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PREFACE

The "intelligence quotient" of imaging missile systems has increased

dramatically since the first imaging tracker for missile systems was built

in the early 1960's at MICOM. Terms like "Smart Missile," "IntelligenL

Missiles" and even "Brilliant Missiles" are being used to describe future

missile systems. In some cases, the terms are a mildly humorous over-

statement of what really could be accomplished. However, the terms do

provide a hint of what to expect in the future.

Future missile systems are expected to reach new levels of sophisti-

cation brought about by the explosion of developments in the fields of image

processing, pattern recognition, signal processing, and VHSIC. Surprisingly,

the cost of these new missiles will probably be dominated by mechanical and

optical components rather than complexity in the electronics. As a case

in point, the cost of the keyboard, display and packaging--rather than

that of the electronics--is beginning to determine the price of many

hand calculators.

The goal for future missile systems is to have the capability of

achieving lock-on-after la,,nch. If the goal is ever attained, warfare

as we know it will be revolutionized. The obvious reason is that systems

now limited by the physics of optical resolution can operate at ranges

limited only by the missile propulsion system. Missile control systems

and conventional trackers are also sure to be effected by the burgeoning

technology highlighted by many of the fine papers presented at this

conference.

If the success of a conference is measured by the quality of the

papers and the number of knowledgeable attendees, then the November con-

ference was quite successful.

A successful conference is the result of the efforts of many people.

A hardy thanks goes to the Co-Chairmen, the GACIAC Committee, the MICOM

Protocol Office, the presenters, and all those who attended.

LEWIS G. MINOR, Chairnan
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Paper No. IA-i, Presented at the Workshop on Imaging Trackers and
Autonomous Acquisition Application's for Missile Guidance,
19-20 November, Redstone Arsenal, Alabama.

A FACET MODEL FOR IMAGE DATA: REGIONS, EDGES, AND TEXTURE

Robert M. Haralick
Virginia Polytechnic Institute

and State University

INTRODUCTION

The world recorded by imaging sensors has order. This order reflects
itself in the regularity of the image data taken by imaging sensors. A
model for image data describes how the order and regularity in the world
manifests itself in the ideal image and how the real image differs from
the ideal image. In this paper we propose a facet model for image data
which suggests some procedures for image restoration, segmenting, and
texture analysis.

The facet model for image data assumes that the spatial domain of
the image can be partitioned Into regions having certain gray tone and
shape properties. The gray tones in a region must all lie in the same
sloped plane. The shape of a region must not be too jagged.

To assure smoothness of a region, the facet model assumes that for
each image there exists a K >1I such that each region in the image can
be expressed as the union of K x K blocks of pixels. The value of K
associated with an image means that the narrowest part of each of its
regions is at least as large as a K x K block of pixels. Hence images
which can have large values of K have very smooth regions.

To make these ideas precise, let Zr and Zc be the row and column
index set for the spatial domain of an image. For any (r, c) 6 Zr x Zc,
let I(r, c) be the gray value of resolution cell (r, c) and let B(r, cl

be the .K x K block of resolution cells centered around resolution cell
(r, c). Let H = {fI,.... T[NJ be a partition of Zr x Zc into its regions

In the sloped facet model, for every resolution cell (r, c) £ n,
exists a resolution cell (i, j) C Zr x Zc such that

(1) (r, c) c B(i, j) TIn (shape region constraint)

(2) I(r, c) = oar + 3nc + Yn (region gray tone constraint)

The actual image J differs from the ideal image I by the addition of

random stationary noise having zero mean and covariance matrix propor--
tional to a specified one.

2



J(r, c) I(r, c) + n(r, c) where

E[r(r, c)] = 0

E[n(r, c) n(r', c')] = ko(r - r', c - c')

The flat facet model of Tsuji (1977) and Nagao (1978) differs from
the sloped facet model only in that the coefficients an and Bn are
assumed to be zero.

IMAGE RESTORATION UNDER THE FACET MODEL

Image restoration is a procedure by which a noisy image is operated
on in a manner which produces an image which has less noise and is close
to the ideal image. The facet model suggests the following simple non-
linear filtering procedure. Each resolution cell i.s contained in K2

different K x K blocks. The gray tone distribution in each of these
blocks can be fit by either a flat horizontal plane or a sloped plane.
One of the K2 blocks has smallest error of fit. Set the output gray
value to be that gray value fitted by the block having smallest error.
For the flat facet model this amounts to computing the variance for each
K x K block a pixel participates in. The output gray value is then the
mean value of the block having smallest variance.

The filtering procedure for the sloped facet model is more complicated
and we give a derivation here of the required equations. We assume that
the block lengths are odd so that one of the block's pixels is its center.
Let the block be (2L + 1) x (2L + 1) with the upper left-hand corner
pixel having relative ro,4 colurmn courdinates (-L, L) the center pixel
having relative row column coordinates (0, 0), and the lower right-hand
corner pixel having relative row column coordinates (L, L). Let J(r, c)
be the gray value at row r column c. According to the sloped facet model,
for any block entirely contained in one of the image regions.

J(r, c) = ar + ac + y + ri(r, c)

where n(r, c) is the noise.

A least squares procedure may be used to determine the estimates
for cx, a, and y. Let

L L 2
f(a, (, y) = (ar + (c + y - J(r, c))

r--L c=-L

The least squares estimate for ot, (, and y are those which minimize f.
To detef-mine these values, we take the partial derivative of f with
respect to Cc, , and y, set these to zero and solve the resulting equa-
tions for t, (, and y. Doing this we obtain

3
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a 2 J (r, c)
L (L+I) (2L+l) r--L c--L

L L

L(L+I) (2L+I) c--L r--L

L L
2 a r r(r,c)

(L+(2L+) -- L c--L

The meaning of this result can be readily understood for the case
when the block size is 3 x 3. Here L = 1 and

a (l)j( ]Lr

Y- = +12 • Jrc

|6

where an argtunent of J taking the value dot means that J is summed from

-1. to L in that argument position. Hence, a is proportional to the slope
down the row dimension, t is proportional to the slope across the column

dimension, and y is the simple gray value average over the block.

The fitted gray tone for any resolution cell (r, c) in the block

is given by

J(r, c) = ar + ac + y
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J(r, c) {J(-l, 1) (-3r -3c + 2)

+ J(-J, 0) (-3r + 2)

+ J(-l, 1) (-3r + 3c + 2)

+ a(o, -1) (-3c + 2)

+ J(O, 0) (2)

+ J(O, 1) (3c + 2)

+ 3(l, -1) (3r - 3c + 2)

+ J(l, 0) (3r + 2)

+ J(l, 1) (3r + 3c + 2))

This leads to the set of linear filter masks shown in Figure 1 for fitting
each pixel position in the 3 x 3 block.

The sloped facet model noise filtering would examine each of the K2

K x K blocks a pixel (r, c) belongs to. For each block, a block error
can be computed by

2 L L 2
2I (J(r, c) - J(r, c))

r=-L c=-L

One of the K x K blocks will have lowest error. Let (r*, c*) be the
coordinates of the pixel (r, c) in terms of the coordinate system of the
block having smallest error. The output gray value at pixel (r, c) is
then given by J(r*, c*) where J is the linear estimate of gray values
for the block having smallest error of fit.

. Haralick and Watson (1979) prove convergence of this iteration
procedure.

REGION AND EDGE ANALYSIS

The image restoration iteration procedure can produce more than just
a restored gray tone. For each pixel, it also produces the a, 8, and y
parameters. Using these parameters we can determine whether or not
neighboring pixels lie in the same connected facet. Of course doing this
determination requires that the parameters for each pixel be taken out of
their relative coordinate system and be placed in some absolute coordinate
system. Linking together neighboring pixels with the same a, ý, y
parameters permits us to identify the facets which are characterized by
the connected sets of pixels that constitute them.
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Figure 1 shows the filtering masks to be used for least squares estination
of the gray value for any position in a 3 x 3 block. Each mask
must be normalized by dividing by 18.
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[ .................
Edge detection and region growing are two areas of image analysis

which are opposite in emphasis but identical in heart. Edges obviously
occur at bordering locations of two adjacent regions which are signifi-
cantly different. Regions are maximal areas having similar attributes.
If we could do region analysis, then edges can be declared at the borders
of all regions. If we could do edge detection, regions would be the areas
surrounded by the edges. Unfortunately, we tend to have trouble doing
either: edge detectors are undoubtedly noisy and region growers often
grow too far.

The facet model permits an even handed treatment of both. Edges will
not occur at locations of high differences. Rather, they will occur at
the boundaries having high differences between the parameters of suffi-
ciently homogeneous areas. Regions will not be declared at just areas
of similar value of gray tone. They will occur at the facets, connected
areas where resolution cells yield minimal differences of region param-
eters, where minimal means smallest among a set of resolution cell
groupings. In essence, edge detection and region analysis are identical
problems that can be solved with the same procedure.

Recall That the facet mcdel iterations produce the parameters a
and 0. The fact that the parameters a and a determine the value of the
slope in any direction is well known. For a planar surface of the form

g(r, c) = ar + ýc + y

the value of the slope at an angle 8 to the row axis is given by the
directional derivative of g in the direction 0. Since a is the partial
derivative of g with respect to r and a is the partial derivative of g
with respect to c, the value of the slope at angle e is a cos 8 + ý sin e.
Hence, the value of the slope at any direction is an appropriate linear
combination of the values for a and ý. The angle 6 which maximizes this
value satisfies

cos O a and sinS = 6 --

S+ a-2+ a2

and the gradient which is the value of the slope in the steepest direction
is

The sloped-facet model is an appropriate one for either the flat
world or sloped world assumption. In the flat world each ideal region is
constant in gray tone. Hence, all edges are step edges. The observed
image taken in an ideal flat world is a defocussed version of the ideal
piecewise constant image with the addition of some random noise. The
defocussing changes all step edges to sloped edges. The edge detection
problem is one of determining whether the observed noisy slope has a
gradient significantly higher than one which could have been caused by
the noise alone. Edge boundaries are declared in the middle of all
significantly sloped regions.

7



In the sloped facet world, each ideal region has a gray tone surface
which Is a sloped plane. Edges are places of either discontinuity in
gray tone or derivative of gray tone. The observed image is the ideal
image with noise added and no defocussing. To determine if there is an
edge between two pixels, we first determine the best slope fitting
neighborhood for each of the pixels by the iteration procedure. Edges
are declared at locations having oignificantly different planes on either
side of them. Tn the sloped facet model, edges surrounding regions having
significantly sloped surfaces, may be the boundary of an edge region.
The determination of whether a sloped region is an edge region or not
may depend on the significance and magnitude of the slope as well as the
semantics of the image.

In either the case of the noisy defocussed flat world, or the noisy
sloped world we are faced with the problem of estimating the parameters
of a sloped surface for a given neighborhood and then calculating the
significance of the difference of the estimated slope from a zero slope
or calculating the significance of the difference of the estimated slopes
of two adjacent neighborhoods. To do this we proceed in a classical
manner. We will use a least squares procedure to estimate parameters
and we will measure the strength of any difference by an appropriate
F-statistic.

TEXTURE ANALYSIS

Textures can be classified as being weak textures, or strong textures.
Weak textures are those which have weak spatial-interaction between the
texture primitives. To distinguish between them it may be sufficient
to only determine the frequency with which the variety of primitive
kinds occur in some local neighborhood. Hence, weak texture mear-ires
account for many of the statistical textural features. Strong textures
are those which have non-random spatial interactions. To distinguish
between them it may be sufficient to only determine, for each pair of
primitives, the frequency with which the primitives co-occur in a
specified spatial relationship. In this section we discuss a variety
of ways In which primitives from the facet model can be defined and the
ways in which spatial relationships between primitives can be defined.

Primitives

A primitive is a connected set of resolution cells characterized by
a list of attributes. The simplest primitive is the pixel with its gray
tone attribute. Sometimes it is useful to work with primitives which
are maximally connected sets of resolution cells having a particular
property. An example of such a primitive is a maximally connected set
of pixels all having the same gray tone or all having the same edge
direction.

Gray tones and local properties are not the only attributes which
primitives may have. Other attributes include measures of shape of

8
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connected region and homogeneity of its local property. For example, a
connected set of resolution cells can be associated with its length or
elongation of its shape or the variance of its local property.

Attributeg generated by the facet model include the a, ý, and y
parameters plus the average error of fit for the facet. These attributes
can be used by themselves or used to generate additional attributes such
as /0 + P from which relative extreme primitives can be defined in
the following way.

Label all pixels in each maximally connected relative maxima plateau
with a unique label. Then label each pixel with the label of the rela-
tive maxima that can reach it by a monotonically decreasing path. If
more than one relative maxima can reach it by a monotonically decreasing
path, then label the pixel with a special label "c" for common. We call
the regions so formed the descending components of the image.

Spatial Relationships

Once the primitives have been constructed, we have available a list
of primitives, their center coordinates, and their attributes. We might
also have available some topological information about the primitives,
such as which are adjacent to which. From this data, we can select a
simple spatial relationship such as adjacency of primitives or nearness
of primitives and count how many primitives of each kind occur in the
specified spatial relationship.

More complex spatial relationships include closest distance or
closest distance within an angular window. In this case, for each kind
of primitive situated in the texture, we could lay expanding circles
around it and locate the shortest distance between it and every other
kind of primitive, In this case our co-occurrence frequency is three-
dimensional, two dimensions for primitive kind and one dimension for
shortest distance. This can be dimensionally reduced to two dimensions
by considering only the shortest distance between each pair of like
primitives.

Co-occurrence between properties of the descending components can
be based on the spatial relationship of adjacency. For example, if the
property is size, the co-occurrence matrix could tell us how often a
descending component of size Sl occurs adjacent to or nearby to a
descending component of size s2 or of label "c".

To define the concept of generalized co-occurrence, it is necessary
to first decompose an image into its primitives. Let Q be the set of
all primitives on the image. Then we need to measure primitive prop rtivs
such as mean gray tone, variance of gray tones, region, size, shape, etc.
Let T be the set of primitive properties and f be a function assigning
to each primitive in Q a property of r. Finally, we need to specify a
spatial relation between primitives such as distance or adjacency.
-Let S < Q x Q be the binary relation pairing all primitives which sat iitfy
the spat Ia I relat ion. The general ized co-occurrence matrix P1 Is det ilncd by:

9
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#{(ql' q 2 ) c Slf(q 1) = t1ard f(g 2 ) = t 2 }P(tl f t 2) #S ,

P(tl, t2) is just the relative frequency with which two primitives occur
with specified spatial relationship in the imaue, one primitive having
property tI and the other primitive having property t 2 .

Zucker (1974) suggests that some textures may be characterized by
the frequency distribution of the number of primitives any primitive has
related to it. This probability p(k) is defined by:

p(k) =#{(q c QI #S(q) = k}

Although this distribution is simpler than co-occurrence, no investigator
appears to have used it in texture discrimination experiments.

CONCLUS ION

In this paper, we considered the gray tones of an image to represent
the height of a surface above the row-column coordinates of the gray tones.
The observed image is then the surface of the underlying ideal image plus
random noise. The ideal image is composed of a patch-work of constrained
surfaces sewed together.

We called each patch a facet and in the ideal image, the facets
must satisfy the constraints of the facet model for image data: the
facet model constrains the shape of each facet to be exactly composed as
a union (possibly over-lapping) of a given set of neighborhcod shapes
and constraints the surface to be a sloped plane surface of a quadratic
surface.

The goal of image restoration is to recover the ideal gray tone sur-
face which underlies the observed noisy gray tone surface. Although the
noise prevents recovering the precise underlying Ideal surface, we can
recover that gray tone surface which is the "closest surface" to the
observed noisy surface and which also satisfies the facet model constraints.

The procedure we suggested for recovering the underlying surface is
an Iterative one. Associated with each giwvýn pixel is a set of all the
neighborhoods of given shapes that contain it. Each one of these neigh-
borhoods can be fit with the best fitting plane surface. One of these
neighborhoods will have a best fitting surface with lowest error among
all the rielghborhood has a height above the given pixel . The parallel
Iterative procedure consists of replacing each pixel gray tone intensity
with the height of the best fitting surface In its lowest error neighbor--
hood. The procedure is guaranteed to converge and actually achieves
essential convergence in a few iterations. The resulting im-age 1is an
enhanced image having less noise, better contrast, and sharper boundaries.

10



Image restoration is not the only use of the facet model. The facet
model processing provides us with additional important information. By
collecting together all pixels participating in the same surface facet,
we transformed the pixel as our processing and analysis unit into the
surface facet as our processing and analysi3 unit. Now edge boundaries,
for example, can be defined to occur at the shared boundary of all
neighboring facets whose surface parameters are significantly different.
Homogeneous regions can be defined by linking together all those neigh-
boring surface facets whose parameters are significantly the same.
Texture can be characterized by the co-occurrence statistics of neigh-
boring primitives which are not the pixel gray tones as in the usual
occurrence approach but which are the facets characterized by their
boundary, shape, size, and surface paramneter attributes.
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INT RODUCTION

This paper described a tool for image texture analysis called a
generalized cooccurrence matrix. Describing image texture is an important
problem in the design of image understanding systems. Applications as
diverse as earth resources technology and medical disease diagnosis rely,
to a great extent, on the ability to automatically discriminate between
different image patterns, or textures.

Most appronches to texture analysis have been based on computing
various statistics of the distribution of intensities in an image. For
example, tho grey level cooccurrence matrix counts the frequency with

which pairs of intensities are found in particular relative spatial
positions. Statistics can be computed from the grey level cooccurrence
matrix which reflect intuitive properties of texture such as coarseness
(or size of the elements in the texture) and directionality. Haralick [(]

first introduced the grey level cooccurrence matrix as a texture analysis
tool. Other approaches to measuring texture features based on intensity
distributions include run length statistics [2), statistics computed from
histograms of differences in intensity betweep nearby picture points [3],
and statistics derived from the autocorrellation, or power spectrum, of
the image [3]. Haralick [41 contains an extensive survey.

An alternative approach to describing texture is to compute texture
descriptors not based on the original pattern of intensities in the image,
but rather on the results of applying an edge detector to the image texture
(possibly grouping the edges detected at individual pixels into longer,
extended edges). Marr [51 suggested that textures could be adequately
described by computing various first-order statistics of features of the
pqimal sketch, which is a representation of the image in terms of groups
of edges which form perceptually significant contours. Marr's approach
Is consistent with recent psychophysical results reported by Julezs [6]
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which seem to indicate that a wide r-'nge of human texture perceptions can
be accounted for in terms of first-oider statistics of the distributions
of edges, lines and termination points (i.e., line endings) in the texture.

More recently, Davis, et al [7] suggested that useful texture
descriptors could be obtained by computing statistics based on the
cooccurrence of edges in textures. This paper discusses that approach,
based on whiat we call "generalized cooccurrence matrices," and includes
the results of an experimental study which compared the classification
power of grey level cooccurrence matrices and generalized cooccurrence
matrices on a database of natural textures.

GENERALIZED COOCCURRENCE MATRICES

A generalized cooccurrence matrix, or GCM, describes texture by
describing the spatial arrangement of local features in the texture. A
particular GCM is defined by specifying a triple [P,S,A] where:

1) P is an image feature prototype,

2) S is a spatial predicate, and

3) A is a prototype attribute.

The prototype, P, can be regarded as a structural definition of
the local image feature of interest, and generally contains a list of
attributes which defines a local feature. For example, we can define
the prototype edge-pixel as

edgp-pixel

location: (x~y)

orientation: theta

contrast: C

Thus, an edge pixel has a location in the image, an orientation and
a contrast. This information is ordinarily computed by an edge detection
procedure. As a second example, consider the prototype intensity-pixel
defined as

intensity-pixel

location: (x,y)

intensity: i

An intensity-pixel is simply the intensity value associated with a
pixel. GCM's based on the prototype Intensity-pixel will correspond to
grey level cooccurrence matrices.

13



A spatial predicate, S, is a mapping from pairs of image features
into {TRUE, FALSE}. For example, the spatial predicate, Sk, defined over
pairs of edge-pixels ((xl,yl), thetal, CI), ((x2,y2), theta2, C2) is true
if and only if

max{ Ixl-x2!, jyl-y2j } < k

Other spatial predicates will be discussed later.

Suppose that F - {Fl,...,Fn} is a set of local features detected
iin an image by a feature detection program. Each of the Pi is structured
according to a particular prototype definition. For example, if the pro-
totype edge-pixel were being used, then each Fi would be a triple containing
location, orientation and contrast. Let A be one of the attributes which
appears in the definition of the prototype associated with the Fi. For
example, A might be the attribute orientation. Then the GCM of the set
F with respect to the spatial predicate S and attribute A, GS,A is defined
by: b:# fifj) : A=VlAf=,

2 , S(f, f1 )=TRUE}

sf 2 1TRUGS'A(V 2) # (fi'fj) S(fisfJ UE

where #S denotes the number of elements in the set S. An unnormalized
GCM can be obtained by not performing the division by the number of pairs
of local features which satisfy the spatial predicate.

Figure 1 contains a simple example of an unnormalized GCM. The pro-
totype is edge pixel, and Figure la contains a picture of edge pixels,
maiked with their orientations. The coding is H for horizontal, V for
vertical, L for left diagonal and R for right diagonal. A blank pixel
indicates that no edge is asso, ,iated with that picture point. The spatial
predicate used to form the GCM Is S1. Figure.lb contain, the GCM.

GCM's are a generalization of the conventional grey level cooccurrence
matrix. The prototype used is intensity-pixel, the attribute of interest
is intensity, and the spatial predicate assigns -RUE co pairs of pixels
in particular relative spatial positions. The relative spatial positions
can be specified by a set of displacement vectors D - {(dx,dy)}. The
experiments described in Section 3 will use the two sets Dl {(0,l),• (1,o), (-1,0), (0,-l), (1,i), (1,-i), (-i,l), (-l,-i)1 and D2 = f(0,2),
(2,0), (0,-2), (-2,0)1.

Two different spatial predicates will be used for edge-pixels. The
first, Sak, examines two cone shaped areas of length k, which emanate
from an edge pixel and are oriented parallel to the orientation of the

v edge pixel. Figure 2a Illustrates the spatial predicate Sak. The second
spatial predicate, SNk, orients the two cones orthogonal to the orienta-
tion of the edge-pixel. Figure 2b illustrates the spatial predicate SN3.

14
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Intuitively, Sak and SNk should be useful for determining the
elongatedness and width of texture elements. For elongated texture
elements, the GCM based on Sak, using attribute orientation, should
have most of its power along the main diagonal., since the edges of
elongated texture elements will tend to "line up." Similarly, for
narrow texture elements, the GCM based on SNk should have high values
along the main diagonal.

In general, the structure of GCM's can be usefully captured in a
few statistics, or texture descriptors, which can be efficiently com-
puted from the GCM. These descriptors could then serve as input to a
statistical classification procedure, such as the one described in
Section 3. The descriptors which we will discuss are similar to the
ones proposed by Haralick [1] for grey level cooccurrence matrices.
They include contrast, uniformity, entropy and correllation. See
Davis, et al [71 for the definitions of these features.

EXPERIMENTAL STUDY

An experiment was performed to compare the classification power of
GCM's based on edge-pixels versus GCM's based on intensity-pixels, i.e.,
conventional grey level cooccurrence matrices. The database for the
experiment incldded eight classes of natural textures, including brick,
striated concrete, gracing, orchard, metal scrap, pebbles, shrub and
tree bark. The original images were digitized to a resolution of
256x256 pixels, with each pixel quantized to six bits. A histogram
normalization was applieu to all of the textures so that their first-
order statistics were identical. Sixteen 64x64 samples were then
extracted from each of the original textures.

Edge-pixels were detected by applying an edge detector based on
the Kirsch edge operator [8]. The edge detection procedure first associ-
ated a contrast and orientation at each point by applying the Kirsch
operator. Points whose contrast value was below a prespecified threshold
were deleted; finally, only local peaks from the remaining points were
chosen as edge pixels. A more detailed discussion of the edge detection
procedure can be found in [7]. Even though the edge detector does not
completely outline the texture elements in the original textures, it is
relatively accurate in its placement of edges (see [91 for examples of
texcure samples and edges).

The classifier used was a leave-one out classifier. In this method,
all samples but one in the database are used as a training set. The
remaining sample ts then classified using the statistics derived from the
training set. Thus. each sample in the database is treated once as an
unknown. The results of the experiment are sunmiarized in Table 1. For
each prototype and spatial predicate, the best descriptor pair is listed
along witi the ptrcentage classification. The results shown in Table 1
are consistent with those reported in (7] where edge-pixel GCM's were
found to yield higher classification rates than intensity-pixel GCM's.
An extended version of this experiment was described in [9]. There, a
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third prototype, called an extended-edge, was included. Extended-edges
correspond to connected components of constant orientation edge-pixels.
Also, first order statistics of edge-pixels and extended-edges were
investigated. The best classification results were obtained using GCM's
based on edge-pixels.

Table 1: Classification Results

Prototype Attribute Spatial Predicate Best Pair Accuracy

Pixel-inten. Intensity Dl Contrast 53%

Correlation

D2 Contrast 52%

Correlation

Edge-pixel Orientation Sa3 Correlation 55%

Uniformity

Sa7 Contrast 59%

Uniformity

SN3 Contrast 49%

Uniformity

SN7 Contrast 61%

Entropy

SUMMARY

We have presented a tool for image texture analysis called a generalized
cooccurrence matrix, and described its application to a texture discrimina-
tion problem. GCM's describe texture by measuring the spatial arrangement of
local image features, such as edges, in the texture. To the extent that
these local features characterize the size, shape and spatial arrangements
of the elements which comprize the texture, the GCM's capture these impor-
tant aspects of the structure of the texture. Clearly, the usefulness of
GCM's is intimately related to the reliability with which we can detect
local features in textures. Davis and Mitiche [101 discuss the problem of
edge detection in textures, and derive an optimal edge detection procedure
for cellular textures. The procedure is based on a one dimensional edge
operator and a model of image cexture describing cell size and placement.
We are currently attempting to apply these theoretical results to the
analysis of real images (the database described in this paper), in the hopes
of assessing the real gain in descriptive power obtained by employing more
sophisticated local feature detection algorithms.
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Abstract

Range images preserve the 3-D geometry of a scene as viewed from the
sensor position. It then becomes possible to determine the local orienta-
tion of a surface at a particular point and to segment the image into
planar surfaces. These planar surfaces can serve as primitives for matching
to a model.

1. INTRODUCTION

This paper describes recent investigations into range image processing
by the Lockheed Signal Processing Laboratory. The purpose of this research
has been to develop an approach and a methodology for utilizing range' imagery
in intelligence, guidance, and recognition tasks, with particular emphasis
on landmark recognition using onboard reference imagery. Our results show
that range imagery processing can yield reliable, accurate descriptions
of man-made scene components. These descriptions reflect the actual geometry
of the scene and are independent of the sensor position. They thus consti-
tute a robust set of primitives for scene matching or recognition, resulting
in accurate vehicle position fixing. In the sections that follow we describe
the problem definition, our proposed approach and the experimental results
of our research.

2. PROBLEM DEFINITION

For the purposes of this discussion, we assume that the principal
data gathering mechanism is a laser range finder, consisting of a laser
illuminator scanning the visual field in raster fashion and a sensor which
determines the distance from the sensor to each laser-designated raster
point based on the return time of the laser beam. The range image is the
array of i-ange values for the raster. It is also possible to gather a
reflectance image by measuring the amplitude of the return (as well as its
onset); however, the reflectance irage was judged to be too noisy to use
as a primary source of information.
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Our second basic assumption is that a model describing the planar
surfaces in the sceee is provided. Although the optimal structure of a
scene model is by no means settled, we have assumed that it consists of a
list of objects made up of planar surfaces and the descriptions of their
absolute position in a standard earth-based coordinate system.

Finally, we assume that the relative orientation of the sensor is
known as is an estimate of its position with respect to the model's
coordinate system. This is reasonable for vehicles with onboard Jinertial
guidance systems since they can determine orientation and can estimate
position. The task addressed by this paper is to investigate algorithms
for matching the sensed range image to the model.

3. APPROACH

3.1 Background

The image processing literature describes many approaches to the
problem of intelligent matching to a stored model. Fcr a review of recent
research, see [I]. Nonetheless, progress has been slow. One extremely
vexing source of difficulty has been the inability of the model to guide
and control the segmentation and identification of image parts. This may
be due to the incompleteness of the model or to its irrelevance to the
sensed image. Recently, researchers have begun to focus attention on the
need to model not only the contents of a scene but also its appearance to
the sensor [2,3]. Increased understanding of the relationship of scene
structure to scene appearance will improve our ability to solve problems
in which strong scene models are available. The ranging environment '
provides a unique opportunity for the researcher to study the close rela-
tionship between a variety of sensed data and a model.

In contrast to sensors which measure reflectance or emission charac-
teristics of the scene, a range sensor responds to the set of distances to
ne-.rest points along different rays from the sensor. This retains the
perspective information available at the viewpoint and simplifies the
reconstruction of the scene geometry [4,5]. Specifically, the range data
allows us to back-compute the sensor position from the locations of
recognized parts of the scene. If a sufficient number of meaningful components
can be sensed, extracted and matched against the model, it then becomes
possible to perform a least squares estimation of the sensor position.

In order to perform such a computation using conventional imagery, it
would be necessary to find edges and corners extremely accurately and
determine precisely to which points in the model they correspond. This is
a much more difficult task since the 3-D nature of the scene has been lost
in the imaging process. Moreover, the interiors of regions don't contribute
to the position computation, thus reducing the positive effects of redundancy
available to range image processing.

Another significant benefit from the use of range data is its relative
inssensitivity to the spectral characteristics of the scene as well as to
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seasonal/diurnal variations. For example, shadows and glint do not affect
the laser/sensor combination. It should also be pointed out that range
geometry simplifies the construction and utilization of the target model
since the model need only specify the locations and descriptions of objects
in the scene. Thereafter, it is straightforward to calculate their size,
shape, position, etc. in the image.

The next section presents the suggested approach to three-dimensional
matching and discusses each of the steps involved. The section following it
discusses the preliminary experimental results which we have obtained. The
last section addresses the results and the problem areas to be investigated
in future studies.

3.2 Three-Dimensional Matching Procedure

The basic objective of the matching system is to determine the location
of the vehicle with relation to some fixed point, T, on the ground. The
target location would be a reasonable choice for that point. Input data to
the system would consist of: (I) a stored model of the scene, including a
list of the plane surfaces it contains)in the form, say, of a vertex list
with respect to an origin at point T; (2) a sensed range image, giving the
distance from the sensor to the nearest point in the scene for an array
of azimuths and elevations; and (3) the orientation and approximate vehicle
location derived from the inertial guidance system and/or from the last
navigation update.

The range image in angular coordinates can easily be transformed to a
cartesian system whose three components represent distance from an image
plane (located at the sensor and perpendicular to its line of sight) and
projection along a pair of orthogonal axes in that plane. Figure I illustrates

Sthe transformation. In such a .-artesian system, any plane can be described
by a linear equation whose three parameters can be taken to be the azimuth
and elevation of its normal and the perpendicular distance from the sensor
to the plane (extended, if necessary). The objective, then, is to determine
the vector L froin S, the origin of the sensor-based coordinate system, to
target. point T . Identifitation of an extracted plane in the sensed image
with one in the model gives information about the component of I normal
to that plane. Thus, a minimum of three such corresponding pairs of planes
with non-coplanar normals must be identified in order to determine
completely. In practice it is expected that many more such pairs would be
found. The proposed ,.ystein to determine 9 by plane matching consists of
the four steps shown in Figure 2.

The aggregation procedure in the first block begins by attempting at
each pixel to fit a plane to a small (say 5 x 5) neighborhood of the pixel
(Figure 3). Tho results of the fitting process are three ilane parameters
and a residual indicating the goodness of fit. Then, the algorithm performs

a systematic labeling of groups of adjacent pixcls having residual smaller
than some threshold end parameters within a limited range. Each labeled group
is individually fitted by a least squares plane. The plane is described by
its planar paraimeters and its location, e.g., the center of the bounding
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rectangle of the extracted plane in sensed image coordinates. These six
parameters for each plane*, together with the number of pixels in the plane,
would be stored as an entry in a "sensed plane list".

A similar list is prepared from the reference model, using the best
information about the vehicle location, in the step described in the diagram
as "reference list generation". The basic techniques of model projection in
perspective have been well studied in the computer graphics literature [6]
and allow us to compute the set of planar surfaces visible from the estimated
sensor position and to compute their descriptions - orientations, positions,
visible area, etc. However, it is not necessary to create the pixel-by--pixel
raster display since the features are being directly utilized for matching.

It is important to distinguish the feature primitives derived from the
model or a sensed range image with those derived conventionally from an inten-
sity image. Geometric measurements from the former relate directly to the
actual scene, e.g., heights, distances, surface areas; while measurements from
conventional imagery are normally expressed in terms of image-related descriptors
such as pixels. Scene measures will thus remain constant in range experiments
using the same scene. Image measures can be expected to vary as the imaging
environment changes.

The matching step of the algorithm compares the two lists in order to
identify sensed primitive planes with predicted model surfaces. The primary
discriminant is the plane orientation since this measure is unaffected by
translations of the sensor position. Other auxiliary discriminants are the
relative positions of the primitive planes (e.g. front to rear, left to right),
their areas and their adjacency relations. These are used to resolve. ambiguities
in the matching prccess. Depth first search is a simple control mechanism
to guide the search. The evaluation function is the number of well-matched
model surfaces. More generally, a smarter control process for "growing" the
match solution would use the strong geometric cues available; this remains a
topic for future research.

Fig. 4 shows a two-dimensional example of how identified planes can
locate the sensor position. Point T is the assumed target position and
Point S is the actual sensor position. The vector distance to the target,
9, is the final result which is passed to the guidance package. 9 is found

by using the distances diT) computed from the model, and the distances d(S)

derived from the sensed range images. One can see that the difference between

a matched pair, d. d- , gives the component of the offset normal to the
.th 4-
I plane. In the 3-dimensional case, A could be uniquely determined by
three non co-planar normals. To improve the accuracy, one uses the set of
matched planes to compute a least squares solution.

An important attribute of our pvoposed approach is the close cooperation
possible between the reference preparation task and the extraction of sensed
primitives. Currently, the reference model is a list of planar surfaces to
be matched with a similar list of sensed planes. fHowever, the target scene

Azimuth, elevation, and perpendicular distance of the plane to the sensor
axes origin; the pair of location parameters; and the residuals.
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may contain buildings or other structures with non-planar surfaces which
cannot be incorporated directly into the model. This might happen if, for
example, the target scene contained curved surfaces (e.g., silos, ING tanks,
etc.). The reference model can not simply ignore the existence of these
structures, since they will appea, in the sensed range image. We propose
that the reference model be allowed to specify certain rectangular solid
regions in the 3-D scene as containing unmodeied structure. Sensed surface
primitives appearing to lie within the unmodeled regions would be ignored
during the match process. If a more sophisticated model incorporating lists
of curved (as well as planar) surfaces is subsequently developed, the automatic
techniques used to describe curved surfaces will be applicable as well as the
extraction of curved primitive surfaces from the sensed range image. We
therefore propose and anticipate a parallel maturing of the modeling task and
the range processing task.

Recent work at Lockheed has been directed toward demonstrating how well
these ideas can be expected to work on real data, as typified by the range
images and wire frame models from a test set provided by the DARPA Autonomous
Terminal Homing program. These experiments, described in the next section,
have concentrated on the feasibility of extracting planes from the range data.
The success of these experiments makes it desirable to pursue the research to
the point of developing and testing a complete software system based on this
approach.

3.3 Experimental Results

A number of experiments have been performed to validate the concepts
underlying the approach presented in Section 3.2. The teSts were run on
data base of four sensed range images and two synthetic range images dis-
playing a variety of viewpoints of a single building site (Hughes Aircraft
Company, Culver City, CA).

Several results pertain to the aggregation of pixels into well-defined
primitive groups, each of which is at a single orientation. Figures I and 3
illustrate the geometry of the sensor and the local plane fitting. The
goodness of fit at each point is measured by the residual. Pixels lying
well within planar surfaces exhibit lower residuals than pixels lying near
edges, since the 5 X 5 neighborhood fits better at surface interiors than
at surface borders. Figure 5 displays the computed residuals (scaled lor
visibility) for both a sensed range image and a synthetic range image. The
synthetic image is being used here only for ease of comparison. In practice,
of course, the model is used analytically. Note that by considering pixels
with low residuals it is possible to define regions corresponding to a single
model surface.

Figures 6 and 7 illustrate two steps in the extraction of primitive
planar regions. In the first, pixets on horizontal surfaces are identified
ai having unit normals pro iecting in the y direction. A single threshold
b;.'Iiit: t: c image into hori.,ontal and non-horizontal pixels. These lat tc r
poii. ts arec fhurther separated by considering thueVa e of cos x, the comp[onenClt
of th, ,tur face normal in t.he x direction. As can he seen in Figuire /' tllh
verticial wall pixels are segregatvd into it:ft and right wall points accord ing
to t he value Of cos x at each point. Each of the regions resulting trtmi

tne for the march process.
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The correspondence of sensed range primicives to model stirfaces is
illustrated in Figure 8. Identical segmentation applied to both a synthetic
and a sensed range image produces primitive match regions which are
strikingly similar. Moreover, the primitive match regions maintain their
similarity regardless of viewpoint. This is evident in Figure 9 in which
the four sensed range images are identically segmented into primitives. The
primitives are well-defined and preserve the physical size and shape of the
wall surfaces which they represent. These experiments support our approach
by demonstrating that range images can be processed to yield regions which
match model surfaces, thereby allowing an accurate position update.

4. CONCLUSIONS

This paper has explored model-based scene matching using range imagery.
The advantages of using such imagery rather than more conventional reflectance
(intensity) imagery are:

" Preservation of the three-dimensional nature of the scene, e.g., actual
sizes, distances, etc.

" The surface primitives are directly established from the sensed data,
not inferred.

"* Insensitivity to shadows, specularity, time of day and viewing position.

"• Contribution of all raster points (not just edges, lines, or corners)
to position confirmation.

"* Parallel evolution of the model building and model matching activities.

Preliminary experiments illustrate the identification of planar- surfaces
based on local properties of the range imagery as predicted by the model. Our
results indicate that such primitives are strong cues for matching with the
structural model. We anticipate that a reliable position fixing system can
be based on this approach.
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Figure 5 Residuals to Indicate Surface Interiors/Borders

a. Synthetic image residuals

b. Synthetic image
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d. Sensed imnge
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a b C

Figure 6 Horizontal Surfaces

a. Sensed range image

b. The normal component in the y direction (rescaled)

c. Thresholded y component -light points lie on horizontal
surfaces

a b c

Figure 7 Vertical Surfaces

a. Thm normal component in the x direction (rescaled)

b. Left facing vertical surfaces

C. Right facing vertical surfaces
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Figure 8 Correspondence of Sensed Range Image to Synthetic
Range Image

a - e Sensed image; f - j Synthetic image

a,f Horizontal surfaces
b~g Horizontal surfaces (thresholded)
c,h Vertical surfaces
d,i Left facing surfaces
e,j Right facing syurfaces
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ae,i,m Horizontal surfaces
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CLASSIFICATION/OBJECT RECOGNITION

SOFTWARE TECHNIQUE APPRAISAL

R.J. ATKINSON

GENERAL ELECTRIC COMPANY
HUNTSVILLE, ALABAMA

ABSTRACT

An abundance of software techniques and variations of techniques exists for
obtaining useful information from the large volumes of data generated by cur-
rent sensors. Problems in system development are the choice of a suitable
variation for a particular task, and determining the benefits of applying the
processing in various sequences. As a result, the requirement exists to assess
and evaluate representative techniques. This paper presents criteria and meth-
ods for evaluating information extracting techniques.

Also presented are results of applying various techniques in combination, such
as edge detection and template matching, object detection and multispectral
classification, geometric manipulation followed by classification.

WHY IS TECHNIQUE EVALUATION NECESSARY?

In recent years, there has been a great deal of interest in classification/
pattern recognition techniques as evidenced by the hundreds of journal articles
and books on the subject, with the main concentration of effort being on tech-
nique development. The large number of different approaches tends to indicate
that no single approach is able to satisfy a large class of users.

Results evaluating different techniques have been published, usually by the
original developer. This tends to preclude the application of other known
techniques. Cenerally, the evaluations are performed on different computers,
so that it is difficult to compare the operational characteristics of different
techniques.

As a result, the evaluations that are available are difficult to piece together
to obtain an overall appraisal concerning technique development. However, the
appraisal is important because the utility of the systems is highly dependent

upon the accuracy versus cost with which information can be obtained from
imaging sensors.

The major part of the problem of obtaining a comprehensive evaluation of classi-
fication technique development is that it is a formidable task and requires an
overall coordinated attempt at standardization of:
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* evaluation criteria,
9 unbiased evaluation procedures, and
* computer hardware and software programming practices.

Since the resources already existed within NASA, the establishment of such
standardization practices became objectives of the Office of Applications
Data Management Program In 1975. (Ref. 1) Inclusion of representative soft-
ware for all existing techniques, evaluation by a variety of users, and dis-
semination of techniques and results were provided for by the formation of an
Image Coding Panel representing six NASA centers.

Studies have also been undertaken by the General Electric Company in order to
complement their involvement in the Landsat missions and development of image
analysis systems such as IMAGE 100. (Ref. 2)

BACKGROUND: CLASSIFICATION/PATTERN RECOGNITION TECHNIQUES

The input to a pattern recognition system is a sequence of observations which
are called measurement vectors or feature vectors. The user might have vary-
ing degrees of knowledge about the measurements. He might, in some cases,
know the categories he is looking for and the ground truth (i.e., the class
designations) at a small subset of locations from the remotely sensed image.
When the ground truth is known, the method is said to be "supervised" and when
there is no knowledge of ground truth the method is said to be "unsupervise("
Another type of division is made depending upon the knowledge of the multi-
variate probability distribution for each class. When the distributions are
known only in functional form with a finite set of unknown parameters to be
determined on the basis of observed sample3, this is called "parametric learn-
ing." Situations where even the functional form of the diztributions are un-
known call for "nonparametric learning."

EVALUATION CRITERIA

There are probably many ways to evaluate classification techniques, but from
a userls point of view, the three most important areas of concern appear to be:

e the resources required to run the program and perform an analysis,
9 a description of the analysis process, and
* the performance of the technique.

The quantitative aspects of the resource requirements are essentially concerned
with the computer hardware necessary to run the program. The purpose of pro-
cess descriptions is to provide a reasunable understanding of the classification
analysis process and the role that a user plays in the analysis, as well as to
contrast differences and highlight similarities between the various techniques.
The performance characteristics are intended to indicate operational costs,
cost/benefits, and maximum capabilities of the various techniques. Those quan-
tities that can be enumerated are:
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* computer time,
e relative accuracy in terms of direct pixel comparison of ground

truth data and classification maps,
e maximum number of channels,
e maximum data set size,
* maximum number of clusters or classes,
* cost/benefit estimates in terms of relative accuracy and the use

of conventional techniques, and
a manhours required by the user in the analysis.

The last two items tend to be subjective, since they depend on the type and
quality of ground truth as well as on the human capabilities applied to the
successive phases of photo-interpretation, classifier training, and iteration
a number of times through the analysis process to attain satisfactory results.

PROCEDURES

In conducting a systematic assessment of classification techniques, certain pro-
cedures must be adopted to achieve consistency in results and to assure that
relative comparisons have meaning. It is most important that measures of tech-
nique performance be free from biases introduced unintentionally by persons
conducting the evaluation. Some of the principal factors to be considered in
technique assessment include:

e choice of data sets and their preparation for analysis,
e use and treatment of Ground Truth Data to assure compatibility

with the remotely sensed imagery,
9 selection of samples within the imagery to be used for training

supervised classifiers to recognize particular classes, and
* methods for comparing results of different classification techniques.

ACr, ISITION OF DATA SETS

The data sets to be used in evaluating classification methods should be:

* sufficiently large and varied so that statistically significant numbers
of data elements are present in several classes of interest,

* multivariate, since the majority of classification techniques are
structured to analyze multivariate data, and

* similar as possible to data encountered in real applications.

Most of the tests were performed on a 1200 by 1200 pixel segment of Landsat
data covering Mobile Bay, the City of Mobile, agriculture, forest, and wetland
regions. Six scenes obtained from 1972 to 1975 were used. (Ref. 3)

ACCURACY COMPARISONS

An evaluation of the accuracy of the classification maps is a necessary part of
comparing classification methods. The principal idea is to use joint histograms
(contingency tables) to show the dissimilarities between maps. The joint histo-
gram of maps 1 and 2 is defined as a Matrix A with

a..= number of simultaneous occurrences of classes i and j in maps
I and 2, respectively.
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In the case of comparisons between two maps with known labels, the map accuracy
is defined as the total number of simultaneous occurrences of identical labels
in the two maps expressed as a percentage of the total number of points in either
of the maps. In terms of the joint histogram, this simply amounts to
100 Trace (A)/(Sum of all the elements of A).

INVENTORY COMPARISONS

In many instances, the users are simply interested in the inventories or the
percentage occupancies of the various classes over a given region, rather than
the point-by-point occurrences of the classes. It is reasonable to expect that
the accuracy of the inventories derived from any classification method should
be greater than the point-by-point accuracy of the corresponding classification
map. The percent inventory accuracy is defined as

100 1l iX=l 1Pli - 2

1 2N

where Pli and P2i are the populations of the class I in maps I and 2, m is the

number of classes, and N is the total population. The definition assures that
the measure is between 0 and 100 percent, agreeing with the intuitive concept
of similarity. This equation is derived by assuming 100 percent similarity,
less the absolute value differences of the class populations as a percent of the
total population. The division by 2 arises because samples in error are counted
twict (as errors of omission and commission). An alternative derivation is
obtained by counting for each class the populations in the two maps which are
similar until one of the counts exceeds the population in either map. Thus,
the equation has the form

m
m min (Pi' P 2 )

100
N

CLASSIFICATION BY DENSITY SLICING

Density slicing refers to the process of identifying regions or objects in an
image by choosing a range of densities (a density slice) corresponding to each.
Inspection of multfband imagery reveals that significant classes of homogeneous
terrain cover can be identified visually by the reflectance characteristics
within single bands. The method is appealing because of its simplicity, since
correlation of the reflectance values among several spectral bands is not
required.

The density ranges can be chosen manually by examining the density values in
each region of interest, or the spectral band and the density range for each
class may be selected by a feature selection and linear classification
algorithm restricted to one spectral band. The latter method was tested for
inclusion in this report as the algorithms were available.
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RESOURCE REQUIREMENTS

lnpu t Ou tp~ut

* number of classes and spectral bands present in the data,
* a set of training samples,
e tape of data samples to be classified with the measurements for

each spectral band arranged in vector format, and
e output tape of classification results.

Program Memory

e an array to store the training samples indexed by class number,
feature number, and sample number,

e input/output buffers,
a arrays to store the discriminant coefficients by class, and the order

in which discriminants are tested,
* total work space dimensioned four times the number of training samples

for use in training, and
* subroutine storage of 11.2 Kbytes.

ANALYSIS PROCESS

In order to verify that the best possible spectral band is chosen to discriminate
any given class from all the others, a quantitative band (feature) selection
method is applied first. Usually, this confirms what is visually obvious. Using
a set of training data samples whose classifications are known, the signed
distances of samples in different classes from the discriminant point are com-
puted for each spectral band. The spectral band chosen is that for which the
distance is a maximum.

Linear discriminant functions are then computed for each class, using the spectral
band chosen by the above criterion for each class. The coefficients in the dis-
criminant function are chosen by an iterative procedure. (Ref. 4) The two
coefficients determined (constant term and data value multiplier) may be used in
a linear discriminant function, as is done in this case, or may be used to cal-
culate the density ranges occupied by each class.

PERFORMANCE CHARACTERISTICS

The algorithm can operate on large numbers of spectral bands and classes. The
size of the data set to be classified is immaterial, as the classification is
done on a point-by-point basis. The classification rate was 4450 pixels/second.
The total storage required is 100 Kbytes using buffers for 1200 samples.

MAXIMUM LIKELIHOOD CLASSIFIER

The maximum likelihood classifier is a supervised, parametric technique and is
probably the most widely known and used multichannel data classification method.
A set of data samples, whose classifications are known, is required to define
the parameters of the functions which are used to determine the classes of un-
known data samples. The required parameters nre those which define the Gaussian
distributions for each class of the training data, namely the mean vectors and
covariance matrices.
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RESOURCE REQUIREMENTS

I nput/Otu

* number of classes and features (spectral bands) present in the data,
* the Gaussian parameters (mean vectors and covarlance matrices),
e tape of data samples to be classified, in feature vector arrangement, and
* output tape of classification results.

Program Memory

"* an array to store the training samples by class number, feature number,
and sample number,

"* input and output buffers,
"* arrays to store the mean vectors and covariance matrices by class

number, and
"• subroutine storage of 8.4 Kbytes.

ANALYSIS PROCESS

It is assumed that the distribution of training data for a single class
approximates the bell-shaped curve of the Gaussian or normal distribution.

The parameters--mean values and covariance matrices--completely define the
Gaussian distribution functions. These parameters are easily determined for
each ciass under consideration from the known set of training samples.

When the GaLssian parameters have been estimaLed, the Gaussian probability
distribution for each class is completely defined. Thus, given any unknown
feature vector, it is possible to compute the probability of this feature vector
belonging to any one of the classes under consideration. Assignment is made to
the class for which the probability is greatest; this is termed the maximum
likelihood method of classification. For faster computation, the logarithm of
the probability is computed and the decision function takes the form

G.tI T -IGi =n Pl - tn Ki (X-MI K " (X-M)
1 2 1 2 (x, 1) (- 1)

where
Pi is the probability of class I being present, MI is the mean vector, and K.

is the covariance matrix. The decision point between two classes occurs when
the probabilities are equal, and is not midway between the means when the
widths of the distributions are unequal.

PERFORMANCE CHARACTERISTICS

The performance of a maximum likelihood classifier with respect to accuracy
and speed may be inferred from an examination of the method itself. If the
data samples do obey the Gaussian distribution for each class, this method
produces optimum results. However, the actual data samples belonging to a
given class may produce a rnultlmodal or skewed histogram. Typical causes of
this effect in earth resources data are differing soil conditions, son angle,
crop health and maturity, and the widely varying reflectivity of man-made
objects. In the case of such a multimodal distribution, the Gaussian parameter's
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which are computed do not accurately describe the actual distribution, and the
classification accuracy is reduced. The maximum likelihood classifier is
relatively slow because the classification of a data samplerequires the eval-
uation of the decision function for each class being considered.

This method will operate satisfactorily on large numbers of spectal bands and
classes. The size of the data set to be classified is immaterial to the process,
as each data point is classified independently. Approximately one second is
required to compute the distribution functions. The classification speed for
six classes is approximately 650 pixels/second. The total storage required
is 90 Kbytes using buffers for 1200 samples.

LINEAR CLASSIFIER

The linear classifier described here is a supervised, nonparametric technique.
Thus, the initial phase of the classification process consists of the definition
of a set of discriminant functions using data samples whose classifications are
known.

In separating one class of objects from one or more other classes, it is desir-
able to de-emphasize the characteristic features that the classes may have in
common, and to emphasize where possible the features that are unique to the
class of interest. The Linear Classifier concept depends upon this assumption,
and aims at developing a single measure of a class's composite features. This
measure, the discriminant, is formed by adding the value of each feature
(reflectance value or brightness in the case of multiband imagery), after each
feature has been weighted according to its usefulness in separating the class
of interest from the other classes.

RESOURCE REQUIREMENTS

Input/Output

* the number of classes and spectral bands in the data,a a set of training samples,

* tape of data samples to be classified, arranged in feature vectors, and
e output tape classification results.

