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I. INTRODUCTION

The desirable qualities of microstrip antennas, such as light weight, low

profile, ease of manufacture, conformability, and low cost, make them attractive

choices for many applications. In fact, the microstrip is the only type of antenna

which can claim all of these attributes in a single package. It comes as no

surprise then that much recent activity has centered on analyzing the microstrip

antenna.

The early designs utilizing microstrip elements were based on empirical

knowledge of the antenna's properties [1]. The antenna input impedance was first

measured, then a matching network was designed to match the antenna to fifty ohms.

The antenna was then rebuilt to incorporate the matching network on the same

substrate. Clearly, this is an inefficient procedure, and it was not long before

a theory was developed to predict impedance and pattern information.

The first analysis of the microstrip radiator [2,3] modeled it as two

radiating slots connected by a low impedance transmission line. This theory is

limited in that it can only be applied to rectangular patches, and fails to

predict the impedance locus accurately, in particular, its shift into the

inductive side of the Smith Chart. Moreover, this theory cannot predict the

occurrence of radiation from all four sides of a singly fed patch, an important

mechanism for many commonly excited modes.

Recently, a more comprehensive theory has been presented by Lo and Richards

[4-6] which enables one to predict the important properties of a wide variety of

microstrip antennas in detail. This theory treats the antenna as a resonant

cavity, bounded above and below by an electric conductor, and on the perimeter by a

magnetic conductor. By means of this theory, the impedance locus and radiation
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patterns for any feed location may be accurately predicted. The theory has also

been extended to multiport analysi,, and, in this report, is extended to the

design of circularly polarized microstrip antennas.

Circular Polarization (CP) has been reported in a variety of microstrip

antennas [5,7-9]. Experimental work was recently reported on a class of CP

antennas derived from disk and square antennas by cutting slots in their interiors

or corners off their perimeters. For all these antennas, the theory presented in

this paper provides an explanation for the mechanism of antenna operation, and

in some cases, provides a means for predicting the exact dimensions needed for

achieving CP operation. This is important because CP operation is possible only

for a very narrow band of frequency, and ithout a theoretical prediction, many

painstaking cut-and-trials would be necessary. In this report a new type of CP

antenna is described. The operating frequency of this antenna may be tuned over

a relatively wide bandwidth. Also, the antenna polarization is electronically

adjustable from CP to linear polarization to CP of the opposite sense, or any

arbitrary polarization within these limits.

A major limitation of the microstrip antenna is narrow bandwidth, a character-

istic of all resonant structures. Several methods of bandbroadening have been

considered in the literature, such as stacking [10] or array structures [11].

Stacked structures suffer the disadvantage of greater overall antenna height

and increased cost due to manufacturing complications. Furthermore, it seems

likely that increases in bandwidth gained by stacking antennas could be realized

more conveniently by simply increaing the substrate thickness of a conventional

microstrip antenna by an equivalent amount. Since current interest is focused

on very thin structures, the stacking method is not examined in this report.

Instead, a corporately fed array of two microstrip elements of slightly

different dimensions is considered. This approach is inspired by the use of a
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multiple tuning circuit for a broadband operation and has been experimentally

explored by Van de Capelle [11]. The objective of this study is to syste-

matically develop a design algorithm such that the best design can be obtained

without the painstaking trial-and-error method to actually test many

antennas for a correct array configuration.

A computer analysis is conducted, modeling the array elements as equiva-

lent networks and using the transmission line theory to calculate the input

impedance of the array feed. After computing the currents at each element,

the radiation pattern is also computed. The design goals are a stable pattern,

good efficiency, and low VSWR over a wider bandwidth than possible with a

single element.

-, a-"



4

II. THE RECTANGJLAR MICROSTRIP ANTENNA

Referring to Fig. 2.1, it is seen that a microstrip antenna consists of

a metallic pitch and groundplane, separated a small distance t by a dielectric

sheet. The hetal is characterized by conductivity :, and the die'ectric by

permeability o' permittivity c =o Sr , and loss tangent -. A ricorous numerical

solution for the fields in this structure due to a given excitation current J

is possible using a procedure such as the method of moments. However, a much

simpler formulation is found to yield results of sufficient accuracy for nearly

all applications, while providing a great deal of physical insight into the

operation of the antenna. This theory is based on the resonant cavity model of

the microstrip antenna, developed at the University of Illinois [4-6]. Although

the theory was reported in the course of its development, the lack of details

and unification in these presentations has caused some misunderstanding among

the workers in the area. In the following, for completeness, this theory is

reviewed with emphasis on the detailed argument which has led to the model and

on the detailed analysis which will be used for the computation later in this thesis.

Taking the z-axis as the normal to the plane containing the patch, note

the close proximity between the patch element and ground plane (typically

a few thousandths of a wavelength in free space). This suggests that there is

no variation of the fields with z in the region between the patch and groundplane

(hereafter referred to as the "interior region"). Since the tangential electric

field must vanish on the (nearly) perfectly conducting metal surfaces, one may thus

conclude that E = zEz in this regin n. From Maxwell's Equation, one finds that

H, which is proportional to curl E in the source-free interior region, is entirely

transverse to z.

Now consider the electric sursace current, 'is, flowing on the underside of

the patch. At the perimeter of thn patch, Js must have no component in the direction
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of the normal to the boundary, n. fssuming the patch to be perfectly conducting,

the surface current and the magnetic field are related by the bourdary

condition:

i s : X Hjz0 (2.1)

Crossing z into both sides of Eq. (!.l) gives

is = Z x (-i X H) = -2(i • H) (2.2)

Let n, T, and z form a triad so that x x = as shown in Fig. l.la. Then

Js may be decomposed into components tangential to and normal to the boundary,

i.e., i ( + nn) . Js" Let the boundary be denoted by C. Since n • c =I

for any point on C, Eq. (2.2) becomes

X (*Jis Tc = -nJsTc = ;1c (2.3)

Eq. (2.3) states that R has only a normal component at the boundary, or that

Hta n = 0. This implies that the bcundary condition is effectively a perfect

magnetic conducting (PMC) wall alorg C.

In accordance with the preceding discussion, the region between the patch

and ground plane may be treated as a cavity bounded above and below by perfect

electric conducting (PEC) walls and around its perimeter by PMC material.

Obviously, such a closed structure would not radiate and would present a purely

reactive input impedance if the substrate is lossless. However, following a

commonly used approximation in antenna analysis, one may assume that the fields

in the cavity are not greatly different from those in the interior region of

the actual microstrip antenna. Frcm a knowledge of these fields, one may compute

the radiation pattern, total radiated power, and impedance characteristics of

the antenna.
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Methods of analyzing two dimensional cavities are widely known [12,13].

in this report the Green's function G(x,y;x',y'), i.e., the electric field at

(x,y) due to 6 zc(x - x') 6(y - y'), the unit spatial impulse source at

(x',y') in the cavity,will be found first. Then, by applying superposition,

the fields due to an arbitrary I = zf(x,y) may be found.

