


TECHNICAL REPORT 81-01

Quarterly Technical Report:

by

Jam es F. W ittm eyer, III 1_.'l.

Computer Systems Management. Inc
1300 WILSON BOULEVARD, SUITE 102

ARLINGTON, VIRGINIA 22209

UTrIrON STA04C A

ApPoe for public r~eaae;

-ItDisftlbuWn UnrIhted

lba





TECHNICAL REPORT 81-01

QUARTERLY TECHNICAL REPORT:

DEFENSE MICROCOMPUTING IN THE 1980s:

PROBLEMS & RESEARCH PRIORITIES

ARPA Order No.: 3829

Contractor: Computer Systems Management, Inc.
1300 Wilson Boulevard, Suite 102
Arlington, Virginia 22209

Effective Date
of Contract: 11/5/79

Contract Expiration
Date: 9/30/81

Contract No.: MDA903-80-C-0155

Principal Investigator: Mr. James F. Wittmeyer, III
(703) 525-8585

Contract Period
Covered: 10/1/80 - 12/31/80

Short Title of Work: Microcomputing in the 1980s

This research was sponsored by the Defense Advanced Research
Projects Agency under ARPA Order Number 3829; Contract Number
MDA903-80-C-0155; and Monitored by DSS-W. The views and con-
clusions contained in this document are those of the author
and should not be interpreted as necessarily representing the
official policies, either express or implied of the Defense
Advanced Research Projects Agency or the United States Government.



SUMMARY

This quarterly technical repori covers the period from

October 1, 1980 to December 31, 1 80. The tasks/objectives
and/or urposes of the overall pr ject are connected with
the design, development, demonst ation and transfer of
advanced computer-based systems; his report covers work in
the microcomputer systems design irea. The technical problems
addressed include the evolution of microcomputing, micro-
computing logistics, and user psychology. The general methods
employed include interactive system design principles identi-
fication and examination, substantive area identification, and
design, development, demonstration, documentation, and transfer
research priority specification. Technical results include
the specification of five primary research areas: creative
hardware integration, humanistic interactive system designing,
interactive interfacing, software production psychology, and
unconventional documentation and trarnsfer.j Future research
will present some specific microcomputer s stems designed to
solve myriad analytical problems.
9 /

Accession 'Fo

!ITIS GTZA&I
DTC TBC

juntif icatilo

Distribution 
.

Avail.ability Coes

speaiii

4



TABLE OF CONTENTS

Page

SUMMARY iii

FIGURES V

1.0 INTRODUCTION 1

2.0 FIRST GENERATION PROBLEMS AND PRIORITIES
IN THE 1970s 4

2.1 Problems 4

2.1.1 Evolution 4
2.1.2 Logistics 6
2.1.3 Psychology 7

2.2 Priorities 7
2.3 Defense Computing 9
2.4 DARPA/CTO/CTD Computing 10
2.5 The DDF and DARPA/CTO/CTD Computing 11

3.0 SECOND GENERATION PROBLEMS AND PRIORITIES
IN THE 1980s 21

3.1 Problems 21

3.1.1 Evolution 21
3.1.2 Logistics 22
3.1.3 Psychology 23

3.2 Priorities 24

3.2.1 Creative Hardware Integration 24
3.2.2 Humanistic Interactive System

Designing 25
3.2.3 Interactive Interfacing 34
3.2.4 Software Production Psychology 38
3.2.5 Unconventional Documentation

and Transfer 40
3.2.6 Substantive Priorities 40

4.0 THE DARPA/CTD/DDF IN THE 1980s 42

5.0 CONCLUSION 45

6.0 FOOTNOTES 46

7.0 REFERENCES 48

iv

$ -



FIGURES

Figure Page

DDF FY 79 Scope 12

Software Evaluation Tree 39

1970s Computer-Based Systems Development 42

1980s Computer-Based Systems Development 43

t

v

soon -

6'~d



1.0 INTRODUCTION

In the 1970s computer-based solutions to decision, fore-

casting, training, and information management problems by and

large took but a few forms. Initially they were geared to

information overload and "accounting" problems; decision-making,

forecasting, and training problems, as well as those which

were primarily analytical rather than procedural, were relatively

neglected. The emphasis was on information collection, pro-

cessing, storage and retrieval. In fact, the very first pro-

duction systems occurred in two totally unrelated areas:

budgeting and large scale data processing connected with weapons

development. Only later did the role of the individual fore-

caster, decision-maker, planner, evaluator, trainer, and

information manager--in analytical contexts--become the focus

of serious research and development (R&D).

It is also important to note that the legacy of 1960s

computing was comprised of large, "macro" systems supported

by relatively inflexible software. Consequently, there was,

in the early 1970s, a fundamental incompatibility between the

available hardware/software and the kinds of requirements which

underlie individual cognitive operations.

In the mid-1970s, however, "decision support systems,"

"user-oriented" data base management systems, and a potpourri

" --- 1



of analytical algorithms were developed, tested, and applied

to many cognitive operations and tasks. Minicomputers and

(clumsy) microcomputers also proliferated the computing

environment during the mid-1970s.

In the late 1970s enormous changes occurred in the appli-

cations sphere. More and more DoD agencies and offices,

through impressive R&D efforts, began to augment their problem-

solving prodedures via computer-based and computer-assisted

means.

As we enter the 1980s, however, more enormous changes are

unfolding. The revolution in hardware has made it possible

to compute most anywhere, anytime--and inexpensively; and the

software revolution is about to compliment users in ways only

imagined in the 1960s.

During the mid- to late-1970s the DARPA/CTO-conceived

Demonstration and Development Facility (DDF) concept was a

reflection of the enormous changes which occurred during the

period. Succinctly, the DDF was minicomputer oriented and

served its community well as DARPA/CTO-supported contractors

developed, tested, demonstrated, and transferred a whole host

of minicomputer-based decision, forecasting, training, and

information management systems. But times are changing.

Clearly, the 1980s will see a major shift away from minicomputer-

2



based systems to those which are portable, personal, and

(therefore) distributed.

This report thus examines this evolution and identifies

the problems and research priorities which will emerge in the

1980s. It will also attempt to carve a new role for the DDF.

3

t



2.0 FIRST GENERATION PROBLEMS AND PRIORITIES IN THE 1970s

2.1 Problems

2.1.1 Evolution - In the early 1970s computing was plagued

by a whole host of problems directly attributable to the still

young evolution of computer-based problem-solving. Hardware

was by and large unperfected at the minicomputer level and

virtually unknown on the microcomputer level. Reliability and

maintenance statistics indicate conclusively that reliability

was at best fair among minicomputers and at worst non-existent.

