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ABSTRACT

A design study has been carried out for an easy-to-program high-

speed signal processor. The machine achieves a throughput of about 25

million arithmetic operations per second by incorporating parallel

addressing and data access into a general-purpose architecture. The

study indicates that, for typical signal processing applications, nearly

all of the instruction cycles can be used to perform primary arithmetic

operations rather than data access or addressing. The proposed machine

would require about 1165 ECL 100K chips, occupy 2-3 cubic feet, and

consume about 700 watts.
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I. INTRODUCTION

Toward the end of the 1960s the field of digital signal processing

had become firmly established with many fundamental concepts and essential

results already well known throughout the engineering and research and

development communities. The digital circuit technology base of the era

supported specialized hardware designs capable of reasonably high through-

put at tractable levels of complexity. Thus for many applications of

interest, the digital approach offered a legitimate, practical alternative

to more classical signal processing techniques.

As more researchers become active in the field, it became increasingly

clear that "standard" computational machinery was frustratingly inadequate

as a general developmental tool. The amount of computation required in

typical processing problems was enough to keep ordinary computers busy

for hours producing perhaps only a few seconds of processed data.

Therefore, many special-purpose hardware designs were frozen and committed

to production based on a dangerously limited amount of performance

simulation evidence - with frequently disastrous results. What was

clearly needed was a flexible, programmable, computer-like processor

which could support a substantially higher level of throughput than any

conventional, general-purpose machine. The ideal situation, of course,

would be to be able to emulate in real time the exact sequence of

computation steps necessary in a given application and to operate on

realistic raw data.

Lincoln Laboratory was among the first to confront this issue with
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the "Fast Digital Processor" (FDP) which was designed and fabricated in

the 1968-1970 time frame. This was a parallei, semi-pipelined design

featuring four arithmetic elements, dual data memories, separate program

memory, and a relatively wide instruction word. Based on 3.5 nsec emitter

coupled logic technology, the FDP operated at a fundamental clock period

of 150 nsec, could support a maximum throughput rate of 53 million fixed

point operations per second, and required approximately 15,000 integrated

circuits.

Several facts of life were learned from the FDP and other large,

complex, explicitly parallel machines like it. Firstly, these machines

were so intricate and cumbersome, they could never be produced or main-

tained economically on any kind of reasonable scale. Secondly, unless

the structure of the problem at hand was just right, these machines

tended to be very difficult to program. These problems were quickly

recognized at Lincoln and in the commercial sector. For a particular

specialized problem, a relatively dedicated, highly structured, parallel

configuration might still be considered the best match. For example, a

very successful single instruction/multiple data stream (SIMD) type of

processor, called the "Parallel Microprogrammed Processor" (PMP),2 was designed

and fabricated at Lincoln for radar signal processing. But for a more

general class of problems, another approach began to evolve.

Potential commercial suppliers of programmable signal processing

machinery had to consider balancing a variety of factors in defining

their products including hardware complexity, performance, ease of use,
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universality of appeal, reliability, maintainability and most importantly,

cost. What emerged is a broad class of designs known generically and

collectively as "array processors." Array processor designs vary widely

in detail from one manufacturer to another, each representing the "optimal"

set of tradeoffs in the eye of its conceiver. In today's marketplace,

the potential customer can choose from such vendors as Computer Signal

Processors, Signal Processing Systems, Floating Point Systems, Computer

Design and Application, or Analogic.

However, all array processors share some basic points of commonality.

Firstly, though any given design may feature some degree of pipelining

and may or may not be fundamentally a single CPU structure, rarely if

ever, are there explicitly parallel full data ALUs. This is simply too

expensive a luxury. Secondly, array processors are most efficient when

repetitive, well-defined calculations are to be performed on highly

structured data sets. Clearly much signal processing of practical

interest does fall into this category. Thirdly, array processors are

usually intended to be operated as an adjunct to a general-purpose host

facility rather than in a stand-alone mode. This arrangement can greatly

simplify the programmer's interaction with the device if supported with

a properly designed software operating system. Finally, all array

processors, without exception, are extremely difficult and time consuming

to program at the assembly language level. The conceptual architectures

tend to be extremely complex, and the unwary user can be quickly overcome

by a variety of pitfalls.
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The commercial vendors have expended a great deal of time, energy,

and money in decoupling the user from the programming difficulties

characteristic of array processors by precoding a large number of

commonly encountered signal processing functions. These are stored in a

host-based library and can be called from a higher level language (such

as FORTRAN) as subroutines at compilation time. This strategy works

well for a large percentage of applications, but not necessarily all.

For example, in speech processing it frequently happens that processing

functions are required which are not likely to be found in a standard

subroutine library. It also may happen that the precoded software is

not as efficient in running time as might be desired. It is necessary

in such cases to be able to develop software quickly and expeditiously

at the assembly language level.

This fi,:I requirement has given rise to yet another class of

programmable signal processor which has been vigorously (but not solely)

pursued by Lincoln. The Lincoln "Digital Voice Terminai" (LDVT)3 and

4"Digital Signal Processor" (LDSP), developed in 1974 and 1977 respectively,

are examples of this last philosophical category. The basic groundrule

in this class of designs is to develop as much raw throughput as possible

through the technology base (e.g., 2 nsec ECL) but yet maintain as

simple an architectural structure as possible to enhance programmability.

Both the LDVT and LDSP feature very straightforward, single CPU, minimally

pipelined, Von Neuman-type architectures and can be programmed as conveniently

as second-generation mini-computers at the assembly language level.
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These machines feature 20 MIPS (million instructions per second) throughput

capabilities, are of very modest hardware complexity, and have generally

been considered highly successful in meeting desired objectives in the

context of the Lincoln speech processing programs.

With the relatively recent emergence of newer, subnanosecond digital

circuit technologies and problems of ever-increasing complexity being

frequently encountered in the speech -research field, it is appropriate

and timely to look beyond the LDSP to a potential successor. The

fundamental objective of the study summarized in this report was to

define a signal processing-oriented computer similar in philosophical

approach to the LDVT/LDSP family, but on the order of 5 times as powerful

for typical processing functions. The virtues of easy programming and

moderate hardware complexity were to be stressed.

Experience with the LDSP has motivated the inclusion of several

additional features. The 16 bit (integer) data word has been found to

be inadequate in a mnmber of applications, thereby suggesting a 24 bit

data word. Users have also indicated a requirement for a floating point

format which could be accommodated in the proposed word length. The

sizes of both the program (2K) and data (4K) memories have been found to

be a limitation in several applications. Therefore, the sizes of the

memories are doubled in this design. Since the 1/0 capabilities of the

LDSP have been judged adequate in the speech research facility environ-

ment, the same basic scheme (i.e., eight fully buffered, duplex vector

interrupt 1/0 ports) will be assumed'in the sequel.



These goals may be achieved through a combinatien of mechanisms.

The ECL lOOK logic family now commercially available, is about 2.5 times

5
faster than the ECL IOK series (.75 ns versus 2 ns gate delay) used to

implement the LDSP. In practice, physical realities such as finite

signal propagation delays over wires will prevent the theoretical

speed-up factor from being achieved. An architecture supporting parallel

indexing and a three-address arithmetic instruction format will greatly

reduce addressing and data accessing overhead which constitutes as much as

two thirds of the time of some loops programmed on the LDSP. The two-

cycle multiply instruction of the LDSP can be combined with an add in

two cycles to create an effective one-cycle multiply in some circumstances.

The instruction stream itself may be pipelined to reduce the effective

instruction execution time. Finally, separate program and data meirories

allow simultaneous access to new instructions and data.

