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ABSTRACT

This paper is concerned with the determination of regression functions
from only a partial characterization of the joint distribution. It is
shown that statistical information consisting of various moments and joint
moments is sufficient to characterize a regression function.

An applica-
tion to regression functionals is also considered.

I. INTROLJCTION

Let X and Y be random variables with Y integrable, i.e. E{|Y|} < o,
and consider the regression function of Y on X,

m(x) = E{Y|X=x}.

As is well known, m(-) is a Borel measurable function, and it frequently
arises in engineering applications. For example, if Y is a second order
random variable, then the minimum mean squared error estimate of Y in
terms of X is given by m(X) [1, pp. 77-78].

In some cases m(-) has a particularly simple form. For example, if
X and Y are jointly Gaussian with respective means my and m, respective

. 2 2 . .
variances oy > 0 and Oy » and correlation coefficient p, then

m(x) = ax + b, (1)

where a = (cY/cx)p and b = m, - amyg. However, in the case of jointly

Gaussian random variables, mx, mY, Oyx» Oys and p completely determine the

bivariate distribution of the two random variables.

In more general cases, the question arises as to how much information
about the bivariate distribution is required to determine the regression
function. If X and Y are two second order random variables that are
separable in the sense of Nuttall [2], then the regression function m(.)
has the form given by (1). However, knowing that two second order random
variables are separable in the sense of Nuttall, and knowing the means,
variances, and the correlation coefficient is not sufficient to determine
the bivariate distribution of the two random variables. Notice that any
two random variables whose bivariate characteristic function is ellipti-~
cally symmetric are separable in the sense of Nuttall [3].

As we have seen, there exists a class of joint distributions such that
the regression function can be determined knowing that the two random
variables belong to that class and also knowing means, variances, and the
correlation coefficient. However, it might seem reasonable to conjecture
that in more general cases, the regular conditional distribution [4] of Y
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given X=x is required. Although the regular conditional distribution of
Y given X=x is sufficient to determine m(x), in the next section we will
see that it is never necessary.

In this paper we will be concerned with statistical information such
that there can be only one regression function consistent with the given
statistical information. In the next section we consider the regression
of Y on a random variable and then on a random vector. Then in the
following section we consider the regression functional, that is, the
regression of Y on a random process.

II. DEVELOPMENT

Let Y be a second order random variable, let X be a random variable
with compact support, and let m(.) be given by Eq. (1). Define the measure
u on the Borel sets of R by

u(A) = P(Xea) ,

and let II-H denote the Lz(u) norm. We will say that a polynomial has

max degree N if the degree of the polynomial is no greater than N. We
note that for any ¢ > 0, if N is sufficiently large, there exists a poly-
nomial of max degree N PN(x) such that

| m - PN” < €. (2)
That is, there exists a continuous function h(-) such that [5]
fm-nil <e/2,

and by the Weierstrass Theorem there exists a polynomial P of max degree ;

N with N sufficiently large such that N
In = Byll < e/2

Thus Eq. (2) follows by the triangle inequality. Hence there exists a
sequence of polynomials PN(x) such that

PN(x) -+ m(x) in Lz(u)

Let QN(x) be the polynomial of max degree N that is closer to m(x) (in
Lz(u)) than any other polynomial of max degree N. We note in passing that
QN(x) is uniquely defined a.e. [u] by the Projection Theorem. That is,
there may exist more than one representation of QN(x) (i.e. with different
coefficients) but they are all equal a.e. [u]. From the preceding
observations, we have that

QN(X) > m(x) in L2[u]

Express the polynomial QN(x) as

N
Q(x) = Z aj(N) X3
j=0

It follows from the Projection Theorem that the aj(N) can be determined
from the relation




E ! n(x) - :?:a ) x3 xk) =0, k=0,1,2 N
; , L1, 2,..., N .

= $

This is equivalent to

k N j+k
E(X Y} = :z:aj(N) E{(x""}, k=0,1, 2,..., N . (3)
j=0

Thus we have seen that from a knowledge of

E{Xk} », k=1, 2,
and

k
E{yx} , k=0, 1, 2, »

we can construct a sequence of polynomials QN(X) that converge in Lz(u) to
m(x).