Since vendors were scrambling to such new (and relatively

untested) machines into what was preceived to be a burgeoning

new marketplace, and engineers were busy designing second-

phase, competitively priced systems, little attention was paid

to the end user as a user; instead, emphasis remained strong

upon coaxing macrosystem users into the minisystem realm with-

out reference to applicability or reliability. At the same

time, macrosystem houses stepped up their efforts to lure users

into service bureaus still unpopulated by minicomputers. In

terms of the evolution of analytical, and/or problem-solving

computing, these early events fragmented the computing popula-

tion into adversary groups, loosely organized not according

to user applications areas, but in terms of how macro- and

minisystem designers and vendors envisioned user opportunities

(defined almost exclusively, in turn, in terms of sales).

4



Of course the real losers during this early evolutionary

period were the ultimate users who had been promised a new day

in computing and were delivered a new set of problems and

unrealistic promises. The internal (macro/mini) designer/

vendor power struggle only exacerbated the unhappiness, and

ultimately alienated many prospective new users from computing

altogether (as substantiated by a survey of corporate EDP

managers).

On the software side, things were even more disorganized.

For the first time, in the early 1970s many vendors were

distributing software to new minicomputer users, software which

previously had been developed to run on macrosystems and which

was meticulously maintained by on-site and on-call service

bureau (timesharing) programmers. The initial impact was

predictably unimpressive. Not only were vendors unprepared

to deal with software problems which developed after distribution

but many were unwilling to do so as well; and since in the early

1970s most hardware vendors were also the software vendors,

users had to either acquiesce to the confusion or hire their

own cadre of programmers.

On the user interaction side, things were not simply

confusing and disorganized but unrelated to on-line problems

of orientation, throughput, and--most importantly--relevant

5



output. Users in many instances were left on their own to

modify and (frequently) restructure whole programs. Since

software origins could be traced to timeshared macrosystems,

low user expectations, and relatively inflexible output, what

today we regard as "user-orientation" and "personal computing"

were completely unknown to early users. Consequently, many

new users were again forced to tailor software to their own

particular needs, usually at great expense and with considerable

frustration.

2.1.2 Logistics - In addition to all of the above, the

early 1970s minicomputer user inherited innumerable problems

(from the macrosystem era) with which they were unable to deal.

Included here were data management, communications, peripherals,

and environmental support problems. Not unlike the amateur

photographer who discovers that to take real pictures he must

purchase several lenses, a timer, a light reader, and master

the worlds of aperture and depth, the new minicomputer user

discovered that he needed several tons of air conditioning,

a false floor, and a lot of expensive power to compute. Other

logistical concerns included maintenance and insurance issues,

among many, many others. Competent staff also had to be

located, trained, and kept well-fed since the competition for

skillful programmers was (and remains) keen.

6



2.1.3 Psychology - Finally, underlying and exacerbating

the evolutionary and logistical problems were a set of attitudes

which regarded computing as a nuisance. (Indeed, user ratings

of hardware and software systems in the early 1970s were almost

universally negative.) While today we frequently hear computing

horror stories (e.g., WWMCCS) yesterday they were generated on

an almost daily basis.

Part of this attitude problem can be traced to vendor

over-sell and the resultant artificially high expectations

created in the user community. Part of it can be traced to

the generally poor quality hardware and software systems, and

part to the natural confusion which results when science out-

paces its own arrival. But a good deal of the problem can be

traced to the inevitable result of distributing technology

which from the outset was never intended to be distributed.

Indeed, while the components of macro- and minisystems differ

more in scale and capability than in concept, from the prospec-

tive of the user the processes of macro- versus minisystem

computing are as alien to one another as an instamatic camera

is to a 35MM.

2.2 Priorities

The legacy of early 1970s computing was a set of critical

priorities which, one by one, began to receive attention.

7



Since hardware technology continued to advance throughout the

1970s, more and more capabilities began to appear. Display

technology, input devices, printers, memory size and type, and

communications devices all evolved impressively in the 1970s.

Minicomputer software as well improved and proliferated in

number and quality; and while standardization problems continued

to plague users, output began to approximate user requirements.

Since many users had by the mid-1970s developed their own

programming staffs (and were psychologically prepared to actually

use and even enlarge such staffs), a great many problems began

to give way to legitimately higher performance expectations.

Also, in the mid-1970s hardware vendors began to improve their

software offerings and--most importantly--a whole new kind of

software vendor emerged, vendors which produced no hardware

but excelled in applications and systems software capable of

running on many different hardware systems.

This development not only filled a critical gap but changed

the focus for the first time away from basic hardware and soft-

ware capabilities and concerns to how responsive the software

was to the on-line user. As an outgrowth of this development

hundreds of user-oriented peripheral manufacturing companies

sprung up; and by the mid- to late-1970s color displays, speech

input and output devices, and spatial data management systems

were proliferating throughout the user community.

8



2.3 Defense Computing

This whole story simultaneously played itself out in the

Defense Department where extremely large macrosystems appeared

early. Unfortunately, however, beyond the research laboratories,

these macrosystems have been only reluctantly replaced by now

relatively efficient minisystems. The reluctance may in part

be explained by the peculiar difficulties surrounding govern-

ment problem-solving (explained, in turn, by cumbersome pro-

curement) and by the inertia which often encumbers all large

bureaucracies. In any case, it is safe to say that all govern-

ment (including the Defense Department) is lagging somewhat

behind the general use of minicomputers in industry, a fact

which translates into an enormous challenge for government

research and development managers.

Fortunately, because of the obvious imperatives connected

with national security, the Defense Department (and related

agencies and departments) has, through the efforts of effective

research and development managers, made impressive progress.

Much of this progress, as documented briefly below, has been

the results of programs sponsored by the Defense Advanced

Research Projects Agency's Cybernetics Technology Office and

Division (DARPA/CTO/CTD).

9



2.4 DARPA/CTO/CTD Computing

In many important respects, DARPA/CTO/CTD has constituted

the "technology push" in many parts of the Department of Defense

(DoD). At the same time, the same office/division has pioneered

the identification of user requirements--and responded in some

very unique ways. For example, DARPA/CTO/CTD invented several

variant spatial data base management techniques designed to

enhance user attitudes toward and effectiveness with mini-

computers; over ten Bayesian decision-aiding systems were

developed which augment the analytical capabilities of defense

decision-makers. Implemented on turnkey mini- and microcomputer

systems, these aids have been enormously popular with decision-

makers and managers on all defense levels, and have in many

instances bridged the gap between analytical decision-makers

and analytical computing. Similarly, the Early Warning and

Monitoring System (EWAMS) is a good example of a previously

non-computerized process which has been (re)incarnated in a

very user-oriented computer program. On the information

management side, the Adaptive Information Selector (AIS) and

the Ultra Rapid Reader (URR) are two excellent programs

designed to ease the burdens of C3 information managers and

processors, and the recent work in Advanced Mapping and Tele-

conferencing constitute yet two more computer-based systems

which will ultimately enhance human performance in DoD.