The preceding discussion has been general in that it assumes nothing about

the shape of the patch. The discussion will now be limited to the rectangular

geometry shown in Fig. 2.1b. Adopting the coordinate system shown in that

figure, Maxwell's equations for the interior region become

V X (2.4)

7 x H = jwE(l - j6) E + i6(x - x') 6(y - y') (2.5)

where c and S are respectively the permittivity and loss tangent of the substrate.

The boundary conditions on A are

Hx(x,O) = Hx(x,b) Hy (O,y) = Hy(a,y) = 0 (2.6)

Let E = 2G. Then, substituting this expression into Eq. (2.4), remembering that

E is independent of z, gives

GG yG -jwwH. (2.7)

The boundary conditions (2.6) may now be written for G:

'GI IG
y= y -- -Gj 0 (2.8)

y0 yb jx0 lxa

The wave equation which E must satisfy is easily found from (2.4) and (2.5) to

be:

727E + k2E: jww' + 1- 7- 0 o (2.9)



where k2 = 2O0 (0 - j6). Substitu:ing expressions for E and j into Eq. (2.9)

gives 2G + k2G = j wi(x - x ) (y - y ') (2.10)

Eqs. (2.10) and (2.8) comprise the two-dimensional boundary value problem.

The solution to the inhomogeneous problem (2.10) may be expressed in terms o4

the eigenfunctions and eigenvalues of the associated source-free problem. Using

the separation of variables, it is found that the homogeneous equation obeying

the given boundary conditions has solutions of the form
= Am cos .x cos niry (2.11)

VmnI mn a b (.1

The eigenfunction mn is a solution only when k2 takes the value of the corres-

ponding eigenvalue k2 , given bymn

= 2 2 m,n = 0,1,2,... (2.12)
mn "'"

The coefficients Amn are arbitrary and for convenience are chosen so that the

IVmn form an orthonormal set in the sense that

Yb dydx : (2.13)
rya .Y=b {l P ddx 1 m=p and n=q (.3
x:0 Jy=O mn pq 0, otherwise

Carrying out the normalization, one finds that

A I-omnonl I
2  1, P=O(Am ab j o

op '2, p#Oj (2.14)

7o construct the solution to Eq. (2.10), the forcing function is first expanded

in terms of the set of einenfunctions (or modes) ;'r n

72G +k 2 G= Bmn mn (2.15)
m,n=b
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Temporarily postponing the evaluation of the coefficients Bmn, the solution to

Eq. (2.15) may be immediately written as

Bmn mnG = Z (2.16)

m,n=O k2 - k
mn

This may be verified by direct substitution into Eq. (2.15). It should be

noted that k2 is never equal to k2  since k2, as given above, has a nonzero
mn

imaginary part in the physical problem and k2  is pure real.
mn

The evaluation of coefficients B is trivial. Using the orthonormalitymn

of ( mn} in Eq. (2.13), one finds

Brn :i. J J II mn(xy) 6(x - x') 6(y - y') dxdy = jt mn(Xy')mn ff(2 .17)

Therefore, G, the solution to Eq. (2.10), is

00 Omn(X,y )  mn( x ,  y,)
G(x,y,x',y') = jn Z 2 n (2.18)

m,n=Q k2 - k2
mn

To model the microstrip feed line or coaxial feed, the actual current source is

taken to be a one amp ribbon of 2-directed electric current of width d and

centered at the point (x',y'), i.e.,

Jxy= - y')[u(x - x' +) -u(x - x' - (2.19)

where u(x) is the unit step function equal to 0 for x < 0, and 1 for x > 0.

Using superposition, Ez due to this source is computed:

b a
Ez(XY) y''=Ojx ' '=0 G(x,y,z'",y'') Jz(x'',y'') dx''dy'' (2.20)

S mn (x,) om on Cos ..c _ x" 2:2 max
C ab cos cos dx

d m,n:0 k b X=x'- a

(2.21)
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0 £om on cos b ',mn (x,y)x d ird

d m,n= 0  ab k2 k2 a 2a
mn (2.22)

E mnXJy) Pmn(X',')
Ez(X,Y) =jWP ZJoTQ (2.23)

m,n=O k2 - k2n2a

where j (x) = sin x

0 x

Several comments are in order at this point. Examination of Eq. (2.23)

indicates that if the frequency is such that the real part of k2 is equal to

k2 , then the MNth term in the series will become very large compared to anymn

other single term in the series (except for degenerate modes), assuming S is

sufficiently small. In the limiting case of zero losses, this term is unbounded.

When the series becomes dominated by a single term in this manner, the system

is said to be resonant and ,'n is referred to as the resonant mode. Also, note

that the amplitude of each mode is partially determined by the feed location

(x',y'). If the feed is located at a null of any mode, then that mode cannot

be excited; it will have a coefficient of zero. Finally, the effect of feed

width is manifest in the factor j om7d, where J (x) sin x It is seen that

a source ribbon of narrow width d will excite larger amplitudes in high order

modes than a ribbon of greater width.

In order to find the radiated power, one must relate the far field radia-

tion to the modal fields just found in the cavity. An approximate method to

accomplish this consists of the following steps:

1. Define an equivalent magnetic current line source K, = tn x Ec,

where ; is the outward directed normal from c, the patch boundary,

in the z=O plane. E is computed from the cavity model.

2. Allow this magnetic current source to radiate in the presence of

the PEC groundplane, at z =-t, ignorirg the presence of the
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dielectric. The far field electric vector potential, F, is

well known to be

j0k r jk (xcos, sin1+ysinqsin6+zcos)
(,,)--2e 0(~~z

F(reo) 4irr K(xyz) e d>dydz 2.24)

where = free space wavelength, and the factor "2" accounts0hr Ako  0 '

for the image of K due to the groundplane.

3. Compute E(r,e,,,) = jk (6f f)-
0 ( j

4. Compute radiated power Pr = l/n j r 2 E!2d2, where n = 377.2.

The above approximate procedure is derived "rom Huygens' principle. One form

of this famous theorem states that if all sources are placed inside a closed

surface :, then the fields in the region exterior to : will be unchanged if

their sources are taken to be Ks= -n x E , with the interior of E filled with

PEC material. For the present application, let the Huygens' surface be the

z=O plane, so that K z x E K will be zero over the area of the patch,
s z=O + "

since Etan is zero there. Also, IK s decreases extremely rapidly with distance

from the edge of the patch, as shown in Fig. 2.2. Consider performing the

integral of Ks as indicated in Eq. (2.24) along the path AB in Fig. 2.2. The

kernel of the transformation is nearly constant over this small linear path

so that the result is essentially the line integral of Ks" Since the distances

involved are very small in terms of wavelengths and the magnetic field is

negligibly small near the edge of the patch, a static approximation is thus

employed:

E d fZ2 E.- d-4+ (E. d Z 0 (2.25)

ABCDA

where points A, B, C, and D are defined in Fig. 2.2. Evaluating E dZ for

these paths gives
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HUYGENS SURFACE: ,

D THE X-Y PLANE

Figure 2.2. Illustration of localization of N5 to patch boundary.
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E x dx +  Ezdz = C (2.26)
A. fB