Now let X be an arbitrary random variable. Let g be an invertible
Borel measurable function whose range is bounded. Define the random
variable X as X = g(X), and the measure 1 on the Borel sets of R by
u(A) = P(X€A). From the above discussion, we see that

m(x) = E{Y|X = x}
is determined a.e.[u] by the quantities
~k
E{(X} , k=1, 2, ... 4)

and
E(YX} , k=0,1,2, ... . (5)

Let QN(x) denote the polynomial of max degree N constructed in the
preceding fashion. Then
Qq(x) > m(x) in L, ()

Notice that m(x) = &[g(x)]. From a change of variables result [6, p. 182],
we have that

S [0y - m(01% udn) = S [Qy{8(0)] - m()1% u(dx)
g(R) R

Therefore, 6N[g(x)] + m(x) in Lz(u).

Now we will remove the restriction that Y be second order. Assume
that Y is an integrable random variable and let

y 1f |y| < k

G (y) = {
0 if |y| > k .

Then Gk(Y) is a second order random variable and [1, p. 23]
E{Gk(Y)]X=x} > E{Y|X=x} a.e.[u]

Since |Gk(Y)~Y| < |Y| and [Y| is integrable, we have that E{Gk(Y)|X=x} -

m(x) in Ll(u) by the dominated convergence theorem [6, pp. 124-125].
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Thus from a knowledge of the quantities in Eqs. (4) and (5) we can
derive a sequence of estimates for E{Gk(Y)|X=x} which converges in Lz(u),

and consequently in Ll(u) (see, for example, [7]). Also, E{Gk(Y)|X=x}
converges to E{Y|X=x} in Ll(u). Thus, by a straightforward diagonalization
procedure, we can derive a sequence of estimates which converges in Ll(u)
to m(x). These results are summarized in the following theorem.
Theorem 1: Let Y be an integrable random variable, let X be an arbitrary
random variable, and let g be an 1lnvertible Borel measurable function
mapping the reals into a bounded set. ‘'Then the regression function m is
determined a.e.[n] by the quantities
k

E{{gX)]1}, k=1, 2, ...

and

E{Y[g(X)]k} , k=0,1, 2, ...

Consider for the moment the case where X and Y are independent. In
this case a solution to Eq. (3) is given by

aO(N) E{Y}
aj(N) =0, 3>0,

and we get that m(x) = E{Y}.
Now consider the following two different bivariate density functions:

f.(x,y) = 1 em{-(rmmz}l (%)
1 21 o 202 (0,1]

fz(x,y) = XI[px—l,px+l](y) I[O,l](x)’
where 0 > 0, p € (-1,1), and I denotes the indicator function. Assuming

that the density of (X,Y) is given by fl, we find that

k, 1
E{X} = o1

k p
E(YX"} = =5 -
In this case, for N > 1, a solution to Eq. (3) is given by
a; (M) =p (6)
aj(N) =0, 3#1, (7)

and we conclude that

m(x) = px . (8)

If we assume that the density of (X,Y) is given by fz, we find that

K 2
E(X"} = 153
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k 2p
E{Yx"} = 3
In this case, for N > 1, Eqs. (6) and (7) still satisfy Eq. (3), and the
regression function is once again given by Eq. (8). Thus, in this example,
the two pairs of marginal densities are not the same, the conditional
densities of Y given X=x are not the same, and the moment sequences are
not the same; however, the moment sequences are sufficient to characterize
the conditional expectations, which are identical. Numerous other similar
examples may easily be constructed.

Now we will consider the regression of Y upon a set of random

variables. Let X be an arbitrary random vector taking values in ](n, and

let p be defined on the Borel sets of R" by
u(B) = P(X€B)

Lemma 1: If u has compact support, then the class of all polynomials is
dense in Lz(u).

Proof: Let q be an arbitrary element in Lz(u). For any ¢ > 0, there

exists [5] a function h: R" > R which is continuous and has compact
support such that

Ila-h || < e/2 .

By the Stone-Weierstrass Theorem [8] there exists a polynomial p in n
variables such that

” h_p ” < €/2 ’
and thus by the triangle inequality

lp-all <
QED

We recall that the degree of a monomial in n variables is the sum of
the powers of the variables, and the degree of a polynomial is the degree
of the monomial having the largest degree over all the monomials in the
polynomial with nonzero coefficients. There are

+d-
C(n,d) = (n d 1)
d
monomials of degree d in n variables [9].
Assume that Y is a seccud order random variable, and define m(x) by

Eq. (1), where x is now an element of R" . Assume that u has compact
support. Let QN(x) be the polynomial of max degree N which is closer, in

the Lz(“) norm, to m(x) than any other polynomial of max degree N.

