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SOME RESULTS ON ASYMPTOTIC MEMORYLESS DETECTION IN STRONG MIXING NOISE

D. R. Halverson G. L. Wise
Department of Electrical Engineering Department of Electrical Engineering

Texas A &M University University of Texas at Austin
College Station, Texas 77843 Austin, Texas 78712

Abstract

In this work we consider the discrete time detection of strong mixing signals in
strong mixing noise, and we allow a large degree of dependency to exist between
the signal and the noise. We investigate the memoryless detector which is
optimum in the sense of the asymptotic relative efficiency. It is shown that
the design of this detector reduces to the solution of an integral equation in
which knowledge of only the second-order statistics of the random processes
involved is required.

I. INTRODUCTION than what we might expect as the most natural

The detection of signals in corrupting noise has consequence of our intuition. In this paper we

been an area of interest for some time. Because will model the signal and noise in a way which is
of modern high speed sampling, it is expected that in many ways much more consistent with our
the underlying random processes involved will not intuition. This wi,1 be achieved through the
be "white", but will instead possess dependency to employment of strong mixing processes to model the
a certain degree. Neyman-Pearson optimal signal and noise. The class of strong mixing
techniques [1] are tractable only in cases where processes is more general than that of 0-mixing

the appropriate multivariate distributions are processes, and because of ties to the maximal
known. In many non-Gaussian situations these correlation coefficient the validity of a strong

distributions are not known, which has thus led to mixing model is easier to check. We therefore
the choice of an alternate fidelity criterion, will consider the general situation where we are
commonly the asymptotic relative efficiency (ARE) detecting the presence of a strong mixing signal

criterion, which is especially appropriate in the in strong mixing noise.

weak signal and large sample situation. Because II. PRELIMINARIES
continuous time detection is often intractable in Let {X i=1,2,...} be a strictly stationary
the non-Gaussian case, current efforts are
directed toward discrete time detection. Results sequence of random variables. For a<b, define
in this area have been obtained recently by Poor M(a,b) = o{XaXa+I - . Xb }, the a-algebra
and Thomas [2,3] for the case of memoryless
detection of a known constant signal in additive generated by the indicated random variables, where
m-dependent noise; we have shown [4,5] how these a and b may take on extended real values. Then
results may be extended to a large class of IXi; i=1,2,.... is symmetrically i if there
p-mixing noises. Because an assumption of a exists a nonnegative sequence {0i; i=1,2,...} with
constant signal is in many cases overly
restrictive, we have also considered [6] the case 'I .0 such that for each k, 1<k<-, and for each
where both the signal and noise may be modeled as i>1, E1 *M(1,k) and E2 E M(k+i,-) together imply
@-mixing processes, where a large degree of
dependency may also occur between the signal and IP(E1 nE 2 )-P(EI)P(E2 )I < 0i min {P(El),P(E2)).
noise. All of these results have the advantage of
requiring only second-order statistical knowledge In [4-6] the above type of process is employed.
of the random processes involved. Note that the left side of the above inequality
The employment of the 4-mixing models of [4-6] is provides a measure of dependence between events E

motivated by an expectation that dependency and E2, and the right side bounds this quantity
between samples gradually "decreases" as the with a term involving E, and E2. Such a definition
samples are more widely separated in time, and the has computational advantages; for example, it
formal definition of a 0-mixing process is results in the very powerful Lemma 1 of [7, p.170].
consistent with such a property. The class of However, it is a stronger requirement than our
4-mixing processes employed may be seen to be Howeier, it dmantro n e e really th o
quite general, however as described in the next intuition might demand. Since we really wish to
section, the formal definition is more restrictive simply require a "decrease" in dependency as
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and E2 are more widely separated in time, it is prime concern.