It is now assumed that E lies in the plane (f the figure, so that K

and E are related by

s -z x E -z= E x  (2.27)

Therefore, Eq. (2.26) may be rewritten in terms of K:

A Kdx + fEzdZ = 0 (2.28)

Using Ez found for the cavity model and letting n be the outward normal to C,

the patch boundary, Eq. (2.28) becomes

fB Ksdx = tn x E c (2.29)

Thus, as an approximation to the unknown surface current Ks' an equivalent

line current K. = tn x EIc is defined as in step 1. Carrying out the

procedure, Kz is expressed in terms of Ez

KZ(x,y) : t- - Ez(x,O) s(y)[u(x) u(x - a)]

+ y × z (x,b) 6(y - b)[u(x) - u(x - a)]

- x z (O,y) 6(x)[u(y) - u(/ - b)]

+ x zE z(a,y) 5(x - a)[u(y) - u(y - b)]} (2.30)

After a small amount of manipulation:

K : t{x[Ez (x,b) 6(y - b) - E z(x,O) 'y)][u(x) u(x - a)]

+ y[E z(O,y) 6(x) - E z(a,y) 6(x - a)][u(y) u(y - b)] ,(z)

(2 .31

Consider for a moment K due to a single mode Ez = cos T x cos
a b
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The frfield electric vetrpotential due to this sigemode can bedfound

from Eq(2.33))

te- ko rr ejk 0 bsns i n ~p .r) o xei 0x;n

F~r,4 0 r Jo~ a

r jk 0asincos," fb Coks 'yej nesin -n-)

+ yel e sin

(2.34)

-jk s tAe-jk 0  r j jkab -sin,-n s ~o;-

ak -* 2 k i - O

(kji~in k 0 asn Io M) jk snsn -7

sin[(kbsi n 7n. 2 - n (k/ sin [( asin -' os2-) 2
0

(2.35)



Using superposition for all modes, i due to the one amp current source at

(x',y') is computed to be

-jk r
2ww 0k0 te sine jk0 (acosw+bsinf)sine

F 1r abe

m,1 (_j)m+n sin[kobsinesinp - n7i/2] sin[(k 0 asinecos -m7)/2]

cos m- -x' cos b-- j

k2  b 2
2

mn

t (k sinecoso)2  (sinesinp
c (ks bnesi 2 . (2.36)

After finding the far field radiated power through the use of ,tep 3, the

radiated power Pr is computed:

Pr / 0 =O]6=O E - E r 2 sinededp (2.37)

where denotes complex conjugate.

A quantity of great importance in the analysis of the antenna is Z, the

antenna input impedance. The simplest method of computing this quantity would

be to take the input impedance equal to the feed voltage since the feed current

was assumed to be one amp.

d
Z = V/1 = -tE~ (averaged over feed width,) X1 4 E Edx

JX -f (2.38)

One would not expect Eq. (2.38) to produce very accurate results since it takes

no account of radiated power or power dissipated in the antenna structure if

Ez is computed from Eq. (2.23) directly; this is found to be the case. Another
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approach is to use the Poynting theorem to define input impedance. If a closed

surface : is constructed in the far field of an antenna, where Z encloses

volume V, then the Poynting theorem gives the following result:

rr .. ** 'f -i-F*

- j • J dV . :N dS + j( - H • H dV - j, £ E E dV

V V V

+ aE - E dV (2.39)

V

where dS is the outward directed vector area element and dV is tne volume

element. Eq. (2.39) is often expressed in the following form:

VI Pr + P, + 2j,(Wm - We) (2.40)

where VI is the complex power delivered to the antenna; Pr is the time-

averaged radiated power; Wm and We are the time-averaged magnetic and electric

stored energies, respectively, in V; and P, is the power dissipated in the

antenna. For the microstrip antenna, P,, may be decomposed into two terms,

Pc and Pd' representing the copper and dielectric loss, respectively. The

stored energy and power terms are individually evaluated in the following.

In compiting the electric and magnetic stored energies, the cavit, model

theory would issume that the bulk of the stored energy is contained in the

interior regi)n of the microstrip antenna. Therefore, these quantities are

computed from the modal fields. The time-averaged electric stored energy is

given by
a rb

ie (1/2) t =0 = IE'2 dydx (2.41)
W ri t n t s i n t s oxfOJy= O

Writing this in terms of Jn
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A = (1/2) w2 t Tmn (x k - 2k2  [2!1 (2.42)

m,n:0l mn

The time averioed magnetic stored energy is given by

W = (a 1-b

Wm (1/2) t f' ]:y: IH2 dxdy (2.43)

H may be written in terms of Ez

aa b 1 2

Wm = (1/2) tuo i Jy= I VE,! dydx (2.44)
x:O y:O w~

Finally, when Ez is expressed in terms of pnn' one has

2 b a

t m 2n(0' -k [- 71mn " dxdy

Wm 2w mn- mn2 (2.45)

The integrard in Eq. (2.45) may be simplified by applying a vector identity

derived in the next few equations. First, 7 • (mnmn) is expanded.

' • ddy 7 • ('j ) dxdy - dxdy
m mn mn mn J mn dy

(2.46)

The limits of double Integrals in Eqs. (2.46) - (2.50) are understood
to be x : to a and y = 0 to b.
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The two dimensional divergence theorem is now applied to the first integral

on the right hand side of Eq. (2.46):

"ramn "in dra ) - m
mn ,n x yC d-, "mn'- " n dxCy

(2.47)

The line integral in Eq. (2.47) vanishes since n 0. The last integrl

on the right hand side of Eq. (2.47) is evaluated by noting that

1 m k mn mn. Then, since the imn are normalized to unity, the result is
mn n inn n

7Cf • ,, dxdy = k 2
j mn mn mn (2.48)

Using Eq. (2.48), it is seen that the magnetic stored energy is

in k2  ,2 (xm, y')W t k mn rmn(x''). nd,

m 2 ,= k2 - k2  2 .- (2.49)mn

The power lost in the dielectric, Pd' is given by

2twc IE  dxdy = 2LI We (2.50)

where 5 is the loss tangent of the dielectric substrate.

The copper loss, PcI is equal to twice the power lost in the metal patch

element alone. The power dissipated in the patch can be found by the usual
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perturbation method for good conductors. One first solves the problem for the

ideal boundary condition z x E = 0. With this boundary condition

enforced, one finds the surface current density on the underside of the patch

is = -z x H. Assuming that the actual copper coating is many skin depths
z=O-

deep (as it is in practical cases), one approximates J, the actual current

density in the copper, by

S=! e (2.51)
s

where A is the skin depth of the copper:

f 2 11/2 (2.52)

This conduction current obeys Ohm's Law: J z :E. The expression for the

total copper loss (patch and groundplane) is found from Eq. (2.39).

P - b2 x= j2 e - 2z/ dzdydx (2.53)c CYL2 Jx YJy' O S

is is now written in terms of H and the integration with respect to z is

:arried out. Thus,

PC f HIi2 dxdy (2.54)

patch

The above integral is proportional to the magnetic stored energy (2.43).

