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1. INTRODUCTION

1.1 BACKGROUND

The practical need for multiple sample rate flight

control systems is a basic consequence of the finite computing

capabilities of onboard digital computers. Although digital

computer technology continues to advance significantly, new and

expanded software requirements for such functions as navigation,

display, and control manage to keep pace with improvements in

computational capability. Accordingly, the flight control

system designer is always allocated a fixed (and usually limit-

ing) amount of computational capability to implement a control

design. In modern flight control system applications, the

problem of implementing a desired algorithm within a limited

computational capability is compounded by a need to accommodate

high frequency bending mode effects. Functions associated

with bending effects (i.e., instrument output filtering or

active structural control) typically demand sample rates an

order of magnitude higher than is necessary for suitable control

of rigid body modes of vehicle motion. Faced with widely

varying sample rate requirements among the dynamic modes of

the vehicle, a multirate control structure is the solution to

computational limitations.

Synthesizing a multirate control system to meet desired

specifications has been a difficult task. Ad hoc approaches

have typically been used, in which a suitable analog design is

converted to a digital design via Tustin transform techniques.

In this case multirate designs are generated by a trial-and-

error process of running the low bandwidth compensating elements
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at low sample rates and evaluating the resulting system per-

formance via simulation. Classically based techniques for

multirate system analysis (e.g., Sklansky's identity) are avail-

able (Refs. 2, 3, and 4); however, these techniques suffer

staggering growth of dimensionality in application and are

typically usable for only very low order systems. Such tech-

niques are also analysis, as opposed to synthesis, approaches;

hence, creating a control design is still an iterative pro-

cedure. In the present report, multirate design techniques

based on optimal control are developed which obviate dimen-

sionality problems characteristic of classical techniques. In

addition, these techniques offer a systematic method for con-

verting a desired analog control design to an equivalent multi-

rate digital design without approximation.

The multirate control design procedure described in

the present report builds upon some recent results in optimal

filtering for the case of periodic observations (Ref. 1).

Mathematically, it has been shown that if the plant matrices,

noise covariances, and measurements of a Kalman filter formu-

lation are periodically time-varying, then the filter error

covariance matrix and, hence, the filter gains are periodically

time-varying in steady-state. In this report, the control

synthesis problem is considered for the case of periodic con-

trol computations. In a manner analogous to the filtering

problem, the steady-state optimal regulator solution is periodic

with a period equal to the number of control computation cycles

over which the control update sequence repeats itself. This

property of the multirate optimal regulator is illustrated in

the report through examples.

1-2
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1.2 SUMMARY OF RESULTS

The major results obtained in this investigation are:

" Basic formulation of the optimal multirate
estimator/regulator design problems.

" Design-to-specification procedure for
multirate control systems.

* Extension of the multirate control design
formulation to proportional-plus-integral
control structures.

" A methodology to evaluate the relative
stability (robustness) of multirate control
systems.

* A preliminary investigation of perform-
ance/computation optimization for multi-
rate control systems.

All of the accomplishments listed are illustrated through de-

sign examples.

The basic formulation of the optimal multirate esti-

mator/regulator design problem is simply a matter of account-

ing for periodic time-variations of measurements and controls.

The optimal linear filter and regulator formulations accommodate

these time-variations; the conditions for periodic steady-state

solutions of these design problems are established in Ref. 1.

A three-step procedure for designing a multirate digi-

tal controller to specifications is prescribed. This procedure

entails: designing a continuous-time optimal control which meets

desired specifications; using the state and control weighting

matrices for the continuous-time controller to derive weighting

matrices for the equivalent single-rate digital controller by

the methods of Ref. 5; and deriving multirate state and control

1-3
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weighting matrices from the single-rate matrices. The contin-

uous-time, single-rate digital, and multirate digital systems

designed from the three sets of weighting matrices optimize

the same cost functional (Ref. 5); the two digital systems

optimize the cost functional under the constraint of piecewise

linear controls. In addition, the multirate weighting matrices

can be derived from partitions of the single-rate matrices;

hence, existing software packages for designing single-rate

controllers can be utilized in multirate designs.

Extension of the multirate control design methodology

to proportional-plus-integral (PI) structures is straightforward.

The mathematical formulation of the PI design problem involves

augmentation of the plant dynamics with control integration

states; again the three-step design procedure can be followed

to achieve desired system specifications.

A covariance analysis procedure is developed to inves-

tigate the robustness of multirate control systems. Although

the design-to-specification procedure produces systems having

equivalent transient responses, the ability of a multirate

system to reject disturbances varies with the sample rate and

control sequence. For example, if continuous-time, single-rate,

and multirate (with one or more controls computed at a lower

rate) regulators are designed by the three step procedure all

three will have the same transient response characteristics;

however, the disturbance rejection properties of the single-

rate system will be degraded from those of the continuous-time

system and, similarly, the multirate systems disturbance rejec-

tion properties are degraded from those of the single rate

system. A design example is presented that illustrates ro-

bustness trends as a function of control computation schedule.

1-4



THE ANALYTIC SCIENCES CORPORATION

Finally, a preliminary investigation of performance/

computation tradeoffs is presented. This investigation sug-

gests development of a mathematical optimization procedure for

determining sample rates and control schedules of multirate

systems.

1.3 ORGANIZATION OF THE REPORT

This report addresses the formulation and solution of

the optimal estimator/regulator design problems, design of

multirate proportional-plus-integral controllers, and evalua-

tion of robustness of multirate controllers. The basic optimal

multirate estimation and control formulations are covered in

Chapter 1; design examples are also discussed in Chapter 1.

Extensions of the multirate control design procedure to propor-

tional-plus-integral structures are presented in Chapter 2;

again a design example illustrates the results of the design

procedure. Robustness of multirate controllers is investigated

through an example in Chapter 3. Conclusions and recommenda-

tions are presented in Chapter 4.

1-5
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2 OPTIMAL MULTIRATE ESTIMATION AND CONTROL

2.1 OVERVIEW

The purpose of this chapter is to develop the basic

multirate estimator and regulator structures. Systematic syn-

thesis techniques for these structures are outlined and, through

an example, typical properties of the structures are described.

The multirate synthesis technique developed utilizes

two important properties of the optimal estimator/regulator

formulations:

* The optimal linear filter and regulator
formulations accommodate time-varying
measurement policies and control compu-
tation rates.

* The optimal filter and regulator solu-
tions reach periodic steady-states for
periodic sampling and control computa-
tion rates.

The first property is one that is often overlooked; i.e., the

modern estimation/control synthesis techniques are typically

applied to time-invariant plants or frozen-point designs of a

time-varying plant. One notable exception is active multidither

estimation in adaptive optics (Ref. 6); the introduction of

dither causes the measurement matrix of the extended Kalman

filter to be time-varying. The second property is a signifi-

cant one, in that it leads to an extended interpretation of

2-1
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steady-state filter and controller designs. Whereas the time-

invariant or frozen-point applications lead to constant filter

and regulator gain matrices (or quasi-static gain schedules),

the periodically time-varying case leads to sets of filter and

regulator gain matrices which are repeated periodically. For

example, it might be desired to design an aircraft lateral

controller that computes rudder commands at a significantly

lower rate than aileron commands. If the aircraft lateral

dynamics are represented as time-invariant, the multirate con-

trol computation policy leads to a set of control gains for

rudder commands that are used at the slow rate plus a set of

aileron gains that vary at the faster aileron sample rate be-

tween rudder updates. These periodic gain sets are the natural

end-product of the synthesis technique described in this chapter.

In Section 2.2 multirate estimator design is outlined.

The formulation of the optimal multirate regulator is developed

in Section 2.3; a systematic methodology for deriving the multi-

rate state and control error weighting matrices from specified

continuous-time matrices is also described in Section 2.3.

Eigenvalue-eigenvector analysis of multirate systems is covered

in Section 2.4. The principles of multirate estimation and

control are applied to a design example which is discussed in

Section 2.5. The chapter is summarized in Section 2.6.

2.2 MULTIRATE ESTIMATOR DESIGN

It is desired to estimate the states of the linear-

time-invariant stochastic process described by:

-k+l -xk + -k w k ~ N(O,Q) (2.2-1)

tk+l - tk = Ts (2.2-2)

2-2
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The measurements used to estimate the states are given by:

k = Hk kk + -k ; vlk ~ N(O,R1 ) (2.2-3)

K2k = H2 kk + v2 - N(O,R2 ) (2.2-412k Hkk k ;Zk

The case of the measurement z2  being available (or utilized)

at a lower sample rate than zi is of interest here; formally,
-lk

this is a conventional Kalman filtering problem handled by

setting H2 k equal to zero at times when Z2 is unavailable.

The structure of a multirate Kalman filter for the

case of two sample rates is shown in Fig. 2.2-1. Here the

measurement z1 is available at the "fast rate", Ts 1 samples

per second; the measurement z2 is available (or is utilized)

only on cycles where:

k = il (2.2-5)

with

i = 0, 1, 2, ... (2.2-6)

and

= integer period of the slow measurements
(i.e., the number of fast rate periods
between measurements, z2 k

Accordingly, the signal paths and innovations (N1 and 2)

computations indicated by the dashed lines apply only to

cycles where k = il;

i.e.:

2-3
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On cycles where k =if (major update):

T = T I T (2.2-7)

A

+ +
4 + +

A A

-'I LVXk-1

K, H
?lk 'k

.?I -HIGH SAMPLE RATE
I COMPUTATIONS

r - -- 'p 2i -- LOW SAMPLE RATE
I ~1 2i ~ tor H2it COMPUTATIONS

Z2if

Figure 2.2-1 Multirate Kalman Filter Structure

[Hi 1--- (2.2-8)

T = UT u T(2 -9
1 i -2 i

On cycles where k ;e it (subinterval):

Zk z (2.2-10)

2-4



THE ANALYTIC SCIENCES CORPORATION

Hk Hlk (2.2-11)

=~ (2.2-12)

Note that the dimensions of the measurement, measurement sensi-

tivity, and residual matrices vary periodically; similarly,

the dimension of the measurement noise covariance matrix is

periodic:

Ri 0
Rk = --- k = it (2.2-13)

0 R, 2
it

R k = Rl 1 k if (2.2-14)

In Eq. 2.2-13 it is assumed that the measurement noises of the

fast and slow measurements are uncorrelated.

The filter gains, K1 and K2 are periodic and can be

derived by propagating the discrete Kalman filter covariance

equation to (periodic) steady-state; i.e.,:

Pk( - ) = *Pk.I(+) T + Q (2.2-15)

Kk = HT Pk(-) (HkP(-)HT + R-1 (2.2-16)k k k (k k(-)k k)

Pk(+) (I - KkHk)Pk(-) (2.2-17)

2-5



• - . .... . . . - ... .. . . . . ,

THE ANALYTIC SCIENCES CORPORATION

using the expressions for Hk and Rk given by Eqs. 2.2-8, 2.2-11,

2.2-13, and 2.2-14, respectively. The periodic steady-state

gains derived by propagation of Eqs. 2.2-15 to 2.2-17 are:

F I
Kk =Ll I' 2 ] k = if (2.2-18)

Kk = Kl ; k # if (2.2-19)

As will be shown later in an example, the gains associated

with the fast rate measurements, K1 , vary from sample to sample

between major updates.

A heuristic interpretation of the filter structure

shown in Fig. 2.2-1 is possible. Suppose, for example, that

it is desired to estimate the angular rate and position of a

rigid vehicle from rate gyro and inertial navigation system

(INS) measurements. Assume that the rate gyro measurements

are available at a high sample rate but that INS measurements

(which explicitly measure angular position) are available at a

much slower rate. On cycles when the INS measurements are

not available, the filter estimates angular position by essen-

tially integrating the angular rate estimates; although this

provides the optimal estimate of the angular position given

the available measurements, the error covariance of the angular

position estimate grows with time. On cycles when the INS

measurement is available, the position estimate and, hence,

the estimation error covariance are "reset"; i.e., an accurate

position estimate is generated by the INS measurement. This

reset position estimate is then extrapolated on subsequent

cycles via rate estimate integration until a new INS measure-

ment is again available. Hence, the multirate structure is

analogous to the classical concept of inner and outer loops;

2-6



THE ANALYTIC SCIENCES CORPORATION

the inner loop runs at a fast sample rate estimating "fast"

dynamic modes and extrapolating slow modes, while the outer

loop runs at a slower rate resetting extrapolation errors

accumulated in the inner loop. An illustrative example of

this filtering structure is given in Section 2.5.

2.3 MULTIRATE REGULATOR

2.3.1 Regulator Structure

It is assumed that a plant to controlled has con-

tinuous time dynamics given by:

x(t) = Fx(t) + Gu(t) (2.3-1)

where x is its state vector and u is its control vector. The

control u is to be sampled and held at time instants tk, with

all elements of u possibly sampled at different rates.

