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ASYMPTOTIC TECHNIQUES IN IGNITION THEORY

Final Report for Grant DAERO 79-G-0007

by Manuel Kindelén
Amable Lifdn
E.T.S.I.Aeronduticos

Universidad Politécnica
de Madrid.

A3STRACT

An analysis is given in Part I for the ignition of a

reactive material by an electrical wire heated at constant power.

The wire temperature histcry Iis described for small and large
values of the electrical heating rate and for solid and gzasecus
reactants; in the case of gaseous reactants the effects ¢cf con-

vection have also been taken into account. The results of the
analysis include clecsed form expressionsfor the ignition time

in terms of the physicochemical parameters.

An analysis is given in Part II of the process of ig-
nition of reacting particles in a shock tube. An analysis for
large activation energy of the ignition reaction shows that for
values of the particle diameter smaller than a critical value,
ignition does not take place; the ignition +time is calculated

for diameters larger than the critical.

Analysis of ignition by hot catalytic surfaces and by
inert hot spots, and of Lewis number effects on the structure
and extinction of diffusion flames due to strain, carried out

under this Grant are being published elsewhere.
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INTRODUCTION

This report describes the results of applying the
technique of large activation energy asymptotics, to several
ignition problems of practical interest. This technique,
which has been extremely useful in studying many problems in
combusticn, makes possible the derivation of closed form an-
alytical solutions for the ignition time or other properties
of interest, although the original equations describing the
problem are complica*ed non-linear, partial differential
equations.

The first part of this report studies *the ignition
process of a reactive material when an imbedded elect;ic wire
is heated by an electric current of constant power. The wire
heats up the surrounding reactive material by conduction,
until the exothermic reaction leads to a thermal runaway at
a finite ignition time. Since the heat conductivity of the
wire is often very large compared to that of the reactive
medium, the wire temperature iIs assumed to be uniform. The
character of the process is then determined by the ratio of
the specific heats per unit volume of the reactive material
and of the heating wires; when this ratio is of order unity,
the radius of the heated regicn in the reactive material
during the ignition transient is of the order of the wire
radius, while if the ratio is small, the radius of the heated

region becomes large compared with the wire radius. In the
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first case, the chemical heat release is confined to a thin

layer adjacent to the wire surface, and it can be calculated
in terms of the wire temperature and the heat loss to the
surrounding material where the chemical reaction is frozen;
the surface temperature and the ignition time are given by
the solution of an ordinary differential equation, involving
a single parameter. In the second case, which is typical when ig-
niting reacting gases, the characteristic thickness of the
reaction region is of the order of the particle radius, and
the radius of the heated region is large; therefore forced
or free convection effects can be iImportant and have to be
ratained when analycing the outer frozen zone of the reactive
mediuam.

The second part of this report studies the process

ot

of igniting reacting particles in a shock tube. The parti
cles, which are located in a holder in the shock tube, are
dragged, accelerated, and heated by a shock wave. The wave
is reflected at the end c¢f the tube, so that when it encoun-

ters again the particles, these are decelerated and further

heated by the gas behind the reflected shock. In this report j

we analyze motion and heat transport to the particles as a

function of the parameters of the shock wave, ;nd we appliy

the method of large activation energy asymptotics to study ;
the ignition process. There Is a critical value of the diam-

eter of the particles such that for D<D igniticn does not

crit




occur due to rapid heat transfer from the particle. For D>DC

< 4+~
rit

there is a runaway of surface temperature at a finite ignition
time. Figures are provided to compute the ignition time as a
function of the parameters of the problem.

An analysis has been carried out under this Grant of

the Ignition by a hot catalytic surface, taking into account the

th

[

effect of a nonzerc rate for a catalytic consumption of fuel at

e
uat

on

(P8

the plate surface. The analysis leads to an integral e

e
u

that describes the evolution of the fuel mass fraction at the
surface. A note with the tittle "Ignition by a Hot Catalvtic
Surface" summarizing this work was written by A. Lifi&dn and

v

n

ot

Torman A.Williams of

®

University of California, San Diego.

w
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It will appear In . of Applied Mathemeatics. :

t
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We have also studied during the term of <this co ct,

s
ot
22

the process of ignition of a reactive material by an ine cT
spot. The result of this research was presented at the 7th Col-
loquium on Gasdynamic of Explosions and Reactive Systems in
Gotingen, August 20-24, and will appear in the Series Progress
in Aeronautics and Astronautics.

Finally, an analysis of the "Lewis number effects on
the structure and extinction of diffusion flames due to strain"
was presented by A. Li%&8n at the International Conference on the

Role of Coherent Structures on Modelling of Turbulence and Mixing,

held at the IBM Scientific Center, Universidad Autdnoma de Ma-

drid, July 25-27, 1980. The Proceedings will appear in the Lec-

ture Notes on Physics, Springer.
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IGNITION OF A REACTIVE MATERIAL BY AN ELECTRICAL WIRE

Part I of the Final Technical Repbrt
for Grant DAERO 79-G-0007

by Manuel Kindelén
Amable Lifi&n
E.T.S.I.Aeron8uticos

Universidad Politécnica
de Madrid.

ABSTRACT

An analysis is given for the ignition of a re-
active material by an electrical wire heated at constant
power. The wire temperature history is described for small
and large values of the electrical heating rate and for
solid and gaseous reactants; in the case of gaseous re-
actants the effects of convection have also been taken
into account. The results of the analysis include closed
form expression'fo; the ignition time in terms of the

physicochemical parameters.
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1. INTRODUCTION

Ignition of exothermic materials by hot wires has
. . . 1,2 .
been extensively studied both theoretically and experimen-
3,4 . . . .y .
tally, in order to- improve the design of squibs and deto-
nators.

Large activation energy asvmptotics have been very
useful iIn describing thermal ignition with different types of
heating mechanisms. These methods are used In the present re-
port to analyze hot wire ignition for different values of the
parameters of the problem, including the cases of gaseous and
condensed exothermic material.

Previous theoretical analyses of ignition of solid

. . . : . - L .
materials by wire heating, include the studies of Altman and

th

ky

ixed

Q

. . L
Grant and Kabik et al. , who used the concert o

o
18]
|

3
=
'3

menta esults.

