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ABSTRACT sets. Let ( , I,P) be a probability space. An

S-valued random variable will be a measurable func-
This paper considers stochastic convergence tion from (i,, ) to (S,.i). Let X be an S-valued

properties of real-valued measurable mappings de- random variable, and let u denote the measure in-

fined on separable metric spaces. A general L duced on .lby X, that is, for A f.m1, w(A) = P(XfP A). Similarly, let [X; n=1.2,... } be a sequence
convergence theorem is presented for mappings of SXn .

sequences of random elements converging setwise of S-valued random variables with corresponding
and in probability. A number of the implications measures Un induced on V4. We note in passing that
of this theorem with respect to the properties of n

systems defined on separable metric spaces are f(XnX)
discussed, but if (S,p) is not separable, this need not be

true. The random variables X n are said to converge
I. Introduction

to X in probabil it if for any C ' 0,

Consider a system with a given input and the
corresponding output. If a sequence of inputs lim Pfp(XXn) > C1 = O.
converged to that particular input, it would often n-

be of interest to know when the corresponding se-
quence of outputs converged to the particular out- The measures wn are said to converge to u setwise
put. We will be concerned with this problem in n
a stochastic framework. In an early work in this if, for any element A of ,',
area, Wong and Zakai [1] considered several con-
vergence properties of systems whose inputs are lim i (A) = w(A)
derivatives of sequences of random processes con- n-

verging in various modes to the Wiener process,

thereby characterizing (in the limit) the "white- Let R denote the Borel sets on I . Consider a
noise" response of certain types of systems. More measurable function k:(S,.d) 4 ( ,. ) and an S-
recently, Sussman [21 has developed a general ap- valued random variabL' Y. Then k(Y) = koy is a
proach to this problem by demonstrating and ex- real-valued random variable. We say that k(Y)
ploiting the continuity of a class of mappings on belongs to L (p > I) if
C[O,1] which are defined in terms of Lamperti's P

extension [3] of the domain of definition of cer- -
tain differential equations to all continuous (and J ik[Y(.)1I

p 
P(d.) <

not only differentiable) functions.
It is the purpose of this paper to present

some results which complement those of Sussman. If k(Y) E L , we define the I. norm as

In particular, we consider the output convergence p

properties of Borel measurable (but not necessarily '1/p

continuous) mappings defined on separable metric 1,f lip

spaces. In Section II, general results are pre- k(Y)H = k[Y(w)
p 

P(dw) J
sented which explore the L convergence of theP

outputs of measurable systems when subjected to In this section we will be interested in a
sequences of input random quantities converging in sequence of S-valued random variables X n that con-

setwise and in-probability modes. These results n
are cast in the framework of systems whose domains that g(X n )

are separable metric spaces. In Section III, a g(X) in .p, where g Is a measurable function. The
practical example, involving quantized feedback, next theorem addresses this situation. Various

is given of a system defined on C[a,b] which Is

Borel measurable but which is discontinuous with consequences of the theorem are then investigatedin the remainder of this section.
respect to the uniform topology. In Section IV

we comment on continuous systems. Theorem 1: Assume that X - X in probability and
n

11. General Development and Main Results that 
0
n u setwise. Suppose g Is a measurable

Let (S,P) be a separable metric space and let function from (S,.d) to (IR ,.) such that g(X) and

.a( be the a-algebra in S generated by the closed
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g(Xn ) belong to L . Then g(Xn) - g(X) in L if, In some cases the convergence in probability
andn P ri g(X) g is necessary. For example, if (S,.,/) = (R ,.R)

nd"only i g(X)I -1 g(X1 - and g is any strictly monotonic function, then con-

Proof: Since g(X) g(X) II g(X) - vergence in probability is a necessary condition in
g(X){I1 , we see the necessity of g(X)[[ T g(X)I. Theorem 1.Nowe se that n If W is purely atomic with only one atom, that

Now assume that llg(Xn)l - II g(X) • For is, if there is a point x f S such that P{X = x} 
any bounded continuous function h mapping S to R , then-convergence in probability of Xn to X is
we have via the triangle inequality equivalent to weak convergence [4,p.25]. However,

weak convergence is implied by setwise convergence
11 g(Xn ) - g(X)11 I 11 g(Xn) - h(X n ) 11 [4,pp.ll-12]. We summarize this observation as a

* 11 h g(X) -hCXn)J corollary.

Corollary 2: If there exists a point x i S such
+ II h(X) - g(X)I that P{X = x} = 1, then the condition of convergence

in probability can be omitted In Theorem I.

