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ASYMPTOTIC TECHNIQUES IN IGNITION THEORY

Final Report for Grant DAERO 79-G-0007

by Manuel Kindelan

Amable Lin

E.T.S.I.Aeronguticos
Universidad Polit~cnica

de Madrid.

ABSTRACT

An analysis is given in Part I for the ignition of a

reactive material by an electrical wire heated at constant power.

The wire temperature 'istory is described for small and large

values of the electrical heating rate and for solid annl gaseous

reactants; in the case of gaseous reactants the effects of con-

vection have also been taken into account. The results of the

analysis include closed form expressionsfor the ignition :nme

in terms of the physicochemical parameters.

An analysis is given in Part II of the process of ig-

nition of reacting particles in a shock tube. An analysis for

large activation energy of the ignition reaction shows that for

values of the particle diameter smaller than a critical value,

ignition does not take place; the ignition time is calculated

for diameters larger than the critical.

Analysis of ignition by hot catalytic surfaces and by

inert hot spots, and of Lewis number effects on the structure

and extinction of diffusion flames due to strain, carried out

under this Grant are being published elsewhere.



INTRODUCTION

This report describes the results of applying the

technique of large activation energy asymptotics, to several

ignition problems of practical interest. This technique,

which has been extremely useful in studying many problems in

combustion, makes possible the derivation of closed form an-

alytical solutions for the ignition time or other properties

of interest, although the original equations describing the

problem are complicated non-linear, partial differential

equations.

The first part of this report studies the ignition

process of a reactive material when an imbedded electric wire

is heated by an electric current of constant power. The wire

heats up the surrounding reactive material by conduction,

until the exothermic reaction leads to a thermal runaway at

a finite ignition time. Since the heat conductivity of the

wire is often very large compared to that of the reactive

medium, the wire temperature is assumed to be uniform. The

character of the process is then determined by the ratio of

the specific heats per unit volume of the reactive material

and of the heating wires; when this ratio is of order unity,

the radius of the heated region in the reactive material

during the ignition transient is of the order of the wire

radius, while if the ratio is small, the radius of the heated

region becomes large compared with the wire radius. In the



first case, the chemical heat release is confined to a thin

layer adjacent to the wire surface, and it can be calculated

in terms of the wire temperature and the heat loss to the

surrounding material where the chemical reaction is frozen;

the surface temperature and the ignition time are given by

the solution of an ordinary differential equation, involving

a single parameter. In the second case, which is typical when ig-

niting reacting gases, the characteristic thickness of the

reaction region is of the order of the particle radius, and

the radius of the heated region is large; therefore forced

or free convection effects can be important and have to be

retained when analyzing the outer frozen zone of The reactive

medium.

The second part of this report studies the process

of igniting reacting particles in a shock tube. The parti-

cles, which are located in a holder in the shock tube, are

dragged, accelerated, and heated by a shock wave. The wave

is reflected at the end of the tube, so that when it encoun-

ters again the particles, these are decelerated and further

heated by the gas behind the reflected shock. In this report

we analyze motion and heat transport to the particles as a

function of the parameters of the shock wave, and we apply

the method of large activation energy asymptotics to study

the ignition process. There is a critical value of the diam-

eter of the particles such that for D<D c ignition does notcrit



occur due to rapid heat transfer from the particle. For D>D crit

there is a runaway of surface temperature at a finite ignition

time. Figures are provided to compute the ignition time as a

function of the parameters of the problem.

An analysis has been carried out under this Grant of

the ignition by a hot catalytic surface, taking into account the

effect of a nonzero rate for a catalytic consumption of fuel at

the plate surface. The analysis leads to an integral equation

that describes the evolution of the fuel mass fraction at the

surface. A note with the tittle "Ignition by a Hot Catalytic

Surface" summarizing this work was written by A. LifI~n and

Forman A. Wi1iams of the University of California, San Diego.

It will appear in SIAM J. of Applied Mathematics.

We have also studied during the term of this contract,

the process of ignition of a reactive material by an inert hot

spot. The result of this research was presented at the 7zh Col-

loquium on Gasdynamic of Explosions and Reactive Systems in

G~tingen, August 20-24, and will appear in the Series Progress

in Aeronautics and Astronautics.

Finally, an analysis of the "Lewis number effects on

the structure and extinction of diffusion flames due to strain"

was presented by A. Li, n at the International Conference on the

Role of Coherent Structures on Modelling of Turbulence and Mixing,

held at the IBM Scientific Center, Universidad Aut6noma de Ma-

drid, July 25-27, 1980. The Proceedings will appear in the Lec-

ture Notes on Physics, Springer.
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ABSTRACT

An analysis is given for the ignition of a re-

active material by an electrical wire heated at constant

power. The wire temperature history is described for small

and large values of the electrical heating rate and for

solid and gaseous reactants; in the case of gaseous re-

actants the effects of convection have also been taken

into account. The results of the analysis include closed

form expression for the ignition time in terms of the

physicochemical parameters.



1. INTRODUCTION

Ignition of exothermic materials by hot wires has

1,2
been extensively studied both theoretically 1 and experimen-

tally, 3' 4 in order to improve the design of squibs and deto-

nators.

Large activation energy asymptotics have been very

useful in describing thermal ignition with different tyres of

heating mechanisms. These methods are used in the present re-

port to analyze hot wire ignition for different values of the

parameters of the problem, including the cases of gaseous and

condensed exothermic material.

Previous theoretical analyses of ignition of solid

materials by wire heating, include the studies of Altman and

4Grant and Kabik et a!. , who used the concept of a fixed ig-

nition temperature to correlate their exDerirmental results.

Friedman I carried out a theoretical analysis based

on the more fundamental kinetic parameters of activation en-

ergy and frequency factor, rather than the more ill-defined

ignition temperature. The ignition criterion used minmizes

the sum of the time to reach temperature T by the inert solu-

tion and the explosion time at temperature T. An explicit ex-

pression for the ignition time is derived from a simple ap-

proximate expression of the inert temperature. This solution

is in good agreement with the results of numerical integra-

tions.
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Thermal runaway leading to ignition is a strongly

dependent function of temperature. Thus, as it will be found

later, an analysis such as Friedman's, which correctly de-

scribes the inert temnerature rise prior to ignition and, ap-

proximately, the temperature at which thermal runaway occurs

is usually adequate to describe the ignition time to leading

order.

