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Abstract

In this work we consider the discrete time detection of strong mixing signals in
strong mixing noise, and we allow a large degree of dependency to exist between

the signal and the noise.

We investigate the memoryless detector which is
optimum in the sense of the asymptotic relative efficiency.

It is shown that

the design of this detector reduces to the solution of an integral equation in
which knowledge of only the second-order statistics of the random processes

involved is required.

I. INTRODUCTION

The detection of signals in corrupting noise has
been an area of interest for some time. Because
of modern high speed sampling, it is expected that
the underlying random processes involved will not
be "white", but will instead possess dependency to
a certain degree. Neyman-Pearson optimal
techniques [1] are tractable only in cases where
the appropriate multivariate distributions are
known. In many non-Gaussian situations these
distributions are not known, which has thus led to
the choice of an alternate fidelity criterion,
commonly the asymptotic relative efficiency (ARE)
criterion, which is especially appropriate in the
weak signal and large sample situation. Because
continuous time detection is often intractable in
the non-Gaussian case, current efforts are
directed toward discrete time detection. Results
in this area have been obtained recently by Poor
and Thomas [2,3] for the case of memoryless
detection of a known constant signal in additive
m-dependent noise; we have shown (4,5] how these
results may be extended to a large class of
¢-mixing noises. Because an assumption of a
constant signal is in many cases overly
restrictive, we have also considered [6] the case
where both the signal and noise may be modeled as
$-mixing processes, where a large degree of
dependency may also occur between the signal and
noise. Al1l of these results have the advantage of
requiring only second-order statistical knowledge
of the random processes involved.

The employment of the ¢-mixing models of [4-6] is
motivated by an expectation that dependency
between samples gradually "decreases" as the
samples are more widely separated in time, and the
formal definition of a ¢-mixing process is
consistent with such a property. The class of
¢-mixing processes employed may be seen to be
quite general, however as described in the next
section, the formal definition is more restrictive

than what we might expect as the most natural
consequence of our intuition. In this paper we
will model the signal and noise in a way which is
in many ways much more consistent with our
intuition. This wi:1 be achieved through the
employment of strong mixing processes to model the
signal and noise. The class of strong mixing
processes is more general than that of ¢-mixing
processes, and because of ties to the maximal
correlation coefficient the validity of a strong
mixing model is easier to check. We therefore
will consider the general situation where we are
detecting the presence of a strong mixing signal
in strong mixing noise.

IT. PRELIMINARIES
Let {Xi; i=1,2,...} be a strictly stationary

sequence of random variables. For a<b, define
M(a,b) = o{xa,xa+1,...,xb}, the o-algebra

generated by the indicated random variables, where

a and b may take on extended real values. Then
{Xi; i=1,2,...} is symmetrically ¢-mixing if there
exists a nonnegative sequence {¢i; i=1,2,...} with

¢; +0 such that for each k, 1<k<=, and for each
i21, g ¢ M(1,k) and Eye M(k+i,») together imply

|P(EJVEL)-P(E{P(E,) | < 65 min {P(E;),P(E,)}.

In [4-6] the above type of process is employed.
Note that the left side of the above inequality
provides a measure of dependence between events E1
and EZ’ and the right side bounds this quantity

with a term involving El and E2. Such a definition

has computational advantages; for example, it
results in the very powerful Lemma 1 of [7,p.170].
However, it is a stronger requirement than our
intuition might demand. Since we really wish to
simply require a "decrease" in dependency as E1
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and E2 are more widely separated in time, it is

thus more natural to employ the weaker requirement
that there exists a nonnegative sequence
{u ; i=1,2,...} with a; +0 such that for all £y

and E2 as above we have
|P(E1f\E2)-P(E1)P(E2)| <oy

A process satisfying this condition is called
strong mixing We will consider the detection of
a strong mixing signal {S 3 i=1,2,...}, where

0 < E{S } <o, in add1t1ve strong mixing noise
{Ni’ i= 1 2,...}, where we observe realizations
{yi; i=1,2,...,n} of the process {Yi;i=1,2,...,n}.