thus more natural to employ the weaker requirement We will restrict the class 1 of nonlinearities g
that there exists a nonnegative sequence to include those measurable real valued functions
{(Ai; i=1,2,...} with ci -0 such that for all EI  for which we can find e1>0 and 6 1>6 such that

and E2 as above we have the random variable g(N1+as,) satisfies

IP(E 1nE 2)-P(E 1 )P(E2 )1 <i" E{g(N I+eSI ) 2+ 61} < - for all a [0,e1 ], and such

that the following mild regularity conditions hold,
A process satisfying this condition is called where .) denotes expectation computed under H
strong mixing. We will consider the detection of E(
a strong mixing signal {S.; i=1,2,...}, where with parameter 8 (by proper choice of the

2 threshold, we assume without loss of generality0 < E{S P < -, in additive strong mixing noise that the random variables g(Ni) are zero mean):

{Ni; i=1,2 .... }, where we observe realizations

{yi; i=1,2,... ,n} of the process {Yi;i=1,2,...,n. (a) fgx)f'(x)dx / 0

In order to apply the ARE fidelity criterion, this if the signal and noise processes are independent;
will amount to a choice between the two hypotheses _ L E {T (Y)} 10=2
HO: Yi = N i ;  i=1,2 .....n (b) lim 1 " 6= n (g) >  0

H1: Yi =N
i +OS i ; i=1,2,...,n n- nEo{[TgCy)] 2

where 0 is a parameter which will be allowed to if ffyg(x) -L- f(x,y)dxdy 0, or
approach zero at the proper rate, thus yielding ax
the asymptotic limit. Throughout the discussion 2 2
we will assume that both the noise and signal[ E8 {Tg(Y)1fe=o]processes possess (possibly different) (b _g >__ 0_______ A
c-representations which satisfy (b ) lim 2 > 0n-*o nEo{[Tg(y)]2}

Cei 6/(2+6) 
0

i ( )if fyg(x) x f(x,y)dxdy = 0;

for some appropriate 6>0. Such a strong mixing -L }le(kl/aprocess will be called 6-acceptable. For (c) 1 1)} 6= EI(Nre I

convenience we assume the existence of densities n - 1
f.(-,.) of Nk and Nk+j, f(.) of N1 , f(-,.) of Nk :_= Eag(N +OS

and Sk' where the latter is assumed to be ae g 1+ 0) =0 <

iiopendent of k. We also assume for some constant k >0

A n _1
K r Lfj(x,y) + fj(y,x)]/Vf(x)f(y) if yg(x) f(x,y)dxdy # 0, or

j=1a
is square integrable for all n, and that f(.) is a2
strictly positive on the real line. We assume in (c') - lim E{g(N1+s) H
addition that n- ae72  +1 1 =k2/n

2
fy2 _--2 f(x,y)dy/,f(x 2 + 2

ax 2E{g(NI+0SI)}1=0 <

and

fy - f(x,y)dy/VST for some constant k2 > 0

are square integrable. Note that if the signal if ffyg(x) -Lx f(x,y)dxdy = 0;
and noise are independent, the latter condition xro
is equivalent to the assumption of finite Fisher's 2+6 { 2+6 -
information number contained in 12,3] and [4,5]. (d) lim E{g(N1 +eSI) = E;g(N-)}
We also assume that a 0

lim f(x-ey,y)dy = f(x). (e) f- ffg(x)f(x-eyy)dxdye=0  __0 0

As in [2-6], we will optimize over the class of i -
optimal memoryless detectors designed under a = Do g(x)f(x-Oy,y)ja=O dxdy
"white noise" assumption, i.e. where a test

n I if ffyg(x) a f(x,y)dxdy # 0, or ..Coe
statistic Tg(y) = Z g(y1

) is compared to a Lity Codes
i=1 1 . nd/or

threshold. Specifying g will therefore be of Dist ;-pecial
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S32 Lemma 2: Suppose {Si; i=1,2,...} is 6-acceptable,
(e') -2 f0g(x)f(x-0yy)dxdY and for a fixed nonnegative integer m, i =G(Xi zi)

2 for i=1,2,... where Xi is o{Si. m ..... i+m }

ffy 2  x-Oy'Y) o dmeasurable, G: R2 IR is measurable, and

if ffyg(x) -L f(x,y)dxdy =O; {Zi; i=1,2 .... } is 6-acceptable and independent of
aSI  i=1,2 .... } (we let Sim  : SI for i <m).