Let - be an arbitrary positive number. Since S,
with the topology generated by p, is a normal to- Let x be a point in S such that P{X = x} = 1,
pological space, we know [5,p.193] that there exists and suppose that g(x) = y. For example, x and y
a bounded continuous function h such that might be the nominal input-output pair for a system

represented by the function g. However, the system
11 h(X) - g(X)JI < F/4. input might be subject to disturbances, so that the

actual input is N. We see from the preceding two
Since h is continuous, h(Xn) , h(X) in pro- corollaries that if g is bounded, then the output

bability. It then follows from the boundedness of g(N) is close to y, In an L sense, if

h and the dominated convergence theorem [5,pp.124-
125] that I h(Xn ) - h(X)JI < E/4 for n sufficiently sup 1O(A) - IA(X) 
large. A(.A

For the remaining term, we have that
is sufficiently small, where 5 is the measure in-

I g(Xn ) - h(Xn) IIp I (x) - h(x)lPp (dx). duced on -1 by N and I represents the indicator
n function.

Notice that if o A s setwise, then there
Since h is bounded, there exists a finite number K exists a set A (.4 such that u (N) + D(A). Letting
such that n

g be the indicator function of the set A, we see

lg(x) - h(x)I
p 

< 2P-lg(x)Ip + K for all x f S. that I g(Xn)I = On(A) and H g(X)Jl = p(A). Since

n (A) p i(A), we see from Theorem 1 that g(Xn)

Since 11 g(Xn)I -- 11 g(X)l and On is setwise con- g(X) in 1. p This result Is given as the following

vergent to p, we have [6,p.232] that corollary.

f Jg(x) - h(x) lPn (dx) fig(x) - h(x)lPo(dx) . Corollary 3: If 'n A u setwise, then there always

S S exists a bounded measurable function g:(S,..4) *
(i) (F ,.) such that g(Xn ) ' g(X) in Lp.

Therefore, if n is sufficiently large, we have that Corollary 3 illustrates the importance of

setwise convergence in the present case. We note

H g(Xn) - h(X)I - 11 g(X) - h(X)JHJ < E/4. in passing that convergence with probability one,
that is,

Putting the three inequalities together, we have P{lim sup O(XnX) = 0) = I
that if n is sufficiently large,

does not imply setwise convergence. For example,

Ii g(XE) - g(X)[I < . let (S,.,I) - (R ,.R) and let X = 0 with probability
one and X = 1/n with probabilltv one. Then X -

QED X with probability one. In this case

In the above proof, notice that if g is bound- 1 if 0 f B
ed then the setwise convergence can be invoked [6, p(B) 

=

p.2321 to result in (1). Thus when g is bounded - if 0 f B
there is no need to assume that 11 g(Xn)l - 11 g(X)l.O
This result is given as the following corollary. and

Corollary 1: Assume that X X in probability I if 1/n IBCoolr :Asueta 
n  n(B) =

and that On -
W 
setwise. Let g be a bounded meas- n( 0 if I/n 0 B

urable function from (S,.4) to (R ,.R). Then
g(X) *g(X) in L P Letting B = (0,-) we see that n (B) I 1 for all n

but u(B) 0.
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Let .Ydenote the topology on S generated by Let X be any measure on.4'such that p and P
p. If (for n = 1,2,...) are absolutely continuous with

sup ln(G) - p(G)l - 0 ,respect to X. Such a measure always exists, for
G -.r example,

then it follows that n  -P setwise. That is,A )) 2_n -1 (A)

suppose A f .. Then, since probability measures n(A). 1(A) + ; A E .
on S are regular [4,pp.7-8], there is a sequence n-l

{G } 1 of open sets containing A such that Let f and f , respectively, be the Radon-Nikodym
m m1e 0 n

derivatives of p and On with respect to A. The
nn

lm Pn(Ga) = n(A) following result aids in characterizing setwise
nconvergence.

By diagonalization we can construct a sequence of Scheff's Theorem [4,pp.223-224]: If fn(x) - f(x)
open sets G containing A such thatm a.e.[X], then

h ii n(0) = n(A), n = 1,2 .... sup 11.(A) - ln(A) -f flf(x) - fn(X)IX(dx) -0.
nm nAf-W S

and Consider for the moment the case where the V
nlim (C') = (A). are absolutely continuous with respect to , and

a let X be equal to u. Then by Scheff 's Theorem, if

fn(x) - 1 a.e.[w], the On converge setwise to P.
We then havenn As an example, let S be C[a,b], the space of all
In(A) - (A) < n(A) n(G) I continuous real-valued functions defined on [a,b],
n- P (G') and let p be the uniform metric. The separability

of (S,p) is easily seen by considering the class of
(G') -P(G,)l all polynomials with rational coefficients. Assume