The paper is organized as follows: Section II describes the general

architecture. Section III discusses the data routing in the chosen

architecture, and Section IV gives a detailed description of the machine.

Section V estimates its performance, and Section VI discusses some of

the implementation issues that have not been addressed in this study.

Finally, two Appendices describe architectural variations and a DMA port

for the machine.

II. ARCHITECTURAL OVERVIEW

A basic architecture which satisfies the above goals evolved

through a combination of techniques. Some candidate machines were
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derived by posing an a priori instruction set, and others by postulating

an architecture at the outset. In either case, both a generalized

instruction :et and related basic data routing concept were formulated. An

instruction pipelining technique for each machine was developed and

preliminary performance data for ECL 100K devices was used to estimate

the throughput and data access capabilities of each machine. Finally, the

apparent size, complexity, throughput, and programming ease of each

candidate as well as intuitive feel were used to choose a final design.

Several basic approaches were examined by the above procedure.

Array processors were found to be too difficult to program and performed

non-array oriented processes very inefficiently. This suggested that a

general-purpose structure would be more desirable. A three-address

main-memory-to-main-memory structure, while very easy to program, was

seen to require two copies of very fast data memory (about 800 total

chips) which made the design too complex. Therefore a compromise

architecture with a register file interposed between the main data

memory and the arithmetic/logic unit (ALU) was chosen. A large register

file implementation (> 64) was projected to be too slow and seemed to

require indexed addressing techniques to be used effectively. A small

register file (< 16) was judged to have inadequate capacity to effec-

tively reduce the required main memory data flow. A multiple ALU

strategy was tried in conjunction with the register file and found to

afford only a moderate throughput improvement since a lengthened machine

cycle was required to accommodate the additional data flow. Finally, a
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single ALU machine featuring a 32-word register file (Fig. 1) was

developed as the best compromise in meeting the design goals.

III. DATA ROUTING CONCEPTS

The conceptual architecture is shown in Fig. 1. (The topics of

indexing, I/O and status will be considered later.) This machine can

implement an instruction of the form

M a Rb Rc ()Rd Re Rf -Mg ()

where Ma,g represent any data memory locations, Rb,c,d,e,f represent any

register file locations,®)denotes an arbitrary ALU operation, and -

denotes the direction of the data transfer. Therefore, this instruction

represents three operations: a memory to register transfer, an ALU

operation, and a register to memory transfer. Said more simply, this

corresponds to a memory read, an ALU operation, and a memory write.

(The conceptual architecture is assumed to be capable of both reading

and writing the data memory in a single instruction for illustrative

purposes. This capability will be modified in the proposed real machine.)

A possible instruction pipeline sequence for this machine is:

Ma Rb

f d R xR-c x RdR e  (2)

f Mg

machine
cycle 4
time
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DATA MEMORY REGISTER FI LE

(8k x 24 BITS) 
(32 x 24 BITS) 

ALU

A BUS

B BUS

Fig. 1. Basic architezture.
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where f denotes the instruction fetch, d the instruction decode and

the pipeline epoch boundaries (all epochs are of the same duration).

Note that in a pipelined machine, a new instruction is started each

cycle, and each instruction execution requires as many cycles as epochs

in the pipeline. Thus, in this case, three instructions are in some

stage of execution during any single cycle. All memory and register

reads occur at the start of the final epoch, and all memory and register

writes occur at the end of the final epoch. Therefore the result of

each individual data operation is not available until the next instruction.

For example, a program to add two numbers in memory and place the result

back in memory might consist of the four instructions:

M a R .... (3a)a a

Mb  R b .... (3b)

Ra + Rb -c -- (3c)

R C M (3d)

where the dash indicates no operation, and the subscripts indicate a

particular location in memory or the register file. (The location NI isX

not equal to the location Rx but is used here as a convenient way to

follow an item of data as it is transferred between the memory and the

10
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register file.) In a real application the open instruction fields might

be used as portions of preceding or following instruction sequences.

Such interleaved programs are unnecessarily difficult to write and debug

and become inefficient in the case of conditional branches.

A second pipeline to interpret the instruction format shown iii (1)

is:

fd Ma ,R b JRc()R d-+ R el R f *Mg .(4)

This now permits data to flow within each instruction. The single add

shown in (3) can now be programmed as follows:

M a R a-- (5a)

Mb -R b Ra +Rb -Rc Rc Mc (5b)

Compared to the program of (3), this program is much easier to write,

dovetails more easily with other operations, is more efficient near

conditional jumps, and uses less program memory. Note that the memory,

register file, and ALU perform the same operations in either case. The

second case is more efficient since the pipeline naturally provides much

of the desired sequencing of operations.

The advantages of the longer pipeline, however, are not free. The

long pipeline introduces delays in the visibility of status data for



conditional branches and delays execution of these operations. It could

also introduce undesirable data routing patterns. For instance in the

program

R a M (6a)a y

M x R .... (6b)x a

the read phase of (6b) occurs simultaneously with the operate phase of

(6a) causing the datum in M to be deposited in M - an apparent reversalx y

of the instruction sequence. To simplify programming, the pipeline must

be hidden from the programmer. (Experience with the LDSP has shown that

if the pipeline is visible in only a few simple, categorically defined

ways, users will not only tolerate the pipeline, but will frequently use

the otherwise wasted instruction cycles to advantage.)

The best way to hide the data-operation pipeline is to make the

machine appear as if it were totally sequential; i.e., each instruction

is executed in natural order - memory read, operate, and memory write -

and each instruction is completed before the next is begun. Implementation

of this programmers' model requires several special data routing conventions

(Fig. 2). Clearly, data must flow from the memory read to the operate

phase and from the operate phase to the memory write (Case 1). The

results of an operate phase must also be available to the next operate

phase (Case 1) unless superseded by a memory read (Case 2). The reversed
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CASE I:

M- Ra . R R- I b  R b m

Sb  R - R

CASE 2:
®- R R-.R ----.- R- M

aa a

M -, R ---- R R - Ra a

CASE 3:

R -M

M0R aa

CASE 4:

R- M
M a

M -M R
a

CASE 5:

- R .- a

M RMa -_

NOTES: DOTTED ARROWS INDICATE DATA FLOW.
ONLY EPOCHS 3, 4 and 5 OF THE PIPELINE OF FIG.4 ARE SHOWN

Fig. 2. Data routing conventions for apparent sequential behavior.
Note: Dotted arrows indicate the data flow. Only epochs 3, 4, and
S of the pipeline of (4) are shown.
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data flow of (6) must be blocked (Case 3) and a memory write must appear

to be completed for any succeeding memory read (Cases 4 and 5). These

special data routing conventions, as will be shown later, imply only a

small amount of extra hardware. Control could be implemented by selected

comparisons of register (Cases 1, 2, 3) and memory (Case 4) addresses.

Case 5 is handled by the data memory write queue detailed in Section IV B.

If the data memory is incapable of supporting a full load of

simultaneous reads and writes, this lengthened pipeline requires a write

queue. A sequence of writes followed by a sequence of reads will

require the data memory to simultaneously read and write for two cycles.

A sequence of reads followed by a sequence of writes will require no

memory onerations for two cycles. Thus, a write queue can be loaded

during cycles requiring simultaneous reads and writes and unloaded into

the memory during cycles requiring no operation. The queue need only be

two deep per write channel. If the queue is to be invisible to the

programmer and handle data routing Case 5 (Fig. 2), an alternate (bypass)

data path must be provided from the queue to the memory read bus.