The following analysis is an approximate solution

of the hot wire ignition problem which is "exact" from an

asymptotic Doint of view. n addicon, Io includes several

ranges of :he parameters which are no- covered by the approx-

omate analysis of Friedman.

:he problem that we consider is that o: a -

cal wire imbedded on a reactive material. A constant rate of

thermal energy is s uiopped to the wire, for instance by an

electric current, so That its temperature and the temperature

of the surrounding material increase with time.

Initially, the temperatures are low, so that the

chemical reaction is frozen. Thus, the temnerature ororfles

are simply given by the solution of the inert problem. Howe,:-

er, after a certain time the energy input by the chemical re-

action becomes important so that the temperature of the reac-

tive material is further increased. This in turn accelerates

the reaction rate, thus leading to ignition, represented b-i

a precinitous rise in temperature, at a finite time. The pur-
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pose of this report is to compute this ignition time -s a

function of the parameters of the problem.

In Section (2) the problem of ignition of reacting-

solids by wires is formulated in non-dimensional variables,

and the significance of the resulting parameters is discusoed.

In Section (3) the inert solution Is analvzed for several -a-

rameter's ranges. These solutions are then used in Section

(4) to analyze ignition and in particular to compute the iZ-

nition time for several cases. The procedures used in Section

(4) may be easily generalized in order to analyze cases in

wh ch the values of the parameters are outside the r ane of

va!; ditv or tz.e cases presented 1n Section (4).

In practice, convection is usuaIly I:nDcrant In

case of fluid reactants, so that the Ideal solutions cresentec
in Sections (3) and (4) are of little applicability to t.e

case of reacting fluids. in fact, either forced convection Is

present, or else the temperatures increments associated zo

the wire are enough to generate a free convective flow which

can not be neglectec. :hus, in Section (5) the analysis is

generalized to include the effect of forced convection, and

we indicate how free convective effects can be taken into ac-

count. Finally, in Section (6) the results obtained in the

report are summarized and discussed.

2. FORcULATICw

We consider the case in which a cylindrical wire
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imbedded in a reactive material, is heated by circulating an

electric current of constant power through it. The thermal

conductivity of the wire is considered to be large compared

to the conductivity of the reactive material, and therefore

its temperature is uniform throughout the process.

A distributed, zero order, exothermic reaction of

the Arrhenius type takes place in the reactive material and

produces ignition at a finite ignition time.

Assuming constant values for the density p, specific

heat c, and heat conductivity k, the energy conservation ecua-

tion in the reactive material becomes

2 eA e p +1 +2:0 1 39
A exp -6'/ (e+l)} + e- + -= - , (r)

where all symbols are defined in the nomenclature. The tem-

perature increment e is measured with respect to the initial

temperature T , the space coordinate r with respect to the

wire radius R, and the time variable t, with respect to the
2I

characteristic heat conduction time (R2 /a)e

The boundary and initial conditions are

e(t, )  0(O,r) = 0 (2)

d8 s 2 :ae Is(3)
dt 2 i-

where the second equation represents a balance between elec-

tric energy input, heat absorbed by the wire and heat con-

ducted to the reactive material. The parametcr



B R 2 (PC)e
K T 0Z(TYT (4)
eo a

is a ratio between the characteristic heat conduction time

and the characteristic heat up time of the wire, and the pa-

rameter

(pc)()

is the ratio between the volumetric heat capacity of the re-

active material and that of the wire.

Equations (1)-(3) have to be solved in order to ob-

tain the temperature history and the ignition time as a func-

tion of the four parameters A, 8', S and E. The form of the

solution depends on the relative magnitude of these parame-

ters. We first analyze in Section 3 the inert solution for

different values of 6 and C, and in Section 4, we use this

inert solution to analyze ignition in the limit of high ac-

tivation energy.

Notice that e is of order unity for ignition of

solids and liquids by metal wires, while e<<1 for ignition

of reacting gases. The value of 6 depends on the power of the

ignition source and the wire radius; 6 becomes small for thin

wires.

3. INERT SOLUTION

In this section we analyze the process of heating
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a material by supplying a constant rate of thermal energy in-

put through a wire of infinite length and large conductivity

imbedded in the material.

This process is described by equations (l)-(3) with
5

A=0. The solution can be obtained by means of the Laplace

transform technique, for instance, and it may be written as

_ 2_ I 1-exp(-u 2 t)= ,-- 4 2 du (6)

Jo u

with

E=Jo(rU)jUYo(U)-2EYlI(U)I-Yo(rU)IUJo(U)-2EJl(u)l (7)

A=zIuJ o(u)-2cJ!(u) 0I UYo(u)-2cY 1 (u)I2 (9)

In particular, the surface temperature is given by

e = 8 6 f { 1-exp(-u 2 t) du (9)

which for small and large times results respectively in

e = 6(t _ 8E t 3 / 2 +. ) (10)
s3V

es = (ln 4t - Y + -+...) ()

where Y is Euler constant, Y=0.5772. Figure (1) shows the

value of (4 e / 6 ) for different values of £.

s

This inert solution is valid up to the time in

which the surface temperature increment is such that the re-

action term becomes of the order of the heat transport

__ _ _ __ _ _ __ _ _ _
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terms. When that temperature increment is reached, an igni-

tion stage follows in which small temperature increments of

order ($') produce changes of order unity in the reaction

rate.

The inert surface temperature increment required to

start the ignition stage, is generally of the order of the

initial temperature, and therefore in this section we analyze

the inert solution for times such that es is of order unity.