Program Memory

o an array to store the training samples by class number, band number,
and sample number,

* input and output buffers,

* arrays to store the discriminant coefficients by class, 3nd the order
in which discriminants are tested,

* total work space dimensioned (three plus the number of bands) times
(the number of training samples) for use in training, and

o subroutine storage of 11.1 Kbytes.
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ANALYSIS PROCESS

Nonparametric methods are so termed because the parameters of the distribution
functions of the data are pot used. The training algorithm determines the
values of the weighting factors "w" to be used in a discriminant function of the
form

G = w0 + wIxI +W2x2 + ... +wnx

A set of weights is determined for each class of data, the value of a weight
reflecting the significance of its associated feature in separating the class
from its companion classes. Thus, for each unknown feature vector, a value of
G is obtained for each class. There are two approaches possible in the applica-
tion of linear classifiers. In the first, the discriminant functions are de-
signed such that one class may be separated-from each of the other classes,
pair wise.

In the second approach, the one employed at NASA-MSFC (Ref. 5), the discriminant
functions are designed such that one class may be separated from all of the other
classes considered collectively as one class. Unlike the first approach in which
all discriminants are calculated concurrently, here the discriminants are cal-
culated sequentially. The sequential nature of testing results in a speed
advantage over the parallel procedure employed in the first approach. The class
which is to be separated from the others should be widely separated from the
discriminant hyperplane and from the other classes. The criterion used is the
sum of the signed distances of the training data samples from the plane. Samples
which are incorrectly discriminated are givan negative distances. The coefficients
of the discriminant function are determined by setting up a system of discriminant
equations (one for each training sample). The method consists of maximizing the
total distance of the training samples from the discriminant hyperplane. (Ref. 4)
This process is repeated for each class until a single class remains. Samples
are classified by evaluating the discriminant functions sequentially until a
positive value is obtained.

PERFORMANCE CHARACTER:STICS

This method will operate satisfactorily on large numbers of spectral bands and
classes. The size of the data set to be classified is immaterial.

Approximately one minute Is required to compute the discriminant coefficients.
Data was classified into six classes at the rate of 4590 pixels/second. The
total storage required is 125 Kbytes using buffers for 1200 samples.

SPATIAL AND SPECTRAL CLUSTERING PROGRAM (SSCP)

The SSCP can be run in either an unsupervised or supervised mode and is com-
posed of two modules which are run separately. The first module allows a user
to select training areas manually or will automatically select training areas
based upon the spatial and spectral characteristics of the data set and auto-
matically merges data from training areas that are spectrally similar. The
second module classifies each individual pixel accorditig to whether or not it
belongs to one of the described classes. Each class I,; described by a mean
vector and a set of elgenvectors and elgenvalues, whici are derived from module
one and used in module two. The classification is thresholded, which usually
results in some pixels remaining unclassified.
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RESOURCE REQUIREMENTS

The resources required by a user, as far as a knowledge of the data set is con-
cerned, can range from very little knowledge to considerable detailed informa-
tion, since the program can be run in either a supervised or unsupervised mode.
There are two reports that mathematically describe the program and present re-
suits on aircraft scanner and Landsat multispectral data. (Ref. 6, Ref. 7)

The program, as it is currently used, is run in two parts. The first part
acquires the statistics necessary to classify the data and uses 206 Kbytes
of core r-mory. This part of the program also utilizes four tape drives and
eight se ýions of disc storage, each of which contains 231'. blocks (records)
of 1028 .ytes. One of ti.e tapes contains previously acquired statistics, if
there are any, the second tape contains the reformatted data, and the third tape
contains the output statistics used in classifying the data. The fourth tape is
optional and contains the cluster map.

The second part of the. program classifies the individual pixcls based upon the
acquired statistics and utilizes 110 Kbytes of core memory. This rart of the
program also utilizes three tapes which contain the input statistics, the input
reformatted data, and the output classification map. One section of disc is
reserved that contains 2340 blocks of 3300 bytes.

ANALYSIS PROCESS

The program contains two modules which are presently run separately. ThL first
module performs three different operations on the data, while the second module
only classifies the data. Thus, the entire program consists of a boundary routine,
a spatial clustering routine, a spectral merging routine, and a classification
routine.

The purpose of the boundary routine is to establish boundaries when the spectral
vector distance between the pixel in question and the previous adjacent scan
and column pixels is large enough. The spatial clustering routine uses the
boundary map as an input and searches the boundary map for homogeneous areas.
The purpose of the spuctral merging routine is to determine which spatial
clusters" are spectrally similar and which ones are spectrally distinct. The
inputs to this routine are the raw data and the cluste map or training area
coordinates which provide the program with information on where to fetch the raw
data for each cluster. Once the data have been fetched, the following quantities
are calculated for each cluster:

* pixel population,
* Mean value for each channel (i.e., mean vector),
* covariance matrix,
* eigenvectors, and
* eigenvalues.

The data belonging to each cluster are then enclosed by a surface in the multi-
spectral space whose dimension is equal to the number of channels of data. This
closed surface is a hyperellipse whose center is the mean vector, whose orienta-
tion is given by the eigenvectors, and whose extent is governed by the magnitude
of the eigenvalue associated with its eigenvector. The rule for spectrally
merging two clusters is that the mean vector of each cluster must be contained
in the other cluster's closed surface. When two or more clusters are spectrally
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merged, the previously mentioned quantities are recalculated for the combineddata of the merged clusters. Once the merging process has been completed, theremaining clusters are called classes.
The classification program then classifies each pixe! as to whether it belongsto a particular class or none of the classes. The rule for classification isthat the pixel vector first must be contained within the closed surface defininga class, and, secondly, if it is contained within more than one such surface,the pixel vector Is assigned to the class whose center location (mean vector)is the closest. The inputs t.o the classification program are the raw data andthe class statistics which are the mean vectors, eig(cvalues, and eigenvectors.

PERFORMANCE CHARACTERISTICS

SSCP is dimensioned to handle a maximum of 12 channels of data, 150 unmerciedclusters, or 46 input training areas, and 42 final classes. The clustering partof the program is dimensioned to handle a strip of data 256 columns wide and asmany scans as desired, while the classification program is dimensioned tohandle 824 columns of data and as many scans as desired.
In the unsupervised mode, the program tends to work best on !arge data sets wherethere is the opportunity to find large (typically 10 x 10 pixel arrays) homogeneousareas on the boundary map.
The output of the classification program is a tape containing the classificationmap and a listing of the class population and percentages. Typically, it ispossible to classify at least 90 percent of the data using the program in theunsupervised mode. The ur-ban category is usually the most difficult to classifyusing the unsupervised mode because urban areas tend to become boundaries.
In the clusterina por-gram, the length of time required to produce a boundary mapis directly proportional to the number of pixels in the data set or about 500pixels p:. second and the spatial and spectral merging rate varies but falls inthe range 300 + 60 pixel'Isecond. The classification program time also appearsto be linear with the number of p'xel.- for a given number of classes, except fora variation due to the percent of the data classified. This variation is causedby the classification logic which checks the class assignment made to pixelsspatially adjacent to the pixel in question. As a result, the classificationrate ranges from 450 to 660 pixels/second.

SHISTO(RAM INSPIRED NEIGHBORHOOD DISCERNING UNSUPERVISED (HINDU) SYSTEM
This techrpque comes under the category of unsupervised, nonparametric classifi-cation techniques and is most suited for application to environments whereinneither ground truth nor information about the distributions underlying thedata are available. The program is highly automated and requires little humaninteraction. User's subjective influence on the process is limited to specif-ication Li the maximum and minimun limits on the number of clusters, and theapproximate range in the values of measurements.
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RESOURCE REQUIREMENTS

The program, as is currently implemented, is dimensioned to handle four
dimensional data sets. There is no critical limitation on the number of scan
lines and the number of data points/scan line, and accordingiy, there is no
strict limitation on the size of the data set. A scene of 1200 data points!
scan line calls for a core memory requirement of 170 Kbytes. For input/output
oF data sets and labels, two tape drives are called for by the program.

ANALYSIS PROCESS

The major components of the HINDU system are:

"* Histogram Generator,
"* Cluster Formulator,
"* Discriminant Designer, and
"• Label Designator.

The function of the histogram generator, as the name implies, is to generate the
multidimensional histogram of the input data set. This histogram analysis leads
to a set of multidimensional cells occupied by the input data set. The cell
widths cover several data levels, effectively smoothing the histogram. The
output of this histogram generator consists of arrays containing the measure-
ment space addresses, frequencies, and data averages for each ý,ell.

The oLtput of the histogram generator is processed by the cluster formulator
to create the clusters (of cells) and define their boundaries. This is achieved
by a sequential procedure consisting of the following steps:

* identification of the current lowest density sell,
* connection of this cell to its higher density neighbors by reassignment

of the contents of this cell to these neighbors in proportion to their
current density levels,

e storage of these connections in memory in the form oi a connectivity
matrix and

* updating of the density and average arrays to reflect the changes due
to reassignment.

This sequential processing is continued until all the originally non-empty cells
are processed. As is to be expected, this processing leads to a finite number
of cells whose contents remain unassigned, there being no higher density neighbors
to these cells. These cells are considered as candibate cluster nuclei and
those deemed significant have their updated density values higher than a threshold
value. The connectivity matrix can then be processed to trace out the connections
of each cell up to these significant cluster nuclei and thereby identify the
clusters of cells surrounding each nucleus cell. Such ce!ls are considered to
represent the Fuzzy boundary separating the corresponding clusters.

The discriminant designer determines the set o' hyperplanes which discriminate
between each pair of clusters. The conventional methods of learning the dis-
criminanr functions based on error-correLtino orocedures and solution of linear
inequalities are not well suited in view of the tact that there exists a sK'onif-
icant amount of information in terms of cells representing the fuzzy boundaries.
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The methodology adopted here tackles this modified problem environment by
ensuring that the hyperplane represents an optimum fit to the fuzzy boundary
in addition to fulfolling its traditlonai role of being a discriminant between
the two identified clusters. This is achieved by viewing It again as a I~rear
inequality problem, but with certain additional minimization constraints and
establishing an equivalent unconistrained linear inequality problem amenable to
conventional techniques. (Ref. 8) (Here, the Ho-Kashyap algorithm (Ref. 4)
is adopted to handle the equivalent unconstrained Uinear inequality problem.)

The label designator essentially consists of a table of class numbers correspond-
ing to the centroids of the histogram cells. The class numbers of the individual
samples are derived by look~ng up this table for the corresponding entries. The
class numbers of the centroids are determined by the discriminant hyperplanes
designed earlier.

PERFORMANCE CHARACTERISTICS

The method is designed for processing relatively large data sets of moderate
dimensionality under unsupervised environments wherein computational eco;.omy
is a significant factor in dictating the choice cf the technique to be employed.
This method does not involve intersample distance computations, a common
feature of many other clustering approaches, and hence the computational load
increases only linearly with increase in data size. The execution speed is
somewhat dependent on the number of clusters, but is near 4000 pixels/second
overall.

SUPERVISED TABLE LOOKUP METHODS

All of the previously described supervised classification techniques are applied
to the multispectral vector occurring at each plcture element location. Using
this approach, the classification time will be proportional to the number of
classes and the number of picture elements. When processing speed is a major
consideration, a considerable advantage can be obtained by using a table lookup
technique.

There arc two methods for determining the extent of the table required to accormno-
date the input data. The first is to construct a table adequate to classify all
vectors with components in the expected range of the data. The second is to find
all of the unique measurement vectors in the image data and their frequency of
occurrence and label the picture element locations with a number that identifies
the vector that belongs there. Any classification approach can be used to ob-
tain a classification inventory from the table of vectors, and a classification
map can be produced by replacing each picture element vector number with the
corresponding class number.

ELLTAB

The name ELITAB stands for ELLiptical TABle, which gives a partial description
of the program. ELLTAB is a version of the (supervised) Gaussian maximum
likelihood method, implemented using a table lookup technique. The piogram is
an application of the general table lookup pattern recognition method devised

by Eppier. (Ref. 9) The gcneral 7dea of the method is, in the training phase,
to precompute the possible results of the decision rule, as a function of
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position in feature (measurement) space, and store them in a table. Then,
in the classification phase, each measurement vector is used to enter the
table, which tells the class.

In constructing the table, each possible result only needs to be computed once,
while in conveitional implementations of pattern recognition techniques, the
same calculation could be performed several times. The tin'e per point required

a for the classification phase is approximately proportional to the number of
classes. Since the classification itself is performed simply by looking up
results in a table, the time required Is not at all dependent on the classifi-
cation rule used in preparing the table.

RESOURCE REQUIREMENTS

ELLTAB was originally written In FORTRAN V for the UNIVAC 1108 computer. Con-
version of a program from one computer to another may be much less than
straightforward, and unless cunsiderable time and effort are expended, an
inferior version of the program might result. For these reasons, ELLTAB was
tested on the 1108.

ELLTAB consists of two exectutable modules, ELIPSE and ASSIGN. Each contains
a main program and several subroutines. ELIPSE constructs the lookup table
(training phase), which is then used by ASSIGN to classify a scene (table
lookup phase). The two modules are executed separately. ELIPSE requires about
30K words of core storage. About 70 percent of this spice is used for dat
storage. One tape drive is required for the (output) table tape. The other
executable module, ASSIGN, requires about 27K words of core storage with the
array used to hold the combined lookup table for all classes dimensioned 9000.
Three other buffer arrays corresponding to three tapes are used: the tabie
tape, the (input) data tape, and the (output) classification tape.

ANALYSIS PROCESS (Ref. 10)

The table lookup method of pattern recognition is motivated by a desirc to
reduce the total amount of computation requ:red for classifying large data
sets, possibly using complex deci!szon rules. After a step that partitions

*l feature space into regions according to some decision rule and constructs tables
incorporating this information, classification of multispectral data is per-
formed simply by entering the tables, which have a form essentially independent
of the decision rule.

The table-building phase coulc use any method of partition*;ng measurement space
and constricting tables. ASSIGN explicity uses the Gaussian maximum likelihood
method. The tables describe hyperellipsoids in four-dimensional space. Assuming
first that the regions for the classes do not overlap, the statistics derived
from training data are used to determine the ellipsoids. The sizes are given
by the quadratic threshold values Q specified. Table size is sensitive to the
va!ue of Q. it there is no overlap between classes, nothing else is necessary.
For regions of over-lap, points are assigned to the class for which the likeli-
hood discriminant function has the greatest value.
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In the classification phase, the preceding class is assumed. If that hypoth-
sis fails, the other classes are tested in order of decreasing a pr!ori pro-
ability. The testing is done as follows: one component at a time of the
point is tested to see whether it lies within the permissible range of values
for that class. The tables, then, contain a description of the class bound-
aries, along with "pointers" to tell where in the tables to look to find the
limits for the next test. The order of utilizing components of measurements
is chosen for each class to minimize the size of the table for that class.

PERFORMANCE CHARACTERISTICS

Since ELLTAB is an implementation of the multivariate Gaussian maximum likeli-
i hood decision rule, its performance (e.g., with regard to the type of classif-
ication errors it may yield, etc.) should be similar to that of other imple-
mentations of the method,. Because of the quadratic threshold feature, some
data points will generally be assigned to the unclassified "class."

There is essentially no limit to the number of data points ELLTAB can process
in a single run, since It c;assifies one scan line at a time.

The value of Q corresponding to excluding an average of 100 points from each
of six classes (an excluslon probability of 0.01154) is Q = 12.96. Using this
value for each class, the run of ELIPSE to make a table tape took 0.8 minute
(CPU time). The time for classification was 250-300 microseconds per pixel or
up to 4000 pixels/second. Probably, large homogeneous areas could be classified
faster than regions where there are frequent changes between classes. Classifi-
cation time should increase with the number of classes (as in the case with
other ciassification programs).

VECTOR CLASSIFICATION

Classification time can be significantly reduced if the unique vectors and the
number of times that they occur are extracted from the ;maoe for an inventory.
A classification map can also be constructed by replacing the multispectral

Svector at each picture element with one number that identifies the vector that
belongs there, and then by replacing the vector number with the class number
to which that vector was assigned using 2 table lookup procedure. Thus, each
urique vector is only processed once, and the answer may be applied many times.
The classification time will then depend more on the number of unique vectors
in an image which is typically less than five percent of the number of picture
elements.

RESOURCE REQUIREMENTS

The program which calculates the histogram of the four-dimensional Landsat
vectcrs requires arrays for storing the vector components (four components
per word) and the frequency of occurrence of each vector. These should be of
length approximately 50 percent greater than the expected number of vectors.
The subroutine requires 3770 bytes of storage. This step is followed by the
implementation of a classification routine which classifies the table of
veccors. The modifications required are slight for those classifiers wch.....

accept vector input.

44



ANALYSIS PROCESS

A straightforward table of occurrences cannot be used because the maximum
possible number of vectors from Landsat data is 128 x 128 x 128 x 64 - 134,217,728.
Consequently, a divisor, base, and multiplier are applied to a vector to compute
a location in a shorter table. Each component of the vector Is divided by the
divisor to obtain the remainder for each component. Using the specified base,

the remainders are used to obtain a four digit number. Since this number is not
unique with respect to input vectors, the number and hence the available table
locations are multiplied by the multiplier. This final number Is the table
location at which the search for new vectors begins. Additional details and
results are given in Reference (11).

The table location of each data sample is written in a file, the table of vectors

is classified, and the numbers in the file are replaced with class numbers.

PERFORMANCE CHARACTERISTICS

Because of the vector tables, the storage requirements are high, typically
500 Kbytes for a large image.

The histogram generation rate varies greatly with the distribution of vectors,
but is approximately 9000 input vectors per second. The execution time in-
creases if the length of the frequency table is not somewhat greater than the
number of vectors found (due to greater searching to bypass the full regions of
the table).

The overall processing rate to extract the unique vectors, determine how many
times they occur, and to label the picture elements with the corresoonding
vector numbers; to classify the unique vectors; and, to convert the vector
numbers to a class number for each picture element is 6500 pixels/second. The
vast majority of the time is spent extracting the vectors and labeling the
picture elements, but the total process is still one and one-half times faster
than using the 7inear classifier to classify a vector at every pictire element.

VECTOR REDUCTION PLUS CLASSIFICATION

The most obvious way to further reduce processing and storage costs is to approx-
imate the multispectral imagery and hence reduce the number of unique vectors con-

p tained in the table (Ref. 12). The effects of such a reduction on processing

costs and classification results were examined by combining vectors with their
neighbors. The reduction was accomplished by superimposing a grid, of spacing

* greater than unity, on the measurement space and changing the value of each vec-
tor component to that of its nearest grid point. Thus, the vectors contained
within cubes tIke size of the grid separation are merged to a centroid. The grid
separations can be increased until the spectral structure of the data is smoothed

to the extent that multispectral classification is hindered. The limit of vector
merging can be establish-ed by requiring that a su'fficient number of natural
clusters remain in the data. This may be accomplished by a clustering technique
such as the HINDU system described earlier. In tois study, three classification
techniques using the centroids of the occupied grid cells were employed. These

* additional techniques are supervised, in that a set of training samples, whose
classification is known, is Input to the system.
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RESOURCE REQUIREMENTS

The computer resources employed by these classifiers are similar to those given
previously for the HINDU system, viz. a core memory requirement of 170 Kbytes,
two tape drives for Input and output, and external storage for the histogram
cell addresses. An additional Input requirement Is a set of labeled training
samples.

ANALYSIS PROCESS

The three classification techniques used in this system were:

o nearest neighbor
* maximum likelihood
o piece wise linear

The training samples are used to evaluate the required parameters of the class-
ification algorithm, such as the Gaussian parameters of the distributions or
the coefficients of linear discriminant functions.

The table lookup is applied to a smaller set of vectors only instead of all
possible feature measurements. The reduced set is defined here as the cen-
troids of the contents of all the occupied cells resulting from a multi-
dimensional histogram analysis. The centroids of all the occupied histogram
cells are classified on the basis of nearness to one or the other of the train-
ing samples, by using the classical maximum likelihood classifier with the
estimated parameter values, or by a set of discriminant hyperplanes whose param-
eters are determined by the set of training samples The classification, or
table lookup, phase requires the use of the incomiran easurement vector to
locate the proper element of the table, which contains the class.

PERFORMANCE ASSESSMENTS

The CPU time required is divided between the histogram analysis time and the
table creation and lookup time. The overall processing rate is approximately
3600 pixels/second.

ERRORS DUE TO VECTOR REDUCTION

Since the reduction in the number of vectors was accomplished by changing the
component values, it is necessary to examine the error introduced in the data
and consequently In the classification. If the error is deemed too large, it
may be decided to merge only those vectors with a low frequency of occurrence.
This will be a large •iumber of vectors, with a correspondingly large reduction
in the length of the table of vectors required to describe the image. However,
this large number of vectors represents only a small part of the image area,
due to their low occurrences. For this study, all of the vectors from a 1.44
million pixel scene were extracted and some or all of the vectors were reduced
in a nearest neighbor fashion, I.e., merged in groups of three so that the
maximum change in a component was +1.
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If the distribution of unique vectors and the variances 'ar spectral band are
known, it is possible to predict quite accurately the avierage mean square error
per band with respect to the original data. For nearest neighbor merging,
two-thirds of the numbers in the spectral distributions will change by an
absolute value magnitude of one.

The following table (Ref. 13) shows the predicted and actual average mean

square error per band, the number of vectors left after the reduction, the
Inventory accuracy, and classification map accuracy for the cases of not
merging any vectors, for merging vectors that occur 15, 30, and 45 times or
less, and for merging all of the vectors. Sequential linear classification was
used. It can be seen that NN merging of all components has a small effect on
the imagery and the classification results while reducing the vector table
length by a factor of 11.4.

FREQUENCIES NUMBER AVERAGE MEAN SQUARE INVENTORY CLASSIFICATION
OF MERGED OF ERROR PER BAND ACCURACY MAP ACCURACY

VECTORS VECTORS PREDICTED/ACTUAL PERCENT PERCENT

NONE MERGED 27696 98.24 72.46
1-15 8525 0.0314/o.0315 98.18 72.43
1-30 6694 0.0502/0.0501 98.11 72.32
1-45 5856 0.0649/0.0649 98.10 72.26

ALL MERGED 2420 0.667 /0.671 95.49 70.35

GE IMAGE 100 CLASSIFICATION TECHNIQUES

Although direct comparisons cannot be made on the basis of IBM 360 classification
speed, it is important to consider the impact of an interactive system on the
appraisal of techniques. Consequently, the performance of three classifiers
implemented on a PDP 11/45 based IMAGE 100 were evaluated by General Electric.
S(ef. 2) A standard maximum likelihood method was included and need not be

Sus sed.

*, PARALLELEPIPED CLASSIFIER

In brie', the IMAGE 100 operates simultaneously, under human supervision, on
two to four bands (generally) of Landsat data. The operator, interacting with
a display of classification results and/cr histogram displays, selects upper
and lower data bounds relative to specific training sites representing a known
class of material. If desired, the selected upper and lower bounds can be
applied directly to the displayed scene segment and interactively modified to
establish a final classification in virtually real time. The upper and lower
bounds established by the operator for each class are the only data points
determining the resulting classification, an advantage because, in spite of
histogram distortion, the upper and lower bounds of a class are relatively
stable in the presence of compression/decompression and calibration, whereas
the distribution of counts between limits is distorted.
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ANALYSIS PROCESS

In training, multispectral brightness data (gray levels) within the training

area are automatically measured, and their upper and lower spectral limits are

used to define a single spectral cell. This spectral cell is the first-cut

signature of the class within the training set. All screen pixels that lie

between the bounds of this signature are then identified on the color monitor
image display.

Further refinement of these (sjioatures was possible through a manual interactive

refinement technique. The objective of this signature refinement was to obtain

spectral signatures with characteristically low omission and commission errors

This interactive procedure, called histogram trimming, allows the machine opera-

tor to adjust the range (large cell gray level limits) of any one or all of the

Landsat spectral bands that comprise the four channel signature.

PERFORMANCE CHARACTERISTICS

The parallelepiped approach applied in an interactive mode appears to be an

effective classification tool. An advantage of this approach is that the

operator can see the results of his classification immcdiately on a class-by-

class basis. The operator can evaluate his classification in terms of both

visual classification maps and histogram graphic displays.

FEATURE SPACE CLASSIFIER

The feature space classifier, as currently implemented, is a two-axis classifier.

SThese axes can be defined as two selected Landsat bands, ratio of bands, prin-

cipal components or virtually any combination of data space finally reduced to

a two-a::is projection. In essence, it is a parallelepiped classifier; however,

the graphic presentation of two-axis feature space coupled with the highly

interactive mode of operation eliminates th. need for designating training sites.

ANALYSIS PROCESS

The classifier iltilizes a non-parametric approach that depends on the inter-

active definition of multispectral classes in two dimensional feature space.

The approach is normally applied by partitioning a feature plot of MSS 5 versus

7 spectral space of a Landsat subscene. The feature axes, however, can be

defined as any other bands or as a variety of band combinations. Although

training sites are not required, improved separation in two bands may be ob-

tained by rotating the measurement space axes to be along the eigenvectors of

the covariance matrix.

PERFORMANCE CHARACTERISTICS

Feature space partitioning is a highly interactive technique that can be per-

formed quickly and yields very accurate results. Use of two dimensional data

allows display of all channels and a high level of interaction in selecting

upper and lower bounds in two-space and observing the result on the color dis-

play of the: scene. This highly interactive approach efficiently couples

spatial pal-tern recognition and context perceptions of the operator with the

number crunching capabilit;es of the machine. This approach has been applied

successfully in many other classification exercises. The results indicate that

the non-parametric approaches tested (parallelepiped and feature space) have

advantages over the tested parametric approach (maximum likelihood) when com-

pared in terms of classification accuracy, processing time requirements and

operational consideratiorns.
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All three approaches yielded approximately equivalent accuracy results. The
time required to perform the complete analysis of the study area (from data
Input to numerical results extraction) varied considerably with the classifi-
cation approaches. First, parallelepiped and feature space approaches require
far fewer digital operations per pixel than the maximum likelihood classifier
to assign a pixel to a class. This number of processing steps becomes an
important consideration as the demand on a processor increases, especially
if interactive rates are desired. Secondly, the most time-consuming function
in both the parallelepiped and maximum likelihood approaches is definition of
training sets.

Ease of operation comparisons among the three approaches is difficult because
the operation depends on how the approach has been implemented on a processing
system. Of the three approaches tested as implemented on the IMAGE 100 systems
used, feature space partitioning was the most efficient, followed by parallel-
epiped and finally maximum likelihood.

CLASSIFICATION SUMMARY

The performance characteristics are summarized in the following table and in
Figures 1 and 2.

STORAGE CLASSIFICATION INVENTORY CLASSIFICATION
CLASSIFICATION REQUIRED SPEED ACCURACY MAP ACCURACY

METHOD KBYTES PIXELS/SECOND PERCENT PERCENT

DENSITY SLICING 100 4450 77,5 66.5

MAXIMUM 90 650 93.8 70.4
LIKELIHOOD

SEQUENTIAL 125 4590 92.6 69.4
LINEAR

SPATIAL-SPECTRAL 206 660 79.3 65.5
CLUSTERING

HINDU
CLUSTERING 170 3900 92.7 79.4

ELLTAB (1108) 120 4000 87.9 71.9

VECTOR
CLASSIFICATION 500 6500

REDUCED VECTOR 170 3600

1. NEAREST 81.7 EI.2
NEIGHBOR

2. LINEAR 90.0 68.8

3. MAXIMUM LIKELHOOD91.3 69.7
LIKELIHOCD

IMAGE 100

I. MAXIMUM 9S~~LIKELIHOOD 9.

PARALLELEPIPFD 92.3

3. FEATURE SPACf 97.2 _
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A pictorial example of a classification map compared to a ground truth map is
shown in Figure 3.

4177

-..., ,..

i'U' .. . o.,

,I(a) Ground Truth Map (b) Sequential Linear Classification

S~of December 1973 Landsat Data

Figure 3. Maps of a Classification Test Site

Based on classification accuracy, there is no single outstanding technique. This

is because the sensor data levels are continuous from class to class and not

separated into distributions which would match the assumptions of, for example,

Gaussian or linear separability. The pixel by pixel accuracies are much lower

than the- inventory accuracies because classification is dore on an individual

pixel basis resulting in misclassification of isolated pixels and boundary pixels.

This effect carn be reduced by classifying wh(,Ae objects on the basis of the ma-

jority class of the pixels in the object.

OBJECT DETECTION AND CLASSIFICATION

A great amount of information is also carried in the spatial characteristics

of sensor imagery. This information is extracted by techniques such as edge
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detection and template matching, which may allow recognition of shapes. Tem-
plate matching using five sizes of circular templates applied to aerial photo-
graphy of a peach orchard is shown in Figure 4. However, many groups of objects
are not distinguishable by shape or outline alone. The spectral information
which is available should also be used. If multispectral classification Is
applied to the pixels comprising the objects, they may be identified as different
objects while possessing identical shapes. Classification as healthy or de-
clining trees Is shown in Figure 5. (Ref. 14)

,'v*40 .ail as~ 0* Goo

*%a-. *,*O**G Io ew, .1o o

0 0. ' O W 4 .

9 ad k q40''TA

Figure 4. Template Matching Example Figure 5. Detected Object Classification

GEOMETRIC MANIPULATION AND CLASSI FICATION

I i It may be necessary t~o change the geonietry o'" the imagery for purposes such as

merging data from different sensors, removin,• sensor distortions or overlaying
maps to select gr'ound truth areas. The data values in the manipulated image must

.1 be interpolated from those in the original data, and this is usually accomplished
by one of three methods: nearest neighbor, bilinear, or bicubic. For a 1.44

million pixel data set, the results are given in the following table.

It may be seen that the effects of the geomc;tric transformation on the classifi-
cation performarnce are minimal, changing the accuracies by amounis on the order
of one percent. Bilinear interpolation results in the highest map accuracies,
apparently due to the slight smooth*ng of the data by this method.
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GEOMETRIC INVENTORY CLASSIFICATION
CLASSIFICATION MANIPULATION ACCURACY MAP ACCURACY

METHOD METHOD PERCENT PERCENT

NONE 98.23 72.93

NEAREST
SEQUENTIAL NEIGHBOR 98.87 72.57

LINEAR BILINEAR 99.14 74.16

BICUBIC 98.53 72.43

NONE 97.79 73.83

NEAREST
MAXIMUM NEIGHBOR 97 73.52

LIKELIHOOD BILINEAR 97.76 74.87

BICUBIC 98.60 73.24

CONCLUSIONS

The accuracies obtained by various types of classification techniques do not
vary greatly. The processing speeds do, but this can be overcome by the use of
table lookup. The fastest method is by classification of only the set of
unique measurement vectors in the data set. Classification errors occur at
isolated points and boundaries, which can be overcome in some cases by object
detection. Some data modification, such as interpolation for geometric mani-
pulation, is not highly detrimenta, to classification, due to the inherent
data overlap airiong classes.
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MULTIPLE-CLASS PIECEWISE LINEAR TRAINABLE CLASSIFIERS
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ABSTRACT

When applying computers to the analysis of signals or images, one
often must classify parts of the signals or images into several classes.
Examples of such classes are tumor, calcification and blood vessel in chest
radiographs; and tank, jeep., and buildinv in scenes analyzed by guided
nmissiles. The previous theory of automatic classifiers was mostly devoted
to two-class classifiers. We describe a new techrique for the derign of
multiple-class classifiers.

Out technique combines our earlier theory of trainable linear
classifiers with the available methods for the design of multipl.e-f)utput
logic networks.

Our technique is based on the assumption that the optimal decision
surfaces can be approximated by piecewise linear surfaces {Li} with little
effect on the classification errors; and that the optimal decision surfaces
depend mostly on subsets of feature vectors from distinct classes that ore
close to one another in feature space.

Visualizations of the relationships of the linear segments of {Li} to
one another in multidimensional feature space cre provided by adjacency
graphs and incidence g&a•jhs relating various polyhedral regions in feature
space. These graphs facilitate interactive design or the classifier.

Each linear segment of the piecewise linear decision surfaces is
designed by a training procedure that yields near-minimal classification
errors for that segment. Thus the effectiveness of each segment of che
decision surfaces reflects the design data In the part of feature space
associated with that segment.

The use of switching theory and mathematical methods for the design
of logic networks leads to efficient sequential decisions for the multiple-
class classifier. These sequential designs tend to minimize the number of
computations required for the assignment cf a previously unclassified
feature vector to a class.
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Piecewise linear surfaces offer the further advantage of relatively
simple implementation by special-purpose digital electronic hardware.

INTRODUCTION

In the application of computers to the analysis of signals or images,
one often must partition these signals or images into several categories
or classes. For example, the analysis of a medical radiograph often
requires outlining and labeling regions such as heart, calcification,
tumor, and blood vessel. Effective missile guidance often requires the
segmentation of a scene into classes such as tank, Jeep, and buildijn.

Earlier classification techniques are mainly suited to just two or
three classes, and to cases where the optimum decision surfaces are either
approximately linear or approximately quadratic. In practice there are
many forms of distributions of labeled data which cannot be adequately
separated by linear or quadratic decision surfaces. In these cases the
Bayes-optimum surfaces [7] are highly nonlinear.

Our technique is based on the following property of Bayes-optimum
decision surfaces: the Bayes surface often passes through regions of
feature space where the hulls of subsets of feature vectors from different
classes overlap or where the data from these classes are very close to one
another. We refer to such regions as encounter zones [3]. Figure 1 illus-
trates three of these encounter zones. In most practical situations the
decision boundary depends principally on the data within these zones.

In our technique each linear segment of the decision surface is
positioned by training a hyperplane only on a subset of data lying within
an encounter zone. We use two forms of decision graphs -- adjacency graphs
and incidence graph -- to visualize the relationships among the linear
segments and the polyhedral decision regions. These graphs help us to
reduce the number of hyperplanes. After choosing the piecewise linear
decision surface, we exploit switching theory to minimize the decision
logic and the average computation time.

The localized training and the decision graphs give our method great
versatility, and yield both a near-minimum number of hyperplanes and error
rates near the Bayes optimum.

Our technique consists of three major parts:

1. Find "closed opposed" pairs of data prototypes. (These pairs
represent the encounter zones.)

2. Find a set of hyperplanes separating clusters of data represented
by close opposed pairs of prototypes. For this purpose use our
theory of trainable linear classifiers [1,2,31. These hyperplanes
produce piecewise linear decision surfaces separating polyhedral
decision regions in feature space. These decision regions repre-
sent classes to which unknown feature vectors are assigned by
the classifier.
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[r
Display Lhe relations among tha segments and the polyhedral
decision regions by decision graphs. These graphs facilitate
interactive simplification of che decision aurface,, often
leading to a reduction in the number of hyperplanes and the
number of linear segments. This approach to interactive design
obviates the need for mapping cf the data into two-dimensional
space for human visualization.

3. Use multiple-output switching theory to minimize the number of
hyperplanes and the computation time in the mult!ple-class
decision logic [4,5,61.

CLOSE OPPOSED PAIRS OF PROTOTYPES

We assume that the desirn data consists of a finite set of d-dimensional
feature vectors X = {xji} in Rd. Each xýi is labeled by one of c classes
{•I ..... ,c }. If xi is labeled by wj' we say that 2 i 6 . We refer to
as a training set or desin set. We assume that the dissimilarity between

any pair of feature vectors (Ai, xj) is measured by the Euclidean distance
between them:

D(xi,x.j) lix. -x a V (xik - xk)
In order to give approximately equal significance to all of the coordinatesk=l

of feature space, we assume that each feature has been normalized. The
choice of the form of normalization depends on the shapes of the distri-
butions of these data in feature space [1i. Often one may Effectively
normalize the data by subtracting the sample mean within each class and
dividing by the sample standard deviation -- yielding, for each class, a
training set whose projection on each feature axis has a mean of zero and
a variance of unity.

Using an iterative clustering procedure [7,8] (the choice of the
procedure does not seem to be critical), we segment The data into clusters.
Each cluster is represented by its centroid or prototpy. Then we find
close pairs of prototypes in opposite classes by a procedure to be des-
cribed below. We refer to such a pair as a closed ppposted pair or link.
We refer to the cluster of data represented by a prototype as a prtocluster.
Each close opposed pair represents a subset of an encounter zone.

The number of prototypes is specified by the designer of the classifier.
The designer usually will have to experiment with this number until he
finds the configuration that gives best results. This number should be as
small as possible while large enougb so that the set of prototypes serves
:adequately as a "skeleton" for the data.

Encounter zones are identified with close opposed pairs of protoclusters,
defined in the following way. Let Mk denote the set of prototypes formed
from data iii class (k" We say chat a pair of prototypes (ji, vj) is oppoed
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iff pi c M and vj C M., r#s. An opposed pair of prototypes (pi, 2j) is
now defined to be close _pposeds if and only if

D( 1i,V 1 ) = min D(Omink) = m (kj),

2 k c M 1 - eMr

where D(a, b) denotes the Euclidean distance between a and b. That is,
hi r M. and v, c M. are close opposed iff Ri is closer to vJ than to any

other prototype in Ms, and vice versa.

Let 11rs denote the set of close opposed pairs for classes wr and ws"
It must contain at least one member, namely the opposed pair for which
D( 1i,] ) is minimum. A procedure for constructing Hrs is obtained from
its definition:

Step 1: For each i ' Mr, find the closest V (Pi)c Ms, r#s.

The link set
LrLrs i2 (R)) I Ric Mr

is saved.

Step 2: For each V C Ms, find the closest Pi(v.)c M, r#s.

The link set

Lsr : {(ii( -j)'2j) I • S}

is saved.

Step 3: The set of close opposed pairs for the pair of classes
(Wr9 Ws ) is:

rs rs sr

The sets {H } are our realizations of encounter zones.
rs

6 The set Rrs is an approximate representation of the gap between the
classes w and ws and thus leads to an initial decision boundary for this
gap. At times it is useful to enlarge this set by extending the concept
of close oppose pairs to that of k-close--opposed pairs. The algorithm
for finding 'Irs , a set of k-close-opposed pairs, is like that for finding
11rs, except that the instruction "find the closest prototype" in Steps I
and 2 is changed to "find the k closest prototypes." This means, for
example, that (pi, Vj)c Lrs if and only if no more than k-I prototypes in

M are closer to Ri than is Vj. Lsr is similarly redefined. Clearly,
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11(k) C IH(k+l), and H(1) R n(k)

rs - rs ra k rs

A set of 3-close-opposed pairs for three classes is illustrated in
Figure 2. In this figure the three classes are labeled A,B, and C; the
protoclusters are represented by circles; the prototypes are represented
by dots at the centers of the circles; the links {Lrs} are represented by
straight line segments joining the prototypes.

THE DECISION SURFACE

In the next stage of the design process, a near-minimal set of decision

hyperplanes that separates subsets of the k-close--opposed pairs is found.
* Training procedures are used to find near-Bayes-optimum positions of these

byperplanes in feature space.

We find these hyperplanes sequentially. First we find a hyperplane
that jeparates the closest among the k-close-opposed pairs, because placing
a hyperplane in a constricting or neck-shaped part of the interclass gap
seems likely to separate more close opposed pairs than a hyperplane in
other parts of the gap. Let (pI, yJ) denote this pair. For simplicity,
we choose the hyperplane that is the perpendicular bisector of (QI, YJ).
The equation of this hyperplane is

[•- 2 ( + 2J) (I - YJ) = O.

Call this hyperplane HI.

Next we find those pairs of prototypes that are correctly classified
by HIl. Denote these pairs by {pli(Hi), V(H1))1. Let Pi(HI) denote the
region of feature space associated with •i(Hl). We refer to Pi(HI) as a
prototype region.

tp Next we use HI as the initial hyperplane, and the data in the proto-
type regions {Pi(Hl)}, {Pj(fi)} as the training set In a training procedure
that finds a near-Bayes optimum separation of the training set in these
regions. The training procedure should be nonparametric, because the data
in the prototype regions are likely to be nongaussian. For this purpose we
recommend the window training procedure [1]. One form of this training
procedure is given by the following recursive equation:

k y T T /

v(n) + (-l)k w y - for T•Y (l+n) 12 jf

v(n+l) -

v(n) otherwise
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where

Yi (n) = [vo0(n), wlI(n),...,wd(n)] [vo0(n), w(n)]

= augmented weight vector at iteration n,

y(n) = [1, x(n)]

= augmented feature vector at iternation n.

Let HI* denote the hyperplane obtained by the training process
using Hi as the initial hyperplane. We say that Hl* is the hyperplane
obtained by "training on Hl." H11* may or may not separate the same set
of pairs of k-close opposed prototypes as H1 . If HI* does not separate
the same set as that of HI, the training process may be repeated, treating
H1* as the initial hyperplane of the repeated training process. We suggest
that the training process be repeated until two successive repetitions
separates the same pairs of prototypes. Call the final hyperplane Hl.

Next the prototypes separated by HI are removed from the set of
k-close opposed hyperplanes, the closest among the remaining k-close
opposed pairs computed, and another near-Bayes-optimum hyperplane H2
computed in a manner similar to that for Hl.

In this way, a set of near-Bayes-optimum decision hyperplanes is
computed, each hyperplane separating a subset of the data that forms the
set of k-close opposed pairs of prototypes.

DECISION GRAPHS

Two types of graphs facilitate interactive simplification of the

decision surface: adjacency graphs and incidence graphs. Both graphs are
derived from a set of minterms representing the polyhedral volumes enclosed
by the set of decision hyperplanes.

We explain the decision graphs by the piecewise linear decision
curves shown in Figure 3. In this figure the feature space is two-dimensional.
Thus the decision segments here are straight line segments, and the decision
surfaces are polygonal curves. These decision surfaces partition the 2-space
into four decision regions: R1 , R2 , R3, R4'

Let zi(x) denote a binary variable associated with linear segment
Si and feature vector x. The value of zi(x) is 0 or 1 depending on whether
j•ET - JilJpi is negative or positive, where wi is a wetght vector

from the origin, normal to segment Si, and pi '.s the distance of the origin
from the hyperplane containing Si. Let Hk denote that hyperplane. Let
Z(X) denote the vector formed by all the zi(x)'s. The Hk's partition the
feature space into a nonoverlapping set of convex polyhedra {rj(x)}. For
all x E r 1 (x), z(x) has a fixed value, which we denote by zj. We refer to

as a olyhedral minterm. If we choose z arbitrarily, it may or may not
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be a polyhedral minterm. We refer to such a z as a minterm. Let Z denote
the set of polyhedral minterms {zj}.

In Figure 3, each linear decision segment is identified by an encircled
number. Thusndenotes segment S 3 . A number enclosed by a square is a label
for a hyperplane. Thusfj~denores hyperplane H4 . The weight vector wi
normal to Si has the direction shown by the arrow emanating from Si. The
polyhedral minterms are denoted by {(i)J} where r denotes the rth polyhedron
and i denotes decision region Ri. Each =ri) is shown inside its corres-
ponding polyhedron. Note that segment S5 has no arrow, because its hyper-
plane coincides with that of segment S 2 .

The first step toward constructing the adjacency graph is to find Z.
Each polyhedral minterm--i.e., each member of Z--must yield a consistent
set of inequalities of the form

T >0 for z = I
w x - 1w (-J ::- 1 i~

< 0 for zji= 0

for i =,..., m,

where zji is the ith component of zj. I.e., there must be at least one
real vector x that satisfies the above set of inequalities. To find Z,
we check the consistency of the above set of inequalities for each of the
2m possible m-vectors z4 = (zji,...Zm) If the inequalities are consistent,
zj £ Z; otherwise zj 4 -. The cons sency of these inequslities may be
Necked by the method of finding "feasible solutions" in linear programming [9].

In Figure 3, the consistency check yields the following members of Z.
(Here the components of each minterm represent hyperplanes H4 , H6 , 13, H2 ,
H5 , Hl, in that order.)

Region R z 100001 z = 111001
1 - -5

z = 100011 z = 111101
-2 =6

S(1) = 100101 z = 111100
-3
(1) = 101101 (1) = 101100

-4 -8

Region R2 : z = 000001 z ( 010011
-1 -3

Z(2) = 000011 (2) . 110011

(3) (3)
Region R z = 010010 = 111011

3 -1 ?4
(3)(3z2  =011011 z = 101011

z() 011010 ()= lOh)o1-3
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Region R4: z 4) 111010 z - 0111104 K4 -3
(4) (4)

A2  111111 111110

For every pair of decision regions (Ri,R), i # J, find all pairs
{(zri) ) such that zr and0 are adjacent--i.e., such that

_-r 'As )}scta r -an

.iýr() z(J) I, where 1x2 "city-block" or "Hamming" distance. Note

that if {z(1), ZJ)} are adjacent, then

lZM ) _z i 1 for k m
- 0 for k #m

for some positive integer m. We say that an adjacent pair (i(1) z_•(i)

segment element of hyperplane m, and denote it by eijm.

Next find the set of segment elements {eif} for a given linear segment
Sk of hyperplane m. We call this the segment set for segment Sk. For con-
venience we let Sk denote this segment set as well as the segment. For
every pair (i,j) we can fiVid a set of segments (or segment sets) that
separate Ri from R .

Next find every polyhedral minterm region _ that shares a decision
hyperplane with one of the segment sets, and which is a unit Hamming
distance from one of the pclyhedral minterm regions in the segment set.
Then find all pairs of segment sets (or segments) that share one of the

iz's. Call such a pair (SiSj).

Defixte

d(Sis Sk) distance between S and S
C k I k

0 if i = k

twice the sine of half of the external
angle between Si and Sk if Si and Sk
are neighbors

otherwise

In the adjacency graph each node denotes a segment Si, and every arc joins
a pair (Si, Sk) for which d(Si, Sk) < -. The arc for (Si, Sk) is labeled
by d(Si, Sk).

In the example illustrated in Figure 3, the segment sets of the
decision surface separating RI from R5 are
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* 3 {(( l( ) z (3) ,( ~ l }
4( =4 `~6

S Q( (1) (3)

S6 -z5 -K~4 )

The adjacency graph for this decision surface is shown in Figure 4. The
nodes in this graph are labeled by the indices of {Si}; the arcs are
labeled by d(Si,Sj).

The incidence graph for Figure 3 is obtained by representing every
polyhedral region by a node, and joining by an arc every pair of nodes
that represent adjacent polyhedral regions. Every arc is labeled by its
associated hyperplane. Every node is labeled by its associated minterm zi
and decision region Ri. In addition, an arc may be labeled by a decision
segment, if applicable.

Figure 5 shows the incidence graph for Figure 3. To simplify the
drawing each node in this graph is labeled only by the index of its
decision region, and each arc by the index of its hyperplane. To dis-
tinguish the four classes, we represent the nodes by squares, triangles,
circles, and inverted domes for R V R2P R and R4, respectively.

MINIMAL DECISION LOGIC

Our multiple-class classifier generates the hyperplanes fHi} in a
prescribed sequenc2. For each Hi, the classifier determines whether x
lies on the "positive" or "negative" side o2 Hi. In particular, if the
equation of Ili is

-I T
v = 0

where y is the augmented vector , then the classifier determineswehriT -- T
whether v, TIf is positive or negative. _i y ,s negative, a C is generated.

vTy
If 1 yT is positive, a 1 is generated. The O's and l's of successive Yi's

are combined in a logical network (or "switching function") to produce one
of c + 1 assignments of x: R .... ,R c+lI

The first c of these assignments correspond to the c classes
{wi-il,.... C}. Rc+1 corresponds to "undecided." (In some applications,
Rc+l is omitted.) As soon as one of the Ri's is produced by the logical
network, the sequence of hyperplanes is terminated, and the current assign-
ment of x is accepted.
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The switching function may be designed so -is to use a near-minimal
number of hyperplanes in each decision, thereby yielding a near-minimal
computation time for a given configuration of computer hardware. To see
how this may be achieved, let zi(x) denote the binary-valued function of
x such that

zi (x) = 0 if and only if iTY < 0,

zi(x) = I if and only ifY T 0.

Let

z(x) - [zl(x), z 2 (x),...,zm(x))T

- a column vector formed by the zi( )'s.

Let {Si} denote the set of decision surfaces derived from our training
processes and our analysis of the decision graphs. Let R(z) denote a
(c+l) - component binary-valued vector function ci z suc'h that the ith com-
ponent corresponds to the decision region Ri. When z is feasible, only
one component of Q(z) is 1. When z is not feasible, all components of
Q(z) are "don't care's", denoted by 6. (If we wish we may reduce the
number of components of Q(z) to the smallest integer greater than Rn(c+l),
and apply a decoder to C(z) to obtain the desired output. But it is not
clear whether the cost of the decoder is less than the savings in imple-
menting R(z).)

To find W(z), construct a "population table" for the x's in the
training set: for each x in the training set, find z(x). For each possible
z, count the number of x's in Wi for which z(x) - z. Call this the "popula-
tion" Ni(z). Do this for i - 1,...,c + 1. Let

c+l
Q Y Ni(X)

i-1

If Q is small, let Q(z) - S. (The threshold separating "small" from "not
small" must be determined empirically.) If Q is not small, let

0 (z) - 0 or 1

depending respectively on whether or not

N (z) ), N (x)
i 1"

for all J.

We explain our procedure for minimizing the decision logic by the
following example. Suppose the population table for the z's yields the
function Q2(z) npecified by Table 1.
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z S(z)

Zl z2 z3 1 2 3

0 0 0 1 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 1 0 0

1 0 0 0 1 1

1 0 1 0 0 1

1 1 0 0 1 0
1. 1 1 6S 6S 6

TABLE 1

Using Karnaugh maps or other 2-level logic minimization techniques
to minimize the logic relating each !i to z, we obtain

i z V )

1 1 1(z2 z 3)

f2 ff IZlZ2 v z I z 2 z 3

= z z
3 1 2

From an examination of these equations we obtain the following
decision sequence. Compute the unknown x on hyperplane Hl. If zI = 1,
then we need only examine H2 in order to ariive at a decision. If zI = 0,
compute the unknown x on hyperplane H3. If 73 = 0, then x is assigned to
RI. If z 3 = 1, compdte the unknown x on hyperplane H2. This tends to
minimize the average number of computations for each assignment of x to
a decision region.

When the number of minterms and the number of decision regions are
large, then onc may use computer programs for the minimization of multiple-
output logic networks. An excellent example of such a program is described
by Svoboda and White [101. When the number of minterms and the number of
decision regions are intermediate in size, one may use manual procedures
for minimizing the covering set of multiple-output prime implicants [5].
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CONCLUDING R2MARKS

Supporting experience for the techniques described here has been
obtained for two-class classifiers for relatively complex distributions
of data in two-dimensional and three-dimensional feature space [3].
This experience encourages us to believe that our technique has great
versatility, and yields both minimum decision logic as well as near-
Bayes optimality.

Another advantage of our technique is provided by the linear
algebraic equations representing the decision hyperplanes. We believe
these linear equations can be economically and compactly implemented in
special purpose digital electronic hardware.

These techniques have, not yet been te.sted on multiple-class data.
We hope to carry out such tests and report on their outcomes at a later
date.
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Figure 4. Adjacency graph for decl3ion surface separating
R from R3 in Figure 3,
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F~igure 5. The Incidence graph for the decision regions in Figure 3.
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AN UNSUPERVISED LEARNING APPROACH

TO

IDENT¶IFICATION AND CATEGORIZATION OF EDGES IN IMAGES

Belur V. Dasarathy
M&S Computing, Inc.
P. 0. Box 51.83
Huntsville, AL 35805

ABSTRACT

The objective of this paper is to explore the scope for deploy-
ing the powerful tools in the domain of pattern recognition in the
nontraditional role of a preprocessor for image segmentation through
edge detection/categorization. The edge detection problem is viewed
as a problem of learning in unsupervised environments, and the avail-
able information in the form of the input image is restructured into
a multidimensional data base for such learning. Details of this ap-
proach and preliminary experience of its implementation are discussed.