IV. DETAILED ARCHITECTURE

A. General Description

The overall data architecture is shown in Fig. 3. Its general

characteristics will be discussed in this section, and the details of

each subsystem will be discussed in the sequels. The design presented

here is one member of a family of three. The differences among variants

are primarily related to the data memory. The three machines are:
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E BUS C BUS

0 BUS

CONDI OUTPUT CONDOL

MEMORY 
CUP

24 124 124 11t,13 8x?24

OUTPUT
INDEXREGISTERS

DAA ATA AND IINDEX IS 24 bits) SPECIAL-P AAAND REITRIAL
MEMORY REGISTERS INCREMENT ADOR. ----- EIT8 L

i8k x24 bits) (32 x24 bits) REGISTERS ALU INPUT IS8 24 bits)
18 x 1 3 bits) REGISTERS

II 18 24 bits)

24/ 24, 124 8 x24 C,

ADDESSDIRECT INPUT

ADDRESS

A BUS

F BUS B BUS

I MME D11ArE
DATA

Fig. 3. Detailed architecture.
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one-memory transfer (one memory read or write per instruction), 1.5-memory

transfer (two reads or one write per instruction) and the two-memory

transfer machine (two reads, two writes or one read and one write). The

1.5-memory transfer machine is presented since it is believed to represent

the best compromise between hardware complexity and performance of the

three. Details of the other alternatives are presented in Appendix A.

In describing the architecture, note that the data memory communicates

only with the data register file, thereby isolating the data memory from

the high data rates required by the ALL). The ALL) is, however, capable

of generating and consuming data faster than it can be deposited or

accessed from the main memory. Benchmark analyses have shown that for

typical speech signal processing algorithms a number of intermediate

results are generated, and that storage of these intermediate results in

the register file tends to relax memory data flow requirements sufficiently

such that no data access overhead penalties are incurred in the inner

loops of these algorithms. This allows the data memory to be implemented

with dense but comparatively slow memory components.

The register file complex provides the intermediate result storage

and main data routing control for the machine. The register file itself

is implemented with small, very high-speed memory chips which can support

up to seven register read or write cycles per machine cycle. The

sequence of register operations within a single machine cycle, in

conjunction with the extra data paths surrounding the memory proper,

supports the data routing conventions of Fig. 2, Cases 1-4.
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The indexing, I/O, status and special registers are situated

between the A and C buses. These are accessed through the A bus (source)

and C bus (destination) addressing mechanisms. Sixty-four addresses are

associated with the A and C buses and 32 addresses with the B, D, E, and

F buses (6 and 5 address bits, respectively). Thus these "extra" registers

appear to the ALU as data registers and require a minimum of specialized

instruction op codes for access and control. At the same time, the

"extra" registers are not required to support the high data access rates

of the register file.

The indexing and addressing complex provides the parallel memory

addressing capability as well as a generalized index register auto-

increment feature. Any of the eight index registers may be used to

generate an indexed address for the data memory. Associated with each

of the eight index registers is an increment register whose (signed)

value is used to post-increment the index register contents if so

instructed. One index register is equipped with a bit-reversed incre-

ment option to facilitate the bit-reverse data swap operation required

in Radix 2 FFT implementations. All of the address generation and

incrementation occurs in parallel with the rest of the instruction

execution and costs no extra time. Full direct addressing is also

permitted. If more complex address manipulations are required, the

index and increment registers are immediately accessible to the ALU.

The proposed I/O system is of the duplex, fully buffered, vector

interrupt type where the buffer registers are connected to the A and C

17



buses. Therefore, the machine can transfer a datum between the 1/0

buffer and the data memory in a single instruction using a data register

as an intermediate location, and, if desired, modify the datum with a

single ALLJ operation. To simplify the control, no interrupt nesting is

allowed. If all interrupt service routines are relatively short, this

generally causes no problem in real-time interactive environments as has

been demonstrated with the LDSP. A high-speed data memory port could

also be incorporated as outlined in Appendix B.

The special registers would include status information (e.g., the

carry-in (c) bit, the ALU conditional and overflow flags), the multi-

plier upper (24-bit) product, the console data switch/light registers,

the paths for loading the program memory, and control flags that need to

be accessible to the program.

The ALU accommodates integer, floating point and logical operations.

It is configured to accept two arguments simultaneously frcm the A and B

buses and to route results to the C bus. Any arguments provided as

immediate data from the program ii1.3truction word are entered on the B

bus. The divide operation has been specifically excluded since fast

divide hardware is complex and rarely essentiail in signal processing.

Simple and fast programmed divide algorithms exist and can minimize the

loss of throughput in the majority of cases.

The data word length, as mentioned earlier, is 24 bits. Experience

with the LDSP, which has a 16-bit data word, indicates the need for more

precision. Twenty-four bits was chosen as a compromise between accuracy,

18



quantity of hardware, and speed. This choice also supports a reasonable

floating point data format comprising a 16-bit signed fraction and an 8-

bit signed exponent.

The detailed instruction pipeline diagram for the machine is shown

in Fig. 4. The instruction fetch occurs in epoch 1. In epoch 2, the

decode (micro-store ROM read) and indexing start immediately. Index

register incrementation and indexed addressing start with the assumption

that both modes are invoked. The actual decision as to which addressing

option is called for develops in parallel and need be available only in

time to prevent or proceed with the index register update. The (dual)

data memory read occurs in epoch 3. The data routing indicated in

Fig. 2, Cases 1-4 and the ALU operation takes place in epoch 4. Finally,

the memory write operation occurs in epoch 5. For execution of a

conditional branch, the ALU status (epoch 4) is sensed by the branch

logic in epoch 2 of the second subsequent instruction (i.e., a 1-instruction

latency). The new address is placed in the program counter at the end

of epoch 2 in time for the fetch of the second subsequent instruction

(i.e., another 1-instruction latency). Therefore, the programmer must

wait one instruction before the ALU condition of interest becomes visible

and one more instruction for the branch to take effect as in the following

program:

ALU operation (7a)

no-op (7b)

conditional jump (7c)

no-op (7d)

(instruction at branch address if condition met). (7e)

19
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-R-I

-S IS-EL 

-I

L-R I \L
4  o , -40 D ,-DL-- H

SUBEPOCH: H
EPOCH. 1 2 3 4 5

adr 
= DATA MEMORY ADDRESS ID = IMMEDIATE DATA S = SPECIAL REGISTER

B - I/O REGISTER inc = INDEX INCREMENT: I = I - J ? = CONDITIONAL ON
C =3UMPCONDITIONAL J= (INDEX) INCREMENT DATA ROUTING RULES
DL D BUS LATCH M = DATA MEMORY READ OR WRITE = READ ONE OF
EL 

= 
E BUS LATCH na = NEW PROGRAM COUNTER ADDRESS (Jump) = WRITE ONE OF

F F BUS OP = ALU OPERATION
I = INDEX REGISTER R = DATA REGISTER

Fig. 4. Pipeline timing diagram.
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In most cases, the no-op instructions at (7b) and (7d) c1n ' i (.d

with useful code.

While the control logic for the machine has not bef-n worked out III

detail, the general structure is clear. The instruction OP code is

mapped into a set of control signals using a ROM micro-store. The

control mechanism consists of a combination of the micro-store output

and actual micro-coding of the instruction proper. The instruction

register is itself pipelined to match the sequencing implied by Fig. 4.

The instruction is composed of three fields: an ALU control field and

two memory-control fields as shown in Fig. 5. Any unused register

address bits in the ALU control field can be used to microcode suboptions

on thc basic instruction or to control the immediate data generator on

the B bus. The corresponding assembly language forms are the following:

Re  R

e  R fI1g

N - Rb Mc -Rd e { Jg Rh Mia p Immediate -

Bee Data B g (8a)
S S
.e g

and

Ma Rb  branch (conditional) address Rc - Md  (8b)

where I = index, J = increment, B = I/O register, S = special register.