+ n a that p is Wiener measure. There has been consider-
able effort expended in establishing the absolute

+ lj(A) - O(G') continuity of certain measures with respect to
a Wiener measure, and in characterizing the resulting

Radon-Nikodym derivatives. This theory has been
Letting m =, we get that fairly well developed for random processes of the

diffusion type (see, for example, [7]). It is

1 (A) - (A)' sup In(C) - p(G)I + 0 . straightforward to construct examples of sequences
- Gsu"n of random processes of the diffusion type such that

the resulting Radon-Nikodym derivatives converge to
Similarly, if unity. Thus Theorem I or Corollary 1 can be invoked

to exhibit discontinuous functional transformations

such that the outputs due to random processes of
.p. sup (F - O(F)I - 0 the diffusion type converge in L to the output due

to a Wiener input as the diffusion type processes

then it follows that W * p setwise. converge to a Wiener process.
n

Let g be a measurable function from (S,.dl) to III. A Measurable System which is not Continuous(Ii ,. ) and let D denote the set of discontinuity
g 

As noted in Section II, the setwise input con-points of g. We note that D 9 kW [4,pp.225-226]. vergence required for the output convergence of all

It follows from [4,p.31] that if g is bounded and measurable systems is somewhat stronger than the
u(D ) - 0, then the weak convergence of On to p input convergence required for the output conver-

l gence of continuous systems. Thus, the question
implies that arises as to whether or not there are any meaning-

f p ful examples of systems which are measurable but
g(x)pn (dx) - Jg(x)u(dx). not continuous. In this section we present one such

S S system, modeling quantized feedback, which might
arise in any of a number of. applications.

We recall that X * X in probability implies that As before, let C[a,b] denote the space of con-
n tinuous real-valued functions defined on the real

On ' U weakly [4,p.26] and thus there is no need interval [a,b] with the uniform topology. Define
to assume setwise convergence. This observation the function g:l 4 Ii by
ia summarized in the following corollary.

Corollary 4: Assume that X n  X in probability, g(x) - sgn(x) (1; if x 0

and let g be a bounded measurable function from -1; if x < 0
(S,.#d) to (N ,6) such that v(Vg) 0. Then

S Xand, for each positive integer n, define gn *
g(Xn g(X) in L by
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which call be written as limits of continuous mappings.
*1 gni(x) itX (-i/n,0)

snx -/IV. A Not,. on Continuous Systems on CfaL[

2n(x4-/2n) If (-l/n,0) In this section w. discuss briefly two appli-
cations of the output convergence approach to con-

Note that, for each n, tinuous systems. As noted In Section II, if the
system of interest Is a continuous mapping to IR,

n()-gn(v)l s x-y2n then the requirement of setwise convergence can be

'gx-j)ndropped rrom the hypothesis of the theorem. More-

over, we note that, in the continuous case, con-
so that gn is Lipschitz continuous on F . Thus, vergence in probability of the input implies conver-
for each n, gence in probability of the output regardless of

whether or not the output 1. norms converge. Also,
t P

n ,n +if the input converges almost surely, then the out-

S f as t (2 put of a continuous system will converge almost
surely.

defines a continuous mapping from C[a,b] to C[a,h] Consider the system defined for fy t;t q [a,bl}

(as in [5], [6]). Suppose n is a positive integer; E C[a,b] by

n n4l
define At on [a,b] by At= (x - t ). Note that tt t t C h(Xs)ds + Yt ; t E [a,b] . (4)

A is continuously differentiable on [a,b] and that f t
A 0. Consider the set E {t ( < 0 This equation

A defines a continuous mapping from

Either E is empty or c = inf(E) < b. Suppose the C[a,b] to C[a,b] provided h is Lipschitz continuous

latter is true. Then we must have A = 0 and A' = and satisfies other mild conditions (see [2]). Thus,
c c

dA /dtI < 0. But if a sequence yn; n=1,2, ... } of random processes
t=c defined in C[a,b] converges almost surely to a pro-

cess Y, then the corresponding outputs to (4)'=[g(n)  n +1
A' = [gn - gn4l(Xc )] ({Xn; n = 1,2 .... )) will converge almost surely to

the random process defined by

[gn(Xtl) - g1(Xn)I > 0 t

n c n+ cx = h(Xs)ds + Yt ; t f[a,b], (5)

since gn I gn+" This is a contradiction and E a

must be empty; thus Lt > 0 for all t f [a,b]. 'hits where (5) is as interpreted by Sussman [2]. Note

implies that x
n 

is a decreasing sequence. Note that that Wiener's construction of the Wiener process on

t tI0,7 is given by (see [8])
asup xIxn (b-a) + sup lYtI <

a <, t < b ta S t : b, 2n-i

for each positive integer n. Thus, there is a W t = tg0// + r, E n- /- sin(kt)gk/k

function x = x t;t f [a,b]} such that x
n 

+ x. It =1 k-

is easily seen that we must then also have (gn o Xn) where fgk; k = 0,1,2 .... 1 are independent standard