The structure of a multirate optimal regulator for

the case of two sample rates is shown in Fig. 2.3-1. As the

block diagram indicates, one control channel, uf, is updated

at a fast rate, T -1 samples per second; u is computed at a~-s
slower rate, (;Ts - samples per second, and is held between
computations by a holding circuit. Recomputation of u is•-S
accomplished by adding an increment, vk' to the holding cir-

cuit on cycles when k = il; on all other cycles vk is set to

zero.

The discrete time dynamics of the continuous plant

are described by:

2-7
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n-.46552

fsv LOW RATE HOLDING i

CONTROL
zk = e- rfu + ( -z :.I I

HIGHW RATE

k sk

where
FT

-- e S

S~i

V f TseFZcG dc

Development of the multirate regulator structure requires aug-

mentation of the natural plant dynamics with holding circuit

states (i.e., to hold the slow controls between updates); the

discrete time dynamics of this augmented system are given by:

[ ik+l ox 5 [kk + rski 1 1 Uf + I 232

-- I I&-- -- --"  233

where k is the Kronecker delta function

2-8
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The periodic gains -- C C , and Csf are
of kb ipto R

obtained by propagating the optimal regulator Ricatti equation

from infinity backwards to (periodic) steady state. The derived

periodic regulator gains are:

'fil 1 Cs fil

C= L i ] ; k = ikCsi

' s LIZ

Ck =Cf C ] ; k X il (2.3-4)

Note that the dimensions of Ck change according to the number

of controls that are computed on cycle k. The periodic weight-

ing matrices, Qk' Mk and Rk, used in the propagation of the Ricatti

equation are derived from continuous-time control specifications;

the derivation of these matrices is discussed in Section 2.3.2.

A heuristic interpretation of the multirate regulator

can be made, similar to that of the multirate filter. The

fast sample rate controls regulate the high frequency plant

dynamics, while the slow controls regulate the slower, less

dominant dynamic modes. Again, the multirate structure is

analogous to the inner-loop/outer-loop structures commonly

used in classical control.

One additional element of the multirate regulator

structure should be noted; a crossfeed exists from the slow

control channel to the fast control channel. On cycles when

the outer control loop is inactive, u s appears to be a distur-

bance to the plant and is "compensated" via feedforward control

(computed from C sfk ) to the uf channel. The inner control

2-9
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loop is "aware" that the slow controls are coarse (i.e., com-

puted at a slower rate) and uses the Csf crossfeed to accom-

modate this coarseness.

Extension of the two-sample-rate control structure

described here to the multirate case (i.e., more than two sample

rates) is straightforward. Consider organizing the plant inputs

into two groups: those computed at the fastest rate, uf, and

those scheduled at lower rates, u s . Again augmenting the plant

dynamics with slow control holding circuits (which now are

operating at multiple rates) the discrete time dynamics of the

augmented system are given by:

2ik+l 1:sl r-kl Fk 1F k
-U--~ h - -- L --- ---J ~ (2.3-5)

where:

6 kiik 0 . 0

0 6 k,i2 P,2

Ak = (2.3-6)
0

.... 0 0 
6k ' m

L kP ~~im ImI_

where m' is the dimension of v and

Si; ijkj = k

6 0i k (2.3-7)
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The matrix Ak is a generalization of the Kronecker delta func-

tions used in the two-sample-rate case. Each diagonal element

of Ak nulls the input to a particular low rate control holding
circuit on cycles between new computations of that control.

For example, if us2 is computed every two cycles (i.e., k2=

2) then the second diagonal element of Ak will be zero on cycles

when k is not a multiple of two (i.e., k X i222 ). A set of

periodic regulator gains for a representative flight control

system and an analysis of the performance of that system are

presented in Section 2.5.

2.3.2 Multirate Regulator Design Procedure

The multirate regulator is designed through the follow-

ing procedure:

(I) A continuous-time regulator is designed
to meet continuous-time performance spec-
ifications

(2) Discrete-time regulator weighting matrices
for the single rate case are derived
from those used to design the continuous-
time regulator

(3) The discrete-time periodic weighting
matrices used to solve for the multirate
gains are constructed from the single
rate matrices. The multirate gains are
derived from the periodic steady-state
solution of the discrete-time Ricatti
equation.

The first step involves the normal iterative design process
associated with designing an optimal regulator; i.e., trial and

error assignment of weighting matrix elements to yield a regu-

lator that meets the design specifications. The relationships

presented by Gran, Berman, and Rossi (Ref. 5) are then used to
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compute the single-rate (i.e., fast rate) discrete-time weight-

ing matrices from the continuous-time matrices. Using the

augmented system representation, Eq. 2.3-2, and the relation-

ships in Ref. 5, expressions are derived for the multirate

weighting matrices; inspection of these expressions indicates

that the multirate matrices can be constructed from the single-

rate matrices computed in step (2) above. An implicit benefit

of this three-step approach is that the performance of the

continuous-time, single-rate discrete-time, and multirate dis-

crete-time controllers can be compared on a one-to-one basis;

i.e., each control design is based on optimizing the same con-

tinuous-time cost functional (Ref. 5).

The first step of the design process uses the con-

tinuous-time representation of the plant dynamics and an in-

finite-time-horizon quadratic cost functional:

= Fx + Gu (2.3-8)

j ( TQx + uTRu)dt (2.3-9)

0

Regulator gains, C, are derived by solving the time-invariant

form of the continuous Ricatti equation:

0 = PF + FTP + Q - PGR-1GTP (2.3-10)

CT = - RGTP (2.3-11)

The designer chooses the Q and R matrices of the cost func-

tional such that the derived closed-loop system:
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_ = (F + GCT)x + Gu (2.3-12)

meets desired design specifications.

The second-step of the design process, the derivation

of equivalent single-rate discrete-time weighting matrices,

uses the discrete representation of the plant dynamics and

cost functional:

Xk+1 =44x k + ru k  (2.3-13)

(x'0 x T- 2 T- + T-R (2.3-14)
21: -xk-k -2k-k ! kRk)

k=0

Discrete regulator gains are derived by propagating the dis-

crete Ricatti equation to steady-state; i.e., propagate:

Ik = (rT1rk+I + R)-lrTPk+I (2.3-15)

Pk = e T (I - LkT r T)k+10 + Q (2.3-16)

where

- - rl-TIT (2.3-17)

Q _- M-I T (2.3-18)

The control gains in steady-state are:

= R-IT + Le (2.3-19)
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The weighting matrices -- ', M, and ' -- that yield a discrete

cost functional equivalent to the continuous cost functional,

Eq. 2.3-9, are derived from the following expressions (Ref. 5):

Q = Js T(t,O) Q 0(t,0)dt (2.3-20)

0

M = fTs oT (t,0) Q r(t,O)dt (2.3-21)

0

R = TsR + f rT(t,0) Q r(t,0)dt (2.3-22)

0

where

,(t,O) = eFt

F(t,0) = fteFTG dT
0

Finally, the third step is the design of the multirate

system. Again, the two-sample-rate case will be described

first; extension to the multirate case is straightforward and

will be described later in this section. The discrete represen-

tation of the plant dynamics augmented by thp slow control

holding circuit states is repeated here along with the cost

functional. Note that the weighting matrices of the cost func-

tional are time-varying, i.e., 9 k' %kRk. In the present

formulation, the dimensions of Mk and Rk vary according to the

number of controls that are computed on cycle k. The augmented

control effectiveness matrix, rk, is time-varying due to the

presence of the Kronecker delta's; on cycles when vk is not

computed the zero columns of rk are deleted, thereby reducing

its column order. Also, vk is included in the Uk vector only
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on cycles when a new value of vk is computed; on all other

cycles V k is deleted.

Ek+l1 4 r ] FXkl f r Fsk IZ !!fl
-- I ... - ---- I --- -- -- - (2.3-23)

k+ j

Oxk + rkU-k (2.3-24)

k=O I k Qk ( i)+ 2)k -k k uk + Rk-k

(3.2-25)

Discrete multirate regulator gains are derived by

propagating the discrete Ricatti equation to periodic steady

state:

Lk = r( Pk+irk Rk) k k+l (2.3-26)

Pk 6T k -ILkrk pkl + Qk(2.3-27)

where:

Ok  4 -k k M (2.3-28)

Q" l T 
(2.3-29)
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The control gains over one complete period are:

A ̂A A ^

C.=R.I.+ L.O. ; i=0,i,2,...2-i (2.3-30)

It is desired to find Qk' M k' and Rk such that the cost func-

tional of the multirate system design is equivalent to that of

the continuous system, Eq. 2.3-9. The procedure to find the

discrete multirate weighting matrices is, again, to use the

weighting matrices of the continuous system and the relation-

ships in Ref. 5 to derive the discrete-time matrices.

Augmentation of the plant dynamics by the slow con-

trol holding circuit states requires modification of the con-

tinuous-time weighting matrices. The somewhat involved mathe-

matical procedure associated with modifying the continuous-

time matrices and deriving the discrete-time matrices from

them is covered in Appendix A; the weighting matrices for the

discrete-time multirate design are summarized here:Q, M
Qk = (2.3-31)

On cycles when all controls are updated (i.e., k =i):

R R (2.3-32)

i - -M (2.3-33)

Lisf sj

On all other cycles (i.e., k e ik):

Rk Rf (2.3-34)
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M k  -- (2.3-35)

where the f- and s-partitions have dimensions corresponding to

the number of fast and slow controls, respectively. The result

that the multirate matrices can be constructed from the single

rate matrices is very fortunate since software packages to

compute the single-rate matrices are already in common usage.

Again, the multirate regulator derived from these matrices

optimizes the same cost function (defined in continuous-time)

as the single-rate and continuous-time designs.

Derivation of the cost functional weighting matrices

for the general multirate case (i.e., more than two sample

rates) is accomplished by using the dynamics given by Eq. 2.3-5

and the relationships from Ref. 5. Again, the derivation is

presented in Appendix A; the results of this derivation are:

Qk MsA

= -(2.3-36)

f iRsf 'k----- -- --------------....... 7

hkR sf:Ak R sAk

M k A Rs:R- (2.3-38)

The presence of the Ak's causes appropriate rows and

columns of the Rk and Mk matrices to be set to zero on cycles

between new computations of the slow controls. In introducing

these cost functional matrices into the discrete-time Ricatti

equation there is a choice in dealing with the zero rows and
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columns: they can be deleted, thereby reducing the order of

Rk and Mk (this was done in the two-sample-rate development)

or they can be retained with certain computational provisions.

If the zero rows and columns are retained a question arises in

the computation of Lk, i.e.:

Lk= (F Pk+l k+  rk k+l (2.3-39)

If the zero rows and columns of r and Rk are retained, the

matrix, rPk+k + Rk, has zero rows and columns and, there-

fore, is not explicitly invertable. If it is recognized, how-

ever, that certain rows Lk are constrained to be zero (i.e.,

those rows corresponding to control increments not computed on

cycle k), the invertability problem can be resolved. If the
singular value decomposition method is used in the matrix in-

version of Eq. 2.3-39 the rows of Lk corresponding to control

increments not computed on cycle k will be zero; the nonzero

rows of Lk will be identical to those that would be computed

by deleting the zero rows and columns of rk and Rk.

2.4 EIGENVALUE-EIGENVECTOR ANALYSIS OF MULTIRATE SYSTEMS

A methodology for frequency domain evaluation of digi-

tal multirate control systems is described in this section.

This technique is based on an extension of the single-rate

control system analysis method presented in Ref. 7.

It is known that a single-rate time-invariant discrete-

time system has stable dynamics if the eigenvalues of that

system all lie within the unit semicircle of the complex plane.

The stability of a multirate system can be determined in a

similar manner; it is necessary, however, to consider the dy-

namics of the system over an entire control period.
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Consider the state propagation of a closed-loop multi-

rate control system:

4k+l k-k + rkuk (2.4-1)

= (Ok - rkCk) k (2.4-2)

where Fk and Ck are periodic. The stabilizing effects of the

multirate controls can be assessed by determining the state

propagation over a complete multirate control cycle; i.e.,

using Eq. 2.4-2 recursively, the state transition over £ sub-

interval cycles can be derived:

nk£ (4 - r . C  k (2.4-3)
=i+. (k+k)-i (k+k)- (k+k)-i k

--1

- b* xk (2.4-4)

Here €* represents the closed loop dynamics of the multirate
control system over a complete control cycle. The stability
and, to a limited extent, the transient response characteristics

of the system are determined by the eigenvalues of *.. Note

that the sample period associated with this stability analysis

is T s , the period of the complete control cycle.

