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ABSTRACT

This report describes the development of a method for obtaining an opti-
mum pressure distribution over the suction side of an airfoil operating
in the transonic speed regime. The pressure distribution is optimtsm in
the sense that maximum lift on the airfoil section is desired while the
flow over the airfoil remains fully attached.

The development allows for shocked and shock free flows over the airfoil

with a compressible and mixed laminar-turbulent boundary layer. The
boundary layer is typically maintained on the verge of incipient separa-

tion over the rearward stretch of the airfoil. The pressure recovery
distribution is obtained from a compressible extension of Stratford's
incompressible turbulent boundary layer separation criterion which is
also given in the report.

A variational problem for maximum lift is formulated and solved to yield

the location of the onset of the pressure recovery and the pressure dis-

tribution forward of this point.
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NOMENCLATURE

A constant defined by (A-7)

AoA,A2  constants defined by (16)

a speed of sound, P

B constant defined by (B-5)

B1  constant defined by (A-7)

b(n) constant defined by (2)

Cf skin friction coefficient

CL lift coefficient
* 2 2
C pressure coefficient, 1 - u e/u
pe0

Cp pressure coefficient defined by (A-47)

G defined on page 18

g(n) constant defined by (2)

g(n) defined in (C-24)

g compressibility factor '0.713

H boundary layer shape factor

K parameter for variational procedure defined by (23)

k parameter for variational procedure defined by (23)

kinverse power of the boundary layer velocity profile
before the shock, defined by (C-12)

k, empirical constant obtained from turbulent boundary
layer flat plate experiments, 0.684

L lift

M Mach number

4e edge Mach number based in ue and ae
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NOMENCLATURE (Continued)

Mach number defined by uo/ViYp/P o

m power defined in the power law expression for the
comparison flow, (A-30), (=1/n)

n inverse of the exponent of the power law assumed for the
comparison flow (usually taken as 6 or 7 for shock
free flows)

p local pressure

Pe pressure in the recovery region along the edge of the

boundary layer downstream of the reference point

PO reference pressure

P nondimensional pertubation pressure

Rs  Reynolds number based on uo, vo and s; u0 S/V

RsJ Reynolds number based on ul, nI and s; u1 s/v I

Rso Reynolds number based on u0, Vo and so; U0S0 /V 0
Rss °  Reynolds number based on ul,nj and sso; uISso/V1

Rxo Reynolds number based on ;uo, V0 9 and xo; UoXo/v0

R. free stream Reynolds number for unit chord length U./v.

r recovery factor (usually -0.9)

s arc-length along airfoil surface based upon an equivalent
flat plate length

* n-

sc s at Cp n-2 for the shock free cases

s o  length of flat plate necessary to duplicate the momentum
thickness achieved by the airfoil where uo occurs
(equivalent flat plate length)

s normal shock location on the flat plate * n-*

Ssc location along an equivalent flat plate at C =n- forsc the shock case
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NOMENCLATURE (Continued)

Sso equivalent shock free flat plate length for the shock case

St  equivalent flat plate trailing edge length

T absolute temperature

u velocity component in free stream direction

uc  comparison flat plate velocity profile, uc(s,*)

Ue streamwise flow speed along the edge of the boundary layer

uo  streamwise flow speed at the reference point

Ut u at the trailing edge, ue(l)

Udefined by (21)

v transverse velocity component

x arc-length measured along the top airfoil surface
starting at the nose

xo  x at the maximum velocity point on the airfoil

Y local measure of transverse distance along the surface

Yj y at the join of inner field and far field

y. defined by (A-3)
;'3y

transonic y coordinate, '/

a3,a4 constants defined by (B-13) for the shock free cases and
defined by (C-27) for the shock cases

defined by a3so

Y ratio of specific heats

6boundary layer thickness

Ss boundary layer thickness aft of the shock

6thickness to chord ratio of the airfoil

- ,| -. ... . ...w
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NOMENCLATURE (Continued)

constant defined by (A-10)

speed ratio scaled with the reference speed uo, u/uo

cc defined by (A-22), uc (s,)/uo

n constant defined by (A-10)

a momentum thickness

es shock induced momentum thickness defined by

S" POuO0 U0

von Karman constant, 0.41

A pressure gradient coefficient (p1'C
2u 2 dp 1/2

X coefficient defined by the power law expression for the
comparison flow (A-30)

defined by (B-3)

v kinematic viscosity, u/P

constant defined by (A-10)

p fluid density

Pe fluid density along the edge of the boundary layer

Pw fluid density along the wall

defined by s/so

nondimensional perturbatin density

T shear stress

T w wall shear stress

total velocity potential

-sa
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NOMENCLATURE (Continued)

0 nondimensional perturbation velocity potential

stream function for compressible flow defined by (A-13)

*i limiting streamline on the inner periphery of the outer
region

refers to adiabatic conditions

)c refers to conditions of comparison flat plate flow

refers to conditions along the edge of the boundary layer

Str refers to conditions at the transition point

)w refers to conditions along the wall

)o refers to reference conditions; also refers to conditions
ahead of the shock for the shock cases

refers to conditions aft of the shock

refers to freestream conditions



1. INTRODUCTION

For an aircraft to maneuver effectively in the transonic speed regime,
its wing must develop high lift without incurring excessive drag. This
report presents a methodol ogy for devel opi ng high lift on airfoil sec-
tions by seeking a pressure distribution that achieves high lift while
maintaining fully attached flow along the airfoil surface. Conse-
quently, the importance of reliably predicting incipient separation over
an airfoil section operating in the transonic speed regime and in iden-
tifying and understanding how the principal controlling parameters of
foil shape and flow characteristics affect separation have been identi-
fied as a principal area of this investigation. This issue is particu-
larly relevant to the primary objective of developing a rational method-

ology for designing a high lift wing section for transonic maneuver-
ability. Activities have therefore concentrated upon the analysis of a
turbulent boundary layer and its separation characteristics over the low
pressure side of a transonic wing section. In this endeavor, a compres-
sible separation criterion has been develoned in which heat transfer
effects have also been included. The criterion is similar to that of
Stratford's.incompressible turbul ent separation cr1iterion El).

The procedure for determining the high lift pressure distribution fol-
lows closely that of Liebeck and Smith [21 which has led to successful
high lift incompressible airfoil shapes. In fact, the variational
problem for maximumn lift, results in all cases (incompressible, compres-
sible, with and without shocks) to the roof-top pressure distribution
followed by a, so called, Stratford type pressure recovery. The loca-
tion of the on-set of the pressure recovery and the shape of the
recovery pressure distribution depend upon the free stream conditions.

Maximum lift is achieved by the shock free case for specified free
stream conditions. For the same free stream conditions, a shock may

-lo



occur which will result in a reduction of lift (compared with the shock
free optimum pressure distribution) and an increase in drag.

An effort is anticipated in the near future to incorporate the pressure
distributions obtained herein into a transonic, airfoil design code to
generate high lift airfoil shapes. That effort will concentrate on
obtaining practical shapes from which a high lift maneuvering wing can
be designed.

Inasmuch as maximum lift also depends on the specification of a realis-
tic pressure distribution on the lower surface of the airfoil, the
follow-on effort to this work will initially concentrate on the develop-

ment of such. Determination of an appropriate lower surface pressure
distribution when the upper surface distribution is specified brings up
the matter of finding a compatible pressure distribution for transonic
airfoil design codes. That is, in determining one that, with given free
stream conditions, will satisfy the closure condition at the airfoil's
trailing edge.
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2. COMPRESSIBLE TURBULENT BOUNDARY LAYER SEPARATION CRITERION

A compressible turbulent boundary layer separation criterion is sought
using the line of reasoning of Stratford in his original formulation [13

of an incompressible turbulent boundary layer separation criterion. His
criterion is sufficiently accurate and is convenient for practical
applications. These traits motivated the present attempt for an exten-
sion to account for compressibility.

The extension appears possible giving rise to a criterion having Mach
number dependence on the right hand side of the external pressure and
longitudinal pressure gradient expression. The form is similar to
Stratford's but with slight changes in certain empirical constants, and
in the definition of an appropriate pressure coefficient for a compres-
sible fluid, C * This latter quantity is defined as

Y- 1

(1 ue y 01e

where the subscript Wo denotes a reference condition. For an airfoil
surface, the reference condition corresponds to the point on the sur-Face
where the inviscid solution achieves minimum pressure (maximum stream-
wise flow speed).

y is the ratio of specific heats of the fluid.

p0  is the reference pressure.

u0  is the streamwise nlow speed at the reference point.

Pe denotes the pressure in the recovery region along the edge of
the boundary layer downstream of the reference point. This
pressure is impressed on the boundary layer and, therefore, is
assumed not to vary with transverse position within the
boundary layer.

ue is the streamwlse flow speed along the edge of the boundary
layer.



