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[.  INTRODUCTION

The desirable qualities of microstrip antennas, such as light weight, Tow
profile, ease of manufacture, conformability, and low cost, make them attractive
choices for many applications. In fact, the microstrip is the only type of antenna
which can claim all of these attributes in a single package. It comes as no
surprise then that much recent activity has centered on analyzing the microstrip
antenna.

The early designs utilizing microstrip elements were based on empirical
knowledge of the antenna's properties [1]. The antenna input impedance was first
measured, then a matching network was designed to match the antenna to fifty ohms.
The antenna was then rebuilt to incorporate the matching network on the same
substrate. Clearly, this is an inefficient procedure, and it was not long before
a theory was developed to predict impedance and pattern information.

The first analysis of the microstrip radiator [2,3] modeled it as two
radiating slots connected by a low impedance transmission line. This theory is
limited in that it can only be applied to rectangular patches, and fails %o
predict the impedance locus accurateiy, in particular, its shift into the
inductive side of the Smith Chart. Moreover, this theory cannot predict the

occurrence of radiation from all four sides of a singly fed patch, an important

mechanism for many commonly excited modes.

Recently, a more comprehensive theory has been presented by Lo and Richards
[4-6] which enables one to predict the important properties of a wide variety of
microstrip antennas in detail. This theory treats the antenna as a resonant
cavity, bounded above and below by an electric conductor, and on the perimeter by a

magnetic conductor. By means of this theory, the impedance locus and radiation




patterns for any feed location may be accurately predicted. The theory has also
been extended to multiport analysi. and, in this report, is extended to the
design of circularly polarized microstrip antennas.

Circular Polarization (CP) has been reported in a variety of microstrip
antennas [5,7-9]. Experimental work was recently reported on a class of CP
antennas derived from disk and square antennas by cutting slots in their interiors
or corners off their perimeters. For all these antennas, the theory presented in
this paper provides an explanation for the mechanism of antenna operation, and
in some cases, provides a means for predicting the exact dimensions needed for
achieving CP operation. This is important because CP operation is possible only
for a very narrow band of frequency, and without a theoretical prediction, many
painstaking cut-and-trials would be necessary. In this report a new type of CP
antenna is described. The operating frequency of this antenna may be tuned over
a relatively wide bandwidth. Also, the antenna polarization is electronically
adjustable from CP to linear polarization to CP of the opposite sense, or any

i arbitrary polarization within these limits.

F A major limitaticen of the microstrip antenna is narrow bandwidth, a character-
istic of all resonant structures. Several methods of bandbroadening have been
considered in the Titerature, such as stacking [10] or array structures [17].
Stacked structures suffer the disadvantage of greater overall antenna height
and increased cost due to manufacturing complications. Furthermore, it seems
likely that increases in bandwidth gained by stacking antennas could be realized
more conveniently by simply increa.ing the substrate thickness of a conventional
microstrip antenna by an eguivalent amount. Since current interest is focused
on very thin structures, the stacking method is not examined in this report.
Instead, a corporately fed array of two microstrip elements of slightly

different dimensions is considered. This approach is inspired by the use of a L




multiple tuning circuit for a broadband operation and has been experimentally

explored by Van de Capelle [11]. The objective of this study is to syste-
matically develop a design algorithm such that the best design can be obtained
without the painstaking trial-and-error method to actually test many

antennas for a correct array configuration.

A computer analysis is conducted, modeling the array elements as equiva-
tent networks and using the transmission line theory to calculate the input
impedance of the array feed. After computing the currents at each element,
the radiation pattern is also computed. The design goals are a stable pattern,
good efficiency, and low VSWR over a wider bandwidth than possible with a

single element.
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II. THE RECTANGJLAR MICROSTRIP AMTENNA

-Referring to Fig. 2.1, it is seen that a microstrip antenna consists of
a metallic pitch and groundplane, separated a small distance t by a dielectric
sheet. The letal is characterized by conductivity v, and the dieectric by

permeability bg o permittivity ¢ = 205y and loss tangent ;. A ricorous numerical

-

solution for the fields in this structure due to a given excitation current J
is possible using a procedure such as the method of moments. However, a much
simpler formulation is found to yield results of sufficient accuracy for nearly
all applications, while providing a great deal of physical insight into the
operation of the antenna. This theory is based on the resonant cavity model of
the microstrip antenna, developed at the University of I1linois [4-6]. Although
the theory was reported in the course of its development, the lack of details
and unification 1in these presentations has caused some misunderstanding among
the workers in the area. In the following, for completeness, this theory is
reviewed with emphasis on the detailed argument which has led to the model and
on the detailed analysis which will be used for the computation later in this thesis.
Taking the z-axis as the normal to the plane containing the patch, note
the close proximity between the patch element and ground plane (typically
a few thousandths of a wavelength in free space). This suggests that there is
no variation of the fields with z in the region between the patch and groundplane
(hereafter referred to as the "int:rior region”). Since the tangential electric
field must vanish on the (nearly) perfectly conducting metal surfaces, one ray thus
conclude that E = EEZ in this region. From Maxwell's Equaticn, one finds that
ﬁ, which is proportional to curl E in the source-free interior region, is entirely
transverse to z.
Mow consider the electric sur‘ace current, Es‘ flowing on the underside of

the patch. At the perimeter of the patch, JS must have no component in the direction

deamioiniIcL ™
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Figure 2.1. The microstrip antenna. ({a) Generaiized microstrip
antenna; (b) Coordinate system for rectangular
microstrin antenna.
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of the normal to the boundary, n. hssuming the patch to be perfectly conducting,

the surface current and the magnetic field are related by the bourdary

condtion:

JS = -1 x H|Z=O . (2.1)

Crossing z into both sides of Eq. (2.1) gives

~

Pxd =ix(-ixH) =2z R +RGE-3) =R . (2.2)

~

Let n, T, and z form a triad so that A » T = z as shown in Fig. 1.7a. Then

JS may be decomposed into components tangential to and normal to the boundary,

ie., d = (Tt +nn) «J

=0
s

Let the boundary be denoted by C. Since no.J

s’ s[c

for anypointon C, Eq. (2.2) becomes

z x r(JST[ = -nJST = H

. e (2.3)

Eq. (2.3) states that H has only a normal component at the boundary, or that
Htan = 0. This implies that the bcundary condition is effectively a perfect
magnetic conducting (PMC) wall alorg C.

In accordance with the preceding discussion, the region between the patch
and ground plane may be treated as a cavity bounded above and below by perfect
electric conducting (PEC) walls and around its perimeter by PMC material.
Obviously, such a closed structure would not radiate and would present a purely
reactive input impedance if the substrate is lossless. However, following a
commonly used approximation in antenna analysis, one may assume that the fields
in the cavity are not greatly different from those in the interior region of

the actual microstrip antenna. Frcm a knowledge of these fields, one may compute

the radiation pattern, total radiated power, and impedance characteristics of

the antenna.




Methods of analyzing two dimensional cavities are widely known [12,13].
In this report the Green's function G(x,y;x',y'), i.e., the electric field at
(x,y) due to J = Eé(x - x') &(y - y'), the unit spatial impulse source at
(x',y') in thecavity,will be found first. Then, by applying superposition,
the fields due to an arbitrary J = if(x,y) may be found.