In the following paragraphs we study the inert solution for

different asymptotic values of 6 and 6, and in each case we

obtain the characteristic times necessary to develop temoer = -

ture increments of the order of the initial temperature.

a) 6=0(1), E=0(1)

The surface temperature is given by; (9) and the

heat up time is of the order of the heat diffusion time,

t=0(1). Figure 1 may be used to compute e as a function ofs

6 and E.

b) 6=0(1), E<<i

In this case the surface temperature is given to

first order by 6 =t6 and therefore t=0(1). The temperatures

profile in the reactive material is given by the solution of

the heat conduction equation with specified surface tempera-

ture.

c) 6=0(1), E>>1

In this case t>>l, and the solution to equation

___.....___-___ _
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(1) is obtained by matching a quasi-steady solution close to the wire,

to an unsteady solution far from it. This type of solution

exists in all cases in which t>>; that is, when the heat con-

duction region is large compared to the wire radius.

In the quasi-steady region, in which the time deri-

vative term of equation (1) is negligible, the temperature

profile is given by

e i- -i- in r + e (12)

27r s

where c is the rate of heat loss from the wire to the reac-

tive material, q=-( 0/ir)5 .

Far frcm the wire, there is an unsteady region in

which the temperature profile is given by

1 q e x p ( ' r "'( 34 = - t -t' 4(t-t') d ' ( 3

Matching this solution for small values of r to the quasi-

steady solution, provides a relationship between the heat

flux from the wire to the reactive material q, and the sur-

face temperature es, namely

q-t I t q(t-t ' )-g(t) dtt ' (14)es = .T T ( in 4 t-Y ) + (4
s 7ri4Tr J

Eq. (14) would be used together with

de s_ q

and 0 (0)=O, to calculate the wire temperature history, when-s
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q is small, so that ignition occurs at large times.

The last term in Eq. (14) is negligible if the re-

lative changes in q are small compared with unity; then es (t)

is given by

de 4 E: 0
s s

ln 4t-Y

In the case considered here, 6=0(1), E>>!, the

power supplied to the wire is mostly used in heating the re-

active material; the term de /dt is negligible in Eq. (14'),
5

so that q is approximately constant, q=76/c, and

e s- (In 4t-Y) (16)
s E:

The characteristic heat up time is of the order of (exD(c)).

d) 5>>1, E=0(1)

In this case there is a quasi-similarit-, solu-

tion

S2()+... (17)

where
r-1 (8T =t T1 q= ( 8

27

o (n) = 4 i2 erfc(n) (19)1

(r) =(3-4E)i 3 erfc(n)+2(T erfc T- exp(-r2)

Therefore, the surface temperature is given by Eq. (10) and

the characteristic heat up time is of order (5-).
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e) 5>>1, (5)

Taking the limit - in Eq. (9), the surface tem-

perature simplifies to

2 f 1-exp(-u 2 t) du (21)- 2 (21) ()2

E6 a u31J i U)0 1k

The surface temperature in this case may be ob-

zalned from figure I, where the value 4 £ / 5 is given as a

function of c. The characteristic heat up time is of the or-

der of the heat conduction time, t=O(1).

f) _C< , =0(!)

This case is analogous to c) and the soLution

is similarly obtained by matching a cuasi-steacv region to

an unsteady region far from the wire. Since 6<<! and c=0(1)

all the energy supplied by the wire is used tc heat the re-

active material, and therefore q=const. Then Eqs. (4) and

(14') simplify again to Eq. (16). The characteristic heat up

time is of order (exp( 6 -)).

As in the previous case, it is necessary to wait

times long compared to the characteristic heat conduction

time, in order to develop temperature Increments of the order

of the initial temperature. Therefore, the surface tempera-

ture history is obtained by matching a cuasi-steady region

an which the temperature profile is given by Eq. (12) to an
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unsteady region described by Eq. (13); the wire temperature

is given by Eqs. (14) and (141). However, in this case, the

values of 6 and 6 are such that the energy used to heat up

the wire is of the same order than the energy used to heat up

the reactive material, and therefore all three terms in the

surface energy balance given by Eq. (3), or Eq. (14'), have

to be retained.

Because we have to wait times of order 1/6 for e
s

to have increments of order unity, it turns out that the last

term in E. (1L) is small, of order -1/In6 , relative to the

remaining terms, and thus q is given to leading order byr

4 = e s /in , (22)

and e 's given by Eq. (15), which using the definitionss

4-(23)

simplifies to
de s : I ;(2k.)

therefore
8 =;k- 1(!-exp(-x~t ) (25)

The characteristic heat up time t is of order (6-1)

h) 5<<l, e=0(6)<<1

This case can be considered a particular case of

the previous one when X<<L so that in first approximation a-'

the thermal energy supplied through the wire is used to heat
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up the wire, and e 6t; when two terms are retained in an ex-s

pansion of Eq. (25) for small X, the surface temperature is

given by

6 = 6t(l + 2et 25s 1n7"') (5

The characteristic heat up time is of order

4. IGNITION STAGE

In this Section we analyze this ignition stage for

a'>>1, using asymptotic methods in the limit of high activa-

tion energy 8'

:nitially, there is an inert stage during wncn -

reaction term in Eq. (1) is negligible, and the inert soIution

analyzed in Section 3 is valid. After this stage there follows

an ignition stage in which the temperature of the reactive

material is such that the Arrhenius reaction term becomes of

the same order than the transport terms. Then small tempera-

ture increments of order 1/B' produce changes of order unity

in the reaction term; the energy released by the exothermic

reaction further increases the temperature of the material

This self-accelerating process leads to ignition, characteri-

zed by a precipitous rise in temperature at a finite time.

As discussed in the previous Section there are di-

ferent cases depending on the relative values of the parame-

ters 6 and £. We will carry out detailed analyses of six of

these cases to show the methodology used and to discuss the
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different structures of the solutions. Similar procedures may

be used to calculate the ignition time in other cases.

a) 6=0(1), :=0(1)

In this case the inert temperature of the reac-

tive material increases by a quantity of the order of the

initial temperature for times of the order of the character-

istic heat conduction time (see Section 3.a). For those times,

t=O(1), the size of the heated region in the reactive mate-

ral is of the order of the wire radius (Figure 2).

