ by much more.

______________
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Direct comparison with Jordinson's eigenfunctions is not possible be-

cause we do not know how he normalizes his eigenfunction. Without the

availability of an exact solution, it is not possible to conclude which

computation is more accurate. However, the availability of reliable

error estimates in our computation certainly gives us more confidence in

the estimated accuracy of our computed results, especially when viewed

in conjunction with the accuracy of our Poiseuille flow calculations in
Section 4.1. It is precisely in such situations when exact solutions

are not easily available that reliable error estimates like those com-

puted by PASVA3 are invaluable in assessing the accuracy of the computed

resul ts.

4.3 Nonlinear Stability of Blasius Flow (Murdock (1977))

The main goal of our present effort is to compute the growth of distur-

bances as they propagate downstream from the stable region through the

neutral point to the unstable region. Murdock (1977) computed the

growth of a large amplitude Tollmien-Schlichting wave for the case:
R = 105, w 13.19 from x = 1.0 to x = 2.2 in our dimensionless vari-
ables. His approach was to solve the time-dependent "parabolized"
Navier-Stokes equation with the Tollmien-Schlichting wave as initial

condition. In order to compare with his results, we computed for this
case the quantities 0( (i)*,(2) (0) (1 o,k xk ,0 I  and 2(I)' (1' x 'i '1 2

on a finite difference grid with 96 non-uniform mesh points (N = 96),

13 x-stations (L = 13) uniformly spaced between x = 1.0 and 3.4. yN was
chosen to be 0.04 so that max 12.6. The mesh in y was determined by

solving the Orr-Sommerfeld problem with initially 20 uniformly spaced
grid points in the y-direction. The estimated relative error in the
numerical solutions as computed by PASVA3 are all less than 10-3 and, in

most cases, less than 10-4 . To give an idea of the efficiency, the exe-

cution times are summarized in Table 4.3.
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CPU seconds per x-station

0(I) nonlinear < I

€(2) linear < .25

) near < .25X "

0 1) linear < .25
1)

0 1) linear < .25

1* linear .3

,(0) linear < .1

< .1

Table 4.3

The results of our computation for w = 13.19 are summarized in

Table 4.4. X r and X i vary somewhat irregularly at a few points near

x = 1 and this behavior probably was caused by our choice of OO= 0

(correction to the mean flow) at x = 0.

Rx10-5  kor koi kir kli r X10 3  Xix10 3

1.0 36.67 1.079 .119 -.666 -1.22 - .15
1.2 36.32 .398 .151 -.523 -1.26 -1.70
1.4 36.08 -.059 .162 -.422 - .97 -1.24
1.6 35.91 -.360 .164 -.349 - .67 -1.84
1.8 35.80 -.545 .164 -.294 - .49 -2.05
2.0 35.71 -.642 .161 -.252 - .20 -2.67
2.2 35.65 -.668 .160 -.218 + .15 -3.27
2.4 35.60 -.639 .159 -.191 .73 -4.19
2.6 35.56 -.562 .158 -.168 1.56 -5.17
2.8 35.53 -.447 .156 -.148 2.76 -6.34
3.0 35.49 -.298 .155 -.131 4.29 -7.44
3.2 35.45 -.120 .155 -.115 6.12 -8.44
3.4 35.41 +.084 .155 -.101 8.02 -9.14

Table 4.4 Stability Parameters (w = 13.19)

* We made this choice in order to compare our computation with Murdock's
(see next section).
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For infinitesimal disturbances, kor and koi are the wave number and the

damping rate in local parallel mean flow. kir and kli represent the

corrections to the wave number and amplification rate resulting from the

slow variation of the mean flow with the streamwise distance. If we

define the corrected amplification rate by -ki0  + klr as in Saric and

Nayfeh (1975), the neutral Reynolds number (corresponding to

-koi + k 1r = 0) is decreased by 5.4% from that for the local parallel

flow (koi = 0), in close agreement with Saric-Nayfeh's result.