10



Nearly all of these programs are minicomputer-based.

(Yet, very recently some have been implemented efficiently as

9 microcomputer programs.) Many have been transferred to opera-

tional and quasi-operational (or testbed) environments; and

many have been successfully tested and evaluated in these and

other contexts.

2.5 The DDF and DARPA/CTO/CTD Computing

The DARPA/CTO/CTD Demonstration and Development Facility

(DDF) was established in 1977 under funding from DARPA/CTO.

It commenced full operation ahead of schedule and completed

a highly successful initial program of product demonstration,

transfer, integration and development support. During the

first year, the DDF was used exclusively for DARPA/CTO-funded

Crisis Management research. In fiscal 1979, DARPA expanded

the scale of DDF operation to serve researchers working on all

CTO programs (as suggested below). DDF also conducted

intensive technology transfer efforts in 1979 in support of

four selected CTO research programs: Combat Readiness/

Effectiveness, Advanced Decision Technology, Command Systems

Cybernetics and Crisis Management. The intensive transfer

support of the Crisis Management Program represented a

continuation, on an expanded basis, of the DDF activities

which met success in 1978.

11



DDF

CRISISF0 MANAGEMENT A.

COMMAND SUPPORT ADVANCEDSYSTEMS / 7, DECISION

CYBERNETICS TECHNOLOGYt BASIC

SERVICES
' LOGISTICS / CYBERNETICS

SYSTEMS OF I NSTRUCTIONAL

TECHNOLOGY SYSTEMS

C ,

NEW 0

PROGRAMS

The basic purpose of the DDF was (and remains) to increase

the return on CTO/CTD expenditures by accelerating the creation

of high quality, concrete, transferred research results. This

has been achieved through:

12



o Sharing of hardware and software resources;

o Expert support and consultation on computer
related matters;

o A central facility for the installation,
integration, demonstration and storage of
finished computer related research products;
and

o The exercise of a capability for technology
transfer to, and support of, experimental
use of research results.

Some of the specific benefits to DARPA have included:

o Minimization of the development of redundant
and/or incompatible hardware/software
products;

o Demonstration of multiple research products
on a single visit (residing on single menu-
driven system), even when those products
were developed in diverse independent
environments;

o Integration of research products into
consolidated packages for well coordinated
and coherent demonstrations and transfer;
and

o Convenient access for researchers to one
another's products and data, by virtue of
their initial development at or eventual
integration into the DDF.

DDF origins can be traced to several known minicomputing

research and development problem areas. In the field of

cybernetics technology, for example, in which research results

are often embodied in part in computer software or computerized

data bases, the usual difficulties of validating research

13



results through experimental use are exacerbated because computer-

based products are diverse, complex, expensive to maintain and

difficult to use in their preliminary forms. Worse yet,

demonstrable products developed at individual research centers

are often never seen by those in DoD who could benefit from

them, simply because they lack the time or travel funds to

visit the many locations at which contractors do their work.

While research results are widely publicized in journals,

the managers and commanders who must be reached are often far

more responsive to demonstrations and effective personal contact.

This is especially important when the underlying concepts are

advanced and difficult to appreciate except when seen in action.

Upon initial consideration of this problem, one is tempted to

think that the solution is simply to ask researchers to deliver

more finished initial products. Then potential users can easily

try them, and the additional development required to put them

into routine use will be reduced. Unfortunately, this approach

is prohibitively expensive. In commercial development of

computer software, one well-known rule of thumb says that a

finished program product costs roughly 9 times as much to
2

develop as a working prototype. For a fixed level of funding,

then, this approach might be expected to reduce significantly

the number of programs which ever get to the experimental

stage. In any case, this approach does not overcome some of

the other obstacles.

14



Some of the basic technical problems of research product

demonstration and transfer which led to the establishment of

the DDF, can be summarized as follows. Research products are

often:

9 Implemented in a variety of languages;

* Implemented on a variety of hardware
configurations;

o Saved on a variety of media, in varying

formats, at dispersed locations;

* Minimally documented;

* Designed without full awareness of or
concern for software engineering practices;

* Not fully or systematically tested; and

o Developed with little or no regard for the
operational environments to which they might
later be transferred.

The diversity of forms among, and the common defects of, research

products are natural results of each researcher employing a

direct approach to his or her individual goal. People use

available skills, software and machines to get quick initial

results. (Indeed, it is precisely such economies that help

make the initial proposals attractive to funding agencies.)

The problems set in when the best of such results are to be

transferred for experimental use. At that point, one faces

the initial technical barriers. For example, a primary 1970s

target military system was (and still is) a PDP-11 minicomputer

on which frequently only COBOL and FORTRAN are maintained,

1

r1

4



while the research was done in APL on another computer (with

incompatible hardware and software). A few new features are

needed to put up even an experimental system, and the original

implementor is now working on the development of a new concept.

Furthermore, he did not document the code (because he wanted

to keep the cost of the initial proposal down) or even fully

test the software.

In addition, there are several organizational problems:

* Support of experimental use involves
different skills and motivations than
development of an initial prototype;

o Maintenance and distribution of documen-
tation, software and data involves a
certain amount of overhead, not justified
in many small research organizations and
not economical for a single project; and

o The form in which a result can be convincingly
demonstrated to a fellow researcher is
usually not the best demonstration to a
pragmatic, distant and skeptical expert
in a different field, among many others.

All of these problems can be overcome of course for any

given project, with sufficient DARPA attention, imagination,

management and resources. The solution to these problems--the

DDF--enhanced the quality of research results, increased the

number of successful transfers, and improved the overall cost-

effectiveness of research expenditures.

16



Many of the above problems in research product development,

integration, demonstration and transfer were simplified through

the use of a single concept, embodied in the DDF. That concept

was to operate a centralized facility at which the following

resources were available:

" Computer hardware and software to support
development, testing, and integration
of research products;

" Relevant research software and data pro-
duced in previous projects;

" Suitable devices and physical facilities
for demonstrations (e.g. advanced graphic
displays, audio equipment, specialized
terminals); and

" Expert hardware and software support
staff, familiar with the research areas
and aware of existing products.