1. INTRODUCTION

Autonomous acquisiti.on of targets by imaging trackers requires
a capability to locate targets within the field of view by a process
of segmentation of the image into regions of interest. This image
segmentation task is accomplished by using a variety of tools gener-
ally clubbed together tinder the common term: Image Processing [1].
Some typical tool. for image segmentation include thresholdinq [2],
edge detection [ )I, region growinr' [4], etc.. However, most of the
approaches generally restrict themselves to the physical two-dimeri-
sional image pioni, and each pixel therein is described by a siingle
scalar descriptr,•r it any given instant in the processing stream. Once
the ta get areas areý isolated, features based on its shane, size, tex-
ture, etc., art- extracted, and this information is processed through
classical patterit recoqnition tools to derive the identification labels
oL these targets: i.e., to perform target recognition/classification.

The obective of this study is to explore the feasibility for
expanding the ioie of these pattern recognition oriented tools to
cover the domain of target acquisition in addition to its traditional
role of tarlet. classification. This problem of extraction of features
"which are dt-ýt i itive of targets can itself be looked upon as a prob-
lem in unsupet vised learning, and the relevant experience in such
learn ini (%in iLe brought to bear on this task. Viewing the imagle seq-
nmentat iK ,x is one of edge detection, one could visualize this as

the I r ý'1m ýinsupervised learning (and categorization o. ) edges in
i-nage-,. Uhltie•e t] classical edge detection approach, this would be
limite•t •1 trmniiing the gradients(s) at each pixel point in the
image, 'einy the resultant gradient image by appropriate thres-
holding i ) -i'cte the significant edges.
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However, this procedure has its limitations in that it is
incapable of distvL.iguishing among equal gradient valued edges.
The drawback arising out of this limication becomes apparant
when one considers the fact that it is entirely possible that
the gradient at the target-background boundary can be numezically
equal to gradients elsewhere in the image at some natural bound-
aries inherent in the scene. Instead, if one could simultaneously
examine the pixel intensity value and the gradient value at each
of these pixels, it is easy to see that discrimination among the
different but equal gradient valued edges can be attempted. This
can, in principle, be further extended to include a variety of
other possible derived information at each pixel position. In
effect, one could conceive of a multidimensional attribute space
in which such unsupervised learning of edges is to be attempted.

The succeeding sections explore the scope of this concept,
present a feasible methodology, and report on some preliminary
results which confirm the feasibility and effectiveness of the
approach.

2. UNSUPERVISED LEARNING APPROACH

As stated earlier, most studies with very few exceptions
(typical of which is the work of Panda and Rosenfeld [5]) base
their decision process on a single scalar at each pixel position.
Although Panda and Rosenfeld [5) do consider both the pixel inten-
sity and edge value together, their study is essentially restricted
to manual assessment of the joint usefulness of these attributes
rather than development of an autcsnated unsupervised learning
methodology capable of considering a general multiattribute set.
Here our emphasis is on the latter aspect, and, accordingly, a
specific set of attributes was chosen purely for illustrative
purposes.

At the first instance, the learning environment is viewed as
completely unsupervised and nonparametric. This naturally leads
to clustering techniques as the most viable approach for accomp--
lishing this learning. In view of the large data size involved
in the context of most images encountered in practice, cluster-
ing methods based on intersample distance measures (in the selected
attribute space) are deemed impractical. Accordingly, the most
suitable approach would be the one based on assessment of density
of samples in this multidimensional attribute space. On the basis
of prior experience in this problem area, a multidimensional histo-
gram based approach was chosen [6). However, this approach which
was designed to identify major clusters, required significant
modifications, since in this application the emphasis is more on
identification of smaller clusters. The major steps of the result-
ant approach, as shc~wn in Table 1, are now considered in detail.
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Table 1. MAJOR STEPS OF THE PROPOSED APPROACH

• Select a Set of Candidate Attributes.

* Obtain the Multidimensional Histogram of the
Image Data Corresponding to the Selected
Attributes.

* Formulate Clusters by Traversing trough the
Hills and Valleys of the Histogram Space.

* Develop Intercluster Boundaries and Identify
Cluster Class Labels of all Pixels Individually.

03 • Reviow/Threshold Labeled Image to Collect Desired
Segments of the Image.

* Refine the Image Segments of Interest.
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2.1 Selection of Candidate Attributes

This is a key step in the process. The effectiveness of the
total processing is dependent to a large extent on the choice of
the attributes, as this defines the attribute space in which the
learning is carried out. This effort cannot be purely analytical
or computational in its scope, as the initial choice is tied to
an understanding of the physics of the problem, and will be based
mainly on prior experience in the area. This leads to a possibly
subjective list of potential attributes from which a subset (or a
linear/nonlinear combination thereof, including possible trans-
forms) is to be chosen. This subset selection can, however, be
automated by defining appropriate figures of merits for individual
and/or subset of attributes. For example, variance can be a mea-
sure of merit in that we are seeking attributes along which there
is sufficient spread to permit some kind of discrimination. Also,
univariate histogram analysis [7] along these attributes may be
revealing as multimodal distributions denote presence of separable
clusters. Thus, an effective figure of merit, which takes into
account these factors, can be defined. This is currently under
development and will be reported in due course.

2.2 Multidimensional Histogram Generation

Basic to the generation of the multidimensional histogram is
a definition of the geometry of the histogram cells in the N-dimen-
sional. space. Conceptually, the most satisfactory shape of these
cells would be one that would ensure that each cell is equidistant
from all the neighboring cells surrounding it. The simplest shape
that has this property in a two-dimensional space is the hexagon.
Extension to three and higher dimensional space can be visualized
by construing the hexagonal cell as being composed of six equi-
la.teral triangles each joined to two others along its sides. The
three-dimensional equivalent of this hexagon cell can then be
thought of as a set of 16 simplicies (the three-dimensional equi-
valent of the two-dimensional equilateral triangle) put together
such that three of its faces are shared by three similar simpli-
cies. The three-dimensional space is then viewed as a set of
these 16 faced polytopes, each with 16 such neighboring polytopes.
Conceptually, this could be extended to higher dimensions also as
the space derived by putting together appropriately dimensioned
simplicies. However, a histogram implementation, with such com-
plex shaped histogram cells, in terms of identifyinq the location
of samples in these cells, is computationally complex. Accordingly,
recourse is taken to an implementation based on the much simpler
definition of histogram cells as hyper rectangular objects (or
cubes) with N pairs of parallel hyperplanes, each pair being per-
pendicular to every other pair. Of course, here each cell will
have a total of 3 N-l ri.eghbors, consisting of N sets of 2iNCi
neichbors, each set being at a uniquely different distance
(from the central cell) depending on the number of coordinates in
which tnhy differ from the cell under consideration. Of these,
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2N neighbors are fundamental or first-order neighbors differing
in only one coordinate from the central cell, and unless specified
otherwise, these 2N neighbors are deemed to be the neighbors of
the cell.

Let

X = {Xj = {x: i = 1, ... N}:j = 1, ... P)1

be given set of 'P' pixels, each described by a 'N' dimensional
attribute vector, which are to be processed to derive a set of
'M' inherent clusters where M is to be self-learned by the
clustering scheme.

Let ki be the number of cell divisions prescribed externally
as the parameter of the histogram along the attribute i. Then,
the total number of attribute subspaces or regions defined in
the N dimensional attribute space for generating the histogram is

N
K = n k.

k=l

(Note: k > 2 V i = 1, ... N for effective use of all the attri-
butes). Let Pk be the number of pixels assigned to the kth sub-
space as determined by the multidimensional histogram analysis

K
i.e E P = P

i-

This process of generating the multidimensional histogram of the
given data set, although conceptually straightforward, could lead
to complexities in implementation. For example, even with large
grid sizes, i.e., with small number of cell divisions being pre-
scribed for the histogram analysis, a large dimensional data
environment could lead to rather astronomical values of K which
represenL a corresponding core memory demand on the computational
facility. Virtual memory is not a satisfactory solution as this
increases inp.it/output operations to impractical levels. Howevt r,
in practice, it is observed that very many of these K subspaces
remain empty even after all the P pixels have been assigned to
their corresponding cells. This is because of the inherent distri-
butions of the pixels of the different edge classes and regions
of sparse density se, arating the clusters of pixels. One can
take advantage of thiL. fact by requisiticning storage correspond-
inLj to the nonempty cells only. Thus, in reality, one needs only
a fraction: Kf(Kf<<K) memory locations to store the set of samplcs
spread superficially over K cells in the multidimensional space.
This Optimal Kerneiling, i.e., indenting for only as many storagyt
locations as are essential, calls for an implementation similar
to the standard techniques for storage of sparse arrays. Under
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such a mode of operation, •is each pixel is input to the system,
a check has to be made as to whether an appropriate storage already
exists or a fresh storage is to be requisitioned. This of course
necessitates maintaining a register of indented bins containing
their addresses which correspond to the location of the cell in
the multidimensional attribute space. Thus, a net savings in core
memory requirements can be visualized if less than half of the K
cells are populated. However, in practice, far less than K/2 cells
are populat,.d, and the histogram analysis package can be easily
implemented in this mode. Furthermore, the histogram analyser, as
designed here, in addition to storing the density of the nonempty
cells, keeps track of the averages of the pixel data values (in
each attribute) in each of these nonempty cells in order to define
the centroids of the cells at a later stage. This calls for an
additional set of 'N' arrays each of a length equal to the den-
sity array. Thus, the total memory requirements, if not optimized,
would be (N+I)-K locations. However, optimizing the storage require-
ments by storing information pertaining to nonempty cells only, one
would need only (N+2)-Kf locations including the additional array
needed to store the addresses of the nonempty cells. Thus, the
percentage savings achieved by an optimal implementation will be
all the more significant. As is to ie 2lnected, this implementa-
tion increases CPU time, as whenever a sample is input, a chv:ck
has to be made against the array of addresses of storage bins
indented at that stage to determine the need for indenting a new
store. This traditional tradeoff between memory and CPU time has
to be assessed considering several factors such as pixel set size
P, its dimensionality N, number of grids K, and weighing them
against available computational facilities in terms of core size
and time. Experience has shown that, in general, unless one has
access to an exceptionally large core and the spread in the data
is such as to permit choice of unusually low k1 values, it is far
more practical to go in for the optimum core implementation as
described above. This permits relatively more freedom of choice
in grid sizes for the histogram generation process, because time
limitations can be viewed as relatively open-ended as compared to
memory limitations which are necessarily very finite. Any resul-
tant increase in CPU time can perhaps be tolerated far more easily
than large increase in memory. In mods. cases, this increase in
CPU time is almost insignificant even ".or relatively large data
sets.

Here, the choice of appropriate valueb f.A K. is obviously
in the hands of the analyst and the process of clustering is indeed
sensitive to these values in terms of the level of the resultant
categorization. The larger the grid sizes (lower the ki values),
the coarser the grid and the smoother is the histogram which then
necessarily leads to fewer clusters and vice versa. This is in
fact a desirable latitude or freedom, as one can either look for
only major clusters or classes, or go in for more minute classi-
fication depending on one's needs and limitations in terms of
computational costs. This is certain to be different in differe.nt
applications; hence, an option in terms of externally choosing the
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level or fineness of the learning system may indeed be desirable.
Here, one could visualize unequal grid sizes along the different
attribute directions depending on the spread of the data, and per-
haps variable grid sizes even along one attribute direction. Of
course, such grid positioning is difficult to conceive of unless
one has a priori knowledge about the variations in the density
along the different attribute dimensions. Thus, the choice of the
grid positions along the different attribute directions is dictated
by whether or not a preprocessing (as discussed earlier) in terms
of unidimensional histogram analysis has been carried out. Such
a preprocessing, while essential for the purpose of overcoming the
"curse of dimensionality" through dimensionality reduction, is not
so necessary merely from the point of view of locating the appro-
priate grid positions. In the event such a preprocessing has been
undertaken for the purpose of attribute ordering and selection, the
information derived therein may be utilized to position the grids
at the significant valleys of the histograms of the corresponding
attributes, and thereby enhance to some extent the reliability of
the ensuing multidimensional histogramn analysis. If, however, no
preprocessing is contemplated for dimensionality reduction, it is
not advisable to go in for it merely to locate the grid positions,
especially when relatively small grid sizes are employed in the
histogram process. In such cases, equal grid sizes (leading to
possibly unequal ki values depending on the spread of the data in
the different directions) may be employed in the multidimensional
histogram evolution. Thus, the outputs of this histogram analysis
package are: the address array storing the addresses of all non-
empty cells, the density array storing the number of pixels assigned
to these cells and 'N' average arrays storing .he N attribute values
averaged over all the samples assigned to the corresponding cells.
This represents the most significant part of the computational
expense of the proposed learning scheme. The computational effort,
involved in checking the address array each time a new pixel is
input to determine whether an appropriate set of bins already
exist, in proportional to Rf, and represents the major part of
this expense. )n this context, one could visualize having the
address array ordered and instituting a binary search through a
recursive array seqgentation procedure, which can _ "nceivably -educ:c
the computational effort of the search. But, this pr•'c'ýs. of xavirg
the address array in order at all times calls for reoideri'"i 1, .
time a new cell (and a corresponding new entry in the addr-L : jrray)
is encountered. Thus, in mcst cases, the expense of keeping the
array organized wipes out the advantages to be gained by an orga-
nized search procedure.

2.3 Cluster Formulation

The output of the histogram analyzer, consisting ot the ien-
sity, sample averages, and addresses of all the nonempty histo-
gram cells, is input into another processor designed to develop
the inherent clusters through merging of the cells with their
higher density neighbors. This merging technique essentially con-
sists of connecting each cell in the multidimensional histogram
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space with its higher density neighbors and processing the result-
ing merger monitor matrix to develop the boundaries of each of the
clusters inherent in this histogram space. These boundaries are
necessarily fuzzy in that many of the cells along the common joint
boundaries cannot always be uniquely identified with only one of
the clusters, but are 'Likely to be identified as belonging to the
set of clusters sharing the particular boundary.

Furthermore, this merging of cells with their higher density
neighbors, can be carried out with or without updating of the
density and average values in the cells. If this merger or con-
nectivity is carried out without any changes in the density and
average values, the process leads to the identification of the
hills and valleys as they exist in the histogram space defined by
the input. If, for example, some o- these hills are the results
of overlapping distributions, ther >,'ýentifying the centroids and
boundaries of such hills would leaA to clusters which may in
reality correspond to a mixture of more than one innerent category.
This error is especially likely whenever coarse grid sizes are
employed in generating the histogram. On the other hand, if the
pixels contained in each cell were to be reassigned into its higher
Censit3 neighboring celis during the process of connecting them,
with the density and average values of Lhese cells being updated
accordingly, a certain transformation or distortion is induced on
the histogram terrain leading to creations of new peaks wherever
the gradients are relatively small. This choice brings up the
question of whether such artificial distortion is desirable or
indeed even tolerable. There is, of course, no mathematically
justifiable answer to this query, as desirability of an externally
induced distortion depends on the user's subjective needs. Follow-
inq the adage that the end justifies the means, one has to decide
on the basis of the nature of the resulting clusters. In general,
it is to be expected that this distortion will lead to relatively
larger number of ciusters as compared to the undistorted version of
the connectivity procedure. This has been experimcntally confirmed.

Therefore, the choice between the two alternatives is clearly
dependent upon the user's tolerance to the two types of errors,
each of which are likely to be caused by one of the two approaches:
The undistorted histogram could lead to more than one of the
inherent classer be ing lumped into a single cluster, and the dis-
tortion process can lead to breaking up a single cluster into sub-
clusters. It is therefore necessary to view the likelihood or
relative probability of these errors occuring in a given environ-
'..nt. But such probabilities are never known a priori. dowever,

we do know that for coarse grid sizes the chances of occurrence
of the former type of error is relatively higher and vice versa.
This can be kept mind in deciding on the approach to be employed
for the given problem. Another aspect 4o be considered is that
in most cases, the latter error of breaking up a single class into
subclusters is the lesse, of two evils. This is because one could
always combine or rnerge them together, if need be, at a later stage
without much difficulty. But overcoming the former typ2 of error
is hardly ever feas3ible at a later stage. The computational view
point also supports such a choice in that operating even at a
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relatively course grid level, i.e., at relatively less computa-
tional expense, (when the likelihood of the latter type of error
is small) one can derive a correspondingly larger number of clus-
ters, i.e., attain a finer level of discrimination. This is
especially true in this application as we are particular of
detecting all cluster classes, however small in population.

This dictates, in most cases, the choice to be that of
updating the density and average values at each stage of the
connectivity process through proportionate reassignment of the
contents of the cell l'nder processing to all of its neighboring
higher density cells. (At very coarse grid sizes, the reassign-
ment causes no effective changes in the relative ordering of the
cells in view of the comparatively large gradients in the histo-
grams, and both approaches would result in essentially the same
cluster set.)

The connectivity process leads to categorizing the origin-
ally nonempty cells, depending on whether there were any inward
and/or outward connectivity (or sample reassignment in the case
of distortion inducing connectivity process) to or from these
cells, into one of the following six sets:

* The set of cluster nuclei cells, which, having only
lower density neighbors, had inward connectivity
but no outward connections;

0 The set of cluster interior cells, which, having
both lower and higher density cells, had both
inward and outward connections, the latter being
limited to cells belonging to the same single
cluster;

0 The set of saddle point cells, whiich again had both
inward and outward connections, the latter leading
onto the cluster nuclei of mor., than one cluster;

0 The set of valley point cells, which, having only
nighlr density neighbors, had no inward connections
from other ceils but the outward connections loading
onto more than one clusten as in the (,5se of saddleI
point cells;

• T]hec set of exterior boundary cells, which, again, had
no inward connectivity, but had its outward conntect-
ions limi ted to cells belonging to a single lustter
as was the case of cluster interior cells.

* The set of isolated singularity cells, which, having; no
inonempty neighbors, are completely unconnected with tjic
rest of the cells, and are viewed as independently sino.tI
celi clusters. (Depending on their density levels and,,
tht ix ielative distances from the outer clusters, they
could bie small but significant regions of inteicst ,,r
noise.)
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This categorization is derived by processing the connectiv-
ity matrix developed during the process of connecting the cells
and identifying the terminal cluster nuclei cells for each cell
by tracing the connectivity through this matrix. This, along with
appropriate flag arrays to denote existance of inward and outward
connectivities, completes the categorization of the cells.

2.4 Discriminant Design and Pixel Labeling

The processing carried out thus far has, in effect, defined
completely the set of all the clusters, their nuclei and tneir
boundaries, albeit in an implicit sense. A more explicit defini-
tion of the cluster boundaries can best be achieved by developinq
the discriminant hyperplanes (assuming of course, that the clusters
are linearly separable; otherwise appropriate nonlinear discrimi-
nant surfaces may be defined in a similar fashion), separating the
clusters. The problem of determining the discriminant hyperplanes
in this case is more complex than is the case in the classical
discrimination problem given supervised training data sets. Of
course, the centroid of each cell can be viewed as a pseudo train-
ing sample of the class corresponding to the cluster of this cell.
But, the complexity arises from the fact that many of these cells,
such as valley and saddle point cells, are associated with more
than one cluster, and they form a fuzzy boundary between the cor-
responding clasters. Thus, the problem is one of defining discrimi-
nent functions to separate clusters with fuzzy boundaries. This is
tackled here Ly using a previously reported algorithm (DHARMA[8]).

Once this discriminant design is completed, each histogram
cell represented by its centrvid can be labeled as to its cluster
allocation. All the pixels alloted to each of these cells are
accordingly labeled by a table look-up approach using the previously
stored histogram information.

The net result of this processing is now a clustered image
with each pixel designated by a cluster number representing the
knowledge accumulated by the unsupervised learning effort.

2.5 Labeled Image Assessment

The labeled image in effect represents a segmented image
with each set of pixels with identical cluster values represent-
ing a speci.fic segment of interest. Depending on the attributes
used, these segments have different physical significance. For
example, in using pixel intensity and gradients as attributes,
the cluster segments are likely to represent targets, target-back-
ground boundaries, background subregioits, background subregion
boundaries, etc. The extraction of the segments of interest is
now a routine task in view of the available pixel by pixel label-
ing. Once the segments are developed, the next step is, as before,
obtaining features such as slope/size measures for target identi-
fication purposes. However, the extracted segments can be further
refined if desired prior to feature measurements, so as to improve
the reliability of these measurements. As is likely: the extracted
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segments represent a far smaller data set compared to the total
image. This makes it feasible to bring into action more sophisti-

cated pattern recognition tools [9] which otherwise are computa-
tionally expensive to be applied to the total image.

If multiple targets are likely in the scene, one could v.su-
alize this refinement activity as a preamble to target classifi-
cation. If identity of some of the targets can be established by
external means (for example on the basis of prior information,
processing of images of the same scene at an earlier date, etc.)
then it is possible to utilize more sophisticated pattern recog-
nition tools of learning, such as learning under an imperfect
teacher in developing reliable target identification capabilities,
While these possibilities are being explored, the present study is
being reported to demonstrate the feasibility of utilizing pattern
recognition tools in the nontraditional role of feature extraction.

3. IMPLEMENTATION EXPERIENCE

The processing methodology presented thus far was implemented
on a PDP-11/70 using a Night Vision Lab (NVL) data set. After
some preliminary assessment, four attributes were selected to
demonstrate the unsupervised learning approach developed here.
These were: the pixel intensity value, averaged vertical and
averaged horizcntal gradients (each averaged over the 3 x 3 neigh-
borhood of the pixel under ccnsideration), and the Laplacian. The
photographs, which show the raw and segmented images, clearly bring
out the effectiveness of the methodology in delineating the edges
of targets of interest. (Color slides being shown at the oral
presentation bring out distinctly the different categories of
edges.) The processing resulted in 12 clusters. Of these, Clus-
ters 1 through 8 are seen to essentially correspond to background
areas and edges between the subregions of the background. Clus-
ters 9 through 12 represent the tarqet and target/background edges.
Segmentation in these terms effectively delineates the carget from
the background. The grouping of pixels in this region can, if
needed, be further refined to make the subsequenit feature mea-
surements (size/shape descriptors) more reliable for target
classification. While further work of a more detailed nature in
terms of attributes assessment and development of mcre effective
attributes are on the anvil, this presentation is being made mainly
to portray the viability of extending pattern recognition concepts
and methodology to the traditional domain of image segmentation
and edge detection.
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Phase-Slipped Time Delay and Integration

E. H. TAKKEN
and

A. F. MILTON
Naval Research Laboratory
Washington, D. C. 20375

Abstract

A new form of time delay and integration with serially
scanned detector arrays is proposed in order to facilitate
reliable automatic detection of point source targets with
scanning infrared search systems which have limited sampling
frequency.

Introduction

Automatic target detection requires the use of a threshold exceed-
ence sensing device. A standard arrangement for scanned systems is
shown in Fig. 1. An "optimized" filter is placed after the detector
in order to maximize the peak signal-to-noise ratio passed on to the
threshold exceedence sensor. To be truly optimum this detection fil-
ter must be specified using the power spectral density of both the
anticipated target signal and of the background clutter.1

Unfortunately, neither the target signal nor the background clutter
can be well characterized a priori in many infrared systems. A pres-
cription for circumventing some of the problems caused by imprecise
scene clutter information has been addressed previously. ,3 The prob-
lem discussed here is the one arising from variability in target sig-
nal caused by limited sampling frequency in the direction of scan.
This variability arises through aliasing of frequency components in
the signal which are higher than the Nyquist frequency and is due to
a randomness of phase between the position of point source targets and
the timing clock of a scanning discrete-time sampled infrared sensor.
The problem occurs both for scanning CCD and CID arrays and for systems
passing the output of a conventional detector through CCD delay-line
electronics thereby creating a sampled analog signal.

The problem with such discrete-time sampled systems is that they
split up space into discrete cells in the scan direction. Just as with
staring mosaics, the sensor's response to a point source will depend on
whether the blurr circle image of the source happens to fall on or
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between the discrete cells. Phase-slipped time delay and integration
(PSTDI) is a method for introducing an extra MTF before sampling to
reduce the components of the signal above the Nyquist limit thereby
reducing discrete-time cell boundary effects in the scan direction.
An analogous high speed mechanical dither could accomplish the same
result in the cross-channel direction but is not analyzed here.

The Model

Figure 2 depicts the instantaneous signal output from an infrared
detector being scanned by the blurr circle of a point source. For the
purposes of modeling this bell-shaped curve is represented here by the
raised-cosine signal ½ + ½ cos (IT t/td), for Itl < td but zero for

Itl > td. As indicated in the figure the half-width for this model
signal is td, with the blurr circle first reaching the detector at
t = - td and then finally leaving the detector at t = + td. The first
zero in the power spectral density of this signal occurs at f = + l/td.

When this continuous signal is integrated and sampled by a CCD-
type sensor the result is a series of charge packets. The case of
sampling time ts equal to the dwell time td is indicated in Fig. 2b.
The cross-hatched areas show the successive parts of the continuous
signal that are integrated in the CCD. For what is called Phase (a)
the first integration sampling period happens to conmmence simultaneously
with initial contact of the model blurr circle with the detector. The
initial charge packet then results from an integration over the left
half of the continous signal.

For what is called Phase (b) the sampling clock is displaced by
half a sample period. In this case the initial charge packet results
from an integration over only the first quarter of the continuous signal.
The numerical packet sizes given in Fig. Ib, Sa = (0, .5, .5) and Sb =

(.091, .818, .091), are derived from integration of the model raised-
cosine signal over the regions indicated.

Of course, Phase (a) and Phase (b) are not the only situations
that could occur, because in fact the timing relationship between the
target signal and the sampling clock is totally arbitrary. It is
this multiplicity of possibilities that makes it impossible to define
a matched or optimized filter in the usual way. For the case shown in
Fig. 2 the Nyquist frequency is 1/(2Td) which results in considerable
aliasing.

What was done in references 2 and 3 was to specify the filter
relative to a signal defined as the average overall possible signal
phases. This average signal for ts = td was shown to consist of three
charge packets proportional to SAvg = (.149, .703, .149). A tapped-
delay-line filter matched in white noise will then simply have the
weights wwn = SAvg, while a filter optimized to detect this average
signal in a low frequency 1/f2 clutter background was shown to have
the weights wlfc = (-.184, .370, -. 184).
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Figure 3 shows the filter's peak amplitude output ST Wlfc as a
function of sampling rate r - td/ts for two different filters. Con-
siderable variability is indicated at low sample rates depending on
the phase of the input. More variability is evidenced for the blgh-pass
filter (wjfc) since aliasing has more effect on higher frequencies.
In practical systems sample rates and signal-to-clutter ratios are
often limited so this variability cau make detection less reliable.

Time Delay and Integration (TDI)

With serial scan systems a single detector is replaced by a linear
array of detectors oriented in the direction of scan and the outputs
from this array are coherently added together with time delay and inte-
gration to increase signal-to-noise ratio. Standard TDI does not help
however with signal-to-clutter ratios since clutter is relatively sta-
tionary with time. Figure 4 shows an example of how time delay and
integration can be accomplished with an off-chip CCD delay line. For
standard TDI, timing of the shift register is designed to ensure that
the charge packets moving down the register end up being a coherent sum
of the sampled outputs from each of the successive detectors.

A general relationship for standard TDI is that the number of pac-
ket intervals between delay line inputs

x 2 /vt = K (1)s

must be an integer. Here x 2 is the interdetector spacing, v is the scan
velocity at the focal plane and t is the time interval between samples.

The desired value for this parameter K depends both on the ratio
X1 /X 2 of detector width to interdetector spacing and on the desired
degree of over sampling, since the number of samples taken per dwell
time is just

r = t d/t = xl/vt = K(xl/x2). (2)ds s

The larger the sampling rate r, the larger the delay line length must

be in order to accommodate larger values for the parameter K.

Phase-Slipped TDI

The intent of phase-slipped TDI is to perturb the timing relation-
ships of standard TDI in sucl a way so as to introduce a slight phase
shift between the signals sampled by successive detectors in the TDI
array. If these delays are introduced evenly with a large number of
detectors, an extra MTF filter before sampling of sinc (7tsf) will be
introduced. This has a value of 0.65 at the Nyquist frequency f -
l/2tsandfalls rapidly thereafter. Thus, the high-frequency content of
the signal will be attenuated before samplingand aliasing will be
reduced. The final phase-slipped TDI sum will still be variable but
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much less than before. To achieve the desired result one wants the
first and last detectors in the array to initiate signal ampling at:

times differing by nearly a whole sampling time ts.

Phase-slipped TDI is accomplished by changing the relationship
in Eq. (1) to

Sx 2 /vt K (1 + 1/N) (2)
S

X2v s ( +1N

where N is the number of de-tectors in the TDI linear array, As a prac-
tical matter phase-slipped TDI can be most easily implemented by drop-
ping the CCD clock frequency f£= l/t toSC S

f = f c/(I + 1/N) (4)c c

This approach will of course also have an influence on rae number of
samples per dwell.

Figure 5 shows an example of phase-slipped TDI signal summing
for the cases of a two-detector array with sampling being made at the
rate of once per dwell time. New Phase (a) and new Phase (b) refer to
the extreme phase relationships for the case of phase-slipped TDI.
Clearly with phase-slipped TDI the output is less variable and in all
cases is more like the new SAvg appropriate after PSTDI. For ts = td
and N -• - the new SAvg becomes (.001, .186, .627, .186, .001).

PSTDI Performance

The final effectiveness of phase-slipped TDI must be judged by
the consistency of the peak signal output from a filter optimized to
detect the appropriate SAyg in the existing clutter environment. If
the signal interference consists of low-frequency 1/f clutter the
filter weights are Wlfc. The PSTDI signals most similar and dissimilar
to SAvg are Sb and Sa which have to be evaluated for various values
of r and N. The raised cosine instantaneous signal model of Figs. 2
and 5 is assumed, and resultant filter outputs ST w•lfc and S• wifc
are first normalized to SAvg - Wlfc and then plotted in Fig. 6.

The figure shows that phase-slipped TDI is effective even for small
values of N. With just a two-stage PSTDI the filtered peak target sig-
nal is already highly reproducable even for low values of the sampling
rate. This satisfies the need for reliable target detection with an
automatic threshold exceedence sensor. Some signal-to-clutter penalty
is of course paid on the average by reducing the MTF and spreading the
signal with PSTDI. However, since the peak of SAvg is only slightly
attenuated this loss in signal-to-clutter should both be small and less
than the variability that occurs without phase-slipped TDI.
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Aliasing could also be reduced by defocussing the optics and
increasing the size of the bl]urr circle. However, since this approach
would simply degrade an existing MTF rather than introduce a new,
multiplicative one, the unwanted high frequencies could not be signi-
ficantly attenuated without also inflicting loss of the desited signal
at frequencies below the Nyquist limit. Phase-slipped T.1 attenuates
troublesome aliasing frequencies before sampling with less effecL on
the desired signal. Since a more consistent signal is derived from
point-source targets, the use of PSTDi will help both with automatic
threshold detection and with any post detection clutter rejection
algorithms that depend upon accurate measures of peak amplitude.
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Fig. 1 - Pictoral representation of an automatic signal detection

system using a parallel scan linear array.

(a)

POSSIBLE SAMPLED OUTPUTS (t. = td)

PHASE (a) PHASE (b)

_t t

~a Sb $19• j8+,
1.5 L5_ 1.091 -L.8 091

LI - tI- -, , --- - I -- - - -

SS~G .•, j703 1.1,9
(b)

Fig. 2 - The (a) instantaneous versus the (b) time-sampled signals of

a point-source Iurr circle in a scanning infrared sensor.
Phase (a) and Phase (b) differ by a shift of half a sample
time of the discrete readouts relative to the input instan-

taneous signal.
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# +•_• #.2 I.- ,-Si r' 1. .1

PSTDI (+2 [2W j. 13 38

SAVG -Ln' -I An W.~ 1.178 .,000M9
Fig. 5 - Two-detector phase-slipped TDI for t. td. The numerical

charge-packet weights shown are derived from integrations
over the indicated cross-hatched areas of the raised-cosine
signal. No individual signal contains more than four packets
although SAvg calculated in the same way as for Fig. 3 con-
tains five.

1.4 
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01.2 Lb> N=2I S
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N=2

•.4.

SAMPLES/DWELL
Fig. 6 - Peak normalized target signal with phase-slipped TDI after

passing through detection filters optimized for the appro-
priate post-PSTDI SAvg (N, r) in 1/f 2 low-frequency clutter.
N represents the number of detectors in the TDI row and r
the number of samples per dwell time.
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for an input of SAvg for each sampling rate.
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THE SYNTHESIS OF FFT BASED

IMAGE ENHANCEMENT FILTERS

William H. Haas and V. Kumar

Rockwell International, Satellite Systems Division
12214 Lakewood Blvd., Downey, California 90241

ABSTRACT

A generalized approach to the synthesis of FFT-based image enhancement filters is considered here.
An example is presented to demonstrate its application. Specific filter structures are introduced that utilize
a fast Fourier transform (FFT) algorithm to perform both filter synthesis and the filtering operation itself.
A frequency domain synthesis technique based on ideal filters is briefly introduced and applied to the
problem of enhancing edge detail in two-dimensional areal images. These techniques ae applicable to
imaging target trackers and adaptive acquisition systems.

1. INTRODUCTION

Image processing applications are increasing at a rapid rate. Enhancement of images is a special part of
image processing which is vital to all sorts of two-dimensional processing techniques. In particular, imaging
target trackers and adaptive acquisition systems for missile guidance dictate enhancement techniques that
are not only simple to implement but also exhibit high performance. Increasing the computational burden
without a significant increase in performance would become costly and at the same time impractical.

A frequency domain synthesis technique using FFT-based image enhancement filters is presented. This
technique can be applied to the synthesis of filters that are implemented directly in the frequency domain.
These filters also can be approximated with space domain transversal or recursive structures,

New filter structures for real-time digital image processing are becoming possible due to the
development of efficient integral transform algorithms and recent developments in solid-state electronic
devices that permit economical use of high-speed parallel and pipelined processors in relatively small
systems. Two such adaptive filter structures are presented in Figure 1. With these structures, receiver filter
inputs, r ( x), are used with a model for the signal, S (j w), to be enhanced or detected to adaptively
synthesized filters rather than just adjust them. The filters are not gradually adjusted in a control loop so as
to seek the optimum but are periodically synthesized to be optimum for the measured inputs. In this paper,
an algorithm is presented that would be implemented in the FFT filter synthesis block.

2. THEORY

The filter synthesis presented in this paper is based on a general method that can be called "the
method of ideal filters",)

By this method one can obtain an optimum realizable filter in two steps:

1. Obtain an ideal* Filter transfer function in the frequency domain.

2. Approximate this ideal transfer function with the transfer function of some constrained
realizable filter.

*To clarify our terminology, an ideal filter is not constrained by stability or reliazabil'ty while an optimum filter is.
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-0F[ APPROX'MATION
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FILTER IMPLEMENTATION

FFT-I

PERIODIC

~AMPLERSCONSTRAINED
FiLTER

(b) FFT FILTER SYNTHESIS AND A
CONSTRAINED TRANSVERSAL OR L0 C -()
RECURSIVE F:LTER

F~igure 1. Basic F1'T-Ba~vpd Filter Structures

A block diagram of a simple signal-ir,-additive-noise is presented in Figure 2 to define notation. Table I
shows a list of such ideal filter transfer functions. T[he filter approximnation HAOi w) will be optimrurn if thý
distortion index D, defned by

has been minimized.

n(t)

s(t) = THE INPUT SIGNAL

n(t) =THE INPUT NOISE

r(t) THE TOTAL FILTER INPUT

it)= THE FILTER IMPULSE RESPONSE

c(t) = THE FILTER OUTPUT

FligureZ2 Biock Diagram of Basic, Linear Filtering System Assuming Additiv'e,'oise
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Table .'. Ideal Linear Filter Transfer Functions

ITEM TRANSFFR FUNCTION H(j w)

1. GENERAL ESTIMATION FILTER R(.-ij)D(ij) -DESIRED 4NPUT-OUTPUT CROSS-CORRELATiON
FORMULA Rj )(-_)TNTUTAU0CdRRA TIO 3E-cTRUM

2. GENERAL DETECTION FILTER S(-j a) CONJUGATE OF SPECTRUM TO BE DETECTED
FORMULA RQ*))R(-j&) AUTOCORRELATION OF SIGNAL TO BE REJECTED

-HD(i ,)

3. UNCORRELATED ESTIMATION HE( )HD~i)
DETECTION

4. UNCORRELATEDI ESTIMATION 1_____ 12

(WIENER) iSa ) P)T2-

5. CORRELATED ESTIMATION s(io,)I S(-j.,) + N-l
(GENERALIZED WIENER) S(j,) + N(jo) I

6. AUTOCORRELATIONI S(_iA) 2(i S 2

ESTIMATION sqi---) 2 + N (w 2-

7. CLASSICAL DETECTION S(-. &0)
(PRE-WHITENED MATCHED) JN(j 2) -

8. HIGH RESOLUTION DETECTION S•- a,sW,,ff "Ic-
9. PULSE SHAPING DETECTION _ S_ F(aF,)

Is(i,,,) 2 +1 N(i,,) 12-, F(i co) DESIRED PULSE SHAPE

A block diagram of a linear systems model for an edge-enhancement filtering problem is presented in
Figure 3. For this problem, it is assumed that the system blur transfer function G(j&.) is known, that the
total filter input R(jw) is known, an edge model E(jw) is given, but that neither the non-edge spatial
structuý,. No w), nor the specific image edge structure, Sow), are known a priori. The problem then is to
synthesize an optimum filter, HI(jw), that will tend to transform edge features modeled by E(jw) into
features with the arbitrarily chosen model, F(jw), and to attenuate other features of the selected ideal
filter.

Filter No. 9 in Table I -the pulse-shaping detection filter-seems to be the most appropriate for our
application. It has been shown(2) that this filter can be viewed as a least square estimator as well as a
detection filter. With reference to Figure 3, if we knew N(jw), the noise expectation spectrum, and S(jow),
the sigrial expectation spectrum, then our ideal filter could be written as

S(-jw) - F(j1 ) G(jO) (2)S~[Isow,)l 2 + i ow)j I],2

However, we do not know specifically Sow) or N.o), though we know the blurred image Gto) Row)
and a model for the signal, namely Eow). This leads us to consider a filter of the form

E10 jw) FILo) G(jwf)
R(i2 (3)

E(-j c) F(jw) G(jw)

ISow) 2 + I Now)I 2 + 2Sow) N(-jw)* (4)

*This is reaI•y S(jo) N(jw) + S(-Jo) Now) but it does not matter since we must consider both positive and negative frequencies togetz.er.
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N (JZ)

ADDITIVE 1
NON EDGE]STRUCTUREJ

TOTAL INPUT] FLEE

EDGE STRUCTURE + [TTALE [OUTPUT IMAGE

S(J•,) + R(J6) C(J6)

SYSTEM BLURRING] r LINEAR EDGE]
FUNCTION DETECTION

FILTER

= SPATIAL FREQUENCY VECTOR

THE PURPOSE OF HI(JZ) IS TO MAXIMIZE THE PEAK ABSOLUTE INTENSITY OF THE EDGE STRUCTURE OUTPUT

RESPONSE TO THE RMS INTENSITY OF THE NON EDGE STRUCTURE OR NOISE OUTPUT RESPONSE

Figure 3. Model of Linear Edge Enhancement Filtering Problem

which is similar to the pulse-shaping detection filter except for the 2 S(jw) N(-jw) cross-spectral density
term in the denominator.

For the typical arbitrary scene that will be input to an autonomous imaging tracking or guidance
system, S(jowi) and N.j wi) ordinarily will not be correlated with SOJwk) and N(jw k), Wj N wk. The 2S(jW)
N(-jcw) cross-spectral density term can hence be made arbitrarily small by forming a smoothed or windowed

approximation to I(j L) which we shall write as I R(jw) 12. A general expression for a proposed ideal
filter to perform edge enhancement can then be written

Hi(jw) = E(-jw• G(jw) F(jo) (5)

I R(jw)j2

Of particular note concerning this proposed ideal filter is that it can be synthesized from (I) a priori
definitions of the features to be enhanced, E(jw), (2) what the features should look like after they are
enhanced, F(jcw), (3) the assumed optical blurring function Gjo), and (4) a smoothing of the observed

input R(jw.) to yield I R(J) ". It is because the noise is buried in the R(jco) term that the proposed filter
will be adaptive to the noise that is encountered.

3. ILLUSTRATIVE EXAMPLE

To illustrate the performance of our proposed filter, we used a Landsat image* of Columbus, Ohio, as
an input, R(x,y), and ran it through the algorith. This image is presented in Figure 4. The smoothed
powoec spectrim estimate of the input image, T7 'fT[ 2, shown in Figure 5. was obtained by taking FFT
power spectral estimates of each X-directior. row of image pixels and overaging them. An edge model, e(x),
was generated and is presented in Figure 6. Its magnitude spectrum IE(jw)I is presented in Figure 7. GO(;o)
and F(jwo) were assumed to be equal to unity. The X direction m'ignitude response of the rt sulting ideal
alter is presented in Figure S.
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Figure 4. Landsat Image Ov'er Columbus, Ohio, r(x~y)

1 +07
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Figure 5. Averaged v Dictin PgeOwer Spectrum. IR(w)y 2
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Figure 6. Model of an Edge, e(x)
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Figure 8. Edge Enhancement Filter Magnitude Response, H(jW)

A two-dimensional filter was generated from the one-dimensional filter by rotation in the frequency
domain such that

Hi(jwr) =HJljG.,), w0 r = + WJ y2  (6)

Convolving the input image with the two-dimensional spatial filter yielded the filter ou~tput, c(X,y), as
shown in Figure 9. Inl this image the dark gray shades; indicate negative edges and the lighter gray shades
indIicate positive edges. I cOx,y) I and LOGNL C~x,y)2 1I whichl illustrate the edges more graphically, are
presented in Figures 10 and 11, respectively.

Ph6ure 9, Edge L'uhlanced Lansat Image, cix i') Figure 10. Lamlsat Image EdgAes (.(x,.,')
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v To reduce the degradation of non-edge features, two additional filters, H I(Jw) and H 2(jco), whose
i magnitude responses appear in Figures 1 2 and 13, were used. These filters are defined as:

•' /.E('jw x)

Hi1 jw) (7)

V IR(ic-)I 2

-•H20(Jo) = /H(Jcx) (8)

Output images obtained with HI(jw), c(x,y) and Ic(x,y) are presented in Figures 14 and 15,
respectively, and output images obtained with the H2(Jw) filter, c(x,y) and Ic(x,y) are presented in
Figures 16 and 1 7, respectively. These images all show different degrees of enhancement.

Figure]1). Landsar Image Edges, LN e(x, ,P)

* 1.00 i -._0

* II. 
"

0.10 - - " .- ------- -----

0.1

__ __ _ _-___ WiL WL

"".0.01 1 •.I I -._
0.01 0.10 1.00 10.00

Frequen~cy (cycles/kin)
Figure 12. Fdge Enhancement Filter Magnitude Response HsLjex
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Figure 13. Edge Enhancement Filter Magnitude Response H,) (jw4

Ilgutrc' 14. Areal I,,a~c h'idiamu'c(1b 1)1'itcr /I/ (,iw.) lgr'/_j. 1l/)s1ult, aluw ol Image l:,man~vtd hY //l (iw))
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Figure 16. Same Image Enhanced by Filter If 2( 1w) F igure 1 7. Absolute Value oJ Image Enhanced byv 112 (1w)

4. CONCLUSIONS

Synthesis of FFT-based image enhancement filters is presented here and its application is
demonstrated for an areal image. The synthesis technique presented here involves a goneral frequency
domnain approach and yields edge environment filters tha,.t are mou,-h simpler f'or their mathematical
representation than others recently presented.( 3 ) While thle theory leads to anl ideal filter, realizable filters
can be obtained through approximations. For thle specific example illustrated here, a mlild edge
enhancement technique identifies areas of intensity variation while maintaining much of thle image
characteristics. Onl the other hand, a strong enhancement filter shows the steep variations only, and thus
other non-edge detaiis are hidden.
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*This image was us.-d simply because it was readily available.
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NOISE FILT1RING IN MOVING IMAGES

T. S. Huang
School of Electrical Engineering
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ABSTRACT

A number of linear and nonlinear temporal filters for noise reduc-
tion in image sequences have been simulated on computer. The results
will be presented on a TV monitor from a video tape. Among the filters
studied, temporal median filter along estimated direction of motion
appears to give the best results.

INTRODUCTION

Many moving images collected by visible and infrared scanners are
corrupted by random and burst noise (including line drop out). Reducing
the noise will facilitate target detection, recognition, and tracking.
In this paper we discuss temporal filtering techniques and present computer-
simulation results of the application of a number of linear and nonlinear
temporal filters to several noisy image sequences.

STRAIGHT TEMPORAL FILTERING

Let fk(i,j) denote the gray level of the iJth picture element (ith
row, jth column) of the kth frame of the image sequence, and gk(i,j) that
of the corresponding picture element in the filtered image sequence. A
nonrecursive straight temporal filter over (2K+l) frames is defined by

gk(iJ) = F { fk-K (i,j), fk-K+l (i,j), .. (i,j) .

fk+K (ij) 1 (1)
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Two examples are:

P (i) Linear time-variant filtering

F '~k-K' xk-K+l' ' 'k' xk+l' xk+K '

K
S K k+. (2)m'-

where a are constants.

(ii) Median filtering

F { xK, ... , ..

= Median (xkK, ... (3)+K)

A recursive straight temporal filter is defined by

gk(i,j) F { fk-K (ij), fk-K+l(i,j), f k ("j);

gk-M (i ,J), gk _M+l (t,J), g. , k-l(i ,J) }(4)

where K and M are positive integers.

Two examples are:

(iii) Linear time-invariant filtering

•: F { XkK, .. 'k; Yk-M' '" Yk-I

0 -1a x + b Y(5)
n k+n I b k-m

n-K m=-M

where a and b are constants.n m

(iv) Median filtering

V F { X-KK ... Xk; Yk-M' . Yk-I

= Median (yk-M' Yk-M+I' ' Yk-l' Xk) (6)
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In the experiments reported iii this paper, filters (i) and (ii) are
included with (2K+l) = 3 and am = 1/3. Note that for white Gaussian
random noise, averaging in the tempora[L direction of N frames will reduce
the noise variance by a factor of N. Median filtering will reduce tfie
noise variance by a factor of only 2N/ir. However, for reducing salt-and-
pepper noise and burst noise (includfng line dropout), median filtering
is much more effective [1].

MOTION-COMPENSATED TEMPORAL FILTERING

Both averaging and median filtering (in the temporal direction)
will degrade (blur) moving objects. To reduce this degrading effect, we
propose to estimate the direction of motion at each picture element and
then do the filtering along that direction.

We shall consider the nonrecursive filtering case, the recursive
case being entirely similar. To obtain the filtered point gk(i,j), we
track the object point located at the ijth element of the kth frame over
the (2Krl) frames to be used in the filter expression, Eq. (1). Let the
coordinates of this object point in the (k+m)th frame be 1k+m, m = -K,
-K+l, ... , -1, 0, 1, ... , K-l, K. Thus ik = (i,j). The filtering is

defined by

gk(iJ) = F { fkK(UkK), . f k ... , f k+K(U+)
(7)

Two examples are:

(v) Linear time-invariant filtering, motion compensated.

(vi) Median filtering, motion compensated.

In the experiments reported in this paper, filters (v) and (vi) are
included with (2K+I) - 3, and am = 1/3. The motion was estimated in the
following way. The sample variances are calculated for the 9 triplets
I fk-l(i-mO J-n)+ fk(i,j), fk+l(i+m, J+n) ) for { n-0O, m-0, + 1, + 2, +_ 3, }
and {m-0; n- + 1}.

The triplet with the smallest variance is taken as the direction of
motion. For example, If the variance is smallest for n-0; m-2, then

u 1- (i-2,j)

uk - (i,j)

U-+ (i+2,J)

and the linear filter output will be
gki.) 1f- i2J)+11

" (1-2,) f (iJ) + f (1+2,J).
k~1i 3 ~k-l 3 ~k 3 k+1
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EXPERIMENTAL RESULTS

The experimental results were obtained by computer simulation using
the Digital Video Store System [2] at INRS-Telecommunication. Three input
sequences were used: (a) panning, (b) zooming, (c) conductor. Each
sequence contains 36 frames (at 30 frames per second). Each frame contains
approximately 256x256 samples with 8 bits per sample.

Four temporal filters were applied to each of these 3 sequences.
These are filters (i), (ii), (v), ard (vi) as described earlier in this
paper.

The filtered results were recorded on a video tape. Part of this
tape will be played at the workshop.

CONCLUDING REMARKS

The performance of the temporal filters can be compared only by
reviewing the filtered sequences on a TV monitor. However, the following
general conclusions can be stated.

(1) Overall, the motion-compensated median filter performs the

best (in terms of reducing noise and preserving motion).

(2) Edges of slow-moving large objects are preserved remarkably
well by median filtering even without motion compensation.

To improve the performance of these filters, one direction is to use
more accurate motion estimation techniques, e.g., those proposed by
researchers in the inter-frame coding area [3,4]. More generally, more

sophisticated modeling of the image sequence is required, since in many
cases because of change in illuminition and obstruction, etc., an object
point simply cannot be tracked.
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FROM NUMERICAL TRANSFORMS TO SPATIAL FILTERS

Charles A. Halijak
University of Alabama in 1Iuntsville

Huntsville, Alabama 35807

ABSTRACT

Matrix representation of a derivative depends on the numerical
transform whereas the matrix representation for a high pass filter depends
on the optimal Rader-Gold transform in digital filters, a corollary to the
numerical transform. Matrix representation reveals the distinctness of
the gradient and the high pass spatial filter. Applications of the
gradient are given to divergence, Laplacian of images. Applications of
the high pass filters are to edge and wedge detectors. The spatial DC
notch filter is a hybrid of the gradient and the high pass filter.
Vector space aspeLts of derivative matrices and physical realizations
are presented.

NUMERICAL TkRNSFORM

The numerical transform's [1] main purpose is to simulate linear
dynamical systems on the digital computer,, The subject begins with
integration formulas such as

4I; f Tz Zi
z 1-z zf (1)

Z = Uniform sampler,

T = Sampling interval in seconds,

z - Exp (-Ts), the delayor,

f= f(s) - Lf(t).

Approximation goodness requires that O<T<1.
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There exists no need for differentiation formulas in digital simula-
tion of dynamical systems but they are important in image processing.

Digital filters are a corollary to digital simulazion and the high
pass filter and derivative are often equated. One purpobe of this paper
i s to show that they are distinct indeed.

DIFFERENITIATION

Suppose attention is given only to Eqn. (2). Let f(t) = dg/dt.
Then f=si-g0 and some calculations lead to the differentiation formula

-= l-z z- (0 g

Zf L-= + - (3)

If Zf+Zj are replaced by the n-vectors f and g, then a matrix repre-

sentation for the derivative is at hand after one approximates gj by (gl-g0 )/T.

If (l-z) is replaced by (I-H) where

I = diag (1,1,1,...1), (number of l's-n)

H = subdiag (1,1,...1), (number of l's-n-l)

then one must account for the additive term

go g1 - 2g0  (4)
go -T T

which only occurs in the first component of the vector output One can
then state that (gQ - 2go) is replaced by a matrix--vector product where
the first row of the matrix is (-2, 1, 0, 0, 0) and the remaining rows are
all zero and the column vector is (go, g%, g2 ' g9, g4)1 ' where a 5-vector
exemplifies the general n-vector case. The matrLx re,1res..Ptation of the
derivative is the matrix in

f0-1 1 0 0 0\ ( 0\
f1 -1 1 0 0 0 /g
f2 T 0 -1 1 0 0 g2  (5)

f 3  0 0 -1 1 0 93

f4 0 00 -01 1 g4
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In n-vector symbolism, the above formula becomes

f - Dg (6)T

and D is definitely different from (I-H). Furthermore, because the first
two rows of D are identical, D is a singular matrix. The rank of 1) is
(n-i). Therefore, there exists a vector u such that Du=O.