X (=X r +ii is the Landau constant which is the measure of nonlinear

effects on the stability. The second-harmonic component, * (2), and the

correction to the mean flow, '(0 ), contribute nearly equally to the con-

stant X.

With the values of ko, k1, X computed for a range of x, the "amplitude"

A(x) of the basic component may be computed from the differential equa-

tion
dA =[ i k(x) + k1(x)] A + X(x) IA12 A

The solution is given by

IA(x)i A p(x) - A q(x)1/2

A(x) = IA(x)I exp{i f (kor + kli + AiIAI 2) dE

xo

where

p(x) = exp I fX 0IkrM~ + kir(O)l d

1(x) = 2 f r0x ) p2( ) d.

Ao  = IA(x ).

L0
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Thus, if A21q(x)l<<l, we get
0
1

IA(x)I p(x)

which is the linear result discussed earlier. The nonlinear effects

reduces the amplitude in the region where q(x)<O, and increases the am-

plitude where q(x)>O. When A2 q(x) becomes unity, IA(x)I becomes in-
0

finite. A similar instability "burst" was reported by Hocking, Stewart-

son and Stuart (1972) in their study of infinitesimal three-dimensional

wave packet in a fully developed plane Poiseuille flow at a slightly

supercritical Reynolds number.* In a slowly changing boundary-layer

flow, q(x) is also a slowly changing function of x which is negative for

low Reynolds number (based on x) region and becomes positive beyond a

certain Reynolds number. It, however, is a universal function for a
fixed initial station xo in a given undisturbed boundary layer, and once

computed it may be used to estimate the "burst" location as Ao is

varied.

The amplitude functions p(x) and q(x) for w = 13.19 are given in

Table 4.5. The last column gives the value of A for which the corres-

ponding x is the singularity of A(x). The numerical value for A depends

on how the eigenfunctions are normalized. In our computation we arbi-

trarily chose 0"(0) = 1, and 10'(Y)lma x (corresponding to Ao = 1 at

x = 1) is about 0.15 x 10-2. Hence, though Ao = 0(10) seems large, the

streamwise velocity fluctuation is only 0(3%). Near the burst, the am-

plitude becomes so large and the weakly nonlinear theories become in-

valid. If we assume that truly nonlinear processes leading to boundary

layer transition take place in a short distance around the instability

burst predicted by the present theory, then we can use the burst loca-

tion as an estimate for the transition location replacing the en-cri-

terion. For this purpose, we have to compute q(x) for a range of fre-

This instability "burst" should not be confused with the instability
burst observed experimentally in boundary layers. The "burst" in the
present case simply means the break-down of weakly nonlinear solu-
tion.
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x P() q(x)*100 A0

1. 1. 0
1.05 .96 -.012*
1.1 .93 -.023*
1.15 .91 -.034*
1.2 .89 -.044*
1.25 .88 -.054*
1.3 .88 -.063*
1.35 .88 -.072*
1.4 .89 -.08*
1.45 .9 -.087*
1.5 .92 -.094
1.55 .94 -.101
1.6 .96 -.107*
1.65 .99 -.113*
1.7 1.02 -.119*
1.75 1.05 -.125*
1.8 1.09 -.131*
1.85 1.13 -.137
1.9 1.17 -.142*
1.95 1.22 -.147*
2. 1.27 -.151*
2.05 1.32 -.153*
2.1 1.38 -.155*
2.15 1.44 -.154*
2.2 1.5 -.152*
2.25 1.56 -.147*
2.3 1.63 -.138*
2.35 1.69 -.125*
2.4 1.76 -.106*
2.45 1.83 -.079*
2.5 1.91 -.044*
2.55 1.98 2E-03 212.7
2.6 2.05 .061 40.6
2.65 2.13 .134 27.27
2.7 2.2 .227 21.01
2.75 2.27 .34 17.15
2.8 2.34 .478 14.46
2.85 2.41 .644 12.46
2.9 2.48 .842 10.9
2.95 2.55 1.075 9.65
3. 2.61 1.346 8.62
3.05 2.66 1.659 7.76
3.1 2.72 2.018 7.04
3.15 2.76 2.425 6.42
3.2 2.81 2.882 5.89
3.25 2.84 3.389 5.43
3.3 2.87 3.946 5.03
3.35 2.89 4.553 4.69
3.4 2.91 5.206 4.38