-4 -

The turbulent compressible Stratford type separation criterion was found

to be

1I d 1/2 1/2
( )~n-2) ~.2 =g (.C (R o6) )1/12

a

where

g(n) E ic k1n/
2b(n) (2)

n-2

b(n) =-21.32 n- 2/

s is arc-length measured along the airfoil surface based upon an
equivalent flat plate length. To obtain the origin of s the
following procedure is used:

() Locate at the edge of the boundary layer the maximum
flow speed uo .

(if) Determine the boundary layer momentum thickness at that
point.

(iii) Consider flow past a semi-infinite flat plate at zero
incidence with free stream conditions corresponding to
po, U0 , 

p  Determine the length of flat plate s
necessary Io duplicate the momentum thickness achieves
by the airfoil where uo occurs.

(iv) The origin of s is taken to be the equivalent flat
plate distance so upstream from the point of maximum
flow speed on the airfoil.

n is the inverse of the exponent of the power law assumed for the

comparison flow (usually taken as 6 or 7 for shock free flows).

c is the von Kirmin constant = 0.41.

k, is an empirical constant obtained from turbulent boundary layer
flat plate experiments = 0.684.

Pw is the fluid density along the wall.

Pe is the fluid density along the edge of the boundary layer.

Rs  is the Reynolds number, based on uo , s and vo (the kinematic
viscosity of the fluid at the reference point).
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The density ratio (assuming the wall is adiabatic) Cpw/peI introduces a
ea

Mach number dependence into the separation criterion since
-1
_ =.L+r(Y-1) M 2  (3)

where
r is the recovery factor (usually - 0.9), and for turbulent

boundary layers it is the cube root of the Prandtl number.

Me is the Mach number based on ue (Mach number based on the invis-
cid solution, and therefore dependent on location s).

Appendix A of the report presents a detailed analytical development
leading to the separation criterion just given. Use is made there of an

outer boundary layer flow corresponding to a region near the edge of the
boundary layer and an inner flow region very near the surface of the
airfoil. Representations of the flow in these two limiting boundary
layer regions are then patched together in an intermediate region to
arrive at the separation criterion.

2.1 Procedural Summnary for Obtaining the Separation Criterion

In the derivation of the separation criterion, the Prandtl mixing length
hypothesis is used to represent the shear stress in the inner region
close to the wing surface. An expression for the shear stress is also

* provided by integrating the boundary layer equations outward from the
surface to the point y of the inner region where the stress is to be
evaluated. Equating the two expressions gives a nonlinear first order
ordinary differential equation for the velocity profile in the inner
region. The solution (which can be obtained in closed form) has the
following asymptotic form valid close to the surface when the wall shear

stress vanishes:
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U0 AUo' VYw 0

where 2 d p /2
( .-l - 2 d T ()

B1 3(e(Y ) 4 1

Me is the Mach number at the edge of the boundary layer.

Te is the temperature of the fluid at the edge of the boundary

layer.

Tw is the temperature of the airfoil surface.

Thus, when the turbulent boundary layer is on the verge of separating,

its velocity profile tends to zero as the square root of the distance

from the surface. Equation (4) characterizes the turbulent boundary

layer in the inner region when the flow is about to separate.

In the outer region of the turbulent boundary layer, it is assumed that

the total pressure loss along a streamline is independent of the pres-

sure rise, a result supported by experimental results (see Grabowski,

et aL. (31). As a consequence, the pressure loss along a stream line in

the actual case is very nearly the same as on a corresponding streamline

in the turbulent flat plate case where the pressure Is constant. The

characterization of the velocity profile in the outer region is given by

the Bernoulli equation applied along streamlines where the pressure is

assumed related to the density isentropically.

• j
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To evaluate the constant of the Bernoulli equation, a comparison flat

plate velocity profile uc is assumed to exist (similar to the actual

profile) and such that, at the location along the airfoil surface cor-

responding to the beginning of the pressure recovery region, p p0 and

u a uc. At points downstream where p > p. a power law expression is

assumed for uc . This completes the description of the outer region of

the turbulent compressible boundary layer on the verge of separation.

The inner and outer representations of the velocity profile join at some

intermediate location yj determined by calculating the quantity 4(

in each of the regions and equating. Here, * is the streamfunction and

ciu/uo is the speed ratio. The relationship between u and uc at the

join is determined by a similar procedure from the expression

S2/(0vy The separation criterion (2) then follows from the

Bernoulli equation.
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3. COMPRESSIBLE STRATFORD FLOWS

In the previous section, a compressible separation criterion was given

for turbulent boundary layers (equation (2)). From equation (2) it is

possible to derive theoretical boundary-layer flows downstream of the

peak velocity point where the flow is on the brink of separation or free

of surface shearing stress. Such flows are obtainable, initially, by

integrating the separation criterion, from s - so where Cp= 0 to s = Sc

where C*- (n-2)/(n+1). At s a sc the inner region of the boundary

layer reaches all the way to the outer edge of the boundary layer. For

s >_ sc , a momentum integral form is used to obtain the Stratford flow

which continues the one obtained from the separation criterion.

Appendix B presents a detailed derivation of the Stratford flows and the

momentum integral form used to continue the flows beyond s - Sc.

Treating equation (2) as an ordinary differential equation and special-

izing to the case when n = 6 (i.e., the velocity profile follows a 1/6th

power law), we obtain

r / * s B(_ 11 /3J] 's

(5)

Cp(s) 1 - (a3s + a) - 1 / 2 " > sc

where 1/1

B = 1.695 (1+ r (L2-1)i r )' (Rs * 0-
r- o 0

R uoso/V
s 0 00 0 6

[1 + (4 so

B 1/6 s 1 6  -2/3

1.412 ~1
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c = 5.444 -as c

M. is the peak Mach number which occurs at s = so .

The quantity C*- 1-(u /U can be related to Stratford's canonical

pressure coefficient (the pressure difference with respect to the mini-

mum pressure po normalized with respect to the dynamic head at the mini-

mum pressure point, s = so). That is,

) / 1. PouzP °op o

The relationship (derived from equation (A-48)) is given by
Y

[1i+ (-f) MZ C*) F-tT..1 (6)

When =M. 0, it can be shown that CP reduces to p. That is,

* 22

C mI 1- u/u0 ; M0 = 0p p eo

The compressible Stratford flows (velocity profiles on the verge of

separation) are obtained from equation (5) since

Ue(S) /  . 1/2
u--) - Cp(s)) (7)

Figure I displays p versus C (as given in equation (6)) for a range of
p p

peak Mach numbers Mo . It can be seen that as the Mach number increases

for a given speed ratio (given C) then so also does 7 . Further-
p p

more, rp can exceed unity in contrast to the incompressible case.

Figure 2 shows a range of compressible Stratford flows. As the peak

Mach number increases, compressibility permits the attainment of larger

61--



speed ratios (relative to the incompressible Stratford flow) at any par-
ticular point s/se,. Consequently, for incipient separation, compres-
sibility allows the flow to decelerate at a lesser rate than its incom-
pressibl e anal ogue.

Figures 3 and 4 present the compressible C Pand adiabatic density
ratio (Pw/Pe) variations corresponding to the Stratford flows given in

a*
Figure 2. It can be seen that compressibility provides C pa sl ower
recovery than the incompressible case. Regarding the adiabatic density
ratio, Pw decreases as the edge Mach number increases for a specified Pe

due to viscous heating.
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4. COMPARISON OF COMPRESSIBLE SEPARATION CRITERIA

In addition to Stratford's original turbulent incompressible separation

criterion, three formulae exist for the prediction of separation which

purport to include the effect of compressibility. These formulae were

derived or suggested by Gadd [41, Smith [5] and the criterion developed

here (equation (2)).

Assessing a number of incompressible separated flows showed that a

better constant on the right hand side of Stratford's incompressible

criterion is 0.50 instead of 0.39. At the time Stratford developed his

criterion there were limited experimental data to aid in establishing

the constant. For purposes of comparing the different criteria, the

0.50 constant will be used.

The relevant formulae to be compared are:

7C. (s drlp1/ 2 (106.R5 )-/ = 0.50 Stratford Incompress. (8)

1_M e -d (1  Me (106 R 0.50 Gadd (9)

0 0

C( /2 6.R 0 "/1 0 = 0.50 Smith (10)

Cp(S ) 10/62" 1/ 0=0"52 1/2 (106"R 1 /60  (Present) (11)
C s 2 (1-6.R0. 5 -Pw (la

p(tssP
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These formulae have been specialized to a particular exponent in a power
law-type, boundary layer profile (n-6). In addition, Stratford's

results have been adjusted to agree with test data as mentioned previ-
ously. All formulae have basically the same structure but equation (11)
contains a density ratio and a slight Reynolds number dependence on the
righ hand side.

Since Stratford's result is strictly incompressible and since compres-
sibility affects Cpvalues (see Figure 4), Gadd, in view of equation
(9), proposed that compressibility be accounted for by the Mach number
ratio dependence of equation (9). In equation (9), Me is the edge Mach

number and M0 is the peak Mach number.

Based on studies in an AGARD paper £8], Smith suggested that velocities
be used to eliminate the effect of compressibility on the pressure coef-
ficient and equation (10) is the result. The last equation (11) is the
present version which parallels Stratford's original analysis while
including compressibility.