Some vector notation needs to be formed before further study of D
and (I-H) can proceed. Let u denote the n-dimensional column vector with
all l's and r denote the n-vector such that r' = (0,1,2,3,...,n-i). It
is verbally convenient to call r the 'ramp vector', and to call u the
'all-unit vector'.

There is a need for vector counterparts of tm where m = 0,1,2,3,...
The cases to and tI are analogous to u and r respectively. For the general
case tm one can define rm such that (rm)' " (omim, 2m,3m,...,(n-l)m).

The D matrix accurately calculates the derivative of u and r; namely
Du=0, Dr=u. However, (I-H) calculates the derivative of r only; namely
(I-H) ufel, (I-H) r=u. Recall that ei is the Euclidean n-vector with I
in the i--th position and O's elsewhere. Furthermore, Drn#nrn-I for n>2.

The product rule does not apply in the matrix algebra with scalar
elements; that is

D(fg') # (Df)g' + f(Dg)'. (7)

LEMMA 1: If D is any n x n matrix, f and g are n-vectors, all have scalar
elements, then

(D(fg')) = ((Df)g') (8)

((fg')D') (f(Dg)') (9)

and tile rank of the resulting tensor products can be 0 or I depending on
whether D is singular. The negation of the product rule is an immediate
corollary.

On the positive side, one obtains

D(f(Dg)') - (Df) (Dg)' (10)

which is akin to the Ragazzini-Zadeh identity,

Z(YZg) - (Z?) (zg), (11)

in Z-transforms (3].
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D-MATRIX AND VECTOR CALCULUS

Interesting associations are noted when n-vectors are replaced by
n x n matrices. Using the vector calculus as a source of g(x,y), a/ax
and a/ax and a/ay, x,ye[O, (n-i)T], one can discretize

(a) g(x,y) into G, an n x n matrix.

(b) into GD' where prime denotes matrix transpose,
ax T

(c) into .1 DG,
a2 12

(d) into DGD'axay -T
12

(e) Dg into (GD'D'+DDG).

In effect, the derivative matrix D can operate on row vectors or column
vectors of G, or both.

1 ,
(f) into ¥ (DF+HD')

T1

(g) (Vxg). k into¥ (FD'-DG)

For the sake of completeness, one should include the cross product ia

0 b 3 -b 2 ) (a 1,

(h) lxý into -b 3  0 bI e2

2 -b 0 //

These discretization from the vector calculus w1.ll be shortly modified
into edge detectors. However, the D matrix and filters need to bs szudied
first.

DIGITAL FILTERS

rhe nunmerical transform source of (I-H) remains to be found.

a The startring point is trapezoidal quadrature

1I T itz f
Z(- f) 2 -z ,,--y2- ] (12)

which is obtained by averagirg Eqn. (1,2).
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* The second step is the Complete Tustin Program:

___2 l-z
If y Du ,and w 2 - then

SD(s) T l+z

[-- yo __A___ Z-

D(w) l+z

is the discrete simulation of the analog response y.
This program introduces the replacement of s by w.

0 The third step is to demand spectral equivalence! Success
strongly depends upon a fuzzy definition of a low pass filter
in the context of Butterworth filters with cut-off frequency
"•0 . The conclusion is:

It -N-s) x is the response of an analog low pass filter
D~s) A

with cut-off frequency w0 and if s ÷ w0 tanh (ns/4 0 ) W w

then Zy = Zx is the spectrally equivalent digital response.

The sampling interval T of the sampler Z is constrained by

Wo0T = 7/2. (14)

The pay-off is optimality [2), The digital Butterworth filter is flatter
than the analog filter in the in-band; the slope of the digital. filter is
greater than the slope of the analog filter at the cut-off frequency.

It is convenient to normalize the cut-off frequency by setting 0 = I.
A list of normalized analog, digital, and spatial low pass Butterworth
filters is

1 l+z I
l+s 2 2 (I{)

1(+Z) 2  2 1 2Si (iz) 2((2+,f2-) +(2-r2)H2- (I+H)2

I + /s+s2 (2 + /2) + (2 - /2)z2

1 __+__ 2-1 3
23 (l+z) 3  (61+2H2) (I+H)

l+2s+2s +s 6+2z

An unexpected conclusion is that l/l+s is spectrally equivalent to (l+z)/2
bu~t not to 1/(l-ze-T).

A list of normalized high pass Butterworth filters is
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s -z1-z

2____ (1i22-2
l+r2s+s2 (2+/2) - (2-/2)z2 ((2+2)I+(2-)H)(I-H)

2(-z3 (61+2H22)-1(1H)3.

1+2s+2s2 +-s3 6+2z 2

The uncommon factors of each order filter in these two lists are
(I+H), (I-H) and their powers which are also filters but require less
computational effort than the complete Butterworth filter. For instance,

__- = 1/8 (1-3H+3H2+H3)2

requires less effort than

(61+2H
2 )- 1 (I-H)3

the former requires three subdiagonals whereas the latter requires (n-1)
subdiagonals. One can verbalize these notions by calling 1/8(I-H) a
local spatial filter and (61+2H2)-i (I-H) 3 a global spatial filter. In
the sequel, only local spatial filters will be considered.

EDGE DETECTORS

A normalized high pass filter, I-H, can be employed as an edge
detector of distinct VH- squares with vertical and horizontal edges.

LEMMA 2: If g is a binary vector, then (I-H)g is a vector that displays
either the start, or the start-and-end, or end of a burst of l's. The
start is indicated by +1 and the end is indicated by -1. The original
vector g is recoverable with

i n-1

ix k~
(I-H) -l niHk

0 -where H A - I. Moreover, J(I-H)gJ is binary and invertible by (I+H)- inI the modulo 2 arithmetic only in the case of a start-and-end and end result.

LEMMA 3: The number of binary n-vectors containiag bursts of l's is the
modified Fibonacci number ýn where {4n} f{,2,3,5,8,13,...,4 and n - 1,2,3,...

LEMMA 4: The probability that a binary n-vector contains bursts of l's
is pn/2n. Moreover
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'n+l 'n lim ýn
< -and -- =02n+l 2n rn- n

Specializations of the divergence and curl motivate the next result.

LEMMA 5: If C is a binary matrix that contains well-separated closed
VH-square contours, and if

V+CAC(I-H)' + (I-H)C

VCAC(I+H)' - (I+H)C (15)

then

IV+(VC)I = G, D(G) = 0 (16)

where G is a binary matrix with VH- squares subject to the condition that
0(G) = 0. Here, 0(G) is a matrix whose diagonal is the diagonal of G and
whose off-diagonal terms are all zero. Under the specialized condition of
Lemma 6, IV+(VC)i fills in the contours of C except for zero diagonal
elements of the matrix.

The commuted situation requires binary thresholding associated with
the absolute value which is symbolized and defined in the scalar case by

A 0if f =0

If (2) (
if f #0

The scalar case is directly extendable to each element of a matrix.

LEMA 6: If G is a binary matrix that contains well-separated VH- squares,
and c is a sparse matrix with .1's located only at the bottom right corner
of every square contour in G then

i) V+G detects almost-closed

ii) contours of the VH- squares

iii) IV (IV+GI ( 2 )I+) = G - D(G)

iv) V is the reconstructor of the contour.

Almost-closed VH-square contours are closed contours with the bottom right
corner element equal to zero.

A superinvariance property immediately follows; namely

G - 9(c) - 6 <IV + (18)

where 6 is a sparse binary matrix such that
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i) 86AV V ,

ii) The number of l's in 6 is almost twice the number of
l's in C.

The next Lemma is motivated by the second partial derivative.

LEMMA 6: If G is a binary matrix with well-separated VH-squares, then

I(I-H)G(I-H')l = C

is a binary corner detector. The reconstructor is right transpose and
left multiplications by (I+H)- 1 in the mod 2 arithmetic.

WEDGE DETECTOR

The previous section developed detection and reconstructions of images
with jumps. It is natural to extend this study to images with slope jumps.
The test image is a truncated pyramid whose middle horizontal, middle and
vertical and two diagonal crossections have the form (0,1,2,A,5,5,5,5,5,4,3,
2,1,0). The sites of the slope jumps are wedges and three distinct wedges
contours are:

i) A closed square contour due to the pyramid base;

ii) An inner closed square contour due to the pyramid top;

iii) The four sloping wedges which connect corners of the
inner and outer ciosed square contours.

The combined appearance on an image is that of a closed contour formed
from four open trapezoidal contours. Thus, contact is made with the closed
contour detector, V+ of the previous section.

Interaction of V+ on a truncated pyramid image G yields

V (V G) = V G+2(I-H)2 C(I-H')2

V GAG(I-H) + (I-H)2C (19)

and the latter is the Laplacian. Iteration of V on the closed contour
of open trapezoidal contours, C, yields

V (V C) = V 2C-2(I+H) 2C(I+H')2

2 2 2
V_ CAc(i+-I) - (1-1H) C (20)

and the latter is the complementary Laplacian.

Much complexity causes one to refrain from detailed statemints about
both the Laplacian and tts complement. However, by itself, IV+ G1 2 is a
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wedge detector wherein the sloping wedges are represented by sub- and
super-diagonal block matrices. Of course, one can conjecture that the
complementary Laplacian is a candidate reconstructor according to Lemma 6.

THE DC AND RAMP NOTCH FILTERS

The DC notch filter is a very low cut-off frequency high pass filter
and is realized by (l-z/ 2 )m where m is an integer, z = exp (-s-f/2). The
new cut-off frequency and an inequality are

W = - cos (--+2 ), (21)om 7

0 < W <1 (22)Somn -

where

i) equality holds when m 1

ii) lim W =0.
om

The corresponding local spatial filter is the nxn matrix.

• (IH)) t m
. (1H))m .m << n,

2

with the same cut-off frequency fortula but with a different inequality,

Son < Wo < 1. (23)

The DC notch filter eliminates u, the signal's constant component.
This task cannot be performed by (I-H)m because (I-H)m u is a vector with
binomial coefficients foilowel by zeros. Small computational effort
requires the form (I,-H)mkD(k) where k << (m-k) << n. Least computational
effort occurs for k = 1 and perhaps k - 2.

(2)
Operators D, DD and D are doing the annihilation in Lemma 6 and 7.

Therefore, gradient, divergence and second gradient, Laplacian, in the
vector calculus can be given additional meaning as DC notch and ramp notch
filters. This filter meaning induces two residue classes whose simplest
elements are D, the gradient, and DU), and the second gradient.

The spatial notch filters of Lemmas 7 and 8 are better performers
than their z-transform precursor, (l-zm/2). This is because analog and
digital filters are defined modulo their nonzero transient responses.

NOTCH FILTERS

This section develops the second derivative matrix acd then proceeds
to develop notch filters from D and D(2).
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Test computations yield desirable and undesirable results such as:

1) D 0, Du 0, Dr - u, D2r - D(Dr) = 0;

ii) D2 u-D(Du) = D2 u-Do=-2(e^+• 2 ) # 0.

DD works but D2 does not work on both u and r. However, repair is easily
contrived by redefining D2 as

1 -2 1 0 0 0

1 -2 1 0 0 0
D(2) A 1 -2 1 0 0 0 (24)

0 I -2 1 0 0

0 0 1 -2 1 0

0 0 0 1 -2 1

In general, D(2) has rank (n-2) and it annihilates the n-veztors u and r.
This idea generalizes to DRk) 1 < k < n with higher order binomial coeffi-
cients and k + 1 top rows similar.

One can now construct four primitive u-notch and r-notch filters
which eliminate u and r components from a signal vector.

LEMMA 7: The form (I-H)m-l D, z < m < n, is a DC notch filter but not a
ramp notch filter.

LEMMA 8: The forms (I1-H)m- 2D(I-H), (I-H)m- 2 DD and (I-H)m-2D(2), 3 < m < n,
are ramp notch filters; moreover, the latter two forms are also DC notch
filters.

LEMMA 9: All cut-off frequencies of the four notch filters are woom

VECTOR SPACE ASPECTS OF NOTCH FILTERS

In this section, we consider only D(k) the nxn k-th derivative matrix,
I < k < n, rank Z > 1, and typify it by D, all in a vector space [4] setting.
Also needed is the observation that D4 Is the k-th column of D.

LEMMA 10: For any nxn singular matrix of type D and integer rank (.2. n-k),

there exists a canonical elementary column transformation (CECT) such that

where
(OIQ) is an nxn upper triangular matrix,

(KIK) consists of the null column vector set, K, and its
complementary vector set K.
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Moreover, arbitrary non-zero linear combinations of the column of the null
set, K, produce the null space of D.

* The canonical elementary column transformation proceeds as follows:

i) Start with Den, the last column of D;

ii) Perform k leftward ECT's on [Di) to zero all off-diagonal
terms on the bottom row;

iii) Go to the column (n-l) diagonal element and use k leftward

ECT's to zero all off-diagonal elements on the (n-l)st row.

iv) Continue while outside the first n-p columns;

v) Inside the region of the fist n-p columns use ECT's to
zero all n-p columns.

This algorithm is effective because of the sparse upper triangular region.
of all matrices D(k) and the k subdiagonals in the lower triangular region.

The column vectors of the non-singular matrix (KIK) can be used as a
basis for any vector x in Vn(T) and Dx belongs to the subsoace Vn-p(Q) and
Q - DR

(2)
If one uses D for example, then K = (u-r,r) issues forth. One

finds u in the null space by means of the linear combination (u-r) + (r).
Moreover, K can be found easily from, r; namely

* • (Hr,H 2 r,H 3 r,...,H nr) (26)

The general case requires the matrix B which contains the first k n-vectors
of the Right Pascal Triangle for the binomial coefficients and b the last
column vector of B. Ea,'h column of B represents truncated inverse binomial
coefficients.

IJE-4A 11: The null-space and complementary space of D(k) are given by the
lower triangular form

(BIB) - (BIHb,H 2b,....,Hn-b). (27)

This specific forn of (KIK) is extremely easy to compute after the canonical
* •elementary column transformations decoded its form.

Because of the lower triangular form of (BIB), one can observe that
eje 2". "''ek are included In the null space and are excluded from the com-
plementary space. In addition, (BIB) forms a natural I.asis for any x in
Vn(I) that leads to the next conclusion.

LEM-MA 12: If x belongs to V'(I), then I)(k)x is independen; f the first

k columns, of '1 k). Moreover, the fixed column vector )f D(k) is thatI t (k) c atn
Is () ='In for all k and n such that I < k < n-2. This Lemma is a
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play on the fact ýh t D(k)x is a vector that belongs to the column space
of D(k); but if D k is singular, then "D(k)x belongs to the complementary
space" is brought back to D(k) by the independence conclusion.

If k - n-2 and x is any vector in Vn(I) then D(n-l)x - a~n. A
drastic mutilation has occurred and one must insist on k << n. This
demand is equivalent to insisting on relatively large rank short of full
rank for D(k).

....-. D (2)
Our u-notch and r-notch filters depend on D and respectively.

One way of lessening the independence phenomenon is to limit the context
to low order derivative matrices. Everything has its limitations!

Lastly, one can loop back to Lemma 11 and obtain something reminis-
cent of real variable multiple derivatives.

LEMMA 13: There exist nonzero linear combinations on the null space B of
D(k) such that

(KIK) - (u,r,r 2 .. l k-1 (28)

It seems that the notion of power vector belongs to thie boundary of
vector space concepts.

PHYSICAL REALIZATIONS

Spatial low pass, high pass, DC notch and ramp notch filters, D and
D(2), can be realized directly by software on a matrix-vector oriented

digital computer.

Dedicated hardware realizations will be faster and proceed as follows.
The low pass filter (i+z)m and high pass filter (l-z)m are realized with
"parallel full adders and parallel shift registers without initializations.

These devices are connected together in the feed-throtigh manner to
form a non-recursive filter and linked to each other through carry lines.

The derivative realization is almost similar to the previous low
pass and high pass filter realizations excfpt that

I) A single delay is needed for each parallel realization,

ii) Each delay flip-flop is initialized with bits from

[(gl - 2g0)/T 2"

Here, it is useful to denote 1cx] 2 + [B] 2 z by [cx-4 Bzj 2 .

There remains the problem of transcribing the matrix D(2) into the
Z-transform.
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if: f (t) -~t

then:

T Z- + T 2  + T2  z. (29)

The two additive terms indicate the need for two initializations tp Che
parallel shift register realizations of the second derivative, D(2

If g is a single image column vector then the simultaneous DC notch
and ramp notch filter operation yields

[IH]m-2 D(2)g.

This is realized with the aid of nexted round parenthesis convention by

([I-H]M-2 (D(2) (g))) - ([l-z]2-2 (Zf)) (30)

where

2- [2--1] 0 + [g2 z + [[(z 2  (3)Z T 2 J 2zT202 T2 2 J22 (1

A straight pare-.tnesis sequence follows the left--to-right order convention.
The first two additive terms display the two initializations and their
placements.

The saume techniques apply to simpler DC notch filter [I-H]m-Ir except
that its Z-transform precursor is known; indeed the precursor derived D,
the first derivative matriz.

CONCLUSIONS

The origin of the derivative matrix in the numerical transform and
the origin of the spatial filter in the optimal Rader-Gold transform has
been displayed. Applications to edge detector, reconstructors and DC
notch filters are interesting consequences.

A vector space analysis of multiple derivative matrices displays
their null spaces and their independence sets. Physical realizatlon
heavily depends on the originating numerical transform.
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INTRODUCTION

A major operational need facing the next generation of Scout (ASH)
and Attack (AAH) helicopters is to detect targets from nap-of-earth
altitudes, on a realistic battlefield in a complex and cluttered scene.
The current technology base supports the development of a complement of
sensors spanning a region of the spectrum from visible to far infrared.
Precision pointing and stabilization has been demonstrated to insure that
target detection and recognition requirements can be met. However, the
problem for the operator to detect low contrast targets in a complex and
cluttered scene at long ranges and minimum exposure time to insure adequate
survivability still exists. The targets of interest here are primarily
the single, high threat target which will not be contained with the main
body of target tanks and will not present many detection cues. This work
is criented primarily for TADS type acquisition systems for airborne
missile fire control, although it has general application to any video
format imaging system. It holds high potential for improving target
signature for seeker lockon and tracking and can possibly simplify corre-
lation techniques for missile seeker handoff by preprocessing the seeker
and sensor Imagery.

Image processing techniques offer potential for improved performance
through target acquisition (autonomous or man-in-loop) at greater standoff
ranges or in less time and through automatic handoff of identified targets
from a precisica pointing and tracking system to the missile seeker.
Other facets of the fire-and-forget concept, tracking and homing, guidance,
also have potentiql for improved performance through image processing
techniques, are beyend tho scope of this paper. Emphasis here is on
man-in-loop target acquisi ic~n.
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TARGET ACQUISITION

Performance of an observer in acquiring a target in usually given
in terms of probabilities of specific subjective decisions by the observer.
Target acquisition is taken to mean the detection and/or recognition of
potential target classes by a human observer viewing a display of the
imaged scene. Performance in terms of detection probability and recogni-
tion probability can be related to quantifiable system performance measures
for the sensor system.

PD,R = 1 " 2 P3 P4

where

PI is a search-term probability

P 2 depends on contrast

P3 depends on resolution

P4 depends on noise.

Based on this model, image processing methods which improve contrast,
resolution or signal-to-noise are candidates for application to the target
acquisition problem.

Other parameters which are implicit in the model are listed below.
All elements from the target/background through the optical path, sensor,
and display to the observer will influence performance.

i a) Target coordinates on the display.

b) Target angular sub-tense at the observer's eye.

c) Target-background contrast.

d) Displayed target and background radiance levels.

e) Resolution of the system.

f) Target dimensions on the display.

g) Two-dimensional noise at the display.

h) Photon noise at the display.

i) Video electronic noise.

j) Background structure.

k) Display dimensions.

1) Eye integration period (0.1-0.2 sec).

m) Eye fix;ttion period (10.3 sec).

n) Search time available to observer.
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IMPROVEMENT METHODS

For viewing conditions which produce marginal contrast, resolution
and/or signal-to-noise ratio, target acquisition performance is improved
by enhancing these quantitative measures of image quality. Improvement
in these measures can be accomplished to varying degrees in a number of
ways including sensor/display system design optimization and video signal
processing. Based on a study by Southern Research Institute , a number
of options were identified, as shown in Figure 1, for potential imagc
enhancement. Some of the methods in Figure 1 (e.g., items 1 through 6
and 10) are more accurately described as elements of good sensor design.
Other methods such as 9, 11, 13 and 14 are more accurately described as
video signal processing methods. The division between these two general
methods is not fixed; however, some specific methods may be characterized
either way.

The primary conclusion of the Southern Research effort was that
attention should first be paid to optimizing the operating characteristics
of the imaging system components. Then specific video image processing
methods should be investigated for further improvement in target acquisi-
tion capability.

IMAGE PROCESSING

Image processing consists of a number of inter-related disciplines
and may be described in terms of four general categories as shown in
Figure 2. The four categories, enhancement, restoration, registration,
and pattern recognition, may be combined in an interactive fashion to best
achieve the objectives for a given imaging problem. For example, image
registration performance may be improved if the imagery is first restored,
enhanced or represented by descriptive features which are part of a pattern
recognition scheme.

The process of acquiring a target (detection and recognition) is
considered to be the outcome of a pattern recognition process. The recog-
nition may be subjective (by an operator viewing the image) or autonomous
(wherein features of the image are compared with a library of features
representing different target classes). In either case, the accuracy of
the decision (taiget or non-target) can be improved by selected image
processing methods.

It is desirable to have methods for quantitatively evaluating the
expected improvement in performance effected by a given processing method.
This quantitative comparison of various processing methods, in zonjunction
with practical constraints such as processing speed and complexity, form
the basis for choosing algorithms to be implemented in hardware. This
technique for processor selection is outlined in Figure 3. Methods for
evaluation are given in Ftgure 4 and example evaluation measures are
listed in Figure 5.
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1PURPOSE - TO DETERMINE IF A PROCESSING MEYHOD DIPROVES THE :AIILITY TO
ACHIEVE STATED OBJECTIVES

IMPROVED ABILITY CAN 30 BASED ON EVALUATION MEA;URES

SUBIECTIVE: ea.. LESS FATIGUE IN ThSK PERFORMANCE; A "IETTER"
IMACG

e'" ' Pro HIGHER CONTRAST. ETTEr ACCURACT, ETC.

NEIWODS FOR EVALUATING PROCESSOR AND PARAM~rTE VARIATION

I. ANALYSIS - GENERAL STUDY OF PROPERTIES; KAATHMATICAL DEVELOPMENT;
PARAMETER AND FUNCTION DEFINITIONS

2. SIMULATION WITH SIMPLE KNOWN IMAGES - ANALYTICAL OR COMPUITER
ANALYSIS OF SPECIFIC, SIMPLE ImAGES.

3. EMPIRI AL APPLICATION TO REALISTIC IMAGES - COMPUTER ANALYSIS BASED
"ON APPLICATION TO TYPICAL IMAGERY.

FIGURE 4. PROCESSOR EVALUATION

SVBJECTIVE STATISTICAL&OJSANTITATIVE

* LESS FATICUE . SMR * RSOrLUION

a BFTTER. IMAGE . CORRELATION ACCqUAST

* FASTER RESPONSE P P P (AUTONONOUS ACQ AND AUTO-CUE)

* SHAPE FAIURE STATISTICS

- PERIKETER/rARiEl
- N"ER OF EDGES"
- NORMALIZED EDGE1 LENGTH HISTOGRAM
- StCCESSYVZ- -GrCESOPE DIFFERZENTIAL HISTOGRAM

PSYCHOVISUAL * INTENSITY AND CONTRAST MlEASURES

e STATISTICAL TASK - TENSITr, HISTOGRAM (TARrCEzT/ACK:ROxND)
PERFOR14ANCE - TARGZT/BAcKGROUN1 AUG. CONTRASr

- TARGZT/BACKGROtTND PEAK CONTRAST
0 Po - SOBEL GRADIENT EDGE HISTOGRAM

- GRADIENT HISTOGRAM ACROSS EDGXS

* TEXFURE FEATURES
R RESPONSE TIME

- DIRECTIONAL CRAY LEVEL DIFFERENCE

HISTOGRAMS ( VARIOUS SPACINCS)

"- THRESHOLDED-INTENSITT AREA RISTGRA'iS

NOTE: I1ESTOGRAMS MAY BE CHARACTERIZED BY MOMENTS

(MEAN, STANDARD DEVIATION, SKEW, EXCESS)

FICURE 5. EVALUATION MEASUtIRS
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The processing methods to be applied co the imagery can be global
(applied equally across the image) or local-area-adaptive. They can be
linear or non-linear and can be applied in either the spatial domain or
spatial frequency domain. Specific processing methods which offer potential
for improved performance include the following:

1. 3 x 3 Moving Window Average (or n x n)

- Contrast enhancement
- Edge enhancement
- Easily implemented in hardware
- Digital or analog implementation
- Inexpensive add-on

2. Edge Detection/Enhancement

- Potential for reduced scene information
- Options on degree of edge emphasis
- Easily implemented in hardware
- Digital or analog implementation
- Inexpensive add-on

3. Local Area Gain and Brightness Control

- Locally dependent contrast enhancement
- Simultaneous contrast enhancement and dynamic range

suppression
- Adaptive to scene statistics
- Digital recursive and non-recursive implementations
- Real time operation

4. Histogram Equalization

- Non-linear gray scale transformation
- Maximizes entropy of total image
S- May obscure target details for some scenes
S- Not recommended for FUR images, but untested on

TV images
- 1 frame processing lag

5. Histogram Specification

- Allows gray scale optimization for human vision
(hyperbolization)

- May obscure target details for some scenes
- Must develop criteria for specifying a given histogram

shape
- 1 frame processing leg
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6. Pixe". Sensitivity Equalization
S- More uf a problem for discrete detector arrays than

for e-scan photosurfaces (such as Vidicon)
- Requires uniform reference across array
- Should be accomplished internal to the sensor (sensor

design instead of signal processing)

7. Multi-Frame Averaging

- Improves S/N (by At, N frames)
- Requires time proportional to number of frames to be

added
- Requires that frames be registered (generally are not

registered due to sensor motion)
- Requires full frame storage

8. Median Filtering (non-linear)

- Improves S/N (n x n window)
- Single frame processing
- Does not degrade edges
- Requires sorting of n 2 pixels
- Implementable as separate 1-D, n-element filters with

slightly degraded performance

9. Hysteresis Filter

- Single frame image smoothing

- Adjustable amplitude dead band applied to pixel values
- Potential loss of target detail

10. Scene Adaptive Low Pass Filter

- Linear, adaptive processor
- Filter pass-band adaptive to gradient or curvature

within a 7 x 7 (or n x n) window
- Non-recursive implementation can require up to IC x 10

filter size
- Recursive implementation possible in real-time

11. Inverse Filtering (Wiener)

- Restores resolution
- Requires model for MTF degradation
- Typically aimed at restoring e-beam and atmospheric

MTF degradations

12. S per-Resolution

- Requires sampling at greater than Nyquist rate
- Increases computational burden because of more pixels
- Usual purpose is to enlarge a selected sub-area of the

lmagc (can thus keep number of pixels within limits)
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PRESELECTION AND FURTHER EVALUATION

Based on 1) a thorough search of the literature for descriptions and
analyses of candidate processing methods, 2) compatibility with objectives
and constraints of the intended application, and 3) potential for modifi-
cation, adaptive flexibility, and new device availability several methods
were identified for further analysis and detailed evaluation.

For the objective of improving contrast and/or resolution and/or
signal-to-noise ratio, the following six processing methods were identified
for further analysis. Based on known characteristics, these processing
methods offer varying degrees of simplicity, flexibility and expected
improvement.

1. Convolutional Window (enhancement, restoration)

2. Edge Detection (enhancement)

3. LAGBC (adaptive enhancement, restoration)

4. Scene Adaptive LPF (noise reduction, smoothing)

5. Median Filter (noise reduction)

6. Histogram Modification (enhancement)

For the above processing methods, there are options on parameter
values end methods for implementation. A thorough evaluation is required
in terms of the target acquisition objective to form the basis for selec-
tion of specific methods for hardware implementation. This required
evaluation has the following elements:

1. Parametric Analyses - Relate parameter values to specific
quantitative and subjective evaluation measures.

2. Multiple Processor Interactions - Algorithms which improve
one performance measure (e.g., contrast, resolution, S/N)
often do so at the expense of the others. Relative perfor-
mance of serial and parallel implementations of multiple
processors is required.

3. Adaptive Methods - Look for ways to make processors adaptive
to scene content to optin.ize performance.

4. Verify/Validate - Candidate processing algorithms must be
applied to typical TADS type imagery and evaluated by
computer simulation.

Further detail in the processor selection/validation effort is given in
Figure 6.
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CONCLUSION

There Is evidence to support the contention that relatively simple

inmage processing methods offer improved performance for TADS type target

acquisition systems. This improved performance is related through psycho-

visual experimentation to qucntifiable image quality measures. Thus,

evaluation of a given image processing Kethod can be in terms of quanti-

fiable image improvement and in terms of subjective image quality.

From a list of potential processing methods, six have been identified

as offering high potential for this application. Methods for further

evaluation are given.

i'1
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Ii Paper No. IB-6, Presented at the Workshop on Imaging Trackers
and Autonomous Acquisition Applications for Missile Guidance,
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Two-Dimensional Convolute Integers

for

Optical Image Data Processing

By

Thomas R. Edwards
Marshall Space nlight Center

Huntsville, AL 35812

ABSTRACT

Regression-generated Two-Dimensional Corivolute Integers for
optical image digital data processing present truly two-
dimensional low pass, high pass, and band pass filtering with
zero phase shifting and false magnification. As image
enhancement this results in noise suppression, background
subtraction, contour or edge sharpening, oith minimal loss of
resolution over the physical optics. Topographical direction-
ality is available through generation of a normal inmage, i.e.,
an orthogonal surface. Physical optics resolution can be
enhanced by false magnification. The logic, applied in a
weighted, nearest-neighbor, nonrecursive, moving, smoothing,
averaging type algorithm is fast and readily implemented in
hardware. The entire package can reside immJediately behind the
physical optics and function as an image logic preprocessor.
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INTRODUCTION

Regression-generated convolute integers for non-phase
shifting, nearest-ncighbor, weighted, moving smoothing,
averaging type digital filters are well- stablished techniques
founý ubiquitously in one dimensional applied spectros-.
copy-5, Two earlier refer-ences to thbse techniques can be
found for the two-dimersional case ,7. But in reviewing thg
cornucopia of existing two dimensional filtering techniiques
these rather powerful procedures, sc readily hardware
implementable, are conspiciously miissing. Two Dimensional
Convolute Integers can perform the following functioQns when
convoluted with the data iii an image:

1. Low pass filtc.iunc4
2. High pass f 4. tering
3. Band pass filt-ereing
4. Normal surface generating
5. False magnification or re-registration
6. Norilirear magnification
7. Edge or contour enhancement
8. Noise filtering
9. One-p•c•s multiple convolution

All these tasks ca? be accomplished in video time frame

real-time hardware 0.

THEORY

Regression theory is at least a century old; therefore,
there is nothing new about the calculations required to generate
the Two Dimensional Convolute Integers. The only theoretical
requirement of the data is equal interval spacing; the
displacements between pixel elements in the x-direction must all
be equal and either equal to or a multiple factor of the pixel
displacements in the y-direction.

Four equivalent concepts must be sinultaneously consid-
ered when developing these coeffi.cients, Figure 1. Nonrecur-
sive, nearest-neighbor, weighted, moving, smoothing average is
equivalent to the convolution or folding together of a local
region in an image with a weighting function and then moving on
to the adjacent region. But these two ideas are equivalent to
surface fitting of a local region, replacing a pixel element
with one calculated by fittinq the local region with a surface
of some order, and again repeating the operation on the adjacent
region. All these operations result in filtering and, in fact,
possess all the nor-ially desired filter characteristics in the
lastest type of software algorithm or rather inexpensive,
easy-to-build hardware.
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In sampled data theory, convolution coefficients are
equivalent to the weighting coefficients used to obtain a
nearest-neghbor average, Figure 2. Merely describing the
convolutingý function in digital sampled data forn leads to the
"statement that the weighting coefficients in a nearest-
neighbor averaye are convolution coefficients. That these
convoluting weighting coefficients in a nearest-neighbor
average are regression coefficients also may be a bit mcre
difficult to see but nonetheless is a very straightforward
result.

Regression calculations or least squares analysis is in
no way affected by the fact- that a curvilinear pclynomial is
to be fitted to a one-dimensional Jata stream or an arbitrary
surface is to be fitted to a matrix of data points in two
cimensions, Figure 3.

Viewing the steps in Figure 3 leads to nothing unusual
u? to the normal equations associated with regression calcula-
tions, At this point, most investigators have failed to make
the association between the weighting coefficiE-nts of a
Snearest-neighbor average and the regression coefficients re-
sulting from surface fitting, Figure 4. In matrix representa-
tion, this association becomes clearer. Recognize that at the
center of the data mask, position 0,0, each regression co--
efficient represents not only the value of the partial deriva-
tive but also an intensity value calculated from the data.
View the matrix expression for a nearest-neighbor weighted
average along with the matrix expression for the reqression
coefficients. Consider the individual scalar regression
coefficients evaluated at the center of the data mask and
equate them to a scalar intensity value. This new scalar_"
intensity value can in turn be represented by a set of
weighting coefficients and a normalizer, as in nearest-
"neighbor weighted averaging. But now, these newly defined
weighting coeffIcients and normalizer are seen to be universal
sets of numbers, indepen6ent of the data, dependent only on
the surface order and the data mask size. These new weighting
coefficients and their associated normalizer are convolution
'coefficients derived from two-dimensional regression calcula-
tions and can be appropriately described as regression-
generated Two-Dimensional Convolute Integers. The integer
aspect of their description arises from the fact that only
integer values are used in their calculation.

TYPICAL FILTERS

A typical filter mask is seen in Figure 5. Note the
great deal. of symmetry associated with the coeffici.ents in the
filter mask. Only one quadrant of coefficients is needed to
uniquely specify a complete set of coefficients. This lends
speed to the weighted moving smoothing algorithm need to
address the image data. Data mask locations having Two
Dimensional Convolute Integers of equal value need only be
added or subtracted prior to multiplication. Since addition
of two integers is significantly faster than multiplication,
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considerable processing time is saved by utilizing all the
symmetry properties available. Viewing only the upper left-
hand quadrant, allows the Two-Dimensional Convolute Integers
to be expressed in a compact formt Figure 6.

FILTERS

The concept of filtering, hitherto addressed but not
fully expressed, is rather simply stated for weighted,
nearest-neighbor type averaging. A low pass filter should
pass a constant intensity value. A high pass or band pass
filter should not pass the constant value, Figure 7. A low
pass filter is a noise suppressor or smoothing filter; whereas
a high pass is a roughing filter. By applying Cramer's rule
for the calculation of the individual regression coefficients,
these filtering properties are readily satisfied.

TEST CASE

A very simple test case helps to clarify these concepts,
Figure 8. Consider an arbitrary surface as represented in the
figure. Calculate the intensity at each point in a 5 x 5
pixel data mask. If the data are noise-free, then fitting a
surface to the data and calculating the intensity value at the
center of the data mask by least squares should yield an
intensity value of 10, the center point value. Now apply a
two-dimensional regression to these intensity values by the
nearest-neighbor weighted averaging using the regression-
generated, Two-Dimensional Convolute Integer coefficients for
a 5 x 5 filter mask, second or third order surface, smoothing
filter. The coefficients are those seen in Figure 5. The
products of the filtering coefficients and the intensity
values when summed and divided by the normalizer are indeed
just 10, the intensl.ty at the center point of the data mask.

Smoothing these. noise-free data merely regenerates the
data but indicates that applying these filter coefficients is
equivalent to a two-dimensional regression calculation.

RESULTS

An important aspect of meteorology is the ability to
track clouds. Whereas cloud images in the computer are diffi-
cult to track, Figure 9, cloud contours are less difficult.
Generating cloud contours by these filters is relatively
straightforward . A normal surface of the original image is
generated. A normal surface is by definition a surface, every
point of which is the magnitude of the gradient evaluated at
that point. For Two-Dimensional Convolute Integers this
represents fitting a surface to a local region, calculating
the partial derivative in both the x and y dircctlc's
evaluated at the center of the region, and then obtaining the
magnitude of the gradient. Now the gradient represents the
greatest rate of change within a region and is therefore a
very high pass filter. The gradient of the cloud data,
enhancing contours, is seen in Figure 10. As a contour or

138



-• edge enhancement technique, generating the normal surface in
a truly two-.dimeosional sense allows for excellent feature
iselection. But as almost al image. analysis invest igato s
nrecognizel generating derivative also genotrates excessive

enhise and tends bao degrade an imagen However, Two-Dimensionali• Convolute Integers allow for multiple convolotion in a single

ipanti of the algorithme i.e., two filter functions applied
simultaneousdy° Thus, combine tha gradient filter with a" •Smoothing filter to suppress rnoise, Th4.s is band pass filter-

-2: ing via Yregression. A breast X-.ray is seen in Figure i11,
'•" and• the ability to view a cancer turner, denoted by arrow, is
•' ~erhanced by the band passed, gradient plus a smonth image seen
:• in Figure 12. The ability to detect the tumor is definitely
Senha~nced by this technique.

HARDWARE

A patent disclos-ure has been filed which represents a
hardware design for a general purpose Two-Dimensional
Convoler, Figure 13. The design is straightforward and can
cl, k a filtered data point. every 70 nanoseconds using
existing IC chips. This rate approximates video rates of 60
frames pe. second with a raster 512 points square. All that's
involved are shift registers in a delay chain scheme, adders
and multipliers, as appropriate to a moving, smoothing,
neare.FL-neighbor weighted averaging scheme. The Two-
Dimensional Convolute Integer coefficients are loaded
according to what output is desired, i.e., a noise-filtered

* contour-enhanced target, or an enhanced weld failure
displaying the fault. This type hardware box can reptesenc .-i
video preprocessor residing imme6iately behind the imaging
optics, performing a whole h.Cost of functions. Needless to say,
the cost for parts in such a video preprocessor is rather
inexpensive and the design rather st:-aigchtforward.

CONCLUSION

In conclusion, let we address yet ancther aspect cf these
ideas which also resides within the domain of Two-Dimensional
Convolute Integers and was mentioned previously.

"* *The data masks considered so far have ail been odd
numbered in size, i.e., 3 x 3 or 7 x 7. The filter point, the
new calculated value, ha.i been a replacement value for the
point at the center of the daza mask.

The "Now consider an even numberej lata mask, 4 x 4 or a 6 x 6.
The calculated value, the new int-nsity, is again located at
position 0,0; but this position being the cernter of the data
mask, is interstitial--no point initially resides there. When
the filter is moved along in it3 moving smoothing fashion, ar
interstitial line is generated- The intensity values on this
line are excellent in that they are good fitted, weighted,
nearest-neighbor averages. When the filter is passed over the
jimage, every other line is an interstitial line hitherto not
present; the data set has doubled. The number of line pairs

139



per millimeter has doubled. Thus, the resolution of the
physical optics has been enhanced, or via thip wethod of false
magnification an image may be ealarged or magnified by a
factor of two without a ,ignificait lss of information and in
real•-time hardware on a 'video screenI A patent dis-
closure has been filed which represents a hardware desAgn for
a Two-Dimensional Convolute Integer Xnterstitial Point
Generator, Figure 14,
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Paper No. IIA-I, Presented at the Workshop on Imaging Trackers and
Autonomous Acquisition Applications for Missile Guidance,
19-20 November 1979, Redstone Arsenal, Alabama.

TARGET TRACKING METHODOLOGIES
PRESENT AND FUTURE

CPT BENJAMIN REISCHER
U.S. Army Night Vision and
Electro-Optics Laboratory

Advanced Concepts Division
Fort Belvoir, Virginia 22060

Abstract

This paper presents an overview of target tracking methodologies. The
evolution of the tracker is traced from its original basic design capabilities
and limitations through today's state-of-the-art (SOA) multimode trackers.
Discussion is made concerning limitations of SOA trackers and consequently
the necessity for development of an "intelligent" target tracker. Required
capabilities of the intelligent tracker are discussed. Details concerning
basic research and development work and progress made to date in the area
of intelligent target tracking are discussed.

Introduction

The Night Vision & Electro-Optics Laboratory has been actively performing
H! smart sensor research and development for the purpose of supplementing or

supplanting the human observer in the target acquisition role. The target
acquisition scenario requires the detection of target-like objects, tracking
of the objects until recognition is possible, identification as a target
for engagement, munitions launch and launch transient target reacquisitior.
and finally, tracking till munitions impact. Automatic tracking systems
are utilized for supplementing the human observer in several of these roles.
The intelligent target tracker discussed in this paper is an attempt to provide
a technology base suitable for many different tracking roles. The intelligent
tracker is specifically suited for systems lacking continuous man-in-the-
loop interaction and is ultimately required for fully autonomous weaponry.

This paper presents an overview of the various target tracking method-
ologies and their application into fielded or future systems. The intelligent
target tracker is presented as concepts to be explored and scenarios to be
investigated.
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Presently Fielded Military Trackers

Presently fielded military trackers typically are of the single mode,
non-adaptive type - most commonly simple correlation or contrast (centroid
of brightness). Target lock-on is achieved solely by operator commanA and
the object being tracked is described merely as a grouping of illuminated
pixels within a fixed or operator defined track window. Failure of the
tracker algorithms to delineate the boundaries of the tracked object coupled
with poor window sizing (a process known as "gate discipline") permits the
introduction of non-target pixels (ie clutter objects) within the track
window. Frequent loss of track in clutter regions is typical for these
non-adaptive tracking methodologies and a man-in-the-loop scenario is required
for target reacquisition after track loss.

The correlation tracker attempts window image registration on a frame-
to-frame basis with repeated update of the reference image. As the tracked
target moves, both target aspect changes and clutter combine to severely
influence the tracker confidence. Hence for a target moving behind a large
clutter object (e.g. bush) the required reference updating often causes the
tracker to remain locked onto the bush and not the re-emerging target.

The contrast tracker is affected in much the same way by target obscurations.
A moving target approaching another object causes both signatures to enter
the track window and hence forces the centroid of brightness to be driven
to a point between the two objects often causing the loss of the originally
tracked target. Furthermore, since the target is known only by its intensity
profile, the centroid (hence tracker aimpoint) will vary with changing target
aspect. This "aimpoint wa iir" is one of the most significant errors in
standoff tracking systems.ý" The operator's inability to maintain effective
gate discipline greatly increases the probability of breaklock and further
burdens him with continually performing manual target reacquisition.

Another shortcoming of presently fielded trackers is caused by the use
of less than optimal algorithms (e.g. binary correlation) which are required
to allow implementation in reasonable realtime packages. Despite this, the
fabricated hardware is often bulky, special purpose (mission dependent) and
has a significant power consumption. This of Len requires a redesign of the
hardware to compensate for the pecularities of a new mission scenario.

Perhaps the most significant limitation is the implicit assumption that
one ;.tod only one "target" exists to be tracked in the image. It is this
assump~tion which lies at the heart of the "gate discipline" and correlation
"reference update" problems. Without the duplication of tracker hardware,
the technology is limited to tracking one target at a time, although the
military necessity for delivering high rates of fire power effectively upon
the enemy depends on simultaneous tracking of multiple targets.
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State-of-the-Art Trackers

The newly emerging state-of-the-art target trackers typically are of
a multimode, adaptive microprocessor-based technology. The SOA tracker typically
incorporates a variety of tracking methodologies in a multimode format. These
include various combinations of algorithms such as correlation, contrast,
edge detection, motion detection, coast mode clutter compensation, etc. Each
mode tracks well over a wide range of conditions, and each tends to fail
(to maintain track) under a specific set of conditions (i.e. low contrast,
high clutter, etc.). However, it is highly unusual for all modes to fail
simultaneously for a given condition. Multimode trackers maintain track better
than single mode trackers since we often ftnd that when the confidence level of
a given tracking mode is low, we can continue to track using another mode with
a high confidence level.

This beneficial state of interaction (synergism) is implemented by one of
two methods. In the earlier method, the tracker interacts with the operator
by warning him of impending breaklock, and the operator then selects a different
track mode. In the most recent trackers, a "controller" algorithm evaluates
the various tracking methodologies, assigns a measure of track confidence to
each mode, automatically selects the mode for tracking which yields the highest
confidence leval, and provides updated track information to the other algorithms.
This creates much greater synergism than is possible with a human "controller."
It is anticipated that the use of multimode algorithms will dramatically
decrease the frequency of breaklock.

The use of Large Scale Integration (LSI) hardware techniques in SOA trackers
permits a more optimal selection of tracker algorithms for realtime applications
and permits the incorporation of advanced multimode trackers in terminal
munitions and man-in-the-loop RPV scenarios. The use of microprocessor-based
technology permits fine tuning of algorithms for specific applications. This
is a tremendous improvement over !5ielded (bard-wired) trackers which are not
adaptable to improved algorithms without hardware modification.

SOA trackers have an adaptive gate which attempts to close about the target
and exclude the background. While this works fairly well with high contrast
targets, the adaptive gate experiences difficulties with low contrast targets
in high clutter areas. Another feature of SOA trackers is the coast mode clutter
compensation algorithm. This algorithm uses a priori velocity information to
coast the tracker through temporary occlusions (which usually causes break
lock) and to reacquire the target as it emerges. This method works well if
the target's velocity and direction of travel do not change while it is observed.
Unfortunately SOA trackers still encounter severe problems when. tracking in high
clutter environments. As an example, assume the tracked target moves into a
high clutter region. Perturbations in tracker confidence force the system into
a reacquisition mode. Coast mode c1utter compensation takes effect, and the
tracking gate widens in an attempt to reacquire the target. However, clutter
objects now enter the track window and significently influence the tracker
algorithms, often causing the system to lock onto a clutter object rather than
the true target. Additional factors which create problems for the algorithms
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include low target-to-background contrast, sun-to-horizon angle (shadows, glint),
target-sun aspect, background texture, etc.(1)

Some of the latest trackers being introduced have features not seen
previously. These include automatic acquisition of targets by use of algorithms
such as brightness or motion detection; tracking of two targets at a time, and
a limited aimpoint analysis capability due to delineration of target edges.
Even though they provide the best tracking schemes to date, multi-mode trackers
still lack the sophistication for application into fully autonomous terminal
munitions.

Military(2yplications for SOA trackers include the Femotely Piloted
Vehicle (RPV) ", The Advanced Attack Helicopter (AAH)( 3 1, and Lock-On-Before -

Launch munitions such as the Hellfire imaging tracker (TRASSID)( 4 ).

Advanced "Intelligent" Target Trackers

The Night Vision & Electro-Optics Laboratory is currently sponsoring
research for the development of an intelligent target tracker which will combine
target cuein2 and target tracking methodologies for near zero breaklock per-
formance. N A synergistic cuer/tracker combination is expected to lead
to the development of a fully autonomous tracker. This will allow, through the
use of VLSI/VqSI techniques, the intelligent target tracker (with inherent
target cuer) to be applied to the fully autonomous munition. The following
concepts and capabilities of the intelligent tracker are being explored:

Multiple Target Tracking

The intelligent tracker must be able to track many targets in the sensor
field of view simultaneously. Tracker/cuer synergism will allow the cuer to
continually inform the tracker of the location of all cued objects. The tiacker
will then update its memory to acknowledge the existence of a new target or
reconfirm the location of known targets. Preliminary investigation in this area
indicated the need for trade-off studies between the extremes of a super-fast
cuer cueing a relatively simple slow tracker; or a relatively slow cuer cueing
either a very fast, sophisticated tracker or alternately cueing many simpler
trackers, evch limited to trackiiLg a single target. One approach currently
under investigation by Westinghouse Corporation involves an auto cuel cueing
every fifth frame and a single band pass correlation tracker tracking multiple
targets simultaneously.(7) • Preliminary findings are very promising.

Realization of the multiple target tracking capability will permit multiple
target engagements in the ground-to-ground scenario and automatic Ripple Fire
and simultaneous multiple weapon fire engagements from the AAH/HELLFIRE and
RPV air-to-ground platforms.

Target Prioritization

Since the intelligent tra'ýker works in conjunction with a cuer, target
classification information for all cued objects is made available to the tracker
as feature information (c:ize, shape, range, etc.) is extracted from the sensed
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scene. Classification permits prioritization of all, the tracked multiple
tprgets based on a priori knowledge about target type and threat. This
capability will allow the tracker to always point to (and engage) the highest
threat target first in a multiple target scenario. It is important to
realize that target prioritization must be considered In conjunction with
threat assessment. For example, if the tracker is located in a tank, then an
enemy tank would be of higher priority than a SA-9 missile. The reverse
would be true if the tracker were in an RPV.

Critical Aimpoint Selection

Since the target has been classified and track information is available,
the intelligent tracker can point to the location of the most vulnerable point
of the target. Munitions deployment would be directed to that point since a
hit there would yield the highest probability of kill.

Autonomous Target Tracking

The intelligent tracker should track autonomously, automatically reacquiring
the target as need be, from the time of acquisition until time of completed
munitions deployment without any human intervention. A situation illustrating
the need for this capability is when targets entec, leave, and re-enter the
field of view (FOV) as happens in the RPV. In such a situation, it is very
important for the tracker to "remember" the characteristics of targets outside
the FOV, namely their priority, direction of travel, velocity and time since
leaving the FOV. Thus, after the highest priority target has been engaged, the
tracker would know approximately where to slew the sensor so as to acquire the
next highest priority target, even if it is now outside the FOV of the current
image.

One of the most promising methods under investigation for realizing the
autonomous tracking capability is the concept of "Signature Prediction".
Current tracker technologies consider only the background immediately surrounding
the target being tracked. This approach leads to frequent track loss as the
target moves into new background rEgions. The signature prediction algorithms
of the intelligent tracker will monitor a broad area around the target and thus
be able to predict the expected variation of the target's signature before it
enters the new background region. This advanced approach will allow the tracker
to track the target as it crosses the boundary between background regions.

Figure I depicts three scenarios which often lead to track loss. Case
A depicts a target leaving a region of uniform background and crossing into a
new background. In this case, the signature predictor must look ahead, place
the target in the new region, and predict the degraded image. Knowledge of
the background is essential since the predictor must be careful about perspective
(i.e. it must not place the tank on top of a tree). In cases BI and B2 portions
of the target are occluded by terrain features. The signature predictor must
anticipate that in the following frames it should expect to see only the front
of the tank, or the turret, etc. In case C, the target is almost completely
obscured and only isolated pixels of brigLtness can be seen. The predictor
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must be able to anticipate that it will be: tracking groups of isolated
pixels and continue to track the "targe:" as it moves through the trees.
NV&EOL has collected a target trackiug/homing data base which depicts all
three scenarios. It is being used for intelligent tracker development studies
and is available to interested parties.

Figure 2 is an illustration of how the signature predictor works. It
shows a typical scene in which the tracked target is leaving a scene of uniform
background (road) and moving into a high clutter area. The signature predictor,
looking ahead, notes the future background, "places" the target irto the future
background, determines the predicted signature, and updates the tracker of
the new "reference" to be expected in the next image. Hence, when the target
does indeed reach the new background, the tracker already knows the new
(degraded) reference signature, and adapts to prevent track loss.