Table 4.5. Nonlinear Stability Amplitude Functions
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Since the consensus in the transition research community is that three-

dimensional disturbances are more important than two-dimensional distur-

bances in pre-transition nonlinear regions, a more pressing task is to

extend the present theory to weakly nonlinear three-dimensional distur-

bances.

Comparison with Murdock's Computation

Murdock (1977) investigated the nonlinear effects on the stability of

boundary layer over a flat plate, by numerically integrating the non-

steady Navier-Stokes equations. The computations are carried out in the

Reynolds number range 105 < U x/v < 2.5 x 105 . At the upstream bound-

ary, U,,x/v = 105 , the condition is the superposition of Blasius steady

boundary-layer solution and a time-periodic solution of the temporal

Orr-Sommerfeld equation. He presents the results for dimensionless fre-

quency w x1 /U. = 13.19 and amplitudes* A = 0.001 and 0.08.

Our result, corresponding to Murdock's A = 0.001, is shown in

Figures 4.4a,b. We determined the initial amplitude by matching his
results at the initial station. Since he used the temporal solution of

the Orr-Somnerfeld equation at the upstream boundary while our solution

is the spatial solution (the frequency w is real and the wave number k

is complex), a perfect match was not possible and we used the arithmetic

average of two values obtained by matching at yV./2vx = 0.2 and 1. In

the case corresponding to Murdock's A = 0.001, the nonlinear effects are

negligible and the amplitude is given by the solution of

I diAI +
7T--- k0 , + kir

The meaning of A is not clarly defined in the paper, since he failed
to state how the Orr-Sommerfeld solution is normalized.
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Figure 4.4a shows the variation of the amplitude of streamwlse component

of perturbation velocity along y - 0.2VT17x/7U. The agreement between

our result and Murdock's computation is only fair, and we feel that the

difference is caused by the imperfect matching of the boundary condition

at x = 0.

The comparison in the large amplitude case (A = 0.08 in Murdock) turned

out to be more complicated. Murdock simply increased the amplitude of

the Orr-Sommerfeld solution without introducing any nonlinear contribu-

tions at x = 1, whereas, in our formulation presented so far, nonlinear

contributions are automatically introduced when we increase the ampli-

tude of the fundamental mode (see Figure 4.5). This is especially appa-

rent in the second-harmonic component. The amplitude of the second har-

monics starts from 0 at x = 1 in Murdock's calculation, while our solu-

tion would give non-zero value proportional to A2 . In order to match

Murdock's initial condition, we have to construct unforced boundary-

value solution for the second harmonic (2w component) that will cancel

our forced second-harmonic component. The free solution is formally

given by

Ea 0( 2 )(y) exp (i k x - 2iwt)E,n 2,n

where *(2) and k are the eigenfunctions and the eigenvalues of Orr-
E,n 2,n

Sommerfeld equation corresponding to the frequency 2w. The expansion

coefficients an are to be determined from the boundary condition at

x =1:

a (2) (2)n E,n yn
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where (2)(y) is the forced second harmonic at x = 1. Using the ortho-

gonality condition derived in the appendix, we determine

an f. (2)*B ,(2)dy / (2)*B .(2) dyan = E,n E,n D E,n

0

(2)*
where p En are the adjoint eigensolution and B is the operator defined

by

B = 4 k (D2-k2  ) + iR [U(D 2-3k2  ) + 4wk2 - U1"]
2,n 2 ,n 2 ,n 2,n

In our calculation, we include only the first mode since we believe it

is the least damped solution. We calculated also the correction to the

second-harmonic eigenvalues due to the mean-flow variation.