=

nition temperature to correlate their exper

-

Friedman1 carried out a theoretical analysis based
on the more fundamental kinetic parameters of activation en-
ergy and frequency factor, rather than the more ill-defined
ignition temperature. The ignition criterion used minimizes
the sum of the time to reach temperature T bv the inert solu-
tion and the explosion time at temperature T. An explicit ex-
pression for the ignition time is derived from a simple ap-
proximate expression of the inert temperature. This sclution

is in good agreement with the results of numerical integra-

tions.
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imbedded in a reactive material, is heated by circulating an
electric current of constant power through it. The thermal
conductivity of the wire is considered to be large compared
to the conductivity of the reactive material, and therefore
its temperature is uniform throughout the process.

A distributed, zero order, exothermic reaction of
the Arrhenius type takes place in the reactive materieal and
rroduces ignition at a finite ignition time.

Assuming constant values for the density p, specific
heat ¢, and heat conductivity k, the energy conservation equa-
tion in the reactive material becomes

32

D
[o¥]
<D
QL
[¢3)

A exp{-B8'/(8+1)} +

s (1)

+

>}

[oB]

]
[
LA
QA
'3
Q_‘A
+

where all symbols are defined in the nomenclature. The tem-
perature increment 8 1s measured with respect to the iInitial
temperature To’ the space coordinate r with respect to the
wire radius R, and the time variable t, with respect to the
characteristic heat conduction time (Rz/ae).

The boundary and initial conditions are

6(t,®) =6(0,r) =0 (2)
a6
- s 96
§ = T - 2€ 3% (3)

where the second equation represents a balance between elec-
tric energy input, heat absorbed by the wire and heat con-

ducted to the reactive material. The parametcr




2 (pc)e
§ =g (627 (4)

e o

B R

is a ratio between the characteristic heat conduction time
and the characteristic heat up time of the wire, and the pa-
rameter

(pe)

€ = e (5)

ZOCSi
is the ratio between the volumetric heat capacity of the re-
active material and that of the wire.

Equations (1)-(3) have to be solved in corder %o ob-
tain the temperature history and the ignition time as a func-
tion of the four parameters A, B', 8§ and €. The forn 55 the
solution depends on the relative magnitude of these parame-
ters. We first analyze in Section 3 the inert solution for
different values of § and &, and in Section 4, we use this
inert solution to analyze ignition in the limit of high ac-
tivation energy.

Notice that € is of order unity for ignition of
solids and liquids by metal wires, while €<<1 for ignition
of reacting gases. The value of § depends on the power of the
ignition source and the wire radius; § becomes small for thin

wires.

3. INERT SOLUTION

In this section we analyze the process of heating




a material by supplying a constant rate of thermal energy in-
put through a wire of infinite length and large conductivity
imbedded in the material.

This process is described by equations (1)-(2) with
A=0. The _solution5 can be obtained by means of the Laplace

transform technique, for instance, andé it may be written as

0 = =— 5 Edu (6)

24 Jw 1-exp(-u2t) Z i
T u

with

Z=J0(ru)IuYo(u)-2€Y1(u)[—Yo(ru)[uJo(u)-EeJl(u)| (7)
Az]ud (w)-2ed, (u) ] 2+ ]uy (w)-2ev,. (w)]? (8)
o 1 ) 1
In particular, the surface temperature is given by

8 du (%)

_ 88e Jm 1—exp(-u2t)

s TT2 u3A

which for small and large times results respectively in i

o =60t -25 320 (10)
3vm
_ 8 1 4 i
es-’@-(lnut—Y+:E+...) (11) ;
where Y is Euler constant, Y=0.5772. Figure (1) shows =xhe

value of (uees/'d) for different values of €.
This inert solution is valid up to the time in
which the surface temperature increment is such that the re-

action term becomes of the order of the heat transport

i



terms. When that temperature increment is reached, an igni-
tion stage follows in which small temperature incremen*ts of
order (B"l) produce changes of order unity in the reaction
rate.

The inert surface temperature increment required *o
start the ignition stage, is generally of the order oI the

initial temperature, and therefore in this secticn we analyze

o]}

.

$-2e

b

the inert solution for times such that es is of order un
In the following paragraphs we study the inert soclution for
different asymptotic values of § and €, and in each case we
obtain the characteristic times necessary to develcp *empera-

ture increments of the order of the initial temperature.

a) 6=0(1), e=0(1)

The surface temperature is given bv (9) and the
heat up time is of the order of the heat diffusion time,
t=0(1). Figure 1 may be used to compute es as a function of

§ and €.

b) 6=0(1), e<<1

In this case the surface temperszture is given o
first order by Gs=t6 and therefore t=0(1). The temperature
profile in the reactive material is given by the solution of
the heat conduction equation with specified surface tempera-

ture.

c) 8§=0(1), €>>1

In this case t>>1, and the solution to equation

F .



profile is given by

S
6 = 5o lnr‘+es .

tive material, q=—(36/3r)s.

which the temperature profile is given by

2

P4

T

face temperature GS, namely

1

exists in all cases in which t>>1; that is,

== S - -
=57 Jo oy exp H(t-t')

Matching this solution for small values of

flux from the wire to the reactive material

(1) is obtained by matching a quasi-steady solution close to the wire,

to an unsteady solution far from it. This type cf solution

when the heat con-

duction region is large compared to the wire radius.
In the quasi-steady region, in which the time deri-

vative term of equation (1) is negiigible, the temperature

(12)

where g is the rate of heat loss from the wire to the reac-

Far frcm the wire, there is an unsteady region In

) at! (13)

to the guasi-

steady solution, provides a relationship between the heat

g, and the sur-

s L t!