It is important to realize that significant problem areas are encountered
in the signature prediction process. Chief among these are perspective (or
height) estimation (namely, the a priori knowledge which enables the tracker to
superimpose the target properly into its future background, i.e., under trees
and on top of bushes); proper compensation for targets undertaking evasive
maneuvers (rapid aspect changes); and, of course, the requirement for back-
ground segmentation and scene modeling.

Westinghouse Corporation has been investigating the Signature Prediction
Concept and has made some very interesting findings.( 7 )( 8 ) Among these, a
phenomenon known as "bridging" occurs frequently for TV imagery when a bright
object approaches a dark region. The pixels located between the bright object
and the dark boundary tend to change in intensity and "average" so that the
forward edges of the target merge into the background and the segmentation
process fails. It becomes essential for the signature predictor to "look
ahead" a distance 2-3 target widths in front of the targets in order to
establish a valid future reference image. Westinghouse found that tracking
the "rear edge" of a target in such a situation, coupled with a "change
detection" algorithm which establishes the original ooundary as a reference
image and looks for changes in future frames at that boundary, enables the
tracker to maintain track. Before the rear edge is lost, the tracker slides
forward to crack on the emerging forward edge.

It was also learned that even if the signature predictor fails 1.o predict
an obscuration (i.e. due to its inability to classify background regions) and
break lock occurs, it is often possible for the tracker to reacquire the
target rapidly by the use of change detection. This is done by looking for
changes in the signature predictors "reference" windows. Thus reacquisition
becomes possible even if only a portion of the target reappears In the clutter
region. Reacquisition occurs despite the fact that the target cannot be
segmented and cued.

The metamorphosis oi the tracker from its present state to its intelligent
counterpart can best be illustrated by the following example - A Tracker fo"r
the Ar)y's Renotely Piloted Vehicle (RPV).
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Presently Fielded Tracker - The present RPV tracker uses a contrast only
technique which suffers from frequent breaklock conditions. Breaklock occurs
not only due to the reasons mentioned earlier, but also due to wing occlusicn.
This occurs when the RPV is turning and the wing obscures a portion of the FOV.
There is no reacquisition capability in the tracker itself. The operator
has great difficulty in reacquiring the target. He must slew the sensor back
to the target. The data link contributes to the problem since the update
rate is slow, and the image is compressed and fuzzy. The data link is also
subject to enemy jamming which further interferes with reacquisition. Aimpoint
wander is a significant problem as the laser must be held steady on the target
until the precision guided munition (PG01) impacts. Current PGM's are extremely
sensitive to beam wander (aimpoint shift) on the target. Excessive aimpoint
wander greatly reduces the probability of kill.

State-of-the-Art Tracker - A SOA tracker for the RPV woulJ substantially improve
the system's performance by using several tracking modes in a synergistic
manner. The problems associatei with wing occlusion and subsequent breaklock
mentioned earlier will diminish due to the background (scene) correlation
algorithm. The SOA tzacker has an offset track capability and thus there
exists a limited aimpoinz selection capability. Since track loss should not
occur as frequently as in the present tracker, and since the operator will be
made aware of an impending breaklock situation, his ability to reacquire the
target as well as his ability to minimize aimpoint wander should improve
dramatically.. A coast made clutter compensation algorithm would also be
expected to reduae the frequency of breaklock.

Intelligent Tracker - An intelligent tracker working in conjunction with a
target cuer should reduce the operator's function to a monitoring operation
in most cases. As required, he might override the tracker's selection of
highest priority target with one of his choosing. In a case of extreme
jamming (when no video information can be received), it should be possible for
the tracker to send 4 short code to the operator: "I have a target of type T,
location X, Y." The operator knowing the RPV's location, could then make a
decision concerning the likelihood of it being an enemy target. If the
opcrator decided it was a valid target, he could have a POM fired towards the
vicinity of the target, and activate the laser. Meanwhile, the intelligent
tracker would be tracking the target, reacquiring autonomously as need be,
and maintain the laser at the target's optimal aimpoint. This process could
be continued indefinitely because cuer/tracker synergism would allow autonomous
acquisition and tracking of objects, classifying them, prioritizing them and
selecting an aimpoint for each target.
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TRACKER SCENARIOS

CASE A: TARGET LEAVING A REGION OF UNIFORM BACKGROUND INTO A NEW REGION:

ItI

CASE BJ: TARGET PARTLY OCCLUDED BY AN OBSTRUCTION:

- .-- . ..4i ,-" "ML "•d•LS J• •• • -.---.....

CASE B2: TARGET PARTLY OCCLUDED BY TERRAIN FEATURES:

CASE C: TAPGET ALMOST COMPLETELY OCCLUDED (ISOLATED AREAS VISIBLE):

Figure P Tricker Scenario(•s
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LIE THEORETIC METHODS IN VIDEO TRACKING

Thomas G. Newman and David A. Demus
Department of Mathematics

Texas Tech University
Lubbock, Texas 79409

ABSTRACT

Consider a 2-dimensional image in which objects are in motion
through trajectories describable by translation (both horizontal and
vertical), rotation, and magnification. The trajectory of such an object
can be completely described by a 4-vector of parameters X(t)-(Xl,X2 ,X 3 ,X4 )
which determine the velocities with respect to the four possible motions.
If the data at time t and position x in the view plane is written as
F(t,x), then we can show that

4

where X1 , X2 , X3 and X4 are certain (known) differential operators asso-
ciated with the group of motions.

The derivatives appearing above may be evaluated numerically at
various points in a given time slice to produce a system of linear
equations which may be solved for the motion parameters. Evaluation
at points within a moving rigid body leads to a vector of motion param-
eters unique to that particular body. In principle, at least, this
technique permits application to tracking as well as segmentation of
images based on relative motion of various objects.

The paper concludes by presenting the results of having implemented
the above method on digitized video images.

INTRODUCTION

A complex three dimensional scene may contain an arbitrary number
of objects, each of which is in nodion relative to a stationary background.
The trajectories of the various objects may or may not be the same. When
such a scene is projected on a viewing plane (for example, through the use
of a television camera), the various objects appear as moving regions which
vary in time in a complex fashion as a result of their actual trajectories
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in space. Variations due to certain trajectories, such as rotation about
a line parallel to the image plane, are not readily predictable. Pre-
viously unseen patches of the surface of an object may be brought into
view for the first time, while others may disappear. In addition, a
near object may pass between the camera and a distant object, occluding
all or part of the latter.

The situation is further complicated in case mobility is provided
at the camera. Motion of the camera results in an opposing change in
the apparent motion of all of the objects in the scene, including back-
ground. In many applications camera mobility is desirable or even
necessary. For inrtance, in tracking applications the motion of the
camera is required to stabilize a particular portion of the scene within
the viewing field. Although this may in general be impossible, as with
the rotating objects mentioned above, a fair degree of stabilization
with respect to position, size, an4 orientation can be achieved.

In the following sections we present a model for describing motion
in images which is valid in a large number of practical applications and
which is a reasonable approximation in mzny others. A novel feature is
that camera motion and relative motion of objects within a scene are
both described within the model.

THEORETICAL MODEL

Let G be a Lie group of transformations on an analytic manifold M.
Suppose G has dimension n while M has dimension m. Let x and y denote
the coordinates of elements f and g in G, respectively, in a patch con-
taining the identity element e of G. Also, let p denote coordinates of
an element u of M in some patch in M. We may then express the coordinates
z of the product h - fg and the coordinates q of the element v = gu,
relative to suitable patches, by means of analytic functions

z - J(x'y) (1)

q = K(y,p) (2)

K and J are vector-valued, having values in n-dimensional space Rn

or Cn and m-dimensiona! space Rm or Cm. Hereafter we shall assume that
these underlying spaces are real. We denote the ith component of J by
Jt and the Jth component of K by Kj.

In order to define the Lie algebra of G we first introduce real-
valued maps on G by

P (x) = -- (x-y),e (3)
aij yme
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where i and • each range from I to n. The cross-section P*j, which con-
sists of the Pij as i ranges from 1 to n, and j is fixed, may be thought
of as a vector Lield in 1n. Such a vector field attaches to a point x
the vector P*j(x). As such, P*IP*2 ,...,P*n form a basis for the tangent
space at the point x [1,2]. In view of the correspondence between elements
f in G and the coordinates in 1n, the tangent vectors are implicitly
attached to the elements of G.

In terms of the above vector fields we may express the infinitesimal
transformations of G by defining, for each j - 1,2,...,n,

n
Xj -il PiJ(X)J- (4)

The differential operators so defined are to be considered as linear
operators on the space of analytic functions on G, or, more generally, on
the space of differentiable functions on G. The Lie algebra of G is simply
the n-dimensional vector space consisting of all linear combinations of
these operators, and will be denoted by L(G) [2].

Now it is a surprising and useful fact that the Lie algebra of G
may be defined in terms of its actions on the manifold M. Analogous to
(3) we define

Qj(p) Z- •- (y,p) Il (5)

for a - 1,2,...,m and j = 1,2,...,n. Finally, as in (4) above we set

Xi (6)
:1 awl - a

The operators Xj,...,X• span a Lie algebra L'(G) which is also of dimension
n. Note that these operators act on functions defined on the manifold M.

Many interesting relationships may be shown to hold between the two
representations of the Lie algebra of C as given above. However, the
following property In of immediate interest to our application:

Theorem 1: Let f: !'+R be differentiable and define F: GXM-R, in terms
of coordinates by

F(x,p) - f(K(x,p)). (7)

Then for each j - 1,2,...,n we have

X F - X'F. (8)
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Proof: First we shall show that for each j - 1,2,...,n we have

XK - XjK. (9)

We note that from the action of G on M we obtain

K(J(x,y),p) - K(x,K(y,p)) (10)

for all x,y and p in suitable coordinate patches. Application of the
operator

to both sides of (10) gives

3K(J(x,y),p) (Xy) K(x,p)

a y y e k= i [ ' -ly=e 3 xk

n W 3 1XK (x,p)
k-1 Pkj(X 3xk f Xja~xP

for the left hand side and

3K (xK(yp)) m aK.(y,p) 3K (xp)

•Yj w -=1 •P
Sm U a (x,p)

SQiBJ(p p -ffiX (x,p)

8-1 3P8 c

on the right hand side. From this it follows that XjK - XIK as desired.
Now setting q = K(x,p) and performing a computation similar to that above,
we find thatI ID

Sj ZF(x,p) X K (x,p) •5qg-' a-i•q

and that

X'F(x,p) = , X'K (x,p) _..1
•i •3a-1 Jc 3 %q

The resti•i of the theorem follows immediately from this and our pre'Lminary
result.
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Now let us consider a curve t-g(t) in G satisfying g(0) e. In
terms of a coordinate patch at e, g(t) may be described by a curve x(t)
in Rn satisfying x(O) - 0. We shall consider the case in which x(t) is
given as the solution of an evolution equation of the form

n
c(t) =f • %i(t)FPi(x(t)), x(O) - 0, (11)

i~l

where P*1,... ,P*n are cross-sections of the array of functions given by
(3), and the control functions Al(t),...,Xn(t) are suitable continuous
functions. The latter are the parameters of motion, and have the char-
acteristics associated with velocity, thereby providing a basis for the
continuity assumption.

Now let p denote the coordinates of a point u in some coordinate

patch. For a differentiable map f: M* we may define H: RxM-*R by setting

H(t,p) = f(g(t)u). (12)

We recognize that H(t,p) - F(x(t),p) where F is the extension of f to
GXM as in Theorem 1 above. From the point of view of application, if we
regard f: M+R as an image, then H(t,p) represents the moving image obtained
by translation due to the curve g(t). We may now present our main result.

Theorem 2: In the context described above we have
S~n

T = X (t)X'H. (13)
i l

Proof: We have

n

nFx~p n -F

Y ( IX (OP (x(t))-xW ,p)=
J=l i-i i j

n

Y Ai(t)xip(x(t),P).

p17
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By Theorem 1 we have X F = X'F. But clearly X!F(x(t),p) = XiH(tp), so that

8Hn

as desired.

We should observe that the results above are presented as local
properties which hold in suitable neighborhoods and appear to be highly
coordinate dependent. As a matter of fact, though we shall not attempt
to prove it here, the underlying vector fields continue globally through-
out both G and M to give corresponding global analogues of these theorems.

The primary importance of Equation (13) lies in the fact that it
gives a linear equation in the control parameters X1,...,n with coeffi-
cients that are in principle observable, since the values H(t,p) constitute
the data.

In the next section this result will be applied to the problem of
tracking spatial objects through the use of two-dimensional projections.

APPLICATIONS TO VIDEO TRACKING

The control system for the Real-Time Videotheodolite (RTV) permits
four basic motions of the camera (3]. These are azimuth, elevation,
electronic rotation of the view plane, and lens zoom. When the effects
of these motions on the viewing plane are scrutinized, we see that they
correspond, respectively, to horizontal translation, vertical translation,
rotation, and magnification - at least to a satisfactory degree of approx-
imation. Moreover, inspection of a number of real images reveals that a
surprisingly large number (but not all) motions of spatial objects, when
projected on the viewing plane, are likewise well approximated by these
four motions in the plane.

Thus with only a mild apology we restrict our attention in what
follows to the group G generated by horizontal and vertical translations,
rotation, and magnification. The corresponding generators for the Lie
algebra of G are as follows:

Sx -(14a)

X2  - y (14b)

X 3 X'y-) YX (14c)

Sx4 (14d)
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In these equations we are using x and y as coordinates in the view plane
M =RxR and have represented the infinitesimal transformations as they
act on M.

Let us note that in the theorems of the previous section it was
assumed that the trajectories of all of the points of M were derived
from the same evolution equations. However, for complex scenes we find
that various objects may be present which have different trajectories.
A little reflection reveals, nevertheless, that the conclusions of Theorem
2 remains valid as long as we avoid the boundaries between objects or
regions having different trajectories. In the present context, we may
paraphrase the results of Theorem 2 as follows:

Theorem 3: Let H(t,x,y) be a time varying two dimensional image. Within
the interior of each object in the image which is moving along a G-
trajectory, we have

DH 4
at ; itWx i H, (15)

where X1.... ,14 are continuous functions and Xl,...,X4 are given in (14).

Upon evaluation of the various derivatives appearing in (15) at
each point of a suitable grid, within a given time slice, we obtain a
system of linear equations which may be solved for the parameters of
motion, 1 ,...,A 4 . In the example to be presented, a 3 x 3 grid was used.

A sequence of digitized video images showing the launch of a Hawk
missile were obtained from the U.S. Army White Sands Missile Range. The
images were trimmed to 128 x 128 pixels from full frame interlaced video
in which each raster line was sampled 512 times.

One of the frames is shown in the upper left of the illustration
below. Of noteworthy interest, we mention the "cold plume" region (lower
left) which can be seen billowing out behind the missile. Although hardly
discernible, the foreground contains several buildings and other ground
clutter.

By evaluation of Equation (15) at each point of a 3 x 3 neighborhood
of each pixel, nine equations in the four parameters Xi,...,X4 were obtained.
In the upper right frame of the illustration, we see the results of scaling
the horizontal translation component, Xl for display. The effect of image
noise and truncation error is apparent from the rapid transition from
white to black in this view. This component of the velocity profile was
passed through a median filter to obtain the image shown in the lower
left of the illustcation. Finally, in the lower right we see the results
of thresholding, about X1 = 0. In this image the dark region indicates
points which are at rest relative to the camera (which was apparently
successfully tracking the missile), while the white regions appear to be
moving with respect to the camera.
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It is interesting to note that the cold region of the plune has
been correctly classified with the background, while the hot region ofSthe plume appears to be moving witi' the missile.

Figure 1. Processing the launch of a Hawk missile.

Similar results were obtained with other parameters and with other
images. These results are encouraging, although the numerical methods
employed are clearly too susceptible to noise and truncation. Better
computational procedures are being explored, including one technique
which Is based on int'ýgration rather than differentiation.

SUMMARY AND CoNCLUSIONS

We have developed a fundamental equation satisfied by moving images
which uses Lie theory to determine the trajectories of various objects
within an image. The theory has been implemented on real data with some
success. While the implementation suffers from the effects of random
noise arnd truncation errors, the results obtained have shown sufficient
success as to be encouraging. We feel that the computations can be
greatly improved by the incorporation of better numerical methods.
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ABSTRACT

The Advanced Infrared Imaging Seeker (AI2 S) Multimode Tracker was
developed to meet fire-and-forget missile guidance requirements
of the U. S. Army. Tracking algorithirs were initially developed
and simulated on an image processing general purpose computer
facility. A multimode tracker organization was selected to combine
correlation, contrast and moving target algorithms weighted for
optimum guidance correction. A multi-microprocessor architecture
was developed to implement the tracker algorithms. A Z80 Executive
processor controls tracker operation, directing higher-speed AMD
2900 input and algorithm processors. Firmware was developed and
integrated with the microprocessor hardware using two laboratory
development systems and a Nova minicomputer for interface simulation.
A flyable bvassboard implementation is currently undergoing evalu-
ation tests and will later be repackaged to meet missile constraints.

1. Introduction

2
The AI S multimode tracker was developed in Rockwell's Electronics Research

Center for the Advanced Infrared Imaging Seeker program. This is a Pophisti-
cated new seeker system incorporating advances in IR detectors, CCD processors,
tracking algorithms and microprocessor technology to meet fire-a . 1 --forget
missile guidance requirements of the U. S. Army.

The focal plane array is made up of a 32x32 IR sensor whose detectors "c
directly connected to cells of a CCD integrating and multiplexer chip. A serial
readout of detector samples is compensated and provided Lo the tracker at a 60-
frame per second rate. The tracker function is to process this data and ideni i fy
the current position of a target acquired before launch to generate- in-flight
missile guidtice corrections.

A multimode tracker approach was selected to meet tracking requirements.
Complementary tracking modes each contribute to a best estimate decisioni deernined by a controlling Executive. The tracking modes include correlation,
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a high-performance contrast algorithm (t-statistic), moving target, and momentum.
Each mode independently generates a best estimate of target position and confi-
dence from which the Executive computes a weighted mean. The Executive will
monitor the performance level of each mode and reset any mode whose performance
indicates a loss of track.

The tracker has been implemented in a mul ti-microprocessor architecture
designed for high-speed complex operations, Tiis is a flexible and modularly
expandable architecture employing multiple algorithm processors which execute
computational tasks scheduled and assigned by a controlling Executive processor.
The Executive processor is a conventional 8-bit fixed format microprocessor (Z80)
capable of performing general control and decision-making functions. Higher
speed bit-slice microprocessors (AMD 2900) are used for tracker algorithm com-
putations wid image input handling.

The AI2 S system has been fabricated as a flyable brassboard which is currently
undergoing field test and evaluation. Repackaging studies have established the
practicality of reducing this design to meet missile space and power requirements.
The following sections will describe the tracker algorithm development, multi-
microprocessor architecture, hardware design, and firmware implementation of the
al gorithms.

2. Algorithm Development and Software Simulation

The multimode tracker i'unction is to provide gimbal pointing and flight con-
trol for a lock-on before launch missile system. The initial inputs to the
tracker are the approximate left, right, top and bottom coordinates of the target
as seen on the operator's viewing screen. These data points are transformed into
the approximate target position and size coordinates within the focal plane of the
IR sensor which is providing images to the tracker.

The primary sensor characteristics which have affected the tracker algorithm
design are outlined in Table I. The rather small 32x32 image and overall ho

TABLE 1

IR Sensor Characteristics

Array Size 32x32 pixels
Field of View 8 mradians (%0)
Spectral Region 3-.4 im
Lock-on Range 7000 meters
finimum Tracking Range 100 meters
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field of view eased the low-level algorithm computational requirements somewhat,
but also introduced some high level tracking complications. The tracker was
required to track from a range of greater than seven kilometers down to a mini-
mum tracking distance of 100 meters. At 100 meters the target angular dis-
placement will greatly exceed the ½h sensor field of view while at greater range
the target minimum dimensions may be as small as two pixels. The trvLcking algo-
rithms must adapt to these widely varying flight phases. In addition, the
tracker must handle times of partial or full target occlusion, close proximity
of stationary target-like objects near the tracked target, and loss of contrast
due to dust, fog or smoke at different times during the missile's flight. These
prerequisites steered the algorithm design toward an executive controlled multi-
mode approach which was capable of dynamically modifying tracker f'nctions.

The three modes which resulted from the tracker development are: correlation,
t-statistic (contrast), and moving target. A functional block diagram of the
Smultimode configuration is shown in Figure 1.

ETRACKER 

['

--*TARGET CENTER

CORRELATION
TRACKER H

SEXEUTIVE - TARGET SIZE

uwzMX~ ANALOG MOVING
IMAGE To PHIPROCESOR TARGET

1O6I1AL TRACKER

-- -- AND an 3UTPI

Figure 1 Multi-Mode Tracker Functional Block Diagam
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The correlation subtracker utilizes a reference image and the current input
image, and performs amodified correlation between the displaced input video
and the reference pattern. The correlation or matching is done throughout a
window surrounding the last known target position and size obtained from the
Executive. The match metric is the mean difference squared between correspond-
ing pixels and is limited to minimize the effects of high impulse type, non-
Gaussian noise. An additional function of the correlation subtracker is to
evaluate its own performance and to provide an estimate of its confidence
level to the Executive by comparing the score at the position of tC.e best match
with the scores for the surrounding positions.

The t-statistic subtracker finds an object within an extended window
around the previous target location whose pixels have the highest probability
of coming from a different distribution than that of the neighboring background
pixels. A measure of the intensity difference between the potential target and
background areas is provided by the t-statistic.

t=-- Mt -Mb

N tS b2 +NbSt2
t J t~b +NbSt2 1+

N t+ N b- 2 i Nb')

where M = mean of target

Mb = mean of background

St = standard deviation of target

Sb = standard deviation of background

Nt = number of pixels in target

Nb = number of pixels in background

A t-statistic is calculated for each potential target position. In contrast
with the correlation subtracker, the t-statistic subtracker also determines
the target size during each frame time, allowing for natural target growth as
well as possible decreases in size due to aspect change. Although theoretically
suited for Gaussian distribution of equal variance, the t-statistic is robust in
the statistical sense and has proven very effective in its practical application.

The third tracker mode is the moving target subtracker which utilizes delayed
video to generate relative motion signals between the background and the target.
This is accomplished by means of a background correlator which performs the best
match function between a delayed frane and the current frame over areas known not
to contain the target. The previous irame is displaced the indicated amount and
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the magnitude of the difference between the delayed and current image is computed.
This difference image is time integrated with previous such images resulting in
an image in which fixed objects appear dark and moving objects have a brightness
relative to the shape of their spatial autocorrelation function. A thresholding
contrast algorithm is applied to the final image to detect the position and size
of moving objects. The degree of contrast, as measured by the chosen threshold's
percentile level in the local intensity distribution, serves as the moving target
tracker's confidence level returned to the Executive.

The Executive assimilates the outputs from each of the three tracking modes
to provide a best estimate of the actual target position and size. In addition,
the Executive maintains its own estimate of target position and size based on
filtered past position and velocity data. The Executive monitors performance of
the three modes using its oem estimates and the returned confidence levels to
determine if an individual subtracker should be reset. Also, in the terminal mode
of missile flight the target size will exceed the sensor field of view. The
Executive must detect this condition and switch to a correlation only mode.

General purpose computer simulations, in floating point software, used IF
image sequences provided by Night Vision Laboratories for the majority of algo-
rithm development. Extensive testing of the tracking algorithms was also con-
ducted with various degrees of noise added to the sequences to aid in algorithm
evaluation. A typical simulation sequence is shown in Figure 2. All floating
point computations were later converted to integer arithmetic to verify per-
formance in a fixed word size microprocessor implementation.

1.79
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3. Multi-Microprocessor Architecture and Hardware Design

The mn itimode tracker algorithms developed to meet AI S mission requirements
are quite sophisticated and require considerable processing power for real-time
implementation. A programmable processor approach was selected for the obvious
reasons of flexibility in algorithm refinement and modification, later addition
of new functions, and the long term reduction of hardware development and
maintenance costs. An implementation study was initiated early in the AI 2 S pro-

gram to review all microprocessor technologies (NMOS, CMOS, 1 2 L, S•TTI,, and ECL)
and formats (8-bit, 16-bit, and bit-slice ).

From this review, it became quite apparent that the tracker would have to be
implemented in a multiprocessor configuration to execute all algorithms in real
time. The widely accepted 8-bit fixed format microprocessor families could be
effectively applied to executive and control functions, but could not perform
tracker algorithm computations at the required speeds. Newer 16-bit fixed format
microprocessors offer some performance gain over the 8-bit versions, but still
not enough to implement tracking algorithms. Speciae support circuits to assist
a fixed format microprocessor in frequently executed operations could be used,
but would be very special purpose and qaite complex to be really effective.

The bit-slice format microprocessor devices offer considerably more signal
processing potential. These devices operate at, higher clock rates and can be
cascaded for required data precision. The instruction format cf a slice processor
has many more bits directly controlling processor and sequencer logic, in contrast
to the limited number of bits in a fixed format processor instruction. This hori-
zontal expansion of the slice processor instruction format provides for direct
control of multiple functions enabling concurrent operations which would require
multiple steps in a fixed format processor. Each clock cycle in a slice processor
is a microinstruction cycle, while the fixed format processor will require
several clocks to execute a single instruction. Real-time signal processing capa-
"bility of the slice devices is about an order of magnitude above the fixed format
devices.

The multi-microprocessor architecture developed for tracker implementation,
shown in Figure 3, is divided into an Executive control processor and high-speed
algorithm and input processors. The Executive is a conventional 8-bit fixed
format Z80 microprocessor capable of performing general control and decision
making functions, while higher-speed AMD 2900 bit-slice microprocessors are used
for actual tracker algorithm computations and input image handling. All control
interfaces are through the Executive while the input and algorithm processors
interface directly with image data. A common data memory holds current and past
image frames, and is shared by the two algorithm processors. A two-phase clock-
ing scheme divides memory cycles between the two processors providing direct
access for each.
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Figure 3. Tracker Multi-Microprocessor Architecture

The Executive processor is interfaced to the three-slice processors through
high-speed bidirectional FIFO buffers. This organization enables a higher degree
of overlap between the asynchronous processors. The Executive can queue up task
assignments for the slice processors in the FIFO interfaces while the slice
processors are still executing their previous assignments. A non-buffered inter-
face would slow the high-speed slice processors down to the Executive rate during
interface transfers resulting in inefficient utilization. All interfaces to the
Executive are through standard Z80 parallel I/0 Controllers (PIO's) using port A
for bidirectional data transfers and port B for control.

The algorithm processor organization, shown in Figure 4, consists of a
program sequence controller, processing logic, data memory and interface control
circuits. The input processor is quite similar except for data word size, data
memory interfaces, and special processing functions. The program sequence con-
troller consists of an AMD 2910 controller device, a test condition input multi-
plexer, a PROM memory for program, storage, and a pipeline register for instruction
buffering. The AMD 2910 is a sophisticated LSI device which is programmed to
generate a 12-bit program memory next-instruction-address. The device contains a
microprogram counter, five-word-deep LIFO stack, loop counter or address register,
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Figure 4. Algorithrtl Processor Organizaion

and a multiplexer for next-instruction-address selection. The AMD 2910 can be
programmed to execute 16 sequence-control instructions providing sequential
access, conditional branching to any location within a 4096 microword range,
and subroutine return linkage and looping capability. The last-in first-out (LIFO)
stack will accommodate up to five levels of subroutine nesting.

The test multiplexer can be programmed to select one of 14 possible test
inputs (vaxious status and interface control signals) for conditional branch
instructions. The test polarity can be either true or false, and the address
will control the program memory next-microinstruction access. The micro-
instruction is stored in a pipeline (instruction) register to enable overlap
between instruction execution and access cycles. This pipeline technique
reduces maximum path propagation delays, allowing a much faster instruction
cycle. The algorithm and input processor instruction formats, shown in Figure 5
are 96-bits wide including 8-bits for expansion. Storage is provided for up to
2k instructions.
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The processing logic is based on the AMD 2901A microprocessor slice. This

device is a h-bit wide ALU and storage-register slice which can be cascaded
for any data-word size. The device contains an 8-function arithmetic logic
unit (ALU), 16-uord two-port RAM register file with shifter, an additional
storage register (Q) with shifter, and associated decoding and multiplexing
circuitry. The AMD 2901A can be programmed to select two of five data sources

to the ALU, one of eight ALU functions, and data storage in the RAM or Q-register
with or without shifting. A complete read from RAM, modify in ALU and shifter,
and write back to RAM can be executed in one clock cycle. Data can be enabled
onto the output bus from either the ALU or directly from the RAM register file.

The ALU and register file section is assembled from six AMD 2901A slice
devices (three in the input processor) with supporting multiplexers to control
external inputs on data left or right shifts. The RAM and Q-shifters are inter-
connected to facililatu double-precision shifts and accumulations. This is
particularly useful in accumulate-and-shift algorithms used during multiply or
divide operations. Data scaling and power-of-two multiply operations also
benefit from this configuration. Other support circuits provide programmed
selection of the AIU carry input (for increment, two's complement and round-off
operations), and a storage register for ALU status bits.
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Additional processing functions can be easily implemented using standard
microprocessor support devices. Special-function logic is provided to facilitate
key algorithm computations which are not efficiently executed in the basic ALU
and register file. A 1k x 16-bit lookup table PROM is provided as a special
function in the two algorithm processors. The PROM is divided into two 512-word
sections, each addressed by a 9--bit data word. One section of this PROM is used
for a table of squares to support correlation and t-statistic subtracker com-
putations. The PROM output is loaded into a pipeline register to allow overlap
between access and other ALU operations. The PROM address input can be either from
the ALU output bus or from the data memory output register, providing another
level of pipeline overlap. This configuration along with data memory address-
control logic, is essential for correlation and t-statistic subtracker real-time
computations. The least mean square correlator operation of taking the difference
between two corresponding pixels, squaring and accumulating can be programmed
into a three-instruction loop. The basic mean and variance operations of
accumulating pixel amplitudes and their squares can be progranmmed into a two-

instruction loop.

A power-of-two fast scaling circuit is provided as a special function in the
input processor. A multiplexer array can be programmed for scale factors of2-1, -2-3 2-

2,2-2, 2 , or 24. This is an essential function to enable real--time image

input gain correction.

Input image picture elements (pixels) are stored in the common data memory.
Both algorithm processors share memory cycles in a two-phase clocking scheme
with no reduction in either processor's speed. The input processor has a
lower priority due to its less frequent need for memory cycles, and therefore,
operates on a cycle-available basis. The input processor has a smaller dedicated
working RAM (4k word), and only requires data memory cycles when new pixels are
ready to be stored. The two algorithm processors each have data memory address
and data output pipeline registers to provide for maximum overlap.

A special data memory pixel-indexing-unit (PIU) is provided to facilitate
algorithm stepping through rectangular target areas in the image field of view.
The PIU maps two-dimensional target pixel positions to data memory addresses.
The PIU can be programmed to step through a desired portion of each image line
(i.e., from left boundary to right boundary), and to generate an end-of-line flag
at the end of each line. The algorithm processor software can then enter
a tight program loop to load image pixels across each line, breaking out of the
loop only at the end of each line to index the column pointer. The PIU can
also be used in an automatic mode where both row and column pointers are auto-
matically indexed, and an end-of-column flag is generated at the end of the last
line. The PIU can also be programmed to generate data memory addresses for
target positions displaced from a reference position in correlation computations.
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The tracker multi-microprocessor architecture has been reduced to a brass-
board assembly for field test and evaluation of the AT 2 S system. Conservative
"design practices have provided for reserve program and data memory, data
precision and general flexibility to allow for system growth. The brassboard
hardware assembly, shown in Figure 6, is packaged in a 7-inch high standard
rack-mountable enclosure. The logic is assembled on three wir3wrap planes
functionally partitioned to simplify modular growth. Standard connections for
all Executive interfaces allow for the interchanging or addition of slice
processors. A front panel includes indicator lamps to display tracker function-
al status (active modes) and failure alarms. Repackaginc studies have esta-
blished the feasibility of meeting tactical missile space and power requirements
using LSI and hybrid techniques.

A.b

Figure 6. Tracker Brassboard Assembly
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4. Firmware Implementation

2
The AI S tracker simulation produced an algorit'hm which was naturally

suited to parallel processing. Ideally, an individual processor would be
dedicated to each of the three modes - t-statistic, correlation and moving
target. An Executive processor could then accept inputs from each mode and
determine the final tracker output weighted by the confidence levels that
the modes provide. An additional processor would handle image input and any
global preprocessing that is necessary. There are, however, several factors
which nPka this less than an optimal design and, in fact, incapable of per-
forming some of the required calculations.

First, the three tracker modes all make different CPU demands upon the
processor and so require differunt amounts of CPU time. The calculation
time is also a complex function of the target size. Thus, at one stage of
the tracker operation a particular mode may require only one-fourth of the
computation time available from a single dedicated processor during an image
frame. Three-fourths of the processor time would be unused. Also, the
situation frequently ariseý. when a particular mode requires the capabilities
of more than one processor during a frame time.

For these reasons, the AI2S tracker algorithm processors were not viewed
as being dedicated to one particular mode, but rather were seen as resources
on whici the Executive could draw for extended, high-speed calculations. Each
processor must be capable of performing any requested task on file. Thus,
with the exception of data memory biases, the algorithm processor programs are
identical. With this configuration, the Executive might request processor
number 1 to perform a search for the new target posiuion of one size, and at
the saiie time request processor number 2 to perform the search using another
projected size. In this way, the Executive ca,,i devote all of the available
processor time to one particular type calculation if the situation, e.g., lcss
of track, merits it. Also, with this viewpoint, one is unrestricted in
specifying the actual number of high-speed algorithm processors that are pro-
vided in hardware. Of vourse, . sophisticated Executive structure is required
to handle the multiple, parallel processing tasks. What has resulted is, in
fact, a software Executive program which has many characteristics of general
purpose computer operating systems.

The Z80 Executive program's function is to divide the tracker operations
into distinct computing tasks, allocate -these tasks to available algorithm
processors, accept +he task results, and assimilate the results to provide
flight control comr-nds. To organize the tasks that must be completed during
the 1/60th of a second frame time and to monitor their status, the Executive
maintains a tasl" table shown in Figure 7. The task table is formed by calls
to a task manager which queues tasks into the table. Each time that a task is
queued, the t.isk manager program checks to see if any algorithm processor is
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idle or if its input first-in-first-out (FIFO) memory buffer is empty. If so,

the task message consisting of from 3 to 16 bytes is loaded into the FIFO and

a "task ready" control bit is set. When the bit slice processor is in its -dle

loop, it will monitor the "task ready" bit, read the task from the FIFO whe-, it

is raised, execute the designated task, place an output message consisting of

2 to 16 bytes into the output FIFO, and signal the Executive by setting a "task

done" bit. The setting of this bit interrupts the Executive. Processing of the

outp.t data continues in a completion routine which was designated for the task

at q:peirg time. The status of any task handed to the task manager is also con-

tained in the task table and may be: (i) ready to start in an available processor,

(2) started in a processor but not yet complete, or (3) completed. Note that a

task which has been started may actually be in the input FIFO awaiting bit slice

processor attention, or may currently be in the execution phase, or may be in

the output FIFO %waiting the Z80 Executive's attention.

PROCESSOR NO. 1 P~ROERNO.1

O 0L -*IJ

STATUS TASK TASK TAULE

TABLE lB.

COMPLETE 3 OUTPUT INPUT COMWLETIONMESAGE MESSAGE IROUTINE

S2 • )OU'TPUT INPUT COMPLETIONMESSAGE MESSAGE ROUTINE----- 4 |

Tt 2 OUTPUT INPUT COMPLETION

MESSAGE I MESSAGE ROUTINE

S 2 OUTPUT I INPUT COMPLETION
MESSAGE MESSAGE ROUTINE

PA RTEDOUTPUT I NPUT COMPLETION
MESSAGE I MESSAGE I ROUTINE

2 OUTPUT I INPUT I COMPLETION
MESSAGE I MESSAGE I ROUTINE

READY 111
TO START -I UTPUT I INPUT I COPl

MESSAGE I MESSAGE I RoUTN

Figure 7. Executive Multi-Tasking Table
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The format of a typical task is illustrated in Figure 8. A byte countcontaining the number of bytes remaining in the message is followed by atask ID, program number and from 0 to 13 data bytes. The task ID identifiesthe task and its location in the task table. The task ID is echoed by thealgorithm processor when he supplies task results to the Executive. Aprogram number indicates which task that the algorithm processor is to perform,0e.g., zero an image slot, correlate two image sections, etc.

Z80 TO BIT SLICE BIT SLICE TO Z80
BYTE COUNT 

BYTE COUNT

LiiiTASK ID [.] TASK ID
Eli PROGRAM NUMBER [I A X OUTPUT

Li" i REFERENCE IMAGE NUMBER L A y OUTPUT7- CURRENT IMAGE NUMBER 
CONFIDENCE LEVEL

LIZ LEFT RECTANGLE COORDINATE

Syj TOP RECTANGLE COORDINATE

RECTANGLE X DIMENSION

LI] RECTANGLE Y DIMENSION

S[_i ZERO I ACCUMULATE INDICATOR

Figure 8. Typical Task Message
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As mentioned above, the Z80 Executive is interrupted by the bit slice
processor when it completes a task. After the task manager has initiated any
further tasks which have been queued, and has executed the completion routine,
the Executive returns to queue other tasks and then begins his own target
position estimates. When all tasks have been completed and the Executive has
assimilated the output, he enters an idle loop awaiting thu next image. One
of the tasks that the Executive queued to the input processor indicated where
the next image was to be located in RAAM as well as if bias and/or gain
parameters should be updated. The notification that a new image is in and
ready to be processed is indicated in the same way that any other "task done"
signal is made, i.e., the Executive is interrupted. Since the image source
is externally timed, the tracker firmware was, in effect, independent of frame

time. This proved useful during hardware and software checkout when images
were provided at a reduced frame rate.

A Data General Nova 840 minicomputer was used to simulate the imaging
sensor interfaces during tracker development and test. The same images used
in the earlier Fortran level algorithm simulations were used for firmware
checkout resulting in a significant time-saving. The Nova 840 also provided
complete peripheral support to two microprocessor development systems and
operator control for test runs. The firmware development and tracker test
configuration is shown in Figure 9.

HMGM SPEED LINK T0

VAX 11fn. WMAGE LAS
OFF-LINE 4-CRT

S~PERIPHERAL
INTE RFACE ~ (Ill

SPGMIR

IC

_IN

Figre .Firmware Development/Test Cofgrtn

so8 INTERFACES pOC JOC POC 1

A " ONSWULATION
aPT:PnE/ ANDCLOCK CONRrOL

S~PERIPHERAL
INTERFACE M YT2

PADS

Figure 9. Firmware Development/Test Configuration
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A Tektronix 8002 microprocessor development system was used for Z80
Executive firmware development, and a Advanced Micro Devices System 29 was
used for algorithm and input proceLsor firmware development. Both systems
were used extensively for firmware development and integration into the
tracker multi-microprocessor configuration.

5. Conclusions

The A 2S multimode tracker has passed initial real target ground tests
and will soon be flight-tested. The capabilities of the tracker hardware,
however, have only been partially utilized. The tracker software implements
a lock-on before launch algorithm which in current research is now serving
as the tail-end processor for automatic target detection and acquisition
algorithms. The modular hardware and software design will allow the intro-
duction of additional number-crunching algcrithm processors to meet the demands
of detection, feature extraction and classification in addition to tracking of
multiple targets with larger detector arrays. In addition to serving as an
invaluable real-time algorithm development tool, LSI arid hybrid packaging
techniques promise a very smal. volume, low power, and inexpensive imple-
mentation of the multimode tracker hardware.
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HYBRID CORRJHATION ALGORIZak4S--A BRIDGE BETWEEN
FEATURE MATCHING AND IMAGE CORRELATION

Joseph A. Ratkovic
The Rand Corporation

Santa Monica, CA 90406

ABSTRACT

Up to the present time there have been two basic classes of map
matching algorithms--those based on feature matching techniques and
those based on image correlation. This paper describes a new class
of hybrid correlation algorithms which incorporate features as an
integral part of the matching process. These algorithms can be im-
plemented such that it is not necessary to extract features from the
sensed image. This paper concludes by showing the domains in which
each class of matching algorithm (feature matching, image correlation,
and hybrid algorithm) is most appropriate.

INTRODUCTION

The map matching problem has been in search of an "optimal uni-
versal" matching algorithm since its inception. Because of difficulty
in (1) defining a performance criteria for both accuracy and proba-
bility of correct match, and (2) in knowing a priori the distributions
associated with all map errors, most researchers have resorted to the
use of "ad hoc" algorithms. These have generally been divided into
two classes--feature matching and correlation.

The image matching problem, as shown in Fig. 1, is a two-phase
problem. In phase 1, the acquisition phase, one is concerned with
locating, somewhat grossly, the area in which the match point is cen-
tered and avoiding false matches. In phase 2, one is concerned with
refining the accairacy with which the match location can be determined.
In general, no one algorithm can possibly be suited for solving both
the acquisition and accuracy problems, and it is probably necessary to
develop algorithms separately for each phase of the problem.

The overall matching problem, shown in Fig. 2, involves four
major components: (1) error sources, (2) the scene, (3) preprocessing,
and (4) matching algorithms. Before discussing algorithms and de-
scribing some algorithm techniques, it is necessary (to provide back-
ground for the algorithm discussion which follows) to briefly describe
scenes, errors, and preprocessing.
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The Scene--Its Composition

The scene is the most complex component of the map matching
problem and the most difficult to model. In the discussion that
follows we shall Bxamine the question of "scene composition" (rela-
tive to both a visual and statistical representation of a scene),
and methods for decomposing the scene.

Scenes can be described in the visual domain by the eyeball
process as being composed of a set of features. Let us consider as
an illustrative example the simple scene shown in Fig. 3. Here, for
example, the window feature consists of a set of four panes enclosed
by a frame.

House

Window

Door

Fig. 3-Example of features consisting of a
set of homogeneous regions

In dealing with actual sensor data, picture elements (pixels)
are described by a set of intensity values, as indicated in the agri-
cultural scene of Fig. 4. In dealing with intensity values, there
are regions in the scene which can be considered analogous to features
in the visual domain. These are homogeneous regions within the scene.
We shall define a homogeneous region to be a set of spatially connected
pixels or elements which possess the statistical property of at least
first-order stationarity and possibly second-order stationarity** and
will assume that homogeneous regions are equivalent to features (as a
feature can be defined by a single homogeneous region or a set of homo-
geneous regions).

In Fig. 4 we have identified four homogeneous regions and tagged
each pixel (indicated at the bottom portion of the figure) as belong-
ing to one of the four regions. Examining each region ue see that the

Mean intensity level constant over the region.

Mean and variance constant and the autocorrelation independent
of position.j 195
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intensity value of a given pixel does not vary significantly from the
mean value and that there are distinct boundaries (defined by differ-
ences in the mean intensity level) between regions.

1hus far we have shown that scenes are composed of homogeneous
regions which may be considered equivalent to features. From a phys-
ical standpoint homogeneous regions are areas in which the signature
(emissivity for visual and IR, reflectivity for radar, and altitude
for terrain contours) is expected to remain fairly uniform, e.g., a
grassy field in which all the elements in the region are expected to
have the same mean value but this mean value may change as a function
of time.

Having established that a scene is composed of homogeneous re-
gions, is there a further subdivision by which we can characterize
homogeneous regions? Returning to Fig. 4 we see that there are small
variations in the intensity level within a homogeneous region. Some
of this variation can be attributed to sensor noise but, neglecting
this possibility for the moment, one can consider the variation to be
due to some perturbation in the signature of the region. For instance,
one can consider the grassy field not to be uniform, but instead to
have a few fallen tree trunks and shrubs dispersed within it. If the
ground resolution of the sensor is of the same magnitude as the size
of the shrubs and tree trunks, then we would expect variations in the.
intensity level of the grassy region due to these objects, presuming,
of course, that the signature of the objects was different from the
grass at the wavelength of the sensor. Thus, we can further catego-
rize a homogeneous region in the physical domain by the number of
objects which contribute to a signature variation, and in the statis-
tical domain by the number of statistically independent elements
which comprise the region.

The "scene resolution" provides a useful concept in analyzing
the statistical variation of a regirn. We shall define the "scene
resolution" as the number of sensor resolution elements or pixels
required to make up one independent element in the scene. If there
are N pixels within a homogeneous region and NJ independent scene
elements (NI n N) then the average "scene resolution" for the region
would be given by NiNI. Returning to the grassy field example, if

,

Statistical independence is different from the property of
homogeneity. For instance, one can generate a completely random map
from a single distribution which will have the property of homogeneity
but will also have all -he elements independent. One can imagine a
homogeneous region containing a number of independent elements, e.g.,
a desert area in which the shrub patterns (depending on resolution)
constitute the independent elements. It is a difficult procedure to
test for and locate independent elements in a scene. Reference 1
describes a short-cut method for estimating this parameter by working
backwards from the statistics of the correlation surface and assuming
a homogeneous scene with all elements being independent.
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the field were completely uniform with no variations in intensity
level, then it could be considered to contain only one independent
scene element and the scene resolution uiould be given by the total
number of sensor elements in the region, N. In this particular case
one could not expect to resolve any features within the region due
to the uniformity of the region; thus the scene resolution equals
the size of the region (in terms of sensor elements). If, on the
other hand, there had been a number of objects (with different sig.-
natures) such as tree trunks and shrubs within the grassy region,
then we would expect the region to be statistically represented by
sev~eral independent scene elements. It should be noted also that if
the resolution of the sensor were to increase to the point that
dimensions of objects within the grassy field were to cover several
sensor resolution elements, then these objects would be considered
homogeneous regions in themselves. If the resolution were to in-
crease further, then areas within the objects (e.g., moss on the
fallen tree trunks) would eventually become homogeneous regions and
the process of identifying homogeneous regions could continue ad
infinitum.

At this point we see that for a given sensor resolution it is
possible to statistically describe a scene as being comosed of a
set of homogeneous regions with each region being described by a
number of statistically independent elements.

Structuring the Errors

There are a number of error sources that affect the performance
of the system. It would be desirable to lump these errors into ge-
neric categories in discussing system performance rather than treat-
ing each error source separately. Such a generic categorization
should possess the following properties:

1. The error categories should be mutually exclusive.

2. They should be comprehensive.

3. There should be a positive relationship between the
category and a specific preprocessing technique or
correlation algorithm to accommodate all errors in
that category.

Based on the types of errors that occur in the map matching
process and the statistical description of the scene, the following
generic categories of errors are proposed:

1. Global Errors--those errors which uniformly affect the
Intensity level of all scene elements equally. In this
category the following errors would generally fit:

* geometric distortions

* bias and gain changes
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2. Regional Errors--those errors where the change in the
intensity levels occurs uniformly only within homo-
geneous regions or features within the scene. Exam-
ples would be:

• region level shifts (contract reversals)

* predictive coding errors

3. Local Errors--in this situation the errors are expected
to affect each pixel or grouping of pixels (contained
within an interpixel correlation length) independently.
The primary example of this error source is additive
noise.

4. Nonstructured Errors--this is a rather catchall catzgory
designed to fit those errors whose effect on the scene
cannot be described as being global, regiona", or local
(e.g., a cloud cover over the target area casi.s a ground
shadow which changes the signature in a nonstructured
manner).

Although some errors may sometimes fit into more than one cate-
gory, this generic categorization will normally accommodate all error
sources as well as provide a convenient means of establishing guide-
lines for algorithms and preprocessing selection.

Preprocessing

The preprocessing of sensor imagery consists of either changing
the intensity levels through the image cr segmenting the scene spa-
tially into groups of pixels. The intensity level preprocessing is
designed to compensate for any biases or gain changes in the system;
whereas, spatially grouping of elements is designed to accommodate
geometric errors.

In general, preprocessing is designed to accommodate global
errors that occur in the scene and which, by definition, effect all
scene elements equally. Thus global errors such as gain changes and
bias errors are handled by normalizing the intensity level and by
zero meaning the data, respectively. As discussed previously, geo-
metric errors also are global in nature and reduce the degree of
congruence between sensed image and reference image. In order to
reduce the effect on system performance, geometric errors always
force one to work with smaller map sizes and, depending on the nature
of the distortion (in azimuth nnd elevation), may also force one to
shape the window of the sensed image or to search for a rotation or
scale error. Thus, to accommodate this type of error, it is neces-
sary at a minimum to spatially group the sensor map elements into a
single (or number of) smaller map(s). If distortions are uneven in
azimuth and elevation it will also be necessary to spatially group
the elements so that the appropriate window shape may be obtained.
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MATCHING ALGORITHMS

The matching algorithm is inly one part of the overall matching
process, as indicated in Fig. 5. To begin with, there are a number
of system parameters which can be chosen to lessen or worsen the
severity of the errors on system performance. These include the
sensor orientation, resolution and wavelength, the reference mnap
preparation, and the flight geometry of the vehicle. There are, as
Indicated in the figure, separate processes for accommodating each
of the error sources. Global errors (e.g., geometric distortions,
gain changes, etc.) are accommodated in the preprocessing by either
reducing and shaping the map size or by normalizing the intensity
level of the sensed image. They can also be accommodated by searching
in the matching algorithm for rotation and/or scale factor errors.
The scene composition problem involves checking to insure that the
reference map contains a sufficient amount of independent information
and that there are no "scene redundancy" problems within the reference
map boundaries.

The algorithm itself is primarily designed to accommodate re-
g0onal and local errors with nonstructured errors being more difficult
to foresee and accommodate. The basic matching algorithm for accommo-
dating regional and local errors can be categorized as belonging to a
feature matching or image correlation class of algorithms. It should
be noted that none of these algorithms have been mathematically de-
rived to maximize system performance (probability of correct match or
accuracy) and, therefore, must be considered in a sense to be "ad hoc."

It is first necessary for the "feature matching" procedure to
extract the features from the scene. The first part of the feature
extraction process involves locating the edges or boundaries of fea-
tures. Thus, the scene can be reduced to a set of lines which are
the boundaries of the feature. Next the line intersection points are
located. In general, the number of lines emanating from each vertex
is retained and used as part of the weighting criteria in the feature
matching algorithms.

In image correlation there are two basic types of algorithms
utilized--those which emphasize the degree of similarity between
scenes such as the product, and those which emphasize differences
between scenes such as the difference squared and MAD* algorithm.

The standard correlation process works on the gross characteris-tics of the scene and all preprocessing is done globally (i.e., the
wearn level when subtracted out is zero-meaned over the entire scene,
and similarly when the scene is normalized by the variance, this is

Mean absolute difference.
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done over the entire scene). In a sense the usual correlation process
is designed to work on a homogeneous scene. There are two basic vari-
ations to the standard or usual correlation algorithm which are more
specifically tailored to nonhomogeneous scenes and the errors associ-
ated with them. It should be noted that these variations, in the
absence of nonhomogeneity in the scene, reduce to the usual correla-
tion process. We shall denote these variations that deal with scene
nonhomogeneities as (1) feature matching, and (2) hybrid algorithms.

One could introduce a feature matching algorithm into the corre-
lation process by breaking up separately the sensor and reference maps
into homogeneous subareas. Each of these maps would then consist of a
set of homogeneous regions and all processing (rather than being on a
global scale) would be performed separately on each homogeneous sub-
region. Thus, when maps are zero-meaned and normalized, the local
mean and variance in each subregion is computed and used to perform
the normalization.