The most valuable of these resources, the support staff, stood

ready to aid in the following critical functions:

" Installation and integration of research
products into the DDF;

e Development of research products at the
DDF;

" Development of effective demonstrations;

" Assistance in demonstrations for visitors;

" Transfer of research products out of the
DDF into the field;

" Support of experimental use of research
products; and

17



* Modification of existing products to
enhance their transferability.

The use of a centralized facility and staff dedicated to these

functions provided the following advantages:

* A single source for processing, software,
data, and consultation in the development
of new computer-based research products;

* A single location for the demonstration
of multiple products;

e A single source, supporting uniform
hardware and software, from which to
stage transfers;

e An organization familiar with the mechanics
of transfer and the products to be trans-
ferred for the support and planning of
transfers;

9 Elimination of one integration step in
some future developments, since these
will be planned from the outset for
implementation at the DDF;

e Uniform procedures for the documentation,
distribution, maintenance, and support
of products in experimental use;

* A single source of information to DARPA
on the progress, status and problems in
various transfer experiments; and

e A well organized library of research
products and documentation which itself
will assume increasing value as use of
the DDF proceeds.

The DDF itself did not assure the development of timely, signif-

icant and quality research results. However, it did provide

18



the means to transfer such results more reliably, more econ-

omically, more frequently, and more successfully than other

approaches.

Yet, at the core of all DDF activity in the 1970s were

several working premises which included the following:

" Minicomputer standardization in the DEC
PDP 11/70 minicomputer;

" Software standardization in CULC FORTRAN
IV, the UNIX operating system, and "C";
and

" User interfaces aided primarily in mini-
computer programming and peripherals,
such as large graphic color systems,
and large screen color display devices.

As time passed, however, it became apparent that the premises

were soon to be overtaken by technological advances, particularly

in the microcomputing area and the simultaneous down-sizing

(without significant capability degradation) of popular mini-

computer systems. And while by and large the operational side

of DoD was unaware of such developments, the research and

development community was already gearing up for the next

generation of defense computing.

Part and parcel to these developments were increased

emphases placed upon the analytical user who must train, learn,

forecast, decide, evaluate, and manage information in order to

19

- 0



carry out his or her duties. Similarly, new hardware, software,

and related information management devices (such as the video-

disc) evolved to the point where they could be mixed and matched

into totally unique computer-based systems. All in all, then,

in the mid- to late-1970s a whole series of events occurred

which have forever changed the nature of defense computing;

at the same time, a whole new set of problems and priorities

will follow us into the 1980s. The next section will examine

these problems and priorities and, then in Section 4.0, redefine

the role of the DDF for the 1980s.

20



3.0 SECOND GENERATION PROBLEMS & PRIORITIES IN THE 1980s

3.1 Problems

3.1.1 Evolution - The revolution in microcomputing has

had many positive and negative effects upon defense computing.

On the negative side, there are problems of lack of standard-

ization, maintenance, reliability, and even availability.

Hardware is frequently poorly constructed, poorly documented,

and poorly assembled. Moreover, many microcomputer manufacturers

frequently develop their systems as components which, when

integrated, exponentially increase the level of operational

complexity and present the user with increased chances for

operational failure. Also, since many new companies are

manufacturing peripherals for many microcomputer mainframes,

interface problems are often severe.

On the software side, there are no easily transportable

languages. There are also countless new languages (and

language variations) and a critical demand for microcoders who

are well-versed in higher and lower level languages. Since

the early microcomputer systems had relatively little memory,

data management was all but non-existent. Now, however,

through the availability of storage devices like the Winchester

disk, data management needs have grown tremendously, but very

few hardware or software houses are offering reliable data

21



base management software. Finally, while applications soft-

ware abounds for the home computer hobbyist, few analytical

programs are available for serious analytical problem-solving.

Consequently, users must write their own problem-solving

programs.

Yet, all of these problems are at the same time research

and development opportunities. The existence of many peripheral

options enables developers to mix and match in ways unavailable

to macro- and minicomputer systems users. While software is

non-standard, the cost of microcomputer programming is generally

lower than macro- and minicomputer programming if only because

microcomputer programming is much less machine and facilities

intensive. Moreover, software flexibility enables users to

build systems from ground zero and thereby avoid the inflexi-

bility inherent in many macro- and minicomputer systems.

Finally, the physical size and portability of most microcomputer

systems enables developers and users to alter their programming

workstyles in many positive respects (see the section on soft-

ware psychology below).

3.1.2 Logistics - The situation today is clearly decentral-

ized, and while there are many advantages associated with a

decentralized manufacturing situation, there are advantages also.

22



One is maintenance. Often it is impossible to arrange for

any support at all. Just as often when support is available

it is incompetent. Finally, documentation is often unavailable

and/or poor. At the root of these problems is the eagerness

of the industry to introduce new technology as soon as possible

into the field and the "independent dealer," who, not unlike

the independent insurance salesman, functions as a clearing-

house for any number of vendors whose products may be only

vaguely understood.

Fortunately, however, support requirements for micro-

computing are simpler and relatively much less expensive than

for minicomputing. The number of real users can thus multiply

in ways unimaginable just ten short years ago.

3.1.3 Psychology - In the 1970s the attitudes of minicom-

puter users were quantifiable (and frequently negative). But

the attitudes of prospective microcomputer users are much

less definable. Many are still suspicious about computing

because of disappointments suffered in the 1970s. Others are

almost completely uninformed about the capabilities of micro-

computers; and still others will become even more confused as

the microcomputing technology revolution continues to gain

momentum.

23



Oversell also continues to be a problem, and in DoD many

users who have only just begun to feel comfortable with the

PDP 11/70, will undoubtedly feel frustrated and even angry

about having to tool up once again. Such, then, are the

challenges which confront DARPA/CTD as it enters the 1980s.

3.2 Priorities

If the primary computer-based vehicle of the 1980s is to

be the microcomputer system then a clear set of research

priorities may be identified. They include:

" Creative hardware integration;

" Humanistic interactive system designing;

* Interactive interfacing;

* Software production psychology; and

* Unconventional documentation and transfer.

3.2.1 Creative Hardware Integration - Above all else we

must exploit the mix and match opportunities made possible by

the exploding peripheral marketplace. We should do this by

matching available machine components to real user requirements,

capitalizing upon the flexibility which exists--and is likely

to continue to exist--in the mainframe and perhiperals areas.

But there are other hardware opportunities as well, including

those made possible by video and information technology. Hence,

24



the watchwords of the 1980s will be integration and flexibility.