From Eq. (1) it is easy to show that the character-

istic ignition temperature 01, which makes the reaction. term

of the samne order than the transport terms is given by

exp{B'/(e +1)}=A/6 (26)

incroducing this definition and using for convenience as new

variables

• =6t ,=( - ) (27)

Equations (1) and (3) become

3 -e 1 36 exp 28)
7= 2 +i- 96e+

d6 S2_2
dT 2. 3 . (29)

In the limit of high activation energy, the reaction is fro-

zen for e<e1, while it goes to infinity for 9>e To leading

order, the Ignition time is simply given by 71, the time at
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which the inerr surface temperature reaches e,. Equation (9)
or Figure (1) may used to compute T as a function of 4, E

and e,, which in turn is related to A and S' through Equation

(26).

For times smaller than T I there is an inert stage

which is followed by a short transition stage close to T1,

which leads to a runaway of surface temoerature.

During the transition stage there :s an inner thin

reaction zone close to the wire where the temperature ciffers

from 3, by a small quantity of order (-1), where

3 = 3,/(61+1)2  ( o)

This regzon has to be matahed with an outer ransnt-iffu-

sire zone whcse size :s o: order (3-'

To analyze the reaction zone let's define

IL = 3(3-5I ) (3:)

and let's exmand the inert temperature, %, for times close

to and for small values of x

JI +dT-r-T  x (32:)

where the oarameters

3 9
I~ :1 TX ,I= T T I , :X xl=O ,xO

are obtained from Equations (3) and (9) as a function of 5

and Z. Introducing (30)-(32) in the reaction term of Equation



-15-

(28) and expanding for large values of 8, it Is observed that

the characteristic variables to analyze the reaction zone

during the ignition transient are

G-C I =d dT (T-T I )  , -d x  x (34)

where
2

= ln( d /2) (351 x

With these definitions Equations (28) and (29) result in

2,

2 exp +',- )(36)

dy

p i

where a single parameter appears,

/T d- d-(-,,)

2c dC d-(t )-(

Figure (3) shows d-/4 as a functior. of for different values

ofr

Equation (36) has to be solved with the boundary

condition (?7) and with the condition obtained from matcning

to the outer transient-diffusive zone, namely

1ir = 0 (39)

Integrating (36) once, and using (33) yields

2r = I - Y1-exp(c+)--) (40)

Evaluatinz this exoression a- the surface and using Equaticn

3-) results in



d 1's

P d-- = 1 - /1-exp(G+y s ) (41)

Numerical integration of this equation provides the surface

temperature history, and in particular the irnition time as

a function of P, defined here as the time a. when the ex-
:gn

pression inside the square-root becomes negative. During a

short transient, when a-c. -
, the time derivative termign

which was neglected in Equation (36) should be retained to

describe the thermal runaway at the ignition time.

Figu.,e (4) shows the surface temoerature history,

for some values of I, and Figure (5) shows the ignition -ie

as a function of (log?). These results may be aporoxitated

by the equation

(- In(+.56/P)

which exhibits the correct asymptotic behaviour for small and

large P.

Once (a) is known from Equation (41), Equation
5

(4O) may be integrated to derive the temperature profile and

in particular b( , ), the apparent increase in wire tempera-

ture due to -he chemical reaction.

>) >>1i, E:=O0( 1

In this case, the characteristic inert time for

a temnerature Increase of order unity is small, of order

5-), compared to the characteristic heat conducticn tire
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(see SecTi.on 3.d). Thu-, the heated region in the reactive

material is small of order (S- 5), compared to the wire ra-

dius (see Figure 6).

The analysis of this case parallels that of the

previous Section. As before, there is a crans-ton stage

whose structure is described by a thin reactive-diffusive

zone close to the wire with size o' order ( 1;S( ' .,

is matched zo outer transient-Oiffusive zone with size o

order ( -

e ecuac:.ons -o solve are (22) and (29), which

sin---f-------arge because then -he convective term assc-

coated to curvature in Ec. (22), and the energy spenr in

heating the rea:Tive material in 7q. (23) are neglig-------s

may be observed in Figure (6).

introducing the stre:ched variables (21) and ( )

in Eqs. (23) and (29) with

LI=1 d_=1 42x- l

as obtained from Eqs. (17)-(19), results in Ecs. (36) and

dQ s

dc (u3'

Integrating (3) once an: usong condiions (31) and (42)

yields

,,(cO) 1 - .l-exp(o) (4)

an therefore the gnat1on t-me may be taken as c.7-- 2



e In(281 /7)1 1(5
rig n  =-- @( 5

where e is a function of , A and 6 given by Eq. (26)

11

c) 6<<I, C=o(1), a'=o(6 -

This condition which corresponds to case (f) of

the previous Section is used to introduce the analyses of

those cases in which t. >>I, and therefore the structure of, gn

the solution consists of a quasi-steady zone close to the

wire and an unsteady zone far fro ., it.

Contrary to the previous cases, the reaction zone

is not tnin compared to the wire radius. However, since the

unsteady effects are only important far from the wire, where

the temperatures are low and therefore the reaction frozen,

the chemical reaction is confined to a thick cuasi-steacv re-

action zone.

To analyze this case, let's introduce

2 ' s)-e , K = A Z exp( ' ] (46)
( + 1) 2s+ 

)

s

where is of order unity in the reaction zone. Thus, E.. (2)

in the limit of high activation energy simplifies to

2 .+ 1 t
+ + K exp (4) 0 (4 7)

which replaces in this case the Eq. (36) describing the re-

action zone structure in the previous case. To scve this
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equation, notice that it is invariant under the group of

transformations

r -ccr ,P + , a exp( S)=l L a)

Thus, let's define new variables which are invariant under

those transformaticn

31 2(b= -- u =K r 2e xn( )(

With these variables, Eq. (47) results in

(2+ ) = 050)C u

which may be integrated once to id

2
w +4w+ 2u u L4 51)

since in the outer unsteady region focr r- - , the zhemioa' hea-t

release approaches zero (u-0). The value of , can be r en

in terms of te heat flux q from the reaction zone towards

the thicker unsteady heat conduction region. Because the char.

ges in temperature across the reaction region are small, cf

order 1/S, the matching procedure, as discussed in Section

(3.c), results in a relatonshiz between -he surface temoera-

ture e and the heat flux, q-2vr /2, given by Eq. (14).
s

Because the ignition time t is long, the last term

in Eq. (14) can be neglected in first approximation and then

we can write
- e

ln s- (52)
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although the terms in4-Y in the denominator of Eq. (52) are

not always consistent with the order of approximation used.