Of the memory control fields, only two reads or one write may be called

for in any single instruction.

21
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OPERATE INSTRUCTIONS:
23 BITS 20 21 = 64 BITS

ALU MEMORY CONTROL NO. 1 iDI MEMORY CONTROL NO 2 E/F I

BRANCH INSTRUCTIONS: INCREMENT
6 19 3 I 2 12 21 =64BITS

JUMP uy PROGRAMMED CONDITIONAL ' ff LOCATION MEMORY CONTROL NO. 2 IE/F)

INDEX

ALU:
6 6 5 6 =23 BITS

OPCODE A BUS ADDRESS IB BUS ADDRESSI C BUS ADDRESS

MEMORY CONTROL NO. 2:

1 1 1 13 5 =21BITS

DIRECT R/W' 0 MEMORY ADDRESS REGISTER ADR.

H-ACTIVE / INCREMENT
1 1 1 3 1/ 9 5 =21BITS

INDEXED I R/W' I INDEXI SIGN EXTENDED BASE ADDRESSI REGISTER ADR.

MEMORY CONTROL NO. 1: SAME AS NO. 2 EXCEPT READ ONLY (I.E.. NO R/W BIT) ( = 20 BITS)

Fig. S. Instruction formats.
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The proposed instruction set is shown in Table I. Sever',l instructions

are unique. Since integer multiplies require two cycles, control is

split into two successive instruc.tion steps. The first starts the

multiply, and the second offers the option of a combined add or sub-

tract. The split instruction also offers two memory transfer opportunities.

Several of the floating point arithmetic operations also require more

time than is provided in a single cycle. These situations are handled

simply by extending the epoch during which the operation takes place and

are transparent to the programmer. The normalize instruction, instead

of physically shifting the data, computes the number of shift places

required. This count can be used as an argument to a subsequent shift

instruction. The remaining instructions are a relatively typical set of

integer, floating point, logical and control operations.

The major component subsystems are described in detail in the

following sections.

B. Data Memory

The data memory complex (Fig. 6) consists of the memory array

proper, the write queue, and associated control logic. The memory array

comprises two copies of an 8K x 24 bit memory capable of dual simultaneous

read from or single write to the register file within a machine cycle.

This is implemented with 96 F100470 4K x I bit RAMs6 (35 ns maximum

access time) and 91 Fi00112 Quad Drivers5 for memory address fan-out.

The write queue is required because the pipelining of the instructions

may result in a request for both a data memory read and a data memory

23



TABLE I

INSTRUCTION SET

Arithmetic (integer) Logical
Idi load immediate and
add or
sub xor exclusive or
subr reverse subtract cmp compare
smul* start multiply lshift logical shift

i integer lshifti
d fraction x 2 set-bit
f fraction clr-bit
h fraction/2
s fsigned Floating Point
u 1 unsigned fadd (2 cycles)

end multiply* fsub (2 cycles)
mul rnormal fmul (2 cycles)
mad Imultiply add fabs
msub |multiply subtract fmax
msubr tmultiply reverse subtract fmin

norm* normalize itof integer to floating
shift* shift ftoi floating to integer
shifti shift immediate
abs absolute value Control
max maximum imp
min minimum conditional
dadd 1 switches
dsub subroutine
dsubr double precision subroutine return
dshift interrupt return
dshifti kill (following

instruction)
Miscellaneous 

load PC

in I/0
out I/O
loadMP load program memory
nop no operation
move

*see text
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write within a single machine cycle despite the fact that the memory

array can only read or write within a machine cycle. This is illustrated

in Fig. 7 where the data memory write implied by instruction i occurs in

the same machine cycle (c + 4) as the data memory read required by

instruction i + 2. These conflicts are arbitrated by assigning the

memory array to the read mode and postponing the write operation by

storing the data and its data memory destination address in the write

queue. This data is written into the actual memory array during a

subsequent machine cycle when the memory array is not being used.

The write queue itself (Fig. 8) consists of a two-word data stack,

a corresponding two-word memory address destination stack, and some

address comparison logic which, as explained below, is required for

arbitrating a second type of conflict arising when reference is made to

data memory locations which are waiting to be updated by the write

queue. The actual write queue registers and address comparison logic

are implemented quite efficiently with the F100142 4 x. 4 Content Address-

able Memory 5chip.

The detailed operation of the data memory complex within a machine

cycle is described below for the four types of memory reference situations

which can arise due to the pipelining of instructions: (1) read(s) and

write, (2) read(s) only, (3) write only, (4) neither read nor write.

Although two simultaneous reads may occur in a given machine cycle, for

illustrative purposes only one read is described since the logical

operations and concomitant hardware required for each are identical.
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Fig. 7. Instruction sequence depicting write queue behavior.
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For each case summarized below, the action taken depends firstly upon

the size of the write queue data and address stacks (0, 1 or 2 words)

and secondly upon the destination addresses in the address stack.

Case 1: Read(s) and write requested. T'ie memory array is assigned

to service the read request first, and the write data is placed in tie

write queue along with its data memory destination address. Nominally,

the data is read from the memory array except when the queue contains

updated data destined for the referenced location. This situation is

detected by the queue address comparison logic, and the read data is

obtained directly from the appropriate write queue data register thereby

bypassing the memory. An additional comparison must be made to check

whether the data about to be written into the write queue has the same

destination as any other piece of data still on the queue. In this case

the new data must overlay the old data on the write queue to obtain the

correct update of the desired data memory location. Note that in such a

machine cycle, the write queue may be accessed twice: once for the read

(in the case of a read address match with a write queue address) and

always once for the write. The write always obtains access to the queue

in the first half of the machine cycle and the read in the second half.

This is necessary for the case of a read from, and a write to, the same

location in data memory so that the read operation will access the

updated information from the queue (Fig. 2, Case 5).

Case 2: Read(s) only requested. This is a subset of Case 1. The

memory array is used to service the read request, but again the write
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queue must be checked to see if it contains new data destined for the

same address. If so, the read data is routed from the write queue data

register instead of the memory array.

Case 3: Write only. The datum is nominally written into the

memory array. An exception occurs when data is waiting in the write

queue to be written into the same array address. In this case the new

data is not written into the array but instead overwrites the old data

in the write queue in order to prevent the old data from erroneously

overwriting the new data on a subsequent cycle.

Case 4: Neither read nor write request. Since the array is

nominally idle, the memory accepts any pending write from the queue.

An important feature of the write queue is that it need never

exceed depth two. This is illustrated in Fig. 7 where a pipelined 8-

instruction sequence is indicated which fills the write queue to its

maximum and subsequently empties it. In machine cycle c + 4 the write/

read conflict of instructions i and i + 2 results in the loading of the

first datum onto the queue. Similarly, in cycle c + 5 the write/read

conflict of instructions i + 1 and i + 3 results in the loading of the

second datum onto the write queue. (It should be noted from Case 1 of

above thiat if the memory reference addresses M aof cycle c + 4 and Mb Of

c + 5 are the same, the second datum will overwrite the first datum on

the write queue instead of being entered in the next available queue

location.) At this point, any combination of instructions from i + 4 on

will either maintain the queue size of two or empty it. In the case of
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Fig. 7, instructions i + 4 to i + 7 result in a constant queue size of 2

through cycles c + 6 and c + 7 which subsequently decreases during

cycles c + 8 and c + 9.