An alternative frequency domain interpretation of the

multirate system dynamics is possible by determining the con-

tinuous-time equivalent (Ref. 7) of 0*, i.e.:

IF= i'- n ** (2.4-5)

s
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Here the matrix natural logarithm is defined by the series

expansion:

[( - I) - 1( - 1)2 + 1 - 3 + .1

(2.4-6)

Having computed F*, continuous-time eigenvalues equivalent to

those of 0, can be obtained from the determinant:

IAI - Fj = 0 (2.4-7)

The eigenve'tors, x, corresponding to the distinct roots of

Eq. 2.4-7, A i , are determined by the nontrivial solution of

Eq. 2.4-8.

F*x A i x (2.4-8)

If control specifications are given in terms of real

frequency domain criteria (i.e., bandwidth, damping ratio) the

methodology of this section can be used to translate the multirate

digital system characteristics into the real frequency domain.

The commonly used analysis methods such as root-locus are also

possible by this transformation.

2.5 EXAMPLE MULTIRATE SYSTEM

The properties and performance of a multirate optimal

regulator/estimator flight control system are described in

this section. The plant to be used in this example is the

linearized lateral dynamics of the Space Shuttle Orbiter during

reentry; the details of this model are included in Appendix B.
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2.5.1 Plant/Measurement Description

The plant to be controlled is the linearized lateral

dynamics of the Space Shuttle Orbiter during reentry. A dis-

crete-time representation based on a fast sample rate of 6.25 Hz

is adopted:

?k+l =  X k + rf6 ak + Is6 rk + Awk (2.5-1)

= (v, rb, Pb' 0k (2.5-2)

= (sideslip velocity, yaw rate, roll rate,
roll angle)

6 = aileron deflection (2.5-4)

6 = rudder deflection (2.5-5)

k = white noise turbulence (2.5-6)

E{Aw kTA T = Q (2.5-7)

The values of the various system matrices: o, fo Fs , A, and

Q are presented in Appendix B.

The measurements available to the estimation/control

system are shown in Fig. 2.5-1. Three of the four measurements:

roll rate, yaw rate, and lateral acceleration are sampled at

6.25 Hz; the stable platform yields an explicit measurement of

roll angle, *, at 0.25 Hz.

*The sample rate used in the operational space shuttle control
system is 25 Hz. The lower sample rate of 6.25 Hz was chosen
for this example to accentuate the periodic nature of the
multirate estimation and control system.
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R.46978

RATE GYROS ( pbr b) 6.25 Hz

0 LATERAL ACCELEROMETER (a.) 6.25 Hz
STABLE PLATFORM (0) .25 Hz

Figure 2.5-1 Vehicle Instrumentation

2.5.2 Multirate Kalman Filter Design

Mathematically, the system measurements are described

by:

Zfk = Hf x k + Vf ; all k (2.5-8)

= (lateral accelerometer, yaw rate gyro, roll rate gyro)

(2.5-9)

zsk Hs xk + vsk k = i£ (2.5-10)

= (Inertial Navigation System (INS]
roll angle measurement) (2.5-11)
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with:

£ = 25 (2.5-12)

Hf= matrix of lateral accelerometer, roll and yaw rate
gyro sensitivities (2.5-13)

Hs = INS roll angle sensitivity (2.5-14)

yfk vector of accelerometer, roll and yaw gyro noises
(zero mean) (2.5-15)

v = INS noise (zero mean) (2.5-16)

The measurement noise statistics are described by:

E fk = Rf ; k / i9 (2.5-17)

E, - f v - ; k = ig (2.5-18)
( s k k kfJ0 '

The numerical values of the H and R matrices are presented in

Appendix B.

The periodically varying H- and R-matrices and the

4- and Q-matrices are used to propagate Eqs. 2.2-10 through

2.2-13 to periodic steady-state. The periodic steady-state

Kalman gains are then used to implement the following state

estimator:

4k+l 0k + Kf (zf -Hfck) ; k i£ (2.5-19)
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k+ 1H
PR + - --- - (2.5-20)

k+1 k If V1 H) R

k = ik

The state estimator yields the optimal estimates of sideslip

velocity, yaw rate, roll rate, and roll angle using the avail-

able instruments and the specified sample rates.

The operation of the state estimator can be described

heuristically. On cycles when all four measurements are avail-

able, the yaw rate gyro, roll rate gyro, and INS roll angle

measurements are low-pass filtered (to reject measurement noise)

to produce estimates of yaw rate, roll rate, and roll angle; a

linear combination of the lateral accelerometer output and the

output of the other three instruments is low-pass filtered to

yield an estimate of sideslip velocity. On cycles when the

INS measurement is not available, roll angle is estimated

(extrapolated) by integrating the roll rate gyro output (this

integration is implicit in the state transition matrix, (t).

Every 25th cycle the roll angle estimate is "reset" via the

INS measurement; on subsequent cycles the extrapolation process

is repeated.

On cycles when the roll angle is being extrapolated,

roll rate gyro measurement residuals are used to improve the

roll angle estimate. Figure 2.5-2 shows the history of the

roll rate gyro to roll angle gain, K4 3, over time. On cycle

0, the INS roll angle measurement is available and K43 has a

very small value; i.e., when the INS measurement is available,

the rate gyro measurement is ignored in estimating 0. On cycles

following the INS measurement K4 3 assumes larger values; i.e.,

as the number of cycles since the last INS measurement increases
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the estimator relies more and more on roll rate gyro residuals

to generate the estimate of 0. On cycle 25, the INS measurement

is again available and K43 is set to the same small value it

had on cycle 0.

R-4b962

T,= .16 sec

0.100.,

K43 rad/rad/sec

0.075 j

0.050-

0.025- P (EIeAIX0rd

0- I I I t I I
0 5 10 15 20 25 30 35
A A
INS CYCLE INS

Figure 2.5-2 Ro.:l Rate Gyro to Roll Angle Gain of
Example Estimator

Also shown in Fig. 2.5-2 is the evolution of the roll

angle estimation error covariance, P44, On cycle 0 the estima-

tion error is small; an INS measurement has provided an accurate

estimate of 0. On cycles follwing cycle 0, the extrapolation

of * using the roll rate gyro causes the estimation error var-

iance to grow; i.e., although an optimal estimate is being

produced, this estimate drifts away from the true value. The

"saw-tooth'.' nature of the error covariance curve indicates

that some improvement of the estimation error is achieved on

each cycle through use of the roll rate gyro residuals (i.e.,
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the estimation error drops following the measurement). On

cycle 25 the estimation error is reset using the INS measurement.

2.5.3 Multirate Regulator Design

The goal of the multirate regulator design is to de-

termine the multirate regulator that is equivalent to an exist-

ing continuous-time (analog) regulator. The specifications of

the continuous-time regulator in terms of its closed-loop eigen-

values are:

Roll-Spiral Dynamics:

s = -0.632 ± i 0.913 (wo = 1.11 rad/sec, = 0.569)

(2.5-21)

Dutch Roll Dynamics:

s = - 0.522 ± i 0.159 (wo = 0.546 rad/sec, = 0.957)

(2.5-22)

The continuous-time control and state weighting matrices, R

and Q, used to design the continuous-time regulator are pre-

sented in Appendix B.

A sample rate of 6.25 Hz is chosen for the aileron

control computations. The rudder control, which is used to

damp the dutch-roll mode, is computed at 1.56 Hz (i.e., 6.25

Hz/4.); since the closed-loop dutch-roll mode has a damped

frequency that is roughly one-sixth the frequency of the roll-

spiral wode, 1.56 Hz is a reasonable sample rate for the rudder

computations.
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Using the system dynamics, Eq. 2.5-1, and the Q and R

matrices corresponding to the continuous-time regulator, the

single-rate (6.25 Hz) discrete-time weighting matrices, i7, R,

and Mf, are computed using Eqs. 2.3-20 through 2.3-22. The

periodically time-varying weighting matrices, Qk' Rk, and Mk,

are constructed from the appropriate single-rate weighting

matrix partitions using Eqs. 2.3-31 through 2.3-35.

The vehicle dynamics augmented by the rudder control

holding circuit are given by:

[.... =[ -H I I I .

6 rr 0 L r ki
(2.5-23)

Using the dynamics described by Eq. 2.5-23 and the

multirate weighting matrices (Qk' Rk' Mk), Eqs. 2.3-26 and

2.3-27 are propagated to periodic steady-state. The periodic

gains Ci are computed by Eq. 2.3-30; Fig. 2.5-3 shows the values

of the periodic aileron gains along with the corresponding

single-rate (6.25 Hz) gains. The values of roll rate and roll

angle to aileron gains, C 1 3 and C1 4 are essentially constant

over the four cycle control period, and are equal to the single

rate gains. This similarity of the single rate and multirate

gains involving roll dynamics and aileron control is not sur-

prising; roll control is the natural inner loop of a lateral

control system (i.e., the dynamics which dictate the highest

sample rate). The lateral acceleration, yaw rate, and slow
control crossfeed gains (Cill C12' and Csf, respectively) vary

significantly over the control period, assuming values closest

to the single rate values on cycles when a new rudder control

is computed (cycles 0 and 4). The variations of CiI, C 1 2, and

2-27



THE ANALYTIC SCIENCES CORPORATION

RI-4A979

Ts 
= .64 c.; Ts .16 ec.

2.0 NOTATION:

611 FEEDBACK GAIN FROM STATE VARIABLE
I TO AILERON. MULTIRATE CASE

C"i FEEDBACK GAIN FROM STATE VARIABLE
I TO AILERON. SINGLE-RATE CASE

.;,Cj SLOW CONTROL TO FAST CONTROL
CROSSFEED GAIN. MULTIRATE CASE

0 A INDICATES RUDDER UPDATE CYCLE
LU

1.0

-Ci2"-

z

0.5 0.5 (,3deg/deg/wel C13

0 1 2 3 4 5 . CYCLE INDEX, kI ^I

Figure 2.5-3 Multirate Regulator Aileron Gains

C sf over the control cycle indicate that the optimal control

design uses the aileron partially to compensate lateral accel-

eration and yaw (which are normally compensated by the rudder)

between rudder updates.

It should be noted that variations of the fast control

gains over the control period are a result that is unique to

the present synthesis techniques; classical analysis techniques

and commonly used ad-hoc design methods (such as Tustin trans-

form) are restricted to constant gains. Optimality of the

present design indicates that restriction of multirate gains
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to constant values (as is done in the classical approaches)

precludes an optimal or near-optimal control design.

2.5.4 System Performance

The performance of the multirate estimation/control

system is evaluated in three steps:

* Comparison of the multirate estimator
error variances with those of a multi-rate
estimator which uses gains derived from
a single-rate design

" Comparison of the multirate regulator
transient response with that of the con-
tinuous-time system used to derive the
multirate design

" Comparison of the error rejection vari-
ances of the multirate
estimation/control system with those of
a multirate system which uses estimation
and control gains derived from a single-
rate design

The estimation/control design used for comparison with the

multirate design indicates the type of system that would result

if the present multirate design technique were not available;

i.e., the designer would derive the gains for the single-rate

(fast rate) case, then simply implement these gains in a multi-

rate structure as a first approximation. As the comparisons

will show, the multirate system designed by the present tech-

nique clearly out-performs this single-rate based system.

Estimator Performance - Table 2.5-1 shows the estimation

error variances for the optimal multirate filter and the single-

rate based multirate estimator derived from time-domain simulation

(i.e., a single monte-carlo replication of each system). As

the values indicate, v, rb, and Pb are estimated with essentially
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equal accuracy by both estimators (small differences in the

estimation errors of the two filters are attributable to the

fact that only a single replication of each system was performed);

this is not surprising since in both estimators, v, rb, and Pb

are generated by effectively low pass filtering and forming

linear combinations of (fast sample rate) accelerometer and

rate gyro measurements. The optimal multirate filter clearly

estimates roll angle more accurately than the single-rate

based filter. Superior roll angle estimation is also expected

since the optimal multirate design makes best use of roll rate

gyro residuals between INS updates (recall the variation of

the roll rate gyro to roll angle gain in Fig. 2.5-3); the single-

rate design uses roll rate gyro residuals incorrectly in a

multirate implementation.

TABLE 2.5-1

ESTIMATION ERROR VARIANCES

VRIABLE2

Db 2 (deg 2
SYSTEM (ft 2 /sec) (deg2/sec 2 (deg 2/sec2

Optimal Multirate 8.282 0.1347 0.1561 0.2619

Single Rate Design 9.081 0.1347 0.1336 0.5107

Regulator Transient Response - Figure 2.5-4 shows the

desired closed-loop system transient response to an initial

roll rate error of 1 deg/sec (represented by the "continuous

system" response). As the (digitized) multirate design response

indicates, the transient responses of the continuous and multi-

rate systems are very similar. Also shown in Fig. 2.5-4 is

the closed-loop system response that would result by using
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regulator gains from a single-rate design in a multirate

formulation. The single-rate based system lags the desired

response significantly; as Fig. 2.5-5 shows, this lag gen-

erates a sizeable overshoot of roll angle during the transient.