The boundary condition at the surface (Eq. (3)) results in

des s - u-- -=- K) u53)
WS r 2& Fdt U-

From (50) and (53) an equation is derived to describe the

surface temperature evolution, namely

w 2 ±V(2 + ) 2 -2K (5 )s

or

- A S)t
4E(P +Q 2 d-

__ __ _ -_ _ A ' _ '__ (55)
S n4t-Y +1 ss s

This equation describes the surface temperature evoluticn in

all cases in which ignition occurs for times large compared

to the heat conduction time, and therefore the structure of

the heated region in the reactive material is described by a

quasi-steady reaction zone near the wire, and an unsteady

frozen region far from it.

in the particular case 6<<1, 6=0(1), 6'=0(5 1),

the heat absorbed by the wire is negligible compared to the

heat supplied to the reactive material, while the chemical

heat release is'of order 6 compared with the external heat

input, when the inert reaches a value el givei by
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From Section (3.f), the characteristic ignition

t'me necessary to reach d. is of order (ex(5-1)], namer

t 1 exp 0Y+ E (57)

introuc Ing in E. (55)

U =t/t1  , -- + / (5

with

is 1 4F -

and takin1 2he lim It o high activa-ion energy , of rier

(<-1), so that the characteristic time in the -ransi-

stage is of the same order than the characteristi: hea- :p

time, results in

bexp()

where

b -Q -(6:)

This Equation rezresents a balance etween the heat rele ased

by the reaction and the increment in heat flux to the cuter

region as a result or the surface temperature increment $.

The heat flux from the wire, w , is constant and balanced bv

the heat flux to the outer region associated to the surface

temoerature
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The parameter Q is always positive, since b has to

he greater than one in order to have the reaction frozen far

from the wire. In fact, from (49)

= w. in r + const. (62)

and since u is assumed to go to zero for r- in order to

write Eq. (51), it is necessary that in the limit r-) ,

2 2 Wo

u = K r ex() I im K r -0 (63)

and therefore w <-2. For t large of order tl, Equations (52)

and (57) show that

S 2 2b (64)

and therefore '>l.

Equation (60) describes the evolution of the sur-

face temperature as a function of 7, and the parameters Q

and b. As T increases, Y increases, until it reaches a cri-

tical value D=i after which the reaction releases heat at a

rate too fast to be transmitted to the exterior, and there-

fore Eq. (60) has no solution. Thus, the ignition time 4s

identified as the time at which .D=1, so that

-1/bT. =(Q e) ~ I / b (65)
ign

Through Ecs. (56) and (61) t. may be related to the para-ign

meters A, 3', 6 and S.

d) 6<<1, i=0(1)

This case is analogous to the preceding one, but !
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since the charact- 'stic time of the transient ignition stage

is short compared to the heat up time, the inert solution may

be exDandei for times close to t the characteristic time to

reach the ignition temperature I given ty Eq. (56). Thus,

e = 1 + 4, , (66)s 1 4c.

where - is defined in Ec. (56).

introducing this relationshiD in -he Arrhenius ex-

ponent and expanding for large -.alues cf S , it Is seen -hat

the characteristic chemical time is of crier (i) - sing

as time variable

7- ( -1 (67)

and taking the limi £-o in Eq. ( r5) results

SQ exp($+c) (65)

where 2

1

Thus, t-he ign-ion tzme is simply given 'y

L. ': 1 1 + n

gn n Q) (7

which coincides with EG. (65) in the limit b- (3i-).

e) 5<<1, E:O0(61n ,), B>>ln

This case correspond to the inert solution pres-

ented in Section )3.g) in which the parameter \ is of order

unity. The nondimensional activation energy 6' is considered
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to be large compared to (in6). Therefore, the reaction zone

is small compared to the quasi-steady zone, whose size is of

order (1n6).

Defining the characteristic ignition temperature

all as

exD( ) A (n 0)2 /20 2 (71)
1+

which makes the diffusion and reaction terms of the same or-

der, and introducing (58) in the reaction term, with

aIs 6 +6exn(-Xt16) (-t 1 ) (72)

which is obtained by expanding (25) close to t!, it is found

that the characteristic variables in this case are ¢, as de-

fined in (53) and

a = 6exp(-X 6 t (t-t) (73)

The characteristic heat up time is of order. (6-), and there-

fore the length of the transition stage to ignition is of or-

der (8-).

Introducing these variables in Eq. (55) and taking

the limit 6-0, a'=O(!n6), £=0(6in 6 ), results in

il-exp @+dD I+ - 1 (74)

whose solution yields the evolution of the surface tempera-

.r~e with time, as a function of the parameters of the prob-

lem. It is observed that this equation coincides with Eq.

-,r wihtma ucino h aaeeso h rb



(41) if the parameter P is replaced by (1-!/\:), and if he

new definitions of a and ¢ are used. Therefore figure (5) may

be used to evaluate the ignition time.

in this case the inert surface temperature 

described by Eq. (25'), and the heat flux to 7he outer region,

,s negligible compared to the heat absorbed by the wire.

This solution remains valid up to the time in which the heat

released by the reaction equals the heat transmntted to the

exter icr, and therefore the heat f fux from the wire, uz, b"-

comes zero. This time is considered to be the ignition time,

and is obtained by ecuazing to zero the exoression inside -he

square root in Ec. (55). Thus

2 1 n (75)(St. +1)2 !ntign (St. ±i) z  +tign
Igm +gn

The solution of this equation provides t. as a function o=e :. gn

the parameters A, ' and 6. After tign, the reaction zone

ceases to be quasi-steady 3nd Ec. (55) is no lcnger vailt.