2 A 2 Then N1,S1,N2S2, is 6-acceptable.
(f) oo(g) = E{g(N I) }+2 E{g(NI)g(Nj+I)} > 0. 2  '"2 .

j=1 Proof: This follows through an argument identical
to the proof of Lemma 2 of [6]. Q.E.D.

Properties (a)-(c') are assumptions conventionally W c th us obtaina usef result:

imposed for application of the Pitman-Noether We .
theorem [8], whereas (d)-(e') are exceedingly mild Theorem 1: Suppose {.?: R2 +2 *R ;i=1,2,...} is a
restrictions. For a large class of processes,
including all of the examples of [3], property (f) family of measurable functions where p is a fixed
is satisfied and may therefore be ignored. Note nonnegative integer. Then under the hypothesis of
that these assumptions are the analog to those of Lemma 1 or Lemma 2, we have that {.(Ni,S .....
[6]. Ni+pSi+p); i=1,2.... I is 6-acceptable.

III. DEVELOPMENT Proof: This follows as a consequence of Lemma 1,

The great appeal of the asymptotic fidelity lemma 2, and a straightforward modification of
criterion employed is that it allows appeal to Proposition 7 of [5]. Q.E.D.
central limit theorem results. We first need the We can now obtain the result which will allow
following lemma, which is the analog to Lemma 1 employment of the Pitman-Noether Theorem [8].
of [6]: of [6:Term2:Spoe0 with an O , and g e W.
Lemma 1: If (Ni; i=1,2,...} and (Si; i=1,2,...} Theorem 2: Suppose w n
are 6-acceptable and independent processes, then Let Tn,e = Tg/v'n under HI with parameter n where
the process N1,S1 ,N2,S2, ... is 6-acceptable. the noise and signal processes satisfy the

Proof: We may repeat the first part of the proof hypothesis of Lemma 1 or Lemma 2. If
of Lemma I of [6] to obtain a2 E T 1)21, then

E{IEl hj) - E{IE E{h}I n, 0 , nO

IT-no 
E{Tno} -- N(O,1).

I [{ f jdFn(k,j)f dFN f jdFN(J) dFs(k,j)I an,o
Proof: Letting Tn, O = T / under H0 it follows

+ N dFS(kj) from condition (f) that lim a 2 2(g)

fI-ff hdF dF (j)dF dFs(j) 12 
n

- 'N S and hence, lim no ='. We thus obtain from

where we employ the notation of [6]. Application n -

of Lemma 1.2 of [91 together with the fact that Theorem 1.4 of [91 and Theorem 1 that
Ij<i1 and 1h <1 a.s. then shows that first

summand on the right side of the inequality can be N(O,1), and therefore
upper bounded by 4ai, where {ai; i=1,2 .... 1 is an Vn,O
a-representation for {Ni;i=1,2,. ... In a similar

manner the second summand can be upper bounded by Tno/n an NOhe 1 thal
4Bi , where {a; i=1,2,...} is an a-representation of [9] and Theorem 1 that

for (Si; i=1,2 .... }. We therefore obtain E[(Tn, ET n,O -T n , )2

IE{IE hj}-E{IE 1}Efh}I < 4(ai+B. )  < E{(g(NI+onS1)-g(NI))2)i

and the desired result follows from the proof of 2+6 6/"2+6i
Lemma 1 of [6]. Q.E.D. +2[(4+6E{(g(N1 +0nS l)-g(N1 )) 1) Yii=1
When dependency is present between the two
processes, we can obtain an analogous result to + IE1g(N1+OnS1 )}I
Lemma 1 if the noise is dependent on a finite
"window" of the signal, such as the signal- 61(2+6)
dependent noise induced through reverberation where / and yi; i=1,2,.. . is an
effects. The extension of Lemma I to this signal- i=1
dependent case is given by the following: ct-representation for the 6-acceptable process