Eq. (14) would be used together with

de
—S-s5_-&84
dt T

t 1 -
) :ﬁ%-(lnut-Y) +——-J a(t-t-9(%) 4ov  (44)
Q

(14")

and 65(0)=0, to calculate the wire temperature history, when-




q is small, so that ignition occurs at large times.
The last term in Eq. (14) is negligible if the re-

lative changes in q are small compared with unity; then es(t)

is given by

des be es
T ¢ TmEry (15)

In the case considered here, 3=0(1), €>>1, the
power supplied to the wire is mostly used in heating the re-
active material; the term des/dt is negligible in Eg. (14'),

so that q is approximately constant, g=78/e, and

_ ¢
6s T ¥e

(1n vt-Y) . (186)

The characteristic heat up time is of the order of (exp(e)).

d) 6>>19 €=O(1)

In this case there is a quasi-similaritr solu-

tion
T3/2
g = relcn) + Gz(n) oo (17)
where
T=td , n =2zl (18)
¥t i
8,(n) =ui%erfe(n) (19)
! 2
, ez(n)=(3-ue)iaerfc(n)+2(n erfcn- E‘Bi:_”__)_)

v

| Therefore, the surface temperature is given by Eq. (10) and

the characteristic heat up time is of order (6”1,
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e) §>>1, €=0(3)

Taking the limit e+® in Eq. (9), the surface tem-
perature simplifies to

°° 2
26 | l1-exp(-u't)

3 = 5 du (21)
e ‘o u lJl(u)“+Y1(u) |

The surface temperature in this case may be ob-

Tainea

s given as a

b

, where +the wvalue 4 ¢ 65/5

'h
by

[y

rom figure
function of €. The characteristic heat up time is of the or-

der of the heat conduction time, t=0(1).

arly obtained by matching a guzssi-steady reglcn o

s sinmi

b

an unsteady region far from the wire. Since §<<i and £=0(1)
- (=1

all the energy suppiied by the wire iIis used tc heat the re-

1

active material, and therefcre g=const. Thean Egs. (Z4%) and
(14') simplify again to Za. (1€). The characteristic heat up

time is of order (exp(S'l)).

g) 8<<i, €=0(81lnd )<<

As in the previous case, 1t i3 necessary to walt

times lcng compared to the characteristic heat coaduction

time, in order to develop temperature Increments >f the order
of the initial temperature. Therefore, the surface tempera-
ture history Is ob%tainad >v matching a guasi-s=teady region
in which the temperature profile Is given by Eq. (12) to an




unsteady regionn described by Eq. (13); the wire temperature

is given by Egqs. (14) and (14'), However, in this case, the

values of § and € are such that the energy used to heat up

the wire is of the same order than the energy used to heat up

the reactive material, and therefore all three terms in the
surface energy balance given by Egq. (3), or Egq.
to he retained.

Because we have to wait times of order 1/§

To have increments of order unity,

=

term in = (2u) is small, of order -1/1nd, reilative *to the

fjal
.

remaining terms, and thus g is given to leading order by

q=L+Wes/lnt R (22)
and 85 is given by Eq. (15), which using the definitions
T=1t38 PN = (23)
> §in ¢
simplifies to
des
7?r+-l93 =1 3 (2+)
therefore
6= A" (1-exp(-A8%)) . (25)

s

. . . . . -1
The characteristic heat up time t is of order (& 7).

h) 8<<1, e=0(8§)<<1

This case can be considered a particular case o
the previous one when A<<i so that in first approximation al

the thermal energy supp.ied through the wire is used to heat

£

N




up the wire, and Gs=6t; when two terms are retained in an ex-
pansion of Eq. (25) for small A, the surface temperature is

given Dy

8 =<St(1+-i-%) : (251)

S

. . . . -1
The characteristic heat up time is of order 3 .

4. IGNITION STAGE

s

In this Section we analyze this ignition stage fc
B'>>1, using asymptotic methods in the limit of high activa-

tion energy B'.

Initiallsy there Iis an Inert stage during which =ze
’ s 5
reacticn term Iin Eq. (1) is negligible, and the 1nert solutlion

analyzed in Section 3 1s valid. After this stage *here follows
an ignition stage in which the temperature c¢f the reactive
material is such that the Arrhenius reaction term becomes of
the same order than the transport terms. Then small tempera-
ture increments of order 1/8' produce changes ¢f crder unity
in the reaction term; the energy released by the exothermic
reaction further increases the temperature of the material
This self-acqelerating process leads to ignition, characteri-
zed by a precipitous rise in temperature at a finite time.

As discussed in the previous Section there are dif-
ferent cases depending on the relative values of the parame-
ters 6 and . We will carry out detailed analyses of six of

these cases to show the methodology used and to discuss the
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different structures of the solutions. Similar procedures may

be used to calculate the ignition time in other cases.

a) §=0(1), e€=0(1)

In this case the inert temperature of the reac-
tive material increases by a quantity of the order of the
initial temperature for times of the order of the character-
istic heat conducticn time (see Section 3.a). For those times,
t=0(1), the size of the heated region in the reactive mate-

rial is of the order of the wire radius (Figure 2).

[

rom £gq. (1) it is easy to show that the character-

istic ignition temperature O which mekes the rezction term

1’

cf the same crder than the transport terms iIs given Ly
exp{B'/(61+1)}=A/5 . (26)

Introducing this definition and using for convenlence as new
variables

=8t , x=(r-1)v3 . (27)

2 8-6
36 976 1 a0 N 1
_._.:__+_____..__+exp.__._.___“) (28)
9T ax2 /e 9% 91+1 61+‘
a des 2¢ 36
1 S e e el —— . (29)
dt /-S-QX -

In the l1imit of high activation energy, the reaction is fro-

zen for 9<8,, while it goes to infinity for 9>8,. To leading
1 ’ 1

order, the Ignition time is simplv given by T the time at

1 L
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which the inert surface temperature reaches §,. Equation (9)

or Figure (1) may used to compute T, as a function of &, ¢

and © which in turn is related to A and B' through EZguation
1 ] =) q

(26).

For times smaller than T, there is an inert stzge
which is Zollowed by & short transition stage close to Ty
which leads to a runaway of surface temperature.

During the transiticn sztage there is an Inner thin
reaction zone close to the wire where the temperazure differs

- A . . - -1 .
from 2, by a small quantity of order (R 7)), where
1
2
3=R3"/(8, +1)" . (z2)

This region has to be matched with arn outer =Transient-<I77u-

. . e e R
sive zone whose size Is of order (3 3.