Therefore, the copper loss is

9
PC = i2 -m(2.55)

Having computed the stored energy and loss terms, Fq. (2.40) is used to

formulate two expressions for Z. First, since VI ZII , one may write

(remember that = 1 amp):
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Z : r + Pd + Pc + 2j (W - W e) (2.56)

Similarly, VI : VV /Z, which leads to the result

l/Z = [Pr + Pd Pc - 2Jw(Wm - We) l /V1 2  (2.57)

It is found that of the thre! formulations (2.38), (2.56), and (2.57),

for input impedance, only Eq. (2.57) agrees with experimental measurements,

and then only for frequencies near a strongly excited resonance. The

explanation for this failure may be traced to the fact that the additional

losses Pr and Pc are only partially accounted for in Eqs. (2.56) and (2.57)

and not at all in Eq. (2.38), since E (and therefore V) as computed from (2.23)

does not depend on these losses.

To rectify this problem, one may note that all thin microstrip antennas

have so high a Q that the effects of all losses can be grouped together into

a single "effective loss tangent," 5eff" In doing so, the three formulas will

then coincide, in fact, showing excellent agreement with measured results.

eff is computed by noting that for an ideal cavity with lossless walls the

loss tangent and the cavity quality factor are related by 5 = I/Q. It is

therefore reasonable to define jeff =/Q = (Pr + P + P )/2 W effs

then used in place of S for all computations. Since all these power losses

depend on E which in turn depends on 3eff as seen from Eq. (2.23), this

definition thus leads to a complicated nonlinear equation for 5eff* It can be

shown [5] that 5eff can be solved by an iterative procedure:

i+l : [Pr(si) + PJc(i) + Pd(5i)/2 o We(i)

where the starting value is . In practice, the value of 3eff is found to

converge after a single iteration. In order to demonstrate the accuracy of the
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theory, some typical results of measured and computed input impedances of a

rectangular microstrip antenna are shown in Fig. 2.3. A rectangular micro-

strip antenna was constructed and fed through the ground plane by a semi-rigid

coaxial cable at three successive points as shown in the figure. For each

feed location, the impedance was measured at 5 MHz increments and plotted on

a Smith chart as shown in Fig. 2.3b. To compute these loci via the theory, a

value of d must be selected. In practice, the value found to give closest

agreement between experiment and theory is used (about 3 to 4 times the diameter

of the inner conductor). Note, however, that once d is determined for a single

location and frequency, the same value yields accurate results for other

frequencies and locations. When a microstrip feedline is used, d is the width

of the line. Clearly the "effective feed width" is a problem deserving more

investigation. Returning to Fig. 2.3, observe the excellent agreement between

computed and measured loci. Thus, one may conclude that the theory provides a

simple but very accurate prediction of microstrip antenna performance.

The last topic treated in this chapter is the formulation of an equivalent

circuit model for the input impedance of a microstrip antenna when excited near

resonance of one mode. Consider the input impedance of the antenna when fed

again with a one amp source. For convenience, define k2ff k2 r(I _ ef

Then after performing the integration called for in Eq. (2.38), the expression

for input impedance is

2 (x',y')

0 m,n 7 - i (2.58)
mn eff

Defining cn = Ckm/ --rwhere c = 3 x 108 m/s, Eq. (2.58) becomesmn mn r

j utc2  2 (x',y')

- ( - .nJ2 m~ (2.59)
r m,n:O 

__mn 2(i_ jeff)o
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To simplify the appearance of Eq. (2.59), the quantity

m otc2 2 (x',y) 2(mi7dl
rmn E r mn ' o12a (2.60)

is defined. The input impedance can now be written as

Z E mn (2.61)m,n2
W 6e f f +  j ") - j M,

The form of the summand in Eq. (2.61) is suggestive of a parallel RLC resonant

circuit. Therefore, the following definitions are made:

G mn(u) : W6eff/ tmn (2.62)

Cmn l n (2.63)

L 2~/} .(.4

mn mn/,mn (2.64)

Using these expressions,the expression for input impedance can now be written

as

Z : Gmn(W + j -Cm jl/e Lm(265Z (2.65)

m,nO mn mn mn

Typically, :he microstrip radiators are very narrow band, in which case,

G mn() may be replaced by Gmn(.,MN) for operation in the frequency band of

mode (M,N). Therefore, Eq. (2.65) represents a Foster expansion of the driving

point impedance function. Since Lmn decreases with increasing modal indices,

the infinit- number of high order Foster sections can be simply combined to

form a sing~e series inductance, as illustrated in Fig. 2.4a.

In ca;es where the antenna is operating near a resonant frequency MN

which is well separated from all other resonances, a simpler network formulation

is possible. To demonstrate this, the MNth term is separated from the sum in

Eq. (2.61) and the quantity (j.) is factored from the remaining terms.
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t I t t

(0,0) (0,1) (m,n) al
other

modes modes

(a)

L

-MN LMN GMN

T

(b)

Figure 2.4. Circuit representations for microstrip antenna.
(a) Equivalent network for microstrip antenna;
(b) Equivalent network for excitation near an
isolated mode.



25

Z MN T + jW mn

We + - MN m,nM,N mn -2(l - j~eff)'eff + jw - J - (266

The first term on the right hand side of Eq. (2.66) may be replaced by the

parameters of the Foster section for mode (tl,N). The denominator of the
2 2 w2 2 2 2 2

summand may be replaced by mn - WMN since w MN and l Wmn - 'MNI/"N >> 'eff

for well separated modes. The result is

1 - + jwL' (2.67)
GMN(MN) + JWCMN - jMN MN

where L' 2 mn2 2
m,ntM,N mn - MN

The network model of the antenna operating near an isolated mode is therefore

a parallel RLC circuit in series with a single inductance. This model is

illustrated in Fig. 2.4b. The impedance locus is therefore a circle with

center shifted into the inductive region as shown in Fig. 2.3.

In this chapter a simple cavity model for microstrip antennas has been

described and has been developed in great detail for the case of a rectangular

geometry. It was shown that the cavity theory can accurately predict the

behavior of the antenna. A simple circuit model for the antenna was then

developed as a logical extension to the theory. This circuit model provides

one with a very simple means for the array design so far as the impedances and

relative element currents and phases are concerned. A simple example will be

considered later.
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III. CIRCULAR POLARIATION IN MICROSTRIP ANTENNAS

Circular polarization (CP) in microstrip antennas arises due to the

excitation of nearly degenerate modes. Two modes, JMN and 'YM'N'' are said tc be

degenerate when -MN 1 'M'N'' which implies, for the rectangular geometry,

t}2 + (- 2 a ( 2  2 (3.1)

For the case of a square geometry, a = b and all modes are degenerate since

4N = -tM" Consider the behavior of the impedance as 'MN = 'NM" The series

for Z in (2.58) will be dominated by the term

2 MN 2 DNM (3.2)
W MN +j( 2eff

where

D w v, 2 (x',y') 2-mrd)

NMN O(r Maj

This term has the same form as in the case of well separated modes; thus, the

locus of Z is expected, as observed, to be a circle on the Smith chart. How-

ever, if there is a slight imperfection in the contruction so that a A b, the

degenerate resonant frequency will split into two close ones. The corresponding

modes will still be excited simultaneously as the frequency sweeps through

their neighbcrhood, but the impedance locus will no longer be a circle. To see

this, assume that wMN W wNM" Then

DMN DNMZ 2 2 2 + 2 2, 2, as < MN < NM

fN + " NM- i + w Jeff

O ' N  DH
Z -; , + j~ 2 e f  as ' N <  <

,2 2. 2 2i .2 M aN M

.. MN " -i - eff ffM +
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Z D M N DNM
2 2 2 2 2 2 as N

IMN j 2 eff -WNM _ 2 MN NM
(3.3)

Now as the frequency sweeps through the two resonant frequencies, the impedance

is seen to change drastically as w)MN ' "; .: WNM* This effect is seen as a cusp

or small loop in the impedance locus as will be seen in Fig. 3.5.

