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ABSTRACT

We comment on the performance of the Gaussian discrimi-

nant function with (possibly) non-Gaussian underlying distri-

butions. An asymptotic expression for the probability of

error for the Gaussian case is given with a formal convergence

proof.
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I. INTRODUCTION

For many practical problems in two class pattern recogni-

tion, one has (reliable estimates of) the first two moments

of each class (mean vectors in Rn - MI, M2 and covariance

matrices -Elf E2) . Whether or not the underlying distributions

are indeed Gaussian, one proceeds to apply the standard Gaussian

hypothesis test to classify new data. More precisely, one
P2 (X)

uses the Gaussian discriminant function h(X) = log P2(X)

where P1 1 P2 are multivariate normal with the same first two

moments as the underlying distributions. Applying an affine

transformation to our problem (which has no effect on the

discriminant h) that simultaneously diagonalizes E1 and 2

(E-II, E-A M20 , Ml(dl,d, .,d ) with d >0), we have
1 2 2-- 1 12' nz

n

(1) h(X) (x d ) [2 _d2 /X+ l~

In this correspondence, we first present some elementary

inequalities in h, valid regardless of the class distributions;

and then we demonstrate the asymptotic result:

~- x2

(2) P error f J e dx 1with J the divergence
2)Pro VT-  (of PI' P2
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for the case of equal priors, Gaussian distributions, and all

X close to 1. We note that the above does not follow from

the elementary fact that, for fixed n, h(X)- a linear function

as all A-* 1; for all X£ may be close to 1 but the quadratic

part of h X (i) may not approach 0 if n becomes large.

II. THE GAUSSIAN DISCRIMINANT FOR ARBITRARY CLASS DISTRIBUTIONS

Calculating the first moments of h under each hypothesis,

we have, regardless of the underlying distributions:

n 2

(3) E1 (h) = [ - 2 + ln(l/X£

(4) E2 (h) = 1 ) + d2 + in(i/X
k=I

Since Z-1 + ln(1/Z)>0 for all Z>O , we see immediately that

n
n' 2 D2

(5) E2 (h)2 L d2 = D
1 1

Noting that the maximum value of f(Z) = 1-1 - y + ln(l/Z)z z

for Z>0 occurs at Z 1+2 we have f(Z)l1

+ ln(.) - -2 Hec 1+y2

l+y l+y l+y
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(6) El(h) d - 1d/l+d2
1

which is - D2 if each component d£ is small. Therefore, in

many practical problems E2 (h) - El(h)?: D2 = d2  D2 is
2 1 1

then a first order measure of the performance of h. If n is

large, the X£ are close to one, the dk are small, and the

sequence of random variables x 9 is k dependent for small k,

then we could apply the central limit theorem and obtain

estimates of the error probability of h by calculating VArl(h)

and VAr2 (h) from sample data.

III. ASYMPTOTIC APPROXIMATION TO ERROR PROBABILITY

To justify the claim in I, we state and prove the following

theorem:

Theorem : Let a sequence of decision problems, with underlying

Gaussian distributions described by means Di, 0 in R and

covariances I, A1 , be given. Then, if max IXI -1 0 as

Perror 1~ 
1 -XP1  - e dx - 0

2

for the equal prior case.
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Proof: We shall apply a central limit theorem for arrays

of random variables and use the first two moments of hi to

obtain an asymptotic expression for the error probability.

Calculating the variances under each hypothesis of hi, we

obtain

ni  )
ril 2 2(di\2

(7) VAr (h) + \Q.

(8) VAr 2 (h')= [(xi£-)2 + 2X(d)2]1

Using (3), (4), (7) and (8), and noting by elementary calculus

that (1-1/ X 2 -2 0

1-1/Ai + ln(1/X ) (X-l2

X -i + 1n(1/Xi) l X 2

2(d i)2/ (di)2
, - 2

2X di)2

(di )2+2
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we have

VAr(hi) / 2E 1 (h i ) -- - 1

and VAr 2 (hi) /2E 2 (h i )- + 1

Futhermore I

/(d 91)2

-_(d) ( ) -Z

and) + in (1/X) -and (XIkik+.i. .... i)2x ln (l/X') !/(A ) -l/X -

imply that

E2 (h i )

E1 (hi)

or equivalently

E2(hi)/j- +

E 1 (h i )j -

We now proceed with the main proof. We may assume (by

passing to subsequences if necessary) that both Ji and P i
error

are convergent sequences (possibly to +oo in the case of Ji).

We divide the argument into several cases:
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CASE (1) J

It suffices to show that P -- . This is actuallyerror

true in general. Consider any 2 positive density functions,

p,q , on some probability space. Then, if for some real 6>0,

there is no measureable set whose q measure is greater than

5 and such that on this set q/p >1+6, it follows that

Perror =[f q +f p]

[f+ + f .}1>
qp +q/p>l+ + 1<q/p<l+6 >

f , I (p/q)q]
[qfp i<q/p<l+6

1 f + q +  1- q-
161+5 f/>+)
q_<p (qlp>1 q/p >i+6q

1-2 Hence if Pi does not approach , such a
- (1+6) error

6 exits. But then the divergence J i(p,q) =

/ ln(p/q) (p-q) + f ln(q/p) (q-p)
pq q >P
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ln(l+6)J [(- ) 6J 2 l1+6) >0.

CASE (2) j 0

Let's rewrite
n. [

h(x = (x 2 [- f -(2x dJ + K
1

where we reorder the d' such that

i i
d > d

Subcase (a) sup (d)2 ) + 00

Clearly from (5) J = +0. Consider the (sub-optimal)

ni

discriminants g'= x' d . These are normally distributed

1 1

1it 1en, ( n ,adstnaddvain

ani X d)2. On ca thnfn ariril lrg i
nii

and X1 (d')  One can then find arbitrarily large i
1

for which g has arbitrarily small error probability. Since

hi is optimal, it has arbitrarily small error for these i

and hence, P -- 0.
error



Subcase (b) sup (d cj)2)< + 00

ii
We first note that VAr~hi)- - . J O under either hypothesis.

Let us rewrite h i 
- (xi)2[l-1/ i] - 2x4, d]

+ ( × 2 r - i i i
' F1 F2 K. with

hq+l L L
1

ni

ni chosen such that n.- o0 but that 0-/. We
1

may now apply a central limit theorem, for instance Corollary

4.2 on page 232 of [1]: F or any P>0 , either F i has variance
2

<3, or F becomes normal in distribution for large i. This

follows from the central limit theorem for arrays mentioned

above, provided the variances of the terms in the summand

of Fi become arbitrarily small and this follows ifoF2

sup d;Z>n i  -0. But if this were not the case, d >-Y>0n.I

for infinitely many i and hence since n---0-- (dR)2-n. y2
1

contradicts our initial assumption. Further, F 1 either has

variance <3 or approaches a normal random variable in distri-

bution since its linear part is normal and its nonlinear part

has variance approaching 0. Since 6 was arbitrary, J>0,
i i hi

and F is independent of F2 ; h approaches a normal random

variable in distribution and we obtain the asymptotic error
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formula (2).

Finally we note that, in (2), we could replace J by 8B

where B is the Bhattacharyya distance. This follows from
8B

the simply verified fact that -- 1 as all A -- 1.
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