{1
[()
th
Ve
M

To analyze the reaction zone let's

and let's expand the inert temperature, 8., for times cicse
-
to T, and for small values of x
3. =8, +d_(T1-1.)+d x +.... 32)
I 1 ( A (
Where the parameters
.881 39-1
< 4
dl':_——“"‘ Qx: pyn (33)
J D
T=T1,x=0 T=T1,x=0

Cry

are obtained from Zquations (3) and (9) as a Sfunction of

14
O
]

and £. Introducing (30)-(32) in the reaction term of Egquat




large values of 8,

(28) and expanding for

it

3

S

observed

-
8

the characteristic variables tc analyze the reaction zone

during the ignition transient are
-0 :(‘ F - —:__ i Q2
fof %y _TS(T Tl) , 3 dx R x
where
3 2/'
g, == .A.H(Bd 72) .
1 x
With these definitions Equations (28) ané (2
2v¥,
2 ~=- exp(o+y-£)
np2 :
]
ay a
o TS _ 3w
T o T 5%
s!s
where a single parameter appears,
Ptz It I T -
ZE CE d—(l. )‘J.
. 1
Figure (3) shows d-/4%€ as a function of T fo
of £.

Equation (3€) has to be sclved wit
conditicn (?7) and with the condition obtain
0 the outer “*ransient-diffusive zone, nanel

. aib

lin = = 0 .

'c:-nn C’E
In<egrating (36€) once, and using (33) yields

Yy =1 -yvi-exp(c+y-%) .
2

Z7aluating +his exprescsiosn at
(37) results in

h

(v

[te]

)

(u0)

-

't

1

at

thHe surface and using Eguaticn




—a e v

dy
P-Eéi: 1 - /1—exp(0+us) . (u41)

Numerical integration of this equation provides the surface

+

temperature history, and in particular the Ignition time as

a function of P, defined here as the time C:gn when the ex-

pression inside the square-root becomes negative. During a

. -1 X . . .
short transient, when O—Gign%B , the time derivative term

which was neglected in Equation (36) should be retained o
describe the thermal runaway at the ignition time.
Figure (4) shows the surface temperature history

-
»

for some values of P, and Tigure (S5) shows the iIgrnition <ime

1

i)

as a function of (logP). These results may be approxihacs

by the eguaticn
c=-1n(1+.58/7)

which exhibits the correct asymptotic behaviour for small and
large P.

Once wS(O) is known from Equaticn (41), Equation
(40) may be integrated to derive the temperature profile and

n particular P(z,®), the apparent increase In wire tempera-

[ N

ture due to the chemical reaction.

(6
~—

§>>1, £=0(1)

In this case, the characteristic inert =iIme for
a temperature Increase of order unity is small, of crder

-1 . . R . .
(8 ), compared to the characteristic heat conducticn time




(see Section 2.d). Thus, the heated region in

L e <-.5 :
matevrial 13 small of corder (3 ), compared t
dius (see Tigure 6).

The analysis of this case parallels that of
previous Sectisn. As before, there Is 3 zTransition 3ta
whose structure is described by & thin reactive-diffus

: . - -1.-.¢
zone close to the wire with size of order (2 78 "7}, w
is matched to cuter transient-<4iffusive zone with si:ze
order (377°37°%),

T'2 eguatlions To solve zre (22Z) =znd (2¢2), wn
simplify for 3 larzge because <hen the convertive =ern
clated to czurvature in Eg. (23), and *he energy spent
heating The rea:tive material in Zq. (28) are negligi:z
may be observed in Figure (6).

Introducing the strezched wvarliables (21) zand
in Eqs. (23) and (22) with

T,=1 d_=1 a‘x=-2v?‘1‘7~7 . (%2

as obtained from Egs. (17)-(19), results in Zags. (3%)
dv_

o0 = Ve (uz

Tntegrating (356) oace z2nd using conditicens (3%) and (4

yields

v,(0,0) =1-Vi-exp(o) (bu
S

zni rtharefnre the ignition time may te Taken =5 Jignze

ot

ct

o

o

3

3
o
[+l

e e

O

ot

[
o]
@

b2y

[WH

[l Foe
O

¥R

O

6}

Y

17

'y
¢l

th

U]

(0]

Ul

2a)




-18-~

8, 1n(288,/m)
“ignT 3 "T85 (3)

where 61 is a function of B, A and § given by Eq. (28)

c) 8<<1, €=0(1), B'=0(S8 )

This condition which corresponds toc case (%)
“he previous Secticn is used tec introduce the analyses of
those cases in wh'ch %, _>>1, and therefore the structure
the soluticn consists of a quasi-steady zone close tc the

wire and an unsteady zone far frow it.

ot
He

Contrary to the previcus cases, the reactio

o]
N
(o]

(W
ot
(0]
ot
o
=
a
3
(0]

is net thin compare

radius. However, since *h

<

jo }
o™

he

unsteacy effects are ornly impcrtant far from the wire, where

1

21}

the temperatures are low and therefore the reaction froze

PY Y

the chemical reaction is confined to a thick guasi-steady re-

action zone.

8= s $=8(8-9_), XK=ABRexp(-r=—] (26
(as+1)2 s (58+1)

where ¢ Iis of order unity In the reaction zone. Thus, Eg.

in the limit of high activation energy simplilifies to

2
3¢+la—'-+}<exp(¢))=0 (u7)
ar2 r dr

which replaces iIn this case the Eq. (36) describing the r

acticn zone structure in the previous case. To sclve *this

)

(
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although the terms 1ln4-Y in the denominator of Eq. (52) are
not always consistent with the order of approximation used.