{g(Ni+0 Si)-g(N); ii=1,2,...}. Using a result

from [101, we conclude from assumptions (c)-(c') j1 [fj(xy)+fj(y,x)]g(y)dy+h(x) 
= -f(x)g(x),

and (d) that E{(T n,-E{T n,}-Tno ) 2 - 0 , which then, as in [4-6], we might wish to approximate

yields the desired result from [7, p.25]. Q.E.D. the nonlinearity g by nonlinearities gm which are

We can now obtain the main result: solutions to the equations

Theorem 3: Suppose that the hypothesis of Lemma 1 m
or Lemma 2 is satisfied, and g 1 &. Then g is I f[f.(x,y)+f.(y,x)]gm(y)dy+h(x) = -f(x)g (x).
optimal (in the sense of the ARE) if and only if g j 13 3 m
satisfies (up to a scale factor) In this case we would then hope that the

(A) j f[fj(x,y) +fj(y,x)]g(y)dy+ f'(x) convergence in some appropriate sense of the

"=1 would lead to an optimal nonlinearity. This
question is answered in the following:

= -f(x)g(x) Theorem 4: Under the hypothesis of Lemma 1 or

if {Ni=I and {S~ i7i are independent and Lemma 2, if there exists a g egsuch that aE{S 1} a , or 
subsequence {gmk} = I of {g satisfies

(B) I  [f.(x,y)+fj(y,x)]g(y)dy+f"(x) gmk(1)-(N) in 12+61, then g is optimal.

Proof: We may repeat the first part of the proof
= -f(x)g(x) of Proposition 3 of [51, and conclude that it is

sufficient to show

if {Ni; i=1,2 .... } and {Si; i=1,2 .... ) are mk

independent and E{S I } = 0, where fj(.,.) is the "  ffrfj(x,y)+fj(y,x)][gm (y)-g(y)J g(x)dxdy

joint density of N1 and j and f is the 3=

univariate density of N1 , or + ff[fJ(xy)+f.(yx)Jg(y) g(x)dxdy - 0

(C) f[f (x,y)+fj(y,x)lg(y)dy+ fy -f~x,y)dy
j(C 1 f f x as k-, where 6g is an arbitrary zero mean

= -f(x)g(x), variation satisfying E{16g(N1 )I 2+61 } < -, where

fl 2x 61>6. Application of Lemma 1.3 of (9] to the
iayg(x) fx ysecond summand above shows that it can be upper

bounded by

(D) j [fj(x,y) +f.(y,x)]g(y)dy [4+2(C1+C2+C 1c)] a6/(2+6) 09

+ jy 2  2  f(x,y)dy = -f(x)g(x), 
J=m k +1

x 2  where C 1 = E{Jg(NJ)l 2+ 6} < - and

= Ef 10012+6 1<- oevr iia
if Ifyg(x) axf(x,y)dxdy = 0, where f(.,.) is C2 = E{j~g(N1 )I < =. Moreover, a similar

the joint density of N, and S1 . application together with the Schwarz inequality

Proof: In view of Theorem 2, the proof of shows that the first summand can be upper bounded

Theorem 3 of [61 may be repeated. Q.E.D. by

Because of the assumption of the existence of a [4 +2 (0 1+02+5 102 )11'(+ a j
signal density, the above results do not directly j=l
apply for the case of a constant signal. However 2ce2 2c'2
a similar modification of the methods of [4,51 .E{Lg(N1)]2

/ E{[g (N1 )-g(N 1 )]
may be employed to show that the appropriate mk
condition for the nonlinearity g in the constant for any c 0, where
signal case is given by equation (A) of Theorem 3. 2+6
Thus as in [6] we note that if the signal and D m( I  2+6l
noise are independent, the optimal nonlinearity 1 = E{I )-g(N1 )l I<

for the case of a random signal with nonzero mean 2+61is the same as that for the constant signal case. D2 = E{6g(NI)I 1< .

As in [4-61, the above integral equations are of
nonstandard form. If we note that each of the Choosing £ small enough so that
equations is of form 61/[(2+61)(1+c)1 > 61(2+6),

I4- I II
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