+1

MULTIRATE DESIGN

w

N 0 ,r- 
"

-J

0

o SINGLE RATE DESIGN
WRUN MULTIRATE

Figure 2.5-4 Roll Rate Responses to Initial Roll
Rate Error

Estimation/Control System Stabilization Effectiveness

The ability of the combined estimation/control system to reject

disturbances (as characterized by the process noise matrix Q

defined by Eq. 2.5-7) is summarized in Table 2.5-2. For com-

parison, the performance of a multirate estimation/control

system based on single-rate design (i.e., the single-rate esti-

mator and controller described in the estimation error and

transient response comparisons of this section) is also pre-

sented. The RMS values in Table 2.5-2 indicate that roll atti-

tude and sideslip velocity are regulated far better by the
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MULTI RATE DESIGN

0

z
-j0

-, 2 4
0 I--SECONDS

x
*-SINGLE RATE DESIGN

0 ~RUN MULTI RATE

Figure 2.5-5 Roll Angle Responses to Initial Roll

Rate Error

TABLE 2.5-2

COMBINED ESTIMATION/CONTROL SYSTEM RMS STATE ERROR

:SYSTEM v(ft/sec) r b(deg/sec) Pb (deg/sec) 0(deg)

Optimal Multirate 6.50 4.83 22.5 37.2

Single Rate Design 11.50 4.64 21.8 66.0
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optimal multirate system than with the single-rate based design

while essentially equal yaw rate and roll rate regulation is

achieved by both systems (again, slight differences in yaw

rate and roll rate RMS are attributable to the fact that a

single monte-carlo replication of each system was used to gen-

erate the data). Improved roll angle regulation f:cm the

multirate system should be expected since the optimal multi-

rate estimator generated significantly more accurate estimates

than the single-rate based estimator (Table 2.5-1).

2.6 CHAPTER SUMMARY

Formulation and mathematical solution of the multirate

estimation and control problem for the case of two sample rates

have been presented. The filter synthesis technique described

in this chapter yields the optimal state estimator for a given

set of instruments and measurement data rates; the control

design technique determines the multirate regulator that

optimizes the same cost functional as that used to design a

specified continuous-time regulator.

Our multirate estimator design approach is charac-

terized by a set of periodic gains which make best use of meas-

urement residuals between major updates (i.e., cycles when all

measurements are available). In an example aircraft application,

a multirate estimator design yielded a significant reduction

in roll attitude estimation error through the use of roll rate

gyro residuals between INS updates.

The multirate control formulation requires augmentation

of the system dynamic model by holding circuit dynamics corre-

sponding to controls that are computed at slow rates. The multi-

rate control design consists of sets of periodically varying
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feedback gains plus a crossfeed path from the low sample

rate control channel to the high rate channel. Periodic varia-

tions of the high rate control gains indicate that the high

rate controls partially compensate dynamics normally handled

by the slow controls between slow control updates.

Again, state estimators and controllers designed by

the present technique are the optimal designs. The periodically

time-varying gains which characterize the optimal designs are

a unique product of the present technique; classical analysis

techniques and commonly used ad-hoc design methods (such as

Tustin transform) are restricted to constant gains. Optimality

of the present designs indicates that restriction of multirate

gains to constant values (as is done in the classical approaches)

precludes an optimal or near-optimal design.

The present multirate synthesis techniques simplify

the design process significantly. It is possible to design a

controller in continuous-time to meet desired specifications

then derive an equivalent multirate digital design through a

direct, straightforward mathematical procedure. Design by

classical analysis techniques would require an educated trial-

and-error process to generate an acceptable multirate system.
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3. MULTIRATE PROPORTIONAL PLUS INTEGRAL CONTROL

3.1 OVERVIEW

The basic regulator control structure is appropriate

in applications where it is desired to drive the plant state

to zero in an optimal manner. The regulator is also useful in

situations where a prescribed state trajectory is to be followed

or the plant state is to be stabilized about a state trajectory

generated by a feedforward controller. In all of the regulator

applications described here, it is assumed that the dynamics

of the plant and of all plant input commands and disturbances

are accurately known; if the plant or disturbance dynamics are

not known precisely, inadequate performance can result. For

example, if it is desired to regulate a plant about a step

input command, any mismatch between the dynamic model used to

design the regulator and the true dynamics will result in a

steady-state error of the plant output.

In most practical situations, the dynamics of the

plant are not precisely known and disturbances to the plant

cannot be characterized a priori. Uncertainty of the plant

and its disturbance environment is very common in flight vehicle

control; one usually has only approximate knowledge of the

vehicle aerodynamics, the flight condition of the vehicle, and

the state of atmospheric turbulence. In addition, it is desired

that the vehicle follow nonzero input commands with zero steady

state error; e.g., follow a nonzero bank angle command to make

a turn.

3-1
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In applications where plant and disturbance uncer-

tainties must be accommodated effectively, control structures

having an integral feedback path are appropriate. Figure

3.1-1 shows the structure of the proportional-plus-integral

controller. In addition to a feedback control proportional to

the state u (i.e., proportional path) the error between the-p

plant output y and the desired output yd is integrated to

compute ui" For a constant value of yd' the controls u and

u. have constant values in steady state; a constant value of
!i implies that the output ertor, yd- , has been driven to

zero. This very desirable property of zero steady-state error

to a constant command is maintained even when there is a mis-

match of the plant design model and the true plant dynamics;

the integrating action of the controller ensures that the error

is driven to zero. The PI control structure has been used

with success in several flight control applications (Ref. 7, 8

and 9).

m.-6o03

Figure 3.1-1 Proportional-Plus-Integral Control

The principles of optimal multirate regulator theory

developed in Section 2.3 are extended to the proportional-

plus-integral (PI) control structure in this chapter. Two

alternative P1 control structures are developed: one in which
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a standard zero-order-hold function is used to output the com-

puted controls and another in which slow controls are smoothed

by "staircasing" them between updates. The P1 controller formu-

lations are applied to a design example, a command augmentation

system for the F-14 aircraft; the closed-loop properties of

the multirate controller are compared to those of an equivalent

single-rate controller.

The organization of this chapter is as follows: the

multirate proportional-plus-integral structures are developed

in Section 3.2. One of the PI structures is applied to a design

example in Section 3.3, and the controller properties and trans-

ient response characteristics of the example are also described.

The chapter is summarized in Section 3.4.

3.2 FORMULATION OF THE PROPORTIONAL-PLUS-INTEGRAL
CONTROL LAW

The development of the multirate proportional-plus-

integral control law is presented here. An overview of the

multirate P1 structures and the key steps in designing these

controllers is given in Section 3.2.1. The mathematical basis

for the multirate PI development is comprised of the continuous-

time and single-rate digital version of the PI controller which

are described in Section 3.2.2; the extension to the multirate

case is outlined in Section 3.2.3.

3.2.1 Multirate Proportional-Plus-Integral

Control Structures

Two alternative methods of holding slow controls in a

multirate PI control structure are shown in Figs. 3.2-1 and

3.2-2. The structure in Fig. 3.2-1 uses the forward path inte-

gration function to hold slow controls; augmentation of the

3-3
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system dynamics with slow control holding circuits is used in

Fig. 3.2-2. The structure of Fig. 3.2-2 is used when smooth

transitions of the slow controls between new computations are

desired; the effect of the slow control holding circuit on a

typical control history is shown in Fig. 3.2-3. On a slow

control computation cycle the structure of Fig. 3.2-1 computes

a new integrator input which results in a step change of the

slow control. The structure of Fig. 3.2-2 computes a new

"staircase" increment which is added to the control on each

succeeding fast computational cycle by the integrator dynamics;

hence, the holding circuit structure provides for smoother

transitions of the slow controls between new control computations

and, therefore, a smoother plant response.

CURRENT MULTIRATE PI
IMPLEMENTATION

Sk WITH CONTROL RAMPING

NEW NEW NEW
COMPUTATION COMPUTATION COMPUTATION

Figure 3.2-3 Typical Slow Control Histories for the
Two PI Structures
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Extension of the PI control formulation (which is

discussed in detail in Section 3.3) to the multirate case is

accomplished by a procedure similar to that used to formulate

the multirate regulator:

0 A construct is introduced into the dis-
crete-time plant dynamics to hold con-
trols computed at low sample rates.

0 The resulting discrete-time dynamics are
used with the relationships presented in
Ref. 5 to derive multirate cost functional
weighting matrices.

* The multirate dynamics and cost functional
weighting matrices are substituted into
the discrete-time Ricatti equation.
Regulator gains are derived from the
periodic steady-state solution of the
Ricatti equation.

0 The pure integration function in the
forward path of the control structure is
recovered by a transformation of the
feedback variables.

The first three steps are directly analogous to the

multirate regulator design procedure; i.e., incorporation of

a slow control holding function into the plant dynamics,

computation of weighting matrices, and solution of a periodic

Ricatti equation for the gains. The last step is required to

obtain the desired integrating function in the forward path of

the control structure; this transformation is described in the

mathematical development of Sections 3.2.2 and 3.2.3.

3.2.2 Continuous-Time and Single-Rate Digital
PI Control

Continuous-Time PI Controller - The mathematical

development of the continuous-time PI control structure is

3-6
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initiated by augmenting the plant state vector, x, with the

plant controls, u, and introduction of control rate inputs, v,

to drive the augmented system, i.e.,:

---- --]+ - -] v (3.2-1)

The output, y, of this augmented system is given by:

y = -x + Du (3.2-2)

The continuous-time cost functional (with an infinite

time-horizon) to be minimized by control is given by:

J= 0 ( Ax T u AuT ) q u + VTRv dt (3.2-3)

Here Ax and Au are state and control errors relative to a non-
.L ._.

zero set point, (x , u ), i.e.,

Ax = x-x ; Au = u-u (3.2-4)

For zero steady-state output error to a step input (i.e., a

constant, non-zero set point)

d= Hx + Du (3.2-5)

also in steady state:

x = 0 = Fx + Gu (3.2-6)
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Combining Eqs. 3.2-4 and 3.2-5:

]= (3.2-7)

For the case of d and u of equal dimension, the vectors x

and u will exist and be unique for arbitrary choice of Yd if
the composite matrix has an inverse:

F F 1 1 (3.2-8)4

H 1 S 2 1  S22

Hence,

x = S 12y- ; u 22yd (3.2-9)

Noting that the dynamics of Ax and Au are also given

by Eq. 3.2-1 (for constant x and u ), regulator gains for the

augmented system can be derived by solving the time-invariant

form of the continuous Ricatti equation:

PF + F P + Q - PGR-IGp (3.2-10)

CT -R-GTP (3.2-11)

with

FG1
F oo (3.2-12)

r:o]

(3.2-13)
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The control structure that results from the gain, C, is shown

in Fig. 3.2-4. Note that the controller requires knowledge of
LJ_.

x and u , and that the control Au is low-pass filtered than

having a pure integration in the forward control path.

M-6053 1

Figure 3.2-4 Tracking Control Structure

The control structure of Fig. 3.2-2 can be converted

into the desired proportional-plus-integral structure by using

Eq. 3.2-6 to transform the feedback variables from Ax and Au

to Ax and (yd-X), i.e.,:

SG (xX)
-1-F i[ 1(3.2-14)

[(xdxY) LH DJ (-)JL(x-X) S 11  S 121
J L (3.2-15)

(u"-u) S21 $22 (d-Y)
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The control law is thus transformed:

V= C1 (x* -x) + C (u -_U) (3.2-16)

= C ifs11 k + S 12(yXd-Y)l + C2[S2 1k+s 2 2 (y-Y-)] (3.2-17)

= (C 1 S11 +C 2 S2 1 ) + (C1 S 12 +C 2 S2 2 )(Y&X-) (3.2-18)

1 
C 2 1Integrating:

(u-u ) C1 '(X-x) + C 2' ft (xd-x)dt

0

(3.2-19)

The structure of the closed-loop system described by Eq. 3.2-19
is shown in Fig. 3.2-5; the controller has the pure integrating
function which ensures that the output error, (y-y will be
driven to zero in steady-state.

Fiur 3.- rprinlC2s.nerlCoto 
tutr
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was derived from the continuous-time regulator in Section 2.3.

Again, the discrete-time representation of the augmented system

dynamics (Eq. 3.2-1) is used along with the weighting matrix

relationships of Ref. 5 to transform the continuous-time problem

into the discrete-time domain. The transformation procedure

is summarized in Table 3.2-1.

Once the discrete-time representation of dynamics and

the cost functional weighting matrices have been derived, regu-

lator gains are obtained by solution of the steady-state form

of the discrete Ricatti equation. Again, the control structure

resulting from the derived gains lacks the desired pure inte-

gration function; a transformation of the feedback variables

to obtain a pure integration of the output error, (Zd-Xk)' is

required. The solution of the optimal control problem and the

feedback transformation are summarized in Table 3.2-2.

The structure of the closed-loop discrete-time PI

controller is shown in Fig. 3.2-6. Again, the indicated inte-

grating function in the forward path ensures that the steady-

state error to constant Yd is driven to zero.