5. FORCED cICvE:Il.N

The analyses presented in the preceding sectocns

may be generalized to include the effect of fluid flow normal

to the wire, when the Peclet number is small and the parame-

ters 5 and £ are such that increments in surface temperature
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of the order of the initial temperature occur for times long

compared to the characteristic heat conduction time.

Let x be the space coordinate in the direction of

flow measured with respect to the wire radius, and let Pe<<!,

be the Peclet number associated to the convective velocity

U.. The Ossen form of energy conservation equation (1)

A exp{- '/ (76)

can be used in first approximation to describe convective ef-

fects. This ecuation has to be solved with ccnditions (2)

(3)

In Section (3) the inert soution n asence cf

convection is analyzed, and the characieristic t me, t, ne-

cessary to achieve temperature increments of order 35 -he

Initial temoerature is obtained as a function o and :. As

discussed in that Section, tne structure of the temperature

profile for times, to, large compared to the heat conducticn

time (t c > > ), is composed of a quasi-stead; region close to

the wire and an unsteady region far from it where the temoer-

atures are of order (1/lnt ).
c

From Eq. (76) it is observed that the effect of

convection depends on the relative magnitude of Pe and t c

In fact, the convective terms in the unsteady zone are of

order (Pe/t'-), while the transient and diffusive terms are
C

of order (t-) Thus, for Pe 0 Ot-i2 the convective and



-27-

unsteady terms have to be retained in the unsteady region for

-1/2 -1/2
r•o(t For ?e<t , the effect of convection is neg-

c

ligible and the solutions presented in Sections (3) and (u)

-i12
are valid. For Pe>>t the unsteady term in Ea. (76) isC

negligible and there is a quasi-steady solution in which the

convective terms are balanced by the diffusive terms. -or

long times, this sclution approaches a steady state in which

the heat sucolied by the wire is ccnvected awav by the flow.

To analyze the inert solution for Pe>>t - le-'sc

introduce as new dependent variable

= S exO(-Pe x/2) , (77)

and let 's assume that the t me dervatve cE m Is ne Z i

Thus, Ea. (76) simplifies to

~ 1 T1 Pe-
2 r Dr

3r

whose solution with conditions (2) and (3) may be written as

dO
( -- f) Ko(rPe/2)exp{Pex(r-1)/2r}

dt- (79)
Pe E K (Pe/2) K (?e/2(

1" r c

Thus, the surface temperature hLstory is given by

es , I e T(- -)

where
K (Pe/2) ) x 8

A Pe E: (P _/2 ) 31)
K (?e/2)
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In the limit Pe-O,

A= 4c (ln(16/pe2)-2Y} - !  (82)

so that the characteristic time to reach the steady solution

is of order {-in(Pe)/£}. If 6/A is small compared to unity,

the temoerature increment of the steady state is small, and

therefore no ignition occurs.

For Pe=O(t -1/2 there is a cuasi-steady region

close to the wire in which both the convective and unsteady

terms are negligible, and an unsteady zone far from it in

which both effects have to be retained.

in the unsteady zone, Eq. (76) has to be solved

and matched to the cuasi-steady solution. Using, for ins-ance,

Laplace transforms 7-he temperature profile in the unsteady

region is found to be

t 2t (2
S= exp(Pex/2) ITq(-,)ex:) -pe2(t-T)/4}exp{.-r2 u t r }d (S3)

4 ITjo t-T

Evaluating this expression =or small values of r, -rovides a

matching condition to the quasi-steady region, namely

_ q(t) (in_4t-Y)+ 1  
_____x_-e2_- __ (3L )s- 47, 4-j, 1t-T

For q(t)=const., when for instance 6<<l, E=O(1), so that all

the heat supplied by the wire is used to heat up the reactive

material, this condition simplifies to

S2t"Is{-- n(16/Pe ) -E (Pe -/4) - 2Y}(85
s 4- 1



Eq. (34) or (85) subs:itutes Eq. (i) as the matching rela-

tionship that together with Eq. (14') Is necessary -c obtain

the surface temperature hcsZorv. For instance, In the case

2
1 {in(!e/Pe - E (Pe :/-L - (6)

which in the limit (Ee t)-0, c incies with Eq. (16), and in

2 ( . W4the iimit (?e t)- coincides with E; . (SO) whth the narane-

ter A given 1)v Eq. (82).

The i I tcn ana yses presented in Secticns (3.C)

-(. ) may also be gener aized to inclue -:he effect cf :cn-

vect~in, n fact, Ec. (E5) is Still valid to cescribe tne

surface temoerat-ure " story, c tne value 1 ive n b .

(52) is subsI tuoei by the new matching r elaions h

2 s

LI2 2_(?
In( 16/e )-Z'(pe t/)-2"t

6. ,CONCLUJSONS

The process of ignition of a reactive material by

an imbedded electric wire through which an electrical current

of constant power is applied, has been analyzed by means o'

high activation energy asymptozccs.

It Is found that the temperature history and there-

fore the ignition time is a function of four non-dimensional

parameters: a Damkhcler Number A, an activation energy '.
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an energy input 5 and the ratio of volumetric heat capaci-

ties C.

The problem has been analyzed in the limit of large

' and it is found that the solution exhibits different ne-

haviour depending on the relative magnitudes of 8' ,5 and c.

Some of these iimiting solutions are derived fn Secticn 4,

leading to closed form solutions for the ignition Tie. The

values of 5 and C considered cover both the cases of reactive

solids and gases. The same methods resented in that Section

may be used to obtain other limiting solutions.

Finally the effect cf convection whIc"- sho culd

important in tne case of reacting gases, is analyzed in Sec

tion (5).
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u , Dimensionless parameter defined in Eq. (15).

x , Dimens:onless radial coordinate Eq. (27).

z , Frequency factor.

Thermal diffusivity.

Dimensionless aczivation energy defined in Eq. (30).