After processing both the reference and sensor map on the basis
of homogeneous regions, a standard correlation algorithm can be used
to determine the position of match between the two maps. The major
generic difference between this feature matching correlation algorithm
and the "pure" feature matching algorithm (employing pattern recogni-
tion techniques) is the weighting given to homogeneous regions. In
"pure" pattern recognition algorithms, edges are first extracted and
used to identify line intersection points. These line intersection
points or vertices then form the primary basis for matching two scenes.
In a sense (since edges can be considered the boundaries of homogeneous
regions, and vertices are formed by the intersection of edges) a pure
feature, or pattern matching algorithm weight all homogeneous regions
equally, whereas in the feature matching correlation algorithm, each
homogeneous region would receive a weighting proportional to its size
(measured in terms of the number of independent elements contained
within). In summary then "pure feature matching algorithms can be
viewed as being different from feature matching correlation In that
different weights are assigned to the various homogeneous regions.

There is another adaptation of the standard correlation algoriLhm
what has been developed at Rand which one can implement to accommodate
homogeneous regions. We shall refer to this as a hybrid algorithm
which processes only the reference scene into homogeneous regions.
The principal idea here is that every position of comparison between
the two images is assumed to be the correct one. Thus at each dis-
placement position or comparison point the sensor scene Is segmented
ide~nti-ally as its counterpart reference map. * At the position atwhich the two maps correctly match the sensor scene will then be seg-

mented almost perfectly, enhancing the -a.tch, and at all other posi-
tions the sensor map segmentation will ossentially look like noise.

For each displacement position the matching process consists of
correlating each homogeneous region of the reference map and segmented
sensor Image separately, and combining additively the correlation in
each individual regiun.
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The objective of this correlation method is to avoid the errors asso-
ciated with extracting homogeneous regions or features from the sensor
image, and the additional processing requirements placed on the system.
If the image is noisy, normal edge operators have difficulty in per-
forming their feature extraction task and, as a compromise, the hybrid
approach, which strictly is not as good as a "pure" feature matching
or correlation feature matching algorithm, does possess significant
advantages over the standard correlation approach at accommodating
certain types of regional errors such as contrast reversals.

In Fig. 6 we show an example of this hybrid processing scheme.
We have in the figure identified each reference pixel with a homoge-
neous region. Thus each reference pixel has both a region identifi-
cation and an intensity associated with it. The template for the
sensor map processing is shown for two map displacement positions.
As indicated in the figure, the sensor map is segmented into homoge-
neous regions at each of these displacement positions in a manner
identical to that of the reference map elements occupying the same
spatial position. The sensor map elements are then processed by
homogeneous regions (i.e., the mean intensity level subtracted out
and possibly normalized by the intensity variation in the region)
with the total correlation between sensed images and reference map
being the sum of the correlation in each region at each displacement
position. Thus we have identified four generic types of image match-

ing methods:

I. Standard correlation algorithm

2. "Pure" feature matching algorithm

3. Feature matching correlation algorithm

4. Hybrid algorithm

The first two methods are the two basic approaches to image
matching, while the latter two methods are variations of the standard
correlation process designed specifically to accommodate nonhomoge-
neous scenes and the nonglobal errors a.;sociated with them.

SIMULATION RESULTS

Let us examine the effects of regioi al and local errors on the
performance of matching systems for various classes of algorithms.
First, let us examine the accuracy of the system measured in terms of
the sharpness of the correlation peak. The general broadening of the
correlatlion peak around the match point is cau.sed pri marily by the
nonhomogeneous nature of the scene. Thus If we could process out th'.
nonhomogeneons regions in the Scene by a featu re matching or hybrid
ailgorithin we could expect a general sharpening of thke correlation
peak around the match point.

To"l Illustrate these points we will decompose several Earth Re-
sttirce t ..i tcI litt. I TR'I'S) maps into ihomogeneous regions and perform an
*.utoclirre lat ion between i sensor and referen1ce map using the standard
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Fig. 6--Ilustration of hybrid matching process

product algorithm, a feature matching algorithm, and a hybrid correl.a--
tion matching algorithm which have been described previously. The
feature matching algorithm essentially removes the effect of homoge-
neous regions since all homogeneous regions are zero meaned and nor-
malized separately. The hybrid algorithm, on the other hand, takes
out some but not all of the effects of the scene nonhur'ogeneity.
Figure 7 show.- the effect of using these three dif'ferent algorithn.s
tuson the correlation surface for four different ERTS scenes. The nor-

I.::(I autocorrelation process produces a spread out correlation peak,
while the feature matching algorithm (homogenizing both the reference
.nd sonsor scene) produces the sharpest correlation peak, being limited
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only by the interpixel correlation. The hybrid algorithm produces a
correlation surface between the two indicating that it does remove
some but not all of the effects of scene nonhomogeneity. The remain-
ing width of the correlation surface is due to interpixel correlations
between nonindependent map elements contained within the homogeneous
regions. To summarize, the slope of the correlation surface is domi-
nated by the size and shape of the homogeneous regions composing the
scene. Thus by utilizing feature matching or hybrid algorithms it is
possible to filter out these low spatial frequency components and
"sharpen the correlation peak. The interpixel correlation and inten-
sity variations between pixels, represented by the number and size of
independent elements within the region, are only significant to the
correlation process for completely homogeneous scenes (which are rare)
and for scenes which have been homogeneously processed. Conversely,
by homogeneously segmenting the scene, sharper correlation peaks can
he produced whose widths are limited only by the interpixel correla-
tion or the size of the independent elements.

The choice of matching algorithms for acquisition (P being
major performance measure) will depend on the nature and magnitude
of the regional and local errors. Some analysis has been performed
in relating nonstruccured errors to changes in system performance.
In general the algorithm choice is not strongly dependent on the na-
ture of nonstructured errors. Nonstructured errors are best acconao-
dated in the mission planning phase of the operation. By proper route
planning obscuration and masking errors may be avoided, and by timing
and weather planning it may also be po3sible to reduce the diurnal and
weather effects which can cause nonstructured errors. Thus the occur-
rence of nonstructured errors can be reduced by careful mission plan-
ning. Generally any residual nonstructured errors cannot be adequately
modeled and thus one can only hope that they do not seriously degrade
system performance.

The algorithm choice, then, in the extreme case of local errors
only, tends toward ordinary correlation, whereas, in the other extreme
(regional errors only) the algorithm t-'nds oward pure feature matching.I
As one is generally never confronted by an either-or-situation, except
in the case of Terrain Contour Mappping (where there are primarily local

errors), it is necessary to weigh the relative magnitude of local and
regional errors present in deciding upon the choice of algorithm.

Let us firat consider the differences between the various categories
of correlation algorithms when only local errors (additive noise) are
present. To examine the effect, we took several 10 x 10 element sensor
maps from the center of 20 x 20 reference scenes in various parts of an
ERTS map. To these sensor scenes we added white Gaussian destributed
noise such that the S/N ratio was 0.5. The simulation consisted of cre-
ating 25 different noisy sensor images and matching the reference and

sensed imagery for different categories of algorithms (feature matching
correlation, hybrid, and ordinary correlation algorithms) using the
product algorithm. Table I shows the percent of successful matches

(PsIM) for each category of algorithm. The feature matching algorithm
M". scored perfectly each time and is not shown in the table.
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Table 1

MONTE CARLO SIMULATION RESULTS

Reference Map: 20 x 20
Sensor Map: 10 x 10

Simulation kroults
Terrain Type Region Type of Algorithm (Product,

Mountain 2 Ordinary Corre.lation 0.96
Mountain 2 Hybrid 0.68

Suburbs 17 Ordinary Correlation 1.00
Suburbs 17 Hybrid 0.80

Desert 10 Ordinary Correlation 1,00
Desert 10 Hybrid 1] 00

Desert 6 Ordinary Correlation 0.96
Desert 6 Hybrid 0.68

Agricultural 12 Ordinary Correlation 0.76
Agricultural 12 Hybrid 0.36

T'he homogeneous regions within the reference map boundary were
defined manually. The homogeneous regions or features in the sensor
image were also defined manually for the feature matching correlation
algorithm. In the real world these regions must be extracted auto-
matically so that the results for the feature matching correlation
algorithm are, in a sense, an optimum case. In the real world, homo-
geneous regions are generally extracted through the use of edge oper-
ators. These systems generally do not perform well in the presence
of local errors. Simulation results achieved for real-world scenes
using pure feature matching approaches generally indicate results
closer to or worse than those achieved by the hybrid algorithm are
obtainable when automated edge finding feature extraction techniques
are used.

To determine the change i.n system performance measured in terms
of probability of correct match (Pc) due to regional errors interact-
ing with the three different categories and types of algorithms de-
scribed previously, we ran an experiment to test the effects of such
errors. In an attempt to place regional errors into the correlation
process we decided to see the effect of changing the mean values of
the "intensity" levels in the homogeneous regions of Lhe scene. For
this experiment a sensor map (20 x 20) vas chosen with a larger number
of homogeneous regions (mountain area, region 4) and the mean level of
each homogeneous region was changed by a random amount. The magaitude
of the level change was drawn from a zero mean Gaussian distribution
with three different scandard deviations chosen to be 25, 50, and 00
percent of the dynamic range ot intensity values in the scene. Two
different algorithms (the normalized product and the difference-squared
with the mean intens;ity value subtracted out) and three different pro-
cessing schemes (both sensor and reference maps homogeneously segmented,
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only the reference map segmented (hybrid) and no segmentation) ;iere
utilized. Additionally a small amount of noise was added to each
pixel in the scene. The results are shown in Table 2. Shown in
this .table are the peccent of successful correlations (out of 25),
PSIM, for each run using the different algorithm categories and
types. Since we are using the "perfect" feature matching correla-
tion algorithm we would not expect any change in performance with
change in level and the results so indicate. On the other hand,
there is a definite degradation in PSIM for the ordinary correlation
cases for all types of algorithm, with increasing changes among homo-
geneous levels in the scene. The hybrid algorithms, while generally
having performance somewhat below that oZ the "perfect" feature
matching algorithms, essentially do not degrade with increasing
regional error.

Table 2

SIMIULATION RESULTS WITH LEVEL CHANGES BETWEEN HOMOGENEOUS PEGIONS
Mountain Area--Region 4

(20 x 20 Sensor Map, 40 × 40 Reference Map)

Magitude of Level ChangeR
25 Percent 50 Percent 100 Percent

Process Algorithm PSIM PSIM PSIM

Ordinary Normalized Product 0.92 0.88 0.52
Correlation

Hybrid Normalized Product 0.72 0.72 0.68Perfect Feature Normalized Product 1.0 1.0 1.0
Matching

Ordinary Difference Squared 0.88 0.68 0.48
Correlation (zero-meaned)

Hybrid Difference Squared 0 . 9 6 a 1.0 1.0
(zero-meaned)

Perfect Feature Difference Squared 1.0 1.0 1.0
Matching (zero-meaned) __0_1_

a The lower value relative to higher magnitude level changes is attrib-

buted to a statistical variation in only using 25 samples.

SUMMARY AND CONCLUSIONS

This paper described the image matching process as a two-phase
process, with the first phase being concerned with the acquisition
of the correct match area, and the second stage being concerned with
accurately locating the match point. The major rationale for the
failure of the system to acquire is described as being due to a com-
bination of noise plus interscene redundancy (e.g., checkerboard),
this latter problem being extremely difficult to model. Accuracy was
shown to depend on two ccrnponents of the scene structure--the size
and magnitude of homogeneous regions In the scene and the interpixel
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correlation (expressed in terms of an independent scene element)--and
the amount of geometric distortion present.

It has been shown that accuracy can be improved by utilizing a
hybrid or feature matching algorithm which segments the scene into
homogeneous regions. This segmentation significantly sharpens the
correlation. The residual spread in the correlation peak can be at-
tributed to interpixel correlation.

The acquisition problem, described in Fig. 5, consists of deter-
mining the preprocessing requirements, developing a scene selection
criteria, choosing an algorithm, and verifying the system via a sim-
ulation. As indicated in this figure, the first problem that must be
accommodated is global errors. These errors are generally accommodated
by either normalizing the intensity level or by spatially grouping the
scene elements so as to reduce the susceptibility of the matching pro-
cess to geomezric distortion.

The scene selection process requires that two criteria be met.
The first is that a sufficient amount of independent information most
be contained in the map. Although not discussed, a number of methods
have been proposed to measure the independent information contained
within the scene. The correlation length appears to be a poor measure
because of the ambiguity associated with the term. The number of "inde-
pendent scene elements" appears to be a good measure to utilize for cor-
relation processes, while the "number of vertices" appears appropriate
for pure feature matc-:ing processes. The second scene selection pro-
cess of importance is the avoidance of interscene redundancy (e.g.,
checkerboard patterriF). The height of secondary correlation peaks
using ordiary correlat.ion aoes not appear to be as good a measure of
scene redundancy as the hcight of secondary peaks using the hybrid
algorithm. This hybrid class of algorithm assumes that at each dis-
placement position tlhe sensor image is segmented into homogeneous re--
gions in an identical manaer to the portion of the reference map against
which it is beini; compared. Thus, this class of algorithm emphasizes
the spatial structure ar the scene and the few simulation results ac-
quired to date indicate that secondary peaks on the autocorrelation
!; urface asscciated with the hybrid algorithm are places where false
match.,' are lik-ly to occor due to an interscene redundancy.

Finally, in the acquisition process, an algorithm must be chosen
frt'oTO the generic class of ordinary correlation, hybrid correlation,
feature matching correlation, and feature matching such that it can

rj accommodate the amount of regional, local, and nonstructured errors
that are anticipated. If only local errors are anticipated (e.g.,
TERCOM navigation system) then ordinary correlation algorithms are
appropriate, whereas, if regional errors dominate, a feature matching
or hybrid algorithm is demanded. Most real-world scenes have both
regional and local errors superimposed. If the magnitude of the vari-
ation in the mean intensity levels between homogeneous regions in the
area (that can be accounted for in the signature prediction) exceeds
in value 50 percent of the intensity level difference between regions,
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then it appears that one is forced to use a feature matching algorithm,
with the hybrid algorithm looking as an attractive alternative to avoid
the near real-time feature extraction process in the sensed image, while
at the same time being able to deal with regional errors.
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Performance Comparison of a Laboratory Digital Tracker
to the Human Eye

Written By:

James R. Hamer and Richard Satterlield
Northrop Corporation, Electro-Mechanical Division

ABSTRACT

Imaging tracking systems have no "benchmark" standard of per-
formance to measure and compare against. This paper describes
a laboratory experiment with Northrop's digital tracker system
where test conditions were arranged in a manner similar to
psychometric detection experiments of the human eye. Human
detection perfozmance is compared to the tracker acquisition
signal to noise. Models and experimental data of both the
human eye and digital tracker system are presented. Signal-
to-noise, target size, and bandwidth considerations are
presented and discussed. A video tape of tracking In
cluttered environments is also presented.
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Written By:

James R. Hamer and Richard Satterfield
Northrop Corporation, Electro-Mechanical Division

500 East Orangethorpe Avenue, Anaheim, California 92801

Introduction

With the application of low-power, low-weight, and low-volume digital computers
to airborne imaging tracker applications, the level of sophistication and performance
of digital trackers has increased substantially. This growth is difficult to measure
because an appropriate "benchmark" or standard of performance does nor exist. The
authors suggest that one of many such standards may be the limiting performance of
the human eye. The advantage of using a psychometric data base for comparison is
that a large number of detection experiments exist wlich have data readily available.
The difficulty in use of this data base is in proper application and interpretation.
Also, important factors such as tracking in clutter or moving targets are not
included.

A brief review of the Northrop digital tracker system is next presented. The
digital tracker laboratory facility and supporting electrical optical facilities are
described. The problem of selecting a proper psychometric data base for comparison
to the digital tracker is reviewed, and the Rosell and Wilson detection experiment Is
chosen as a proper data base for comparison to the digital tracker. The tracker lab-
oratory experiment is described and results presented in parametric form and then
compared to the noise-limited eye datecticn. Target acquisition and track Signal-to-
Noise Ratio (SNR) are defined fo" the tracker as a function of target size. A
tracker model and the Rosell model of "display SNR" are compared to highlight data
similarities.

System Concept

The laboratory tracking system, shown in block diagram form in Figure I, con-
slists of a programmable general-pu-pose computer fitted with special peripheral de-
vices to provide the capability of interfacing with real-time, video data streams,
and high-speed digital control systems. Our technical approach has been to retain
features of analog video processing which reduce the data rates to the computer and
perform the tracking functions by digital computation. During every video field, the
video processor formats the analog video into an n by n array ,,f digital numbers,
with each number representing the video scene in a rectangular area of the raster.
Each area is called a bin and typically an 8-bin by 8-bin array is used for tracking,
although there is no fundamental constraint to the use of an 8 by 8 array. The n by
rn array covers a variable aspect area of the scene controlled by the digital computer
and nominall1y overlays the target, although a subspace of the target may be used.
For large targets, special transformations are performed in the video processor to
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prevent truncation or spatial quantitization from degrading tracking accuracy. This
technical approach provides a constant data rate to the microcomputer and allows al-
location of computer resources to tasks other than tracking, such as self-assessment.

Tracking Algorithms

The tracker generates position and size errors by use of a two dimensional, sin-
gle integration, product correlator algorithm. The algorithm operates in two modes,
a "point" track mode and an "area" track mode. In either mode and during every video
field, the digital computer generates a set of tracking weights with which the Incom-t
ing, live n by n bin array is integrated to form position errors. In point track the
correlation reference template is a rectangle, and the template is stretched by the
size algorithm to best fit the rectangular component of the target image being

tracked. In area track mode the template is generated from the scene in the camera
in the familiar "snap shoot" mode. The point track algorithm is illustrated in Fig-
ure 2. This approach differs from conventional trackers by having a size algorithm
independent of range data or other independent estimators. A block diagram of the
compute: functions for the point track algorithm is shown in Figure 3.

Laboratory Facilities

The digital tracker software was developed by realistic, real-time simulation of

closed loop system tracking problems, with a military camera-servo system (TISEO)
mounted on an optical bench as shown in Figure 4. The TISEO servo-camera is in-
tegrated into the digital tracker and can be controlled from a hand stick for air-
craft cockpit simulation, or from a digital data bus. A ten-to-one servoed zoom lens
mounted on the optical bench simulates range closure to targets while tracking. Range
closure rate can be controlled manually or under control of the !aboratory computer.

0l Target and background imagery may be presented independently and back~ground contrast
controlled by a back lighting technique. Target motion can be controlled on two dl-
mersions from a motorized X-Y positioning mechanism. In the laboratory "special
effects" are also simulated, for example, loss of one or more IR detectors of a par-
allel scan FLIR. Besides development of tracking software, this facility is being
used for evaluation of track performance when totally integrated into the camera
servo loop. A number of track scenes have been evaluated by recording the digital

tracker output and later processing the data by Fourier transforms and statistical
measures.

Ps•_ychometric Data Base

A wide range of psychometric data exists for human detection of line gratings
and single targ'ts under a variety of viewing conditions. Table I is a summary of the
better known experiments. Direct view experiments are not applicable here because
the eye is then contrast limited and the eye's limiting performance is dependent on

the average brightness of the scene, target size, and target-background contrast. No
noise is measurable and an SNR cannot be defined. This does not apply to indirect

viewing such as from a Cathode Ray Tube (CRT) display where noise may be artificially
controlled by the experimenter. The signal to noise can be carefully manipulated to

make the human strictly noise limited InIhis detection performance. As first empha-
sized by the C. ltman-Anderson experiment , the noise-lmited observer's performance
is independent of the contrast and brightnens of the scene he views directly, the
scene in the display, and, therefore, of CRT brightness and contrast manipulation.
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Another feature of indirect viewing emphasized in their experiment is the relative
Sindependence of the size of the display. If the display size is increased and the

video information bandwidth kept constant, there is no change in observer per-
formance. If the display size is decreased and the observer is allowed to reposition
himself closer to the display, there is also no change. His performance depends only
on the relative image size in the display and the video SNPR per unit video bandwidth.
These features have been incorporated in all indirect viewing performance models.

A second fundamental consideration is the use of free choice versus forced
choice detection methods, since both are often used. Forced choice psychometric ex-
periments in human perception verify that the state of correct perceiving is not a

* discrete step, but probabilistic at low stimulus levels. Thus, models of human de-
tection performances relate a perceptual SNR to a probability of correct detection.
The performance curves are also a function of observer attention and fatigue level.

The probabilistic nature of human detection is brought out by forced choice psy-
chometric experiments. The observer is forced to make a decision at a stimulus level
where he would fail to decide. Normal viewing of scenes is not forced choice. Per-
ception of targets is "free choice" and the observer is almost always correct when he
makes a free choice decision. His perceptual SNR is greater than the SNR which corre-
sponds to a detection probability of one. The range of subliminal stimulus levels is
defined by that portion of the performance curve where performance is below a 0.95
probability level. At these stimulus levels the observers are unaware of their per-
formance scores, which can be relatively high. The primary advantage of a forced
choice experiment is the measurement of the absolute detection limits. Because of
the advantage of CRT display parameter independence and the forced choice limiting
sensitivity, the Rosell and Wilson experiments were selected as the data base for
comparison with the digita! tracker.

_Noise Limited -Forced Choice Psychometric Perfor mance

The experimental apparatus used to perform the psychometric experiments is shown
"in Figure 5 and described more completely. A target rectangle is electronically
generated and mixed with a white noise systemn band limited to five megahertz. The
Image displayed on the CRT appears in any qualrant and always in the same position In
the quadrant. The observer is asked to choose the quadrant in which the image is lo-
cated and the video SNR and the inmge locations are randomized. The observer
specifies the image location every trial and the observation time per trial is 10
seconds. The observer distance from the 8-inch-h'gh CRT was 28 Inches, and the dis-
play background luminance was either 0.2-0.3 or I foot-Lambert. The television
monitor was operated at 30 frames/second with a 525-1Ine scan In the vertical.

Dtgr_ .Tracker Threshold Performance

The laboratory facility shown in Figure 4 was modified to that shown In Figure 6
for the tracking experiment. A hIgh-coatrast square target against a plain back-
ground was placed before the TISEO camera. The high SNR target video was attenuated
by a precision attenuator and then mixed wth a white noise signal equal in bandwidth
to the TISEO camera (20 megahertz). The signal plus nriise was then presiented to the
digital tracker for, processing tra k k rrors. Before each experiment the scrvo gains
ye re adiusted to two system bandwidths, 3.6 and C.9 r.tadians per second. At each sys-
tern b1-ndwidth two curves were generated, a target acqu sition SNR threshold curve and
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a target track loss SNR threshold curve as a function of target size. Both curves

are defined by a procedure using the self-assessment track loss propositions of the

digital tracker which are posted during every video field. For target: acquisition
SNR, the TISEO camera was locked onto a square target and the video SNR reduced until

a track loss proposition began to read true. The SNR was then increased slightly and
the target reacquired several times to assure reliable lockup upon acquisition; the

SNR and target size were then recorded and the experiment repeated for a different

sized target. The track loss threshold curve is defined by monitoring the track loss

propositions at reduced SNR from the acquisition SNR. When the track loss proposi-
tions are flashing true fifty peicent of the time, the tracker will maintain lock;

but this level of confidence is arbitrarily defined as the impending loss lock SNR.

The SNR and target size are noted and the experiment then repeated for a different
size target. Figure 7 shows the results for a system bandwidth of 3.6 radian per

second. The upper curve is the acquisition curve, the lower is the track loss curve.

Note the uniform displacement of the curves. For comparison with the human eye the

0.9 radian system bandwidth curve was used because of the long 10-seconds viewing

time. The Rosell and Wilson SNR data was adjusted from their 5 megahertz noise
bandwidth to the 20 megahertz noise bandwidth of our experiment and Their data re-
plotted for square targets. The results are shown in Figure 8. The 95 and 50 per-

cent eye detection threshold curve is plotted. The 95 percent curve corresponds to
the level at which an observer will begin to transfer from forced choice to free
choice. Note the similarity in shape of all the curves.

Tracker-Eye Model Summar?

The similarity of the data prompted a comparison of the Rosell display SNR model

to Northrop's tracker. For an "idel" sensor, such as the one used in the pay-
chometric experiment, the perceptual SNR (Rosell calls this "display SNR") Is related

to the video SNR by:

Perceptual SN/ Video SNR

Af - Video noise bandwidth

a - target area

A - raster area

t - eye integration time

The eye spatial integration across the target reduces the effective noise bandwidth

by a factor A/a and can be interpretted as a spatial miatched filter Improving system
SNR. The temporal filter of the eye further reduces the effective bandwidth by the
factor l/t, thus two filters can account for the improvement in performance in the
eye detection model as shown In Figure 9. There the tracker model Is also shown and

the eye detection model tied to it through the CRT display. The trac[ker also is A

spatial matched filter which generates position estimates at a rate of 60 samples per

second. [he ser',o may he considered as a temporal filter having a bandwidth that
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determines the extent of averaging the high sample rate., The video noise filter and
whitener has a parallel in the human eyeball where gradient operations are known to
exist. Thus there are many similarities between the digital tracker and human eye
which are suggested by the experiment.

* A modification to the eye detection model is suggested to account for contrast-
limited versus noise-limited performance of the eye. If one assumes an eye with an
internal noise source (N) dependent on scene brightness, the SNR at the input to the
eye spatial filter is given by:

GS

(S/N) f GS

N - Video noise

v

G - CRT gain

2 2 2
The contrast limited eye is defined when N » >> G N , then adjusting the0 V

CRT contrast knob will improve target detection. The noise-limited eye is
defined when G2 Nv2 >> N0

2 , then the SNR becomes independent of contrast gain
and equal to the video SNR out of the camera. These conclusions further rein-
force the decision to use only the noise limited performance of the eye to com-
pare to the digital tracker. The contrast limited performance cannot bp com-
pared to the tracker because of our ignorance of the eye's internal noise source,
N . Fortunately the noise limited performance is a minimum boundary and there-
fore a good baseline for comparison of tracker performance.
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Table I. PSYCHOMETRIC TEST SUMMARY

TARGErT/IMEIHO0 OS,'ROBSERVER BAR CHART-FREE

CHOICE THRESHOLD
SCENE NOISE TEMPORAL SINGLETARGET- PSYCHOMTRIC SIGNAL-TO-

VIEWING CONDITION DYNAMICS VISIBILITY INTEGRATION FORCED CHOICE DATA NOIS"

MAR CHART
DIRECT VIEWING STATIC NONE I SEC ISOLATED TARGET KACKWELL

DYNAMIC NOW 0. 2 SEC

ISOLATED TARGET
NONE > l SEC BARCHART CAMP6I3

STATIC - ______-_ _

INDIRECT VIEWING ISOLATED TARGET ROSEDL 3
ACT IVE 0 IS PLAY) NOISE >Il SEC BAR CHART COLTMAN-ANDERSON L2

NONE 0.2 SECDYNAMIC NOISE 0.2 SEC
SNON 0 ___

IWDIRECT VIEWING
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IMAGE PROCESSING FOR SELECTIVE IMPACT
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ABSTRACT

An algorithm is described for detecting and classifying a tactical
target from infrared sensed imagery. A point in the target with distinct
features has been used as a reference point to extract the target region.
Then edge features in the target region are transformed into a polar
coordinate space and target matching is performed in this space. The
experimental results from sixteen IR images indicate that the orienta-
tion and the size of the target can be accurately calculated by this
method. Comparisons with the moment invariants method for target match-
ing and the Hotelling transformation for target orientation calculation
are also presented.

INTRODUCTION

The purpose of this paper is to present an algorithm for selecting
an impact location from an infrared sensed image of the target. The
difficulties in target identification are that the size and the orienta-
tion of the target are unknown. These vary according to the relative
location and orientation of the target and sensor. Correlation of the
reference image with the sensed image with different size and orientation
is particularly difficult, since various sizes and rotations of templates
must be used. A better approach is to preprocess the sensed image and
calibrate it to the correct size and orientation. This also eliminates
the need for an interpolation technique to fill in the missing information
in the digital rotated image. The information of the target orientation
is usually embedded in the shape features of the target. Since the
infrared image displays the thermal emission of the target and the back-
ground, and the temperature distribution on the surface of the target is
usually not uniform, the edges obtained by a local gradient type operator
are usually broken and are difficult to use for shape description. To
classify a target with different orientation and size, several scene
matching algorithms based on global analysis of the local feature in
the IR image may be appropriate. Among these algorithms, the moment
invariants method shows success in many different applications (3,4,5).
Also, the Hotelling transformation has been found useful for object
rotation (1,2).
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A new matching algorithm for detecting and classifying a tactical
target in IR sensed images is presented in this paper. A point in the
target with distinct features has been used as a reference point to
extract a potential target region. Then the edge featurtes in this
region are transformed into the polar coordinate space and target match-
ing is performed in this space. The experimenLal results from a set of
sixteen images indicate that the orientation and size of the target can
be accurately calculated by this method. Comparison with the moment
invariants method in target matching and Hotelling transformation in
target orientation calculation are also presented in this paper.

POLAR TRANSFORMATION

A typical infrared iaage is shown in Figure 1. In this image, the
target is setting on a textured background. The high frequency informa-
tion in this thermal image makes it very difficult to outline the entire
target for shape description. Figure 2 shows the edge processed image of
an extracted target region to illustrate the high frequency information
of the thermal emission in the tank image. A distinct feature can easily
be observed in the three dimensional graph of Figure 2, which is shown
in the isometric plot in Figure 3. One can easily detect the cluster
of points with very large edge values. By using the cluster center as
a reference point., the edge points in the rectangular space may be trans-
formed into a polar space in which target matching may easily be performed.

The concept of the polar transformation is shown in Figure 4. Five
edge points are shown in both the reference and sensed images. Consider
point "a" as the extracted reference point in the reference image and
point "b" to be the extracted reference point in the sensed image. By
using the Xa axis and the Xb axis as the references axes for the refer-
ence image and the sensed image, tle edge points may be transformed into
-i polar coordinate space. It is obvious that if one correlates the

:* reference image to the sensed image along the a axis, the location of
Hic correlation peak will indicate the relative angular orientation of
thfic sensed image to the reference image.

Suppose there are N quantized levels for the radial components and
M quantized levels for the angular components. Then an image in the
polar space may be represented by a column vector with dimension NM.
If the image is scanned in a vertical yaster fashion in the polar space
or is sampled radially for every Os (sampling angle) with respect to
the reference point in the rectangular space, then a [(m-l)*N+n]th com-
ponent is set to 1 if an edge point is detected at location (M,N) in
"the polar space or location (n*cos(m-l)*Os, n*sin[(m-l)*as)] in the rec-
tangular space, otherwise, the value is 0. Let the image vector for the
reference image be A and the image vector for the sensed image be B.
TIhb, the correlation measure R may be represented b-

T
A B

R TTTVTF(1)

22 7



Since both A and B are binary vectors of edge features, R is a
measure which indicates the number of matching edge feature points at
the same angle and radial distance, normalized by the geometric average
of the number of edge feature points in the reference and the sensed
images.

The radial distance of an edge feature point is proportional to
the size of the target. In the ideal case, assuming no noise edge feature
points have been extracted, it is reasonable to consider the size ratio
of the reference target to the sensed target as Sr = pa/pb, where pa
is the mean radial distance of the edge points in the reference image,
ph is the mean radial distance of the edge points in the sensed image
and Sr is the mean size ratio.

In the noisy case, the size ratio may be calculated by

S = Max R
x s

where X is the set of vectors corresponding to different scale changes
of the reference image.

By incrementing or decrementing Sr, the size ratio of the reference

target to the sensed target is selected as the one which maximize the
correlation coefficient at the orientation using Sr.

A computer synthesized IR image may be used as an example. Figuro
5 shows the IR image. Figure 6 shows the edges extracted by a Sobel
operator. Figure 7 shows the polar transformed edge image in a 64 x 64
grid. Figure 8 shows the autocorrelation result of the polar transformed
edge image along the 0 axis. Note that the correlation peak is at 0

degrees and the size ratio is I as expected.

Sixteen other images were used for orientation and size calculations
using tne polar transformation. Table 1 shows the experimental results.
P0 is used as a reference image. P 1 through P1 2 were the sensed images
with different sizes and orientations assuming that the sensed targets
were perfectly segmented from the background. L1 through 1.4 were four
images with the same size and orientations as the reference image bht
,ire located in a noisy texture background. The edge feature points of
images L 1 through L4 were segmented using different threshold levels
such that different amounts of noisy edge points were also pretsented in
the sensed edge image for comparison. Figure 9 shows four edge images
segmented by the Sobel operator using different thresholds, Figure 10

shows the corresponding polar transformation edge images. Figure 11
shows the correlation result using the IR image of Figure 6 as the
reference image. In this limited laboratory test, the experimental
results seem promising. The average error for the size calculation is

generally less than 5%. When the size of the sensed image is smaller
to the reference image by a factor of two, such as in images P 8 and PIO.
the size calculation error is higher than 10%. This is due to the fact
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that the resolution is lower for the smaller size sensed target and some
of the feature points are merged together. The correlation mainlobe and
sidelobe ratio is used to measure the goodness of the correlation result.
All the correlation peaks are discriminable except for the smaller sizc
sensed targets (P 8 , P1 0. P1 2 ) for which the mainlobe to sidelobe ratios
are less than 1.2. The orientation calculation result also seems promis-
ing. The errors in the orientation calculations of the sensed images PI
and P 2 are due mainly to the quantizing error of the polar transformation.
Since only 64 sampling angular intervals are used, the accuracy in the
orientation calculation will never be better than 5.625 degrees.

COMPARISON WITH OTHER ALGORITHMS AND CONCLUSION

Using moment invariants for target matching has been successful in
many applications (3,4,5). The mathematical foundation of invariant
features is based on the theory of algebraic invariants. The theory deals
with algebr ic functions of a certain class which remain unchanged under
certain cooidinate transformations. A set of seven moment Invariants has
also been calculated for the sensed target identification. The Euclidean
distance of the moment invariants of the reference images to is computed
to classify the sensed target. The Euclidean distance of the moment
invariants of the reference image to those of the sensed images is plotted
as shown in Figuie 12. The sensed targecs (P8, P10 , P1 2 ), which are a
factor of two smaller than the reference target, are also difficult to
identify by moment Invariants.

A fast method for orientation computation is the Hotelling trans-
formation (1,2). The .zovariance matrix of the spatially distributed edge
feature points is calculated. Then the principal axis of the sensed images
may be determined by finding the eigenvector with maximum eigenvalue. The
relative orientation of the sensed target to the reference target may be
determined from the principal axis of the reference image and sensed image.

Table 2 shows the orientation error calculated using the Hotelling
transformation. For sensed images PI through P 1 2, the results are satis-
factory since these images are perfectly segmented. In the noisy cases,
the calculated principal axis may vary due to the presence of noisy edge
points. A calibration step is required for the principal axis calculation
assuming the background noise statistics is known. Figure 13(a),(b),(c)
illustrate this procedure. The accuracy of the orientation calculation
using the Hotelling transformation is very dependent on the segmentation
results of the sensed target. For a well segmentpd sensed target, the
Hotelling transformation is several orders of magnitude faster than the
polar transformation method since the latter requires N correlation calcu-

S•' lations of zn MXN polar transformcd edge image. However, in the noisy
environment, the polar uransformation is more robust.

Among the thrt:e algorithms disycussed, the polar transformatlon
1r, bcen shown to be the t ast dep-,ident on tie segmentat ion of the
, t e t "Ind also h.is better tol ,?nce I t)O a noise environment.
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TABLE 2. TARGET ORIENTATION CALCULATION
RESULTS USING HOTELLING TRANSFORMATION

IMAGES TARGET IMAGES TARGET
ORIENTATION ORIENTATION
ERROR (DEGREES) ERROR (DEGREES)

PO reference P9 1.61
P1 0.2275 PlO 0.93
P2 0.952 P11 2.978
P3 0.039 P12 1.714
P4 0.608 LI 7.714
P5 1.107 L2 1.922
P6 0.349 L3 0.411
P_ _ 1.82 L4 0.713
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FIGURE 1

AN IR SENSED IMAGE
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FIGURE 2 FIGURE 3
A SOBEL EDGE PROCESSED TARGET REGION A THREE DIMENSIONAl PLOT OF

FIGURE 2
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FIGURE 4. (a) THE EDGE EX"RATED REFERENCE IMAGE AND SENSED IMAGE rOINT a AND
POINT b ARE THE CALCULATED REFF'•NCE POINTS IN fHE REFERENCE
IMAGE AND SENSED IMAGE RESPECTIvELY.

(b) THE POLAR TRANSFORMATION EDGE IMAGES.
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FIGURE 5 1-iGURE 6

A COMPUTER SYNTHESIZED THE EXTRACTED SOBEL EDGES

IR IMAGE-
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m FIGURE 7 FIGURE 8
TH POLATERASYNSFORMED THE AUTOCORRELATION RESULT OF

TH POLR TRANSFRME

EDGE IMAGE FIGURE 7 USING EQUATION (1)
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(a) (b)

Cc) (d)

FIGURE 9. EDGES SEGMENTED BY SOBEL OPERATOR USING DIFFERENT THRESHOLD.
(a) THRESHOLD LEVEL IS 23, (b) THRESHOLD LEVEL IS 20,
(c) THRESHOLD LEVEL IS 18, (d) THRESHOLD LEVEL IS 16
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(~) (b)

(c) (d)

FIGURE 10. POLAR TRANSFORMATION OF FIGURE 9
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(a) (b)

(c) (d)

FIGURE 11. CORRELATION RESULTS OF FIGURE 10 USING FIGURE
6 AS REFERENCE IMAGE

238

i__ Al_



00

CL

a-)

I-VI

a-)

LO

LA-D

-i i

w0

p cli

CL C

239



(b)(c

FIGURE 13. PRINCIPAL AXES OF IMAGES
(a) PRINCIPAL AXES OF THE IMAGE OF FIGURE 6
(b) PRINCIPAL AXES OF THE IMAGE OF FIGURE 9(a)

()PRINCIPAL P.XES OF THE IMIAGE OF FIGURE 9(d)
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AN ITERATIVE FEATURE MATCHING ALGORITHM

A. M. Savol, E. Noges, A. J. Witsmeer

Boeing Aerospace Company
P.O. Box 3999

Seattle, WA 98124

ABSTRACT

In autonomous missile guidance and navigation systems, position update is
performed by matching the set of sensed features with a previously prepared
reference set contained in the reference feature map.

A novel iterative classifier-feature matcher, MACHAL, is described. This
algorithm optimizes the match between a set of sensed and reference features
without the customary exhaustive correlation calculations between the two
sets. The iterative clustering approach introduced shrinks the data set
after each iteration resulting in an overall reduction of the computational
burden. Although MACHAL is a general matching algorithm for feature vectors
of any dimension, this paper describes its application to the low order image
matching arising from autonomous missile navigation and guidance. The gen-
eralization of this approach to higher dimensions and other applications
such as object recognition is discussed.

INTRODUCTION

Autonomous missile position updating involves a series of technical problems
from a variety of disciplines. Among them are sensor type selection (such
as imaging vs centroid-range type), feature extractions, reference generation
and sensed-reference data matching. This latter problem has received attention
at various intensities for several years and is still not an operationally
mature discipline. Along with a gradual name change from correlation to pattern
recognition, there has been a gradual abstraction of the features to be matched.
In this light, correlation is the matching of primitive or basic features while
pattern recognition generally means the matching of feetures which have been
extracted from raw data. Traditionally, correlation has been performed exhaus-
tively since local maxima of the correlation figure of nmrit had no guarantee
of being global maxima. The matching of extracted features has generally been
performed by associating a new measurement vector into its correct classifi-
cation niche in the feature space either by proximity to a defining prototype
in that n-space, or by dividing the n-space by some linear or curved hyperplanes.
The herein described algorithm spans both of these approaches, depending on the
sophistication, or its lack, of the extracted features.

After a formal description of the algorithm we apply it to the autonomous
navigational problem, thereby demonstrating its simplicity and versatility.
We detail the types of features we have tested and give empirical results
we have generated from its implementation in our Terminal Guidance Lab facility.
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THE ALGORITHM

The problem of matching a set of sensed and reference descriptors reduces
to that of choosing a subset {R)* of a set of N reference feature vectors,
{R), which is the best match to the set of K vectors (S) obtained by feature
extraction from the sensed data. The MACHAL algorithm implements this pro-
cess of choosing in an iterative manner by successive exclusion of those
reference feature vectors which are least likely candidates for a good
match.

Consider a n-dimensional feature space. Let the ith reference and sensed
feature vectors be given by

!rji = T • = 2.. N
ii~~2 Rj [l rj ,3j ... rnj .

Sj [sijs2js3j.**nj j = 1,2... K

Define a distance vector
= , ]T

Di. = Ri-Sj [r=i-Sj r 2i-s 2j,-- rni-Snjil

=3 1dii d Ti
= dlj~2ij.. dnijT

and a distance metric

n1 Mj E (k )-sk )
k=l k=l

which represents the euclidean distance-, or a measure of the mismatch,
between the ith reference object and the jth sensed object. At the same
time it represents a transformation fr rm n-dimeosional feature space to
1-dimensional distance space. Rn--'-R?, in which our algorithm is defined.

The iterative feature matching algorithm consists of the following sequence
of operations:

1. Calculate the matrix of distance metrics, [M ij], l<i<Ni " I<j<k

2. Perform clustering in, Mi
13

3. Exclude all members Mi which are not members of either the
largest cluster or a cluster with at least K members.

4, Ptrforin "reference thinning" by excludiiig all mneumbers Ri wkiich
corret-porid to the excluded Mij Yalues.
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5. Calculate the shifted sensed feature vectors
= ... s for all

S3 k i>K

6. Repeat steps 1-5. using shifts of sensed feature vectors in
other coordinate directions. Continue until a single largest
cluster remains.

The set of sensed features {Sj) are obtained from preprocessed sensor output
signals by feature extraction. The noise in the sensed signal augmented by
the noise in the preprocessing and feature extraction result in feature
vectors containing noise components. The exact nature of this noise is
dependent upon the sensor characteristics, scene properties as well as on
preprocessor and feature extractor algorithms. For purposes of noise
sensitivity studies, it is sufficient to assume that the resultant noise
in each component of the sensed feature vector is uniformily distributed
with zero mean and maximum amplitude -A. The noise variance is then
given by 2 A2

With the presence of noise in the sensed scene, the resulting match position
can be expected to contain errors. These error-- are functions of noise as
well as the threshold of the clustering portion of the algorithm. For com-
parative evaluation and parametric studies the absolute error measure E is
defined as n

E = e
a jl .th

where ej is the average absolute error in the j coordinate match taken
over all corresponding feature vector pairs in {R)* and in IS). However,
the desired figure of merit for matching accuracy should incorporate the
degradation caused by system errors, to provide a truer indication of the
accuracy of match. This modification is

E Ea

02n

E now provides a measure of how accurately the matching was accomplished in
spite of the corruption by noise.

APPLICATION

Our first application, and indeed the original motivation, for this approach
was the autonomous navigational problem. The correlator or pattern matcher
must take a two dimensional array of gray values, the sensed scene, and
"locate" it within a previously prepared reference scene. As eluded to
previously, the correlation approach would require the exhaustive testing
of all possible placements cf the sensed scene over the reference to find
the global maximum of agreement. The inore modern approach is the extraction
of the important features from both sources followed by matching these features
if properly executed, this latter approach offers two advantages.
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(1) Each extracted feature is the resultant of operations on a neighborhood
of pixels. Thus, if noise affecting these pixels is at least partially
uncorrelated, the feature is more robust to these corruptions than each
individual pixel.

(2) Again because each feature represents a collection of pixels, the
computational burden of matching features is greatly reduced.

The second point needs clarification. It may be that the overall burden,
including the reduction of source imagery to higher level features, may
be greater for pattern recognition than for straight correlation. However,
the matching portion of the computation now reluires small resources. Since
this matching must typically be done in real tiwe and with the more limited
resources available on board a missile, the advantage of this approach becomes
clearer.

In our first application, optical and radar imagery provided the original
reference material. Both from a theoretical and a practical viewpoint, most
of the information in an image is concentrated in edges of dissimilar gray
values or t-xtures. From the practical viewpoint this seems reasonable
because the various elements of a scene may be expected to respond differently
to changes in their environment. However, the fact that these elements differ
from each other, as seen by various sensors, tends to remain true. Thus the
edges become the more stable features. These considerations lead to our
decision of using the detected edges as the features to be matched by our
algorithm.

Our preferred edge detection algorithm ':s actually a suite, embodying the
"bottom up" approach of growing object boundaries from primitive individual
edge elements. Its details and results have been reported previously [1,2]
so need not be repeated here. Suffice to say that they reduce the original
image, sensed or reference, to a collection of straight lines of various
lengths. Figure 1 illustrates a typical final result. In our implementation,
therefore, MACHAL was applied to the matching of two collections of straight
lines.

In this context we now illustrate how the algorithm finds the best match
without the normal exhaustive correlation. Figure 2 shows a larger
reference scene and a superimposed sensed scene which have been reduced to
their feature lines Since, for navigational update, the heading and
altitude are known, the illustration is devoid of zooming or rotation.
However, these degradations can also be handled as will be expanded later.
The algorithm now demands that we formulate a metric to quantify the degree
of mismatch between features of the two images. For this application,
euclidean distances certainly seem appropriate. For ease of illustration,
the distance between centroids of the line segments was chosen as the error
metric.

The .Igor-thm next requires the computation of the matrix of the mismatch
metric. Usiny the centroWd euclidean metric and applying it to the illus-
trated edge, the matrix Mij is also in Figure 2. Each element of the matrix
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represents the degree of mismatch between that sensed element (row) and its
associated reference element (column). One dimensional clustering, using
integral values as a threshold, reveal that only two clusters, those of
values 17 or 21, have sufficient elements to describe the correct match.

Next, the sensed image is moved to a new location and new values for the
mismatch matrix must be computed. However, because only a few correspondences
were viable candidates, only those values need to be computed. Thismove and
its associated matrix are shown in Figure 3. Clustering in this reduced
set quickly defines the best match. This example illustrates how this tech-
nique permitted the computation of the optimum match without exhaustive
correlation. It should be noted that this was possible because of the
sparsity of the features. If every pixel were a feature, the algorithm would
deteriorate to normal correlation and Mij would be of unmanageable proportions.

GENERALIZATION

Although the algorithm has been illustrated in a two dimensional feature
space, its application may be to any dimensional space where a metric for
mismatch of the features can be formulated. In the present example of
navigational update, if the distortions of rotation or zooming, rather
than mere translation, were to be addressed, they would result in either
a higher dimensional mismatch matrix or a distance metric which incorporates
rotation. This approach has been taken by other workers [3]. In our present
formulation, the mismatch metric is a mapping into a 1-dimensional space,
here real or integer numbers. The number of dimensions for matching are
only limited by the availability of orthogonal feature spaces for the given
problem at hand. Our own generalization into a 5-dimensional space, still
to this application, is described in the next section.

In a broader sense, however, we believe this approach can be beneficially
applied to any problem where the feature space is sufficiently sparse and
a metric to quantify the degree of mismatch between feacure vector elements
can be Formulated. The feature axes may represent levels of contrast or
geometrical measurements. Therefore, this approach may have merit for object
recognition, as well as the scene recognition application of this report. In
object recugnition, this approach may optimize the search through the associated
feature space to classify the object.

IMPLEMENTATION

This algorithm was implemented, using extracted edges as features, and a
Varian 72 minicomputer in our Terminal Guidance Lab. Since, at this staqe
of development, the importance of versatility dominates that of computational
efficiency, its coding is in FORTRAN. A RAMTEK color graphics system provides
a 2-dimensional display of its actions.

The final products of our edge detection suite are features in a 5-dimensional
space. This is because, in addition to the two end points, each edge element
has a magnitude associated with it. This magnitude is not its length, but
rather a measure of the confidence that the detected edge is a true edge in
the original image. The value of this magnitude is a function of the values
of the primitive gradients and the iinearity of those primitives, which com-
bined to form the large edge element. The actual n-tuple describing each
final edge element is

(centroid x, cent•roid y, angle, length, magnitude)
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It thus became possible to apply MACHAL to varying degrees of dimensionality
to test the utility of increasing dimensions. As would be expected, if they
provide orthogonal information, as they do in this case, the more the better.
This need for higher dimensions is primarily, although not exclusively, due
to the presence of noise, or dissimilarity of the objects to be matched.
Indeed, if the sensed scene is an exact duplicate of its reference, the
matching problem becomes trivial. Our implementation therefore includes the
measurement of correlation noise.

The two principal limitations to the development of autonomous imaging
devices are its great computational burden and the susceptibility of the
system to noise. As discussed previously, noise is any effect which causes
the sensed scene to differ from the previously prepared reference. One can
therefore speak of noise caused by climatic changes, orientation, scaling
and inter-sensor noise. Because of this great variety of noise types,
no analytical, unified model has been developed, although certain aspects
have been addressed [4]. The pseudo-random noise of uniform distribution
chosen for our simulations lends itself easily to quantification and may
b2 expanded to model some observed corruptions by varying the noise ranges
for the various elements of the feature vectors. In the experiments whose
results we describe here, this weighting has not been implemented, although
the ranges were normalized for each element type in the 5-tuple. In addition
to this perturbation of feature vector elements, randomly generated, entire
feature vectors were added to either the sensed or reference scene to simu-
late missing or additional artifacts. In these experiments, therefore, the
live image was merely a chosen subset of the reference subjected to measured
feature vector, element perturbations to simulate system noise.

EXPERIMENTAL RESULTS

An edge image, the final result of our edge detection suite on an optical
aerial view was taken as a reference. It contains 63 edge features. A small
subarea, containing 10 edge features, was selected as the sensed scene. The
testing then involved the measurement of match accuracy as a function of three
independent variables -- the order of the feature space, the amount of addi-
tive noise, and the value of the clustering threshold.

Figure 4 is the family of curves generated by measuring the matching error
as a function of the dimensionality of the feature space, tested at three
noise levels. Even with the perplexing accuracy reversal, the advantage of
higher dimensionality is obvious.

Figure 5 represents a study of the clustering threshold vs. noise. Aga 4 n,
matching error is the dependent variable for a family of curves at three
noise levels. Because the results are such a mish mash of wildly fluctuating
values, a table rather than curves is presented. About the only conclusion
one could draw from this is that too large of a threshold may result in
failure to find the correct match. The actual failure is that the definino
cluster is too large, and cannot be reduced because of the generous clustering
threshold. The algorithm vainly keeps circulating the sensed scene without
reduction of the matching set 1S).
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Figure 6 is provided to give the reader a feeling for the great reduction
of needed mismatch metric values with succeeding iterations of this algorithm,
The curve is simply the means of the number of clusters at each iteration for
all the runs reported herein which converged.

DISCUSSION

The details of an algorithm which efficiently matches the elements of a
sensed scene with the elements of a reference scene, in the context of a
sparse feature space, have been described. The application of this algorithm
to autonomous navigational update has been described. Since, in that appli-
cation, the algorithm obviates the need for normal exhaustive correlation,
it results in a dramatic decrease of the computational burden associated
with the process of scene matching itself. The reported results of computer
simulations further indicate a robustness to noise dnd particularly, the
advantage of utilizing higher dimensional spaces, even For scene matching.
This then demonstrates another advantage of this algorithm -- its ease of
adaptation to higher dimensional feature spaces. And finally, the adapta-
bility of the algorithm to other applications such as scene recognition has
been mentioned.
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IMAGE PREPROCESSING FOR ATHOC IMAGING SENSORS

J. K. YOO, J. J. HOGAN

P. H. McINGVALE, W. W. MALCOLM

ABSTRACT. Low-cost, small Fire and Forget Missiles (F 2M) will provide a
cost effective means of minimizing exposure of weapon delivery personnel
to the enemy. F2M requirements can be satisfied by means of automatic
handing-off the target from an HRS to an LRS. This paper describes the
methodology to select image preprocessing techniques for an Automatic
Target Hand-Off Computer (ATHOC) and several preprocessing options.
Experimental results utilizing real-world imagery are reported and
evaluation procedures of the results to select a proper set of prepro-
cessing techniques are discussed.