The preceding discussion has been general in that it assumes nothing about
the shape of the patch. The discussion will now be limited to the rectangular
geometry shown in Fig. 2.1b. Adopting the coordinate system shown in that

fiqure, Maxwell's equations for the interior region become
7x B o= -jult (2.4)
7 xH = jue(l - 36) E + 28(x - x') 8{y - ¥') (2.5)

where ¢ and § are respectively the permittivity and loss tangent of the substrate.

The boundary conditions on H are

H (x,0) = H (x,b) = Hy(O,)’) = Hy(a,y) =0 . (2.6)

Let E = 2G. Then, substituting this expression into Eq. (2.4), remembering that

E is independent of z, gives

3G

~ ~ A G .
96 x z = X 3y Y %; = -juud . (2.7)

The boundary conditions (2.6) may now be written for G:

G

M

Qs

=0 . (2.8)

Q2

|
iy=0 y=b i x=0 ’x=a
The wave equation which E must satisfy is easily found from (2.4) and (2.5) to

be:

VZE‘FKZ-EP:J.(UUE*'m—E—WVV"J (29)

IR PP
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where k° = mzuo (1 - j8). Substitu:ing expressions for £ and J into Eq. (2.9)

gives
726 + k%6 = juni(x - x')aly - y') . (2.10)

Eqs. (2.10) and (2.8) comprise the two-dimensional boundary value problem.

The solution to the inhomogeneous problem (2.10) may be expressed in terms o*
the eigenfunctions and eigenvalues of the associated source-free problem. Using
the separation of variables, it is found that the homogeneous equation obeying
the given boundary conditions has solutions of the form

= mrx nmy
Yan = Agn €OS 7 C0S . (2.11)

The eigenfunction wmn is a solution only when k2 takes the value of the corres-

ponding eigenvalue kin’ given by

2 2
2 _ (mm [ "
I [a] . [b] mn = 0,1,2,... . (2.12)

The coefficients Amn are arbitrary and for convenience are chosen so that the

Yn form an orthonormal set in the sense that

ry=a {,y:b 1, m=p and n=q
men wpq dydx = . (2.13)

Jx=0 Jy= 0, otherwise

Carrying out the normalization, one finds that

) (ﬁ _ 172 ' . J], p=0]

~om “on
m e J o0 "1, Di‘OJ} . (2.18)

{

-
7}

7o construct the solution to Eq. (2.10), the forcing function is first expanded

in terms of the set of eiaenfunctions (or modes) (umn}.

2

G= - B
m,n=b

-2 .
26+ & o (2.15)

ki




Temporarily postponing the evaluation of the coefficients an, the solution to
Eq. (2.15) may be immediately written as

an lJ)ml'l

. (2.16)
0kl -«
mn

6= 1
m,n=
This may be verified by direct substitution into Eq. (2.15). It should be
noted that k2 is never equal to kin <ince k2, as given above, has a nonzero
imaginary part in the physical problem and kin is pure real.
The evaluation of coefficients an is trivial. Using the orthonormality

of {wmn} in Eq. (2.13), one finds

2 2
0 k™ - kmn

B = Juu ” U (X¥) 8(x = x") 8(y - y") dxdy = juu wmn(x',y'zz )
Therefore, G, the solution to Eq. (2.10), is
© g (x,y) ¥ (x',y")
G(Xsy,oX'oy') = juu &~ mn (2.18)
m,n=

To model the microstrip feed line or coaxial feed, the actual current source is
taken to be a one amp ribbon of z-directed electric current of width d and

centered at the point (x',y'), i.e.,

J(x,y) = 23y - y")[u(x - x* + %) - u{x - x' - %)]/d (2.19)

where u(x) is the unit step function equal to 0 for x < 0, and 1 for x > Q.

Using superposition, EZ due to this source is computed:

b a
Ez(x,y) = f j G(x,y,z'",v'") Jz(x",y") dx''dy"’ (2.20)
]l1= x|l=o d
. w w . € gt X"=X'+—' n
D lmlp e e 07 me
m,n=0 k° - kmn x"=x' >
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. nmy'
cdup @ Comfon €95 "B Ymn(Xo¥) ] mrx' . mmd
= z b 5 > 2 cos a sir Ty
m,n=0 k™ - kmn
(2.22)
oy (x,y) v (x',y"')
E,(x,y) = jun I mn 5 ""2‘ o[i"-g’a—d} (2.23)
m,n=0 k- - kmn
where jo(x) = Ei%—i

Several comments are in order at this point. Examination of Eq. (2.23)
indicates that if the frequency is such that the real part of k2 is equal to
kﬁn, then the MNth term in the series will become very large compared to any

other single term in the series (except for degenerate modes), assuming 3 is

sufficiently small. In the limiting case of zero losses, this term is unbounded.

Wlhen the series becomes dominated by a single term in this manner, the system
is said to be resonant and wmn is referred to as the resonant mode. Also, note
that the amplitude of each mode is partially determined by the feed location
{x',y'). If the feed is located at a null of any mode, then that mode cannot
be excited; it will have a coefficient of zero. Finally, the effect of feed

mnd)

width is manifest in the factor jo{?ﬁ?}’ where jo(x) = 31D X

" It is seen that

a source ribbon of narrow width d will excite Targer amplitudes in high order
modes than a ribbon of greater width.

In order to find the radiated power, one must relate the far field radia-
tion to the modal fields just found in the cavity. An approximate method to
accomplish this consists of the following steps:

1. Define an equivalent magnetic current Tine source Eﬁ = tn x Eic’

where n is the outward directed normal from c, the patch boundary,
in the z=0 plane, E is computed from the cavity model.

2. Allow this magnetic current source to radiate in the presence of

the PEC groundplane, at z =-t, ignorirg the presence of the
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dielectric. The far field electric vector potential, |, is

well known to be
_Jkor B

N -2e - jko(xcos¢sine+ysin¢sine+zcose)
Firs3.0) = =7 ) Kxoyaz) e d; dydz (2.24)
where ko = %1, Ao = free space wavelength, and the factor "2" accounts
Q -

for the image of K due to the groundplane.

3. Compute E(r,s,$) = Jko(9f¢ - of,).

4. Compute radiated power Pr = 1/n 'J rzlElde, where n = 377 .
1"11'
The above approximate procedure is derived “rom Huygens' principle. One form

of this famous theorem states that if all sources are placed inside a closed

-

surface Z, then the fields in the region exterior to I will be unchanged if
their sources are taken to be Es = -n x E| , with the interior of T filled with

PEC material. For the present app]ication: let the Huygens' surface be the

-

2=0 plane, so that KS =z xE Es will be zero over the area of the patch,

|Z=O*.
since Etan is zero there. Also, }KS; decreases extremely rapidly with distance
from the edge of the patch, as shown in Fig. 2.2. Consider performing the
integral of Es as indicated in Eq. (2.24) along the path AB in Fig. 2.2. The

kernel of the transformation is nearly constant over this small linear path

so that the result is essentially the line integral of ES. Since the distances
involved are very small in terms of wavelengths and the magnetic field is
negligibly small near the edge of the patch, a static approximation is thus

employed:

53

- - B'*' - C-’ >
E . di { E.di+ [ E.di

0 (2.25)
A Ig

ABCDA

where points A, B, C, and D are defined in Fig. 2.2. Evaluating £ . dz for

these paths gives
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TT1lustration of localization of K_ to patch boundary.
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Figure 2.2.
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(B C
) Exdx + f Ezdz =C . (2.26)