SINGLE-RATE INTEGRATING
FUNCTION

IA

Figure 3.2-6 Discrete-Time Proportional-Plus-

Integral Controller
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TABLE 3.2-1

TRANSFORMATION OF THE CONTINUOUS-TIME OPTIMAL CONTROL
PROBLEM TO DISCRETE-TIME T-2901

CONTINUOUS-TIME AIRCRAFT MODEL ERROR DYNAMICS WITH COMPENSATOR

[ F] I F .][A] o]
I= I +1 A'.

AL [0 [ AJ[

CONTINUOUS-TIME COST FUNCTION

j [A.T ATi QrAx] IT I)d

DISCRETE-TIME MODEL

=eFrs r = r
s 

eFT dG0G

Ax] * Ax rOT 21

Au 0 [1 au TI 1AkI. jk+1 .11. k LTS

DISCRETE-TIME COST FUNCTION

J k=- IIXT T A T]k- T Au

k

DISCRETE-TIME WEIGHTING MATRICEST [F o]T [F G],
q =f e Q e dt

M = e Q j e ds dt

0]0 0 s t

R T "R + 0 I [ e ds e ' d] dt
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TABLE 3.2-2

SOLUTION OF THE DISCRETE-TIME OPTIMAL CONTROL PROBLEM

T-4350

DISCRETE-TIME RICATTI EQUATION

Lk = Tk+IF+R) IF Pk+1

Pk= T(IL FT)Pk+I + Q

where 6 t-FR-±M

S___ -_ 7-.T
Q -MR

(T2
r = --T-

k s

REGULATOR GAINS

[C 1C2 ] = T-lfT + L6

PROPORTIONAL-PLUS-INTEGRAL CONTROL LAW GAINS

[C1 ' TsC2 '1 = Ts CIC2 I [ D -i

PROPORTIONAL-PLUS-INTEGRAL CONTROL LAW

k k-1 - Cl'(xk-Xkl) + TsC 2 '(Yd-Yk 1 )
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3.2.3 Multirate Digital PI Control

The extension of the PI control formulation to the

multirate case is outlined in this section. The two alterna-

tive PI structures described in Section 3.2.1 are considered.

Again, the mathematical procedure for deriving multirate PI

controllers is very similar to that used to derive the multi-

rate regulator.

Multirate PI Controller Using Integrator Hold - Formu-

lation of the multirate P1 controller using the integrators to

hold slow controls follows from a simple modification of the

augmented plant dynamics to accommodate control sequencing.

This modification is described by Eqs. 3.2-20 and 3.2-21.

6 k,ilf 1  0

0 6 k,i 2 Q2
_k = (3.2-21)

0
0

6 k~ikki0 0

0 . . . . 0 0 6k~
m m

with:

S1 ;ij~ k k
= l;i.Q.k= k (3.2-22)

The matrix, Ak, schedules the inputs to the control

integrators. For example, if u2 is updated every two cycles
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(i.e., 92 =2) the element of Ak that controls the incrementation

of u2 will be zero on cycles when k is not a multiple of 2

(i.e., when k/i2 2 ).

The multirate P1 cost functional is given by:

T ~( \ + 2 (x uT M + V
2 k=0O I-k - 'k H k -k --k kvk -1. kvkl

(3.2-23)

The matrices Qk' Mk' Rk are derived by substituting the dynamic

model given by Eq. 3.2-20 into the relationships from Ref. 5.

Qk js (tO)Q 4(t,0)dt (3.2-24)

0

tk  = ¢T ( t ,O )Q d t( . - 5

k
0s

Rk= R+J [0 T A] Q_ k dt (3. 2-26)

00

Where Q and R are the cost functional matrices corresponding

to a continuous-time P1 controller having desired dynamics.

Equations 3.2-25 and 3.2-26 can be rearranged:

Mk fs cT(tO)Q [-- dt Ak (3.2-27)

0
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T T 0 d
S R + a0 T Q - dt A (3.2-28)

k s TiIS k
0 LSI

As Eq. 3.2-27 and 3.2-28 indicate, the multirate P1 cost func-

tional matrices can be derived from their single rate counter-

parts by multiplying by Ak where appropriate.

Given the system dynamics, Eq. 3.2-20, and the set of

Qk' Mk, and Rk matrices over a complete control cycle, regulator

gains can be derived by determining the periodic steady-state

solution of the discrete-time Riccatti equation, i.e., propagate:

T~~ P + -l^TLk = F Pk+lF + R)FPk+l (3.2-29)

P T (I - L T)Pk+1 k + Qk (3.2-30)

where

0k =4 r-kik M (3.2-31)

Qk = Mk - k (3.2-32)

and the control gains in steady-state are given by:

[C1  C2 ] k = Rk Mk + Lkek ; k=1,2 .... k (3.2-33)

Again, the pure integration function in the forward path is

recovered through transformation of the feedback variables:

F(-I) r 1

[C1  TsC 2 ]k TsAk[Cl C2 ]k k=1,2, ....

(3.2-34)
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The presence of ak in Eq. 3.2-34 will zero low-rate control

gains on cycles between computations of the low-rate controls.

The control implementation of the multirate PI controller is

given by:

uk = k-i Clk(x k-kl) + TsC2k(d-k-l) (3.2-35)

This control algorithm is represented by the structure of Fig.

3.2-5.

Multirate P1 Controller Using Explicit Holding
Circuit Augmentation

If explicit holding circuit states are introduced to

hold low rate controls between updates, the PI formulation

follows a development very similar to that of the basic multi-

rate regulator; i.e.,:

" The plant dynamics are augmented with
holding circuit states

" Multirate cost functional matrices are
constructed from partitions of the corre-
sponding single-rate matrices

" Regulator gains are derived from the
periodic steady-state solution of the
discrete-time Ricatti equation

* The pure integration function in the forward
path is recovered by transformation of the
feedback variables.

The first three steps in the design process are identical to

those for the multirate regulator and, therefore, will only be

summarized here.

3-17



THE ANALYTIC SCIENCES CORPORATION

The discrete-time dynamics augmented by holding circuit

states are given by:

x 4) f Fs  0 x 0 0 vf

uf 0 1 0 0 Uf IT 0

s 0 I IT u 0 ITsA k
v 0 0 0 I V 0 lAk
S k+l s ,k

L L L L(3.2-36)

-k+ k + Fk-k (3.2-37)

Again, Ak nulls the input to the holding circuits of low rate

control increments, v s , on cycles between new computations of

those increments.

Using the dynamics given by Eq. 3.2-36 and the rela-

tionships presented in Ref. 5, the multirate cost functional

matrices are given by:

it [4-:1 (3.2-38)

"Mf Rfsk

M = (3.2-39)
ks s

Rf R fAk
R I --- (3.2-40)
k LAf s: A kk

As in the regulator case (Section 2.3) the multirate

cost functional matrices can be constructed from appropriate
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partitions of the single rate cost functional matrices (i.e..

partitions corresponding to the base rate and low rate con-

trols); Ak selects those rows and columns of the partitions to

be retained in the cost functional matrices on a particular

cycle.

Regulator gains are derived again from the steady-

state solution of the discrete-time Ricatti equation:

Lk = (FPkF + R)-lFTP+ (3.2-41)

Pk = (I-L k k)Pk+lk + Qk (3.2-42)

k = - kR k (3.2-43)

Qk = Qk - MkR-lkT (3.2-44)

and the gains are given by:

(C1 C2 C3 ) =- + Lkk ; k=1,2,... Q (3.2-45)

where C1 , C2 , and C3 multiply the plant state (x), control

(u), and slow control increment (vs), respectively. The pure

integration function in the forward path is recovered by trans-

forming the feedback variables:

IC1  TsC2 '= C Ts[C C2 C 3 k D .

0 1I

(3.2-46)
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The control implementation is given by:

u u -cX + TC+ T Gv-k -k-i -lkkk-l) + TsC2k(Xd-yk-l) sC3k-sk

(3.2-47)

3.3 EXAMPLE MULTIRATE P1 SYSTEM

The properties and performance of a multirate propor-

tional-plus-integral flight control system are described in

this section. The plant used in this example is the linearized

dynamics of the F-14 aircraft in trimmed level flight.

3.3.1 Plant Description

The plant to be controlled is the linearized dynamics

of the F-14 in trimmed level flight at an altitude of 20,000 ft

with a velocity of 183 m/sec (600 ft/sec). A discrete-time

representation based on a sample rate of 20 Hz is used:

x 1'x + Eu (3.3-1)-k~l -k -k

T
xk = (qb, w, v, rb, Pb)k (3.3-2)

= (vertical velocity, pitch rate, sideslip velocity,
yaw rate, roll rate)

uT = (6s9 6m 6 ' 6ds' 6) (3.3-3)

= (stabilator, maneuver flap, spoiler, differential
stabilator, rudder)

The values of the 4 and F matrices used in this example are

presented in Ref. 10.
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The control system will use direct measurement feed-

back (assuming appropriate instrument prefiltering) of the

three body rotation rates -- qb' rb' Pb -_ and of the normal

and lateral acceleration. Sideslip and normal velocity meas-

urements will be available at the 20-Hz base rate.

The command set (i.e., the desired system output) is

described by:

Xd =Xk + Duk (3.3-4)

T = (an' 6mf, ps, a , 6s ) (3.3-5)

Ydk n'm s y sp

= (normal acceleration, maneuver flap, stability-
axis roll rate, lateral acceleration, spoiler)

Inclusion of 6mf and 6sp implies that maneuver flap and spoiler

are commanded to nominal settings by the pilot (i.e., the pilot

does not actively command these surfaces) but are free to be

activated by the control system during transients.

3.3.2 Control System Design

The goal of the control system design is to synthesize

a multirate PI controller equivalent to that described in Ref. 10.

To this end, the state, control, and control rate weighting

matrices used to develop the multirate design are identical to

those used in Ref. 10.

The multirate PI control system structure uses the

integrator states to hold slow controls between updates. The

vehicle dynamics augmented by the control integrators are given

by:
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: [ k (3.3-6)

[k+j I Lk Ls~

The sequence of operation for the five control sur-

faces is defined in Table 3.3-1. Each row of Table 3.3-1 de-

fines the value of the diagonal element of Ak for each control

surface. As the table entries show, the control computations

are scheduled so that on any given cycle three controls are

computed; based on ten multiplications per control calculation

(neglecting addition times), the schedule in Table 3.3-1 repre-

sents a 40 percent reduction in computational load over a single-

rate (20-Hz) implementation.

Using the dynamics described by Eq. 3.3-6 and the

multirate weighting matrices defined by Eqs. 3.2-24, 3.2-27

and 3.2-28, Eqs. 3.2-29 and 3.2-30 are propagated to periodic

steady-state. The periodic regulator gains are computed by

Eq. 3.2-33 and are transformed into the PI structure by Eq.

3.2-34.

TABLE 3.3-1

MULTIRATE PI CONTROL SCHEDULE

DISCRETE-TIME INDEX, k 6s  6mf 6sp 6ds 6r

iQ+l 0 1 1 1 0

iQ+2 1 0 0 1 1

i2+3 1 1 0 1 0

ik+4 1 0 0 1 1

Figure 3.3-1 shows the values of the periodic stabil-

ator gains along with the equivalent single-rate gains. The
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2

C1Aq

~C26mf k 10

-CiAq C 26mf

0I-

,C,
(3

ClA

0 1 2 3 4 5 CYCLE INDEX
A A A

bmf COMPUTED bmt COMPUTED brnt COMPUTED

Figure 3.3-1 Stabilator Gains

pitch rate and vertical velocity proportional gains (C1  and C1
q w

vary significantly over the four cycle period; this variation

is a result of skipping the stabilator computation on Cycle 1.

The integral feedback gains, C2  and C2  , also show varia-
6mf an

tions over the control period. The effect of maneuver flap

computations on C26mf is evident from Fig. 3.3-1; C 2 6m f is

reduced significantly on Cycle 3 when a new value of 6 mf is

computed. On cycles between 6 mf computations, 6 mf is crossfed

to the stabilator; this crossfeed is reduced on cycles when a

new 6mr is computed.

Figure 3.3-2 shows the values of the differential

stabilator gains along with their corresponding single-rate
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Figure 3.3-2 Differential Stabilator Gains

values. The roll rate to differential stabilator gain is not

plotted; its value is constant over the control cycle and equal

to the single-rate value. As in the regulator example (Section

2.5.3), the roll control channel is the natural inner loop of

this system; it should be expected that the single rate and

multirate gain should be similar. The other feedback gains do

show considerable variations, particularly the yaw rate to

differential stabilator gain, C1 * The latter changes sign
r

every cycle; again, the gain variations are a result of the con-

troller using differential stabilator to compensate the Dutch

Roll mode on cycles between rudder updates.
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3.3.3 System Properties

The evaluation of the multirate PI controller presented

here includes:

* Comparison of the closed-loop eigenvalues
of the multirate P1 controller with those
of the equivalent single-rate PI controller
(i.e., the single-rate controller designed
from the equivalent weighting matrices.)

