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e ABSTRACT

We comment on the performance of the Gaussian discrimi-
nant function with (possibly) non~Gaussian underlying distri-
butions. An asymptotic expression for the probability of
error for the Gaussian case is given with a formal convergence 1

proof.
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I. INTRODUCTION

Aot A e ikt A

For many practical problems in two class pattern recogni-
tion, one has (reliable estimates of) the first two moments
of each class (mean vectors in R" - Ml, M2 and covariance
matrices -Zl, 22). Whether or not the underlying distributions
are indeed Gaussian, one proceeds to apply the standard Gaussian
hypothesis test to classify new data. More precisely, one
uses the Gaussian discriminant function h(X) = log g%%;} ’
where Py, P, are multivariate normal with the same first two
moments as the underlying distributions. aApplying an affine
transformation to our problem (which has no effect on the
and I

1 2
,..,dn) with dzzo ), we have

discriminant h) that simultaneously diagonalizes I

(Zl—*I ’ 22—*1\ ’ M2—°0 ’ Ml—'(dl,d2

n
- _ 2 _ 2 ]
(1) h(x) =% ) [(xl d) e - xg/A, + ln(l/AR’)]
=1
In this correspondence, we first present some elementary

inequalities in h, valid regardless of the class distributions;

i and then we demonstrate the asymptotic result:
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{2) Porror © ¢@?_ Jr e X dx (with J the divergence)
) VI of Py Py
2




for the case of equal priors, Gaussian distributions, and all
Al close to 1. We note that the above does not follow from

the elementary fact that, for fixed n, h(X)— a linear function
as all Az 1; for all A may be close to 1 but the quadratic

part of h = %ii (l-— ) may not approach 0 if n becomes large.

ITI. THE GAUSSIAN DISCRIMINANT FOR ARBITRARY CLASS DISTRIBUTIONS

Calculating the first moments of h under each hypothesis,

we have, regardless of the underlying distributions:

2 1 a
(3) E,(h) = % 1-= - =+ 1n(1/Xx,)
o =3 [ped) - 5 )

S 2
(4) E,(h) = %éz; PAQ—I) +dy + ln(l/xg)]

Since 2-1 + 1n(l1/z)20 for all Z>0, we see immediately that

(5) E,(h)2

>
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Noting that the maximum value of f(Z) = l-% - %T + 1n(1/2)
for Z>0 occurs at Z = 1+y2, we have f(z)<1 - 1 3
1 2 2 1+y
+ ln( 2) - X 5 < - Y 5 - Hence
l+y l+y l+y
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(6) Ey(h) < -5‘? az/1+a%

which is = —502 if each component d2 is small. Therefore, in
many practical problems Ez(h) -~ El(h)% D2==i; di. p? is
then a first order measure of the performance of h. If n is
large, the AQ are close to one, the d2 are small, and the
sequence of random variables Xy is k dependent for small k,

then we could apply the central limit theorem and obtain

estimates of the error probability of h by calculating VArl(h)

and VArZ(h) from sample data.

III. ASYMPTOTIC APPROXIMATION TO ERROR PROBABILITY

To justify the claim in I, we state and prove the following

theorem:

Theorem : Let a sequence of decision problems, with underlying

3 —~ ns
Gaussian distributions described by means D', 0 in R 1 and

covariances I, Al, be given. Then, if max |A;-1l-0 as
i<isnj
i—o00,
. 2
1 1 f ..Lsx
P - e dx |—0
error 7§n -
Vot

2

for the equal prior case.
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Proof: We shall apply a central limit theorem for arrays

of random variables and use the first two moments of hl to
obtain an asymptotic expression for the error probability.

Calculating the variances under each hypothesis of h*, we

obtain
n; 2(di>2
i, _ 1 \2 %
(7) vVAr,(h') = ’52 [<l_>\_l) + - ]
1 2
nj

(:

i
(8) VArz(h )

[(xi-l)z v+l (di)z]

Using (3), (4), (7) and (8), and noting by elementary calculus

=V S O
1-1/A} + 1n (1/&) (A%-l)
- (Ai-l)z - —> —2—()\;"- ) =+ 2
Ag-1 + 1n(1/2}) i)
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we have

i i
VAr, (h )/ZEl(h ) — -1
and VArz(hi)/ZEz(hi) — + 1 .