A B

[t is now assumed that E lies in the plane (f the figure, so that K

and £ are related by

KS = -7 X E‘z=0 = -y Ex . (2.27)
Therefore, Eq. (2.26) may be rewritten in terms of K:
B ., .
[ K dx + X x I zEdz=0 . (2.28)
A S B z

Using EZ found for the cavity model and letting n be the outward normal to ¢,

the patch boundary, Eq. (2.28) becomes

B . . >
IA stx tn x E c (2.29)

-
Thus, as an approximation to the unknown surface current Ks’ an equivalent

line current EQ = tn x Elc is defined as in step 1. Carrying out the

procedure, K, is expressed in terms of EZ:

2
K, (xsy) = t{-3 x 2E,(x,0) <(y)[u(x) - u(x - a)]

+yx iEz(x,b) s(y - b)[u(x) - u(x - a)]

- x x 2E ( §(x)[uly) - u(y - b)]
£ X EEZ(a,y) s(x - a){u(y) - uly - 0)]: . (2.30)

After a small amount of manipulation:
E, = t{i[EZ(x,b) iy - b) - Ez(x Sy)Jlulx) - u(x - a)]

+ yIE,(0,y) 8(x) - E,(a,y) 8(x - a)Iluly) - u(y - )]} s(2) .
(2.31)

; v : i nT
Consider for a moment Kz due to a single mode EZ = C0S %r X COS —El :




|
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E: = t{i[cos E%l{_)" 3(y - b) - cos m;x S(y)Jlulx) = u(x - a)]

+ yleos T30 - ()" cos BE5(x - a)lluly) - uly - o) iy of2)
(2.32)
The far field electric vector potential due to this single mode can be tound

from £q. (2.26):
-3 (
. te Jkor A( n jkobsin~51n¢ I X jkoxain8cos®
Flryivn) = - —gop— xk(-) e -1] ©cos —é—-e
0

)m+l

+ Y{‘ + (- e J cos 5%1 e

Jk _asinscosd, (b Jk_ysin8sine
0 ] { 0 g
y .
)

(2.33)

Carrying out the integrations:

/
-3 ine |
Jkos1n,t e {x
ZTYY' L (M‘Z
)

3

j{k_bsinssiny-nm) VEOj(v asingcosp-mm )
° e o

- . 1
Flr,s,e) = L

- (kosin ; COS a)z

A j(koasin*cosa-mv) 1V j(kobsin@sin: -nr) f |
cos 5 - L& -1ljte - 1) sin 3
. y -

(Lo - (k.sin 2 sin 3)2 J ]
0
(2.34) |

-jk_r (
N
3ink.

‘ X €COS
r ‘(k sin“cos:)2 -
o

y sin » ;

- r—— e

(kosinvsino)z -

. sin[(kcbsinésin@ - n-)/22 sin[(koasinvcos;-m~)/2]
(2.35)
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Using superposition for all modes, F due to the one amp current source at

{x',y') is computed to be

-jk.r
0 . , )
. Zuuokote sine eJko(acos¢+bs1n8)51ne
ils ab
w |
« 1(_j)m+n sin[kobsinesin¢ - nm. /2] sin[(koasinecos¢ - mr)/2]
m,n=0

mx’ nmy' . (mrd
cos =7 cos Jo[ ]

. 2 a
2 2
kK- - kmn
(A cos_o » sin ¢ } (
. x - y ! . 2-36)
. 2 [mm NRRY nm 2|
[ (kos1necos¢) - {a]ZT (kos1nes1n®) - [7;} J

After finding the far field radiated power through the use of .tep 3, the

radiated power P. is computed:

(2w T L e

P =1/ E - £ r sinedody (2.37)
J¢=OJ8=O

r o
*
where denotes complex conjugate.
A quantity of great importance in the analysis of the antenna is Z, the
antenna input impedance. The simplest method of computing this quantity would
be to take the input impedance equal to the feed voltage since the feed current

was assumed to be one amp.

Z=V/1= -th(averaged over feed width) = - %
(2.38)

One would not expect Eq. (2.38) to produce very accurate results since it takes
no account of radiated power or power dissipated in the antenna structure if

EZ is computed from £q. (2.23) directly; this is found to be the case. Another
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approach is to use the Poynting theorem to define input impedance. If a closed

surface - is constructed in the far field of an antenna, where I encloses

volume V, then the Poynting theorem gives the following result:

([ = =+ ([ e =% o [[f = . rj; >
- E.J dv = ‘J E<H «dS + jo 1| LH « HdV ~ ju SE - £ 4V
i) | )] -}
v z v v
- -
+ f[f of - E dV (2.39)

where dS is the outward directed vector area element and dV is tne volume

element. Eq. (2.39) is often expressed in the following form:

*
VI = Py P+ 20u(W - W) (2.40)

e

where VI" is the complex power delivered to the antenna; P, is the time-
averaged radiated power; wm and W, are the time-averaged magnetic and electric
stored energies, respectively, in V; and PQ is tne power dissipated in the
antenna. For the microstrip antenna, PQ may be decomposed into two terms,

Pc and Pd, representing the copper and dielectric loss, respectively. The
stored energy and power terms are individually evaluated in the following.

In compiting the electric and magnetic stored energies, the cavity model
theory would 1Ssume that the bulk of the stored energy is contained in the
interior regiin of the microstrip antenna. Therefore, these quantities are
computed from the modal fields. The time-averaged electric stored energy is

given by

_ i (a ’fb —>l2
Uy = (1/2)y t =0 | |EI dydx . (2.41)
szOJy=O

Ariting this in terms of Yo’




‘ . 2
. 22ct = [T 2w d
dg = (1/2) wug 35 L 13 I 0|2 a
_AlkT -k
m,n=0 mn
The time averiged magnetic stored energy is given by
{-a b -+ 2
W, = (1/2) ty, J J [H{ dxdy
x=0y=0
H may be written in terms of EZ:
a b 1 2
W= (1/2) tu J J — VE_| dydx
m o] x=0 y=O Jwu Z!

Finally, when Ez is expressed in terms of Yyn» One has

2 '
e (x',y") b ,a
t ® Z(mﬂd] “mn { ( Ty
W, = e ‘ 2 (2 =0l v=
Zmzuo mn=o 0123 - kgn! Y7070
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(2.42)

(2.43)

(2.44)

. lem

mn mn dXdy

(2.45)

The integrard in Eq. (2.45) may be simplified by appiying a vector identity

derived in the next few equations. First, 7 - (anTan)

is expanded.*

Vz Yin dxdy
(2.46)

[

*The limits of double integrals in Egs. (
tocbex=Jtoaandy = 0 to b.