A. INTRODUCTION

In this paper, the methodology to select image preprocessing techniques
for an Automatic Target Hand-Off Computer 1(ATHOC) and several options are
discussed. The objective of the study is to select a proper set of pre-
processing techniques that will support all the ATHOC requirements.

The ATHOC is basically a microprocessor-based digital correlator. The
ATHOC assembly consists of four sections: a microprocessor section to perform
arithmetic and logical operations, a video preprocessor section to digitize
and scale incoming video, a correlator section to perform real-time area
correlation, and a signal conditioning section to generate scaled gimbal command
signals. Detailed description of ATHOC hardware is presented in references.1

The ATHOC system was designed to initially operate with imagery from two
TV sensors? With video from a TV High Resolution Sensor (HRS) and an IR Low
Resolution Sensor (LRS), however, ATHOC must perform special preprocessing of
the video before cross-correlating the two sensor images in order to accommodate
various peculiarities of the two sensors, such as different resolutions,
different scale factors, different spectral responses, different scaa formats,
etc. Cross-correlation is used to boresight the LRS to the target selected
through the HRS.

J. K. Yoo and J. J. Hogan are with Goodyear Aerospace Corporation, Akron, Ohio,
44315. W. W. Malcolm and P. K. Mclngvale are with the Guidance and Control
Directorate, Technology Laboratory, MICOM, Redstone Arsenal, Huntsville, Alabama,
35809. This work was performed at Goodyear Aerospace Corporation and supported
in part by U. S. Army MICOM under Contract DAAK40-79-C-0134, and by Goodyear
Aerospace IR&D.
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In order to accomplish hand-off using image matching techniques, the two
images from the HRS and LRS sensors must be similar. However, the unprocessed
images from the LRS and rescaled HRS are generally dissimilar. Under this
condition, considerable image preprocessing is required to extract common
information from those images. The basic technique exploited to accomplish
the extraction process uses shape-based image matching techniques, which have
been shown to be more desirable than signal-based matching techniques.

Computer simulation of image preprocessing techniques, also discussed
here, has been developed for the testing and evaluation of ATHOC preprocessing
options. The various preprocessing algorithms are examined by means of the
simulation facility and real-world imagery. The preprocessing involves noise
cleaning, contrast enhancement, edge enhancement, slicing, and other support
functions.

Since the time required for the handoff also is of importance, considera-
tion has been given to select preprocessing algorithms which are feasible in
real-time and that can be programmed on a digital programmable central micro-
processor in ATHOC.

B. OBJECTIVE OF IMAGE PREPROCESSING

In the study on image preprocessing for ATHOC, the central problem is
how to extract common information from two sensor images, HRS and LRS. The
irrelevant background information and contrast reversal problems must be
handled accordingly to give an optimum efficiency to the image matching functions.

In general, the edge or feature extraction process from the given sensor
images is trivial if the different objects can be identified easily by measuring
the intensity differences. In order to extract edges or features from a scene,
we must somehow single out and mark the pixels that belong to those features in
a special way. In practice, however, the parts of images are not clearly con-
trasted, and it is not easy to select edges.

From the above consideration, it is natural to design preprocessing
techniques which will enhance selected features against irrelevant data to
aid in extracting edge portions. The preprocessing function will generate
a picture F' from the original image F so that the edge can be extracted
easily. In the new image F', the edges to be extracted have rharacteristic
gray level ranges; hence we can use thresholding techniques by employing a
proper gray level threshold. For example, if some local property such as the
"digital. gradient or Laplacian 3 has a higher average gray value at points of the
edges than at the background points, then we can use F' derive'd from the local
property to obtain a threshold.

Another consideration given to the preprocessing function is how to handle
noise if it exists in the picture. A technique4 to remove noise is to compare
the gray level I at one point with statistical gray level Ia at its neighboring
points. If I does not satisfy certain relationships to Ia, we can consider this
point as a noise moint. But we should exercise care in applying this technique
because, if applied indiscriminately, it tends to blur the picture, which is
objectionable. This noise removal procedure requires several parameters that
can be adjusted to suit the characteristics of the noise if they can be detected.
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In summary, the study on image preprocessing for ATHOC imagery is intended
to provide data that may answer the following questions: 1) Is noise cleaning
beneficial? If yes, which algorithm is most efficient? 2) Which edge enhance-
ment algorithm is most efficient? 3) Which slicing algorithm is most efficient?

C. EVALUATION METHODOLOGY

The answer to the above questions may be obtained by an organized series
of tests. Figure 1 shows the main steps involved in the overall simulation test.

SENSOR #1 IR WFOV (LR)

PREPROCESSING -MAGE MACHIE'31--0EVALUATION CISION MAKN

SENSOR #2 SPAL NFOV (HR)

Figure 1. Preprocessing Evaluation for ATHOC Imagery

Preprocessing algorithms are applied in series and resulting images are
correlated to see if the specific preprocessing algorithm improves the
correlation performance. Figure 2 shows the flow for the preprocessing applica-
tion. Two noise cleaning algorithms, five edge enhancement algorithms, and
three slicing algorithms were tested. These and other algorithms have been
incorporated in a software simulation program called GIPSY (Goodyear Image
Preprocessing System).

D. PREPROCESSING TECHNIQUES

In this part, the preprocessing techniques studied are discussed.

1. Noise Cleaning Algorithms

a. Low Pass Filtering. An image may have noise from several sources including
electrical sensor noise, channel errors, etc. These noise effects can be
minimized bi classical statistical filtering techniques available in the
literature,

Image noise appears as discrete isolated pixel variations that are riot
spatially correlated. Pixels that are in error often appear markedly different
from their neighbors. Noise in an image generally has a higher spatial frequency
spectrum than the normal components because of its spatial decorrelatedness.
Hence, simple low-pass spatial filtering can be effective for noise smoothing.
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Figure 2. Flow Diagram of Video Preprocessing Test

A filtered output image F' is formed by discrete convolution of the input
N x N image array F with the L x L convolution array 0 according to the relation

F 1(ml2) = F(nl,n 2 ) *H(m1 - n1 + l, m2 - n2 +)

For noise smoothing, H should have a low-pass characteristic with all
positive components. We used the following array for the present experiment:

H l 1/9 9

b. Edge Preserving Noise Cleaning. 6 Such noise cleaning algorithms as low-
pass filtering or smoothing have a basic difficulty that, if applied without care,
tends to blur any sharp contrasted edges which are considered to be good informa-
tion content. The edge preserving filter discussed here and used for experimenta-
tion was selected to resolve the conflict between noise elimination and edge
degradation. It looks for the most homogeneous neighborhood around each point
in an image, and then g±Aves each point the average gray level of the selected
neighborhood area. Noise in the image is removed by the usage of this method,
while the edges remain sharp. The approach used in the experiment is as
follows:

1. Compute four averages, a1 , 2a 3 and a 4 for four different neighbor-
hood windows respectivel, a

I Those windows are defined as wI - (A, B, D, X), w2 - (D, X, F, G),
w3  (B, C, X, E), and w4i (X, E, G, H).

A B C

nD X E

r.F G HI

2. For four average values, compute IaJ - X and find aj which gives

minimum difference.

3. Then replace the old X by the value of selected aj.
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2. Edge Enhancement Algoritlis

A variety of edge enhancement algorithms are available and implemented in
GIPSY. Thus far, Laplacian, smooth gradient, cross gradient, compass gradient,
and Chen's gradient have been applied.

a. Lap]acian. A Laplacian mask can be used to sharpen edges without regard to
edge direction. Several types of Laplacian masks are used in the literature. 3

We used the most common mask:

b. Smooth Gradient. A 3 x 3 nonlinear edge enhancement operator has been
suggested by Sobel'as a bi-directioaal gradient operator.

In the experiment, we used a smooth gradient operator instead, which is
very similar to the Sobel operator except for the equal weights.

[0 -1 1-1 -1

r1331

c. Cross Gradient. Instead of using a rectangular window, we used a cross
gradient operator because of the simpler hardware implementation and
computational procedure. The operator is dafined as follows:

. 0 -1 - -1 . .- 13 for the horizontal direction, and

I .. . 1 0 -1 -1 -1... -_] for the vertical direction

The number of I's and -l's can be selected as an option. We used three l's
and -1.

d. Compass Gradient. Two-dimensional discrete differentiations can be
performed by convolving the original image array with the compass gradient
masks. Several compass gradient maska are defined in the GIPSY. We used
simple 5-level masks as shown.

North Northwest West Southwest South Southeast East Northeast
0 -1 0 -1 -][- -2 - [- - 0 [-1 0 1 0 -1 2

1 0 1 2 -1 0 ]0 -2 0 -1 0 0 0 -1 0 1 - 0 2 .-1 0 1

-1 -2 -1 0 -1 -2 1 0 - 2 1 0 1 2 1 0 1 2 -1 0 1 -2 -1 0

e. Chen's Gradient.' This modified gradient opeiation takes the product of
four conventional gradient operations in different directions. For a 16-point

array, the Chen's gradient is

4•-i--d where a- .5 (IF-KI + li-Gi) b-.5 (IA-PI + IM-DJ)K

c- .5 (IB-0 + II-H I) d ".5 (iC-NI + IE-LI )
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3. Slicing Algorithms

a. Tri-Level Slicing. Based on recent studies*lnd experiments, use of a tri-
level algorithm provides a desirable combination of acceptable performance and
simple implementation. Improvements when using more than three levels are
obtained only under special conditions. To improve performance by increasing
the number of slice levels it is required that the average object size in the
scene decrease as slice levels increase.

Following is a brief description of the logic used for tri-level slicing
of sensor data. There are a number of possible thresholding or signal slicing
methods that may be used to delete unwanted information or to emphasize desired
information in the process of converting multilevel data to tri-level for
subsequent matching., The basic method used is to measure the mean (p) and
standard deviation (a) of the data and set threshold values that are proportional
to these measurements. The relationships are:

If V(t) _ i + (K )a , then b(t) - 2

If p + (Ku )cy > V(t) P I - (Kt)a , then b(t) - 1

If V(t) < i - (K Z)O then b(t) - 0

where V(t) - the instantaneuus value of a multi-level signal

b(t) - the corresponding instantaneous value of a sliced
signal

K W the sigme multiplier for V(t) greater than the
mean; i.e., to establish the upper threshold

K k M the sigma multipler for V(t) less than the mean;
i.e., to establish the lower threshold

Values of K - K 0.43 were used. This provides a uniform distributionSU
of the three slice levels if the input scenes have a normal distribution. A
limited survey of input scene histograms indicates that they do not have a
normal distribution. However, this does not appear to have a significant effect
on the distribution of slice levels.

b. Bi-Level. Bi-level slicing of sensor data is achieved by using only the

mean (p) computed from each rectangular window. The relationships are

If V(t) > p , then b(t) - 1

If V(t) < P , then b(t) - 0

c. Rayleigh Slicing. The gradient operation computes the gradient vector of
a p'ixel from its X and Y components as discussed in the part of edge enhancement
algorithms, here. Bi-directional enhancement algorithms, specifically, can use
the following set of equations to combine both or select the maximum gradient:

1() X2 + Y2; (2) IxI + YI ; (3) MAX I X1 IlY1
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If we assume the original image is normally distributed, then applying the
first equation will result in a gradient image with probability density function
of Rayleigh distribution.?'

/ 2
f(f + Y2) - f (r) Y exp 2y2  U(r) (1)

Now, in order to slice the gradient image intc bilevel or trilevel images,
the statistics of the image is used. 2

PI1
Let II . in (1) ; Then F- - e 2 (2)

Y

By setting for bilevel slicing as F(pI) - .5 and solving Equation (2) we obtain
r . 1.18.Y1 (3)

For trilevel slicing, setting Equation (2) to 1/3 and 2/3 for lower and upper
level respectively, we obtain P r - 90

Y (4)

- 1.48Y (5)

To derive the relationship between the ztandard deviation a and the value of
"Y, compute Co-

< r i(r) • r dr (6)

< r 2 > - f f(r) r2 dr - 22 (7)
0

a2  < 2 > 2 2Now, from (6) and (7), ff < r> -< r > (2 V/2)y
(8)

Therefore y -/y233 a. From Equations (3) through (5) and (8), we obtain
the threshold values for bilevel and trilevel. r - 2.750 for bilevel, and
r - 1.38o for lower level, and r - 2.26 0 for upper level in trilevel.

E. RESCALING ALGORITHM

Since the two sensor images are generally different in scale, rescaling
is necessary prior to correlation. Assume original and rescaled images as
A(i,j) and B(kt) respectively. The scale factors in horizontal and vertical
directions SX and SY are: SX - (resolution in B in horizontal direction)/
(resolution in A in horizontal direction); SY - (resolution In B in vertical
direction)/(resolution in A in vertical direction. The simplified rescaling
algorithm will integrate pixels of SX by SY rectangular window from A and
create a single pixel in B.
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The following steps are taken for the rescaling and Figure 3 shows the
definition of each parameter. The operator L J indicates the truncation of
the fraction.

1. ISX SX + .5J , IsY- LSY + .Sj
2. Total number of pixels in B: K- I/sxJ , L - LJ/SYJ
3. Compute pixel B (k,t), where k 1, 2, 3, . . . . , K, and 1,

2, 3, L p q
B(k,k.) - I I A(i,j)

i-i i-i
where i Lk * SX + .5J - Isx + 1, j L * SY + .5J - ISY + 1, p - Li + ISX - iJ ,

q = LJ + IsY1- .S

' --J( (Pq) (1,J) (1.L) (K.0)

Figure 3. Rescaling Algorithm

F. SCENE MATCHING ALGORITHMS

As pointed out previously, the method used for evaluating effectiveness
of the image preprocessing is correlation of the video data. Previous work 1 0

at GAC provided a correlation program that here was adapted for application
to the ATHOC tests. The correlation program consists of several algorithms
that relate to coarse-f!ne search, number of levels correlated in the video
data, and provisions for match point validation. The matching algorithms
are discussed in this part, and the matchpoint validation algorithms will be
presented in the forthcoming contract report.

a. Coarse-Fine Search. All tests used a coarse-fine search procedure. For
coarse sear,;h the large and small images were both sampled to be smaller in
each dimension by a factor of 2. For each test the coarse sampling was
performed by simply using only the even-nmtbered rows and columns of the
original imagery. Fine search was performed by generating a 9 x 9 match
surface centered at ,h coarse beiArch m+itch peak location. The original live
and reference images without sampling were used for fine search.

b. Multi-Level Ccrielaticn. Multi-level correlation requires 8-bit per
pixel for correlation. The normalized absolute dilference measure can be
obtained by normalizing each correlation rectangular window first, then
applying mean absolute difference computation. The normalization is achieved
by the following procedure: Normalized Pixel - (pixel - mean)/ (standard
deviation) where mean and standard deviation are statistics of each rectangular
correlation window.

c. Bi-Level Correlation. Once a slicing or thresholding operation is applied
to multi-level edge-enhanced inxiges, a bi-level image is obtained. The
absolute diffterence measure between two bi-level images does not need any
normalization to the images before correlation computation.
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d. Tr!-Level Correlation. The internal characteristic. of tri-level slicing
supports normalization procedures. Therefore, simple absolute difference
will do the correlation compuitation.

e. Normalization of Correlation Surface. The correlation surface amplitudes
are normalized so that a perfect auto-currelation peak is unity while the
average of off-match point values approaches zero. The necessary normalization
expressions are derived below. The GAC correlation surfaces use the absolute
difference between the reference and live images as a measure of the match
between the two arrays. For example, a point i in the correlation surface
has a per-pixel average difference, Di, given by

1~ JR<N~D = I I JR. Lj (9)
i N jl

where R and L. represent the values respectively of the reference and live
arrays Af N pilels each at the point i. The difference D is normalized so
that a perfect match (when Di 0) becomes unity and the average off-peak match

when Di = E[Dj becomes zero. Hence the normalized match ýNi is

IN .- '~DiE[Di (10)

The average off-peak match EDiD d is evaluated from the statistics of the
live and reference values, YJ and Li. Assuming pixels have a gaussian

distribution with a nominally zero average E[A] and a standard deviation, G,
the corresponding statistics of the individual pixel difference, d = R - Vj3 3
are Efdjl 0 ; Gd VJ G (11)

The statistics of (11) assume off-match independence between the live
and reference pixels, and that they have similar gaussian distribution with
the same average and standard deviations. The desired average EFDJ is equal
to the average pixel absolute difference; i.e.:L

DI 2 1 d exp a 2 dd (12)

WTV27 Vo1 4a

Solution of (12) produces: E [D 2 2a/"r . The values of a, the
standard deviation of the referince, are evaluated for 3 cases, bi-level,
tri-level, and multi-level surfaces. The bi-level and tri-level surfaces
assume a uniform distribution of the 2 or 3 intensity levels, so that
a - 1/2 and 2/3 for respectively the bi-level and trn-level surfaces. For
the multi-level surfaces, 0 is computed for each case from the actual intensity
distribution.

G. EXPERIMENTAL RESULTS

1. Senscrs and Scenes

The HR TV imagery were obtained from the Stabilized Platform Airborne
Laser System (SPAL) which contains a narrow field of view silicon vidie-v.
The LR infrared missile seeker input imagery was generated using an 1R se..sor
unit. The characteribtics of those sensor units are:
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HR VISUAL LR IR

SENSOR: SPAL NFOV TV WFOV IR WH
POV: 50x 2 5° 2. •_ 2. % -5

RESGLUTION: Horizontal 33.56 prad pixel (5MHz) Horizonral 159.6 -- ra dpixel
(independent)

Vertical 36.36 prad/TV line/field Vertical 490 Prad/detector
(independent) or 163.33 plrad/TV
line/field

Six different scene pairs of low resolution IR and high resolution TV
were studied. Two of them are shown in Figures 4 and 5.

TV IR

Figure 4. Scene 1 - NASA Tower

TV IK
Figure 5. Scene 4 - Parking Lot

The input imagery contained 512 x 480 pixels per frame (two fields). For
use in the evaluation tests only one field and every other pixel in each line
of video were used resulting in 256 x 240 pixels imagery.

2. Rescaling of Spatial Resolutions of HRS and LRS Images

The difference in resolution of HRS and LRS videos is caused by the
differing fields of view, number of IR detectors, TV lines per frape, frame rate,
aspect ratio, and sampling rate of the two sensor systems. The resolutions of
the two images are rescaled to have the same spatial resolution in the following
way. Case 1 Vertical scale factor between TV image and IR image is 163.33/
36,36 - 4.1.9, and horizontal scale factor between TV image and IR ±mage 159.64/
33.56 - 4.76. Case 2 Another consideration is given to the scale reduc.ion of
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only independent !R detectors. Since each detector is read out three times
in the IR sensors, the vertical scale factor is three times larger than that
in Case 1: Vertical scale factor is 490/36.36 - 13.48, and horizontal scale
factor Is 4.76. Besides these scale reductions by scale factor of cases 1 and
2, every other pixel is used to equalize the scale in horizontal and vertical
directions in one field of TV imagcus. After the rescaling operation, case 1
gives 256x 240 for HRS and 53 x 53 for LRS and case 2 gives 256 x 80 for HRS
and 53 x 17 for LRS. Figure 6 shows the case 1 rescaling of &azen 1 (Figure 4).

RESCALED TV IR

Figure 6. Example of Rescaled Image

(Framed portion in IR is the estimated target window)

3. Target Designation and Estimation of Target Location

The following steps were taken to designate target locations in high
resolution TV images and locate estimated target position in each correspond-
ing los resolution IR images.

1. (a) Designate a specific point which is easily identifiable in
both LR and hR scenes, or (b) Designate a target as a center
of the HR TV image.

2. Measure the corresponding target location in the LR IR image.

According to the procedi•re l(a), we obtained the following set of
designated target (x,y) and estimated match location (x,y) as shown in
Table I (a). If only independent detector lines are used following the
procedure 1(b), the locations of the designated and the estimated targets
will be one-third of the values given in the Table I(a) as shoum in Table
1(b). The two tables show the locations measured in TV frame resolution scale.

TABLE 1(a). TARGET COORDINATE TABLE 1(b). TV IMAGE CENTER COORDI!ATE
DES. TARGET EST. TARGET DES. TARGET EST. TARGET

SCENE NO. x y x y SCENE NO. x y x y

1 21.7 18.3 127.3 128.7 1 27 27 132 138
4 19.8 36.2 85.0 136.1 4 27 27 92 127

Although the specific target points selected In the HRS TV images generally
were points that could be recognized with respect to a known object in the
scene, it turned out to be nearly impossible to accurately identify the
corresponding point in the LR images. Both the resolution difference and
the contrast difference contributed to the difficulty. This inability to
precisely pinpoint the selected target points in the two different sensor images
may have caused some displacements in the correlation test outputs, the
values of which were a measure of the inaccuracy of the operation. The values
obviously were a function of scene characteristics. In some cases the dis-
placements were within a few pixels.
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4. Preprocessed Images

Figure 7 (two sheets) depicts the preprocessing results. Scene No. 1
is used as an example. For each scene, photographs were made of CRT displays
of both the HR TV images and the LR IR images. The matrices were organized
to illustrate in picture form the effects of the application of preprocessing
algorithms to the scaled imagery. The picture in each upper lcft cox'er has had
no intensity or amplitude preprocessing. Pictures in the left column resulted
from edge enhancement preprocessing of the original image using only the smooth
gradient algorithm, only the cross gradient algorithm, etc. Pictures in thn
second columrn illustrate the effect of applying che same edge enhancement
algorithms to the original image after noise cleaning by low-pass filtering.
And pictures in the third column illustrate the effect of applying the same
edge enhancement algorithms to the original image after noise cleaning with
the edge presenre algorithm. The CRT displays were enhanced in most cases to
accommodate the photo process requirements.

5. Correlation Results

The ATHOC simulation facility includes a host digital computer system,
an ascociative array processor, and reference image generation equipment.
The host Sigma 9 digital computer has 1'8K 32-bit words, four 86M byte disk
systems, four IBM-compatible 800/1600 bpi 9-track magnetic tape drives, and
remote time sharing terminals.

Most of the simulation software is written in Sigma 9 FORTRAN language
utilizing time sharing terminals. Non-real time scene matching simulation is
implemented within the scope of this digital computer system. In the rest
of this part, a typical correlation result is presented. Figure 8 shows the
bi-level correlation result between rescaled HRS and LRS images of NISA
Tower (Figures 4 and 6). Coarse and fine search sequence was applied. Fo-r
coarse search, 46 x 44 rescaled HRS TV image and 224 x 220 LRS IR image were
used. The estimated target location was (132, 138) in (x,y) coordinates.
The answer obtained from the coarse search was (134.4, 138,9) with correlation
amplitude of .597. For the fine search, 46 x 44 HRS and 54 x 52 LRS images
were used to obtain 9 x 9 correlation surface. The result was (134,,7,
138.9) with a correlation score of .60?.

6. Performance

Test results arc discussed in this section. Tests are performed by using
several search modes: (1) Extended area/Limited area Search; (2) Multi-/
Bi/Trilevel Search; (3) Coarse-Fine/Fine Search; and (4) TV Rate/Independent
Detector Lines Search.

Limited uearch only searches limited area of large array around the
estimated target location. Extended search searches all over the large
scene. The limited search is tried to save computer time and it inditcate_ the
effect of preprocessing operations on the correlation performance. HuIttlevel,
bilevel, and trilevel correlations are pFkrformed to investigate the effects of
preprocessing algorithms on each slicing method.. Coarse-Fine Search combInat in
is tried to save computation time. Coarse aearch uses onlry every other pixel
in every other line. After a coarse search, the location with the kiighast
correlation score among the correlatlon results of three sliclnf a]ige&riA.,hnm
is selected as a center of search for the ie e.arch. The search wi,,-idow 1,,,
9 x 9 around the coarse anwswer. This appFroach Is taelen becausie higher corve!., ..
tion score indicat,ýs ,better match quality In pir.ncipleo Houever, thl6. method
could prc ient from applying the correct nuczhpolat with lower score in another
solicinp, method.
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Searches with images of TV rate and Independent detector line cnly are
performed in order to investigate the effects of the preprocessing methods
on those images.

a. Limited Area/TV-rate Search (Table II)

Table II siio-7s the results of multilevel, bilevel, and trilevel correlation
of scenes No. 1 and No. 4. All searches are based on limited, TV rate, and coarse-
fine search mode. In the table, scene number, small image window sizes for
coarse (C) and (F) searches are indicated. In radial error column, the
parenthesized values are ones exceeding ±5 pixel error.

Multilevel correlation results show that all preprocessing methods give
reasonably good results except Laplacian operation. Bilevel correlation
results show some degradation in images with edge preserving filtering for
scene No. 4 except cross gradient method. Correlation score is upgraded
from those in multilevel correlation. Trilevel correlation shows same trends
as in bilevel.

bL. Extended/TV-rate Search (Table III)

Table III shows the results of multilevel, bilevel, and trilevel
correlation of scenes No. 1 and Fo. 4. All searches are based on extended,
TV-rate and coarse-fine search mode.

Laplacian did not give good results in this multilevel correlation,
either. Cross and compass worked with reasonable results. Low-pass filtering
helped to improve the performance. Smooth gradient with scene No. 1 failed
except with low-pass filtering. Chen's gradient failed with scene No. 4
except with low-pass filtering. In bilevel, cross and compass worked well
as in the multilevel. However, with scene No. 4, compass was failed. Cross
showed strong improvement when it applied after both noise cleaning operations,
especially with scene No. 4. Trilevel correlation results do not show any
specific trend except that cross with scene No. 4 and smooth with scene No. 1
show good correlation results.

TABLE !I. LIMITED SEARCH

(a) MULTI-LEVEL (b) RI-LEVEL (c) TRI-LEVEL

RAkDIAL ERROR RADIAL ERROR RADIAL ERROR

FILTER LOW EDGE LoW EDGE LOW E!)(.[

NONE PASS PRESERVE NONE PASS PRLS[RVE NON- P\SS PRI Si 01.

SCENE 1 SMOOTH 3.4 2.2 2.8 2.6 2.3 2.6 3.3 2.1 2.7

CROSS 2.8* 1.6 2.4 2.6 2.6 2.7 (--- ) 2.4 2.9

C-32h32 COMPASS 3.0 2.1 2.5 2.8 2.8 2.5 2.7 2.3 2,9
F-16*1b CHI-N 3.6 1.9 2.3 2.6 2.6 2.b 2.9 2.'4 2.6

LAPLACE (---) (5.1) 3.7 (5.3*) 4.7 2.3 (5.8*) (5.3) 2. 3

SCLNE , ';MOO)IH 2.2* 1.8 2.24* 4.9A 2.4 (5.4*) 4.0* 2.3 (47.4*)
i pw., 1.7 2.7 1,2 2.1 1.9 1.9 2.? 2,2 2

('2' •2 (,•hti'AS5 j .8* 2.2 2.5* (5.4*) 2.? (5.2*) 4 i) 2.5 2.6*

k--I6*] 6 C. H I N . ' 2.2 (15.1) 3.,3 3.0 (9.1) 3.2 2,7 (5.,0")

t1I-A8. ( .. 8*) (5.5) 4.5* 2.5 (5.8) ý'.9 2.9 (5.6 )
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TABLE III. EXTENDED SEARCH

(a) ULTI-LEVEL (b) BI-LEVEL (c) TRI-LEVEL

RADIAL ERROR RADIAL ER.POR RADIAL ERROR
LOW EDGE LOW EDGE LOW EDGE

FILTER NONE PASS PRESERVE NONE PASS PRESEUVE NONE PASS PRESERVE

SCENE I SMOOTH (-...) 2.3 (---.) ( 5.0) 14.3 3.5 3.7 3.1 3.2
CROSS 2.3 1.9 2.5 2.7 2.8 2.9 (10.6*) 3.7 (10.5)

"C-46*44 COMPASS 2.5 1.7 2.3 4.9 4.6 3.2 3.4 2.4 (72.5)
F-46*44 CHEN 2.5 1.8 2.2 (14.3) (13.0) (9.4) 2 9 (11.5) 2.4

LAPLACE (72,7) (71.2*) (75.8) (19.3) (70.9) (12.5) (38.1*) 1.7* (30.1)

SCENE 4 SMOOTH 2.a 1.6 2.b (59.0) (17.3) (63.1) (94.8) ( 5.2*,' (94.1)
CROSS 1.7 1.6 1.7 (15.3) 1.5 1.5 1.6 1.6 1.7

C-32*32 COMPASS .9 1.5 1.5* (22.5*) 032.1) (22,4*) (93.7) (89.3) (94.3*.
F-32*32 CHEN (26.7*) 1.8 (13.2) (79.1*) (16.3) (78.6) 1.9 (6.0*) 1.8

LAPLACE (92.7) (3.8*) (49.6) (21.4*) (:24.6) (20.0) (63.5) 4 (91 4)

c. Limited/TV-rate/Raleigh Slicing (Table IV)

Table IV shows the results of bilevel and trilevel correlation of sceneb
No. 1 and No. 4. All searches are performed under the modes of limited, TV-rate,
coarse-fine, and Rayleigh sl-icing algorithms. The purpose of Rayleigh slicing
application is intended to compare the performance between Gaussian and
Rayleigh distribution assumptions. The threshold values are selected as 2.740
for bilevel and 2.10(7 and 3.450 for lower and upper threshold in trilevel
respectively. In bilevel, compass gradient for scene No. 2. and cross gradient
for scene No. 4 show good results. In trilevel cross and compass gradients
show good results for scenes No. 1 and No. 4.

TABLE IV. L'YLEiGH SLICING (LIMITED SEARCH)

(a) BI-1.EVEL (b) TRI-LEV'EL

R?.DIAL ERROR RADIAL ERROR
FILTER YOW EDGE FILTER LOW EDGE

NONE PASS PRESERVE NONE PASS PRESIRVE

SCENE I SMOOTH 1.9 (13.8) ( 7.5) SCENE I SMOOTH .9 (15.5) (12.5)
CROSS ( 6.3*) ( 8.801) ( 9,8*) CROSS 2.7,* l4A 2.,*

C"I?*32 COMPASS 1,7 1.6 1.6 C-37*32 COMPASS 1.7 .J 1.1
F-16*16 CNEN ( 6,9*) .8 ( 9.96) F-16*16 CHEN (14.5*) 1.1 '17.2e)

LAPLACE ( 7.6) 4.04 3,1* LAPLACE 3.0* (13.8*) 5*

SCENE 4 SMOOTH (-.....) (12.8) (6.8*) $'ENE 4 S )OO H 2.8* (12.9) ( 9.96)
CROSS 3.7 3.3 3.1 CROSS (5.5) 3.0* 2.?

C-32*32 COMPASS (7.8) 4.2 4.7 C-32*32 COMPASS (----) (-..) 2.5
F-16*16 CHEN "11 4 (12,7) P-16*16 CHEN (--- ) 2.8* (123*)

LAPLACE (12.1) ( ... ) (14.7*) LAPLACE (30-2) (17.4)

d. Extended/Independent Detector Lines (Table V)

Every third linc o. the or.ginal image is selected to extrac~t each detector
line output. This: test is intended to compare the effect of preprocessing
algorithms on the TV-xirie format and independent detector line format. Multi-
levkl, bilevel, and trilhvul slicing methods are applied.
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In multilevel correlation, low-pass filtering operation for independent
detector lines degraded the performance for scene No. 1. This is expected
because the NASA tower has very sharp edges in the original image. On the
other hand, edge preserving filtering performed well for both cross and
Chen's gradients. Scene No. 4 shows better results with low-pass filtering
than with edge preserving filtering. Same trend is shown for bilevel with
scene No. I as with multilevel. Scene No. 4 does not show good performance.
It is noticed that for trilevel the cross gradient with edge preserving
filtering for scene No. 4 shows good results. That is the only good result
with scene No. 4. Scene No. I shows same trend as in multilevel and bilevel.

TABLE V. INDEPENDENT PIXEL (EXTENDED SEARCH)
(a) MULTI-LEVEL ()B-LEVEL (c) TRI-LEVE

RADIAL RADIAL ERROR RADIAL

FILTER LOW EDC. LOW EDGE LOW EDGL
NONE PASS PRESERVE NONE PASS PRESERVE NONE PASS PRESERVE

SCENE I SMOOTH (50.3*) (20.8*) (22.3*) (62.0*) (61.6*) (61.5*) ---- ) 2.7* ( .... )
CROSS 1.2 (20.4*) .94 .8 (58.4) 1.3* .7 (60.6; .84

C-32*12 COMPASS (3e.1*) (20.4*) (38.0*) (-.....) (61.0) (61.8*) (--.-- ) (61.0) ( ---- )
F-32*12 CHEN .1 (20.6*) .14 .5 (59.7) .82 3.0 (61.3) .9

LAPLACE (30.0*) (32.4) 1.0 .76 (34.4) i.3 2.2 (33.0) 1.22

SCENE 4 SMOOTH (77.3) 3.7* (28.0*) (73.6) (31.2) (10.7*) (34.2) (27.3) (8!,8*)
CROSS (35.6) (35.9) 3.8 (32.3) (32.8) 5,0 (33.1) (32.7) 4.0

C-32*12 COMPASS (18.6*) 3.4* (84.9) (101.4*) (28.3) (82.0*) (103,0) (29.8) (81.1)
SF=321 2 CHEN (10.8*) 3.7* (22.9*) ( ---- ) 5* (70.1) (71.7*) (70.5*) (70.2)

LAPLACEj (92.9) (119,7) k34.9*) (96.4) (29.6) (30.3) (27.6*) (31.9) (2,0)

e, Extended/Independent Detector Line/Fine Search (Table Vi)

Table VI shows the fine search results. These tests are intended to
compare the performances of coarse-fine sequence versus fine-only search
method. The computation time takes approximately four times longer than
coarse-fine search sequence.

In multilevel, edge preserving filtering performed well giving higher
correlation amplitudes. Low-pass filtering degraded performance for this
independent detector line images. Preprocessing with noise cleaning also
shows good performance. Compass and Chen's gradients worked better in
scene,, No. 1 and No. 4. Smooth gradient for scene No. 1 also shows go~d
performance. Bilevel compass ano smooth gradient operations give good
results. Also, edge preserving filtering operation improved the performance
with almost all edge-enhanced images. In trilevel, smooth, Chen's and cross
gradient operations for scene No. I performed well. For scene No. 4,
Chen's gradient worked well. Edge preserving filtering shows better
performance than low-pass filtering, and no-noise cleaning also gives good

results.

TABLE VI. (FINE SEARCH ONLY) INDEPENDENT PIXEL EXTENDED SEARCH
i[ ~~~~f ( 1- I-t %FL (b) 51- LAP'%U():•-•E

R!A' I Al PA IA &AD I A[
oR oW F :E I IV P3ICE I ow L3F

NO)NE PASS 'pt • FR V • L)NE PASS PR)E PRVy NOPIT PASS P) N gE4

I A 6. I .. 3 1 01 1 , 2 8 2.s5 2 0 "

. ." • " .' .7 1 10 ( .A ) .8 1 7 1 2 9
"A A 2 2) '6 ) 1 (6 2) t21 0) I 3 2. . 3 1) .0) 1.2

8 S5 ... 0 65? 3) (2. 1) (18 9) (38 7) ;31 •) f ) • -
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I. CONCLUSIONS

Several preprocessing algorithms have been studied in application to
the two-sensor boresighting problem. These included two noise cleaning
algorithms, five edge enhancement algorithms and three slicing algorithms.
After eact, preprocessing application, images were correlated to see if the
specific preprocessing algorithm improved the correlation performance. Based
on tests run thus far, the following conclusions are evident:

1. Limited area search revealed that, even in small area search around
the estimated target location, Laplace enhancement does not improve
the correlation performance. However, with scene No. 1 the edge
preserving filtering combined with Laplacian showed good results.

2. Extended area search indicated that cross gradient operation produces
good correlatimn results with or without noise cleaning operations.
Specially, bilevel correlation with scene No. 4 showed that noise
cleaning operation with cross gradient enhancement improved correlation
results. Compass and Chen's gratiet., also worked well in this situation.

3. Images with Rayleigh dlicing algorithms indicated that cross and
compass gradient enhancement algorithms with noise cleaning algorithm
work well for correlation tests.

4. Extended area search with images of independent-detector pixels only
did not work well when low-pass filtering was applied. However, cross
enhancement algorithm with edge-preserving filtering showed good
performance with consistency.

5. To compare the results from coarse-fine search sequence with the
results from the direct fine searches of extended area , tests were
performed. The results showed that edge-preserving filting
definitely improves the correlation performance. Smooth, compass,
and Chen's gradients performed well in multilevel and bilevel
searches. Smooth, cross, and Chen's worked well for trileveZ
correlation tears.

We know it is necessary to investLigat" reason$n why false peaks were
obtained in certain tests. 't will be •os~ib1e to refine the sequence of
preprocessing algorithms and/or to improve co).'Cii i x. ,agorithms to adjust
to the effects of preprocessing operations.
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A DIGITIZriD VIDEO SLICING TECHNIQUE
FOR CORRELATICN PROCESSING

D. PASIK*, H. R. DESSAU*, R. WALTERt

SUL4MARY

A closed loop video processor is described which slices analog video
from radar imagery into tri-level white, grey and black. The slicing levels
are designed to track the video modulation so as to discriminate the scene
feetures from noise and spurious modulation.

ABSTRACT

Slicing of analog video from a radar image is an cssential preprocessing
step prior to digital correlation. A tri-level white, grey and black slicing
sLhere converts the analog signal into a two-bit digLtal word. The encoded
image content is highly dependent on the slicing level's equilibrium steady-
state values and on their time constant responses. For example, a slicing
level set too high fails to pass low amplitude scene content; conversely, if
it is set too low it fails to discriminate higher amplitude scene modu.,lation.
Similarly, a time constant set too slow will not track fast changing contrast
trends while if it is set too fast it will tend to track noise.

A design procedure is presented for dCtermini:ig the modulation-amplitude
Jependent time constants and equilibriam values of the slicing leveis in terms
of the modulation probability distribution.

BACKCROUND AND INTRODUCTION

Terminal go idance in the Pershing Ii system is based on a continuous .ln-
rt •Ia n,,vigation process, from which long term eri:crs are reduced through

independtent determination of vehicle position by a radar map-,mitching or
ilea correlator.

For an aiea correlator Lo be implemented with a digital computational
algorithm it is clearly necessary that both the prestored reference scene and
the real time observed ot live scene be quantizet both spatiatly and with
respect to signal amplitude or, equivalentl), scene brightness. The Pershing
area coirelator slices scene brightness into a tri-level forrrmat, designated as
white, grey and black.

This work was performed under sponsorship of contract number DAAK40-ý9-C-0064,

*D. Pasik and H.R. 1;essau are with Martin Marietta Aerospace, Orlando, Florida

, R. Walter is with ;oodyear Aerospace, Akrtn, oJhio
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A real time process derived from radar presents several constraints and
options. Figure 1 illustrates one sequential allocation of functions for a
3600 scan PPI radar. The points A, B, C represent three choices at which
video analog brightness might be quantized to the required three levels.

B

INTEGRATE REDUNDANT POLAR T

am GROUND UND RA NGE ND RANGE DATA CARTESIAN
RADAR RCVR OVER AZIMUTH 0 Co.ARSIAN

OUTPUTV AM(E 4 TIMATE BRIGHTNESS)
(SINGLE PULSE

AT AZIMUTH, 6)

C

SSTORE COMPLETE LIVE

SCENE ARRAY
(360' SCAN)

CORRELATE 41
MATCH POINT

PRESTORED DETERMINATION

REFERENCE ARRAY

Figure 1. A, B, C are Alternative Tri-Level Video Slicing Points

Delaying the quantization to point C has the potential advantage that
the entire scene information might be used as a basis for the slicing algo-
rithm; however, the computational burden would b3 excessive. Conversely,
quantizing and slicing at points A or B has the computational advantage that
tri-level slicing can be reduced to two independent bi-level operations, re-
sulting in a two-bit word. The drawback is that the slicing thresholds must
be established in real time by a dynamical system which accepts each pulse
return immediately. This approach is discussed below.

Two Implementations of slicing logic have been developed and tested tor
the Pershing correlator. The first, depicted in Figure 2, is the Open Loop
Video Processor (OLVP). Instantaneous slicing levels are based on short term
observed values of average signal level and predtsignated fractions of the

positive and negative excursions about that average. The choice,, of level
constants K1, K2 is dependent on A priori assumptions on the signal distri-
but ion.

"The second Iniplemertation, lescribed below, is an extension of .. concept

de-.cribed by Brkl et al fI1, shown in Figure 3. This Closed Loop 1idao
Prockss)r ((I.VP) performs two ptirallel bi-level slitc ing operations directly
on1 Lht- raw analoIll video at the comparator junctions. Subsequent postproces-
;ill) ,lad illtCgr ttion attLenuates noise and sets the thri, shold levels in terms

•'It pIeLdtsignated fractions of the signal modulation amplitude. The slice
IL'1vel, track changes in signal modulation -mplitude ;Icuording to a dynamical
mdel d.rived In the analysis.
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FROM -
RADAR RCVR ANALOG VIDEO VT-LEVLA

-COMPARAV'OR ----- rO RANGE

CIRCUITRY TRI-LEVEL CELL
VIDEO SAMPLING

EET SLICE LEVTELS
COMPUTE V + K CV)

MEAN VIDEO V 1

AND POWER LEVEL (UPPER)
V -V)2 a2 (V)

(LOWER)

PRESET
LEVEL CONSTANTS

AND FILTER
TIME CONSTANTS

Figure 2. Open Loop Video Processor Concept

FROM PARALLEL RANGE CELL
RADAR RCVR BI-LEVEL SAMPLING

COMPARATOR AND

VIDEO CIRCUITRY POST PROCESSING VIDEO POLAR

CARTES IAN

SLICE LEVELS CONVERSION

COMPARE TO
PRESPECIFIED

PERCENTAGES. INTEGRATION

ADJUST SLICE
LEVELS

PRESET CONTROL
PARAMETERS

PERCENT WHITE
PERCENT BLACK

TIME CONSTANT
L RESPONSE

Figure 3. Closed Loop Video Processor Concept

CIRCUIT MODEL

The closed loop video processor (CLVP) must slice the analog video into

three levels and remove spurious modulation and noise. This is accomplished

by two similar processors acting in parallel, each of which generates a sep-

arate reference level. Figure 4 illustrates the functional block diagram
for the upper half. The slice level, V, separates white from nonwhite. The
digitized video output is +1 for detected white and -1 for detected nonwhite.
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This is logically combined with digitized video from the bottom half repre-
senting detected black or nonblack to encode a tri-level white, grey or
black.

THRESHOLD
AZIMUTHDEET I UF

COMPARATORINTEGRATOR

U +I~o Er.>T CTR V

+ DO SLICEANALOG LEVEL
VIDEO k N

INGROUND • DOWýN

RA.4NGEI
AMPLER DIGITIZED VIDEO OUT

soy

Figure 4. Positive Half of CLVP

The function of the azimuth integrator is to filter out high frequency
noise. Its effect is to introduce a delay of N/2 samples. Because of the
very high sampling rate the net effect is insiguificant in the overall
"operation.

Under the simplifying assumption of no high fLequency noise, the thresh-
old detects white when the analog video exceeds the slice level, V, and non-
white otherwise. This is shown in the analog model of Figure 5. The counters
are approximately by integrators and the D/A by a simple gain, K.

S! COMBINED NONLINEARI r,

u--" dtI
ANAL M

VIDEO j-SIN KV

DIGITIZED VIDEO OUT

Figure 5. Analog Model of Figure
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SLICING LEVEL DYNAMICS

From Figure 5 we can derive the fundamental equation for the slice level

V. Define I1 to be the-fraction of time white which corresponds to the frac-
tion of time that u > V. Define also Jl to be the subinterval set of the
closed interval (o, t] during which white is detected. Take 12 1 I I and

J2 - [o, t] -. J 1 . Then from Figure 5

x 1, f d 1t

ItI1 1!

x2 - dt 
(2)

2 N
Jl2

and

V = V + Kt - (3)

It follows that the equilibrium condition is

1 1 1 2

M N (4)

M N (5)
1 M+N  2 M+N(

This is the first major result. It is more convenient to express V as a dif-
ifelential equation. Substituting 12 = 1 - II in (3) and differentiating
yields the second major result.

dV _ K (M+I - (6)

dt MN I NI

DISTRIBUTION FUNCTION DEPENDENCE

The analog video u is modelled as modulation about a trend, u., whose

dynamic range is 2M1 . The modulation frequency is less than the noise but
otherwise high compared with the trend. It will be shown below that the
distribution function for the modulation about the trend determiies both the
equilibrium slice level and the instantaneous time constant of the slice
level response to changes in the trend.

For the variables x and X define the density function f(x) and tbe cumu-
"lative distribution function F(X) where
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A u-u° A V-u°

dF(x)F F(X) = 2(x_.X) ; f (x) (8)

Then

I, = P(u>V) = 1 - F(X) (9)

Thus the equilibrium slicing level follows from (5) and (9) from the relation

M i
I -F(X) = ; F(X)=-N= (10)

M+N oI M+N i+/

This implies the filter tracks a fixed percentage of white. Some repre-
sentative distributions with their associated canonical waveforms are shown
in Figure 6 for scaled time.

SINUSOIDAL
+8I -I DISTRIBUTION

F(X) = - + - sin X x
2I 2 2

.-- CANONICAL WAVEFORM
O 1 I / t/t 2M1  1

\ / u - - sin- (2t-1)
'IT

M UNIFORM
/ DISTRIBUTION

/ F(X) - +X/ 22+

0 1 / t CANONICAL WAVFFORM

SU - Ml(2t-1)

1M I ARC SIN

/ DISTRIBUTION/
It F(X) - + s•in X

o 1 % t CANONICAL WAVEFORM

~1 -1

Figure 6. Distributions and Canoiical Modulation Waveforms
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Substituting these distributions into (10) yields

SINUSOIDAL DISTRIBUTION

2 in-- 2MN 1 N-M
X= --sin or for uo=o, V - sin- (11)

0 ft N+M' aIT N+M

UNIFORM DISTRIBUTION

N-M N-M
X =- or for u0=o, V = M (12)

o N+MM' 1 N+M

SA!<C SIN L ISTRI L'UTi!)N

X = sii N+M or for uo, V=MI sin -M (13)

Note the inequality

S2 .- 1 Vy
sin y > y > -- sin y, (14)

'miks the slicing level for the arc sin distribution is highest while that of

the sinusoidal is lowest.

A complete description of the slicing level dynamics may be obtained by

substituting (9) into (6). Then

d-V K (--N (I-F(X))- (15)

dt \MNN

This is, in general, a nonlinear first order differential equation. For the

special case of the uniform distribution the equation is linear and (15)

becomes

__ _______] -K(M+N) V K(M+N) Uo (N-M)
dt- = 2MN 2+ - N 2MN M 2MN M 2MN

Y _-+ o-- + C (16)
T T

Hence

V (u + CT) (1 - e- t/) (17)
0

'i time constant T is given by

2MN MI
K(M+N)

and note that CL gives the equilibrium determined by (I').
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LOCAL TIME CONSTANT

For the general equation given by (15) a local time constant, TL, can
be defined in terms of a small slice level change from V0 to V1 . This might
result for example from a step change in uo. This leads to an instantaneous
displacement in X at t = o from its new equilibrium value. We have the fol-
lowing result:

THEOREM:

The local time constant, TL, is given in terms of the density function,
f, which is evaluated at the equilibrium condition, (10), by

MN 1
L K(IH-N) f(Xo) (19)

PROOF:

For small slice level changes about the equilibrium expand F(X) in a
Taylor's series yielding

F(X) - F(X ) + f(Xo) AXo + +

(V-V )
= F(X ) + f(X ) - 2 + + (20)

where the result for MX0 above follows (7) and the assumption that u. is
constant for t > 0. Substituting (20) into (15) yields a linear equation.

_ __VK(M+N) f(Xo)
dt -_V + other termsSdt MN M

V
... + other terms (21)T L

REMARK:

At the equilibrium point Xo, the substitution of (10) into (19) yields

MN M1 F(X)
S= K f(X)

0

This indicates that time constant TL is a function of M while equilibrium
X (Eq 10) depends on the ration M/N.

Consider the following examples:
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SINUSOIDAL DISTRIBUTION

f(Xo) = 4 cos X ; from (11)

C= os (si-l J (22)

.. °2

4MN M

L T K (M+N)I (23)

' • \N-+M]

UNIFORM DISTRIBUTION

f (Sf(X) 
(24)

S2MR (25

TL = K m•+N) consistent with (18)

ARC SIN DISTRIBUTION

f(Xo) - 1 " from (13)

00

(26)

iTr - sin 2

7 MN M1  1- sin 2 (rN•-)

K(M+N) (27)

For values K = 405.405, N = 64, M = 16, M1= 0.625. There results

T L (SINUSOID) from (23) 31.406 m,

LTL (UNIFORM) from (25) = 39.466 ms

TL (ARC SIN) from (27) = 36.4 ms

A computer simulation of Eq (15) within the unsaturated region 0 < I < 1was performed for various input steps uo. The results arp shown in Figure -7Sfor the sinusoidal distribution and in Figure 8 for the arc sin distribution.
These results are consistent with the following extended interpretation of
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local time constant: Let X be any point in the distribution not necessarily
the equilibrium. Then Eqs (20) and (21) remain valid for an expansion about
X, so that

-r, MN M(
1(X1) k(M+N)-f(Xl) (28)

For the sinusoidal distribution a positive step, u., which increases percent
white, reduces X, increases f(x) and from (28) reduces r. A negative step,
U., reduces f(X) and increases T. For the arc sin distribution the converse
is true. The uniform distribution has an invariant time constant.

Suppose now equal values of N and M are assigned to both halves of the
CLVP, Then Figure 7 implies that for a positive step input, u., the upper
slicing threshold will have a faster time constant while the lower slicing,'
threshold will be slower. The converse holds for a negative step. On the
other hand Figure 8 indicates that for a positive step input, uo, the u,')er
slicing threshold is slower while the lower is faster. Again the converse
holds for a negative step. Consequently, for equal N and H settins the0 Lime
constants of the two halves of the CLVP are never for finite uo (.xcept in the
case of the uniform distribution. The difference in time constant ¼,Lwtwvn Lhth
upper and lower halves might then be used as a measurement for the distribu-
tion function.

Finally the above arguments indicate that the CLVP circuit will tend to
adaptively reject unlikely noise pulses which pass the azimuth integrator.
In fact positive and negative pulses are filtered differently so as to bias
the noise in the most likely direction. Consider the sinusoidal di!;tribu-
tion. A positive noise pulse drives the threshold high into the region
where f(X) is decreasing. From (28) the time constant gets larger thus at-
tenuating the pulse. Conversely a negative pulse drives the threshold low
into the region where f(X) increases and the corresponding smaller time con-
stant tends to pass the pulse. Similarly a negative pulse is rejected and a
positive pulse passed in the case of the arc sin distribution. There is no
preferential filtering for the uniform distribution.

CONCLUSIONS

The Closed Loop Video Processor performs tri-level slicing based on pre-
determined percentages of the analog video modulation. Hence it tracks
changes in modulation amplitudes in addition to signal level trends. Slice
levels and time constants depend on the modulation distribution; however, if
this is known they can be preset in terms of the parameters N and M. Note
that time constants depend directly on the modulation level, Ml, so that if
the level MI varies over the scene some additional mechanism may be needed
to control time constant.

R~FFIHENCE

[1 ]'T'hree--Level Signal Samples has Automatic Threshold, Stanley S. Broki, 2t
lNASA Tech Briefs, Summer 197/
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Paper No. IIB-4, Presented at the Workshop on Imaging Trackers
and Autonomous Acquisition Applications for Missile Guidance,
19-20 November 1979, Redstone Arsenal, Alabama.