C. Register File

As indicated earlier, special data paths within the data memory,

register file and ALU subsystems must be supplied to support the data

routing conventions of Fig. 2. The multiplexers and latches necessary to

implement these paths are included as part of the register file complex

and are described below along with the register file itself.

The register file comprises two copies of a 32 x 24 bit memory

array consisting of 24 F100402 16 x 4 bit RAM 6 chips. These chips have

a 5 ns maximum read access time which basically defines the machine's

minimum subepoch.

Following the detailed instruction timing of Fig. 4 and the register

file complex implementation of Fig. 9, it is seen that as many as two

words are read from data memory onto the D and E buses and loaded into

the D and E latches at the end of instruction epoch 3. This data is

then written into the register file in the 2nd and 3rd subepochs of

epoch 4.

Nominally, the inputs to the ALU are loaded from the register file

onto the A and B buses during in the 1st subepoch of epoch 4. When the

register(s) addressed as ALU inputs in epoch 4 are the same as those

addressed for register file writes from data memory reads in epoch 3,

31



FROM MEMORY FROM MEMORY FO L

24 DATA IN U

DATA IN DATA IN

32 x24 SIT 32 x24 BIT IDUAL COPY

REGISTER FILE REGISTER FILE REGISTER FILE
COPY ICOPY 2

F BUS, 8 U ' U

TO MEMOAY T LIT L

Fig. 9. Register file system.

32



the ALU inputs cannot be obtained from the register file at the time

normally required since the required data has not yet been written into

the register file. This situation is recognized through appropriate

register address comparisons and rectified by bypassing the register

file by multiplexing the D and E latches with the register file data

outputs (Fig. 9) to load the A and B (ALU input) buses. The ALU operates

during subepochs 2-5 in epoch 4, and the result is written back into the

register file from the C (ALU output) bus in subepoch 6.

The above situation corresponds to case 2 illustrated in the data

routing conventions of Fig. 2 and arises due to data access requirements

within a given instruction. When a read for an ALU operation references

the same register as that addressed by the previous epoch's write from

data memory, the data must bypass the register file because the register

file has not yet been updated. The following situation corresponds to

case 4 of Fig. 2 and arises due to data transfer requirements between

instructions: Assume that instruction i implies a write into data

memory and is followed immediately by instruction i + 1 which requires a

read from the same location in data memory. Since writes into data

memory occur in epoch 5 and reads from data memory take place in epoch

3, the write operation of instruction i will have not have been completed

at the time instruction i + 1 needs access to the data memory. This

situation is recognized by data memory address comparison logic and is

alleviated by routing the contents of the F bus (instead of the D or E

bus contents) into the D or E latch. It can be seen that the F bus
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contains the desired datum since the register read onto the F bus

(subepoch 7 of epoch 4) demanded by instruction i will have already

occurred by the 1st subepoch of epoch 4 related to instruction i + 1.

The data path is implemented by multiplexing the inputs to the D and 1.

latches with the contents of the D and F buses and E and F buses respectively

(Fig. 9).

D. Indexing Unit

The responsiblities of the indexing complex (Fig. 10) include

address computation for as many as two data memory references, index

register post-increments, and direct modification of the index/increment

register file through the ALU.

The data memory address computation employs parallel hardware to

accommodate the most demanding case of a dual data memory read with

indexed addressing. For maximum performance, both direct and indexed

addressing are assumed at the start of epoch 2 (Fig. 4). The index

registers are read as early as is possible in epoch 2 and added to the

offsets coming from the memory control fields of the instruction. The

def erred addressing mode decision from the instruction is implemented by

multiplexing the computed address with the direct address from the

memory control field of the instruction. Again, for maximum speed, the

index registers are initially assumed to be incremented. The increment

values are read from the index/increment file simultaneously with their

corresponding index values used in the address computation detailed

above and summed. The actual increment decision is again deferred until
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the index file write subepoch. The indexing complex also contains a bit

reverse adder, useful for Radix 2 FFT address generation, which replaces

the conventional post-increment adder when activated. The bit reverse

adder is invoked when the appropriate status register flag is set in

conjunction with references to index register 0. As shown in Fig. 10,

index/increment file outputs are conveyed to the ALU through the A bus.

Inputs to the index/increment file from the ALU output (C bus) are

sequenced to follow the two post-incremented index register writes.

This provides a data transfer mechanism for instructions which use the

ALU to modify the index/increment file.

The timing for the indexing complex (Fig. 4) is described below.

The address computation and index register post-increment occur in

instruction epoch 2. The first set of index and increment registers are

read in the first subepoch, added in subepochs 2-4 and the resulting sum

is written back into the index file in subepoch S to accomplish post-

incrementation when elected. The index register contents are also added

to the instruction register offset field and multiplexed with the direct

address field, as described above, to develop the current instruction

data memory address in subepochs 2-7. The same set of operations,

delayed by one subepoch, occurs for computation of the second data

memory address and index register post-increment in the case of a dual

data memory read.

Since the index/increment register file has the same connectivity

to the ALU as do the data registers (Fig. 3), it can be modified in
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epoch 4 in a corresponding way. The index or increment register to be

modified is read on subepoch I of epoch 4 and written on subepoch 7. It

should be noted that when instructions are pipelined, as many as 3

simultaneous reads from the index/increment file may be required in

subepoch I of a machine cycle resulting in the need for the triple copy

of the file.

E. Arithmetic/Logical Unit

This section describes the hardware implementation of the Arithmetic/

Logical Unit (ALU) in two parts. Part 1 of the ALU (Fig. 11) accommo-

dates the 24-bit integer add/subtract, multiply, multiply-add/suntract,

maximum, minimum, and absolute value operations, and the floating point

multiply operation. Part 2 of the ALU (Fig. 12) realizes the floating

point add/subtract, maximum, minimum, and absolute value operations, the

fixed-to-float and float-to-fixed point conversions, the (integer)

normalization shift count derivation and programmed shift operations.

Parts 1 and 2 share 24-bit wide latches accepting inputs from the A

and B buses and an 8-way, 24-bit wide multiplexer connecting to the C

bus. A second A bus latch is required by tile Part 1 subsystem to

acquire the third operand for the two-cycle multiply-add/subtract

instruction.

The major functional portions of Part I include the 24 x 24-bit

array multiplier, 24-bit ALU, 8-bit exponent adder, and various multiplexers.

The array multiplier is based on the F100182 9-bit Wallace Tree Adder
6

and F100183 2 x 8-bit Recode Multiplier 6 components and requires a total
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of 127 FOOK 24-pin packages. 5 The 8 least significant bits (LSBs) of

the inputs to the multiplier are loaded with zeros to enable the array

to function as a 16 x 16-bit multiplier for the fractional part of the

floating point multiply. The 24-bit ALU is based on the F100181 4-bit

binary/BCD ALU slice. 5 The multiplexer at the output of the multiplier

plays several roles: (1) For the full 24 x 24-bit multiply it allows

the programmer to interpret the input operands in fractional or integer

formats and the appropriate 24 bit subset of the 48 output bits can be

selected; (2) For the 16 x 16-bit (floating point) multiply it renormalizes

the output when necessary (at most two left shifts); (3) Finally, it

supplies the right-hand operand to the 24-bit ALU which can be the

output of the multiplier in the case of the multiply-add/subtract

instruction or the contents of the B bus latch for a simple add/subtract

operation. The 8-bit exponent adder adds the exponents for the floating

point multiply and re-adjusts the exponent for fraction normalization.