Dimensionless activation energy, E/RT
0

, Dimensionless parameter defined in Eq. (5).

£ , Dimensionless arameter defined in E . (5).

fl, Similarity variable defined in Eq. (±8).
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a , Dimensionless temperature, (T-T )/T0 0

, Dimensionless parameter dpfined in Eq. (23).

Stretched radial coordinate defined in Eq. (34).

, Stretched time defined in Eqs. (34), (67) or (73).

T , Stretched time efined in Eq. (18).

Dimensionless temperature increment cefined in Eqs.

(60) or (68).

Dimensionless temperature increment defined in Eas.

(46) or (77).

* , Dimensicnless temperature increment derfned in Eq.

(31).

Transformed variahle defined in Eq. (49).

SubsCripts

o , Characteristic variable.

e , Exterior conditions.

1 , inert.

Interior conditions.

s , Surface.

0 , initial.

1 , Characteristicc:n:itisn5 at Ignition.

,0 Conditions fr frzm the wire.
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ASYMPTOTIC ANALYSIS OF SHOCK TUBE IGNITION O REACTIVE PART 'ES

1. INTRODUCTION

An interesting method to analyze ignition of reac-

tive particles at high temnerature, is the use of a reflected

shock technique. In this technique, the reactive particles,

which are placed in a holder inside the shock tube, are

"dragged", accelerated and heated by the incident shock wave.

This wave is reflected at the end wall of the tube and when

it encounters the particles, these are decelerated and fur-

ther heated through a convective-conductive mechanism. These

high temperatures accelerate exothermic reactions so that

when the rate of chemical heat supply is larger that the heat

lost to the gas, ignition occurs at a finite ignition time.

Cohen and Decker used this technique to measure

ignition delays of nitrocellulose particles :n N2 at gas tem-

peratures between 600-1200 K and pressures between .1-1.5 MPa.

They found that the temperature dependence of these delays

changes markedly at 750 K.

The purpose of this Section, is to use high acti-

vation energy asymptotics to model ignition delays using the

reflected shock technique. The model provides equations for

the critical diameter and the ignition time as a function of

the parameters of the problem.

No attempt has been made at this stage, to compare
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the predictions of the theory, with the experimental -results

of Cohen and Decker. Hcwever, once calculated the gas temper-

ature and velocity behind the incident and reflected shock

waves, it is easy to compute the ignition delay t4 me and

therefore to estimate the activation energy of the exothermic

reac:-cn.

2. FORMULATION

We assume that t.he oarticle temperature as un_:orn

and we neglect reactant ccnsumcticn. Under these condit_ cnS

the ncmenc-um and energyi con~servation equatocns, mav '-e wr:cen

respectively (see Cohen and Decker

d U 3 C'- D 1
d t '4 D p

d _6,h(T 6eaT A exr(-E-/RT)2
d t C oD 1" C pD C (2

where: 
D7U

Ci =~ R __ +D 7-uI ( 3)
D e ,1 l3 e

Nu~+.6P 33 .55 Nu )

The notation is the same as that used in reference (1), an

which a bar Is used to dist-ingulsh the gas properties from

the particle properties. To assume a uniform particle tenper-

ature wall ce correct, as long as the characterastic heat

ccnvecta;on time, ':,=OCD 2/6TNi;, is large comLsared to the char-
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acterisric heat conduction time, t,=PCD /K, in the oarticle.
C

Eqs. (1) and (2) have to be solved with the appro-

priate boundary conditions describing the effect of the in-

cident and reflected shock wave to obtain the particle tem-

perature history.

The nondimensional ratio E/RT is usually large.

Then, if the reactivity is large enough, the solution exhi-

bits a runaway in the temperature of the particle at a well

defined ignition time. However as the reactivity decreases,

the igni-ion temperature increases and aporoaches the gas-

phase temperature T. There is a critical value of the Dam-

k!.ler number, such that for values smaller than the Critical

value, a stationary solution is reached in which the energy

released by the chemical reaction is balanced by the energy

lost to the gas-phase. For values of the Damkchler number

greater than the critical one, there is a well defined igni-

tion time which is derived in this Section as a function of

the parameters of the problem.

3. CRITICAL CONDITIONS FOR THERMAL RUNAWAY

Tc derive the critical Damk~hler number, let's con-

sider small increments in the particle temperature above the

gas-phase temperature

T(5)RT2



and let's analyze -:he conditions for the existence cf a

t-;onary soluti -on to E7cs. (l)-(2). In the li-mit of high a-l

vation energaies, and neglecti-ng radlaticn, Ea. (2) may 'be

written,

+c(6

when the reaction term must bDe retained b~ecause the temc~era -

ture I's close to 7.Here

_ 12K ADE

QCD 2-, R 7

7he Nusselt numo__er has been taken as 2, sir'nce (critic : -

z -on s c o r r e s poni do LoDng in4 me s wh7n th e heat t-ransfer 2y-'- n

vect-'cn is negliz_:o'Je.

The stationary so!-uti-cn of E.(6) is given

5 exp(- )()

which is shown in Fig. 1 as a function cf S. -:s~ber

t-hat. there is a crtclvalue of the Dankchlernuor:

=1/'e) such that for 5 no st ationary soluicn exi's-

this case --here Is runaway in partitle tanne-

*n t e igr'ion tlme. For 5< thI-,e re a r two s -ac s

tions for each value as- 3, of which only the lower orne is

stable . Fro7% the ef--In I'tion of 5,the cri-*t ical cdiane-er i s

giver. 'by th e reec re sult

4 -; exp(z 1 'RT ) .



1* ---- --

When the effect of radiation is retained the crit-

ical regime occurs with temperatures close to the chemically

frozen equilibrium temperature Tf given by

C"D T4tf f-- T
2K

In this case the critical regime is still given by Eq. (6)

and the critical diameter by Eq. (9), is replaced in Eqs.