The boundary condition at the surface (Eq. (3)) results in

_%( s .q), u =X (53)

From (50) and (53) an equation is derived to cdescribe +*he

surface temperature svolution, namely

Viarw)2-2x (5%)

€
"
1

[
i+

or

—
G
|

4e (8 +1)°2
S

8 2 ,
=1- [1— 8 = = -4 B ,exc(--—é——\ (55)
2 2 % 5 1+3 -
- (95+1)“ lnkt-Y (68+1)“ T 7s

This equation describes the surface temperature evcluticn I
all cases in which ignition cccurs for times larze compared
to tne heat conduction time, and therefore the structure of

the heated region in the reactive material is described by

o
e

quasi-stezady reaction zone near the wire, and an unsteady

ion far from I:t.

th
3
o]
3]
0]
o]

»
i

(4]
[s]
™

Iin the particular case 6<<1, €=0(1), B'=O(é_1),
the heat absorbed by the wire is negligible comparad to the
heat supplied to the reactive material, while the chemical
heat release is of order § compared with the ex%ternal heat

input, when the inert reaches a value 91 giveu by

-
‘s

o




™

time necessary

the characteristic igniticn
= =13y . R
of order [exp(3™ %)), namely

[V

the characteristic time in

0

ot
fu
[4,¢}

ct

'R

14
-

Loy, (£7)
=0__+0/8 58)
5 Is ? (
) o
+— 107 (39)
o

activation energy £, of crier
the transizicn
n the chearzacteristiz hea=z uD

bexp(a) (62)

w

‘Ch

£
m

s Equaxti

O

rezcresents & balance betw

i
by the reacticn

The heat+

increment in he2a*t flux to> the ocu

0,

[

the surface *emperature incremen

*he wire,

4b(b-1)

en the heat released

]
ot
o
3

ot
h

o? is constant and balanced by

reglon asscciated to *the surface




The parameter Q is always positive, since b has to

be greater than one in order to have the reaction frozen Ffar

from the wire. In fact, from (49)
¢ =w_lnr+const. (52)

and since u Is assumed to go to zero for r-» in order to

write Eq. (51), it 1is necessary thet in the limit r-o,

w
u=KI‘2eXp(¢))2limKr‘2rm—>O (63)

and therefore w,_<-2. For t large of order t Equations (52)

1’

andéd (57) show that

w
[02]

W, - == == 2b (54)

8
1§
"

W
o]
Q.
ct
o
1]
3
o
th
9]
]
D
t
g
[y

n (6C) describes +the evolution of *he sur-

ct
[N
(O]

[ 23]
ffa)
[

face temperature as a function of T, and the parameters Q
and b. As T increases, ¢ increases, until it reaches a‘cri-
tical value $=1 after which the reaction releases heat at a
rate too fast tn be transmitted to the exterior, and there-
fore Eq. (60) has no solution. Thus, the ignition time is
identified as the tiIme at which ®=1, so that

1. =(qe) /P | (65)

Through Z¢s. (56) and (61) t;,, May be related to the para-

gn

meters A, B8', § and ¢c. ;

d) §<<i, €=0(1)

|
1
1
i
g

This case is analogous to the preceding cne, but
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coincides wit

e) S<<i,

times close to t

© the heat up time,

1’

temperature ©

1 v LR
©y given ty

L

a = -1 ¢/’3
s 61 e (7-1)+
in Eg. (58).
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ar
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O
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w

chemicel Time i3 ¢f crie
= £
jo XN "
g=— (1-1)
o
= 3=»w in Eq. (3I3) result

?=C exp(e+c
2
QJ=42,c¢ .

Tign= 1 - {1+1n Q)
h Zg. (83) in the iimiz
£=0(&1nd), B>>1nt

“ime of the transient

the inert soluticn nay

the characteri

Eq.

'3

o

ignition stage

st

t iz seen Thz<
sy =1
232) . Using
(67
(23)
(g3)

This case correspond to the inert soluticn pres-

in Section

Tne nondimen

vation energv

[N

sionzal act

)3.2) in which the parameter

A Is of order
is considered




YT

to be large compared to (1lnd). Therefore, the reaction zone
is small compared to the quasi-steady zone, whose size is of
order (1lnéd).

Defining the characteristic ignition temperature

Bl

r5—) =4 (ln <5)2/25912 (71)
1

exp

which makes the diffusion and reaction terms of the same or-

der, and introducing (58) in the reaction term, with

~1
[h9]
~

SIS =61+6exp(—lt16) (t—tl) (

it is found

which is obtained by expanding (25) clcse *o Ty
that the characteristic variables in +*his case are ¢, as de-

fined in (58) and

o} =85exp(—l6t1) (t-t,) . (73)

The characteristic heat up time is of order~(6—1), and there-
fore the length of the transition stage to ignition is of or-
der (871).

Introducing these variables in Eq. (55) and taking

the limit §-0, B'=0(1nd), €=0(81lnd), results in
Y1-exp(2+0) = 1+%§-(1-X%—) (74)

whose solution yields the evolution of the surface tempera-
“2re with time, as a function of the parameters of the prob-

iem. It is observed that this equation coincides with Egq.
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(1) 4

the parameter P is replaced by (1-1/X3_ ), and 1if =he
new definitions of 0 and 9 are used. Therefore figure (5) mav

be used to evaluate the ignition time.

£) S<<1, €=0(8)

In this case the inert surface <temperatire Iz

described by Eq. (25'), and the heat flux Tc The cuter regicn

Wy, 1s negligible compared to the heat absorbed by <he wire,
This solution remains valid up to the time in which the heax
released by the reaction equals the heat transmitted to the
extericr, andé therefcre the heat FLux frcm the wire, ws, e~

comes zero. Thls time Is considered to e the Ignition tine,

ancd is obtained by ecuating to zerc t

o
1]
3]
”
(o)
'3
[§/]
/)]
[
}ie
[»]
o]
[
o]
n
i
L
(Y]
ot
Ly
[

square root in £g. (55). Thus

dt., 2 -
. g’ ign 7 _A 8! ‘ 3! ~
(1- R .2 Int ) 3 7 SRPAT T ) 7%
(dt. _+1) igrn (8=, _+1) “Tign
ign ign
The solution of this equation provides t_.”1 as a functicn of
_5A

the parameters 4, 8' and ¢. After tign’ the rezc+tion zone

ceases *to be guasi-steadly and Ig. (55) Is no leonger valli,

5. TORCEID COMNVECZTICN

The analyses presented in the preceding sec+icns

may be generalized to Include the effect of fluid flow normal

®
jo]

to tne wire, when *the Pecle* number is small and *he parame-

ters & and £ are such that increments in surface fempera-ure




of the order of the initial temperature occur for times long
compared tc the characteristic heat conduction time.