The process for predicting separation by equations (8), (9) and (10) is
to observe the growth of the left hand sides - when the value reaches
0.50, then separation is assumed to occur. Equation (11) is slightly
more complicated since its right hand side is not constant. However,

the process for predicting separation is essentially the same. A way of

comparing the formulae is to consider various decelerating flows and
determine how the left hand sides behave. We begin by converting equa-.
tions (8) through (11) to expressions involving only C . For

Stratford's formula we define

c,, p C p c p(M =0).

--en
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Using the energy equation, the following relation can be derived for use

in Gadd's formula:

1 2 ( _ + -f -1 _ _ _ _ _i Me 0

From this equation, one obtains

2~ (1 +~ ( 1 2) d*)

Ts (2 1 + Y-I M 2C )2 (ds

To simplify matters slightly, we introduce a quantity a s/sQ and re-

gard Rs and Cp as functions of a. Suppose further that R so 100 so that

R so
0

Consequently, equations (8) through (11) can be written

* -1/2

2Ao  Cp a a 1  1 Stratford Incompress. (12)

[c ( dC * / a 111
2A ( Cp oI

2A C dC 1/2 C 10 1Sih (4
20 [c; (a W~ ) I110 = 1Sih (4

2A * 2 -1/ 1 (Present) (15)2 ap
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where

A0  1/

A / -l 2) 3/2 1 +-f- M2 C)2
A1 ~ ~ (i ' T o p (16)

A - a1/60 (1 +r 1M2) 12 1 + I/2

A2 o "P) '

h-1 ri~2 ( +2-12) (1 + r.-1iM2) 1z 1 +---- M--r-

To compare the various separation criteria, we assume a linear velocity

profile in the form

--= I + ) - c B> 0
u0

The parameter a is selected for this investigation to be 1/3 so that $
when a = 4, the speed ratio vanishes. We'define a quantity G as

G 2C;( * 1/2 i 0 "4 Ue 2]ue 1/2

In Figure 5, curves of G and 1/Ai (1-0,1,2) versus a are presented for a

value of Mach number M0=1.4 and 8=1/3. G intersects the Ai curves

where separation is predicted.

Gadd's method predicts separation early (relative to the other two

methods) for the 3,Mo constants selected. The Smith and present methods

predict separation very near the same location. Consequently, the lat-

ter analysis tends to validate (and slightly refine) Smith's original

contention for extending Stratford's criterion to the incompressible

regime. On the basis of the analysis developed herein, the present
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formula predicts separation to occur as much as ten percent earlier than

the Smith formula when the flow is such as to induce early separation

(i.e., (s/s o ) near unity). When s/so > 3, the trend reverses and

Smith's formula will predict a slightly earlier separation for those

flows such as to induce separation for s/s o > 3. The same basic trends

prevail with respect to the Smith and Gadd formulae. However, the per-

cent variation is seen to be considerably greater.
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5. ESTIMATION OF LAMINAR RUN FOR COMPRESSIBLE BOUNDARY LAYERS

Lift generation on an airfoil section is known to be enhanced by extend-

ing the region of laminar flow on the foil. The type of flow we are

striving to achieve is one that rapidly accelerates about the nose of

the foil from the stagnation point x=O to some point x on the top sur-

face (here x is arc-length measured along the top airfoil surface start-

ing at the front stagnation point). Thereafter it only gradually accel-

erates to its peak velocity which we assume is reached at x=x o. (For

purposes of this analysis, it is assumed that the boundary layer flow

remains laminar up to the point Xtr where, thereafter, it spontaneously

transitions to a turbulent boundary layer.) In the region of rapid

acceleration near the stagnation point (zone of favorable pressure gra-

dient) we make the assumption that the boundary layer grows incompres-

sibly. The momentum thickness in the laminar region can then be calcu-
lated by the method of Walz [61, which follows

O2. .470v e xUeW ) dE x < x r(17)

ue(x) \o(Ue(x)/

For the remainder of the flow up to the peak velocity we assume

u(x)-O and ue-uo. This is a flat plate assumption - but in this

region we want to account for compressibility. Following Gruschwitz [7]

(see also Reference £81, Schlichting, pages 341-344), we have for the

shape factor K-O corresponding to ue=O that

_2_v7 d (e 2 ) = 0.2349
0

This integrates to

2  0.4698v
Uo  (XX

u

.. . . .. . .W
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where x* is a constant of integration.

We observe that when u (x) =_uO, equation (17) reduces essentially to

the previous equation when x* = 0. Consequently, this result suggests
that we can use equation (17) to a good approximation for the growth of
a compressible boundary layer subject to a pressure gradient provided
the compressible ue(x) is used. This same result has also been obtained
from a more rigorous mathematical treatment but the analysis is lengthy
and is rnot provided here.

To determine the transition point Xtr a simple transition criterion
based on momentumn thickness Reynolds number Re is used. Reference £93,
(page 332), suggests that Re - 400 suitably determines transition for
compressible flows with pressure gradient. When this criterion is used

with equation (17), the laminar run can be determined.

5.1 Equivalent Flat Plate Length

An equivalent flat plate length so must be obtained for use in the sepa-

ration criterion previously given. The procedure for determining an
equivalent flat plate length is to find the point on a flat plate where
its momentum thickness is equal to the momentum thickness at the peak
velocity point on the airfoil.

In this section, we derive an expression for the turbulent momentum
thickness which develops as the boundary layer flow sweeps o.,er a speci-
fied smooth surface from a stagnation point and past the transition
point where the flow is assumed to become turbulent instantaneously. In
this endeavor we asstane the compressible turbulent momentum thickness 6
can be approximated by its incompressible analogue:
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Eu(x)]
d  Xtr

where, for accelerating streams, (see Reference [8], p. 633-634) n-4,

d-3.94 and C - 0.01475. In this semi-empirical result, the turbulent

boundary layer begins at the point Xtr. To obtain the constant C1 , we

use the laminar momentum thickness 6tr expression derived by Walz (i.e.,

equation (17)). Equating the previous equation to equation (17) with x

Xtr and e - etr gives

I
i n+1

C1 = (U \) (tr) tr

Therefore, the momentum thickness at the maximum velocity point x. on

the airfoil is expressed as

1 ~ 11

a x 415

The momentum thickness 60 for a turbulent transonic boundary layer flow

past a flat plate has been determined experimentally [11]to be

o - 0.022 (Rs 1-/6s (19)

To determine the equivalent flat plate length so of the airfoil (to the

point of peak surface speed uo), equations (18) and (19) are equated to

give

&
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1 11 1 24

T - r3.94 T x vO ou()3.94

s0=97 S(O)[(tr) ' ) OtJ4+ 0.01 48(-6-j0 Ue) ).4d] (20)

For every point x (such at 0 < x < xo) there is an equivalent flat plate

distance s (such that 0 < s < so ) where the correspondence is estab-

lished or requiring the momentum thickness on the airfoil at x be equal

to the momentum thickness on the flat plate at s. In general, s is

related to x in a nonlinear fashion in the range 0 < x < xo. However,

in the range xo < x < 1, the momentum thickness growth on the airfoil is

to be constrained to be the same as obtained from a compressible

Stratford type flow (which invokes an equivalent flat plate analogy to

the airfoil). Therefore, in that range s and x are related linearly.

$



6. VARIATIONAL PROBLEM FOR MAXIMUM LIFT

In this section, the variational problem for obtaining the maximum lift
on a transonic airfoil section is formulated and solved. The theoreti-

cal pressure distribution has been obtained which provides the maximum
lift on the airfoil assuming the flow is fully attached over the air-
foil. The optimum pressure distribution obtained under the constraint
of nonseparation is comprised on the upper surface of an initial flat
roof-top pressure profile which prevails from the leading edge to a
point xc, where the boundary layer flow is thereafter on the brink of
separation. Aft of this point, the pressure recovery is taken to be a
compressible turbulent Stratford-type profile. Such a profile just
avoids separation (within a certain margin of safety to allow he flow
to remain attached under nominal off-design operating conditions). On
the lower surface the maximum lift requirement imposes a stagnation
(zero flow) surface. Consequently, the optimization problem has led to
flow requirements on the upper and lower airfoil surfaces that are
impossible to meet in practice. The requirements are therefore to be
viewed as guide lines for achieving a high lift airfoil section. That

is, certain practical modifications to the theoretically obtained pres-
sure distribution are necessary in any realistic design, to achieve
physically useful airfoil shapes. These modifications are indicated
later in this report.

The solution to the variational problem formulated herein predicts the
location of the point of incipient separation xc, on the airfoil upper
surface and the magni tude of the peak vel oci ty (a constant from the
leading edge to x.,).
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6.1 Small Disturbance Transonic Assumption

In formulating a variational problem for obtaining the maximum lift

achievable by a transonic airfoil section, use has been made of the

transonic small disturbance approximation

O(x,y) x u.x. 2/3 O(x,y) + o(;4/3)]

p(x,y) _p,.E1 + ;2/3 P(x,y) + 0(^4/3)]

p(x,y) . P.E1 + 52/3 a(x,y) + o(^4/3)]

where y = 1  is a compressed lateral scale, 6 is the thickness ratio

and 0, P and a are, respectively, the perturbation potential, pressure

and density. See Figure 6.