3.2.2 Humanistic Interactive System Designing - Hardware

is only a means to an end; all computer designers and users

know all too well that unless a system is comprised of efficient

software there is no system at all. Since microcomputer-based

systems design is a relatively new DoD research, development,

and transfer goal, we should proceed systematically. Hansen,

Wasserman, Pew and Rollins, Gaines and Facey, Cheriton, Gebhardt

and Stellmacher, Kennedy, Engel and Granda, Palme, Turoff,

Whitescarver, and Hiltz, and Sterling all offer excellent

suggestions, as outlined below:
3

HANSEN'S USER ENGINEERING PRINCIPLES

FOR INTERACTIVE SYSTEMS

* First principle: Know the user.

* Minimize memorization:

- Selection not entry;
- Names not numbers;
- Predictable behavior; and
- Access to system information.

0 Optimize operations:

- Rapid execution of common operations;
- Display inertia;
- Muscle memory; and
- Reorganize command parameters.

* Engineer for errors:

- Good error messages;
- Engineer out the common errors;
- Reversible actions;

25



- Redundancy; and
- Data structure integrity.

WASSERMAN'S DESIGN OF IDIOT-PROOF

INTERACTIVE PROGRAMS

" Provide a program action for every possible
type of user input;

" Minimize the need for the user to learn
about the computer system;

" Provide a large number of explicit
diagnostics, along with extensive on-
line user assistance;

" Provide program short-cuts for knowledgeable
users; and

" Allow the user to express the same message
in more than one way.

PEW AND ROLLINS' DESIGN GUIDELINES

FOR INTERACTIVE SYSTEMS

* Know the user population;

* Respond consistently and clearly;

o Carry forward a representation of the
user's knowledge base;

* Adapt wordiness to user needs;

* Provide the users with every opportunity
to correct their own errors; and

o Promote the personal worth of the
individual user.

26



GAINES AND FACEY'S DESIGN GUIDELINES

FOR INTERACTIVE SYSTEMS

" Introduce through experience;

" Immediate feedback;

" Use the user's model;

* Consistency and uniformity;

" Avoid acausality;

* Query-in-depth (tutorial aids);

* Sequential--parallel tradeoff (allow
choice of entry patterns); and

* Observability and controllability.

CHERITON'S INTERFACE DESIGN

FOR TIME-SHARING SYSTEMS

* Simple. Project a "natural," uncomplicated
"virtual" image of the system;

" Responsive. Respond quickly and meaning-
fully to user commands;

" User-controlled. All actions are initiated
and controlled by the user;

" Flexible. Flexibility in common structure
and tolerance of errors;

e Stable. Able to detect user difficulties
and assist him in returning to correct
dialog; never "deadending" the user (i.e.,
offering no recourse);

* Protective. Protect the user from costly
mistakes or accidents, (e.g., overwriting
a file);

" Self-documenting. The commands and system
responses are self-explanatory and
documentation, explanations or tutorial
material are part of the environment;

27



" Reliable. Not conducive to undetected
errors in man-computer communication;
and

" User-modifiable. Sophisticated users
are able to personalize their environment.

GEBHARDT AND STELLMACHER'S DESIGN

CRITERIA FOR DOCUMENTATION

RETRIEVAL LANGUAGES

* Simplicity:

- Few keywords--few commands; few key-
words; no extra commands or keywords;
special cases.

- Simplicity of input--fast input (with
respect to keyboard layout); mnemotech-
nically sound abbreviations; simple
input structure.

- Short commands--short keywords; little
redundancy; avoidance of multiple
input; use of default options.

- Simple commands--simple command
structure; simple syntax of commands;
correspondence between syntax and
semantica; simple dialog structure.

* Clarity:

- Hierarchical structure--hierarchical
structure of the language (commands
and subcommands).

- Functionality--functional separation
of commands; no multiple commands for
(nearly) the same function; no command
with multiple functions; clear
elaboration of important special
cases.

- Homogeneity--same structure for all
commands; same meaning of keywords
within all commands (where admissible);
same capabilities in comparable
contexts; uniform interpretation of
missing parameters.

28



Problem orientation--no avoidable
technical restrictions or exceptions
(caused by data structure, programming
considerations, etc.); no avoidable
separation into dialog branches; any
command is admissible at any point
of the dialog.

" Uniqueness:

- Determinism--every command is fully
determined by its operands and preset
options.

- No undefined states--all system states
are always well defined (e.g., default
options until the user sets new options).

" Comfortable language:

- Powerful commands--existence of powerful
commands that do much in a single
step.

- Flexibility--long and short forms of
keywords; multilingual forms; direct
and indirect operands; adjustment of
the system to the user's knowledge
and experience; commands adapted for
causal, regular, and professional
users; user control of system options
(by parameters or presetting).

-Short dialog--complete commands
(including subcommands) and even

command sequences can be input at
once; new commands (or parts of
commands) can be defined by a macro
feature (renaming of strings).

- Full use of data structure--all data
structures can be displayed and
utilized for searching and browsing.

* Other comfort:

- Input comfort--rereading of previous
input or output after corrections have
been made; menutechnique.

29



- Interruption--dialog can be interrupted
at any time (stopped or continued
subsequently).

Output language--clear, short, under-
standable system messages; output
discernible from iiiput; output
reusable as input (where appropriate).

Additional comfort--various software
and/or hardware provisions, as:
function keys, acoustic signal after
output transmission, highlighting
and/or underlining, clear output
arrangement, editing and clear display
of tables, various techniques for
browsing forwards and backwards;
user's notebook.

" Evidence and reusability:

Evidence--evidence of the system state
(waiting for input, input, waiting
for output, output); acknowledgement
of executed commands; periodic messages
on delays; warnings about laborious
commands.

Help functions--help functions providing
information on the system state, the
presently used function, all functions,
structure and contents of data bases,
past dialog, possible continuations;
dialog protocol.

Reusability--former commands and out-
put (or part of output) reusable for
input; insertion of former commands
into the present one (in particular,
in query construction); saving commands
for later execution.

" Stability:

Error handling--clear messages on
severe input errors; error correction
(wherever possible) on slight errors
(but displaying to the user the system's
interpretation); uniform error handling;
no severe consequences of short input.

30

kk-



- No compulsory situations--no compulsion
to continue the dialog in a fixed way;
dialog can be stopped at any point.

* Data security--different passwords for
data structure and data itself; missing
passwords may be subsequently delivered
to the system; on inadvertent trial
to use secret data, the system must
react as if this data did not exist; such
situations must not lead to dialog dis-
continuation; security requirements for
part of the data may not impede use of
open data.