Let x be the space coordinate in the direction of
flew measured with respect to the wire radius, and let Pe<<i,
be the Peclet number associated to *he convective velccity

U,- The Ossen form of energy conservation equation (1)

39 ipe .y (76)

NI Vo2, 28
Aexp{-B'/(0+1)}+7°8 T

can be used in first approximation to describe convective ef-
fects. This equation has to be solved with conditions (2) znd
(3).

In Section (3) +*he inert soluticn in a>sence cf
convection is analyzed, and the charascterics<tic <Ime, %t _, ne-

cessary to achieve temperature Increments of crier =7 zhe

]

Initial temperature Is obtained as a functicon of I and . As

discussed in that Section, the structure of the temperature
prcfile for times, tos large compared to the heat conducticn
time (tc>>1), is composed of a gquasi-steadv region clcse 0o
the wire and an unsteady region far from 1i* where the tempar-
atures are of order (1/lntc).

From Eq. (76) it is observed that the effect cf
convection depends on the relativé magnitude of Pe and to-

In fact, the convective terms In the unsteady zone are of
Ao o S N 2l a W -3 TS e, .. - -
order (Ae/vuc), whlle the transient and diffusive terms are
IS 3 «'1 ~1 £ - -1/2 - 3+ ¢ 3

of srider (< ). Thus, for Pe =0(t ) the convective and




unsteady terms have to be retained in *the unsteady regiocn fcr

r=0(t -1/2
c

). For Pe<<tc_1/2

ligible and the solutions

are valid.
negligible

convective

introduce

whose "'scluticn with conditi

Thus, the surface temperature histcry

where

ror Pe>>t-1/2
c

and there is a

Tterms are balan

as new dependcent

presented In

the unsteady

quasi-steady

ced by the diffusive

variable

time devivat
o
ed
Pe”
, 0 = 0
L

, the effect

To anzalyze the iInert solution

-

of convection is neg-

Sections (3) and (u)

term in Egq.

soluticsn in which <the

tern

w

-1/2 -
ftor Pe>>% , -e='s
c
(77)
va Te'm Zs nezlligible.
s (78)
(3) may be written zs

ég
- s { _ /
. -(6 dt) Ko(rPe/2)exptPex(r 1)/2r}
Pe ¢ , ‘A A -
K (Pe/2) - L K _(Pe/2)

(81)

e e ey
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2 -
A=te{ln(16/Pe’)-2y} "2 (82)

so that the characteristic time to reach the steady soluzicn
is of order {-ln(Pe)/ec}. If §/A is small compared *to unity,

the temperature increment of the steady state is small, and

therefore no Ignition occcurs.

_1/2)

For Pe=0(+ -~

~

» there iIs a quasi-steady region
close to the wire in which both the convective and unsteady
terms are negligible, and an unsteady zone far “rom It in

1 p! .

which both effects have to be retaine

.,

In the unsteady zone, Zq. (78) has to be scived

M

and matched to *he guasi-steady sclu%tion. Using, For Ins+tancs,
Laplace transforms the temperature profile in the unsteady

region is found to be

g =

o
w
-

exp(Pex/2) [tq(T)exo{—?eg(t-T)/u}exp{—rz/u(t—T); it (

b t-T
o)

Evaluating this expression for small wvalues cf », crovides a

matching condition to the quasi-steady region, namely

€ 2
_q(t) : ( c(t)exp{-Pe“(t-1)/u}-clz) ,_ ..
es-?(ln LH:-Y)*%—TI k. - e (3u)

For ¢(t)=zcons*., when for instance 93<<1, €=0(1i), so that all
the hea* supplied by the wire is used to heat up the reactive

material, this condition simplifies to

q 2 2 o

8 = {1n(16/Pe“) - E,(Pe“t/u4) -2Y} . (8s)
S L 1

\-—'———"-_\ —
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s
)

1

£Eq. (84) or (85) subszitutes Z3. (1&) as the maziching

tionsnip that together with IZq. (14') Is necessary ¢ obtailn
4 - « . . .
the surface temperature history. For instance, In the case
f<<1, £=C(1),
N $ - z - 2 A
¢ =— {1la(158/Pe”) - Z,(Pe =/&) - 2V} (886)
) L Rs
2
which ia the limit (Fe“"t)—9, ccinciies with Zg. (15), and In
2
<he limiz (Pe”t)»= cocincides with EZg. (83) with the parame-
) ter A given by Zg. (82).
The igniticn anaivses presented In Sections (3.c2)
-(2.2) mav zlso Le generalized to Include tThe effect ol zon-
veczion. In fact, Zc¢. (£5) is still valid to describe *the
surface temperature history, I the value w_ given by I4g.
(52) Zs substituted by the new matching relaticnship
i 2 EES
W =- 5 5 . (87)
t In(16/Pe”)-Z,(Pe " t/4)-27
6. CONCLUSIONS
The process of Ignition ¢ a reactive material v
an imbedded electric wire =hrough which an electriczl current
of constant powar I1s applied, has been analyzed by means of 1
high ac+tivation energy asynptotics.,
It is fournd that the temperature history and thera-
Ssre the igniticn time is a function of four ron-<imensionsal a
parameters: a Damkhiler Number A, an activation energy E£',




Rl o

an energy input d and the ratio of veclumetric hezat capaci-
ties <.

The problem has been aralyzed in the limiIt of large
B', and it is fournd that the solution exhibits different te-
haviour depending on the relative magnitudes of 8', ¢ and €.
Some of these limiting solurtions zare derived In 3Secticn &,
leading tc closed form solutions Zor the Ignition time. The
values of § and ¢ considered cover bDoth tThe cases of reactive
solids and gases. The same methods presented In that Seczion
may be used to cttain other limi<ting scluzions.