2.46) -~ (2.50) are understood




18

The two dimensional divergence theorem is now applied to the first integral

on the right hand side of Eq. (2.46):

,‘ . o \ = iwl’ "")mn : ! 2
Spotan T pn dxdy i MR T T pn v 9XQY
(2.47)
I3 . ’\‘J) I

The lin ] i i “mn i

e Integral in £q. (2.47) vanishes since n . = 0. The last integr:]
on the right hand side of £q. (2.47) is evaluated by noting that

2. . 2 . ,

v ban -kmn Yon- Then, since the Ymn @re normalized to unity, the result is

(J - ‘ 2
j /ijn ) v’mn d)(d‘y B kmn . (248)

Using Eq. (2.48), it is seen that the magnetic stored energy is

t TP S S LT
: 2%, myn=0 k8 - 22 JolZa) (2.49)

The power lost in the dielectric, Pd’ is given by

2

Y
j

;
Pd = twed J dxdy = 2wd Ne (2.50)

where 3 is the loss tangent of the dielectric substrate.
The copper loss, PC, is equal to twice the power lost in the metal patch

element alone. The power dissipated in the patch can be found by the usual

1 A AN ordsah 1 e it A

R 1
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perturbation method for good conductors. (ne first solves the problem for the

ideal boundary condition z x E’ _ = 0. With this boundary condition
enforced, one finds the surfacezggrrent density on the underside of the patch
35 = 7 x ﬁ; 20-. Assuming that the actual copper coating is many skin depths
deep (as it ?s in practical cases), one approximates J, the actual current

density in the copper, by

J = }33 o"L/a (2.51)
where A is the skin depth of the copper:
3
i (2.52)

L[ 2 )12
i PO
{0

This conducticn current obeys Ohm's Law: J = sE. The expression for the

total copper loss (patch and groundplane) is found from Eq. (2.39).

a b » > _ .
P, = _§§ J J J !JSIZ e 22/2 dzdydx . (2.53)
ob” Ix=0/y=0/72=0 1

Jg 1s now written in terms of H and the integration with respect to z is

<

zarried out. Thus,

po= L [ ey (2.58)

¢ patch
The above integral is proportional to the magnetic stored energy (2.43).

Therefore, the copper loss is

Pc T um ’ (2.55)

Having computed the stored energy and loss terms, Fq. (2.40) is used to

* %*
formulate two expressions for Z. First, since VI = ZII , one may write

(remember that 1 = 1 amp):

o cndsn a -= Bl gL e s et o .



7= Pr + Pd + PC + ZJQ(Nm - He) . (2.56)

Similarly, VI* = VV*/Z, which leads to the result
W2 =[P+ Py - P - 2juli - W1V (2.57)

It is found that of the thre: formulations (2.38), (2.56), and (2.57),
for input impedance, only Eq. (2.57) agrees with experimental measurements,
and then only for frequencies near a strongly excited resonance. The
explanation for this failure may be traced to the fact that the additional
losses Pr and PC are only partially accounted for in Eqs. (2.56) and (2.57)
and not at all in Eq. (2.38), since E (and therefore V) as computed from (2.23)
does not depend on these losses.

To rectify this problem, one may note that all thin microstrip antennas
have so high a Q that the effects of all losses can be grouped together into
a single "effective loss tangent," 6eff' In doing so, the three formulas will
then coincide, infact, showing excellent agreement with measured results.

Seff is computed by noting that for an ideal cavity with lossless walls the
loss tangent and the cavity quality factor are related by § = 1/Q. It is
therefore reasonable to define Seff = 1/Q = (Pr + PC + Pd)/Zuowe. Seff is
then used in place of 5 for all computations. Since all these power losses
depend on E which in turn depends on Sagf 35 seen from Eq. (2.23), this
definition thus leads to a complicated nonlinear equation for Saff- [t can be

shown (5] that Seff can be solved by an jterative procedure:

v'c,.+.| = [Pr(s

i () Pc(si) * Pd(‘giﬂ/z‘do we(ti)

1
where the starting value is ?o = 5. In practice, the value of 5eff is found to

converge after a single iteration. 1In order to demonstrate the accuracy of the
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theory, some typical results of measured and computed input impedances of a
rectangular microstrip antenna are shown in Fig. 2.3. A rectangular micro-
strip antenna was constructed and fed through the ground plane by a semi-rigid

coaxial cable at three successive points as shown in the figure. For each

feed location, the impedance was measured at 5 MHz increments and plotted on

a Smith chart as shown in Fig. 2.3b. To compute these loci via the theory, a
value of d must be selected. In practice, the value found to give closest
agreement between experiment and theory is used (about 3 to 4 times the diameter
of the inner conductor). Note, however, that once d is determined for a single
location and frequency, the same value yields accurate results for other
frequencies and locations. When a microstrip feedline is used, d is the width
of the line. Clearly the "effective feed width" is a problem deserving more
investigation. Returning to Fig. 2.3, observe the excellent agreement between
computed and measured loci. Thus, one may conclude that the theory provides a
simple but very accurate prediction of microstrip antenna performance.

The last topic treated in this chapter is the formulation of an eguivalent
circuit model for the input impedance of a microstrip antenna when excited near
resonance of one mode. Consider the input impedance of the antenna when fed
again with a one amp source. For convenience, define kgff = kgzr(l - jéeff).
Then after performing the integration called for in Eq. (2.38), the expression

for input impedance is

2
0 lb (X.v.y') (
7= jupt © -0 Jz‘m"—d] (2.58)
0" mone0 k2 - k&, olZ
! mn eff
Jdefining - ckmn//sr where ¢ = 3 x 108 m/s, Eq. (2.58) becomes
. 2 2
Ju_tc % wo (x'hy")
e L R . R
r m,n‘o ’~mn - (] - Jaeff)
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To simplify the appearance of £q. (2.59), the quantity
2
u tc s
= 0 f ' ' .2 m
“m e Upn (X" 0¥ ) 351 a} (2.60)
is defined. The input impedance can now be written as
X
Z=: L - (2.61)
m,n . . W

The form of the summand in Eq. (2.61) is suggestive of a parallel RLC resonant

circuit. Therefore, the following definitions are made:

Gon(w) = wbgee/a (2.62)

Con = Vo (2.63)
- 2

Lmn = qmn/mmn . {2.64)

Using these expressions, the expression for input impedance can now be written

as

® 1
l = c - -
m,n=0 Gmn(”77+ Julpn = IVw Loy

(2.65)

Typically, =he microstrip radiators are very narrow band, in which case,
Gmn(m) may be replaced by Gmn(“MN) for operation in the frequency band of
mode (M,MN). Therefore, Eq. (2.65) represents a Foster expansion of the driving
point impedance function. Since Lmn decreases with increasing modal indices,
the infinit2: number of high order Foster sections can be simply combined to
form ; sing.e series inductance, as illustrated in Fig. 2.4a.

In cases where the antenna is operating near a resonant freguency N
which is well separated from all other resonances, a simpler network formulation

is possible. To demonstrate this, the MNth term is separated from the sum in

£q. (2.€1) ind the gquantity (jw) is factored from the remaining terms.




(0,0) (Q,1) (m,n) all

other
modes modes

CNN —F L MN G MN

Figure 2.4.

(b)

Circuit representations for microstrip antenna.
(a) Equivalent network for microstrip antenna;

(b) Equivalent network for excitation near an
isolated mode.




MN . “mn

7= + Jw L
2 2 2 .
y f e - ] M m,n#M,N Yo T (1 - Joeff)
eff w (2.66)

The first term on the right hand side of Eq. (2.66) may be replaced by the

parameters of the Foster section for mode (M,N). The denominator of the

2 2 2 . 2

- 3 A 2 ! - 2 :2 A
summand may be replaced by Won = Wy STnce T R wyy and |90 MMN|/JMN>> Saff

for well separated modes. The result is

z - L — o+l (2.67)
Gy () + JuCyy - g

s}
where L' =  ———m

2 2
m,n#M, N “on T YMN

The network model of the antenna operating near an isolated mode is therefore

a parallel RLC circuit in series with a single inductance. This model is

illustrated in Fig. 2.4b. The impedance locus is therefore a circle with
center shifted into the inductive region as shown in Fig. 2.3.