" Comparison of the multirate PI system
transient response with that of the equiva-
lent single rate system.

Evaluation of the error rejection properties of the multirate

PI controller is covered in a broad context in Chapter 4.

Eigenvalues of the P1 Controllers - The closed-loop

eigenvalues of the multirate P1 system and the equivalent single-

rate PI system are listed in Table 3.3-2. These eigenvalues

are the mapped continuous-time eigenvalues generated by the

method of Section 2.4. Some relatively small variations of

eigenvalues exist between the two controllers for the vehicle

motion modes (i.e., short period, roll command, dutch roll,

normal acceleration command, and sideslip command modes) and

some relatively large variations in the longitudinal control

(i.e., maneuver flap) and lateral control (i.e., rudder/spoiler)

modes. The small variations result from an approximation in

the augmented system control effectiveness matrix used to derive

the weighting matrices for the two control designs.

Recall that the discrete-time description of the aug-

mented system dynamics are given by:
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[E]k = [ 1Fl1 [TU Vk (337
22

TeO(Ts2) term is neglected in order that the augmented system

dynamics represent the plant dynamics coupled to the controls,

u, by zero order holds; inclusion of the O(Ts 2 ) term represents

a first-order hold implementation.

Although neglect of the O(Ts2 term is a slight approxi-

mation, the direct correspondence of the continuous-time and

single-rate digital control designs (i.e., digital weighting

matrices computed from specified continuous-time weighting

matrices) is lost. The effect of the approximation is enhanced

in the mnultirate case since the optimization problem is formu-

lated over an Q-cycle control period (in this case over four

cycles); hence, variations of the vehicle mode eigenvalues exist

between the single-rate and multirate systems. The significant

eigenvalue variations of the longitudinal and lateral control
modes reflects a difference in the optimization problem solu-

tions for the single-rate and multirate controllers. If the

maneuver flap and rudder are run at a lower rate, the optimi-

zation problem selects a lower bandwidth (i.e., a larger time-

constant) for their respective low-pass filter functions (recall

the control structure of Fig. 3.2-2 and the fact that trans-

forming to the P1 structure does not alter the system eigenvalues).

Although variations in the eigenvalues exist, the

transient responses of the two closed-loop systems are very

similar. These responses are compared next.

System Transient Responses - The primary longitudinal

control response, normal acceleration, is shown in Fig. 3.3-3
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along with the histories of the longitudinal controls. The

transient responses of the two control systems are very similar;

each has a response time of roughly one second. The multirate

system response "ratchets" at the initiation of the response

and as the response approaches steady-state; this results from

the lower computation rate of the maneuver flap and the fact

that the stabilator skips a cycle in the control schedule (see

Table 3.3-1). Since the longitudinal control deflections directly

contribute to the value of normal acceleration, any roughness

of their time histories due to low computation rate will show

up in the normal acceleration response. If the ratcheting is

unacceptable it could be eliminated substantially by using the

explicit holding circuit implementation in Fig. 3.2-2 to smooth

the response histories of stabilator and maneuver flap.

The primary lateral control mode response, stability

axis roll rate, is shown in Fig. 3.3-4. The single rate and

multirate controllers have identical responses; this is not

surprising since roll rate is achieved primarily from differen-

tial stabilator deflection which is computed at the same rate

for both syctems. Since rudder angle is computed at a lower

rate in the multirate system, differences in the lateral accel-

eration during the roll rate transient are expected. As shown

in Fig. 3.3-4, the lateral acceleration response of the multi-

rate system has the same peak value as the single rate system

but lags the single-rate response by 0.2 sec. Also, some rough-

ness of the lateral acceleration is evident in the multirate

system response due to the lower computation rate of rudder

deflections.
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3.4 CHAPTER SUMMARY

Formulation and mathematical solution of the multi-

rate proportional-plus-integral control synthesis problem has

been presented. Two alternative formulations of the multirate

P1 controller are developed: one in which the low-rate controls

are held between updates by the PI structure integrators and

one in which additional holding circuit states are used to

smooth low rate controls between u.pdates.

Although the example P1 designs presented in this

chapter were derived from the same continuous-time cost func-

tional matrices, the eigenvalues of the single rate and multirate

systems differ. The differences in the eigenvalues are attri-

butable to an approximation in the discrete-time representation

of the augmented plant dynamics and variations of the optimiza-

tion problem solution for the low-pass filtering portion of

the control structure. The transient responses of the single

rate and multirate systems are very similar; some rough response

phenomena may be observed due to lower sample rates of secondary

controls (e.g., maneuver flap, rudder). Although the eigenvalue

variations and rough transient response phenomena are present

in the multirate design, derivation of the multirate cost func-

tional matrices from those of an acceptable single-rate system

still offers a systematic design approach for multirate PI

controllers.
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4. ROBUSTNESS OF MULTIRATE DIGITAL CONTROL SYSTEMS

4.1 OVERVIEW

In the development of the multirate regulator and

proportional-plus-integral controllers the primary design cri-

teria were related to the transient response of the system;

i.e., the multirate system should have the same transient

response characteristics (response time, overshoot, etc.) as a

specified continuous-time system. Since most flight control

system specifications are written in terms of deterministic

response characteristics (or frequency domain parameters such

as natural frequency and damping ratio) the synthesis technique

developed in the present study is a straightforward, systematic

means of meeting system specifications in a multirate

implementation.

The very important issue of relative stability, or,

robustness, of the system may not be addressed if one designs

only to specifications related to deterministic response charac-

teristics. Robustness is quantified by many methods (e.g.,

phase/gain margins, disturbance rejection bandwidth) but generally

represents some measure of the system's ability to resist distur-

bances and tolerate design uncertainties. Robustness is a

very real concern in flight control applications. The designer

never has exact knowledge of the vehicle aerodynamics or the

flight condition; accordingly, the flight control system must

be designed to tolerate uncertainties, remain stable, and per-

form within a specified range of handling qualities.
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Evaluation of robustness requires an additional con-

sideration in digital systems. Consider the situation of two

digital state estimators for the same system operating at dif-

ferent sample rates. Figure 4.1-1 shows, heuristically, the

effect of sample rate on the two estimators; the error variances

of the estimator operating at the low sample rate (Fig. 4.1-1a)

have a longer period of time to grow between measurement updates

and, hence, are larger than those of the system operating at

the higher sample rate (Fig. 4.1-1b). An analogous situation

arises in controllers; the higher the sample rate, the less

time for disturbance-induced errors to accumulate between control

updates. R-50840

o 0

U CC LL

> >

TIME TIME

a) STANDARD SAMPLE RATE b) INCREASED SAMPLE RATE

Figure 4.1-1 Error Covariance Histories of Two
Single-Rate Estimators

Robustness evaluation takes on a further dimension

in multirate digital systems. Consider, for example, the error

variance history of roll angle for the example estimator of

Section 2.5; Figure 2.5-2, which shows the error variance history

of the example estimator, is repeated in Fig. 4.1-2. 1'he error

variance of roll angle varies on two time-scales: errors

4 - 2
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Figure 4.1-2 Roll Rate Gyro to Roll Angle Gain and
Error Variance of Example Estimator

grow over a 25 cycle period between roll angle measurements

and also in a "sawtooth" manner as the roll rate gyro measure-

ments are used. Again, a similar situation exists in multirate

control systems; errors may accumulate at multiple rates.

Evaluation of error accumulation characteristics of multirate

digital systems requires evaluation of the error variance his-

tory over a complete estimation/ control cycle.

A case study in robustness properties of a multirate

flight control system is presented in this chapter. The example

considered is the F-14 aircraft controlled by a multirate pro-

portional-plus-integral (PI) controller. The aircraft/controller

system is "flown" through a turbulent atmosphere; a covariance

analysis of state variable errors determines the ability of

the controller to reject turbulence-induced errors. The con-

triV-r sample rate and control sequence are varied to determine

4-3
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their influence on the disturbance rejection properties of the

controller. Finally, a rudimentary proposal of a sample rate

optimization scheme based on a robustness/computation tradeoff

is presented.

The organization of this chapter is as follows: the

mathematical formulation of the flight-through-turbulence dy-

namics and the corresponding error covariance equations is

presented in Section 4.2. The results of the covariance analy-

sis, considering variations of sample rate and control sequence,

are presented in Section 4.3. The chapter is summarized in

Section 4.4.

4.2 MATHEMATICAL FORMULATION

The mathematical models and covariance analysis tech-

nique used to evaluate the robustness of the multirate system

are decribed in this section. The mathematical models of the

aircraft and turbulence disturbances are outlined in Section

4.2.1; the controller and pilot model are described in Section

4.2.2; the covariance equations are derived in Section 4.2.3.

4.2.1 Vehicle/Disturbance Dynamics

The example vehicle is described in Chapter 3, i.e.,

the F-14 aircraft in trimmed level flight at an altitude of

20,000 ft and an airspeed of 183 m/sec (600 ft/sec).

The open-loop dynamics of the vehicle (including

stability axis roll angle) are given by Eqs. 4.2-1 through 4.2-3.

The dynamics matrix, F, is partitioned by columns and the tur-

bulence-induced disturbances, vg, rg, and pg, are added to the

state vector on the right hand side of the equation.
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dL L v -r - 4 r+r + Gu (4.2-1)

d p P+Pg |

= p cos a + r sin a (4.2-2)

T = (6sp 6ds, 6 r )  (4.2-3)

or, regrouping terms:

x = Fx + Fcxd + Gu (4.2-4)

T (v, r, p, c) (4.2-5)

T
xd  = (v , r , p ) (4.2-6)

with -

a= (4.2-7)
10 sina cosa 01

= v r p (4.2-8)Fc o 0 0

= [ -0 ] (4.2-9)

The dynamics of the lateral turbulence disturbances --

Vg, rg, and pg -_ are determined from the Dryden turbulence

spectra (Ref. 11). A second-order Markov model having an out-

put spectrum equal to the Dryden spectrum of sideslip velocity

is shown in Fig. 4.2-1; the state space realization of this

model is given by Eq. 4.2-10.
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R--42736

w N (0,1)

Figure 4.2-1 Sideslip Dynamics Realization

-= [+[ v  w (4.2-10)

w - N(0,1)

The output spectrum of this model is given by Eq. 4.2-11. The

parameter transformations from the spatial frequency domain

(i.e., turbulence scale, Lv , and wave number, Q) to the tem-

poral frequency domain are given by Eqs. 4.2-12 and 4.2-13.

The spectrum parameters are listed in Table 4.2-1.

2 V 2 + 3w2 )2vv v 1 2 1 22 (4.2-11)
vv v 7 1 0 2+ w2 )2

V (4.2-12)61-Lv

W =V (4.2-13)

The yaw ra.e disturbance is derived from the follow-

ing relationship (Ref. 11):

8v

rg = - (4.2-14)g ax

where x is the longitudinal distance from the instantaneous
c.g. position of the aircraft.
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TABLE 4.2-1

SIDESLIP TURBULENCE PARAMETERS - DRYDEN MODEL

PARAMETER DESCRIPTION VALUE

av  RMS sideslip velocity 5 ft/sec

V Airspeed 600 ft/sec

Lv  Turbulence length scale 1750 ft

Pv Spectrum break frequency 0.338 rad/sec

Spatial frequency (wave number), variable

W Temporal frequency variable

or

rg v (4.2-15)r V at

Using the dynamic model for v :

rg_ I - + I lW (4.2-16)rg V I-piVg ' ix2 ' v

The spatial spectrum of the roll rate disturbance, pg,

is given by Eq. 4.2-17 (taken again from Ref. 11):

a 2 0.8 (nL 1/3

(0) _ w (4.2-17)9 w +[4b)Q

With the wingspan, b, equal to 64 ft (i.e., the F-14) and at

an airspeed of 600 ft/sec, the temporal bandwidth of the roll

rate spectrum is 7.25 rad/sec. Since the temporal bandwidth

of the roll disturbance is roughly twenty times the bandwidth
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of the sideslip disturbance, roll disturbance will be approxi-

mated as an uncorrelated (i.e., white) process in the dynamic

analysis. The RMS value of the roll rate disturbance is given

by Eq. 4.2-18.