Futhermore

and

imply that

Ez(hl)
—_ -1

i
El(h )

or equivalently

oo M

E,(h") /3% — + &
E) (W) /3t — - 5 .
We now proceed with the main proof. We may assume (by

passing to subsequences if necessary) that both J* and P;rror |

are convergent sequences (possibly to +0 in the case of J%).

We divide the argument into several cases:




~xg

CASE (1) Ji——»O

It suffices to show that PX —+%. This is actually
error
true in general. Consider any 2 positive density functions,
P,q . on some probability space. Then, if for some real §>0,

there is no measureable set whose g measure is greater than

8 and such that on this set q/p >1+68, it follows that

Perror=”?[f CI+f p] =

q<P q>p

%[ q + P+ p] >
asp q/p>L+8 1<g/p<1l+6d T

q + f (p/q)q] >

q<p 1<q/p<g1+$

1 1
% |18 fq‘*1+5 fq' fq

qa<p q/p>1 q/p>1+6

1-§ . i
> ITIF5T ° Hence if P_ does not approach %, guch a

§ exits. But then the divergence Jl(p,q) =

Jln(P/q) (p-q) + fln(q/p) (g-p)
p2d q>p




2
1 _ 8%1n(1+98)
> [ln(“‘”] [(1'1»75') ‘5] = T 70

CASE (2) Jt— 3= 0

Let's rewrite

n.

1
i i,2 i igi
hh(x) = % [(xg) [1-1/A2] - 2x] dg] + K
1

where we reorder the dl

3 such that
i i
dl 2 d5L+1

n.
i .
Subcase (a) sgp<z (d;‘)2> = + 00 .
AT

Clearly from (5) J = +o. Consider the (sub-optimal)

ni
discriminants g 2: x> d . These are normally distributed
1 e
0 1 L
with means, 2: E and 0, and standard deviations, 2: (dz)
1 1
ni
i i, 2 . . . )
and 2: Al (dz) . One can then find arbitrarily large i
1

for which gl has arbitrarily small error probability. Since
h' is optimal, it has arbitrarily small error for these i

and hence, p?l — 0.
error




n 1}

i .
Subcase (b) Sl}p<z (dz)2> <t
— i

1

We first note that VAar(h')— J =0 under either hypothesis.

[(x y2[1- 1/).;] - 2xi d?i_]

i Let us rewrite hl =

M

; ng
‘ i,2 i i .1 _ i i .
} "‘21 [(xg) [1-1/,.i] - 2x; dQ] + K, = F] + F, + K, with
b nl
i 4

11-1/3tl— 0. we

HI chosen such that 523—+<n but that 2

-2

may now apply a central limit theorem, for instance Corollary

4.2 on page 232 of [1]: F or any >0, either F; has variance

- i , . . . . .
<, or F2 becomes normal in distribution for large i. This

follows from the central limit theorem for arrays mentionad

above: provided the variances of the terms in the summand
of F; become arbitrarily small and this fcllows if

sup {al; >, }—* 0. But if this were not the case, dL_  ,2Y>0
i X, 1 r‘;i+l
ny
l 2>_ 2
) T2y

for infinitely many 1 and hence, since nl——>«> 2:
1

contradicts our initial assumption. Further, Fi either has
variance <3 or approaches a normal random variable in distri-
bution since its linear part is normal and its nonlinear part
has variance approaching 0. Since B was arbitrary, J>0,

and Fi is independent of F; ; ht approaches a normal random

variable in distribution and we obtain the asymptotic error




“amdia Fes 4 T = B

formula (2).
Finally we note that, in (2), we could replace J by 8B

where B is the Bhattacharyya distance. This follows from

the simply verified fact that %—B—» 1l as all )\2-—» 1.
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