For the nearly square antenna of Fig. 3.la, a = b + c with c/b .- 1, so

that the resonant wave numbers k and k will be very close to one another.

Feeding the antenna at point 1 will excite the 10 mode but not '0l. Feeding

at point 3 will excite 01 but not I0" Feeding at point 2, or on the diagonal

through point 2, will excite both po0 and 10 modes, or a dominant field pro-

portional to + = ol + 10" With a feed at point 4, the excited field will be

proportional to _ = 0l - 10" In the far field, in the direction perpendicular

to the plane of the microstrip, the electric fields produced by 0j and ,lO are

polarized in the x and y directions, respectively, and can be written for the

appropriate choice of input current magnitude and phase as

cos(7x'/a) cos(7y'/b)Ex 2 2 Ey z 2 23k21 eff3 10

The contributions of the nonresonant modes are ignored in (3.4) for frequencies

near the resonances of the two modes. To obtain CP in the direction of the

zenith, the ratio of Ey to Ex should be exp(j--T/2). Define A cos(-y'/b)/

cos(-x'/a). Then,

!, A eff I0 0 35)
Ex  k2  k k "0

eff 01 ko3
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It is particularly illuminating to plot keff , k01 , and k10 in the complex k

plane as was done in Fig. 3.2. For E y/E to be exp(j7/2), Eq. (3.5) requires

that

Ak ko l -k = L(A + ) (3.6)

Let keff = k - jL; then,

L I _.1
k 7 eff 2Q (3.7a

But

k - k - - - T c - (3.7b
01 10 b a b b+ c ~ '(.bband

kb (3.7c)

Thus, combining (3.6) with (3.7), one obtains

.k k01  - k - c .A + A8)

- b- 20
k 2

For the o3se of the feed point taken on the diagonal of the -icrcstrp, A -

and, therefore,

a + I/Q (3.9

This is an important formula, since it gives a simple -eans for dEtermininq

the dimensions necessary for CP. The sense of the CP wave produced tv t!e
antenna when fed at point 2 will hP left hand circularly polarizer (-icht nanc

whnen ':ed it Doint 4'.i. 3.3 shows the far field pattern cf the, near,y sur

antenna taken .4ith a rnta-ing dipole. The quality of the CP is very good broac-

side to -he antenna and degrades to linear polarization ?n the horizon, as it

"must.
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For the antenna of Fig. 3.1b, the analysis follows along the same lines

as that for Fig. 3.a. However, in this case, rather than I ano ,1, modes

+ I ; and 1 - 1 are used, with corresponding wave numoers

k, and k_. Of course, if the corndrs of the square microstrip are not trimmed

off, the k+ = k_. However, by tririming the corners, k is increased edrile k

remains almost unchanged. Obviously, if the opposite pair of corners were to

be trimmed, k+ would increase dnd _ would remain unchanged. The amount of

shift in resonant frequency due to truncation of the corners has been estimated,

using a perturbation formula [14], to be

k_ -k+ 2(a - a sin[-a - a')/a]. (3.10)

In order to test this prediction, In antenna was constructed from 1 oz copper-

clad Rexolite 2200 with t = 1/16", a = 10.85 cm, and a' = 10.29 cm. To arrive

at these dimensions, the Q of the quare antenna was measured by feeding at

point 1 of Fig. 3.1b. The corners were then trimmed until the percentage shift

in resonant frequencies measured a: points 2 and 4 equalled (100/Q)-, or l,. for

this antenna according to Eq. (3.8 . CP patterns similar to Fig. 3.3 were

obtained. But using (3.10), one f nds that a frequency shift of only 0.5'. is

oredicted. This discrepancy is no unex:)ected, since Eq. (3.10) is based on

the assumption that the boundary c ndition along tre perimeter of the microstrip

is that of a perfect magnetic wall Although this assumption has prcven

reasonably ipplicable to the analyis of most aspects of microstrip an-ennas,

it is not entirely adequate to pr( Jict the shift in poles in this critical

application. It is believed that the complicated fringing fields at the corners

..ihere the perturbation for'mula is applied ,lake -he aucroxi:raticn insufficent.

'lote, however, that one can still rely on Eq. (3.1.2; for the required frequency
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shift, and experimentally refine the proper dimensions by simply measuring the

resonant frequencies corresponding to k+ an( k by feeding at ports 2 and 4,

respectively.

The antenna in Fig. 3.c operates by the same mechanisms as that in

Fig. 3.1a. In this case, however, the pole k10 can be varied by simply adjusting

the capacitance attached to the antenna. (ince the capacitor is located at

y = b/2, a null of the D01 mode, k is unaffected by the capacitor.) :f the

range of capacity is large enough, ,nd a e b, one is able to adjust the antenna

to produce fields of any polarization and sense. Thus, the antenna can be at

one moment left hand CP, linear at the next, and right hand CP at some other time

by simply changing the capacitance. However, since only one pole is affected

by the capacitor, the frequency of operation shifts as the capacitance is varied.

It should be noted that the capacitor could just as well have been located n

the corner of the antenna in which case one would feed at points I or 3 to

achieve CP operation.

Fig. 3.4 shows an exactly square microstrip antenna loaded by two indeoen-

dently biased varactor diode.. The varactors are located on nodal lines of the

-10 and ) l modes. The biasing circuit arrangement shown in the figure ensures

RF and DC isolation between the bias supplies and the antenna. The location of

the varactors allows independent adjustment of the poles kol 6nd k io. 31 tnis

scheme, the difference in the poles kol - k10 tan be adjusted while keepin

their mean, k, fixed. Thus, -or operation at a fixed frequency, virtually any

poiarizition can be -chieved ;imoly by adjusting the varactor biases. Fiwres 3.5

and 3.6 show the impedance and r.diation patterns of this antenna for the various

polarizations. The patterns qere taken with LH and RH CP antennas. Tie

asyr-metry in the :,atterns is ;robabl, due to the asymmetrical Placement of the
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Fig. 3.4a. Double tuned antenna.