E(p 2 ) (.Lwis)0.8 ( (4.2-18)

with

Lw = 1750 ft (4.2-19)

aw = 5 ft/sec (4.2-20)

E(pg2 ) = 3.08xi0 4 rad 2/sec 2  (4.2-21)

or

0 pg = 0.7 deg/sec (4.2-22)

Combining the turbulence model dynamics with the

vehicle dynamics, the following augmented system is obtained:

x FR + Gu + Adw (4.2-23)

with

R = (v, r, p, , vg, x2 ) (4.2-24)

w. N(0,1) (4.2-25)1'
F (4.2-26)

Fd8
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G = - - (4.2-27)

_v + E-- Fr  -V-

Fc 0 (4-2-28)

F d =(4.2-29)

3 -F

3L i rF F o
-l rav -p p

0 0
A d (4.2-30)dlov 0

0

The discrete-time equivalent of the dynamics described

by Eqs. 4.2-23 through 4.2-30 is:

-k+l = 4Xkk + Fuk + wk (4.2-31)

with

T T T )T
E(wkWk) = s 4(s)(AdAd )4)(s) ds (4.2-32)

=Qd
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4.2.2 Controller and Pilot Model

The controller used in this example is a multirate

proportional-plus-integral (PI) controller designed to the

same closed-loop specifications as the design example of Sec-

tion 3.3. The control sample rates and sequencing are varied

to determine their effect on the disturbance rejection per-

formance of the system. Since the purpose of the controller,

in this case, is to maintain a zero set point (i.e., trimmed

level flight) as accurately as possible, the control law is

implemented in its type-0 form; the feedback variable trans-

formation to obtain a pure integration in the forward control

path is not performed. The control law is implemented by Eq.

4.2-33.

uk = -TsC 1xk- + (I - TsC2)uk-l (4.2-33)

The controller design regulates only the "inner loops";

i.e., sideslip velocity and angular rates are compensated by

the controller. The regulation of the vehicle attitude is

performed by the pilot (i.e., the pilot keeps the wings level).

In this case, the pilot senses stability axis roll angle error

and feeds back a roll rate command (i.e., lateral stick and

rudder pedal inputs) proportional to the error. A pilot sensi-

tivity of -1 (deg/sec)/deg was chosen for this example. Using

the body axis roll and yaw rate dynamics and the stability

axis roll rate equation (Eq. 4.2-2), pilot to differential

stabilator and rudder gains were determined to produce -1

(deg/sec)/deg about the stability roll axis in steady-state;

these gains are given by Eqs. 4.2-34 through 4.2-35.

KT = (0, CP, CP) (4.2-34)
p p6  p6ds r
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C = 0.15 (deg/sec)/deg (4.2-35)
P6 ds

C = -0.018 (deg/sec)/deg (4.2-36)P6
r

In the next section, the vehicle and turbulence models

are combined with the control functions described in this sec-

tion to form an augmented closed-loop system. The disturbance

rejection properties of this system are evaluated.

4.2.3 Covariance Analysis

The vehicle and turbulence models and the control

functions described in Section 4.2.2 are combined into a single

system given by:

x - ;- IC2 c [xk
s 2

(4.2-37)

or

X+l ='x +w' (4.2-38)k-k k

0: I
E (Ww T) = 0 0 0 (4.2-39)-t-- --- , -  - --

Q121 0 Q2 2

= Q1 (4.2-40)

The partitions of the dynamics matrix in Eq. 4.2-37 are

defined by Eq. 4.2-41.
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vehicle dynamics : control effectiveness , coupling

proportional controls: pilot gains low-pass controls 0
S-------------- ..------ - ----------

0 0 :turbulence dynamics

(4.2-41)

The $, c , and ctVd matrices are determined from partitions

of the coupled vehicle/disturbance dynamics described in Section

4.2.1 (i.e., Eqs. 4.2-23 through 4.2-32).

exp L (4.2-42)

Similarly, the matrices Ql, Q2 , and Q12 are defined by (see

Eq. 4.2-32)

FQ1l Q121T -- -- -(4.2-43)

LQ12: Q22J

The discrete-time covariance equation for the augmented

system given by Eqs. 4.2-38 and 4.2-40 is:

Pk+l = ckPk'k T + Q 1 (4.2-44)

In steady-state, the solution of Eq. 4.2-44 is periodic with a

period equal to the control schedule period, k, i.e.:

Pk+k = Pk (4.2-45)
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Propagating Eq. 4.2-44 over 2 cycles and using Eq. 4.2-45, one

obtains:

J*pk.* *'
P PP k * + Q  (4.2-46)

where

k+ k+ -2 .. (' k (4.2-47)

k+Q - 1

Qi 4) QF.Q'T + Qf+(4.2-48)

i=k+l

(P. 1¢ (4.2-49)

To determine the periodic steady-state solution to Eq. 4.2-44,

the full-period covariance equation, Eq. 4.2-46, is solved;

the remaining values of Pk over the complete control cycle are

determined by propagating Eq. 4.2-44 for 2-1 cycles.

The mathematical formulation presented in this sec-

tion was applied to the flight vehicle example. The results

of this analysis are presented in the following section.

4.3 ROBUSTNESS EVALUATION

The mathematical formulation of Section 4.2 is applied

to an example here. The sample rate and schedule of the con-

troller described in Section 4.2.2 are varied to determine

their effect on the disturbance rejection properties of the

system.
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The performance index for the control system is the

sum of the stability-axis roll angle and sideslip angle covar-

iances, i.e.:

J = P4 4 + PII/V
2  (4.3-1)

This choice of performance index gives equal weighting to devia-

tions from wings-level flight and undesired sideslipping (with

attendant lateral acceleration). In the example considered

here, periodicity of the covariance equation solution was ob-

served. The variations of the variances of interest were in

the fourth significant figure; for this case, a figure of merit

based on average values of P1 1 and P4 4 is adequate.

The results of the covariance analysis/figure-of-merit

computation for a matrix of differential stabilator-rudder

schedules is presented in Fig. 4.3-1. Here the base sample

rate is 40 Hz (Tp = 0.025 sec) and the control period is 8

cycles (0.2 sec). As shown in the figure, the three curves

indicate the performance of the system for three rates of dif-

ferential stabilator computation (i.e., number of differential

stabilator computations every 8 cycles) as a function of rudder

computation rate. In all cases, reducing the number of rudder

computations performed during the 8 cycle period increases the

performance index; this is primarily due to the increase in

sideslip covariance as the rudder rate is reduced. Similarly,

as the number of differential stabilator computations is reduced

the covariance of roll angle error increases thereby increasing

the performance index.

A potential trade-off of performance and computational

load can be identified at this point. Suppose that it is
2

desired that the performance index have a value of 0.8 deg or

less (indicated by the dotted line in Fig. 4.3-1). The cross-
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Figure 4.3-1 Performance of Multirate System as

a Function of Control Sequence

poofJ 8dg 2 itaNd/raxis system is shown in Fig.

4.3-2. Since each differential stabilator or rudder control

computation "costs" the same (i.e., each involves the same

number of multiplications and additions per computation) curves

of constant computational burden can be represented by the dashed

straight lines plotted in Fig. 4.3-2. The tangent intersection

of the Nt = 6 line with the J :0.8-deg2 curve indicates that

the desired performance can be achieved with the minimum number

of computations if the control schedule includes 4 differential

stabilator and 2 rudder computations per S-cycle period.

Here for a desired level of system performance a

graphical technique is used to optimize the sampling policy

4-15
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R -606 18
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2
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Figure 4.3-2 Sampling Policy Optimization for a
Fixed Level of Performance

(i.e., minimize the number of computations). In aircraft con-

trol applications, the sample rate optimization problem is

posed differently; the computational budget is fixed and the

designer endeavors to optimize system performance within this

budget. A graphical conception of the performance optimization

problem is shown in Fig. 4.3-3. The computation budget is

represented by a single straight line; the optimal sclution is

the tangent intersection of the highest performance level curve

with the computation budget line.

The graphical methods of performance/computation opti-

mization described here can be cast into a general mathematical

optimization framework. The development of such a general

mathematical1 technique is discussed in Chapter 5.
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Figure 4.3-3 Performance Optimization for a
Fixed Computation Budget

4.4 CHAPTER SUMMARY

In this chapter a methodology for evaluating the

robustness of a multirate system is presented. This method-

ology is based on steady-state covariance analysis of the multi-

rate system with variations of control schedule to determine

disturbance rejection sensitivity to control computation rates.

The control error covariance of a multirate system is

periodic in steady-state with a period equal to the control

schedule period. The periodic history of the steady-state

covariance solution is obtained by constructing and solving a

Liapunov equation which represents the full control period
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covariance dynamics (Eq. 4.2-46), then propagating the cycle-
to-cycle covariance equation (Eq. 4.2-44) over the control

period.

The robustness of an example multirate system is eval-
uated as a function of control scheduling. As expected, the

disturbance rejection performance of the example system is
degraded by lower sample rates of the controls. An approach

for optimization of the performance/computation tradeoff is

presented; this approach can be cast in a general mathematical

optimization framework.
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5. CONCLUSIONS AND RECOMMENDATIONS

This report presents new techniques for the synthesis

and analysis of multirate estimation and control algorithms

with applications to flight control system design. Topics

addressed in this report include multirate state estimator and

controller design, design of multirate proportional-plus-

integral controllers, eigen-analysis of multirate systems, and

robustness of multirate control systems.

5.1 CONCLUSIONS

This investigation provides the following significant

results:

" Optimal Multirate Estimator - The optimal
multirate estimator is characterized by
periodically time-varying gains having a
period equal to the number of discrete
time-steps over which the measurement
schedule repeats itself. The error co-
variance of the multirate estimator varies
over the measurement schedule and also
from cycle-to-cycle as high-rate measure-
ments are used to improve extrapolations.

" Optimal Multirate Regulator - A systematic
procedure for synthesizing optimal multirate
regulators is developed. This procedure
produces a multirate regulator which
minimizes the same performance index
used to design a continuous-time regulator
which meets desired specifications. The
present technique also obviates dimension-
ality problems typically encountered in
applying classically-based techniques to
multirate systems.
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* Proportional-Plus-Integral Controller -

The multirate regulator synthesis proce-
dure is extended to the proportional-plus-
integral (PI) control structure. Again,
the design procedure prescribed here pro-
duces a multirate PI controller which
optimizes the same cost functional as a
prescribed continuous-time system.

0 Robustness of Multirate Controllers - A
covariance analysis methodology for eval-
uating the disturbance rejection properties
of multirate control systems is developed.
This technique is applied to a flight
control example; the trend of reduced
resistance to disturbances with lower
sample rates of the controls is quan-
tified by this technique.

* Sample Rate Optimization - A solution to
optimization of the performance/computa-
tion tradeoff is demonstrated graphically.
For a given level of performance, a con-
trol schedule that minimizes the rate of
control computations is determined.

5.2 RECOMMENDATIONS

It is recommended that the following studies related

to the present investigation be undertaken.

* Mathematically formulate the sample rate
optimization problem. Develop an algo-
rithm to solve this problem for the gen-
eral multirate controller. Investigate
the properties of the optimal solution
through a design example.

0 Investigate the related field of pertur-
bation methods (i.e., system decomposi-
tion by scaling fast and slow dynamics).
Determine benefits of incorporating per-
turbation methods in the multirate design
process; a specific area of application
would be in active control of vehicle
flexibility modes.
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Application of the techniques developed in this
report to a practical flight control system
implementation.
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APPENDIX A

MATHEMATICAL DERIVATION OF MULTIRATE REGULATOR
WEIGHTING MATRICES

In this appendix derivations of the weighting matrices

for the multirate regulator design are presented. The intent

is to determine the weighting matrices for the multirate design

that will yield a cost functional equivalent to that of a speci-

fied continuous-time design. The approach is to modify appro-

priately the continuous-time matrices to account for the addition

of the slow control holding circuit, then use these matrices

along with the discrete-time dynamics of the augmented plant

to derive the discrete-time weighting matrices.

The development shows that the weighting matrices for

the multirate design can be constructed from partitions of the

single-rate (high rate) weighting matrices (as was described

in Section 2.3). In order that the constitutent partitions of

the multirate matrices can be readily recognized, the single-

rate wieghting matrices and their appropriate partitions are

derived in Section A.l. The multirate matrices are derived in

Section A.2; the partition correspondence of the single-rate

and multirate matrices is also indicated.

A.1 SINGLE-RATE WEIGHTING MATRIX DERIVATION AND PARTITIONING

Before applying the relationships of Ref. 5 to derive

the multirate weighting matrices, the single rate control weigh-

ting and state-control cross-weighting matrices are derived and

partitioned. To this end, Eqs. 2.3-21 and 2.3-22 are expanded.

A-i
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.RT5 +f T s rTQrdt (A. 1-1)

0

with

R 01

R = (A. 1-2)

0 R

Rf 0 T r fT

= s  s- --- Q (rf s)dt (A.1-3)
0 R rT /

L i s° L s ss

IT
T sf 0 Tsf:r f

=1 (A.1-5)

LR~ R]

M Q(r rs)dt (A.1-6)

0

= m Is (A.1-8)
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As the following development shows, the multirate

weighting matrices can be constructed using the partitioned

single rate matrices, Eqs. A.1-5 and A.1-8.