(g o x), and the monotone convergence theorem Gaussian random variables. Moreover, the sum on the

[6, p.227] implies that right is almost surely uniformly convergent on [O,r].

t t Thus the sums n~ =N 2n-1
lim f gn(xn)ds g(xs)ds , t [ab] "n s fgo N + 9'/- sin(kt)gk/k

n~ a a W = tgo/' E En- k'f in=l k 2

We thus have

t + y t [0,7T, N = 1,2,..., define a sequence of random

I f processes in CO,v] converging almost surely in the
a uniform topology to a Wiener process. Therefore, we

For each positive integer n and for each t t ia,b], see that we can approximate the response of (4) to a
(2) defines a continuous mapping from Cla,b] Wiener process by computing the response to a sum of

to IR . Thus, since x =lim x
n  

(3) defines a sinusoids.

t n t' In a related application suppose that we again

Borel measurable mapping (see [6, p.223]) from have a continuous system of the form (4) which,

C[a,b] to IR (for each t t[a,b]). This mapping is under ideal operating conditions, is subjected to a

discontinuous for any t > a, however, which is seen deterministic Input (S t;t ( [a,bl) e Cfab]. Since

1t
by considering the two inputs y = {r;t f [a,b]l the system is continuous we are guaranteed that, if

and y2 = {-c;t t [a,b]} and letting l * 0. the actual input is corrupted by noise, i.e., If

Note that (3) is a model for a first-order {Yt 
= 

(St 
+ 

Nt); t f[a,b]] for some C[ab] random

system with a hard limiter (one-bit quantizer) in process (Nt; t t[a,b]1, then the output will still

the feedback loop. Note also that the development be close in probability to the ideal output as long
of the above paragraph is easily generalized to a { sup IN I r) Is small for large c.

include higher-level quantizers and other systems a < t r h



For example, if {Nt; t f [a,b]} is a Wiener process 3. J. Lamperti, "A simple construction of certain

on [a,b] with zero mean and autocorrelation func- diffusion processes", J. Math. Kyoto 4 (1964),
2 161-170.tion E(NtNs = ,i2min(t,s); (t,s) [a,bJ [a,b]}, 1110

then [4, p.80 t4. P. Billingsley, Convergence of Probability
then [4, P 80 1 Measures, Wiley, New York, 1968.

a : t ! b 5. N. 9unford and J. T. Schwartz, Linear Operators-

Part 1: General Theory, Interscience, New
York, 1967.

4 (-I p) [_n
2
a
2
(2k+l)2/8E

2  
6. H. L. Royden, Real Analysis Macmillan, Toronto

S (2k+l) ep1968.
k=l

7. R. S. Lipster and A. N. Shiryayev, Statistics
which is arbitrarily close to zero for small enough of Random Processes I General Theory, Chapter 7,
a. Thus, the system represented by (4) is stable Springer-Verlag, New York, 1977.
with respect to an additive Wiener process and the
corresponding differential equation is stable with 8. K. Ito and H. P. McKean, Jr., Diffusion Processes
respect to additive "white noise". Note that, in and Their Sample Paths, p.21, Springer-Verlag,
view of Corollaries 1 and 2, any bounded measurable New York, 1965.
system is stable in this sense with respect to
perturbations in the neighborhoods generated by set-
wise convergence since a single continuous function
{St ; t f [a,b]} is an atom in C[a,b].

V. Summary and Conclusions

In this paper we have considered the output
convergence of systems which might be discontinuous
when viewed as mappings on function spaces. In a
sense, the results of this paper complement those
of Wong and Zakai [1] and Sussman [2[ in that they
treat a class of systems slightly more general than
the continuous systems considered in these earlier
works. However, we see from Section II that, not
surprisingly, a stronger form of input convergence
is required for measurable systems to converge

than is required for continuous systems. The in-
probability convergence is not a particularly
strong form of convergence, but, as noted in Section
II, the setwise convergence is somewhat stronger
than the usual types of weak convergence of measures.
However, the relationship of setwise convergence to
the Kolmogorov variational distance provides ade-
quate means for verifiability. The practicality of
considering discontinuous systems is seen in Section
III, where it is seen that a very simple and common-
place system cannot be treated by results specific
to continuous systems. We note that a wide class
of systems have properties similar to those of the
system derived in Section III.
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