In this chapter a simple cavity model for microstrip antennas has been
described and has been developed in great detail for the case of a rectangular
geometry. It was shown that the cavity theory can accurately predict the
behavior of the antenna. A simple circuit model for the antenna was then
developed as a logical extension to the theory. This circuit model provides
one with a very simple means for the array design so far as the impedances and

relative element currents and phases are concerned. A simple example will be

considered later.
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[I1. CIRCULAR PCLARIZATION IM MICROSTRIP ANTENNAS

Circular polarization (CP) in microstrip antennas arises due to the
excitation of nearly degenerate modes. Two modes, vy and Uyt are said tc be

degenerate when T e which implies, for the rectangular geometry,

S O R

For the case of a square geometry, a = b and all modes are degenerate since

SN TN Consider the behavior of the impedance as « =~ Wy T Unme The series

1

for Z in (2.58) will be dominated by the term

D 0

mi " U

=
2 2 . 2
wyy T @ + Jw Caff

where
; (

Oy = EJC%; wﬁw“"‘” jcz)(mzﬂa—d}
This term has the same form as in the case of well separated modes; thus, the
locus of Z is expected, as observed, to be a circle on the Smith chart. How-
ever, if there is a slight imperfection in the contruction so that a # b, the
degenerate resonant frequency will split into two close ones. The corresponding
modes will s1i11 be excited simultaneously as the frequency sweeps through
their neighbcrhood, but the impedance locus will no longer be a circle. To see

this, assume that g Then

N UM




7 - DMN . Onm a5 )
12 - 2] - s V22 2 B I 1
JMN i Jw eff: I\AJNM W J NS eff

(3.3)
Now as the frequency sweeps through the two resonant frequencies, the impedance

is seen to change drastically as w This effect is seen as a cusp

My AN
or small loop in the impedance locus as will be seen in Fig. 3.5.

For the nearly square antenna of Fig. 3.1a, a = b + ¢ with ¢/b <~ 1, so
that the resonant wave numbers kO] and k]O will be very close to ore another.
Feeding the antenna at point 1 will excite the 0 mode but not ISR Feeding
at point 3 will excite W01 but not “10° Feeding at point 2, or on the diagonal
through point 2, will excite both wo] and ¢10 modes, or a dominant field pro-
portional to v, = Yol + Y10 With a feed at point 4, the excited field will be
proportional to y_ = yo] - w]O' In the far field, in the direction perpendicular
to the plane of the microstrip, the electric fields produced by ol and g are

polarized in the x and y directions, respectively, and can be written for the

appropriate choice of input current magnitude and phase as

. cos{mx'/a) . cos(my'/b)
Ex 73 7 B 5 7 (3.4)
keer = Ko kefe =~ K10

The contributions of the nonresonant modes are ignored in {3.4) for frequencies
near the resonances of the two modes. To obtain CP in the direction of the
zenith, the ratio of Ey to Ex should be exp(=jn/2). Define A = cos(=y'/b)/

cos{wx'/a). Then,

2 ?
By o pKerr “ Mo K ko 3.5)
3 7 2 Y 3.
X kger T Ko 0
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[t is particularly illuminating to plot keff’ kO]’ and k]0 in the complex k

plane as was done in Fig. 3.2. For Ey/Ex to be exp(jv/2), Eq. (3.5) requires

that
. - 1
Ak = k01 k]O = L(A + A) . (3.6)
Let keff =K - jL; then,
L .1, 1
-~ J = o= (3.76)
0 2 Teff 20
But
= _rT_r_ 1 .T¢ |
Kt " %05 3 5" bw< g? ’ (3.75)
and
kb o= 7. (3.7¢)
Thus, combining (3.6) with {3.7), one obtains
K01 Mo e LA e a
-z 5 - ——Tﬁfi**‘ . (3.8)
3 k

N

For the cise of the feed point taxen on the diagonal of “he =icrostrip, A = 1
and, therefore,

I VR (3.9)

This is an important formula, since it qgives a simple means for determining

the dimensions necessary tor CP. The sense of the CP wave produced %v “he
antenna when fed at point 2 will be left hand circularl, polarizec (right nanc
when fed 3% doint 4. Fiag. 3.3 shows the far field pattern of the nearly scuare

anterna “aken w~ith a raotating dinole. The quality of the CP is very good broac-

side to -he antenna and Jeqrades to linear polarization on the horizon, as it

mus*t.
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For the antenna of Fig. 3.1b, the analysis follows along the same lines

as that for Fig. 3.la. However, in this case, rather than w1y and 01 modes

Yy S Yol + “10 and ,_ = o1 T le are used, with corresponding wave numners
k, and k_. Of course, if the corners of the square microstrip are not trimmed
off, the k+ = k_. However, by trirming the corners, k_is increased wnile k_

remains almost unchanged. Obvious!y, if the opposite pair of corners were 10
be trimmed, k+ would increase and N would remain unchanged. The amount of
shift in resonant fraquency due to truncation of the corners has been estimated,

using a perturbation formula [14], to be

k -k |
=~ + o 2a-2a) ginro(a - a')/al. (3.10)
E ma

In order to test this prediction, ¢n antenna was constructed from 1 oz copper-
clad Rexolite 2200 with t = 1/16", a = 10.85 ¢cm, and a' = 10.29 cm. To arrive
at these dimensions, the Q of the quare antenna was measured by feeding at
point 1 of Fig. 3.1b. The corners were then trimmed until the percentage shift
in resonant frequencies measured a: points Z and 4 equalled (100/Q)% or 1. for
this antenna according to Eg. (3.8 . (P patterns similar to Fig. 3.3 were
cbtained. But using 73.10), one f.nds that a frecuency shift of only 0.5% is
predicted. This discrepancy is no. unexpected, since £q. (3.10) is based on
the assumption that the btoundary ¢ ndition along tre nerimeter of the microstri;
i5 that of a perfect magnetic wall Although *this assumption has prcven
reascnably applicable to the analy.is of most aspects of microstrip anzannas,
1t is not entirely adequate to pre lict the shift in poles in this critical
application. It is believed that the complicated fringing fields at the corners
«ahere the perturbation formula i3 applied maxe the aptraximaticn insufficiant.

‘lote, however, that one can still rely on E£q. (2.2, for the required frequency
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shift, and experimentally refine the proper dimensions by simply measuring the
resonant frequencies corresponding to k, and k_ by feeding at ports 2 and 4,

respectively.

Eg<5-

The antenna in Fig. 3.1c operates by the same mechanisms as that in
Fig. 3.1a. In this case, however, the pole k]O can be varied by simply ad usting
the capacitance attached to the antenna. (Lince the capacitor is located at

y = b/2, a null of the v, moce, kO] is unaffected by the capacitor.} If the

01
range of capacity is large encugh, »nd a < b, one is able to adjust the antenna
to produce fields of any polarization and sense. Thus, the antenna can hte at

one moment left hand CP, linear at the next, and right hand CP at some other time
by simply changing the capacitance. However, since only one pole i3 affected
by the capacitor, the frequency of operation shifts as the capacitance is variec.