Tinally =he effect c¢f convectlion wnich sheould te
important Iin the cass of rezcting gases, Is anzlyzed In Sec-
“ion (5.
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OF SYMBOLS

A, Dimensionless frequency factor, zRQQpe/ToKS.
’ B, Thermal energy input to the wire per unit volume. j
i
5, Dimensionless parameter defined in Eq. (61).
i
c o, Heat capacity. g
dr’dx . Dimensionless parameters defined in Eq. (33). ;
X, Dimensionless frequency factor defined in Egq. (46). ;
k , Coefficient of thermal conductivity.
!
P, Dimensionless parameter defined in Eq. (38). 3
Pe Peclet number.
Qo Dimensionless parameter defined In IZgs. (61) or (s¢).
q , Heat transfer per unl< area by condiuction.
R, Radius of the wire.
r o, Dimensionless radial cocrdinate r/R.
T , Temperature. :
|
t Dimensionless time, tue/R2. i
u o, Dimensionless parameter defined in Eq. (15). i
X, Dimensionless radial coordinate EZq. (27). i
|
z ., Frequency factcor. ,
A, Thermal < Yo ; ]
|
g , Dimensionless activation energy defined in Eq. (30). |
B' , Dimensionless activation energy, E/RTO.
§ Dimensionless parameter desfined in Eq. (&),
e , Dimensionless parzameter defined in Eg. (5).
n ., Similarity variable defined in Egq. (18).




N

-

[

b

Dimensicnless temperature, (T-TO)/T

Dimensionless parameter defined in

Stretched radial coordinate defined in Egqg.
Stretched time defined in Egs. (3&),
Stretched time Zefined in Eq. (18).

Dimensionless temperature increment

(60) or (68).

Dimensionless temperature increment
(48) or (77).

Dimensicnless temDperature increment

(32).

Transformed variable defined in EZqg.
Dts

Characteristic variab.e.

o

-
po]

q

(23).

(34).

iefined in E
defined in E
defined in T
(49). .

Exterior conditions.

Iner=*.

Interior conditions.

Surface.

Initiel.

Characteristic z:zniitions at ignition,
Conditions far fr:om tae wire.

(67) or (73).
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ASYMPTOTIC ANALYSIS OF SHOCX TUBE IGNITION
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1. INTRODUCTION

An interesting method to analyze ignition of reac-
tive particles at high temperature, is the use of a reflected
shock technique. In this technique, the reactive particles,
which are placed in a holder inside the shock tube, are

"dragged", accelerated and heated by the incident shock wave.

th

This wave is reflected at the end wall o ube znd when

the

ot

=

L

it encounters the particles, these zre dszce

[

erated and fu

'3
[}

ther heated thrcugh & convective-conductive mechanism. These

high temperztures accelerate excothermic reactions so that

when the rate of chemical heat supply is larger that the heat
lost to the gas, ignition occurs at a finite ignition time.

1
Cohen and Decker”™ used this technique to measure

[N

gnition delays of nitrocellulose particles iIn N2 at gas tem-
peratures between 600-1200 K and pressures between .1-1.5 MPa.
They found that the temperature dependence of these delays
changes markedly at 750 K.

The purpose of this Section, is to use high acti-
vation energy asymptotics to model Ignition delays using the
reflected shock technique. The model provides equations for
the critical diameter and the ignition time as a function of

the parameters of the problem.

No attempt has been made at this stage, to compare




ct
o

e predictions of the theory, wi

of Conen and Decker. Hcowever,

[N

3

ct

ure and velocity behind the inc

waves, It is easy to compute the

therefore

cn.

} e

react

2. FORMULATION

We assume that the par®

once calculated the

th the experimental

1]
a¥

ident and reflezt

.

ignition delay tine

icle temperature 1is

and we uneglect reactant ccnsumgrticn. Under these cond
the mecmentum and energy zcnsevrvation eguaticns, m3v b
: ~ - 1
respectively (see Cohen and Decker™)
2 Cn T, _ —
au_3 -3 ¢ |T-ul(J-u) (:
dt 4 D p ' i T
d7 _6h(T-T) 63T QA4 exp(-E/RT) (2
at Cp?l Cp?D C ’
where:
24 4 DjU-U
Cn=2+ ; R_=E | (3
D = 1/3 e -
e R u
e
N .33, .58 = _Nu k%
Wu o= 2+.46 P R H h= (4
r e D

+he same as t*that

3

I

distingu
To assum
long as

De ¢correct, as

I} —
ccnvection time, “.=0CD"/BkNu, is

T

h the gas

used in reference (1

e 2 uniform particle
the characteristic

large

1
[N}
1

and

3
1

(¥R
ct
.

)

)

)

fr

th
O

]

o]
3
=]

n

'3

b

in

on

of
ot

M

to estimate the activation energy of the exothermic

cempared *td> the char-




neat conduc*tion

acteristic partic

Egs. (1) and (2) have to be solved with the app

priate boundary conditions describing the effect of the 1

cident and reflected shock wave to obtain the particle *e

perature history.

The nondimensional ratio Z/RT is usually large.

Then, if the veactivity is large enough, the sclution exh

bits a runaway in the temperature of the particle at a we

defined ignition time. However as the reactivity decrease

ignizion temperature iIncreases and approaches the ga&as

valiu

[

the Dan

kty

critica

1

phase temperature T. There is & o

k&% ler number, suczh that for values smaller *ha

ja}

a stationary solution is reached in which the ener

released by the chemical reasction Is balanced by the ener

tt

lost to the gas-phase. TFor values of the

greater than the critical cne, there

tion time which is derived in this Section as a functicn
the parameters of the problem.
3. CRITICAL CONDITIONS FOR THERMAL RUVAWAY

Tc derive the critical DamkChler number, let's

sider small increments in the particle temperature above

gas-phase temperature

(5)

the critld

le.

ro-

n-
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1
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Wnen the effect of radiation is retained the crit-
ical regime cccurs with temperatures close to the chemically

frozen equilibrium temperature Tf given by

€gD TLI»
2K

L
T T_ +

R £

In this case the critical regime Is still given by Eq. (5)
and the critical diameter by Zq. (89), is replaced in Egs.