k2r 2i k2 1r [ 21i 2kor

1. 65.2 .28 .39 -.39 73.3
1.2 65.0 .82 .40 -.28 72.6

1.4 64.8 1.70 .41 -.185 72.2
1.6 64.6 2.84 .43 -.101 71.8
1.8 64.1 4.17 .46 -.004 71.6
2.0 63.4 5.64 .49 +.135 71.4
2.2 62.3 7.15 .46 .37 71.3
2.4 60.7 8.39 .18 .61 71.2
2.6 58.8 8.96 -.23 .48 71.1
2.8 57.3 8.96 -.30 .19 71.0
3.0 56.2 8.80 -.22 .04 71.0
3.2 55.3 8.63 -.15 -.23 70.9
3.4 54.6 8.50 -.09 -.47 70.8

Table 4.6 Second-Harmonic Eigenvalues

i
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We present the computed eigenvalues in Table 4.6. (k 2r,k 2) is the

eigenvalue for 2w frequency in local parallel flow, and (k 21rk 21i) is

the correction due to the mean flow variation. The spatial amplifica-

tion rate of the second harmonics is given by -k2i+k21r , and near x = 1

the second-harmonic eigenmode is amplified because of the mean-flow va-

riation, while the local-parallel-flow result is damped second harmo-

nics. The last column is twice the wave number of the fundamental (fre-

quency w) eigenmode. As we expect, k2r is close to but not identical to
2kor.

We denote this free-mode second harmonic component by

Re ~A M ( ) ?(yX) exp [i0 2 X M 2iwt)]

Then, for some distance downstream of x 1, before it is damped out,

the amplitude of the free-mode second harmonics will be of the same

order of magnitude as the forced-mode second harmonics, and its beating

with the basic fundamental component will produce an additional contri-

bution to the fundamental component which will be of the form:

Re ~AXMA 2(X)41)(y,X) exp [iO2 - 1  iwt]

The differential equation for (1) is the following nonhomogeneous Orr-

Sommerfeld equati on:

[a 2 -k 4 2LL0 y 2-V 4

- (k2-ko ) U (y) )

R- iR E (21 ( 2 2) '(I) + k ,(2( -()
L ° Ey y-o + 2 E yo y

- (1) (32-k2) 0(2)_i TM1 (a2-k2) (2l
2'y y 2 E o y 2 Ey

with boundary conditions

--I-
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(0 (1)(O) = 0 and 0(i1 0 as y + 0
44y4

Our results, including the contributions from the free-mode second har-

monics, are compared with Murdock's computation in Figure 4.6. Since

the wave numbers for the forced and free-mode second harmonics are not
equal, the amplitude of the second harmonics is modulated with x varia-

tion. Since we did not include all modes of the elgenfunction for the

second harmonics, we do not cancel the forced second harmonics perfectly

at x 1 1, but the second harmonic modulation is very well reproduced

except for a slight phase shift. Because of the above-mentioned differ-

ence in the wave numbers, the computed amplitude of the fundamental com-

ponent also exhibits small amplitude modulation until the free-mode sec-

ond harmonics is damped out. Except for this modulation, our results

for the fundamental component agree fairly well with Murdock's computa-

tions.

The longitudinal component of the perturbation velocity at

nm= yNFii2vx = 0.2 at a fixed t is shown in Figure 4.7 together with

Murdock's result. The agreement between the two computations is good,

and especially the phase relationship between the fundamental component

and the second-harmonics is very well reproduced by the present theory.