The relationship between perturbation pressure and velocity is given by

P= - YX

where y = C p/Cv is the ratio of specific heats.

For a unit chord airfoil, the lift coefficient is given by

CL= L/(o Pj!)

where L Plower d4 f Pupper d

o -

and the subscripts "lower" and "upper" refer to the respective sides of

the airfoil.
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u = upper surface
2= lower surface

= thickness ratio

y
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Combining the previous four equations gives

M! CL .[2f' yu") dU pr+[ 2f ( I.e) d4]lwe 6
oupper 0 oe

where M, - U.n/am is the freestream Mach number and a. = -p. is the

corresponding speed of sound. Thus, maximizing lift is equivalent to

maximizing M. CL. To the leading order approximation, the transonic

result for M! CL and its incompressible analogue for CL have the identi-

cal format. Consequently, the same ideas developed by Liebeck and Smith

[2) to obtain the optimum (high lift) pressure distribution can be ap-

plied to the transonic case as well. Therefore, to maximize M2 CL, we

require that

on the lower surface be an absolute minimum while on the upper surface

it should be a maximum. If u e/U could be made to vanish along the en-

tire lower surface then the optimal lower surface condition would be

achieved. However, since stagnation can only occur at a point in a two-

dimensional flow, a more realistic requirement is that u e/U.1lower be

as near zero as possible. In general, at the trailing edge ue= ut > 0

is specified.* Since flow always accelerates from a stagnation point,

the lower surface problem seeks the airfoil shape that permits the flow

to accelerate away from the stagnation point and achieve the trailing

edge value ut in such a way thatfo ued& is as small as possible. Since

the mathematical limit of zero area under the curve cannot be physically

For a cusped trailing edge, ut tends to U.. For a finite T.E.
angle, the inviscid u = 0. The ut that we specify corresponds to
the tangential flow a the trailing edge external to the boundary
layer. The boundary layer tends to smooth the finite T.E. angle.

.. . . . ..'. . . .. .. ... . . . . Il . . .... . . . . . .. .. . . . . . ... i . .. . .. .. . . . . . . . t . .. il N | " . . .. n l| . . . . . . .. .. . . .. . .. .
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met, the problem will be addressed using a "cut and try" method investi-

gating the various practical possibilities for achieving the constraint.

The upper surface problem seeks the greatest area under the curve

fo1UedC . This problem is controlled by boundary layer separation due

to adverse pressure gradient in the recovery region.

6.2 Investigating the Quantity to be Maximized

We now focus attention on the upper surface problem and define the quan-

tity I/U. that is to be maximized.

1 Ue
=f d& (21)

0
To obtain the largest value of U/U. under the constraint that the flow

remains fully attached, use is made of the limiting flow on the verge of

separation. As has been developed previously, an expression for the

compressible turbulent boundary layer velocity distribution that remains 4
on the brink of separation (in terms of the equivalent flat plate length.
scale s) is given there by [c.f. equations (5) and (6)].

e ( [- B (s/so) 1)1/3] 1 ; so <_s < scSU.(22)

uo  -414
uo ( slso) + a4-/ ; s < S <_t

where

ag " ' So
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U. is the peak velocity attained at s = so , s t denotes the equivalent

flat plate trailing edge length, sc denotes the location along an equiv-
*c

alent flat plate when Cp = 4/7, and B, a4, a5 are specified functions of

the peak Mach number Mo and equivalent flat plate Reynolds number R
so0

Figure 7 illustrates the linear relationship between the airfoil arc

length measured from the nose x and the equivalent flat plate length

scale s along with definitions of the constants k and K (the two key

parameters of the variational procedure to follow). That is,

s-s o - x-x o  ; s >s o I x >x o

k = xo/s o  (23)

K = st/so 

The integral appearing in equation (21) can be expressed as a contribu-

tion from the accelerating region and a contribution from the pressure

recovery region. Breaking up the integral in this way and using the
linear relationship between s and x of equation (23) in the pressure

recovery region only, gives

k K ue(S)
= s e d(,/so)  s o  d(s/so)

So

Acceleration Region Pressure Recovery

k u e M d( Iso) + K d(s/so)

X o 1 ,-.
k+K-1

* Note we have arranged that in the acceleration region the integrand is
a function of the physical arc-length [i.e., u = u()1 and in the
pressure recovery region, the integrand is a function of the equiva-
lent flat plate length s.
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u0 =maximum velocity on upper
surface at x =x0

so =equivalent turbulent flat
plate length

ue

~U _

u

S US

u :fn k,K,

0 0

Figure 7. Upper Surface Velocity Distribution

II
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Since the velocity distribution in the pressure recovery region is spec-

ified by equation (22), the second integral in the above expression can

be written as

=1K Ue(s)

I s (KRso'M °) - - d(s/s°) (24)

and therefore
ok Ue(M

is (K'R soo) I e d(9/s o)

.- (k + K -1)

The Reynolds number and Mach number functional dependence enters into

the I s expression by way of equation (22). It can be shown that the

peak Mach number MO depends only on u. for specified freestream condi-

tions since

U 02 ao2 U0.
2  a,2

Hence,

o2 -u 02 Uo02

0 0 (26)
a0  2 .2 2
0 2 ( + =-r- " T

It can also be shown that the equivalent flat plate Reynolds number

Rso depends functionally only on uo and so provided the freestream

conditions are known. Suppose the freestream unit length Reynolds num-

ber is R.- U./v.. Then

U V0 -o
R5 0a u . -r so (27)
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where

V4, I1. PO

7- '5 0P
o 0-

Using the power law relationship between ii and T (see Reference [10],

NACA Report 1135)

lie T. 3/4

and the isentropic relationship
1

0 . TI( ) r

7. T-. + Y- Mo

in equation (27) gives

(7-3Y)

"o

which displays the uo and so dependence. Furthermore, uo and so depend
on the parameters k and K since from equation (23)

S0  1/(K+k-1) ,I (29)
R0 = k(K+k-T) s

and from equation (22)

Uo/U= f(k,K; ut/U.) (30)
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In equation (30), the trailing edge velocity ratio ut/U. is assumed

given for our purposes.

As a consequence of equations (26) through (30) we have determined that

the peak Mach number and the flat plate Reynolds number are functions

only of k, and K provided the freestream conditions and trailing edge

velocity ratio ut/U. are specified in advance. Therefore, in equation

(25), 1s(K,RsoM o ) S J(k,K).
s o0

6.3 Two Limiting Cases of the Equivalent Flat Plate Length

The two special cases to be considered for this investigation are speci-

fied by Xtr-Xo (full laminar run to the separation point) and xtr=O

(full turbulent boundary layer). For the laminar run case utr=uo,

vtravo and equation (20) reduces to

so = 61.98 ( )( UeM 5 d(/x )3 ; laminar run (31)
0 T ~0Re x2/5[0

0

For a full turbulent boundary layer (x tr= 0 ; tr= 0), equation (30) re-

duces to

1.71 U=)394fl( Ue(M 3.94 2/4o25

so Re 1 /2 5 [('o {(_TP)3 ( 24/xo; full turbulent (32)

xo

Since k =_ xo/s o , equations (31) and (32) provide definitions of k for

the laminar run and full turbulent cases, respectively. That is
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jfkzf Ue5 Uo 5
Jo tL Tu=  d(/s 0) - ( =) R 2 13 / k,2" 3 (970.7) = 0 (33)

0 o0

where Re 0o o and kz,kt denote k for the laminar run and turbulent
0

cases, respectively.

6.4 Variational Formulation and Solution

For both the laminar run and turbulent cases, the variational problem

can be formally written by

(maximize) H[Y(n);k,Kj = jk + JRK(35)
G2(k ,K 1

under the constraint
(k

G(k,K) + g[Y(n)]dn = 0 (36)

That is, it is desired to find the function Y(n) and the values of k and

K which maximize the functional HCY(n);k,K] subject to a side condition,

equation (36). Equations (33) and (34) are the side conditions for the

two cases of interest. Compare also equations (25) and (35).

Introducing the Lagrange multiplier X, equation (35) and (36) may be
combined in the following way:

A[Y(n);k,K,X] - I[Y(n),k;A] GI(k,K,A) (37)
G2(k,K)
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where

k

I[Y(n)k;.]I f{Y(n)] + 'X gcY(n)]} dn

(38)

G 1(k,K,X) =J(k,K) + X G(k,K)

The first variation of H is

- 3 H 3 Ha

6H 2 Tr 1 r 6GI+'2 G2

Each of the variations 61, SG1 , 6G2 can be expressed in terms of the
variations 6Y, k and 6K. Letting 6H - 0 gives the following Euler

equations

f + g =0 ; SY 0 (39)

y .y

3H ~ ~ ~ a I G, - 3G2  kO(03H(f +Xg)- + 3H -  2 0 6k 0 (40)

-R aGI  - aG23H G1  3H G2  SK*0 (41)TrI I - + T - = 0 ; K

Consider first the Euler equation (39) to obtain the shape of the velo-

city profile in the region 0 < x/s o < k. From equation (25)

Y = U e/U.