TUROFF, WHITESCARVER, AND HILTZ'S

HUMAN-MACHINE INTERFACE IN A

COMPUTERIZED CONFERENCING ENVIRONMENT

e Forgiveness--ease in repairing errors;

* Segmentation--layered approach;

* Variety--choice of style;

e Escape--break out of danger;

e Guidance--direction and learning; and

o Leverage--flexible, powerful features.

KENNEDY'S GROUND RULES

FOR A "WELL-BEHAVED" SYSTEM

e Use terse "natural" language, avoid codes,
allow abbreviations;

o Use short entries to facilitate error
correction and maintain tempo;

* Allow single or multiple entries to match
user ability;

o Maintain "social element" to the communi-
cation;

31



" Permit user to control length of cues
or error messages;

" Error messages should be polite, meaningful
and informative;

" Give help when requested or when users
are in difficulty;

" Simple, logically consistent command
language;

" Control over all aspects of the system

must appear to belong to the user;

" Avoid redundancy in dialog;

" Adapt to the user's ability; and

" Keep exchange rate in user's stress-free
range; user can control rate.

STERLING'S CRITERIA FOR HUMANIZING

MANAGEMENT INFORMATION SYSTEMS

" Procedures for dealing with users:

- The language of a system should be
easy to understand;

- Transactions with a system should be
courteous;

- A system should be quick to react;

- A system should respond quickly to
users (if it is unable to resolve
its intended procedure);

- A system should relieve the user of
unnecessary chores;

- A system should provide for human
information interface;

- A system should include provisions
for corrections; and

- Management should be held responsible
for mismanagement.

32



0 Procedures for dealing with exceptions:

- A system should recognize as much as
possible that it deals with different
classes of individuals;

- A system should recognize that special
conditions might occur that could
require special actions by it;

- A system must allow for alternatives
in input and processing;

- A system should give individuals
choices on how to deal with it; and

- A procedure must exist to override
the system.

9 Action of the system with respect to
information:

- There should be provisions to permit
individuals to inspect information
about themselves;

- There should be provisions to correct
errors;

- There should be provisions for evaluating
information stored in the system;

- There should be provisions for individuals
to add information that they consider
important; and

- It should be made known in general
what information is stored in systems
and what use will be made of that
information.

9 The problem of privacy:

In the design of a system, all procedures
should be evaluated with respect to
both privacy and humanization require-
ments; and

33



-The decision to merge information
from different files and systems should
never occur automatically. Whenever
information from one file is made
available to another file, it should
be examined first for its implications
for privacy and humanization.

e Guidelines for system design having a

bearing on ethics:

- A system should not trick or deceive;

- A system should assist participants
and users and not manipulate them;

- A system should not eliminate oppor-
tunities for employment without a
careful examination of consequences
to other available jobs;

- System designers should not participate
in the creation or maintenance of
secret data banks; and

- A system should treat with consideration
all individuals who come in contact
with it.

3.2.3 Interactive Interfacing - Assumed within systematic

designing are the interface issues which frequently determine

whether or not a microcomputer system is actually used or made

into a conversation piece. Some of the interfacing issues of

the 1980s will include:

" The use of keyboards;

" Soft versus hard copy;

" Cursor control devices;

" Audio output;

34



* Speech recognition;

* Graphic output, input, and interaction;

o Response time; and

* Error handling.

Clearly in the 1980s keyboards--if they are to be used

at all--must be redesigned with specific reference to error

frequency, ease of use, and appearance. Hard and soft copy

displays will have to be integrated in ways which balance the

need for permanence and the convenience of reinforcing graphic

displays. Hard copy devices must be quieted and soft copy

displays must use productively multiple character sets,

blinking, multiple intensity levels, black/white reversal

(where color does not apply), erasing, insertion, cursor action,

scrolling, and multiple guide windows--all with reference to

the type of DoD user and the nature (requirements) of the

task. Cursor control devices should also be evaluated against

job requirements and the applicability of lightpen, sonic pen,

mouse, touch sensitive, touch sensitive plate, and joystick

devices. Audio output should also come into its own from the

microcomputer systems of the 1980s. But such output will not

just be confined to speech output. Other sounds can also be

used to signal and/or feed back to the user. On the other

side of the process, speech recognition systems should, where

appropriate, be used to augment and replace keyboard and other

35



input devices. But we will have to develop continuous speech

systems far superior to DRAGON, HEARSAY-I, and HARPY if we

are to bridge the gap between cumbersome and productive speech

input. Graphic input and (especially) output systems should

proliferate in the 1980s since perceptual psychologists have

conclusively demonstrated the benefits of imagery over numbers

or words. Advice from researchers like Bennett should be

4
studied:

BENNETT'S SET OF GUIDELINES

FOR GRAPHICS SYSTEMS DEVELOPERS

* Arrange text and graphic symbols on
each presentation to establish an
explicit context for user action;

9 When a user process is not known in
advance, concentrate on displayable
data representations and then design
operations to act upon these repre-
sentations; and

* Design the system to provide an explicit
framework for representations. The
framework gives a uniformity of
structure within which the user can
synthesize problem solutions. This
framework can be developed even
though problems themselves are un-
structured.

Response time considerations should also be made paramount.

Miller has compiled a list of user activities and response
5

times which are useful but deceiving:

36



MILLER'S SYSTEM RESPONSE TIME

AS A FUNCTION OF USER ACTIVITY

User Activity "Maximum" Response Time

Control activation. 0.1 SECOND

System activation. 3.0

Request for given service:
simple 2
complex 5
loading and restart. 15-60

Error feedback. 2-4

Response to ID. 2

Information on next procedure. <5

Response to simple inquiry from list. 2

Response to simple status inquiry. 2

Response to complex inquiry in table form. 2-4

Request for next page. 0.5-1

Response to "execute problem". <15

Light pen entries. 1.0

Drawing with light pens. 0.1

Response to complex inquire in graphic form. 2-10
Response to dynamic modeling.

Response to graphic manipulation. 2

Response to user intervention in auto-
matic process. 4

They are deceptive because it may well be that in order to

shape user behavior we should deliberately lengthen some

response times; in other words, great speed may not always be

desirable. Similarly, error handling routines must be developed

which are not offensive and which teach (without repremanding)

the user.