Fig. 3.4b. DOUble tuned antenna schematlc.
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Fig. 3.5. Impedance of double tuned antenna.
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diodes. It is conjectured that using two pairs of matched diodes on opposite

sides of the antenna would minimize this effect.

Using the double-tuned antenna of Fig. 3.4, it is also possible to vary

the frequency of operation without interfering with the state of polarization.

The double-tuned antenna constructed is tunable from 800 MHz to 340 MHz while

still maintaining quite good CP. Obviously, the tuning bandwid.h is dependent

on the quality of varactors used.

Other single-feed CP microstrip antennas can be explained in the same .1ay

as the rectangular. A disk microstrip antenna was designed on the basis of

this theory. A capacitor to the ground plane was attached to the circumference

of the disk. When fed at an angle of forty-five degrees from the capacitor,

CP operation was also obtained.

Although all these antennas are able to produce good CP without the need

of an external phase-shifter and power divider, a distinct advantage, it is

clear from the theory given above that their CP operation is extremely narrow

band. Fig. 3.7 shows the predicted degradation in axial ratio with normalized

frequency defined as

k - k(.1

Tnus, for an axial ratio within 3 dB (at zenith),which would produce a polar-

i:ation mismatch loss of less than 1/4 dB with respect to CP, one is limited.

fhr 1/16" Rexolite 2200 at anout 300 MHz, to a bandwidth of about 35 of

tie frequency difference between the two dominant poles or about (35, )

percent bandwidth. Fig. 3.7 applies to any CP microstrip whose feed

excites both of the nearly degenerate modes equally. The clcse acreement

tetween theory and experiment is shown in Fig. 3.3, where axial ratio as

function of frequency is plotted for the nearly square antenna.
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Zig. 3.3. "easured response ofr-rotating dipole and )lot of axial ratio
fornealysquare antenna.
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In this chapter the mechanisff characterizing the operation of singly

fed CP microstrip antennas has been described in a simple and useful manner.

For geometries for which the difference in the resonant frequencies of the two

nearly degenerate modes can be computed with sufficient accuracy (such as

rectangular or elliptical patches), the exact dimensions can be successfully

calculated by knowning the Q of the antenna. For perturbed patches that lead

to nonseparable geometries, one can fairly quickly determine the dimensions

without making tedious pattern measurements by adjusting the pole location such

that Ak/k = I/Q. Finally, a curve has been plotted which allows one to quickly

predict the pattern bandwidth of the CP antenna.
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IV. CHARACTERIZATION OF THE MICROSTRIP LINE AND COAXIAL TRANSITION

When a microstrip antenna is fed with a microstrip line, it becomes a mcno-

lithic device, which can easily be fabricated and reproduced simply by a printed-

circuit technique. But in this case, the antenna must be fed through the

perimeter of the patch, thus losing the flexibility of the coaxial feed which

can be located in the patch for certain desired impedance and polarization

characteristics. Furthermore, in gene-al, the strip line will eventually be

connected to a source (or receiver) through a coaxial transition. This is

indeed the case in most measurement systems, if not all. For this reason,

an investigation of the strip line-to-coax transition is of interest in its own

right.

In our study of arrays to be discussed in the next chapter, some incon-

sistencies were observed in the measured results through different ways, and

thus caused difficulties in formulating a theoretical design procedure for

the array. In an attempt to trace the source of the inconsistency, each part

in the array was investigated in great detail. In so doing, we were confronted

with the interesting question: how to determine the s-parameters of a small

discontinuity accurately. It is found that extreme care must be exercised in

the procedure of measurement; otherwise, ridiculous values of the s-parameters

may likely result. For this reason, it is also necessary to investigate tne

characteristics of the strlo line-to-coax connector discontinuity.

In this chapter, the techniques used to model microstrip lines to coaxial

cable connectors are presented. First consider a mirostrip line which consists

of a around plane, a dielectric sheet of thickness t, and a metal strip con-

ductor of width w, as illustrated in Fig. 4.1. The quantities of interest
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Fig. 4.1. The microstrip transmission line.
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associated with the line are ZO , the characteristic impedance of the line, Vp

the phase velocity in the line, and i, the attenuation constant of the line.

A useful analysis of the line will predict these quantities.

Because the field lines between the strip and the ground plane are not con-

tained entirely within the dielectric substrate, the propagating qave dicng the

line is not purely transverse electromagnetic (TEM). However, for low enough

frequencies of operation the fields are nearly transverse and the propagating

mode may be characterized by an "effective dielectric constant," e' which is

defined by the relation
V

V = _0 (4.1)

where V0 = (,:O-O)- 1/2 This "quasi-TEM" mode is a useful concept for frequencies
where the longitudinal component of the field is negligible compared to the trans-

verse component.

Several methods have been reported in the literature for determing e and

ZO. These include conformal mapping [15], variational techniques [16], and

the method of Green's functions [17]. For the purposes of this report, closed

form expressions suitable for computer-aided design were sought. Hammerstad

[18] has reported closed form expressions accurate to within I% relative error

for values of Fe and Z0 commonly obtained:

r+1 l r - l1/
2 + 2 ( + 12t/W) -I1 2 + K (4.2)e =  2 2

where

0.04(I_ w/t) 2  for w/t <

K S 0 for w/t > I
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112

]0 1' /2 • -- • n(S3t/w *- 0.5 ' ,' for , -

-0

0c0) Af/t + 1.393 .667 n(..,i + .,

It is possible to take the finite thickness, , of te stri. ,:orductjr ir'Z,- '"

by introducina an effective strio width e nov.eve. , 'o, Th I -n _-t

clad Rexolite sheets used in this report, the correction is nrc necessarj.

There are two sources of dissipative loss in a microstrip line: conduct-r

loss and substrate dielectric loss. Pucel .19 has reported ver 1 accirate

expressions for ?ic) the conductor loss factor:

S RRs 4 -1;4- , ,
P o Il + t,/ +t/ W. n -. + - , for 1 122 TZ0t., !-

R 
S P Q for 1/2- .w/t Al4. '

c 2- Z ' t L

Rs ) 2-2 W(t

S o Q o + - n,2--exp(W/2t + 0.94) 1 7- W/2t + 9 '
z0 .t 1 + '

for W/t > 2

wh ere 1/2

RS -- 1
S 2-1

P = 1 - (w/4t)
2

Q 1 + t/W + tl=1.

Schneider [201 derived the following expression for the dielectric loss

factor:
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the transition between the coaxial cable and the microstrip line is effected by a

"launching" device which has imperfect matching properties. Therefore,

multiple reflections between the "launcher" and the open circuit may explain

wny the return loss plot shows periodic oscillations with d.

Consider the "launcher" to be a two-port device, with port 1 connected

to the coaxial cable and the microstrip connection designated as port 2.