(42)
f[Y] = y

For the laminar run case, equation (33) gives
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g[Y] = y5 (43)

Therefore, substituting (42) and (43) into (39) gives

1 + 5 X 0 ; laminar case (44)

The 6Y Euler equation gives for the turbulent case (using equation (34)

from which g[Y3 = Y3.94):

1 + 3.94 A = 0 ; turbulent case (45)

Both equations (44) and (45) imply that Ue/U is constant in the range

0 < x/so <.k. But Ue/U. = Uo/U. at xo/s o Z k so

Ue/Us=- Uo/U. 0 < x/so <.k (46)

The corresponding Lagrange multipliers can be obtained from equation

(44) to (46).

Solving equations (40) and (41) provide the value of k and of K which

maximize V/U.. Figure 8 illustrates the physical situation where the

particular k and K so obtained fix the peak velocity u. and its location

xo on the airfoil. It is difficult to obtain k,K analytically due to

algebraic complexities. Consequently, a numerical procedure was used.
Figure 9 and 10 display the variation of maximum theoretical lift

coefficient (for both the laminar run and fully turbulent cases,

respectively) with M for a range of ut/U = . Figures 11 and 12 present

similar results for maximum theoretical M! C . It is seen that a

substantial advantage exists for the laminar run case. Furthermore, the

sensitivity of the results to the parameter ut/U. is quite apparent.

Structural considerations at the trailing edge of an airfoil apparently

limit ut/U to about 0.9 since our perusal of airfoil data has not

displayed values any greater.
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6.5 Modifications To The Optimized Velocity Distribution

The analysis of the previous sections has indicated that CL will be max-

imized by using a velocity distribution of the form:

Ue

- = 0 over the entire lower surface
U.n

ue  given by a flat roof-top plus compressible
u. Stratford distribution on the upper surface.

Unfortunately, this distribution will not yield a physically realizable

airfoil shape due to the discontinuities present at the nose and the

peak velocity point and the fact that true stagnation can not occur over

the entire lower surface. Therefore, it seems necessary to modify the

velocity distribution around the nose region, over the entire lower sur-

face, and at the sudden decelerating region located in the supersonic

flow on the upper surface (xsx o ) to avoid a possible shock there. The

proposed velocity distribution modifications are fndicated by the broken

lines in Figure 13. Systematic variation remains yet to determine how

close to the optimum pressure distribution can be obtained.
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7. SHOCK CONSIDERATIONS

Our design procedure relies on relating the developing boundary layer

along an airfoil surface with that on an "equivalent" flat plate (the

equivalence determined via the momentum thickness). Consequently, it is

important for our design procedure to have the capability of assessing

the shock-boundary layer interaction through its effect on the momentum

thickness. Appendix C presents a derivation of the appropriate expres-

sions necessary to assess the shock-boundary layer interaction for

incorporating the shock effect into our design procedure.

The momentum thickness after the shock Bs was found to be related to the

momentum thickness before the shock by

s  F(Mo;k) a°  (47)

where

F(M ;k) E1 +L (+) (1+4M 0 1M2(-Y-l) k g

g - 0.713 is a compressibility factor for 0.8 < M < 1.4

k is the inverse of the power of the velocity profile before
the shock. That is,

L 1/k

U0 0

If the velocity profile after the shock is described by

I/n

1 s

then n and k are related by

n k*3 ) 3 (48)

0.
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where M1 is the Mach number just downstream of the shock. M1 is related
to MO by the normal shock jump relations.

For typical values of k (-6) and Mo (-1.2), the change in the momentum

thickness across the shock (relative to the momentum thickness before
the shock) is 0(l). Equation (18) provides an expression for 6o for the

full laminar run case and the full turbulent case.

To obtain the equivalent shock free flat plate length Sso (comparable to

so in the case of no shocks), the following expression is used:

6/5 1/5

so V 1

The above equation provides an implicit relationship between the equiv-

alent flat plate length and the shock location xo on the airfoil.

Now, if C is defined by
p

2

C (s) - 1 -\ (50)

for the airfoil having a shock at xo and a velocity ul immediately down-

stream of the shock, then the separation criterion is given precisely by

equation (2) but with n determined by equation (48) and so replaced by

sso*

In this case, Cp for incipient separation is given by

B s1/16 2n

Cp(S) - -s " 2, S Ssc

C~~ (s 34a1/2; s > S
Cp~s as - sc
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where 1)/6 2/n
B _= 3gn2(n)(Rs 1o0 6)

2-n

2n sec. 1/6 
n 1/6

3ns c SO so(SO

(n+)13 2
4 ' a3 Ssc

From this last equation 2 < n < k.

7.1 Variational Problem Including the Shock

The variational problem including a normal shock follows along the same

lines as in the shockless case of Section 6. The parameters k and K

(see Figure 14) are defined for the shock case by

k X0/sso

1-x o
S so

and the integral Is (see equation (24)) is given by

ut  i ue,. d s s
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Figure 14. Upper Surface Velocity Distribution With a Shock
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u. [1 -B(K 1-)21 /2 if- >

Ut_

where -

[a K + a4]'1/4 if - < K% _ SSo -

The location of the shock so is obtained directly from the expression

s - F(M0;k6% given by equations (47) and (C-15). Using the defini-

tion of k=xo/Sso and the above mentioned equations leads to:
fO k 411 -/(V ) 5/24 (Vo -1/4

()3' d(9/ss4)u 0.5725 k" 24 F(M k ) (52)

By using the conditions along a streamline (i.e., enthalpy remains
invariant, jump conditions across the shock and isentropic flow else-
where) it can be shown that the right hand side of equation (52) depends

functionally upon k, K and parametrically upon M.,v. and the speed ratic

at the trailing edge ut/Un. Furthermore, the variational formulation

for the shocked flow case can be shown to reduce to exactly the form of
the shockless flow case considered previously with the result that

uex Uo ; (0<x <_x 0  -k s0 )  (53)

Consequently, the integral expression on the left hand side of equation
(52) is equal to k. Therefore, equation (52) provides an implicit rela-

tionship between k and K. That is, equation (52) is of the form k=k(K)
and xo, so, uo and Ue(x)/U. dx e depend functionally only on K and

so, 0 o e pper
parametrically on M,V and ut/U=. To determine the maximum lift a
numerical procedure was developed.

IL L -...
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Numerical Results for the Maximum Lift Problem

In the shocked flow problem the order of n (the exponent of the power
law of the velocity profile) is determined from

(M2k+) M -3 ; M, < 1

k M,> 1 (shock free)

It was determined that the shock solutions matched the shock free solu-
tions only when u. X a 0 (M0= 1;K=K sonic ). See Figure 15. In order to

calculate the shock solutions, an iteration method was employed using
the exact shock free sonic solution as an initial guess. Some results

are provided in Figures 16 - 18 for the trailing edge speed ratio
ut/U. - 0.9 and for a range of free stream Mach numbers M. = 0.8, 0.9
and 1.0. As M. increases, the length of the roof-top pressure distribu-
tion is seen to increase. Furthermore, the Stratford type velocity
profile exhibits less streamwise variation as the strength of the shock
increases. rhis is expected on physical grounds since the effect of an

increase in shock strength is to bring the boundary layer velocity
profile closer to the condition of separation. Figure 19 shows for the
trailing edge speed ratio ut/u,. - 0.9 how the maximum lift coefficient
was found to vary with free stream Mach number in the transonic speed
regime for a fully turbulent boundary layer for the cases of shocked and
shock free flow. The minimumn percentage difference between the case
with shocks and without shocks was found to be approximately 11,1; with
the occurrence of shocks diminishing the maximumi lift coefficient.
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Figure 19. Maximum CL With and Without Shock
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APPENDIX A

Development of a Compressible Separation Criterion

for Turbulent Boundary Layers
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Inner Field Development

The inner field region corresponds to the flow within the turbulent

boundary layer near the wall surface. Within this region, we assume

fully turbulent flow and use the Prandtl mixing length hypothesis to
represent the shear stress with X=cy where K is Yon Karman's constant

and y is the local measure of transverse distance along the surface.

The shear stress is given by the expression

22 au \2

2PK 2y 2 3)2(A-1)

By integrating the boundary layer equations from the wall outward to
some point y, which is also near the wall, we obtain

r= T ; P d p=p(S) (A-2)
w F

where the external pressure gradient has been assumed to be impressed

upon the boundary layer.