It should be noted that the capacitor could just as well have been located “n

-

tha corner of the antenna in which case one would feed at points 1 or 3 to
achieve CP operation.

Fig. 3.4 shows an exactly square microstrip antenna icaded by two indepen-
dently biased varactor diode,. The varactors are located on nodal Iines cf the

and .., modes. The biasing circuit arrangement shown in the fijgure ensures

10 21
RF and DOC isolation between the bias supplies and the antenna. The location of

the varactors allows independont adjustment of the poles k01 and k]O’ 3, this
scherme, the difference in the poles k01 - k]O can be adjusted while xeeping

their mean, x, fixed. Thus, -“or operaticn at a fixed frequency, virtuall,y any

polarization can be 2achieved :imnly by adjusting the varactor biases. Figures 3.3

and 3.6 show the impedance and radiation patterns of this antenna for the various
polarizations. The patterns were taken with LH and RH CP antennas. The

asyrretry in the patterns is srobably due to the asymmetrical placemen: af the
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Fig. 3.4a. ODouble tuned antenna.

e

/'

Fig. 3.4b. Double tunec antenna schematic.
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Fig. 3.5. Impedance of double tuned antenna.
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diodes. It is conjectured that using two pairs of matched diodes on opposite
sides of the antenna would minimize this effect.

Using the double-tuned antenna of Fig. 3.4, it is also possible tc vary
the frequency of operation without interfering with the state of polarization.
The double-tuned antenna constructed is tunable from 800 MHz to 240 MHz while
still maintaining quite good CP. Obviously, the tuning bandwidwh is dependent
on the quality of varactors used.

Other single-feed CP microstrip antennas can be explained in the same way

as the rectangular. A disk microstrip antenna was designed on the basis of

this theory. A capacitor to the ground plane was attached to the circumference

of the disk. ihen fed at an angle of forty-five degrees from the capaciter,
CP operation was also obtained.

Although all these antennas are able to produce good CP without the need
of an external phase-shifter and power divider, a distinct advantage, it is
clear from the theory given above that their CP operation is extremely narrow
band. Fig. 3.7 shows the predicted degradation in axial ratio with normalized
frequency defined as

k - k

L S (3.11)
ko1 = K90

Taus, for an axial ratio within 3 dB (at zenith),which would produce a polar-
ization mismatch loss of less than 1/4 dB with respect to CP, one is limited,
3¢ 1/16" Rexolite 2200 at about 300 MMz, to a bandwidth of about 35 of

te frequency difference between the two dominant poles or about (35.G;
rercent bandwidth. Fig. 3.7 applies to any CP microstrip whose feed
excites both of the nearly degenerate modes equally. The clcse acreement

tatween theory and experiment is shown in Fig. 3.3, where axial ratio as

= function of frequency is plotted for the nearly sguare antennd.

Ao
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In this chapter the mechanism characterizing the operation of singly
fed CP microstrip antennas has been described in a simple and useful manner.
For geometries for which the difference in the resonant frequencies of the wo
nearly degenerate modes can be computed with sufficient accuracy (such as
rectangular or elliptical patches), the exact dimensions can be successfully
calculated by knowning the Q of the antenna. For perturbed patches that lead
to nonseparable geometries, one can fairly quickly determine the dimensions
without making tedious pattern measurements by adjusting the pole location such
that Ak/k = 1/Q. Finally, a curve has been plotted which allows one to quickly

predict the pattern bandwidth of the CP antenna.




IV. CHARACTERIZATION OF THE MICROSTRIP LINE AND COAXIAL TRANSITION

When a microstrip antenna is fed with a microstrin line, it becomes a mcno-

Tithic device, which can easily be fabricated and reproduced simply by a printed-
circuit technique. But in this case, the antenna must be fed through the
perimeter of the patch, thus losing the flexibility of the coaxial feed which

can be located in the patch for certain desired impedance and polarization
characteristics. Furthermore, in geneval, the strip line will eventually be
connected to a source (or receiver) through a coaxial transition. This is

indeed the case in most measurement systems, if not all. For this reason,

an investigation of the strip line-to-coax transition is of interest in its own

right.

In our study of arrays to be discussed in the next chapter, some incon-
sistencies were observed in the measured results through different ways, and
thus caused difficulties in formulating a theoretical design procedure fur
the array. In an attempt to trace the source of the inconsistency, each part
in the array was investigated in great detail. In so doing, we were confrontad
with the interesting question: how to determine the s-parameters of a small
discontinuity accurately. It is found that extreme care must be exercised in
the procedure of measurement; otherwise, ridiculous values of the s-parameters
may likely result. For this reason, it is also necessary to investigate tne
characteristics of the strio line-to-coax connector discontinuity.

In this chapter, the techniques used to model microstrip lines to coaxial
cable connectors are presented. First consider a mirostrip line which consists
of a arcund plane, a dielectric sheet of thickness t, and a metal strip con-

ductor of width w, as illustrated in Fiq. 3.1. The quantities of interest




42

at
t{ e,
T

£ GROUND PLANE

Fig. 4.1. The microstrip transmission line.
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associated with the line are ZO‘ the characteristic impedance of the line, VD.
the phase velocity in the line, and «, the attenuation constant of the line.
A useful analysis of the line will predict these quantities.

Because the field lines between the strip and the ground plane are not con-
tained entirely within the dielectric substrate, the propagating wave alcng the
line is not purely transverse electromagnetic (TEM). However, for low enough
frequencies of operation the fields are nearly transverse and the propagating
mode may be characterized by an "effective dielectric constant,” o which is
defined by the relation

. (4.1)
P e,

-1/2

where V0 = (uoso) This "quasi-TEM" mode is a useful concept for frequencies

where the longitudinal component of the field is negligible ccripared to the trans-
verse component.
Several methods have been reported in the literature for determing %o and

z These include conformal mapping [15], variational technigues [16], and

0"
the method of Green's functions [17]. For the purposes of this report, closed

form expressions suitable for computer-aided design were sought. Hammerstad

(18] has reported closed form expressions accurate to within 1% relative error
for values of €a and ZO commonly obtained:

g+ 1 e =1
£ = + (1 + 12t/w)‘”2 + K (4.2)

where
[0.04(1 - w/t)?
K= {
t 0 for w/t > 1

for w/t <1
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[t is possible to take the finite thickness, ., of tne strig conduChor Ints acs’

by introducing an effective strip widtn fal nOwever, O Tne I ouncy TTloen-

clad Rexolite sheets used in this report, the correction 15 ng* necessar,.
There are two sources of dissipative loss 1n a microstrip line: conductor

loss and substrate dielectric Joss. Pucel (13 has reported yer, accarate

expressions for e the conductor loss facrtor:
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Schneider [20] derived the following expression for g the dielectric loss

factor:
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the transition between the coaxial cable and the microstrip line is effected by a

“Taunching" device which has imperfect matching vroperties. Therefore,

multiple reflections between the "launcher" and the open circuit may explain
why the return loss plot shows periodic oscillations with d.
Consider the "launcher" to be a two-port device, with port 1 connectad

to the coaxial cable and the microstrip connection designated as port 2.