Status outputs from Part 1 include overflow flags, carry-out and carry-

in bits for the double precision integer add/subtracts and retention of

the upper 24 multiplier bits in the upper product register for double

precision integer multiplies. Part 1 is implemented with 181 24-pin

FOOK packages.

Part 2 of the ALU (Fig. 12) is essentially a floating point add/

subtract unit with extra data paths to perform format conversions,

normalization shift count derivation and programmed shifts. The floating

point add/subtract proceeds as follows: The fractional parts of the
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inputs are aligned by right shifting the smaller input argument by the

magnitude of the difference of the concomitant exponents. The resulting

aligned fractions are then combined in the 17-bit fraction add/subtract

unit and renormalized by left-shifting to obtain the fractional part of

the result. Finally, the number of normalization left shifts is subtracted

from one plus the larger input exponent to obtain the output exponent.

Part 2 also recognizes instances of zero magnitude fractions and exponent

underflow or overflow and routes a floating point underflow value through

the C bus multiplexer.

The float-to-fixed point conversion operation uses the A operand

right shifter. The fixed-to-floating point conversion process uses the

left shift count generator, left shifter and exponent adjustment mechanism.

The shift count generator develops the normalization shift count and

produces a 5-bit quantity for later use in programmed shift operations.

The programmed left shift (indicated by a positive B bus shift

value) is achieved by introducing the desired 5-bit shift count at the

left shifter control lines from the B bus for A bus operands. Likewise,

the programmed right shift (indicated by a negative B bus shift value)

is obtained by providing the 5-bit right shift count at the right

shifter control lines from the B bus for the A bus operand. The left

and right shifters are implemented with the F100158 8-bit Shift Matrix

chip. Status outputs from Part 2 include underflow and overflow detec-

tion flags. Part 2 of the ALU is implemented with 74 24-pin FlOOK DIPs.
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F. Program Counter

The instruction execution sequence is controlled by the Program

Counter (PC) complex (Fig. 13) by controlling the program memory read

accesses for instruction fetches. The address information stored in the

PC register is updated from the PC register input multiplexer each

instruction fetch. In the absence of branches, interrupts, subroutine

returns, and interrupt returns, the PC register is incremented by one.

For branches the PC register is loaded from the branch address field of

the instruction register. On interrupts the PC register receives the

vectored interrupt address computed in the 1/O complex. Returns from

subroutine calls and interrupts are controlled with a 16-deep LIFO stack

which contains subroutine and interrupt return location data. On subroutine

branches and interrupts, the contents of the PC register plus one is

pushed onto the stack. On returns from subroutine calls and interrupts

the stack is popped into the PC register. A one-level status stack also

stores appropriate status information during interrupts. To effect an

indirect jump, the PC register may be loaded from the P register (cf.,

IV. I). Finally the PC register m;; lie reset or loaded with the bootstrap

initiation address.

G. Program Memory

The program memory consists of 4K 64-bit words implemented with 64

F100470 4K x I-bit RAM6 chips (35 ns maximum access time) and 60 F100112

Quad Driver 5chips for memory address fan-out. The read and write address

lines come from the Program Counter complex (cf., Section TV. F). The
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data output lines connect to the instruction register (cf., Section

IV. H).

H. Control

The machine control signals are derived from both the program

memory instruction word directly as well as from a micro-instruction

word read in the first four subepochs of epoch 2. The micro-instruction

is stored in a PROM composed of F100416 (20 ns maximum access time)

chips. 5'6 Due to the pipelined nature of the instruction execution

process, control signals must also be delayed and buffered for as many

as four machine cycles. The control structure is depicted conceptually

in Fig. 14 by a series of registers storing the critical fields of

the instruction and micro-instructions.

I. Special Registers

The remaining machine registers, called the Special Registers, are

as follows:

- status register (9 bits)

- upper product register (24 bits)

- P register (12 bits)

- 3 program memory load registers (total of 64 bits)

- console input/output register (each 24 bits).

The status register components are as follows:

- carry save bit (loaded from the carry-out and used as the
carry-in of the integer ALU for double precision add/subtract)

- integer add/subtract overflow flag
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- integer multiply overflow flag

- floating point overflow flag

- floating point underf low flag

- bit-reverse mode (programmied: designates bit-reverse increment
mode for index register 0)

- subroutine/interrupt return location stack overflow flag

- master interrupt lockout (programmed)

- interrupt service lockout (set/reset by machine upon entry

to or exit from interrupts).

The upper product register contains the 24 MSBs of the previous integer

multiply and is used for double precision integer multiplies. Both the

status and upper product registers are pushed on to a one-level status

stack upon interrupt and popped upon return (see Section IV. F). The

three program memory load registers are used as the data input buffers

for initial program memory loading during bootstrap. The P register

provides the program memory address for loading and indirect branches.

Finally, the console register buffers input from console switches and

output to console lights.

J. Parts Count and Cost Summary

From the preliminary designs of the processor's subsystems, it is

estimated that a total of about 1165 chips are required and could be

accommodated with 7 wire-wrap boards (cf., VI) (Table 2). The total

parts cost is estimated to be about $38,000 (Table 3).
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TABLE II

DEVICE AND BOARD COUNT

MAJOR DEVICE
SUBASSEMBLIES SUBTOTAL

PROGRAM MEMORY 4K x 64 BIT ARRAY: 64 4K x 1 RAMs 124
ADDRESS DISTRIBUTION: 60 DRIVER CHIPS

DATA MEMORY 2 x 8K x 24 BIT ARRAY: 108 4K x I RAMs 234
ADDRESS DISTRIBUTION: 91 DRIVER CHIPS
WRITE QUEUE AND RANDOM LOGIC: 35 CHIPS

DATA REGISTERS 2 x 32 x 24 BIT ARRAY: 36 16 x 4 RAMs 98
ADDRESS DISTRIBUTION: 10 DRIVER CHIPS
MUX'ING AND LATCHES: 52 chips

INPUT/OUTPUT 225

ARITHMETIC/ 24 x 24 BIT ARRAY MULTIPLIER: 127 CHIPS 255
LOGICAL UNIT

INDEXING UNIT 63

STATUS REGISTERS 48

PROGRAM COUNTER 22

CONSOLE 32

wPROGRAMI ROM, 64
TIMING, CONTROL

TOTAL DEVICE COUNT 1165

TOTAL BOARD COUNT 7
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TABLE III

ESTIMATED PARTS COST

SEVEN WIREWRAP BOARDS @ $1,500 $10,500

1165 INTEGRATED CIRCUITS @ $15 17,500

MISC: POWER SUPPLY, ETC. 10,000

TOTAL $38,000
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V. PERFORMANCE BENCHMARKS

Since a substantial portion of the processing time in many digital

signal processing algorithms is devoted to the execution of orderly

inner loops, a useful measure of a given processor's throughput can be

inferred from the execution times corresponding to these innier loops.

Furthermore, since these benchmark loops are generally implemented in a

relatively small number of program steps, this evaluation does not

require an inordinate amount of effort. These benchmarks not only

provide an overall figure of merit for a particular processor design but

play an interactive role in the design process itself.

Four examples important in digital speech and signal processing

were chosen as shown below (Fig. 15a-d):

(a) the multiply-accumulate of a dot product

(b) thle LPC lattice filter cell (2 multiplier form)

(c) recursive filter 2nd order section (2 poles and 2 zeros)

(d) the radix 2 FFT butterfly.

These four benchmarks were first coded for the LDSP as a reference.