From these results, we conclude that, in the range of x covered in

Murdock's computation, the present nonlinear stability theory, which

includes the fundamental and second-harmonic components with the correc-

tions for the slow variation of the undisturbed laminar boundary layer

flow with x, provide an adequate description of the evolution of small

but finite amplitude perturbations introduced into the boundary layer,

compared with direct numerical solution of the Navier-Stokes equa-

tions. Even though the computation of eigensolutions at several sta-
tions along the developing boundary layer is quite involved, once the

eigenvalues and eigenfunctions are computed, these can be used for any

amplitude within the limitation of the theory, and provide a valuable

"tool" for a parametric study in the transition problem.
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As an example, we extended our computation to x = 3.4 beyond x = 2.2,

and the results are shown in Figure 4.8. In this example, we have

Ao = 18.1 and the instability burst occurs at x = 2.73. It would have

been very interesting and valuable if Murdock had extended his computa-

tion into this range and obtained the flow field near the instability

burst from the numerical solution of the Navier-Stokes equations.
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5. CONCLUSIONS

We have formulated a weakly nonlinear stability theory with the assump-

tion that the amplification rate is also weak. The theory takes into

account the slow variation of the undisturbed mean flow with the stream-

wise distance and includes the fundamental and second-harmonic compon-

ents. A computation was carried out for one frequency and the results

compare favorably with the numerical solution of the Navier-Stokes equa-

tion by Murdock.

Theory predicts that the nonlinearity has a stabilizing effect at low

Reynolds numbers, but becomes destabilizing beyond a threshold Reynolds

number and leads to a break-down of the solution. The location of the

singularity depends on the initial amplitude of the disturbance, and

this location may be used as a criterion for the laminar-to-turbulence

transition replacing the commonly used en criterion which is independent

of the initial amplitude. The validity of this new criterion should be

established by carrying out the computation for other frequencies and

the prediction compared with the transition location measured on a flat

plate as the free-stream turbulence level is changed.

The present theory may readily be extended to non-Blasius two-dimen-

sional boundary layers.
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APPENDIX

Expansion of Arbitrary Function in Series of Spatial Mode

Eigenfunctions of Orr-Sommerfeld Equation

The Orr-Sommerfeld equation in the linear stability theory of parallel

flow is

2
(D2-k2) € - i R [(kU-w)(D 2-k2) -kU"o] = 0 (1)

d

with boundary conditions

p = D = 0 aty = 0

0,D ,.. 0 as y + -  (1-a)

when R and j are real constants, the problem is called a spatial-mode

solution and the eigenvalue k may be a complex number. Presumably an

infinite number of eigenvalues (discrete and possibly continuous) and

eigensolutions exist, and the problem under consideration in this note

is how one can expand an arbitrary function of y in series (and integral

if the eigenvalue is continuum) of eigenfunctions. This problem was

considered and the formalism of the expansion was given by Schensted
(1961) for the temporal mode, in which R, k are real and w is a complex

eigenvalue. Since the coefficients of equation (1) are polynomials of
the eigenfunction k, the expansion formalism for the spatial mode is not

as simple as in the temporal mode and, to our knowledge, it has not been

given in the literature.
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Langer (1923) states that the system of the form

u (x) + PI(X,p)u (n-l)(x) + ... + P n(X,p)u(x) = 0

S(a) + a U)b) 0 (j=1,2,...,n)

with the coefficient P (x,p) a polynomial of degree n in p may ben
written in the form

n

ui(X) E ~P.(xp + q.,(xd u Wx

n

nE {j zou (a) + Titus(b) 1  0 (j=1,2,...,n)
x=i

The Orr-Sommerfeld equation falls into this class of system.

Birkhoff and Langer (1923) developed the theory of a system of n ordin-

ary linear differential equations of the first order containing a param-

eter and subject to the homogeneous boundary conditions and, in particu-

lar, discussed the formal development of a vector of arbitrary functions

into a series of the eigensolutions.