Equating z's in expressions (A-I) and (A-2) gives the flow speed gra-
dient at a point y* where the two expressions for T are equal. That is,

au\ 2  dp -1+ T Y-2
IT - * 2 (A-3)[~p22

Assuming separation occurs when Tw vanishes, expression (A-3) can be

viewed as a partial differential equation for the flow speed in a region

of sufficiently small y . That is, setting -rw = 0 in the previous equa-

tion, gives

() 1/2 3c A y-1/2 whenTw= 0 (A-4)

where

*

- A '
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u/u o , a speed ratio scaled with the reference speed uo .

'1,2 22 dpj1/2A :p C ~Pd) a pressure gradient coefficientPw 0 5 (varying with location s)

Before equation (A-4) can be integrated, we must determine how the den-

sity ratio P/Pw depends on the streamwise speed. For a perfect gas, the

density ratio is related to the temperature ratio by

P T- (A-5)

w

From Crocco's relationship (see Reference [9], page 144), we have that

T = (1 + B c - A2C 2 ) (A-6)
T-
w

where
A2 = [(Y-1)/2] M2

Tw/T e  e

1 + [(Y-i)/21 M2 (A-7)

B1  Tw/Te

Therefore, combining equations (A-4) - (A-7) gives

=, A y-112 when ;w" 0 (A-8)
(1+ 1 +B _ A 2 

2 )1/2

This equation can be integrated as an ordinary differential equation
since s enters only as a parameter through the terms A, B1 and A. Inte-

grating from the wall outward the solving for c as a function of y
yields

= sin (2AAVy-¢C) + (A9)
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where 2  2 /2/2

9 (4A2 + Bj) /2A2

ni B1/2A
2  (A-1O)

C sin'1{Bj/(4A 2 +B2/]

To approximate the flow speed ratio near the wall at separation, we

expand the sine function appearing in equation (A-9) using the trigono-

metric relation for the sine of the difference of two angles together
with the series expansions for the sine and cosine of small angles.

Neglecting higher order terms in the expansion, we obtain

y <<1

2A + A. BV74+ 0(y)] ;(A-1l)

Notice that the flow speed tends to zero in a square root fashion at

separation as the wall is approached. The leading order term is similar

to the incompressible result (suitably modified by the compressible

pressure gradient term in A) and the next term contains a heat transfer

contribution and a Mach number effect (see equation (A-7)). The stream-

wise speed gradient at separation is obtained by differentiation of

equation (A-11). Hence,

y y<<l

A y- [i + AB1y1/2 + 0(y)] ; (A-2)

and the slope of the flow speed is infinite at separation, tending there

as the inverse square root of the transverse distance.
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To complete the near field specification, we require the stream function

in the boundary layer. A suitable definition of the stream function for

compressible flow is

U f = o  dy (A-13)

0

But for y << 1 (which implies that << 1 from equation (A-11))

E (1 ; A 1 -B B4+ 2  (A-14)

PWV1

Substituting equation (A-i1) into equation (A-14) and the resulting

expression into equation (A-13) gives, upon integration

y <<1
=.u A y3/2 1 +3ABly1/ 2 + 0(y)] ; (A-15)T w =O

Later in the development we will equate certain inner and outer physical

quantities in an overlapping region to obtain the separation criter-
ion. The technique is not an "asymptotic matching" in the strict sense,

but rather falls into the category of a "patching" approach. The proce-

dure is not unique. Nevertheless, we follow Stratford in this develop-

ment in view of the success he obtained. In so doing, we require the
3

limiting forms (for y << 1 and tw = 0) of the quantities and

These are readily obtained from equations (A-il), (A-12) and (A-15).

They are

~.I
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3 1j+ 3AB V'7 +O(y)] $ (A-.16)

phyi 3a l~ine ths quantities) =0 (A-17)

The pyia sinfcneothsquniisis unclear. However, it
is perhaps interesting that equations (A-16) and (A-17) have the expres-
sions in brackets in commnon - at least to 0(y). The ratios were origin-
ally chosen (most likely) to clear the y dependence from the leading
order terms.

Outer Field Development

The outer field is considered to be the region in the turbulent boundary
layer., well removed from the surface of the body. If a pressure ri se
did not exist in this region, the velocity profile would be similar to
that along a turbulent flat plate. The total pressure loss can be cal-
culated for such a case-. For the real case of a pressure rise we make
the assumption that the loss of total pressure along a stream line is
independent of the pressure rise. This assumption is supported by
experimental resul ts. (See Reference C31, Grabowski et a7. ). If the
pressure rise is severe, the assumption should be even more reliable
since it will produce the effect of an instantaneous change of flow con-
ditions over a short spatial duration and for such a change the effects
of dissipation are negligible. As a consequence, we assume that the
pressure loss along the stream line in the actual case is the same as on
a corresponding stream line in the turbulent flat plate case where the
pressure is constant.



-62-

In the outer region, we assume the Bernoulli equation, applied along a

stream line, holds true in the form:

+ V along * > (A-1B)

where i denotes a limiting stream line on the inner periphery of the

outer region. (*i is unknown and can be found as part of the solution.)

In this outer region we assume the flow is well represented by an adia-
batic, inviscid and nonconducting fluid flow. Such a flow is isentropic

and is described by the isentropic relation

p = _)(T )Y/(Y-) (A-19)

Substituting Equation (A-19) into the Bernoulli equation yields

u 2  y Po po( Y-UI

T_,+ YZT T wp - f. > *>i (A-20)
0 -

low assume that far from the wall a comparison velocity profile
uc  U(SM) exits (subscript c denotes the comparison flow) and is a
reasonably accurate representation of the flow field in the outer bound-

ary layer. (Notice that the y dependence enters implicitly by way of
p.) At some point s = so corresponding to the beginning of the pressure

recovery (the reference point), we have that

UCsol) - c (So l) (
P'Po t(A-21)

The relations appearing in equation (A-21) are used to evaluate the

Bernoulli 'constant' of equation (A-20). Dividing equation (A-20)

by uo/2 results in0i
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€2 2 Cp(S)c

where r o' 1CpS TzTIPO 2  o " (A-22)

_ (S )
0 o

u c(s,
C U0

u(s,)
U0

Taking the partial derivative with respect to ' of the Bernoulli inte-

gral (A-22) gives

S = % T- (A-23)

From the definition of the stream function given by equation (A-13) we

have that

* =, uO(.-) = U0 ( ;c

Therefore,

T(A-24)

a c ai ; a c = P ~
Ty-- T c y-" o P )cc T*-

C

Comparing Equations (A-23) and (A-24) and assuming (p/pw) - (P/pw), we

obtain 
c

a; , c (A-25)

Using Crocco's relationship for the comparison flow we obtain



-64-

(LP (A-26)
c 1 + BcA2 2)

C y uo  dy (A-27)
0 1 1 + B Icc-A2 2c

ac c (A-28)

and from equation (A-22)

€2 2 _ C*(s) (A-29)

Equations (A-29), (A-28) and (A-27), representative of the outer field,

are comparable to the inner field equations (A-11), (A-12) and (A-15),
respectively.

We now assume the following power law expression for the comparison

flow:

;c = Xym ; /em (A-30)
X~1/

where the power m of y and the coefficient X (expressed in terms of a

constant ki determined from experimental data and the momentum thickness

6) are given by turbulent flat plate boundary layer experiment. Experi-

mental evidence exists showing m = 1/7 fits data well even for a Mach

number as great as 2.4.

Equation (A-30) is to be substituted into equations for p, c and ac/ay

(previously given). The immediate objective is to develop the far field

patching conditions. In so doing, we will push the far field results to

* Other velocity profiles can be chosen, for example, Cole's law of the
wall/law of the wake. However, the assumptions inherent in this
Stratford type development do not warrant such sophistication.
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the limit of small y. Patching will then provide y at the join (y=yj)

and a relationship of the actual velocity profile to the comparison pro-
file. Hence, for small y

ac @c ym-1
; ni-. y << 1

(A-31)

f U Tc(1iB- 1 (m+) } y <<

0f c Ic o (M+T )

The patching conditions are readily obtained from these expressions.

They are

S3 m3  4m-2 [ m+A-32)

__ 2 m uL + B 1Xl(M. Iym] (A-33)

;c~) 42 m

Notice that the expresions in brackets above are not identical, as they
were found to be for the similar conditions obtained in the inner
field. This disparity arises because the approximation for the stream

function, flow speed and transverse flow speed gradient (using the com-

parison profile) become weak for y << 1. However, to leading order in

y, this disparity does not upset the approach we are using. It would,
however, affect matters if a higher order development were pursued. In

that case, a better representation of the velocity profile in the outer

boundary layer for small y would be warranted.

!Now
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Furthermore, it should be noted that the relationship between C, C

and Cp (equation (A-29)) was not used in obtaining equation (A-33).

After equating the near field and far field results, equation (A-29)

provides the separation criterion.