In order to apply the ARE fidelity criterion, this
will amount to a choice between the two hypotheses
HO: Yi =Ni; i=1,2,...,n

Hl: Yi =Ni +8$i; i=1,24...4N

where 6 is a parameter which will be allowed to
approach zero at the proper rate, thus yielding
the asymptotic limit. Throughout the discussion
we will assume that both the noise and signal
processes possess (possibly different)
a-representations which satisfy

I
i=1 !
for some appropriate § >0. Such a strong mixing
process will be called §-acceptable. For

convenience we assume the existence of densities
fj("') of Nk and Nk+j’ f(+) of N s Fle,¢) of Nk
and Sk’ where the latter is assumed to be

inacnendent of k.

s/(2+8) _

We also assume
n
K(xey) & T LEj(0y) + £5(y.0 JVRTICY)
j=1

is square integrable for all n, and that f(+) is
strictly positive on the real line. We assume in
addition that

2 3
Jy 5 F(x,y)dy//F(x)
3

X
and

]} é% f(x,y)dy//F(x)

are square integrable. Note that if the signal
and noise are independent, the latter condition
is equivalent to the assumption of finite Fisher's
information number contained in [2,3]) and [4,5].
We also assume that

1im Jf(x By,y)dy = f(x).
6-+0

4 As in [2-6], we will optimize over the class of
optimal memoryless detectors designed under a
"white noise" assumpt1on, i.e. where a test

statistic T (y) = Z g(yi) is compared to a
threshold.

Specify1ng g will therefore be of

prime concern.

We will restrict the class ¢ of nonlinearities g
to include those measurable real valued functions
for which we can find el> 0 and 61 >§ such that

the random variable g(Nl+esl) satisfies

E{lg(N1+esl)|2+61) < o for all 6[0,61], and such

that the following mild regularity conditions hold,
where Ee(-) denotes expectation computed under Hl

with parameter 68 (by proper choice of the
threshold, we assume without loss of generality
that the random variables g(Ni) are zero mean):

(a) [a(x)f'(x)dx # 0
if the signal and noise processes are independent;

3 2
6 1 (3 e emg]
nEO{[Tg(Y)]Z}

n(g) >0

n-—+o

if ffyg (x) 5%

3 2
[55? Ee{Tg(Y)}|e=0]
g ([T4(N)1%)

f(x,y)dxdy # 0, or

(b') Tim 2n(g) > 0

n-+ow

if ijg(x) 2 f(x,y)dxdy =

(c) -=<1lim

n-+w

3
35 EON*98) ) gaye /1 m

-2
36 ELO(N*05)) Hgog <
for some constant k1 >0

if ffyg(X) gi?x_ f(x,y)dxdy # 0, or

2
(c') ~o< lim E{g(N +6S )}|
n-+o ae 8=k /n

2
.9 m
= 202 E(g(N1+esl)}|e=0 <

for some constant k2> 0

if ffyg(x) f(x,y)dxdy = 03 cor N____._;.,
(d) Hm E{g(N +6S )2+‘S = E{g(N1)2+6}; 1 K
+0 ) -
(e) % ffg(x)f(x-e_y.y)dxdyle=0 en. . ——
= [[Z 900 f(x-0y.5) 4o dxdy S
if ffyg(x) —33; f(x,y)dxdy # 0, or Ll,‘;}/l Codeis
.1 and/or

Dist special




(e’) i f]'g(x)f(x-ey y}dxdy|
20° ’ 6=0

15
if Uyg(X)

(f) od(g)

(x-8y,y) Ie - dxdy

f(x,y)dxdy = 0;
E(g(N) %) +2 I Ela(hy gl ) > 0.
J:

Properties (a)-(c') are assumptions conventionally
imposed for application of the Pitman-Noether
theorem (8], whereas (d)-(e') are exceedingly mild
restrictions. For a large class of processes,
including all of the examples of [3], property (f)
is satisfied and may therefore be ignored. Note
that these assumptions are the analog to those of
(6].

ITI. DEVELOPMENT

The great appeal of the asymptotic fidelity
criterion employed is that it allows appeal to
central 1imit theorem results. We first need the
following lemma, which is the analog to Lemma 1
of [6]:
Lemma 1: If {Ni; i=1,2,...} and {Si; i=1,2,...}
are g-acceptable and independent processes, then
the process NI’SI’NZ 52, .. is 8-acceptable.