— 33—, —
(7) and (9) by K{1+2€0DT./X} and T by Tee

4. IGNITICN ANALVYSIS

or values of 3 of the order of D the *transien=

.
- X a
¢. (8). Tor values of

£

tempera*ture history is described by

D<<D a thermal runaway will occur when the particle temper-

o
0
O
3]
‘v
a
3
o
0N

ature is smaller then T (or T_) by a guantity lar

To analyze in this case the thermal runaway to 2

[t}

th

nition, we carry out an asymptotic analysis In the limit o
high activation energy of Egs. (1 -(2), and consider t, as
the time of thermal runaway.

Let's define, TC=TI(tc), as the temperature of th:
particle at time tos with the chemical reaction frozen. In
the limit of high activation energy, the chemical heat re-
lease is negligible compared :o the convection of heat from

the hot gases, as long as T <TC. Thus, for times smaller than

I

tn

t 4 the temperature history is given by the solution of EIgs.




(1)-(2) without the chemical source term.

ot

For times close to t there follows a short s

C’

'8
"
1]

of transition to Ignition in which the chemical heat release

=~
t
[N

"tan

[Tl

term becomes impo nd has to be retained. During th

e varticle differs frecm T _ by a

= ~ J
[

stage, the temperature of t

e

. . 2 .
small gquantity of order RTC /E, but these small changes su

'y

fice to produce changes of order unity in the reacticn raze.
To study the ignition stage, let's introduce
¢ = —— (T-T.) (19)
2
RT
<
and 1=2t's expand T, for times clcse *o T
2
dT-I RT
T=T +——=) (z-T )+—"0 (22
: c T ET . e T -
“c
Introducing this exgansicn In Zg. (2), and definiug a stretche
time variable
dTy £
o=({t-t ) = (12)
c at 2
t RT
c c
results to leading order in
do
== =P exp(p+2) (13)
&3 pL?
Wwith initial conditions
g > o ¢ =20 (14)
where
QA .
P = = exz(-2/27 ) . (1%)
A P ~
c Li
at | .
“c




Integrating Eq. (13), results in the following

perature history

$=- 1n(1-Pe”)

thy

curs, Eg. (123) has to satis

t

aecessary

)]
}r

g. (12) to deduce the ignition time

5. INZIRT SOLUTION

4

(1)-(2) withou* the reaction term, and

o derive the inert temperature

y the condition

To solve Zg. (1), let's I
rarliables
% = Re . _ t
Re. ? Tt ?
i c
where L
oD |U-C
Re, = . t ==
— c 3 =
u L Re.,

ntroduce the

P

g=0 , ¢ >
and therefore P=1.
Thus, the igniticn time Is defired by
daT.
"\A. I
i bl m
== exp(~-E/RT.) = .
C 2 / I d+
Thevefore, to obtzin *the Ignizicn time

article tTem-

(16)

Since t, is defined as the time at which thermal runaway oc-

the ecuaticn

nondimensional

(20)

(21)
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Eq. (18), defining the ignition time, may be written

2
(T-T) . = QAED exp(-E/RT) (27)
. - — cC ’
* 6K  z(2+.46 Pr °° Rei'a“ x °%)
which together with Zg. (23) defines x, and therefore T, as a
~Z0 ign

function orf the parameters of the problem,

[¢]
Hy
Il
w

To solve Zg. (27), cne may tzke aivantage

[s}]

fact that the activaticn energzy Is large, ard use the follow-
ing iterative procedure. Let's define

14002 2 5%
- ALD . 2 . -
f= =3 — 2=z 33 — +, 46 x"77;  (Z8)

SR(T-T).2r" 77 ze .77 2r°7 " Re 77

i i i

and let's tTake =tThe nazTural log of Eg. (27)
-gps-initln . (23)

"

However, since j Is approximately of order unitv, while is

large, one may neglect 1n 3, and obrtain

Zion T __T - _b (in #)~ . (32)
& (T-1), R(T-T),

Figs. 2 and 3 mey than be used to derive the zercth crder ap-

b

b
t
)
.
—~~
[}
w
~

proximation to and T, _. Using *these wvalues

X, ,
ign ign :

a zeroth order approximation to j is calculated, which may

then be used in Eq. (29) to derive the first order approxi-

mation to z,. . This iterative procedure converges very ra-

tion time.

o
[N

pidly to the igr

A further simplificaticn may be Introduced by con-




sidering that the initial Reynolds number, Re,, iz large

i
compared with unity, as will usually be the case In practice.
Using the solutions to Egs. (21) and (2%) for large values

of Re, in Eg. (30), an explicit zeroth order solution Ffor

N . .

the ignition time is derived, namely

REE
371, 5 .366 Re [ "7 7 = .
ign '1°66_4 I o T E - = -*)
( Tt 1) = i+ 733 ;nt - (ia %) 7!
- (T-7), R(T-T), ’
This eguation is valid as long as T, __<<T. When T, ap-
ign ign
proaches T, the critical soluticn discussed in (3) shoull
be used.
It shouldi te pointed ou*t, *that In the case £n which :

ters the reflected shock, znd the time from +this ianstant TC

thermal runaway.

The first compcnent of the igniticn time Is calcu-
i1ated from the parameters of the incident and reflected shcck
i
waves, distance from *the hclder to the end wall and Tig. 2
i
. . . - . - . ~ . i
giving the par+ticle velccity as a function of the non-dimen- i
sional tiIme x. Also, Zrcm Fig. 3 the temperature Increment
in the particle (T-7), existing at the instan®t of encoun-ar

[s8)
bt
O
[
b=
w
ot
@
(&%
[s3
[}
43
th
[
3
O
ot
(283
O
o]

with +<he reflected shock wave, is ¢

o]
th
rt
o
(1]
}a
o )
TN
ot
[N

21 temperature Increment (T—T)i. The resulting

al value in Ecs.

[N

Temperature Increment iIs used as the init

(1)-(2) +*o calculate the time from the Instant the particle




AW

-

enters the reflected shock region until thermal runaway oc-

curs. Analogously, the value Rei in Eq. (27) is calculated
from the particle velocity at the time of entrance in the re-

flected shock region, which may be obtained from Fig. 2.
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