Using these definitions, the reflection coefficient, ', measured at port 1

will be re ated to -, the actual reflection coefficient in the microstrp line

at port 2, by

= S+ '1221-
S11  1 - (4.8)

where the ]Sij'- are the two port scatterirg parameters which characterize

the junction. It is reasonable to assume that the "launcher" is a reciprocal

device, in which case S2 = S 21. Also, if the device is nearly lossless,

then ill[ - S22 . To see how the oscillations in Fig. 4.2b can come abuu-,

assume that the connector provides a 'good" transition, i.e., S 1l ,

and Sl2 1. Then the expression for return loss is approximately given !:y

_,,20 :_ 20 , -

R = -20log '  " -401og1 S1 2  (2 :d ) - nlO $ e

cos(ArgS 22  .23d) (4.9)

:t 4s now seen from Equation (4.9) that the plot of R versus d will be an

exDonent-aily decreasinj sinusoid superimposed on a straight line. Thus,

the slooe cf t:ne line fitted to the data by th,2 method of least squares should

provide a vilue for . The value of , so ootained from the data of Fig. 4.2a
i-l 06 " hc are a -l

is : ]OC - nm wh crees fairl! well with 0.0003 cm , the value obtained

from Equations i-. and '..5).
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At this point a discussion of the types of microstrip to coaxial tran-

sitions is in order. Several types oF backwall launchers are shown in Figs. 4.3

and 4.4. These backwall launchers are convenient because the groundplane

acts as a shield, preventing the presence of the connecting hardware from

disturbing the microstrip operation. Fig. 4.3 shows an SMA semi-rigid

coaxial connector and Fig. 4.4 illustrates an n-type coaxial transition.

Due to mechanical considerations, the connector of Fig. 4.4 was used

exclusively for the parameter work in this report.

In order to uniquely define the scattering parameters of the device,

junction planes which demarcate the device boundaries must be defined. The

junction plane for port 1 is defined to coincide with the bottom face of the

Teflon sheath surrounding the center conductor. The junction plane for port 2

cuts the microstrip line at the position of the center conductor screw. The

problem of determining the scattering parameters of a small discontinuity can

be quite difficult, since given several values of ?,there are many possible

combination, of the {Sij. which will give nearly the same value of 7'. The

classical method [21] for measuring the scattering parameter of a 2-pert

through a line consists of an experiment similar to the one described above,

with ,d = 0, 7/4, -/2, and 37/4. The scattering parameters are then determined

by graphical means on the Smith chart. For example, SlI is the point lying

at the center of the circle on which the "our measured values of 7' tall.

However, the method must be modified for the present case. When the dis-

continuity presented by the two-port is small, the four points will lie on

a circle of large radius, that is, near the edge of the Smith chart. it is

then difficult to determine S11 accurately. In order to do so, it would be

desiranle for to be small so that. ' is essentially equal to S1 However,
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Fig. 4.3. SMA semi-rigid coaxial transition.
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in order to measure S12, a large value of 71 is desired. Thus, the following

experimental procedure is suggested.

Using Equation (4.3) for dimensions, a nominal 50%! microstrip line is

constructed, terminated at each end by ideitical n-type transitions. Measure-

ments of the reflection coefficient are male at one port while the opposite port

is successively match-terminated and short circuit-terminated. These measure-

ments are repeated while the length, d, of the connecting line is varied. The

experimental setup is sketched in Fig. 4.5. Using the notation of the figure,

the following relations are simply derived.

0 for Z = 5012

- SIl:(4.10a)S2 2
(4.lob)

2"

22" + (4.10b)

S- S 2 2 T "

When the output port is matched, we have

e2 , -2j.'d e-2-d $

il= + 2
12  e 2S2 

e-2 j 3de 2:ad

-S" 2 e 2j3d e_
2 d l + S12 22

22(4.11)

For small losses, Equation (a.11) is the parametric equation of a circle in

7'e ." clane .with center at Sll. Thus, by varying d, .'' will move on a

centered at S o' radius iS2S22 . The experimental data from

Si; s exper-ert oerformed at 800 XHz are p'otted on the Smith chart in
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Fig. 4.6. In this magnified view, it is easy to see that the points fall

on a well-defined circle. The center of the circle is determined from the

data by a least square fit.

With S11 determined, the remaining parameters are found by using data

taken with the output port shorted. (The short is effected by inserting a

hollow brass plug into the connector until it is flush with the Teflon

sheath. This is why the junction plane for port 1 was chosen at that

position.) S12 and $22 are found by minimizing the residual

.... - ",,, 2 (4.12)

where is the measured reflection coefficient for d = d. and 2,,,isl ~I "

computed from Equation (4.10) using trial values of S12 and S2 2. The scattering

parameters were determined for 770 MHz, 80() MHz and 330 MHz and the values are

tabulated in Table 4.1. As expcted, the liscontinuity presented by the

transition is rather s,7all and does not va y greatly over the measured frequency

range.

'iith the values of the scattering para etars now kn,:vcf, it is possible tc

correct the data of Fig. 0.2 and 2lot the values of return loss and ::hase

that would be neasured if there were no discontinuity ,resent. These corrected

dataare shown in Fig. 4.7. The small improvement in the return loss plot as

compared to Fig. 4.2 indicates that the oscillations are not due to the effect

of the microstrip launcher. Rather, the departure from linearity must be

attributed to system measurement errors. The :0.4 dB excursions in measured

data easily fall within the combined error tolerances of the measuring equi -

ment, as stated by the manufacturer. The network analyzer, for example, ,uotes

an accuracy of -C.2 dB, while the 3mm error circle on the polar display CRT

translates to at least -0.05 dB.
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Table 4.1: Measured Scattering Parameters

S 11  S 12  52

770 MHz 0.039/300 0.997/-15.20 0.044/1060

800 MHz 0.057/220 0.998/-150 0.046/117-~

830 MHz 0.066/280 1.00 /-l60 0.0604/131'
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In this chapter, equations for characterizing microstrip lines have been

presented and experimentally verified. The scattering parameters of a micro-

strip to coaxial line junction have been determined, and it was found that

the discontinuity introduces no significant errors in the measurements

compared to the measuring system errors. But this investigation has led to

an accurate procedure for determining the s-parameters of a small discontinuity.
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V. TWO ELEMENT ARRAY

A basic limitation of microstrip antennas is their inherent narrow band-

widths. In this chapter, the possibility of band-broadening by means of

incorporating microstrip elements into an array will be examined.

The basic two element array and its equivalent circuit representation

are shown in Fig. 5.1. Using the results of Chapter II, the elements are

modeled as parallel RLC resonant circuits with a series inductance connected

by lengths of transmission line. The following parameters characterize the

circuit:

(i). the resonant radian freqi~encey of the PLC circuit

QMi: the quality factor of the RLC circuit
R(i): the resonant resistance of the RLC circuit

L~i): the series inductince
S

where i = 1 for element -l and i = 2 for element 42.

in terms of these quantities, the input impedance of a single element is

7(i) = j-L(i) + R(i)
jQ(i) , (. i) oi / ) 5 1

The impedance is now transformed through a distance d(i) on a transmission~()(i) (i'

line with characteristic impedance Z i0 , wave number and loss factor

After transformation, the impedances of elements 1 and 2 are combined in

parallel at the T-junction and the combined impedance is transformed again(3) (3 1-),
tnrougn the line of length d characteristics )and , t te

position of the corporate feed point.

in order to calculate the far field ridiation pa.tern of the arra_,, tre

relative ra,]nitudes and phases of the currents at the feed point of each

________
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element ';ust oe found. Assuming a total voltage of 1 volt at the T-junction,

.ner '' , the cositive-going (towards the element) voltage jave on line i,

is "ound to oe

v =i) (I + z i)/z(i))/ 2  (5.2;+

whnere Z' in Equatiol (5.2) is the input impedance at the -jurczic ir ne

-i, looking towards element -i. The current at element -i is now easily

found to be
( ) 2VO ) exp- ( (i) 4- -(i) P i

z(i) + -(i)

0

where Z(i) in (5.3) is the input impedance of element =i as given in

Equation (5.l).