37

_ __ 2 Z



3.2.4 Software Production Psychology - All of the above

presumes the existence of highly talented, dedicated programmers

who are as knowledgeable about hardware as they are about soft-

ware. Unfortunately, virtually every projection available

today indicates that throughout the 1980s a critical shortage

of programmers will persist. We must therefore maximize the

output of those programmers which we do employ. Learning,

designing, composition, comprehension, testing, debugging,

documentation, and modification capabilities must all be

evaluated and improved. Perhaps for the first time, serious

programming managers must pay very special attention to the

overall programming environment, the components of which include

the physical, social and the managerial environments. Of

critical importance, however, will be software quality evaluation

procedures. Boehm et al. have developed a software "character-

istic tree" which if (easily) converted into a multi-attribute

utility model and then manipulated through an EVAL model,

could provide us with an excellent evaluation tool, as suggested

below.
6

Accesbility. Extent to which code facilitates use of its parts.
Accountability. Extent to which code can be measured.
Accuracy. Extent to which the output produced by code are sufficiently

precise to satisfy their intended use.
Augmentability. Extent to which code a can be expanded in computations

functions, or data storage requirements.
Availability. Degree to which a system of resource is ready to process data.

Availability. MTBF/(MTBF + MTTR).
Communicativenem. Extent to which code facilitates the specifications of

inputs and provides outputs whose form and content are easy to assimilate.
Completenes. Extent to which all parts of code are present and developed.
Conciseness. Extent to which excessive information is not present.

Conistency. Extent to which code contains uniform notation, terminology,
and symbology within itself, and external consistency to the extent that
the content is traceable to the requiraents.

Device idepleenden. Extent to which code can be executed on computer
hardware configurations other than its current one.

38



77I'

Ekisncy. Extent to which code fulfihl its Purpose without wasting

Huma englheai ng. Extent to which code fulfills its purpose without
wasting users' time and energy or degrading their mone.

Legblilty. Extent to which function is easily discerned by reading code

Maintaiability. Extent to which code facilitates updating.
Modifiability. Extent to which code facilitates the incorporation of changes.

Portability. Extent to which code can be operated easily and well on
computer configurations other than its current one.

Reliability. Probability that an item (device or program, system) will
function without failure over a specified time period or amount of usage.

Robusnes. Extent to which code can continue to perform despite a
violation of the assumptions in its specifications.

Self-containedneu. Extent to which code performs its explicit and implicit
functions within itself.

Self-descriptiveness. Extent to which reader of code can determine its
objectives, assumptions, constraints, inputs, outputs, components, and
revision status.

Testability. Extent to which code facilitates establishment of verification
criteria and supports evaluation of its performance.

Understandability. Extent to which purpose of code is understandable to
reader

Usability. Extent to which code is reliable, efficient, and human-engineered.

Portability t Device-independence

Self-containedness.

Accuracy

Reliability Completeness
As-as
utility Robustnesstlntegnty

Consistency

Efficiency Accountability

General Device efficiency

utility

Human ennee n -- ng Accesibility

Communicativeness

Testability a Self-descriptiveness

/ Structuwedness
Maintainability\ Understandability Concueness

bability

Modilab Aupmtablit

39



3.2.5 Unconventional Documentation & Transfer - In order

to fully exploit the capabilities of future microcomputer-

based problem-solving systems and successfully transfer the

systems into operational and quasi-operational DoD environ-

ments, we should adopt a series of unconventional strategies.

One is the remote video tape-based demonstration. Another is

the sampler demonstration, which involves the loaning of

systems for indefinite periods of time; and still another

involves programming the systems to introduce and explain

themselves in a manner not unlike that which is used by manu-

facturing vendors. Such demonstrations can be of invaluable

help to those who must convince others that what they have

developed may be of real use.

Documentation should also be transformed from the inanimate

to the animate. Computer-generated system specifications and

functional descriptions can be of immense transfer use, as can

on-line users manuals. Similarly, films of documentation can

also help to bridge the gap between the developer and the

user.

3.2.6 Substantive Priorities - It is important to remember

that all research and development should be targeted at some

specific problem area(s). As we move into the 1980s the people

problems to which DARPA/CTD will respond will be growing in

40



number and severity. Decision-making, forecasting, planning,

assessment, evaluation, information management, communications,

learning, training, organizational, bureaucratic, personnel,

resource allocation, data base construction, software psychology,

personal computing, and management problems, among many, many

others, will all follow us well into the 1980s (and certainly

even beyond). We must therefore orient our new microcomputer

systems to these and whatever other critical areas appear.

41



4.0 THE DARPA/CTD/DDF IN THE 1980s

In the 1970s, the DDF was organized around two PDP 11/70s

and several microcomputer systems matrixed around light and

heavy and stand alone research and applications requirements,

as suggested below.

COMPUTE R-BASED
SYSTEMS DEVELOPMENT

/I'

"LIGHT" "HEAVY" "PORTABLE"
RESEARCH RESEARCH OR STAND.

REQUIREMENTS REQUIREMENTS ALONE

PRIMARY SECONDARY MICRO.
SYSTEMA SYSTEMV' PROCESSOR

11/70 11/70 SYSTEM

In connection with this matrix, the design, development, demon-

stration, transfer, and documentation of computer-based systems

was pursued. In the 1980s, we can expect a shift in this

configuration, as suggested below.

42



COMPUTER-BASED
SYSTEMS DEVELOPMENT

"LIGHT" "PORTABLE"
RESEARCH OR STAND

REQUIREMENTS ALONE

MICRO-PROCESSOR
SYSTEM

In all likelihood the microcomputer system will become the

primary computer-based system vehicle in the 1980s. It will

also be augmented by unique display and data storage devices,

such as videodisc, fiche, and large capacity hard disc storage

systems. Indeed, intelligent terminals, as we have come to

understand them, will evolve dramatically in the 1980s. The

DDF's design and development tasks will thus change accordingly

in the future. Specifically, we plan to interface videodisk

systems to microcomputers, experiment with touch sensitive

and other input devices, and develop and test a number of

43



applications packages, including text editing, mathematical

function, storage and retrieval, communications, and UNIX

emulative systems.

On the (unconventional) documentation, demonstration, and

transfer side, the new DDF will engage in video production and

distribution, audio-visual demonstrations, and an aggressive

document production and distribution campaign, among other

duties. Most importantly, since microcomputer-based systems

are easily transportable, we can transfer more easily and

frequently than when our systems were minicomputer-based.

44



5.0 CONCLUSION

FY81 has launched a new chapter in the design, development,

demonstration, and transfer of advanced computer-based systems.

Essentially, this chapter has been made possible and desirable

via the revolution in microcomputing and the associated inter-

facing of other electronic data storage and display devices.

While we are by no means declaring the minicomputer dead, we

are clearly stating that the most unique research, development,

and transfer opportunities lie with the microcomputer.