Proof: We may repeat the first part of the proof
of Lemma 1 of [6] to obtain

)E{Iglhj} - Elg JEGhy)|

< 1 J U fRggry (k) - [dry [Bdry(3)) dFg(ks) |
+ | [ [sary [R;dF(5)dFg(k, )

- [[[f b seFydFy () dFgaFg(3) 1
where we employ the notation of [6]. Application

of Lemma 1.2_of [9] together with the fact that
|w] <1 and Ihjl <1 a.s. then shows that first

summand on the right side of the inequality can be
upper bounded by 4ui, where {“i; i=1,2,...} is an

In a similar

manner the second summand can be upper bounded by
4Bi, where {Bi; i=1,2,...} is an a-representation

for {Si; i=1,2,...}. We therefore obtain

n-representation for {Ni;i=1,2,...).

lE{IEth.} - E{IEI}E{hj}I < 4(a;+8,)

and the desired result follows from the proof of
Lemma 1 of [6]. Q.E.D.

When dependency is present between the two
processes, we can obtain an analogous result to
Lemma 1 if the noise is dependent on a finite
"window" of the signal, such as the signal-
dependent noise induced through reverberation
effects. The extension of Lemma 1 to this signal-

dependent case is given by the following:

Lemma 2: Suppose {Si; i=1,2,...} is &§-acceptable,

and for a fixed nonnegative integer m, N, = G(Xi.Zi)

for i=1,2,... where X; is ofS; "’s1+m)
measurable, G: R a»R is measurable, and

{Zi; i=1,2,...} is &-acceptable and independent of
(555 1=L.2,...) (we Tet s, &5, for icm).

Then Nl’SI’NZ’SZ"" is §-acceptable.

Proof: This follows through an argument identical

to the proof of Lemma 2 of [6]. Q.E.D.
We can thus obtain a useful result:
Theorem 1: Suppose {.i}: R2p+2v»n; i=1,2,...} is a

family of measurable functions where p is a fixed
nonnegative integer. Then under the hypothesis of
Lemma 1 or Lemma 2, we have that {-ﬁ(Ni,Si,...,

Ni+p 1+p),l =1,2,...} is &-acceptable.

Proof: This follows as a consequence of Lemma 1,
_emma 2, and a straightforward modification of
Proposition 7 of [5]. Q.E.D.

We can now obtain the result which will allow
employment of the Pitman-Noether Theorem [8].

Theorem 2: Suppose enc R with en-’O, and g ¢ 4.

Let Tn‘e = Tg//ﬁ under H, with parameter o , where

the noise and signal processes satisfy the
hypothesis of Lemma 1 or Lemma 2. If

2 A 2
%0 - E{(Tn,e_ E{Tn,e})

Tn,e - E{Tn,e} £
—_—

o]

}, then

N(0,1).
n,o
Proof: Letting Tn 0 =T //' under HO it follows
from condition (f) that 11m oﬁ 0° (g) > 0,

n-—+o

. 2
and hence, 1im no = o,
n,0
n->o

Theorem 1.4 of [9] and Theorem 1 that

/nT

¢
-::—349 < N(0,1), and therefore
" 9%,0

We thus obtain from

[#
n O/On 0 fl N(0,1). We also have from Lemma 1.3
of (9] and Theorem 1 that

E{(Tn,e- E[Tn’e}- Tn,O) }2

< E{(g(Np¥0, S ) -g(N )%

+2[(4+GE{(g(N1+ensl)_g(Nl))2+5}) .§1 Y?/(2+5)]‘:~
‘:

+|E{g(N +0, S},

where 7§ y?/(2+6)

i=1
a-representation for the s-acceptable process

< = and {Yi; i=1,2,...} is an




{Q(Ni+0n5i)-g(Ni); i=1,2,...}. Using a result
from {10], we conclude from assumptions (c)-(c')

2 .
and (d) that E{(Tn,e'E{Tn,e}'Tn,O) }+ 0, which
yields the desired result from [7, p. 25]. Q.E.D.
We can now obtain the main result:

Theorem 3: Suppose that the hypothesis of Lemma 1
or Lemma 2 is satisfied, and g ¢ %. Then g is
optimal (in the sense of the ARE) if and only if g
satisfies (up to a scale factor)

(A) jzl I[fj(x.y)*-fj(y,x)]g(y)dy-+f'(x)