It was found that as few as 1/3 of the cycles of the resulting LPqP code

could be ascribed to ALU operations. The remaining 2/3 were devoted to

index register manipulation, loop counter maintenance, and data trans-

fers. Therefore, for equivalent ALU speeds, an improved data archi-

tecture could potentially increase processor throughput by a factor of 3

through increased ALU utilization. With respect to the proposed

machine, throughput ranging from 3.4 to 5.2 times that of the LDSP
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(Table 4) is achieved for the four benchmarks. In part, this is accomplished

by increasing ALU utilization to 100% with a suitably flexible data

architecture as well as through the elimination of indexing operations

and data access delays within the inner loops. The remaining throughput

i,,rease is achieved through the faster and more powerful Arithmetic/

,Ogicdl Unit structure. The fixed point add/subtract and standard

logical operations are reduced from 50 ns in the LDSP to 40 ns while the

fixed point multiply-add sequence is reduced from 150 ns to 80 ns.

The proposed machine was also benchmarked against existing array

processors in execution of a 1024-point complex FFT (Table 5). Through-

put greater than the proposed processor was achieved only by the Westinghouse

PSP-X+ and Hughes PSP-E processor at the expense of reduced accuracy,

long programming pipelines and specialized architectures. The proposed

design's throughput was found to be greater than the FPS AP120B array

processor at the cost of reduced accuracy but with the benefits of

programming simplicity.

Finally, while the benchmark algorithms delineated here character-

ize a considerable portion of the digital speech processing computation

time, much speech processing is characterized by non-structured non-

iterative algorithms. The performance of array processors or archi-

tectures with highly pipelined arithmetic units degrades rapidly in such

cases, but the design presented here maintains throughput as well as

programmability.
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TABLE IV

THROUGHPUT COMPARISONS FOR SELECTED BENCHMARKS (INTEGER ARITHMETIC)

PROPOSED

LDSP MACHINE PROPOSED
EXECUTION EXECUTION MACHINE THROUGHPUT
TIME (NS) TIME (NS) (NORMALIZED TO LDSP)

DOT PRODUCT 350 80 4.4

LATTICE FILTER CELL 550 160 3.4

2nd ORDER SECTION 1650 320 5.2

FFT BUTTERFLY 1900 480 4.0
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TABLE V

ARRAY PROCESSOR COMPARISON FOR 1024 POINT COMPLEX FFT

PROCESSOR DATA FORMAT TIME (ms)

CSPI MAP-300 32 BIT FLOAT 4.5

FPS AP120B 38 BIT FLOAT 4.75

ANALOGIC AP400 24 BIT BLOCK FLOAT 7.4

CD & A MSP 24 BIT BLOCK FLOAT 13.

SPS 81 16 BIT FIXED 4.0

WESTINGHOUSE PSP-X+ 16 BIT FIXED 0.51

HUGHES PSP-E 12 BIT FIXED 0.26

LDSP* 16 BIT BLOCK FLOAT 10.

PROPOSED PROCESSOR* 24 BIT FIXED 2.

24 BIT FLOAT 3.3

*GENERAL PURPOSE ARCHITECTURE
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VI. HARDWARE IMPLEMENTATION ISSUES

The basic elements intended for use in implementing the high-speed

processor are those available in the Fairchild F100K 5'6 logic series.

This is a line of ECL elements featuring propagation delays in the

subnanosecond region (typically 750 picoseconds) and edge rates of

approximately 1 volt per nanosecond. These parameters dramatically

influence the packaging philosophy of the high-speed processor relative

to that utilized in the LDSP for the FlOK ECL logic line. In particular,

there is a serious limitation on the length of open wire interconnections

permissible with FlOOK logic elements. Thus, most connections are

constrained to be effected via balanced twisted pair. Furthermore, to
7 .

accommodate the FlOOK logic, a special wirewrap panel design is an

absolute necessity in terms of strict impedance control and maximum

utilization of voltage and ground plane metalization area. Decoupling

issues are also of paramount importance. An important fact relating to

these special requirements is the existence of a very studied special

high-speed wirewrap panel design. It is also known that a specialized

set of support resources exist including a transportable, sophisticated

CAD software package for board and system designs using FlOOK elements.
8

This CAD capability includes wirelist generation and debugging, place-

ment and routing features, functional design libraries, hierarchical

linking of functional design groups, and timing verification and emu-

lation. An extensive interactive graphics package is also included as

well as full documentation support. It is obvious that this level of
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support represents an immense potential savings in the engineering

effort required to implement a large system employing FlOOK elements.

The existence of such a powerful resource is expected to largely mitigate

added demands imposed upon the system design problem by the ultra-high

performance technology.

A factor having overriding impact on packaging technique is that of

logic speed. Since the FlOOK parts feature extremely fast edge rates,

precise impedance matching of every wired connection is a necessity in

order to prevent noise and discontinuity effects from significantly

reducing the system timing margins. The FlOK series of integrated

circuits was designed to be compatible with the basic wirewrap board

environment by controlling edge speeds and impedance levels. The faster

edge speeds of the FlOOK series imply modifications to the basic wire-

wrap board design philosophy.

Since propagation delays in the FlOOK series are shorter by a

factor of three than those of the FlOK series, it might be expected that

the speed of the new processor could be improved over that of the LDSP by

a similar factor. However, a number of subtle system issues might prevent

this potential from being realized in actual practice:

1. Device delays constitute a relatively small fraction of total

system delay relative to signal propagation along twisted wirewrap

pairs which comprise a vast majority of FlOOK interconnection

paths.

2. The increased component count of the new processor over that of
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the LDSP implies a physically larger piece of hardware.

3. The effect of possible increased fanout requirements due to the

FOOK technology must be considered. Since this is a critical

fac:tor, the assumptions for average fanout in the new processor have

been predicated upon very conservative figures with respect to those

used for the LDSP. Average fanouts for the new processor are

reduced by a factor of approximately two. Should this ultracon-

servative approach prove unnecessary as the design evolves and

matures, it could impact very favorably upon the projected system

performance.

4. The new machine will require at least a factor of three more

board area than the LDSP which implies increased average signal

propagation delays. Furthermore, propagation delays over inter-

board cables are greater than those normally attributed to single-

ended wire over groundplane. Therefore system partitioning is a

critical issue.

Since the factors mentioned above cannot be quantified in detail

until a final design for the system is developed and bench tests

performed, they can be employed only to arrive at an educated estimate

of system performance. This has been done in the case of system bench-

marking as discussed earlier. Thus the comparative figures developed in

the benchmarking exercise reflect consideration of the factors delineated

above and represent a "best estimate" in the absence of detailed performance

data. It is expected that the timing verification features of the CAD
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system will provide a more reasonable estimate of the system performance.

Another important factor is the tendency of memory element performance

to double every year. Since memory e. ment performance is so critical

in the proposed architecture as pe rhe register file, such an improve-

ment would bear directly on overall system throughput.

Since a copy of the advanced wirewrap panel has been released to

Lincoln Laboratory for internal use, it is expected that experimental

prototyping will provide some answers to signal propagation behavior

prior to the time that final designs are formulated as was the case for

the LDSP. The experimental prototype will be used as a testbed for

studying special signal distribution cases.

A number of different chip carriers are available in the F100K

family. Initially, the 24-pin DIP packages were thought to be the best

choice for use with the wirewrap board; however, recent results by other

investigators suggest the possibility of improved performance using flat

packs in connection with special adapter sockets. The use of special

sockets for the standard 24-pin DIP board design is a necessity in any

case since some of the devices in the FOOK series are in 16-pin packages.