Jsing these definitions, the reflection coefficient, ', measured at port 1 1
will be rejated to 7, the actual refiection coefficient in the microstrp line
at port 2, by )
. 12721
= + —
SR LIRS R vt (4.3)
wiiare the {S..> are the two port scattering parameters which characterize a

1]
the junction. It is reasonable to assume that the “launcher" is a reciprocal

device, in which case SIZ = 52]. Also, if the device i35 nearly lossless,
then ;511[ x 3522;. To see how the oscillations in Fig. 4.2b can come abou-,

assume that the connector provides a "good" transition, i.e., ‘511‘ T,

and 312‘ = 1. Then the expression for return 1css is approximately given by
_ et s oa 20 , ., 20 ¢ =2ad
Rz -2010gq, 7' = -4010g) oSy, + yg(2d) - 775 Spp @
. cos(Arg522 - 2:d) , (4.9)

it i3 now seen from £quation {(1.9) that the plot of R versus d wili be an
exoonentiaily decreasing sinusoid superimposed on a straight line. Thus,
the slope cf the lipe fitted to the data by the method ¢f least sguares should

orovide a value for . The value of . so nbtained from the data of Fig. 4.2a .

. . -1 ‘ . . R .
is 2.730C8 cm  which agrees fairly well with 0.0003 ¢m ', the value obtained

from Equations (1.1, and '1.5).

[e¥)




At this point a discussion of the types of microstrip to coaxial tran-

sitions is in order. Several types of backwall launchers are shown in Figs. 4.3

and 4.4, These backwall launchers are convenient because the groundplane

acts as a shield, preventing the presence of the connecting hardware from

disturbing the microstrip operation. Fig. 4.3 shcows an SMA semi-rigid
coaxial connector and Fig. 4.4 illustrates an n-type coaxial transition.
Due to mechanical considerations, the connector of Fig. 4.4 was used
exclusively for the parameter work in this report.

In order to uniquely define the scattering parameters of the device,
junction plines which demarcate the device boundaries must be defined. The
junc*ion plane for port 1 is defined to coincide with the bottom face of the
Teflon sheath surrounding the center conductor. The junction plane for port 2
cuts the microstrip line at the position of the center conductor screw. The
prablem of determining the scattering parameters of a small discontinuity can
be quite difficult, since given several values of 7, there are many possible
combination. of the {Sij} which will give nearly the same value of 7'. The
classical method [21] for measuring the scattering parameter of a 2-port
through a line consists of an experiment similar to the one described above,
with 2d = 0, /4, -/2, and 37/4. The scattering parameters are then determined
by graphical means on the Smith chart. For example, 31] is the point lying
at the center of the circle on which the four measured values of 7' “ali.
However, the method must be modified for the present case. when the dis-
continuity presented by the two-port is small, the four points will lie on
a circle of large radius, that is, near the edge of the 3mith chart. It is
then difficult to determine 811 accurately. In order to do so, it would be

desiranle for 'T to be small so that 7' is essentially equal to 511. However,




Fig. 4.3.

SMA semi-rigid coaxial transition.
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Fig. 4.4. Type .! coaxial transition.
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in order to measure 312, a large value of ! is desired. Thus, the following
experimental procedure is suggested.

Using Equation {4.3) for dimensions, a nominal 507 microstrip line is
constructed, terminated at each end by identical n-type transitions. Measure-
ments of the reflection coefficient are male at one port while the opposite pcrt
is successively match-terminated and short circuit-terminated. These measure-
ments are repeated while the length, d, of the connecting line is varied. The
experimental setup is sketched in Fig. 4.5. Using the notation of the fiqure,

the following relations are simply derived.

0 for 22 = 500
ro= { (4.10a)
i»'] fOY‘ ZZ = O
T S ffzﬁ_._.. (4.10b)
: 22 1 - 51]f :
Ss gniZid -2ud - {4.10¢)
5,0
rht R Syt e {4.10d)
11 1 - 522.

When the output port is matched, we have

S2 (e-ijd e-2ud

Sp0) 2 o o-233d -2ud

N R S et A LI P
22 (4.11)

For small losses, Equation (4.137) is the parametric equation of a circle in

tne 7''" plane with center at 511. Thus, by varying d, will move on a
z2ircle centered at Say 0¢ radius ;512502‘ <« 1, The experimental data from
l

*his sxper =ment serformed at 2300 MHz are n'otted on the Smith chart in

dnt " ™ smatl, : . M._&MJ&&‘.MW‘:‘-J
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Fig. 4.6. In this magnified view, it is easy to see that the points fall
on a well-defined circle. The center of the circle is determined from the
data by a least square fit.

With S]] determined, the remaining parameters are found by using data
taken with the output port shorted. (The short is effected by inserting a
hollow brass plug into the connector until it is flush with the Teflon
sheath. This is why the junction plane for port 1 was chosen at that

position.) S]2 and 522 are found by minimizing the residual

R o ::[lliz (4]2)

where T%" is the measured reflection coefficient for d = di and r

is
computed from Equation (4.10) using trial values of S]2 and 522. The scattering
parameters were determined for 770 MHz, 800 MHz and 330 MKz and the values are
tabulated in Table 4.1. As expcnted, the fiscontinuity presented by the
transition is rather small and does not va-y greatl; over the measured frequency
range.

Yith the values cf the scattering paraetaers now knocwn, it 15 possible ¢
correct the data of Fig. 4.2 and 2lot the values of return lgss and :hase
that would be measured if there were no Jdiscontinuity present. These corrected
dataare shown in Fig. 4.7, The small improvement in the return loss plot as
compared to Fig. 4.2 indicates that the aoscillations are not due to the effect
of the microstrip launcher. Rather, the departure from linearity must be
attributed to system measurement errors. The 0.1 dB excursions in measured
data easily fall within the combined errcr tolerances of the measuring equiy-
ment, as stated by the manufacturer. The network analyzer, for example, juotes

an accuracy of :C.2 dB, while the 3mm error circle on tne golar dispiay CRT

translates to at least =C.05 dB.
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Table 4.1: Measured Scattering Parameters

S 12 522
770 MHz 0.039/30° 0.997/-15.2° 0.043/106°
800 Mz 0.057/22° 0.998/-15° 0.086/117"

830 MHz 0.066/28° 1.00 /-16° 0.0604/131°
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In this chapter, equations for characterizing microstrip lines have been
presented and experimentally verified. The scattering parameters of a micro-

strip to coaxial line junction have been determined, and it was found that

the discontinuity introduces no significant errors in the measurements
compared to the measuring system errors. But this investigation has led to

an accurate procedure for determining the s-parameters of a small discontinuity.

e alisd o oS
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V. TY0 ELEMENT ARRAY

A basic limitation of microstrip antennas is their inherent narrow band-
widths. In this chapter, the possibility of band-troadening by means of
incorporating microstrip elements intc an array wiil be examined.

The basic two element array and its equivalent circuit representation
are shown in Fig. 5.1. Using the results of Chapter II, the elements are
modeled as parallel RLC resonant circuits with a series inductance connected
by lengths of transmission line. The following parameters characterize the
circuit:

w1 the resonant radian frequencey of the RLC circuit
o). the quality factor of the RLC circuit
the resonant resistance of the RLC circuit

the series inductince

where i = 1 for element #1 and i = 2 for element #2.