't is assumed that both elements are of nearl., identical dimensions and

operating in the (0,1) mode so that the .,component of the electric field in

the x-z plane is the quantity of nterest for pattern computation. Then for

a single element, and neglecting :ontributions of non-resonant modes, we

find from Equation (2.36) of Chapoer 1f,

Ik asin-0
(~~' -. Cos-NE) ,~i) ~ 2 -t L(i [o k os

x-z plane k2 _ [k 01]

where a = a(1) a The total oattern is then

'k asin 2  K -[ (2)12
0k' c- [ I -J(k C sin,-)

j 0[k 1 ]
E Co e , -O

o 2 pk' [k01

A comuter program was 4ritten to evaluate thie impedance and pattern of

the two element array. . rn order to test the Qrooram, in arrt/ vas constructeG

.ith the dimensions shuwn in Table 5.1. The values sJ . . , and K for

______________4
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Table 5.1. Array Dimensions

d~l) 49.8

d (2 ) 63.5

d (3)5.2

W~l) 0.44

~(2) 04
w 0.44

a(l) 17.07

b 11.39

a(2) 16.84

b (2)11.20

0.0036
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the elements can he either computed entirely from the sheory in Chapters 1i

and III, or measured for several frequencies and then computed ising an

optizimation program that minimized the error between the impedance computed

from the simplified Equation (5.1) and the measured input impedance of each

element. The agreement between the two has been repor-ed previously [4-61.

Since the objectives of this investigation are first to determine the possible

bandbroadening for an array and second to develop a circuit theory for the

array design, only the latter method is used. The measured and computed (via

Equation (5.1)) values of impedance for element o. I fed through a 49.5 cm

50 ohm line are shown in Figure 5.2 Similar agreement is obtained for element

io. 2. This result shows that for a narrow band around the resonance, so

far as the impedance is concerned, the antenna can adequately be represented

!y a simple parallel resonant circuit in series with an inductance as given

by Equation (5.1).

The computed and measured impedance loci at the feed of the array are

shown in Fig. 5.3 and the radiation patterris are plotted for several frequencies

in Fi-s. 5.4 - 5.7. Both impedance loci shcw the characteri-tic loop between

the resonant frequencies of the two elements. Tn an optimally designed array,

this loop cin be used to extend the VSW'R-.im ted bandwidth. ,However, the

pattern is not stable throughout the entire band. Drops of radiation in the

broadside direction and tilting of the rain beam at some frequency strongly

limit toe use of this array for broadside radiation application.

The agreement between computed and measured results in Figs. 5.3 - 5.7

is fair. It seems that the program is capable of predicting the general

hehavior of the array, out cannot track the measured dai:a exactly with

frequency. Po;sible sources of error incl ude di:2-ensionai uncertainties,

discontinuities introduced by the ,-Junction and hends in the 2ines, losses
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FREQUENCY INCREASES CLOCKWISE.

INCREMENT: 5 MHz

795

+ + COMPUTED POINTS

0 --- o MEASURED LOCUS

Fig. 5.2. ',easured and computed values of Z for element 41

wvith d~l = 49.5 cm.
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Fig. 5.3. Measured and computed Z for two element array.
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due to radiation from the lines, coupling effects between the elements and

between the element and the line, and possible inhomogeneity in line and material.

Upon perturbing the input data to the program, it was found that both the

pattern and the impedance locus change substantially, they are both quite

sensitive to small changes in d( ) d(2  w(I ) and w(2) Thus, slight

inaccuracies in construction or measurement of the array could well nave con-

tributed to the discrepancy between measured and calculated results. Never-

theless, the program is a useful design aid, which can be used to test possible

array configurations for feasibility.

The use of an array of elements of slightly different dimensions for

broadening the bandwidth has been reported recently by Pues, Vandensande,

and Van de Capelle [11]. In particular, ttey considered a two-element array

at much higher frequencies, 9 to 10 GHz. It is a simple matter to simulate

their array with the present program. A tspical pattern so obtained is shown

in Figure 5.8 for 9.45 GHz with the designed resonant freauencies 9.00 GHz

and 10.0 GHz for the two elements. Note that the beam is skewed from the

broadside direction. This effect occurred for all the designs considered.

Thus, their claim of stable patterns over :he bandwidth is not substantiated

by this investigation.

A rather exhaustive search for stable patterns was conducted. The prograr;

was modified to determine the best values of d(1) and d 2 , leaving their sum

unchanged. The T-junction is moved at ste,)s of 0.1 cm, starting with

d(l) = 2.0 cm to 20.0 cm. The program was constructed to reject any config-

uration for which E I ) and E (2) differed ii phase by more than 20' in the

frequency band of interest. It was found that stable patterns could be

obtained, but at the expense of larger SWR. For a stable radiation pattern,

the loop in the impedance plot would vanish, leaving essentially the band-

width of a single element.
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In conclusion, it seems that the corporate-fed array of two unidentical

elements is not a satisfactory means for broadening the bandwidth of micro-

strip antennas.
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VI. SUMMARY

Using the cavity theory of microstrip antennas, a simple explanation

for the occurrence of circular polarization has been obtained. Based on

this theory, a new type of tunable CP antenna was constructed.

The parameters describing the behavior of microstrip transmission lines

were found using closed-form expressions reported in the literature. The

scattering parameters of a coaxial to microstrip transition were determined

by using a modified classical technique. It was found that for small

discontinuities, SII should be measured with a matched termination,while

S12 a shorted (or open) termination; similarly for $22 and $21. Then they

can be computed, using a least square fit for seyeral different measurements.

Insofar as this investigation, namely the array feed problem in the micro-

strip-to-coaxial cable transition,is concerned, the error introduced by this

discontinuity is found to be probably smaller than the overall error in our

measuring system.

A computer program was written to evaluate tne impedance and far-field

radiation pattern of a two element microstrip array. Using this program,

a design reported in the literature was tested. The algorithm failed to

produce a design which had a stable pattern over the frequency band of

interest. A search was then conducted for designs yielding stable patterns.

It was found that both stable pattern and wide impedance bandwidth seem to

be difficult to achieve simultaneously. It may be concluded that corporate-

fed arrays of two elements, tuned for slightly different frequencies, do not

appear to be a good solution to the bandwidth problem.
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