45



6.0 FOOTNOTES

iThis section relies heavily upon James F. Wittmeyer, III,
James J. Allen, Jr., Richard A. Winter, and Christopher F.
Herot, Cybernetics Technology Office Demonstration and Develop-
ment Facility (CTO/DDF) Overview and FY 79 Plan. Cambridge,
MA: Computer Corporation of America, October 1, 1978.

2See F.P. Brooks, Jr., The Mythical Man-Month. New York,
NY: Addison-Wesley, 1975.

3See W.J. Hansen, "User Engineering Principles for Inter-
active Systems," Proceedings of the Fall Joint Computer
Conference, 39, AFIPS Press, 1971, 523-532; T. Wasserman,
"The Design of Idiot-Proof Interactive Systems," Proceedings
of the National Computer Conference, 42, AFIPS Press, 1973;
R.W. Pew and A.M. Rollins, Dialog Specification Procedure,
Cambridge, MA: Bolt, Beranek and Newman (BBN), Report #3129,
1975; Brian R. Gaines and Peter V. Facey, "Some Experience in
Interactive System Development and Application," Proceedings
of the IEEE, 63, June 1975, pp. 894-911; D.R. Cheriton, 'Man-
Machine Interface Design for Time-Sharing Systems," Proceedings
of the ACM National Conference, 1976, pp. 362-380; F. Gebhardt
and T. Stellmacher, "Design Criteria for Documentation Retrieval
Languages," Journal of the American Society for Information
Science, 29, July 1978, pp. 191-199; T.C.S. Kennedy, "The
Design of Interactive Procedures for Man-Machine Communication,"
International Journal of Man-Machine Studies, 6, 1974, pp. 309-
334; Stephen E. Engel and Richard E. Granda, Guidelines for
Man/Display Interfaces, IBM, Report #00.2720, 1975; Jacob
Palme, "Interactive Software for Humans," Management Datamatics,
5, 1976, pp. 139-154; M.W. Turoff, J. Whitescraver, and S.R.
Hiltz, "The Human Machine Interface in a Computerized Conferencing
Environment," Proceedings of the IEEE Conference on Interactive
Systems, Man, and Cybernetics, 1978, pp. 145-157; and T.D.
Sterling, "Guidelines for Humanizing Computerized Information
Systems," Communications of the ACM, 17, 1974, pp. 609-613.

4See J.L. Bennett, "The User Interface in Interactive
Systems," in C. Cuadra, ed., Annual Review of Information
Science and Technology, 7, Washington, D.C.: American Society
for Information Science, 1972, pp. 159-196.

46



5See Robert B. Miller, "Response Time in Man-Computer
Conversational Transactions," Proceedings of the Spring Joint
Computer Conference, AFIPS Press, 1968, pp. 267-277.

6B.W. Boehm, Jr., J.R. Brown, and M. Lipow, "Quantitative
Evaluation of Software Quality," Software Phenomenology Working
Papers of the Software Lifec cle Management Workshop, 1977,
pp. 81-94.

47



7.0 REFERENCES

Bell, D., Programmer selection and programming errors, The
Computer Journal, 19, 3, (1974).

Bennett, J.L., The user interface in interactive systems, In
C. Cuadra, (Ed.), Annual Review of Information Science
and Technology, 7, American Society of Information
Science, Washington, D.C., (1972).

Boehm, B.W., J.R. Brown and M. Lipow, Quantitative evaluation
of software quality, Software Phenomenology Working
Papers of the Software Lifecycle Management Workshop,
August 1977).

Boies, S.J., User behavior on an interactive computer system,
IBM Systems Journal, 13, 1, (1974).

Brooks, F.P., Jr., The Mythical Man-Month, Addison-Wesley,
New York, (1975).

Brooks, W.D. and P.W. Wilbur, Software reliability analysis,
IBM Technical Report FSD 777-0009.

Cheriton, D.R., Man-Machine interface design for time-sharing
systems, Proceedings of the ACM National Conference, (1976).

Eason, K.D., Understanding the naive computer user, The Computer
Journal, 19, 1, (February 1976).

Endres, A., An analysis of errors and their causes in system
programs, In Proceedings, 1975 International Conference
on Reliable Software, ACM SIGPLAN Notices, 10, 6, (1975).

Engel, Stephen E. and Richard E. Granda, Guidelines for Man/
Display Interfaces, IBM Poughkeepsie Laboratory Technical
Report TR 00.2720, (December 19, 1975).

48



Gebhardt, F. and I Stellmacher, Design criteria for documen-
tation retrieval languages, Journal of the American
Society for Information Science, 29, 4, (July 1978).

Hiltz, S.R. and M. Turoff, The Network Nation: Human Communi-
cations via Computer, Addison-Wesley, Reading, Mass.,
(1978).

Kennedy, T.C.S., The design of interactive procedures for
man-machine communications, International Journal of
Man-Machine Studies, 6, (1974).

Miller, Robert B., Response time in man-computer conversational
transactions, Proceedings Spring Joint Computer Conference
1968, 33, AFIPS Press, Montvale, New Jersey.

Newell, A. and H.A. Simon, Human Problem Solving, Prentice-
Hall, Englewood Cliffs, New Jersey, (1972)

Newman, W.M. and R.F. Sproull, Principles of Interactive
Computer Graphics, (Second Edition), McGraw-Hill, New
York, (1978).

Palme, Jacob, Interactive software for humans, Management
Datamatics, 5, 4, (1976).

Pew, R.W. and A.M. Rollins, Dialog Specification Procedure,
Bolt Beranek and Newman, Report No. 3129, Revised Edition,
Cambridge, Massachusetts, 02138, (1975).

Shneiderman, Ben, Software Psychology, Winthrop, Cambridge,
Massachusetts, (1980).

Sterling, T.D., Guidelines for humanizing computerized infor-
mation systems: A Report from Stanley House, Communications
of the ACM, 17, 11, (November 1974).

Turoff, M.W., J. Whitescarver and S.R. Hiltz, The human machine
interface in a computerized conferencing environment,
Proceedings of the IEEE Conference on Interactive Systems,
Man, and Cybernetics, (1978).

49

j



Wasserman, T., The design of idiot-proof interactive systems,
Proceedings of the National Computer Conference, 42,
AFIPS Press, Montvale, New Jersey, (1973).

Weizenbaum, J., Computer Power and Human Reason, W.H. Freeman
and Company, San Francisco, California (1976).

Wittmeyer, James F., III, et al., CTO/DDF Overview and FY 79
Plan, Computer Corporation of America, Arlington, Virginia,
TM8).

50