= -f(x)g(x)
if {Ni1?=1 and {S].}o;=1 are independent and
E{S;} # 0, or
(8) 5 JUF060) + F5ly0 Jaly)dy + F(x)

j=1

= -f(x)g(x)
if {Ni; i=1,2,...} and {Si; i=1,2,...} are
independent and E{Sl} = 0, where fj(-,-) is the
joint density of N1 and Nj+1’ and f is the
univariate density of Nl’ or

(c) Zlf[fj(x,y)+fj(y,X)]9(y)dy+ fy 2 F(x,y)dy

[T

-f(x)a(x),

if .[fyg(x) 2 f(x.y)dxdy # 0, or

(o) 1 f[fj(X.y) +f5(ysx)1g(y)dy
i1

- 2
+ Jyza—ag F(x,y)dy = -F(x)g(x),

if ”’.YQ(X) 3_3)(_ f(x,y)dxdy = O, where f(+,) is
the joint density of N; and S,.

Proof: In view of Theorem 2, the proof of
Theorem 3 of [6] may be repeated. Q.E.D.

Because of the assumption of the existence of a
signal density, the above results do not directly
apply for the case of a constant signal. However
a similar modification of the methods of (4,5]
may be employed to show that the appropriate
condition for the nonlinearity g in the constant
signal case is given by equation (A) of Theorem 3,
Thus as in (6] we note that if the signal and
noise are independent, the optimal nonlinearity
for the case of a random signal with nonzero mean
is the same as that for the constant signal case.

As in {4-6], the above integral equations are of
nonstandard form, If we note that each of the

equations is of form

Theorem 4:

L ety Tetay st = -stasto,

then, as in [4-6], we might wish to approximate
the nonlinearity g by nonlinearities In which are

solutions to the equations
m
L T8+t T g n)ay + hx) = ~Flx)gy00).

In this case we would then hope that the
convergence in some appropriate sense of the In

would lead to an optimal nonlinearity. This
question is answered in the following:

Under the hypothesis of Lemma 1 or
Lemma 2, if there exists a g ¢¥ such that a

subsequence {gmk}:;l of {g }_, satisfies

gmk(Nl)-g(Nl)<*0 in L2+61’ then g is optimal.
Proof: We may repeat the first part of the proof

of Proposition 3 of [5], and conclude that it is
sufficient to show

m
k ~

r ]

, J}If-(X-y)+f-(y.X)Jg(y)3g(X)dxdy +0
j=m, +1 J J

as k»=, where 39 is an arbitrary zero mean
2+8

variation satisfying E{|8g(N,)| 1} < =, where
61 >&. Application of Lemma 1.3 of [9] to the

second summand above shows that it can be upper
bounded by

B2(c e, +ET] 3 o (28) L g,
AP 3
J—mk+1

where C1 = E{lg(N1)12+6} < o and

¢, = E(ISg(N1)|2+G} < o, Moreover, a similar

application together with the Schwarz inequality
shows that the first summand can be upper bounded

by
F— o §,/[(2+6;)(14€)]
[4+2(D,+D,+/D0 )]1/(1+€) 1 1
17927 "1 Y2 jzl o

26l E(Lgy (Ny)-a(My)]

- E([3g(N,)] 2ye12

for any e >0, where

248,
D, E{|9mk("1)‘9(N1)| b <

~ 2+6
ECI39N) T 1) <.

D,
Choosing ¢ small enough so that
8,/L(2+81)(14€)] > 6/(245),




we obtain the desired result. Q.E.D.

Note the conditions on the optimal nonlinearity g
and the u-representation are exceedingly mild.
For example, these results hold if

E(Ta(Ny*es) 1% < for al1 6 € [0,8,],

) a3/3 < =, and the subsequence of Theorem 4
i=1

converges in Ly. We remark finally that the
nonlinearities g, are obtainable through standard

Hilbert-Schmidt techniques as solutions of
Fredholm integral equations of the second kind.

IV. CONCLUSION

We have considered the design of the optimal
detector for signal detection in corrupting noise,
where both the signal and noise may be chosen from
a large class of strong mixing processes and may
be dependent on each other. We have seen that
this design reduces to the solution of an integral
equation in which knowledge of only the second-
order statistics of the random processes involved
is required. In particular, if the signal is
independent of the noise and has nonzero mean,

the optimal detector is the same as in the
constant known signal case.
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