A.2 MULTIRATE WEIGHTING MATRIX DERIVATION

The first step in deriving the multirate weighting

matrices is to modify the continuous time weighting matrices,

Q and R, to account for holding circuit state augmentation.

The modified forms of the continuous-time weighting matrices

are determined by considering the equivalent continuous-time

dynamics of the augmented system, Eq. 2.3-23:

xF G s  x Gf 0 f
+ -- (A. 2-1)

!s 0 0 u 16(t-ikTs  v '

Here the slow control holding circuit is represented as an

integrator; the impulse function, 6(t-ilTs), in the augmented

control effectiveness matrix allows the increment function, v,

to make discontinuous changes in u s at t = i£T. If the continu-

ous-time control weighting matrix for the non-augmented system

Eq. 2.3-8 is restricted to the form

R -- T--(A.2-2)

(i.e., no cross-weighting of uf and vs) the weighting matrices

of the augmented continuous-time system are:

A-3
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F
- -- (A.2-3)

ii.

0 R

Rf0

(A.2-4)

0 0

The cost functional constructed from and is identical to

that of the non-augmented system, Eq. 2.3-9 (as is desired);
i.e.:

0 0 R
(x TuT (.T V Td

0 1

(A.2-5)

if {xTQx + uTRu~dt (A.2-7)

0

Note that A assigns no penalty to v; the control u is penal-

ized, but discontinuous changes in u s are not penalized.

The multirate cost-functional matrices -- Q, M, R --
used in Eqs. 2.3-24 through 2.3-30 are now derived using Eqs.

A.2-3 and A.2-4. The multirate augmented state weighting matrix

is time-invariant; it is derived as follows:
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f s ;Tdt (A.2-8)

0

T 0 Q 0 o , r
SQ I I

I If T ,

s  1 0' Rs L
J

(A. 2 -9)

T ITQ TQFs

=dt (A.2-l0)

T T
T0 sQ 0 sQ s+R

^ I

- -I- -- (A .2-10 )

TeRand M matrices vary (in dimension) depending on

whether or not both fast and slow controls are being updated

on a particular cycle. On a cycle when both controls are up-

dated (i.e., a major update), the following relationships for

and ii are applied:

' ~ 0f T  T f r

Ri s  }, + ... ... .. dt

r Q0 r sT+

0 SS

(A.2-12)
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T I T

T5 R f + rfTQrf rfTQrs

L ---------- ---------- ] dt (A.2-13)
0FrT Qr f  Rs  + rsTQrs

R i£ =(A.2-14)

0 TQ 5 r~fTs sf t(.-6

ji .. .. t (A. 2-15)

0 T
T I) 0 Q 0 If r

s s

f - dt (A.2-15)

f Ms

0 r - (A.2-17)

TA 6

msf ms

On cycles when only the fast control is updated (i.e.,

a subinterval), the order of the control vector is reduced,

i.e.:

Uu f (A.2-18)

rk - -- (A.2-19)
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Accordingly, the following expressions for R and M are obtained

by truncating Eqs. A.2-14 and A.2-17.

ik = 'Rf (A.2-20)

Mf

Mk  = --- , (A.2-21)

R 
sf

As Eqs. A.2-14, A.2-17, A.2-20, and A.2-21 indicate, the Q, M,
and R matrices for the multirate design can be constructed

from appropriate partitions of the equivalent single rate weigh-

ting matrices: Q, M, and R. This method of weighting matrix

construction is very advantageous since software packages to
compute the single rate weighting matrices are already in common
usage. Again, the regulator derived from these matrices has

identical transient response characteristics to the single-rate

and continuous-time systems.

A-7
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APPENDIX B

MATRICES FOR EXAMPLE MULTIRATE SYSTEM

The matrices used in the example estimation/control

system design of Section 2.5 are listed here . The notation of

Sections B.1, B.2, and B.3 corresponds to that used in Sections

2.5.1, 2.5.2, and 2.5.3, respectively.

B.1 PLANT/MEASUREMENT DESCRIPTION

Discrete System Dynamics:

0.9904E 00 -0.1585E 00 0.3279E-01 0.3504E-02

-0.4447E-01 0.9970E 00 0.5580E-04 -0.6688E-04

-0.4033E 00 0.5021E-01 0.9465E 00 -0.1393E-02

-0.3256E-01 0.3173E-02 0.1559E 00 0.9999E 00

(B.I-1)

Fast Control Effectiveness (Aileron):

1942E-021
rf 0.3727E 00i (B.1-2)

03009E-O01

*The numerical values presented here are given in standard

"E format"; the notation EsNN indicates a factor of 1 0 sNN
For example, 0.10OOE-02 is equivalent to 0.001.

B-1
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Slow Control Effectiveness (Rudder):

0.497 6E-021
-0.2632E-01

Fs 0.1304E 00 (B.1-3)

S.1054E-Olj

Process Noise Covariance:

04002E 01 -0.4115E 00 -0.7548E 00 -0.3688E-01
4115E 00 0.3987E 01 0.1053E 00 0.5245E-02

Q 0.7548E 00 0.1053E 00 0.4023E 01 0.3173E 00
L03689E-01 0.5245E-02 0.3173E 00 0.3372E-01j

(B.1-4)

B.2 MULTIRATE KALMAN FILTER

High Rate Measurement Sensitivity:

0O.1020E 01 -0.1318E-02 -0.5319E 01 0.5620E 0ol

H f OOOOO 01 0.1000E 01 o .OOOOE 01 .OOOOE
.OOOOE 01 0.OOOOE 01 0.1000E 01 0.OOOOE 01

(B.2-1)

INS Measurement Sensitivity:

H = (0.OOOOE 01 0.OOOOE 01 O.OOOOE 01 0.1000E 01)

(B.2-2)

High Rate Measurement Noise:

0.4000E 01 O.OOOOE 01 O.OOOOE 011
Rf .OOOOE 01 0.2500E 00 0.OOOOE Ol (B.2-3)

.0000E 01 0.OOOOE 01 0.2500E 00J

B-2
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INS Measurement Noise:

Rs=0.4000E-0l (B.2-4)

B-3 MULTIRATE REGULATOR DESIGN

Continuous-time State Weighting Matrix:

rO.1000E-01 0.0 0.0 0.0
0.0 0.2500E-02 0.0 0.0

0. . 0.2500E-02 0.0 ]

(B.3-1)

Continuous-time Control Weighting Matrix:

R 0.0~oo 0 .2500E 00] (B.3-2)

Discrete-time State Weighting Matrix (Single Rate):

F0.1610E-02 -0.1378E-03 -0.6053E-04 -0.6694E-04
I-0.1378E-03 0.4120E-03 0.5617E-05 0.5552E-05

-0.6053E-04 0.5617E-05 0.4330E-03 0.5033E-03
L-0.6694E-04 0.5552E-05 0.5033E-00 060E0

(B.3-3)

Discrete-time Control-State Cross Product Matrix (Single Rate):

r-0.4594E-03 0.2006E-021
I-0.l166E-03 0.7041E-03

M 1  0.5571E-04 0.1610E-02 I(B.3-4)
L-0.1199E-03 0.5649E-03J

Lo ~ B-3 =
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Discrete-time Control Weighting Matrix (Single Rate):

R O.6988E-05 0.4002E-051(.
-[4002E-01 0.6988E-05] (.-5)
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APPENDIX C

NEWTON'S METHOD SOLUTION OF THE
PERIODIC RICATTI EQUATION

A method for finding the steady-state solution of the

periodic Ricatti equation of multirate control design is pre-

sented in this appendix. The Liapunov equation derivation

presented here is a revised development of an original deriva-

tion in Ref. 1; the starting solution algorithm was developed

as part of the present research activity.

It is desired to determine the periodic steady-state

solution to Eqs. 2.3-26 and 2.3-27:

Lk = (r kPk+rk + Rk) rkPk+1 (2.3-26)

= +l (2.3-27)

P k = e( Lk- )Pk+l 0k + Qk (2.3-27)

where 6k and Qk are as defined by Eqs. 2.3-28 and 2.3-29.

Equation 2.3-27 can be written in the form

Pk = e k(Lk k)Pk+1(I-rkLk);k

+ k k(I'Ik rT)Pk+lrkLk k + Qk (C-1)

and Eq. 2.3-26 as:

C-1
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(kPk+lrk + R k)Lk=r kPk+ (C-2)

Substituting Eq. C-2 into the second term on the right hand

side of Eq. C-i, the following form of the Ricatti equation is

obtained:

k= OI(IrkLk )TPk+(lrL) + L kLk + Qk (C-3)

or

Pk - kTk+l k + Qk (C-4)

with

ek (I-rkLk)ek (C-5)

Qk k L k R kLk (C-6)

Propagating Eq. C-4 backwards in time from cycle k=2 to cycle

k=0 and using the property that in steady-state:

P0 = PA (C-7)

one obtains:

A *Ta
P1 = Tp0 + Q (C-8)

where

* =I1l-1It-2 ... O (C-9)

t-2
Q* =Ql +  0 gT=eTl .. e TE kk+l (1-2)-k0(-l)-k (1-2)-k ... Tk+lk

k=0

C-2



THE ANALYTIC SCIENCES CORPORATION

The periodic steady-state solution of the multirate

control Ricatti equation can be obtained by iteratively solv-

ing the Liapunov equation given by Eq. C-8 to find P, then

stepping through Eqs. 2.3-26 and 2.3-27 cycle-by-cycle to

determine P1 through P£-I This solution approach is essen-

tially an extension of Newton's method to the multirate case.

Newton's method offers quadratic convergence of the solution

as opposed to linear convergence that would be obtained by

propagating Eqs. 2.3-26 and 2.3-27 to steady-state; hence,

Newton's method is computationally more efficient than direct

propagation of the Ricatti equation. Figure C-1 is a flow

chart of the present solution method; the notation (X)i indi-

cates the i th iterative value of variable X.

Note that an initial value, (Pk) 0 ' is required to

start the algorithm. This starting value must yield a stable

matrix, otherwise a solution to Eq. C-8 will not exist. A1
method for generating a stable starting solution for the single

rate case is presented in Ref. 12; that method is extended

here to the multirate case.

The generation of an initial value of P is accom-

plished by the following steps:

0 The system dynamics are formulated over
a complete control cycle.

*
0 An initial value of e is computed using

the full cycle plant dynamics and the
method of Ref. 12.

0 A set of gains, C , is generated over
the k cycle perio8 using intermediate
computations from the second step.

*
* An initial value of Q is computed using

the gain set computed in the third step.

C-3
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R-6 248
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0 Equation C-8 is solved to generate the

initial value of P

The dynamics of the plant over the £ cycle period can

be described by:

'r ' : 2-
k+.2 -k + i'k+k- JFk+k-2' k+2-31 .'k+1-

Hk+f£-2

I ,kk

(C-11)

or

Xik+k k + Buk

The control weighting matrix for the plant described by

Eq. C-11 is:

Rk+k 1  0 0 . . . 0

0 Rk+k- 2  0 0

R* 0 (C-12)

0 0 ........... Rk

C-5
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Using the results of Ref. 12 directly on Eqs. C-1l

and C-12 one obtains (setting k0O with no loss of generality):

(6*)0 = (I+SV 1)0 1 40 (C-13)

with

V-1 =( *T% W-1 ,*n (C-14)

n-i

Wnl = ~ *jS(4,*T)j (-5

j =0

i=O

4* 4 (C-17)

The control gain history is derived from

SR" B V 0X0 (C-18)

or

-1T I

XO (C-19)

-o ~ Rk rk (

It is desired to find the u.Is in terms of the x.'s toI-

determine the gain set (i.e., the Ci Is); this can be accomplished

by using the following expression of the plant dynamics:

c- 6
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(i-l)-j

_j 4i1__i (C-20)

i=O

Substituting for the u i 's using Eq. C-19:

(£-1)-j

-j (I + 0( r ()V ) 4  i
(C-21)

Solving for $£x__ o :

0 kx ((2-1- )i -1T kl-

€tx : (I + 1 1i(4 ) (  V - 1 -l j x k

i=0

(C-22)

Substituting Eq. C-22 into Eq. C-19:

I-1 T) V S (-li.l. (^VT)(£-l)-iV )-I
j R -j j -1 ( 1 1_p_ (41 -I(I

i=O

(C-23)

or

(k - -j-- i T j1(2-1)-i^ ^- iFT ( 9(-)-i v  )-1¢j-1 4,
k-j 2 - k_j . (T j I _I + i:O 4 4T -1 -

(C-24)

= .4j ; j : 1, 2, ... 2

(C-25)

C-7
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Using the initial gain set given by Eq. C-24 and C-25, (Q*)o is

computed (Eq. C-10). Finally, (P )o is computed by solving:

* T) (P)o(*) + (Q*)o (C-26)

Again, (0) computed by the present method will be stable and,

hence, a solution to Eq. C-26 will exist.

C-8
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