In terms of *hese quantities, the input impedance of a single element is

. (1)
: . (1) R
R C P RS

“ ANy

0

——
wn
—

~

(1)
(1)

The impedance is now transformed through a distance d on a transmission

-(1)

line with characteristic impedance Ly "> wave number -

(1)

and loss factor .

After transformation, the impedances of elements 1 and 2 are combined in

paraliel at the T-junction and the combined impedance is transformed again
. 3 ‘ L (3) (3 ‘1

tnrough the Tine of length d( ), characteristics 2;3’, 3\3’. and '77, to tne

position of the corporate feed point.

[n order to caicuiate the far field radiation fa“tern of tne array, “ne

relative magnitudes and phases of the currents at the feed point of each

R Y
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eiement must be found. Assuming a total voltage of T volt at the T-junction,

e L . .. .
~nen v; , the positive-going {towards the element) voltage wave on iine i,

is “ound to pe

AR S AARITARRVE. (3.2,

—

iy . : . . . - . L
where 7' ' in Eguation (5.2) is the input impedance at the 7T-iurciicr in line

i i i AP L e

=1, looking towards elerment #i. The current at element i is now easily

. found to be

. \ . (
(1) 2VS_1) exp,_()‘( P4 J‘(j)) d\1)
{ = . (5.3
AT (0 2
“o
where Z(]) in {5.3) is the input impedance of element =i as given in

Equation {5.1).
It is assumed that both elements are of nearl; identical dimensicns and

operating in the (0,1) mode so that the - component of the electric field in

the x-z plane is the quantity of nterest for pattern computation. Then for b
i a single element, and neglecting contributions of non-resonant modes, we
*
g. find from Equation (2.36) of Chap-er II,
"k _asin-
‘ ' o3 L egs -
' (i) (1) Joi” 2 .
B 0 > T3 , (3.9
E x-z plane K“ - [k01 ]
where a = a(1) T a(z). The total pattern is then
o R ’ . (2)+2 _; Loy
: ‘koas1n : k [k01 ] I] “<koDeS]n )

m~

B A S O S
‘ 01 °

[S3)
(8]

A computer program was written to evaluate the impedance end rattern of

the two element array. In order o test the program, in arris sds constructec

he wvalues of . R, 0, and L_ for
) >

—

#1th the dirensians shown in Table 5.1,




L

Table 5.1.
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Array Dimensions

49.8
63.5

5.2 }
0.44
0.44
0.44
17.07
11.39

it AT Laa ] D %ol L S0 e LI

16.84

11.20
0.15
J.0036
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the elements can “e =ither computed entirely from tre theory in Chapters [I

and III, or measured for several fregquencies and then computed 'ising an
optizimation program that minimized the error between the impedance computed
from the simplified Equation {5.1) and the measurad input impedance of each
element. The agreement between the two nas been reportad previously [4-6.
Since the objectives of this investigation are first to determine the possible
bandbroadening for an array and second to develop a circuit theory for the
array design, only the latter method is used. The measured and computed (via
Equation (5.1}) values of impedance for element ‘ic. 1 fed through a 49.5 cm
50 ohm line are shown in Figure 5.2 Similar agreement is obtained for element
No. 2. This result shows that for a narrow band around the resonance, so
far as the impedance is concerned, the antenna can adequately be represented
Oy a simple parallel resonant circuit in series with an inductance as given
by Equation (5.1).

The computed and measured impedance loci at the feed of the array are
shown in Fig. 5.3 and the radiation patterns are plotted for several freguencies

5. 5.4 - 5.7, Both impedance loci shcw the characteri:tic loop between

I

in Fi

Wl

v
1

the resonant frequencies of the two elements. In an c¢ptimally designed array,
this Toop cun be used to extend the VSWR-11im ted bandwidth. However, the
pattern is not stable throughout the entire band. Drops of radiation in the
broadside direction and tiiting of the main beam atf some freguency strongly
Timit tne use of this array for broadside radiation application.

The agreement between computed and measured results in Figs. 5.3 - 5.7
is fair. It seems that the program is capable of predicting the general
oehavior of the array, but carnot track the measured data exactly with
frequency. Possible sources of errar include dimensional uncaertainties,

discontinuities introduced by he T-junction and bends in the iines, losses
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Fig. 5.2. Measured and computed values of Z for element #]
with d“) = 49.5 cm.
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due to radiation from the lines, coupling effects between the elements and
between the element and the line, and possible inhomogeneity in line and material.
Upon perturbing the input data to the program, it was found that both the

pattern and the impedance locus change substantially, they are both guite

M 4@ M

sensitive to small changes in d y W and W(Z). Thus, slight
inaccuracies in construction or measurement of the array could well nave con-
tributed to the discrepancy between measured and calculated results. Never-
theless, the program is a useful design aid, which can be used to test passible
array configurations for feasibility.

The use of an array of elements of slightly different dimensions for
broadening the bandwidth has been reported recently by Pues, Vandensande,
and Van de Capelle [11]. In particular, trey considered a two-element array
at much higher frequencies, 9 to 10 GHz. 1t is a simple matter to simulate
their array with the present program. A typical pattern so obtained is shown
in Figure 5.8 for 9.45 GHz with the designed resonant freauencies 9.00 GHz
and 10.0 GHz for the two elements. MNote that the beam is skewed from the
broadside direction. This effect occurred for all the designs considered.
Thus, their claim of stable patterns over =he bandwidth is not substantiated
by this investigation.

A rather exhaustive search for stable patterns was conducted. The program

was modified to determine the best values of d(]) and d(z)

, leaving their sum
unchanged. The T-junction is moved at stens of 0.1 cm, starting with

d(]) = 2.0 cm to 20.0 cm. The program was constructed to reject any config-
uration for which Eé]) and Eiz) differed i1 phase by more than 20° in the
frequency band of interest. It was found that stable patterns could be

obtained, but at the expense of larger SWR. For a stable radiation pattern,

the loop in the impedance plot would vanish, leaving essentially the band-

width of a single elenment.
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In conclusion, it seems that the corporate-fed array of two unidentical

elements is not a satisfactory means for broadening the bandwidth of micro-

strip antennas.

-
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VI. SUMMARY

Lsing the cavity theory of microstrip antennas, a simple explanation
for the occurrence of circular polarization has been obtained. Based on
this theory, a new type of tunable CP antenna was constructed.

The parameters describing the behavior of micrestrip transmission iines
were found using closed-form expressions reported in the literature. The
scattering parameters of a coaxial to microstrip transition were determined
by using a modified classical technique. It was found that for small
discontinuities, SH should be measured with a matched termination,while
S]2 a shorted (or open) termination; similarly for 522 and 521' Then they
can be computed, using a least square fit for several different measurements.
Insofar as this investigation, namely the array feed problem in the micro-
strip-to-coaxial cable transition,is concerned, the error introduced by this
discontinuity is found to be probably smaller than the overall error in our
measuring system.

A computer program was written to evaluate the impedance and far-field
radiation pattern of a two element microstrip array. Using this program,

a design reported in the literature was tested. The algorithm failed to
produce a design which had a stab’e pattern over tne frequency band of
interest. A :earch was then conducted for designs yielding stable patterns.
It was found that both stable pattern and wide impedance bandwidth seem %o
be difficult ‘o achieve simultaneously. It may be concluded that corporate-
fed arrays of two elements, tuned for slightly different frecuencies, do not

appear to be a good solution to the bandwidth problem.
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