Consider a monomial in n variables of degree d. There will be
C(n,d) of them. Order them lexicographically by the powers of the v
components of x, and let mjd(x) denote the j~th monomial of degree d. :

Then QN(x) can be expressed as
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5 Q) = H° ;z: a;Mmy 4 G

It follows from the Projection Theorem that the coefficients a,d(N) are
3
given by the solution to the following set of equations:

N C(n,d)
E{Ymik(x)} = :E: :E: ajd(N) E{mjd(X) m,, (0}, 9
d=0 j=1

k=0,1, ..., Nand i = 1, ..., C(n,k). If the coefficients a.

O

satisfy Eq. (9), then it follows from Lemma 1 that
Q(x) > m(x) in L,(u)

Now we remove the assumption that X has compact support and let X be
an arbitrary random vector taking values in Rn. let g be an invertible

Borel measurable function mappingiIRn into a bounded subset of R" , and
let X = g(X). We see that

m(x) = E{Y|X=x}

is determined a.e.[;], where u(A) = u[g_l(A)], by the quantities
E{mjd(x)}

and
E{ijd(X)}

for d=0,1, 2, ... and j =1, ..., C(n,d). Let QN(x) be the polynomial

of max degree N determined in the preceding fashion. Then, similar to the
development of Theorem 1, we can employ a change of variables result
[6, p. 182] to conclude that

Qlg(0] » m(x)  in L) .

A chopping argument as in the development of Theorem 1 allows us to remove
the second order restriction on Y. Then a straightforward diagonalization
procedure results in a sequence of estimates which converges to m(x) in
Ll(u). This result is summarized in the following theorem.

Theorem 2: Let Y be an integrable random variable, let X be an arbitrary
random vector taking values in ]fl, and let g be an invertible Borel

measurable function mapping R" into a bounded subset of Rp. Then the
regression function m is determined a.e.[u] by the quantities

E{mjd[g(x)]} and E{ijdIG(X)]}

for d =0,1, 2, ... and j =1, ..., C(n,d).

i.. k _ IJ
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ITI. REGRESSION FUNCTIONALS

As before, assume that Y is an integrable random variable, but now
let T be an infinite subset of R and let {X(t), t€ T} be a random
process. Let S denote the space of all extended real valued functions
defined on T, and let 98(S) denote the o-algebra on S generated by the
class of all cylinders in S. Let & denote the Borel sets of R. Then
the regression functional

m{x(t), teT] = E{Y|X(t) = x(t), t €T}

is a measurable function from (S, 9B(S)) to (R ,HB) (see, for example,
(10]).

Let 1 be the measure induced on &B(S) by {X(t), t € T}. That is, for
any cylinder C in S, u(C) = P({X(t), t €T} €C), and u is extended to B(S)
via Kolmogorov's Theorem (see, for example, [11]).

It follows from [1, pp. 21, 604] that there exists a countable subset
of T, say T = {tl,tz,...}, depending on the random variable Y, such that

E(Y|X(t) = x(t), te T} = E{Y|X(t) = x(t), t €T} a.e.[u]

Let
M = E{Y|X(t), t €T},
M= E{YIX(tl), cees X(E )},
F= o{X(t), teT},

and

32 = o{X(tl), ceey X(tn)}.

Then from the properties of iterated conditional expectations [1, p. 37],
it follows that

E{Mn+l|'g;r.1} B Mn wel ,

and hence {Mn, #,n > 1} is a martingale. It follows from [1, p. 332]
that M > M wpl. Since E{anl} < E{|Y|} < =, it follows from a martingale
convergence theorem [1, p. 319] due to Doob that E{|Mn—M|} + 0. This is
equivalent to

E(Y|X(t,) = x(t)), 1=1,...,0} > E(Y|X(t) = x(t), t € T}

in L (u). Notice that Theorem 2 is applicable to E{YIX(ti) = x(t)),

i=1,...,n}. Thus a straightforward diagonalization procedure results in
a sequence of estimates which converges to m[x(t), t €T] in Ll(u). This

result is summarized in the following theorem.

Theorem 3: Let Y be an integrable random variable and let {X(t), t €T}
be a random process. Let {gn, n=1,2,...} be a sequence of functiomns

where g, is an invertible Borel measurable function from R to a bounded

subset of R" . Assume that for all positive integers n and for all sets
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of n points in T, say ty, ...s ty, the quantities
E e
{mjd(gn[X(tl), » X(e D)}

and

E{ijd(gn[X(tl), R X(tn)])}

for d =0, 1, 2, ... and j =1, ..., C(n,d) are known. Then up to u
equivalence, there is only one possible regression functional m[x(t), t€ T]
= E{Y|X(t) = x(t), t € T}.
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