This is of particular significance in the case of the F1004025 register

file chips whose speed parameters define the basic subepoch of the

processor. Studies have shown that approximately 200 picoseconds of

additional delay is encountered in passing from chip carriers to the DIP

sockets on the wirewrap panel. Since this is the same amount of time

gained by use of the flat pack in preference to the DIP package, it is
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expected that use of 16-pin flat packs with chip adapters will result in

approximately the same speed performance as specified for 16-pin DIP

packages plugged directly into board sockets.

Fairchild has also introduced a special series of LSI chips in the

F100200 family.6 These components represent a very high level of chip

integration but are packaged on a special 68-pin carrier which would

probably be unsuitable for use on a wirewrap panel. The F100200 series

presently consists of only four chips, three of which do not appear to

be particularly useful in the proposed high-speed processor architecture.

However, the F100223 programmable interface unit (PIU)6 could be applied

in the capacity of an I/O handshaking and buffering element. This would

probably be housed on a printed circuit board attached via some special

arrangement to the wirewrap board. It is expected that more potentially

useful parts will be forthcoming in the F100200 family. This might

suggest a complete printed circuit card design which could be integrated

with a wirewrap card complex since the R00K and F100200 series are

compatible.

'he most significant departure for ROOK design over lower tech-

nologies is in the area of clock and signal skews. Since the device

parameters involve very high speeds and short propagation times, the

wire delays constitute a significant portion of the communication time

between elements in the system. Thus special care must be taken to see

that clocks are distributed to the various parts of the system with

closely matched skews. The partitioning of system elements is a matter
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of the utmost concern at both the inter-board and intra-board levels.

The CAD system addresses all such issues, and it is hoped that it will

minimize the time needed to complete this part of the processor design.

One area of somewhat relaxed concern is that of system thermal

management. It is expected that an air flow similar to that employed in

the LDSP (500 LFPM) should be adequate for the FI00K design. In this

way the ease of maintenance and accessibility achieved in the LDSP

package should be preserved in the new design.

VII. CONCLUSIONS

This design is subject to a number of unknowns, all of which relate

to the use of the developing ECL lOOK technology. For example, fanout

versus time delay tradeoffs are not well characterized. The wiring is

subject to transmission line effects. Several different package styles

are available. Wirewrap boards suited to the logic family are rather

restrictive (--200 sockets) resulting in potential layout difficulties.

On the other hand, denser and/or faster memories will probably soon be

available. Highly integrated I/O controller chips (e.g., the F100223)

are available and may be usable in the I/O system. Thus much remains to

be learned or solved before a detailed design of the machine can be

completed.

This design exercise does indicate that it is feasible to conceptu-

alize a machine which meets the design goals - high throughput with high

programmability and small size. The goals are achieved by using a

faster logic family and a carefully chosen architecture which is intended
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to strike a balance between parallelism and programming complexity.

Additionally, the architecture proposed here is a general-purpose

architecture which may be used with equal facility in both array- and

non-array-oriented applications. Existing commercially available array

processors, achieve similar throughput levels using high degrees of

parallelism but at the cost of difficult programming and poor performance

for non-structured computation.

This architecture may have applications beyond those proposed here.

Given that its complexity is on the order of 100,000 gates not including

the large memories, it will soon be possible to place the system on one

or just a few VLSI chips. The cycle time of the machine would probably

be slowed by a factor of at least five or ten in the case of MOS technology,

but this would still represent a powerful machine for many applications.

60



APPENDIX A

DESIGN VARIANTS

Conceptually, a family of machines has been developed whose three

members differ primarily in data memory transfer capabilities. The

conceptual differences may be summarized as:

one-transfer: one data memory read or one write;

1.5-transfer: two reads or one write (the option presented in the

body of this report);

two-transfer: any combination of two data memory transfers (i.e.,

two reads or two writes or one read and one write.

The instruction pipelines for the one-transfer and two-transfer

machines are shown in Figs. A-1 and A-2, respectively. The one-transfer

machine can be considered as a stripped version of the 1.5-transfer

machine in that only one data memory read address is decoded (epoch 2)

and only one data memory read occurs (epoch 3). The consequent relaxed

data memory addressing requirements also imply a longer operate time

(during epoch 4). The 1.5-transfer machine achieves the single c .e-

dual read capability through the use of parallel memories. Data memory

writes, though, must occur serially implying that single cycle-dual

write of the two-transfer machine can be achieved only through the use

of faster RAM. This is illustrated by noting the shortened memory

access times appearing in the data memory transfer epochs (3 and 5) of

the two-transfer machine instruction pipelines. The main hardware

savings of the one-transfer machine over the 1.5-transfer machine are in
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the data memory, data register and program memory complexes. Only one

copy of the data memory array and write queue is needed, saving approximately

54 memory and 39 miscellaneous devices. Also the data register multiplexing

and latch logic is simplified, and the program memory word size is

reduced by 20 bits due to the elimination of the address field corresponding

to the second memory read reference. This saves approximately 20 program

memory and 20 support chips. Of equal significance to the raw chip

counts is the implied reduction in machine control complexity.

The main additional hardware expense in implementing the two-

transfer machine instead of the 1.5-transfer machine stems from the data

memory array. To obtain the needed two-memory references in a single

machine cycle it is necessary to use the faster but lower scale inte-

gration F100422 1K x 1-bit RAM 6 devices (10 ns maximum access time)

resulting in an additional 96 memory and 78 distribution chips. In

addition, machine control complexity increases significantly over that

of either the one- or 1.5-transfer machine.

As shown above, the one- and two-transfer machines, while adhering

to the same basic architecture as the 1.5-transfer machine, allow a

tradeoff between hardware cost, implementation complexity and software

capability. The 1.5-transfer machine was chosen for emphasis in this

document because its data transfer capabilities were well matched to the

benchmark tasks discussed in Section IV. The improved data transfer

rate of the two-transfer machine over the 1.5-transfer machine was not

judged worth the considerable increase in complexity in the context of
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speech signal processing-related problems, although the tradeoff may be

favorable in other applications. On the other hand, it was found that

the restricted data access capabilities of the one-transfer machine

resulted in a notable increase of the programming complexity over the

1.5-transfer variant due to the need to interleave program loop iterations.

In summary, the complexity increase of the 1.5-transfer machine over the

one-transfer option derives primarily from the addition of parallel

hardware while the complexity increase of the two-transfer machine over

the 1.5-transfer machine stems from more sophisticated control as well

as a considerably larger memory array.
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APPENDIX B

DIRECT MEMORY ACCESS

A Direct Memory Access (DMA) capability, while not critical to most

speech processing tasks, has been found useful in other digital signal

processing applications such as image processing and radar. As will be

shown below, a DMA capability can be achieved through simple hardware

modification of the basic design and integrates well within the existing

processor control structure.

During each machine cycle the data memory control evaluates the

read and/or write requests and the status of the write queue and takes

appropriate action. It has been indicated that no memory transfers

occur in a given cycle when the instruction sequence implies neither a

read nor a write and the write queue is empty. The low priority DMA

scheme presented here detects and utilizes such idle cycles for DMA

transfers. An important feature of this scheme is that program execution

can proceed normally during DMA activity since program references to

data memory have priority over DMA data memory references. Top priority

can be implicitly given to the DMA port simply by executing a routine

which requires no main memory references (e.g., register and ALU operations).

Figure B-1 shows the hardware configuration of the DMA port within

the machine structure. It includes the DMA input and output data lines,

the address lines and an I/0 port for interrupt driven control. The

additional data paths needed in the data memory complex to accommodate

the DMA port are shown in Fig. B-2 and include expansion of the data
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memory data-in multiplexer to include a DMA input and expansion of the

memory array address line multiplexer to include the DMA read and write

addresses. The DMA output data may be obtained directly from the memory

array data-out lines.
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