Patching

To find y at the patching locating (y=yj) we equate the coefficients of

equations (A-16) and (A-32) and obtain

44 .4 m3  4m-2

T A • (A-34)

Solving this expression for yj/e (see equation (A-30)) gives
3 4  k 4

Yj/,)2"4m= m " 1 (A-35)
tm+1) 82 A4

To find the relationship between the actual velocity profile and the

comparison profile at the patching location, we equate coefficients of

equations (A-17) and (A-33) and obtain*

(, ) _ m(A-36)23m

* Notice that C*=4 2c-ij X2 y 1-3m/(m+1)]

C* < (1-2m)/(+m) (n-2)/(n+1) ; n -I/n
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Separation Cri teri on

Equations (A-29), (A-35) and (A-36) contain the essential results of the

analysis thus far. Since we seek a separation criterion in terms

of Cps it is necessary to express dp/ds appearing in the A expression

(see A definition occurring after equation (A-4)) in terms of C (p"

Fran equation (A-22) and the isentropic gas relationship (A-19)

dp 1 2 dC (A-37)

It should be noticed that the density Pe appears in the pressure gra-

dient expression rather than the reference density Po or Pw.

Consequently, the term A4e2 in Equation (A-35) becomes

A4 = Pe 2 d. (A-38)
W)

and equation (A-35) becomes
2.-

)2-4m 3T 3~r P (i) (A-as)(yj/1) " m  73 3  w-d

The density ratio can be expressed as

Pw 1 T (A-40)

Pe ( 1+8 1 A2)z w

With the additional assumption that the wall is an adiabatic wall

Tw-Taw3 then,

w aw
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and since the local inviscid Mach number varies along the airfoil sur-

face the quantity PwPe ) is a function of s.
ea

The recovery factor r is approximately equal to 0.9 (see Reference

[91). Equation (A-39) can be written as

1-2m 1/4 1/2 (  -1/2

Yj/)-- = \k1 (--) (he) e s") (A-42)
a

Combining Equations (A-29), (A-30) and (A-36) and solving

for Cyj/e) 2m gives
Cy/)2m 2 Cp 3m

= ; 3 <1 (A-43)

Eliminating (yj/eJ from equations (A-42) and (A-43) gives the separation

criterion. Letting m = I/n recovers Stratford's form of the criter-

ion. That is,

1 ) dC\ 1 / In2 1/2
(() P) 1',7 3___]1/4 -2 ) A-4T -- (-)T _P

wher 0) (r ( e a

where 0 < C* < (n-2)/(n+l) is required (see footnote on page 66).
-p
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Compressible Momentum Thickness

Stratford expresses B as a function of local Reynolds number Rs and s

for the incompressible case. One way to proceed is to look at the local

skin friction coefficient cf vs. Me curves as in Clutter's report

[11]. These are based on the Van Driest II formula and are considered

state of the technology.

One starts with the momentum integral equation for a flat-plate boundary

layer

d T
d6 W (A-45)

2

where

If a power law form for cf is assumed

cf = a Rb

then equation (A-45) can be integrated to give e with the desired func-

tional dependence. For Mach numbers in the range 0 to 2 and Reynolds

numbers in the range 106 - 107 the variation of the constants a,b were

found [4] to be about ten percent. Considering the approximate nature

of the Stratford method to begin with, we take a,b to be values found

when Me is near unity. That is,

a 0.036

b - 1/6

Then

6 - 0.022 s Rs /6
S
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The separation criterion can be written, therefore, as

1 n-) dC *1/2 P1/2 11
(c~~~(s..2) T g(n)() (R 5 .1o6" 1  0 < < 7p4

a

(A-46)
n-2

g~\) 21.32 ( 2 )1/4n 2 -"- n/2

n2 (n+l)

This is the form of the separation criterion reported in the introduc-
tion to this section. The density ratio on the right hand side is given
by equation (A-41).

From Reference [8] (Schlichting, pg. 674, giving measurements on a flat
plate at zero incidence to the flow) we find that the 1/7th power law
fitting experimental data quite well even when Mach number equals 2.4.
In this case, the empirical constant kI is

kI . 0.683

which will be assumed to remain valid throughout this development for
other values of n, as well.

Stratford [I expresses his separation criterion in terms of the pres-
sure coefficient Co referenced to the dynamic head at the peak velocity
point. That is,

PO P (A-47)
p-i P2(PoIr Po0 o

C is related top by
p p
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Y-I

2 
Cp TYI 1 2 PO

pouo
(A-48)

Y--1

C 2 M2(1 + Y M2 Y
p T7T L + T 5 - ij

From this last expression it can be seen that Cp as Mo  0
p p o

Another way of expressing C is in terms of the flow speed ratio
p

Ue/UO. Fran Reference [12] (page 55) we have that

yM2

YM 0

2 (A-49)2 i - 2+(1Mo
LI +J

rI 2Mo u2J=M0  U0

Combining this last result with the last of equation (A-48) gives

C *= [1 ue (A-50)

Since the pressure coefficient is determined from conditions prevailing

external to the boundary layer (the inviscid solution), the previous

expression for Cp could have been deduced immediately from the Bernoulli

equation (A-22). In that expression, ;c= 1 along the edge of the bound-

ary layer.

I
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APPENDIX B

Derivation of the Comipressible Stratford Flows
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Compressible Stratford Flows

The density ratio on the right hand side of equation (A-46) depends on

the boundary layer edge Mach number Me, as given by equation (A-41).*

From the Bernoulli equation, the edge Mach number is rela'ted to Cp and

the peak Mach number M. by

Me  1 - C*) M 1 ()

Combining equations (B-I) and (A-41) gives

1+ (Y-1) M2

Pe) (Y 1 2
a + r IM 2 + [(1-r) M2  (B-2

01+ 2 0 p

To a good approximation, equation (B-2) can be expanded using the

binomial series to give

-'w ) "i I + IICp

a [1 2- oM~
where (B-3)

Specializing to n = 6, equation (A-46) can be integrated using equation
(B-3) to yield

where1/

B3 -=; g(6) -0.52 (B-5)

11 + r Y-1) M2l~r Mo

Specaliingto a , eqatin (-46 ca beinteratd uingequtio
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The speed ratio Ue/Uo can be obtained from equation (B-4) since

Ue/Uo a (1 - Cp) 1/2  ; 3 < U (B-6)
e <0

If sc denotes the point where Cpa 4/7, then from equation (B-4)

_ . 7F ,7 (B-7)

To obtain an expression for C (s) for values greater than 4/7, use is

made of the momentum integral in the streamwise direction which can be

written as

PeUe 2' + e Ou 2 + H - . (B-8)

where

8 is the momentum thickness

H is the boundary layer shape factor*

Tw is the wall shear stress

and 'prime' denotes differentiation with respect to s.

Setting the wall shear stress to zero and assuming the shape factor is

constant, equation (B-8) integrates to

Pe~~~ ~ 1 l I Cl +H /2

0 ( - * (B-9)

where ai is the constant of integration.

* For turbulent flow, separation is assumed to occur for values of H

between 1.8 and 2.4.
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When Cp 4/7 the inner region of the boundary layer (as described in
Appendix A in the section on the Inner Field Development) extends all

the way to the edge of the boundary layer. In the decelerated flow

region where (ue/uo <__3/7), we assume that the speed ratio can

reasonably be represented by the first term in the expansion given by

equation (A-11) evaluated at y Ye = 6. That is,
2

- 1 - Cp = 4 A2 6

But, from equation (A-38)

A2 1

so that

p (1 CJ (8-10)

If it is assumed 6 remains proportional to the momentum thickness 8 for

s > sc (a similarity solution) then equations (B-9) and (B-10) can be

combined to give
dC * ) (1-c_ 2 +H

-2s -i 

where a2 fis the constant of propportlonality relating 8 to 6 (i.e.,

a= a 26). Integrating equation (A-13) and selecting H - 2 (the value

assumed by Stratford) yields

C (s) 1 - (as+ 4 /2 ; s > s (-12)
(B-* 2

where the constants a13,4 are determined by requiring that Cp and

dCp/ds (from equation (B-12) match at s - sc with the Cp and dC p/ds

0 expressions obtained from the separation criterion. This process leads
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to

1/6 (S [sc j1/_ 2/3 B s 1/6 1/3

}(B-13)

cs 49
4 - '3=
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APPENDIX C

Shock Considerations
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Momentum Thickness Aft of a Normal Shock

Consider the .development of a boundary layer along a flat plate. Sup-

pose at some point ss along the plate a normal shock wave occurs. The

shock wave interacts with the boundary layer and modifies its velocity

profile. As a consequence, the momentum thickness is substantially

changed through the shock.

Figure C-1 presents an illustration of a flat plate boundary layer in

the vicinity of a normal shock wave. Our immediate intent is to derive

an expression for the momentum thickness 9 at station s = ss + e where

s denotes the shock location and e is a small value measuring the

effective distance over which the shock and turbulent boundary layer
interact. The expression can be developed by applying the principles of

conservation of mass and momentum and the normal shock relations to the

control volume shown in Figure C-1. The control volume is rectangular
having a length s (measured from the plate's leading edge) and a height

d(s) equal to the boundary layer thickness at station s. The conserva-

tion of mass (in integral form) states:

6(s) rsf Po uo- Pu] dy = opvd + fpvd (C-i)

0 Ss

where P is the density

u is the velocity component in the freestream direction, s

v is the transverse velocity component.