(7) and (9) by f{l+2cKDT /K} and T by T f

4. IGNIT:CN ANALYSIS

For values of D of the order of 2 the transientc

temperature history is descr4 bed by Eq. (6). For values of

D<<D a thermal runaway will occur when the particle temner-c

ature is smaller then T (or T,) by a quantity large compared
with R2,IE

To analyze in this case the thermal runaway to ig-

nition, we carry out an asymptotic analysis in the limit of

high activation energy of Ecs. (i'-(2), and consider t asc

the time of thermal runaway.

Let's define, T - 7 (t ), as the temperature of th2

particle at time tc, with the chemical reaction frozen. 7n

the limit of high activation energy, the chemical heat re-

lease is negligible compared :o the convection of heat from

the hot gases, as long as T I<Tc . Thus, for times smaller than

c, the temperature history is gi;en by the solution of Eqs.



(l)-(2) without the chemical source term.

For times close to tc, there follows a short scae

of transition to ignition in which the chemical heat release

term becomes I'moortant and has to be retained. During t-hi-s

stage, the temoeratu-re of the Darticle di4ffers f:roM 7~ '-

small! quantity of order RTC./E, but these small changes su-

fi;ce to produce changes or crder unity in the reao:ticr rate.

To study the ignit--;i stage, let's introduce

E (T- T ) (o
R 2  

-

and let's exo)and 72, -for times close to tc

dT- R T 2

lntrod 'cincg this exc;ansi ocn In q . (2,and def--iin.g a stre-cr-ec

dT I E

c c

results to leacrnz order in,

wit h initial conditions '

0 (4)

where

Q A
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integrating Eq. (13), results in the following particle tzem-

perature history

ln(1-P e 0)(16)

Since t1 is defined as the time at whi ch thermal runaway oc-

curs, Eq. (13) has -to satisfy -.he condition

U=O 00(17)

and therefore ?=1.

Thus, the ignition time is defined by the ecuatifon

C dt-

he re fcr e, t o o )t n t-he I*g nition tiz it is onl

necessar to eret.e inert tem:oera-ure hi*st)ry ro 7--s.

(l)-(2) witnout_ the react-ion, term, and use thatsotinn

Eq. (1-2) tc -deduce the i4gni-ti;on time.

5. INERT7 SOLUTIONt

To solv:e Eq. (1), let's introduce the nondimensional

var i aze s

~Re -- t
x =. tT''(19)

c

where
QD 7U-U 4 -0 D 2

Rez - to 3 / 20)
tRe.

With these d'efinitions Eq. (1) results in

1/3 ( + 2/3  I ( 21)
x 13x Re2/



A-,-

with initial condition

x=l at t2 , (22)

whose soluzion is shown in 7ig. 2 for several values of Re

Eq. (21) ;crcvies the velocity of the particle behind the in-

oident shocck wave, as well as behind the reflec-ed shock w

7n the l=tter case Re is given by EG. (3), with 7-D and U

the velocity of the particle at the instant the reflected

shock wave reaches the particle.

To integrate Ec. (2 we will consider for inclc-

it, -e case in which the radiation term is negigile. in-

trndcing

Z

and usirz Eq. (21) results in

37 5 .55

d In 3(2+.46 Pr" ReP " x
dx 2 2/3 -1 3 1x (4Re. x +2 4 x-)

1

with initial condition

z-l at x= , (2)

and with

3=- (26)
Uc

This equation has been Integrated numerically for

?r=.7, D=9 and different values of Re.. Fi7. 3 shows Re.l,

as a function of 7 for several values of Re..
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Eq. (18), defining the ignition time, may be written

2
(Y-T). QAD exp(-E/RT) (27)

6K z(2+.46 Pr. Re . x )
i

which together with Ec. (23) defines x. and therefore 7. as azgn ig.

function of the parameters of the problem.

To solve Eq. (27), one may take advantage of the

fact that the activaticn energy is large, and use the folow-

ing iterative procedure. Let's lefine

QAQD - 2 55 )33 _ .55 ' [ .33+55 +. 6 x ) ( 8

6E(T-T)Pr" e.Pr R
-3 i

and let's ta'Ke -he nat.rl log of Ec. (27)

+ in . (9)

However, since 4 1s aporoxImatelv of order unity, while f is

large, one may neglect in j , and obtain

z. - (in f (30)
; zgn(f-T). R(f-T).

Figs. 2 and 3 may than be used to derive the zercth order ap-

proximation to x.g n and ign Using these values in Eq. (28)

a zeroth order approximation to j is calculated, which may

then be used in Eq. (29) to derive the first order approxi-

mation to z. g n . This iterative procedure converges very ra-

pidly to the ignition time.

A further simplification may be introduced by con-



sidering that the initial Reynolds number, Re,, is large

compared with unity, as will usually be the case In practice.

Using the solutions to Ecs. (2:) and (u)L for large values

of Re. in Ec. (30), an explicit zeroth order solution for

the ignition time is derived, namely

3t. 1666 .966 Re " - _ _ _
3 +gn w ___ 333_ n (ln _)

B Pr R(-T) R(T-T).

T.is equation is valid as long as T. <<7. When -. a-agn agn

.r)acheS 7, the critical solution discussed in (3) shoulc

1e usec.

7t shouli be pointed out, that in the zase '.n which

i gnitin occurs in the refIected shock region, the Ignition

s the sum of the time the particle travels unti at enccun-

ters tne reflected shock and the time from this instant tc

thermal runaway.

The first component of the ignition time Is calcu-

lated from the oarameters of the incident and reflected shcck

waves, distance from the holder to the end wall and Fig. 2

gIin- the narticle velocity as a function of the non-dimen-

sional time x. Also, from Fig. 3 the temperature ancrement

in the particle (T-T), existing at the instant of encoun-er

with the reflected shock wave, is calculated as a functicn

of the initial temnerature increment (T-T).. The resulting1

temperature increment is used as the initial value in Ecs.

(1)-(2) to calculate the time from the instant the particle



enters the reflected shock region until thermal runaway oc-

curs. Analogously, the value Re i in Eq. (27) is calculated

from the particle velocity at the time of entrance in the re-

flected shock region, which may be obtained from Fig. 2.
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