We are indebted to Professor D. Cohen of Caltech (also a Consultant at

Dynamics Technology) for directing our attention to the Langer and

Birkhoff-Langer papers and for his suggestions in this particular p3rt

of our problem.
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In order to develop the expansion formalism, we consider the following

system of first-order equations which is equivalent to the fourth-order

equation given in equation (1). Let

z =

z2 = - = z. - kz1  (2)

Z3 = -k2 = Z + kz2

z4 = ' -k" - k2o ' + k3o = z'- kz3

Then equation (1) becomes

z4 + kz4 = i R [(kU-w](O''-k 2O] - kU''@]

Therefore, equation (1) is equivalent to the system:

zi = kz1 + Z2

z = - kz2 + z3

zi = kz3 + Z4

z = - iRkU''z 1 + iR(kU-w)z3 - kz4

The crucial feature of the above system is that the equations are linear

in k.

In matrix notation the system (3) is written as

z' (kA+B)z (4)

where

z= [Z 1 ,Z 2 ,Z 3 ,Z 4 ] T
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1 0 0 0

0 -1 0 0
A =(4-a)

0 0 1 0

-iRU' 0 iRU -1

0 1 0 0

0 0 1 0
B= (4-b)o 0 0 1

0 0 -iRw 0

The boundary conditions are

= z2 = 0 at y 0 (4-c)

z+0 as y

We introduce the adjoint solution x = [xlx 2 ,x 3 ,x 4 ] that satisfies

x = - x [kA+B] (5-a)

x3 = x4 =0 at y = 0

x + 0 as y + (5-b)

The reason for this boundary condition at y = 0 becomes clear in the

subsequent development.

Now, suppose that z. corresponds to an eigenvalue km and xn corresponds

to another eigenvalue kn; namely

Z' = (kmA+B) z

x - n (knA+B)
-n -
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By cross-multiplying and adding the products, we obtain

(xn Z)' = (km-kn) x A Zm

By integrating with respect to y from 0 to -, we get

(km-kn) f A zdY [nm ]

-[xnizmi + X 2 Z 2 + x n3 zm3 + X n4 z rn4]

The integrated terms vanish by the boundary condition imposed on x.

Therefore, we obtain the ortho-normality condition

J A dy = (6)xn  
6nm

Eigenfunction Expansion:

If an arbitrary function z is expanded in series of n

Z =E an zn  (0<y<-)  (7)

The coefficient an can be determined by multiplying by xinA and integra-

ting with respect to y from 0 to .

{ AzdY Zan n f dY =%

0 I.
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Hence

a mm A z dy (8)

Transformation to Single-Equation Formalism:

The relation between the solution of equation (1), @, and z is given in

equation (2). Written for each component, equation (5) is

X' = kx + iRkU'' x114

x = - xI + kx2

x = - x2 - kx3 - iR(kU-w)x4

x = - x 3 + kx4

By eliminating x1 ,x2,x3, we get

(D2-k2) x4 - D2 [iR(kU-w)x4] - iR [k2(kU-w]+kU''] x4 = 0

with x4 = x4 = 0 at y =0

x4 =x ...- 0 at y=

This is the adjoint equation directly obtainable from equation (1). If

we denote the adjoint solution by 0*, we get the following transforma-

tion:
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xl= -D3 * + We + D [k2 + iR(kU-w)]o* - [k3 + iRk(kU-w)] *

x= D2* - [k2+iR(kU-w)]O*

x= - + kW*

If f(y) is the first component of a function z to be expanded, then the

other components are given by the relation in equation (2):

SZl=f

z = Df - kf

z3 : D2f - k2 f

z4 =D3f - kD2f - k2Df + k3f

Therefore, the formula given by equation (8) becomes

a (4k+iRU) D2f - [4k 3+iR(3k2U-2k W+U"1)] f 0* dY

aM fo ( km+1 U 2  m m m m d

The normalization relation is

f (4k iRU) 20 - [4k
3+ iR(3k3U-2k w+U'')1 *df m m m m m m
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