Quantities with subscript "o" denote freestream values.

Applying the integral form of the conservation of momentum (s-component)

to the control volume gives

= d(s) fos
FS -= s (Po'pl)dy T (S)dS

0
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iNormial Shock
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Figure C-1. Interaction Between a Flat Plate Boundary Layer
and a Normal SHock
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(C-2)

s)s
=( (pu2 "poU2) d + odS+ PlS

where p, is pressure aft of the shock

Tw is the shear stress acting along the wall

uI is the s-component of the fluid speed aft of the shock and

external to the boundary layer.

The pressure p, and the velocity component ul are related to the corres-

ponding quantities po,uo through the normal shock relations. That is,

ul (Y-1) M2 + 2
= 0

0o Y+L (C-3)

Po 1+ 2Y (M2_1)
0+)

where y - 1.4 is the adiabatic index and Mo is the freestream Mach

number.

Combining equations (C-i) and (C-2) gives

PU(U-u)dy - (ul-uo)f pvds f (pl-po)dY +f Tw(s)ds (C-4)

To a leading order approximation, we can estimate the momentum thickness

aft of the shock by assuming the interaction region shrinks to zero and

causes a step change in the momentum thickness (see Equation (C-7) for
definition of e) at the shock location ss (see Figure C-2). That is,

substituting S-Ss c into equation (C-4) and taking the limit as e+0+

gives:

6(s + ) 6(s+ )  s
u0 f U i- .0dy f (pl-Po)dy + fTw(Sds (C-5)
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where s+ - Lim+(s +e)

The pressure difference (pl-po) appearing in equation (C-5) is approxi-

mated by the shock jump condition (C-3). This pressure difference is

assumed invariant through the boundary layer to the leading order

approximation. That is S S+

(Pl"P°) 2 1 - -- (C-6)

P u (Y+1) <o 0S00 0 0 < y < (s + )

The standard definition of the momentum thickness for flow over a flat

plate is given by

6(S)

9(s) f Pu (1 - -- )dy (C-7)
fo 0 0 0 u0

From equations (C-4) and (C-7), the momentum thickness before the shockis given as an integral of the shear stress along the wall. That is,
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S~° °- w(9)dg (C-8)

where s" i Lim (s+ )
C+0"

By combining equations (C-5) through (C-8), we can obtain an expression

for the momentum thickness aft of the shock. If we denote it by es ,

then
2 2Mo' (1-M 0

2) a + 0  (C-9)es 17+(3 0 ) s 0

where 6s = Limit 6(Ss+) is the boundary-layer thickness aft of the
£+0

shock. Equation (C-9) states that the jump in the momentum thickness

across the shock is directly proportional to the boundary-layer thick-

ness aft of the shock and to the pressure jump across the shock. The

boundary-layer thickness 6s can be written in terms of the boundary-
layer thickness 6. before the shock as

6 0 (1+n) (C-10)
su o

where n is generally a function of the Reynolds number Re s(- V--) and

the Mach number Mo . Inger and Mason [13) provide an expression for the

jump in boundary-layer thickness across a shock. For Reynolds numbers

in the range 106 _ 107 , their development provides

n - 0.8 (Mo0-1) (C-11)

The boundary-layer thickness 6. can, in turn, be related to the momentum

thickness 80 by assuming a power law expression for the velocity profile

and substituting it into equation (C-7). That is, if

u .(  ) 1 i(C-12 )

uo 0

then equation (C-7) gives
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6 (k+1)(+2 80 (C-13)

kg

where g is a compressibility factor (see Reference [8), Schlichtlng, pg.

674) (g - 0.713 for 0.8 < M < 1.4).

Substituting equations (C-10), (C-11) and (C-13) into (C-9) gives

esO oi1 + 0.4(k+l)(k+2) (1+4Mo)(1.M-21 (C-14)
(Y+1) kg

This is the principal result of this section. We have obtained an

expression for the momentum thickness aft of a normal shock in terms of

the known momentum thickness and flow conditions just before the

shock. For typical values of Mo -1.2, Y and k, it can be shown that

8-8
s 0 ~ 0(i)

0

To apply this result to an arbitrary airfoil shape, we use the following

expressions (obtained from equations (17) and (18) in the text of the

report for the calculation of eo:
o .47v 0o  ( -5 1/2[ 0J (u ) o 5 dEj ; full laminar run case

80 ,(C-15)

(. 094d7 ; turbulent case

where xo is the arc-length location along the airfoil's upper surface

where the peak velocity uo occurs and which is also assumed to be the

location of the shock wave. The reference condition [equations (C-15)]

therefore correspond to conditions just before the shock.

j4F
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Equivalent Flat Plate Length With a Normal Shock

With equation (C-14) it is now a simple matter to obtain the equivalent
flat plate length with a shock. Consider the free stream conditions are
ul, P1, vl, corresponding to conditions just aft of the normal shock
wave. For steady flow past a flat plate, the wall shear stress and the

momentum thickness are related by

a u -2 (C-16)

When the free stream speed is near the sonic speed (M1 - 1) and the
boundary layer is turbulent, we can use the following empirical rela-
tionship [obtained by combining equations (C-16) and (19)] which relates

u s
the shear stress to the local Reynolds number, Res  -

1

w 0.036 Re" 6 (7 (C-17)

Equating equations (C-16) and (C-17) and solving for s as a function of
8 gives the equivalent shock free flat plate length sso as

e s )6/5 u11/51

Since es is proportional to 6. and 8o depends implicitly on the arc-
length location xo of the shock along the airfoil's upper surface (as
given by equation (C-15)), then equation (C-18) provides the relation-

ship between the equivalent flat plate length sso and the shock location

xo on the airfoil. Figure C-3 illustrates graphically Sso and xo.
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Figure C-3. An Arbitrary Airfoil and its Equivalent Turbulent Flat Plate
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Incipient Separation With a Shock

The Stratford-type separation criterion developed previously can now be
used to calculate a zero shear stress pressure recovery which includes

the effect of a normal shock on the turbulent boundary layer. In order
to obtain the pressure recovery which is on the verge of separation, a
relationship is needed for the velocity profile before and after the

shock.

Suppose the turbulent velocity profiles can be represented before and

after the shock location as power law expressions. That is,

U = y o/k(before shock) (C-19)

u (after shock) (C-20)

where n and k are constants related by the shock strength from Gadd's

analysis [7) as

n - k+3) (C-21)

Substituting the velocity profile (C-20) into the definition of the
momentum thickness equation (C-7), gives [compare with equation (C-13)]:

(n+l)(n+2)Ss . as  g 0.713 (C-22)

ng

Consequently,

u m k2 (C-23)
u1

where n 1/m

]- °k2 re) m l

-1 :'7
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The pressure recovery having zero surface stress can then be obtained

from the separation criterion [equation (A-46)] by Integrating the equa-

tion

1//1

[C (s ) / - (n) (Rs 10-6) ; s > s C n-2 (C-24)

uls

where Rs - V 1

cp *- 1 % -r51 1 2

n-2

(n) 21/4(n T n/2 1 2 r 1 M2 1/ 2

K 0.41 Von Karman's constant

ki  0.683 is an empirical constant obtained from turbulent

flat plate experiments

r - 0.9 is the recovery factor for a turbulent boundary layer
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Stratford Flows Starting with a Shock

To obtain the Stratford flows when a shock occurs at the location of the

peak velocity, the same procedure used for the shockless case can be

followed; namely to integrate equation (C-24) when 0 < C *< n and use
n-2

the momentum integral approach for C > -2 " In this procedure it

becomes necessary to relate conditions at points downstream of the shock

with conditions upstream of the shock. When this is the case, one

assumes that along streamlines the Isentropic assumption is valid every-

where except across the shock. The normal shock relations are used to

relate conditions along the streamline across the shock location. Using

the fact that the total enthalpy remains invariant all the way along a

streamline (even across the shock), leads to the following C distribu-
tion [compare with equations (8-4) and (8-5)]:

* = r s , / 6 1 2 / n.
*~~~~ ./~/1 2 n n-2

C B 0[(s - p - n+ ' 
f

where s S 6)1/6 2/n

1+ r 7y M1

Sso U

and

1 (0s+a4)-1/2; C* > n-2 (C-26)
p p -n+

where a3'm4 are determined by requiring Cp and dC* from equations (C-
25) - (C-26) match at s - Ssc* This matching gives [compare with equa-

tion (5):

Ii

I,
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2-n
n 3  Ssc 1/6 n 1/6
B r c Ss

S. (n+1) 2 - a(C-27)

n6

S, 
2

In these expressions n is selected on the basis of the Mach number jump
across the shock according to:

n - (k+3) (I ) - 3 (C-28)

where 2 < n < k an6 1/k is the velocity power assumed for the shocked
boundary layer profile just before the shock.

The speed ratio Ue/UI for incipient separation is obtained from equa-
tions (C-25) - (C-26) by

ue ; , - C (C-29)

U ' P
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