AUTOMATIC HAND-OFF FROM FLIR ACQUISITION DEVICE

TO IMAGING IR SEEKER

John A. Knecht
Naval Weapons Center

China Lake CA

ABSTRACT

This paper describes the background and the
current efforts to develop an aircraft sensor corre-
lation device (ASCD) to automatically hand-off
from a Forward Looking Infrared (FLIR) acquisition
sensor to an Imaging IR (0R) seeker. This type of
system implementation makes it possible for the
pilot/operator of an attack aircraft to acquire and
identify the target at long range using the high
resolution and sensitivity of the FLIR and then
automatically hand-off to an imaging IR seeker at
a range which the seeker, if used alone, could
detect but not identify the target. Additionally
the reduction in operator work load and time line
provides a high probability of first pass attack.
The hand-oh device described uses high speed
digital technology to perform real time
video-cross-correlation and, via the FLIR-seeker
servo loop, continuously align the seeker to the
FLIR.

I. INTRODUCTION

The objective of the Aircraft Sensor Correlation Device (ASCDJ) is to

provide an automatic h ,d-off from a FIZZ acquisition sensor to an imaging IR

missile seeker. The de,,elopment effort has been directed toward working within

current Navy plans for aircraft, avionics, and missiles. Specifically, this means

A-6, A-7, A-18 aircraft, the F'LIts already in development for these aircratt,

and Maverick variant weapons of th,- lock-on-before--launch type.
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T'ie utility of the kSCD hinges on its abilit) to ,iaxi~nize both the weapori

release range and the probability of first pass attack. These requirements are

necessary to reduce aircraft attrition which can ea:;ily become the dominant

factor in assessing the cost of killing targets.

First pass attack demands a minimum time to locate a target and ready a

weapon to fire. it implies first) a FLIR and second a means of automatically

handing-off targets from the FUIR to the missile seeker. That ineans is provided

by ASCD.

IH. SYSTEM CONCEPT

a. The operational problems facing Naval attack aircraft include first pass

attack, including off -axis targets and the capability of rapid in'lltiple fire. The

ASCD by tying the FLEIR and seeker together provides a system which solves

theseproblems. By ,iahling the operator to rapidly find and lock up a target, an

%')CT based .syste:n can initiate a first pass attack and perform a rapid mnultiple

(ire,. The C- ,tltirl-s alignment of seekor to FLIR allows easy off-axis

;xcjisition. The ASCD approach has the aiditional advant;lgos *)f reducing the

operator vork load which when added to the reduced time to laUnch the weapol,

results in increased aircraft survivability. This enables ,v:-i .i sijgle seat

aircraft to successfully utilize a weapmn of this type. Use of thp FLPIZ as .it

a,,luLisition aid for the rR weapon takes adtvantage of the higher resolution,

s i iiti ity i'Il piitiolg ,', :,Iracy of the FLIR to acquire' t.irgtts iat greater

r oiges undor •nore degraded conditions. Also the larger gimbal angles and larger

field-ut-view of the FLIR enable the opera tor to acquire the target with a

higher dlegree of pr.)bability.

"Iu nan fa,'tor studies haveý showii I that it t ikes an op)raitor 3 to 53 seconds

Unre titin, to Ioc,•t e and dlesignate a targo-t on the FLIR display and then

Naval Weapons (Center. "Feasibility Study of a FLIR/Imaging Seeker
Syste.m, hy Jeffrey D. Grossman. January 1977. (NWC TP 5909).
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manualiy re-locate the target again on the seeker display when compared to an

automatic hand-off system. This study was for an operator in a dual seat

aircraft and time savings for single seat aircraft would be significantly greater.

This additional time usually comes at a point where the ai-craft is exposed to the

targets defenses. The shortening of the time line provi-led by automatic

hand-off directly results in an increase in aircraft survivability.

A typical acquisition and launch sequence for an ASCD based system is as

follows:

The operator perfor-ns an automatic coarse alignment of the system while

enroute to the target. This coarse alignment removes gross staic ,nisalignment

between the seeker and FLIR due to mechanical mounting of the missile on the

wing station. The operator then initiates a continuous fine align nent w hi,-h

removes dynamic misalignment due to wing flexure and non-lin._Ar position

transduc,•rs. The aiming symbol on the FLIR display ,ow intliates ':lre the

seteker is pointed. Next the operator acquires the target on the F'LIR display,

pia,-es tOhe aiiming symbol over the t irgt and enables th, track trigger. After

verifying Lhe target, the weapon is ready to launch.

IU. BACKGROUND

The idea for an ASCD was originally conceived out of necessity luring the

"..irly , . f ,e a the Night Attick Pr')grarn. The ASCIJ ,develop.-l luring tlhis

prog.a.ii, was used to align a mtodified S3-A FUR with a non-imaging circular

scan seekr on a lock before launch missile. Since the seeker was by design

a mn -i.l aging, an ASC I) was the only optit n vavailable to perforin the hand-off.

As .,hown in Figure 1, the- seco, d gen)eration AS(I) built by .Atytheon C ?o.

kli.itized .t "snatp snot" o'f. and seo-kor video. This was thou P a-,. . .- d -- ,

ni)rmaliz.,d pr,),,aI t 15 hlevl c )rrelator implei entet d a ,s i pipohi, processor.

Using the se,,ektr video as .a rotr , e, and searching th, array of F'IAI\ video, the

jml iiit at hih.est•[ crrl.iti, 'n (',iat4thpoint) wts fbindl. I'l- ;),1Sil a oat ti,-

ihathhpoint was. thn iis,'d ti) generate a boresight (Afset signal which was, ted to
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the seeker position controller to correct the position of the seker which was

coarsely slaved to the FLIR via gimbal angles. Time required to perform the

coarse alignment was on the order of one second. The normalized product

algorithm and 15 level quantization were used in the correlator because of the

limited amount of video data available from the non-imaging seeker.

FLIR FOV SCANNED BY
INFRARED DETECTORS

OT- FOiR VIDEO COCKPI
- DISPLAY

El IDEO
MEMORY NORMALIZED FRGMA

PRODUCT CGASL015 LEVELANL

PORTION ~~~ ~CORE OFPOSITION-------------------------

0 SEEKER LATOR
VIDEO BRSGT-N

0l MEMORY OFFSETS |

• ,JPOSITION I

SAME SCENE CL O
SM SSEEKER POSITION CONTROL

FIGURE 1. Night Attack Aircraft Sensor Correlation Device
Block Diagram

The ASCD was flight tested on an A-6 aircraft in conjunction with the Night

Attack syste u. Five flights were flown and the AS!7) p,_,rfort irce was

evaluated using scenes such as urban areas, mountairs, desert, clouds and
farmland. ASCD p-ecf:)rnance during the first flights wvas degraded and after

tilni.,g problems were identified and corrected performance inproved. On the

last flight the ASCD was correctly aligning the seeker to the FLIR 72% of the

ti ne. In addition to these flight tests the ASCD was used in the missile
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validation portion of the Night Attack program. In this phase of the program the

ASOD provided automatic hand-off from FLIR to seeker for a total of three

missile launches resulting in three direct hits. In summary, the A.SCD demon-

str-itei proof of conept, documented the merits of the automatic hand-off

.tj)jr,)ach arid Ieinoristra t!. fast .vid accarate hand-off.

IV.. URR r EN'FFOR{T

Since the previous ASCD development effort was for a non-imaging seoke;,

apl i,-ti n, ± he curr,.•it 1Ifort has b,..i reinrcte1l to 1eývttq an XSi) tI .)

with imaging IR seýekers z which are due to be introduced into the. Navy iivent ry.

Tire first step is t) define an AXSD to .vwork with a baseline sytemn. Concurrent

mvith this is ,a investigation of non-correla on alignment !01,:mflue ,:e such as

precision gimbal angle slaving. Th. baselin.. i.sten ised is t he A6-F. T1( A.M

"FUR and the Imnagirig IR Maveric ,:,< k,.,,.r.

Areas of the A.C Y- to h,. •efind ii:led: Prerro,_-essing of video data,

aumnber of digitization levels, effects of S/N ratio, seek .r roll, scene co nple-i ty.

refeni nce size, hardware iinple not.tt ism and seins.,r int.•ýrf t i: . The fi,;t stop in

defining the ý,SCD is to analytically derive •he relationshiip %htwk.e, pr .)ab'lity

tof correlation, P, reference size, signal to noise ratio, and number of quanti-

zatiýon levels. Figures Z, 3 aol 4 show the behavior ,f the pr.)bab)ility of

c. wrelation function, P In the case of Figure 2 a S/N ratio greater than ý is

nee~lel to opti nize correlator pertorinance when 30 indepertl'mt piK,.ls (MVi) tr,

is,-'d. Figure 3 shows how the number of independent pixels affects the

probability of correlation. As one would e~cpect, the more pixels used the better

th,' orefor nanceo tp to i, 1 30 to -40 pixels. It is inportant t, r-.ne noer tlhat

the pixels being referred to ho-,. ire independent pixels. That is, thot the ,l it

of any independent pixel ca-n ,(i t h, . t,,.niomi by look 'i g at its I .yh )olj,-'. 1h,1

A reference cc t) f(M i ridlep en lent pci K, 4s nay ipat ially hi:tveý nor-, t 4h-ui 31 ) i 4o15s tIi I

ii; .toPncti,1 , c t1e ,' olIplexit/y r Ietail of the parti , hlar s,',ne. In Viogre, 4 tah,

S I., h:.V I, t .t t. I ,1 , c 1 1 r ' to i i, . lih) , irget. ".Pi sl i t trgit r :.tse i. of

iit rt-t ofm , , the oxprcoid largets (land and sea), it represenls the w'o)rst
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case in terms of the lack of scene detail, low S/N ratio and long rainge. In all

graphs it is significant to note that th,:-re is a large ju;njo bet.veen the curves for

two levels and those for three through infinity. This tends to iaidicate that an

,)ptiLItl iyste # l .nould be three levels i:1 tereis of ,iti n'1;0 pl for,t. ,e trir

'nini nu n ri,,nlh.-r ,f ,tar- tiaitiol levels.

-- •!,1.0

Mi O30

0.0

0 4
U

S02

5.0-

a 11) Is 20 25 31

SIGNAL TO NOISE RATIO

FIGURE 2. Probability of Correlation vs Signal-to-Noise I atio
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To validate the analytical results a simulation using real IR Maverick video

data was run. In the simulation two different TV frames of each ship image were

digitized and run through the correlation algorithm using different quantization

levels. For each correlation map produced a Figure of Merit, A P, was

calculated. The peak to side lobe ratio (AP) is the ratio between the highest

correlation peak and its next highest side lobe. It is a measure of the goodness

of match between the two correlated data sets. An arbitrary rule of thumb

based on experience, is that a A P >.I will yield reliable correlation. Figure 5

summarizes the results of the simulation and shows that for reliable correlation

three or more levels are required. As a point of reference, Figure 5 shows that

reliable correlation using a three level system can be performed out to a range

of 78K feet. Comparing this range with Figure 4 we see that this corresponds to

a probability of correlation of P c .8 which is in good agreement. The results
c

of the analysis and simulation are as follows:

1. A correlator should be able to correlate reliably out to ranges of 80K

feet against ship targets (assumed 471 feet long and 4:1 aspect ratio).

2. The most sensitive parameter to correlator performance is the number

of independent pixels in the reference image.

3. Correlation performance improves with finer quantization levels and

beyond three quantization levels improvement is slow.

With these results in mind one can conclude that a correlator using three

levels will meet performance requirements for the baseline system and at the

same time have a moderate hardware complexity. By looking at Figure 6 one

can get an intuitive feel for why three level performance is significantly better

than two levels. In setting a positive and negative threshold symetrically about

zero the low amplitude high frequency signals, which may be considerea "noise";

are hidden in the zero level and make no contribution to the correlation function.

This is in contrast to two level quantization with a zero threshold in which each

transition if sampled would yield a digital transition and degrade the correlation

process by inflating the value of the correlation function.
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Now let us look at the hardware aspect of a three letel normalized product

correlator. The norinalized product corr.-Iation function (Figure 7) wh.:n

iinplenentod iii hardtware rel:tuires mnany siuninations and multiplications. It

would be ideal to have the complete correlation and search process (lone at rV

fraine rate,; which are on tCe order of 1/30 )f a second. This r-equires that the

sun'nations and inultiplications be performed e~treinely fast. Fast suir'nations

are generally riot a problem but fast multiplications are. To get around this

problem one can code the multiplication in two bits of two's co'nplinent

arithmetic as shown in Figure 7. The multiplication result can then use

combinatorial logic. That is, the most significant bit (MSB) of the product is a

si nple ,:o nbinatorial function of the MSB's and LSB's of the multipliers. The

least significant bit (LSB) of the product can be found in the same way. This

allows two bit ,n-oltiplication to be perf)r'nei. it a speed limnited only by the logic

family used.

This mnethod of two bit multiplication is similar to the one bit multiplication

whvich has been used in bi-level correlators. Making a rough extrapolation then

or,•.- can estinate the hardware complexity of the three level correlator should be

ab,)ut twiro that of a bi-level correlator. Thus for an increase in hardware

C') apleity of tvo,) one can obtain the significant increase in performance as

shown previ,)usly by using a three level correlator instead of a two level.

V. SUMMARY

Thms one c:an concltide that an ASCD using a three level nor'ialized product

correlator will yield reliable performance and can be constructed to run rea'

time with n .Aerate hardware complexity. Future development efforts will be

directt toward an ASCD to go with an IR weapon on the A6-E TRAM aircraft.
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Paper No. IIB-5, Presented at the Workshop on Imaging Trackers
and Autonomous Acquisition Applications for Missile Guidance,
19-20 November 1979, Redstone Arsenal, Alabama.

IMPROVED METHOD FOR CORRELATION OF TV SENSOR IMAGESt

J. S. Boland, III & H. S. Ranganath W. W. Malcolm
Electrical Engineering Department US Army Missile Command
Auburn University Redstone Arsenal, AL 35809
Auburn, AL 36830

Abstract

The problem of accurately aligning the line of sight (LOS) of an
imaging seeker with the LOS of a precision pointing and tracking system
(PTS) using correlation techniques is considered in this paper. A new
method of locating a target, which is i, the center of the higher resolu-
tion PTS, within the lower resolution seeker image is presented. "The new
method greatly improves the correlator accuracy and reliability. Simula-
tion results using several typical digitized scenes are given to justify
the conclusions.

Introduction

The particular application of scene matching considered in this paper
is that of locating a reference image, obtained from a high resolution
day-TV sensor, within a larger image, obtained from a lower resolution
day-TV sensor. The high resolution system is located on one stores wing
or in the nose of an attack helicopter and the imaqing seeker is in a mis-
sile located in a stores rack mounted on the other stores wing of the
helicopter. A high resolution (HR) system, usually referred to as the
PTS, is used to acquire, recognize and automatically track potential tar-
gets such as tanks, personnel carriers, etc. When in the tracking mode,
the target is in the center of the PTS field of view (FOV). The reference
image is obtained by extracing a KxL array after preprocessing from the
center of the PTS FOV.

The problem considered in this paper is that of locating the refer-
ence image, whi:h contains the target, within the seeker image. The LOS
of both the PTS and seeker sensors are inertially stabilized. Further-
more, it is assumed that the two lines of sight have been aligned either
on the ground or previously in flight and that the seeker gimbals are
slaved to the PTS gimbals. However, due to gyro drift, stabilization
errors, helicopter flexure, etc., the target will not be at the center of
the seeker FOV and therefore, must be located. After the target is

tThis work was supported by the U.S. Army Missile Command, Huntsville,
AL under contract DAAK40-79-M-O014.
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located, error signals are generated and fed to the seeker gimbal torquers
such that the seeker LOS is aligned with the PTS LOS (or such that the
target is in the center of the seeker FOV). Once this is accomplished
the seeker tracker locks on to the target, the missile is fired, and the
helicopter can remask.

An algorithm for correlation of two images obtained from sensors sen-
sitive in the visual spectrum (day TV sensors) has been demonstrated to
work satisfactorily by simulations and hardware in a US Army Missile Com-
mand technology program. The new algorithm presented in this paper great-
ly improves the reliability and accuracy when correlating images obtained
from similar sensors. Simulation results are given to justify the con-
clusions.

Image Preprocessing

Both the PTS and IR seeker are 525 line video imaging systems with a
30 Hz frame rate, 60 H7 field rate, and 4:3 aspect ratio. There is an
approximately four-to-one ratio of the two FOV, however. Because of the
above difference in the sensors, the two images must first be preprocessed
such that they have the same spatial resolution. An algorithm to accom-
plish this is given in reference I.

After the spatial resolutions of the two images are equalized, a
number of correlation or matching methods can be investigated. For the
remainder of the paper the dimensional relationships between the two
images will be as shown in Figure 1.

S__ ,q) • (0,0)

q T
SN KI -j

Figure 1. K X L iR image located at positon
(p,q) of N X M LR image.

The missile seeker image, referred to as the LR Image, is represented by
a N X M array of pixels. The values of N and M are determined from the
cnoice of sampling rate and number of TV lines of the missile seeker sys-
tem. Since the correl(tion is accomplished on each TV field arid there
are ?40 active lines in field, N is 240. Also, when sampling at 5 MHz
there are approximately 2?0 samples during the 52 ýisec active portion of
the video line. M is enoal to 256 in this paper. The PTS image or HR
,Iima(Je is represented by a K X L array and might be all or only a portion
containing the target, of the I PTi imaqe after its spatial reso1ution has
Sbeen converted to that of the !i ss ile seeker image. The p) and (I dimenosions
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in Figure I give the vertical and horizontal position of the HR image in
the LR images. These indices start in the upper left corner of the LR
image, where p = q = 0.

The classical approach to the problem of determining where two sig-
nals match is correlation, The correlation integral of two functions
fl(t) and f 2 (t) is defined to be

C(T) f fl (t) f 2 (t + T)dt (1)

where T is allowed to take on values between -- and +-. The value of T
which maximizes C(T) in equation 1 is the correlation peak and is defined
to be the match point between the two signals. It is obvious that deter-
mining the correlation peak conists of multiplying one signal by the
other signal shifted by T and then evaluating the area under the resulting
curve.

The two TV images are first sampled and preprocessed to match spatial
resolution and then stored in arrays. Since the HR image is a K X L array
and the LR image is a N X M array, a two dimensional discrete correlation
algorithm is given by

K L

R(p,q) -K 1 --" HR(n,m) LR(n+p,m+q) (2)KL A_4.-
n=l m=l

for 0 < p < N - K

0< <M- L

where R(p,q) is the correlation function, and the division by KL is ascaling factor. Equation 2 is referred to as the Direct Method in this
paper.

Using the algorithm of Equation 2, the selected K X L array of HR
points is compared to each array of LR points of dimension K X L in the
total N X M LR array. The algorithm produces the correlation array
R(p,q). In most situations the maximum value of the correlation func-
tion indicates image registration or match. However, in the present case
since the LR image spans a wider field-of-view, and is obtained from a
different sensor, R(p,q) is actually a cross-correlation, and therefore
it is possible that the maximum value of the correlation function does
not indicate a target match between the HR and LR image. In order that
the maximum value of the correlation function indicate taroet location
in the LR image, both image arrays must be normalized. Normalization can
be accomplished as shown in Equation 3.
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K L

R(pq) tn=l m=l HR(n,m) LR(n+p,m+q)_
K L K L 2

J1 n l" HR2 (nm)]½ [n=1 m=l LR (n+p'm+q)]½

This obviously involves considerable more computation time than the un-
normalized method of Equation 2.

In order to implement the algorithm in Equation 2 or 3 both the HR
and LR video signals must be digitized. The process of digitizing continu-
ous signals can be thought of as two separate steps. The first is sampl-
ing at discrete instants of time and the second is quantization. The
sample rate was chosen to be 5 MHz in order to give approximately equal
horizontal and vertical resolution to each pixel in a video field. The
effects of quantization on the mean square signal-to-noise ratio have been
reported in the literature [1-5]. A one-bit or two-level correlator is
used in this report. When using a bi-level correlator, the normalized
correlation of Equation 3 reduces to Equation 2 [l].

Two methods which have been successful with TV-to-TV correlation are
based on quantizing to one when the signal level is above some local mean
signal value and to zero otherwise [1]. One such local mean value is a
running mean of the video based on a portion of the line inmnediately pre-
ceding the pixel being quantized. Another local signal average is based
on the mean of an array of pixels about the pixel being quantized. These
two methods, referred to as line averaging and area averaging, have been
shown to work for TV-to-TV correlation [I].

mprov2ed Correlation Method

Without any a priori knowledge about the scene being correlated, it
has been shown that the reference image should be quantized to an equal
number of zeroes and ones [l For optimal correlation results, each
k x L subarray in the N x M low resolution image shown in Figure 1 should
also be quantized to an equal number of zeroes and ones. To do this,
however, would require requantization of a K x L subarray for each value
of p and q, a task which cannot realistically be done with existing hard-
ware. To overcome this problem the LR video is quantized only once using
either a line averaging or area averaging technique. If the length of
the line being averaged is L or the size of the sub-array being averaged
is K x L, then any K x L subarray within the LR image should ha~e approxi-
t0ately an equal number of zeroes and ones.

Using the ,ethod outlined in the paragraph ibove leads to the (ur-
rence of fie peaks in the correlation surface in sowe cases. The true
peak tor the scenes uwed in the simulations reported in this paper always

PP red ,1', (MOe of the four hiQhest peaks. The second highest peak was
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obtained by masking out a 9x9 pixel area centered at the highest peak
and then searching the remaining correlation sirface for its highest peak.
"The third and fourth highest peaks were obtained similarly. In some
cases, where the first peak was very broad and/or dominant, the second
highest peak found was actually part of the highest peak. These cases
can be spotted very quickly because their row and/or column location
differs from the highest peak location by only five pixels.

A new method to bring out the true peak and to increase the ratio
of the true peak to the next highest peak is outlined below and will be
referred to as the improved method.

1. The reference from HR video, containing an equal number of
zeroes and ones, is correlated with LR video, quantized using
either the line or area averaging technique.

2. A predetermined number of highest peaks and coordinates of
their occurrence are identified from the cross correlation
surface. In this simulation the first four peaks are used
because the true peak appears as one of them in all cases.
Let, (11,J1), (12,J2), (13,J3) and (14,J4) be the coordi-

nates of the first four peaks.

3. Then a sub-array of size (K+k) x (L+e) beginning at
(01 -k/2, J-Ir/2) is chosen. (In this simulation k = i = 6.)

The (K+k) x (L-teý) sub-array is then quantized to zeroes and
ones about the mean of this subarray. Cross correlation sur-
face of size (k+l) x (Z+I) is computed by correlating the
reference of size K x L with the sub-array of size (K+k) x
(L+Z). The peak correlation value and its coordinates are
identified. Let this be R(Ij,Jj). R(Ik,Jý), R(Ij,Jj) and
R(I4,J') are computed by repeating the above procedure using

(K+k) x (L+L) sub-arrays corresponding to (12,j2), (13,J3)

and (14,J4), respectively.

Simulation results presented in the following section show that
the improved method inc-eases the probability of finding the true peak
and reduces the probability of false peaks.

Simulation Results

Tables 1 and 2 contain the simulation results for a 32 by 32 refer-
ence array using the line average quantizer and the area average quan-
tizer, respectively. Similar results for a reference array size of
16 x 16 are tabulated in Tables 3 and 4.
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In order to implement the above method, one field of LR video must
be stored in memory. In spite of the additional memory requirement, the
following advantages make the improved method worthwhile.

1. Using the improved method on the four sub-arrays of LR video
correspondirg to the four highest peaks obtained by the ini-
tial correlation yielded the true peak a~s the highest peak
every time when using a 32 by 32 or a 16 by 16 reference ar-
ray. 'The case where the original correlation process yielded
a false peak is marked with an asterisk in Table 3. In all
"of the simulations the first peak was higher using the im-
proved method.

2. One measure of performance of a correlation technique is the
ratio of true peak to the second highest peak. Sinulation
shows that in all but five of the 24 cases this ratio is higher
after using the improved analysis. These ratios before and
after the improved analysis are tabulated in Tables 1 through
4.

3. The difference in correlation values between successive peaks
increases which indicates better signal-to-noise ratio. Fg.-
ures 2, 3 and 4 show plots of the first four peaks for three
of the scenes using the line and area average quantizers with
reference array sizes of 32x32 and 16x16. The solid lines
show the original correlation results and the dashed lines
show the improved correlation method results.

The improvement in correlator performance is obvious from the figures.
Consider Figure 4(c) which is a plot of the first four peaks for the NASA
tower scene using the line average quantizer and a 16x16 reference array.
The peak was expected at (33, 21), but when correlated using the line
average quantizer, the true peak appeared as the second highest peak. The
highest peak occurred at (105, 77). Fhe difference between the first and
fourth peak is only 9. However, after using the improved method, the
true peak appeared as the highest peak, with the previous false peak at
(105, 77) now being the fourth highest peak. The difference between the
first and second peak is 28 and the difference betwcen the first and
fourth peak is 64.

Concl usions

From the above simulations and analysis it is concluded that this
improved method yields significantly better correlation results than the
previously reported correlation mrethod. This method yields a higher
probability of finding the true peak and then reduces the possibility of
false peaks by limiting the dynamic search range.
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Figure 2. Correlation values of first four peaks before (solid lines) and after

(dashed lines) improved analysis for jeep in front of fence.
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Figure 3. Correlation values of first four peaks before (solid lines) and after
(dashed lines) improved analysis for jeep in the parking lot.
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Figure 4. Correlation values of first four peaks before (solid lines) and after
(dashed lines) improved analysis for, NASA tower scene.
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DESIGN AND EVALUATION OF AN AUTOMATIC
HAND-OFF CORRELATOR

BY
T. W. ILER - GOODYEAR AEROSPACE CORPORATION
M. PITRUZZELLO MICOM, REDSTONE ARSENAL
P. H. McINGVALE- MICOM, REDSTONE ARSENAL

ABSTRACT

In order to make the utilization of fire-and-forget missiles practical
in a heliborne environment, it is necessary to rapidly and accurately handoff
to the lower resolution missile seeker a target which was recognized in the
high resolution target acquisition system. MICOM and Goodyear Aerospace
Corporation developed the Automatic Target Hand-Off Correlator (ATHOC) to
perform this function for two television sensors. The ATHOC employs digital
area correlation techniques to continuously compare the "seeker" video to
the target acquisition system video (which has the target centered in its
tracking gate). The error between the actual location of the target in the
"seeker" video and its desired location (the center of the field-of-view) is
used to generate error signals to drive the seeker gimbals so as to center
the desired target. An exhaustive engineering evaluation program was conducted
on the ATHOC at MICOM. This included developing techniques for system evalua-
tion which were then used to quantify the critical internal and external system
parameters.

INTRODUCT ION

The design of the Automatic Target Hand-Off Correlator (ATHOC) system
(see Figure 1) required a unit which could be airborne and would achieve
the sensor boresighting and target hand-off in less than one second. This
time constraint dictated the use of real-time digital area correlation techniques.
Since the target of interest could be moving through background information
which could add correlation noise, the correlation reference aperture size
had to be programmable.

-TARGTOF

8OE~i~~ tAUlOP~

7'AIRPRAIEE

, NAMI(

TARGETI / IPGN
III MISSILE
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CUI.GI

OPEN[ "! J" (*NORlt-~ litlTh I""T - -W K,•I .. .. . I- 04 co ,+
(CROSSRA I R ER

Figure 1. Imaging Missile Seeker Target
Hand-Off Problem
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Additionally, the anticipated scale factor variation from missile to missile
required a means of matching the scale factor of the designation system to
that of the seeker system. Finally, the ATHOC had to signal the fire-control
system when a satisfactory boresight sequencE was completed.

The real-time operation of all these functions required the use of an
interrupt driven custom designed bit-slice microprocessor. Also a trade-off
study between system performance and system complexity resulted in the selection
of a two-bit trilevel Mean Absolute Difference correlation algorithm that
could be realized with real-time hardware. For the laboratory mode of
operation, a general purpose microprocessor was required to handle the data
formatting and general I/O.

DESCRIPTION OF HARDWARE

The ATHOC system (see Figure 2) consists of airborne and laboratory
control units, a correlator unit, and power supply unit. The airborne control
unit is used by the weapon delivery personnel for in-flight control of the
ATH.OC system. It contains a mode control switch, a display control switch, and
indicator lamps.

TO INSTRUMENTATION PTS SEEKER
OR TELEMETRY

L - -- --

VIDEO
GROU14O REMOTE -MOhITOR

CONTROL. LJNI ATHOC COMPUTER I

AIRBORNE
CONIIO POWFR SUPPLY t VA

UNIT30, 400 111

PR1PK PWA

Figure 2. AThOC System Block Diagram

The power supply unit contains seven individual modular power supplies
and all the necessary control and distribution wiring to supply the ATHOC
voltage/current requirement. Primary power is 115 VAC, 400 Hz, 3-phase con-
figured for "Y" connected operation.
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The laboratory control unit (see Figure 3) provides for operator control
of certain processing parameters during laboratory tests. In addition to the
functions contained on the airborne control unit, it contains a section for
display of the correlator error signals, scale factor signals and correlation
quality index. A data entry section provides for input from either a keyboard
or cassette tape. Another section provides for monitoring of the microprocessor
address and data bus and the priority interrupt signals.

0 0 a-0

ILI.

(M if~ S -

Figure 3. Ground Remote Control Unit

The correlator unit contains six subsections: video preprocessing, image
reformatter,correlator array, position processor, interface and sequence control,
and microprocessor. Each of these subsections will be described in the
following section.

Figure 4 shows the system block diagram. Starting at the left, the
video processor must switch to the selected video source, strip the composite
sync from the selected composite video and finally digitize the selected
video signal into two bits. Proper viceo digitization can be achieved only
by using an adaptive slice.
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WEAPON
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Figure 4. System Block Diagram

First a programmable low-pass filter is utilized to reject unwanted
noise and sampling frequency allasing. Then the effect of ramp shading and
targets larger than the selected reference aperture size were minimized by
using a programmable high-pass filter. The standard deviation of the video
is approximated by smoothing the absolute value of the filtered video.
A portion of this approximated standard deviation of the video is utilized to
set both the negative and positive slice threshold. Table I lists the two-bit
trilevel format.

TABLE I. DIGITIZED VIDEO FORMAT

INPUT VIDEC SIGNAL NEGATIVE BIT POSITIVE BIT VIDEO CODE

WHITE 0 i 1
GRAY 0 0 0
BLACK 1 0 -1
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The scaling of the digitized video is achieved in the image reformatter
by using a digital integrator and predetermined sampling pattern. A running
average of from I to 16 lines, depending on the desired scale factor, is
computed in real-time. The running cell average is performed in a similar manner.
The digital video is converted back to trilevel video by using digital
magnitude comparators. The actual scale factor matching is achieved by masking
the integrated video with the predetermined sampling pattern. The non-masked
video sampled are then clocked into the correlator array for use as the
digitized reference.

In order to achieve real-time processing, the correlation results from
32 adjacent lines of video had to be available simultaneously. A 32-line
by 64-cell correlator array simultaneously performs the MAD correlation for
all 2048 elements of the reference with the input video. The correlation
signal is outputted as an 8-bit digital word at a rate of 5 MHz.

Using the standard 525 TV format, each field is digitized into 256
pixels per each of the 240 lines. Table II lists the available search limits
versue reference array size.

TABLE II. SEARCH LIMITS VERSUS ARRAY SIZE

HORIZONTAL V9RTICAL

REFERENCE SEARCH LIMIT REWEPENCE SEARCH LIMIT
SIZE (PIXELS) % FOV OF SEEKER SIZE (PIXELS) FOV OF SEEKER

64* + 38
32 t 44 32 ± 43
16 ± 47 16 ± 47

8 ± 48 8 i 48

This reference size assumes the ratio of the 'espective fields-of-view of
the two sensors is less than four to one.

Referring to the right side of Figure 4, a aigital peak detector which
is located in the position processor determines the highest peak of the
correlation surface. The value of horizontal and vertical hardware coordinate
counters is stored In RAM every time a higher Deak cf the correlation surface
is detected. At the end of each video field, Lhs microprocessor firmware
program is started via a herdware interrupt,

The highest peak amplitude ef the correlation surface and the horizontal
and vertical location of that peak are read irom Lhe position processor RAM.
The pealk amplitude when compared to a threshold value is used to accept. Cr
reject this fiela of correlartion results. WJhen the selectable number of
good correlation results is obtained, the digital position error data is
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converted to an analog voltage which is used to drive the seeker gimbal to a
target boresight condition. When the target is within ±3 pixels of a
boresight condition, a ready signal is sent to the fire-control system.

The above microprocessor requirements were easily met by using a customized
bit-slice machine which features a 16-bit data bus, 1K of instructions
words, and a 4 MHz execution rate. The interrupts were generated from the
TV vertical sync signal by the sequence control.

The ATHOC (see Figure 3) has three major modes of operation with respect
to scale factor and a fourth mode where system parameters can be changed.
In the FIXED mode, the microprocessor simply initializes the system with the
scale factor data which is contained in the non-volatile memory.

In the AUTO mode, the microprocessor initializes the system to the initial
reference scale factor data, and a selected number of correlations are performed.
The reference scale factor is then incremented by the delta which is contained
in non-volatile memory. This process is repeated until the reference scale
factor limit is exceeded. Subsequent correlations are performed with the
reference scale factor which results with the highest correlation amplitude
during the scale factor search.

The CALIBRATE mode is similar to the AUTO mode except that the horizontal
aad vertical scale factors are incremented independently. This mode is
required when the aspect ratios of the respective sensors are not the same.

In the DATA mode, the system parameters can be changed. Table III lists
the system parameters which are stored in non-volatile memory. These
parameters can be altered only with the aid of the remote control unit's
keyboard or digital casoette data entry section.

TABLE III. SYSTEM PARAMETERS

SAMPLE RATE (5 MHz or 2.5 MHz)
BILEVEL/TRILEVEL SELECT
PEFERENCE VIDEO PROCES3OR PARAMETERS
LIVE VIDEO PROCESSOR PARAMETERS
HORIZONTAL A.D VERTICAL BIAS
HORIZONTAL AND VERTICAL REFERENCE SCALE FACTOR

INITIAL, DELTA, LIMIT & RATIO
NUMBER OF CORRELATIONS FOR VALID MATCH
MATCHPOINT THRESHOLD
REFERENCE UPDATE RATE
REFERENCE SIZE
INPUT ANGLE SCALE FACTOR
OUTPUT ANGLE SCAL-FAGT.R- ------
POSTION LIMIT FOR VALID) MATCH
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EVALUATION OBJECTIVE

The objective of MICOMts ATHOC test program was to quantify the
effects of internal and external system parameters on system performance.
Parameters considered critical were:

1. Internal parameters - reference size, reference white/black pixel
ratio, and the ability of the ATHOC to correlate regardless of scene
content (i.e., scene dependence of performance).

2. External parameters - field-of-view errors, sensor roll misalignment,
problems associated with slaving a seeker to the ATHOC.

EVALUATION APPROACH

One key to the success of this test program was ia the mixed laboratory
and field tests which took place. The approach used was to record many and
varied "real life" scenes in the field using a two field of view gimballed
TV system. The TV system and recorders were mounted in an enclosed van and
driven to several elevated test sights to simulate the slanL range views seen
in typical helicopter imagery. The recorded scenes were then played into the
ATHOC in the lab where the various critical parameters could be varied at
will. Thus the recorded scenes became a constant rather than a variable in
the evaluation process. Also, freed from many of the problems associated with
"live" testing (such as flight schedules, range schedules, etc.), it was
possible to run a statistically significant number of tests.

Another important key to the program's success was the developmenc of
a reliable means to separate "good" from "false" correlations. The method
is based to a certain extent on the peak-to-sidelobe ratio that has been used
for years, but it iE more reliable in the case of the real time correlator
described here. The method developed was to study the statistics of the

K pfield-to-field variation in correlation peak position. If the correlation
•eak w is always significantly higher than any sidelobes, the field-to--field
variations in peak position would be small. However, if the peak is not always
significantly higher than all the sidelobes, video noise can cause one or
more of the sidelobes tc temporarily exceed the amplitude of the true peak.
Since false peaks are usually randomly distributed about the correlation surface
and the area of the suiface occupied by the true peak is small, there is a good
probability that the distance b2tween the true peak and the falsf: pyak will be
more than several pixels. Thus, if a talse peak coaJition exists, the field-to
field variations in peak position will be significantly higher than for a crue
peak condition.

TEST RESULTS

The test results are summarized in Figurer 5 through 10. In Figure 5, ic
can be seen that for category I scenes (i.e., sceues in fhich the reference
and live images come from the same scene), a reLatively few number of peak
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positions is needed to produce a highly reliable measure of the "goodness"
of the correlation peak. For category II scenes (i.e., scenes in which the
reference and live images are taken from different scenes), more peak positions
are necessary to produce highly reliable results. Figure 6 clearly shows
the relation between probability of correlation (P ) and reference image size
for several aspect ratios. Figure 7 clearly shows the effects of white/black
pixel ration on PC. Figure 8 shows the effects of field-of-view scaling errors
on P for a 3.11:1 field-of-view scale factor. Figure 9 is a similar graph

cthexcept the scale factor is 1:1. Figure 10 demonstrates the effects of roll
misalignment between the two sensors. Table IV shows the effects of visibility
on P

c

TABLE IV . SUMMARY OF BASELINE PROBABILITY OF
GOOD CORRELATION TESTS

NUMBER OF PROBABILITY OF GOOD CORRELATIONS
VISIBILITY TEST SCENES FOR THE FOLLOWING DATA SAMPLES

600 20 5
GOOD (10 kM or GREATER) 40 .95 .95 .95
FAIR (5 kM - 10 kM) 21 .81 .81 .76
BAD (LESS THAN 5 k) 44 .23 .18 .25

A TV-to-TV automatic hand-off correlator was built using state-of-the-art
technology. This correlator performed successfully under a wide variety of
situations typical of a field environment. The critical parameters affecting
correlator performance were identified and their effects were quantified.
In addition, a new method for judging "goodness" of correlation for real-time
correlators was developed which offers promise for future lab and field tests.
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Paper No. IlA-i, Presented at the Workshop on Imaging Trackers

and Autonomous Acquisition Applications for Missile Guidance,

19-20 November 1979, Redstone Arsenal, Alabama.

APPLICATION OF IMAGING SENSOR TECHNOLOGY TO
PRECISION CRUISE MISSILE GUIDANCE*

Viggh, M.E., Ormsby, C.C. and Edge, E.R.
The Analytic Sciences Corporation, Reading, MA 01867

ABSTRACT

The development of imaging sensors for use in
precision cruise missile guidance must take into account
a wide variety of different factors including vehicle
constraints, mission scenarios, scene matching considerations
(e.g., signature requirements and predictability) and the
state of sensor technology. The Autonomous Terminal Homing
(ATH) Program has recently selected two sensor concepts
for brassboard development and flight testing. .This paper
will review the sensor options considered prior to sensor
selection and the methodology used for concept development/
comparison. In addition, the advantages and disadvantages
of the most promising candidates will be outlined and a
summary of the selected design principles presented.

1- MISSION SCENARIOS

The Defense Advanced Research Projects Agency (DARPA) is currently
funding the development of a second generation cruise missile guidance
system as part of the Autonomous Terminal Homing Program (ATHP). The perfor-
mance goals for this system include:

6 Sufficient precision for effective nonnuclear strike

* Autonomous operation from launch

* Night and adverse weather operation.

In addition to these primary goals, several growth capabilities are being
contemplated including Bomb Damage Assessment (BDA), Terrain Following and
Obstable Avoidance, as well as Doppler Navigation.

The primary penetration aid v"ill be stpalth. This implies low
altitude flight and small radar cross-section, as well as emitting a mini-

*This work was supported by the Defense Advanced Research Projects Agency

under Contract No. DAAK40-78-C-0032.
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mum of readily detectable radiation. Coarse position updates will be pro-
vided during midcourse flight by TERCOM. As the target is approached,
more accurate updates will be provided by area correlation between sensed
images and stored reference data for selected scenes along the flight patb.
It is critically important that these sensed images be obtained without
radiating signals which significantly increase the risk of detection.

During the terminal phase of the mission, precision guidance is
the most important factor. Imaging the area surrounding the target should
provide the highest potential for delivery accuracy, while also offering
the potential for increasing force effectiveness through the use of a BDA
capability.

It cannot be assumed that reliable predictions of the weather
enroute or near the target are available at the launch site either for
purposes of making launch decisions or for use in reference preparation
(i.e., predicting weather dependent scene signatures). Furthermore, even
if that information could be obtained, strike requirements would not gen-
erally allow delay of launch until favorable weather develops and current
capabilities in signature prediction are not adequate to justify the inclu-
sion of weather dependent signature characteristics. For these reasons,
sensors must be designed to ensure adequate performance under unknown,
adverse weather conditions.

2. SYSTEM CONTEXT AND OPERATING MODES

An overview of the proposed weapon system configuration is shown
in Fig. 2-1. The delivery vehicle is assumed to be a low altitude, sub-
sonic cruise missile, equipped with a TERCOM-aided inertial system for
mid-course navigation. The function of the imaging sensor is to provide
images of the target area, or of an intermediate offset aimpoint, which
are compared to pre-stored reference images by the scenematching algorithm
to produce precision guidance updates. This information must be provided
at a range which allows sufficient time to correct residual cross-track
error caused by the limited accuracy of the midcourse navigation system.
There is thus a direct system design trade between:

* Magnitude of cross-track errors

* lMissile maneuverability

* Imaging sensor operating range.

Furthermore, the acculacy of the imaging sensor must be suf-
ficiently high to ensure target destruction by a non-nuclear warhead. The
most re!,able approach towrrds meeting this objective is to generate images
of the target area, since any uncertainty in the location of an off-set
S~327
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aimpoint relative to the target ("mapping error") will contribute to miss
distance.

PRECISION SEE RFRW REFERENCE ARA
UDTS MATIhING IM-E PREPARATION go- RECONNAISSANC

ALcORITIIMS IGHOUNG-BASEDI I

*SENSED
IMAGES

1 PRI~MARY TECHNOLOGY

NTEGRATED TERMINAL DEVELOPMENT AREAS
LG ANCE ~IMAGING F--

SYSTEM "SENSOR

CONTROL
INPUTS

TARGE r
"/OFFSET\ LOOKING

--- /~~A.MPOINT\ _ _ _ ___

Figure 2.1 Overview of ATH System Context

A sensor designed exclusively for targetlooking must obtain the
first image of the target at a range which permits correction cf cross-track
errors. Crosstrack maneuvers are accomplished by generating aerodynamic
forces which are pe-pendicular to the2 mssi.le velocity vector. The achievable
trajectory curvature (given by a /V , where a is the maximum acceleration
and V is the velocity) can be very small for himff velocity cruise missiles,
which have relatively low acceleration capabilities. The situation is
further aggravated by the fact that cruise missiles use a roll-to-steer
configuration. In order to maneuver, the missile must first roll to obtain
.1 component of its lift force in the desired crosstrack direction. However,
che missile is designed for minimum radar cross-section to reduce the prob-
ability of detection. This requirement leads to lifting body configurations
wi'.h .'mall elevon surfaces and severe adverse roll-yaw coupling effects.
IT ..-. rder to control these adverse aerodynamic effects, the combined airframe-
autopilot roll response may be very sluggish and the maximum roll rates
low. The end result of these maneuverability limitations is to place a
seve-e penalty on targetlooking only sensors which do not have sufficient
range capability in adverse weather.

If the first image were obtained with a sidelooking or downlooking
sensor, there is no diiect relation between distance to the target and
imaging range. Since mapping errors generally are small relative to the
midcourse navigation system uncertainty, most of the cross-track error can
be corrected on the basis of correlation against an offset aimpoint. A
downlooking or sideiooking sensor could thus provide most of the corrections
needed, with a minimum requirement on imaging range and with that range
being independent of vehicle characteristics.
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The imaging range is an important parameter. Virtually every
type of sensor that can be used for ATH suffers from some degree of sensi-
tivity tc adverse weather. A shorter imaging range thus always results in
a higher probability of mission success for a given sensor. Furthermore,
increasing the range of an active sensor usually implies increased radiated
power and thus higher probability of detection. A dual mode imaging sensor
combines the advantages of targetlooking and down/sidelooking sensors, for
best possible performance.

"3. INITIAL SENSOR SELECTION

The selection of sensor concepts for ATH was performed in two
phases. In the first phase, a number of potentially applicable sensor
types were identified and subjected to a preliminary evaluation. Those
found to be most promising for the AT11 application were studied in more
detail during the second phase, after which a final selection was made.

Ranges for major performance parameters were established, based
on the mission scenario and desirable operational modes outlined in Sections
I and 2. The.most critical aspects of sensor performance are:

* Adequate range in adverse weather

1 Resolution consistent with accuracy requirements

0 Sufficient number of resolution cells in each Jirge
to permi%. correlation

* frame times allowing position updates to be made
at. desired intervals.

The forwardlooking mode is the most demanding, particularly in terms of
range and resolution. In addition, adapting a single sensor for both down-
looking and targetlooking operation presents considerable difficulties for
many sensor types-

Table 3-1 lists the generic sensor candidates which were initially
considered for evaluation. The table also summarizes major advantages and
disadvantages which were identified during the early phases of this effort.
Some of these inherent disadvantages caused elimination of several candi-
dates fron, further consideration. For example, millimeter (mm) wave radic.am-
eters were removed from the list of potential alternatives because of in-
adequate sensitivity. Even with minimum requirements on resolution, number
of cells per image and frame time, the available integration time per cell
is about an order of magnitude shorter than that needed for acceptable
sensitivity.
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With the exception of Synthetic Aperture Radar (SAR), the angullar
resolution of radar sensors is determined by antenna aperture size, measured
in wavelengths. Available space and required resolution dictate use of 94
GHz or higher frequencies for such sensors. With the present state of the
art, this piecludes use of electronic scanning, e.g., phased array antennas.
Furthermore, it was established that mm wave reflector or lens antennas
large enough to provide desired resolution cuald not readily be mechanically
scanned along a raster pattern at rates needed to obtain acceptable frame
times. This limits the types of mm wave radars under consideration to
those using range-azimuth scanning, employing rotating fan beam antennas.

TABLE 3-1

SENSOR CANDIDATES CONSIDERED

SENSOR TYPE ADVANTAGES DISADVANTAGES

Passive System IMarginal Resolution
Mh Wave Radiometer PaTsive Syte and Sensitivity

Low Technical Risk No Ranging Capability

Ranging Capability Marginal Angular
MM Wave Radar Low Weather Sensitivity Resolution

Low Technical Risk High Detectability

Complex ProcessingSyttheic petur Raar All Weather Capability No Forwardlooking
Synthetic Aperture Radar High Resolution Capability

Passive System Weather Sensitivity
Passive Visible-Light Imager High Resolution No Night Operating Capability

Low Technical Risk No Ranging Capability

Passive System Moderate Technical Risk

Passive Mid-Far IR Imager High Resolution No Ranging Capability
Significant Weather Susceptible to Dense Fog

Capability

Ranging Capability Moderate to High
Active Near IR Imager Low Detectability Weather Sensitivity

High Resolution

Ranging Capability

Active Coherent Far IR Low Detectability Moderate to High
Imager Technical Risk

Low to Moderate Weather
Sensitivity _
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SAR also remained among the sensor candidates to be evaluated further in
the second phase.

To achieve a raster scan with required resolution and frame time,
it proved necessary to consider wavelengths significantly shorter than 3
mm. However, the wavelength region from about 15 pm to I mm is unsuitable
for imaging because of atmospheric absorption. The infrared portion of
the spectrum, from I pm to 15 pm, is thus the most viable alterziative if
raster scan imaging is to be performed.

Initial evaluation of the various infrared sensors listed in Table
3-1 gave strong indications that active systems operating in the near infra-
red region (0.9 to 1.1 pm wavelength) would not have the range capability
required for the targetlooking mode, except under favorable weather condi-
tions. On the other hand, both Nd:YAG (1.06 pm) and GaAs (0.9 pm) Laser
imagers should perform reasonably well in the downlooking mode, even in
adverse weather. The option of using a GaAs laser system for downlooking
only was retained as a back-up, in the eventuality that no satisfactory
solution for an active dual mode sensor would emerge. Following the initial
evaluation, the following candidates remained

Two radar options, mmn wave range-azi.muth radar and
SAR

* Passive infrared imagers, operating in either of
two bands: 3 to 5 pm or 8 to 14 pm

. Active infrared imager using a CO laser (10.6 pm
wavelength)

. Active infrared imager using a GaAs laser (0.9 pm
wavelength) for downlooking operation only (back-up
alternative).

Further evaluation of these options was undertaken, including the develop-
ment of several point designs to establish sensor feasibility and obtain
detailed performance predictions (e.g., operating ranges, field of view,
frame times and resolution).

4. FINAL SENSOR SELECTION

The initial evaluation and selection allowed judgements and decisions
to be made on the basis of major incompatibilities with relatively hard
requirements, As the selection process continued, an iacreasing number of
mission related factors had to be considered. A full description of the
final selection process is not possible within the framework of this paper,
but the following sL.nmury attempts to relate thosre criteria and factors
which were most important in arriving at the final recommendations.
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4.1 RADAR SENSORS

A point design of a range-azimuth, 94 GHz radar was generated to
determine feasibility and to estimate possible performance capabilities.
It proved impractical to design this type of sensor for both downlooking
and targetlooking operation. Position updates could be based on sidelooking
and forwardlooking images, but reliable prediction of intensity signatures
versus range is difficult for mm waves. Other undesirable features of
this sensor alternative include

* Marginal azimuth resolution even with largest possible
antenna aperture

* High radar cross-section

* High detectability.

Increasing the frequency to 140 GHz (next higher frequency band
with relatively low atmospheric attenuation, see Fig. 3-1) would allow the
use of a smaller antenna for the same resolution or better resolution with
the same antenna size. However, with current transmitter and receiver
technology there is a significant power budget penalty for increasing the
frequency above 100 GHz. In fact, even if the aperture size is held con-
stant, the maximum imaging range would most likely be less at 140 GHz than
at 94 GHz. While a mm wave sensor was not chosen for further development
as part cf ATHP, it is believed that additional research could effectively
reduce many of the identified shortcomings of mm dave sensors and that a
3rd generation mm wave guidance system with greater weather penetration
capability may be possible.

Synthetic Aperture Radar offers high resolution with relatively
small physical antenna aperture; typically on the order of 10 wavelengths.
It would thus be possible to use a frequency somewhere in the 10 to 40 GHz
range without violating space constraints, thereby avoiding most of the
adverse weather restrictions occurring at higher frequencies. However,
SAR cannot be employed for imaging along the line of flight, which poses a
serious problem for the targetlcoking mode. After evaluation of several
approaches, including off-set aimpoints and various terminal phase maneuvers
(which would allow imaging of the target area,) it was concluded that the
disadvantages of these approaches largely outweigh the advantages of the
SAIR sensor. Since SAR also requires extensive and costly signal processing
and scene siglatures in complex cultural areas are d-fiicult to predict,
this alternative was not zmong those finally selected.

4.2 PASSIVE INFRARED SENSORS

The initial evaluation of passive IR sensors indicated a preference
for either of the 'atmospheric windows" 3 to 5 pm or 8 to 14 pm, as opposed
to shorter IR or visible wavelengths. During the second evaluation phase,
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a choice between these two alternatives had to be made, based on considera-
tions such as

* Scene quality, i.e., the information content in
the imaged area

Propagation in adverse weather, haze and smoke

Availability of hardware, cost and development
risk.

The physical temperature of most objects within imaged scenes can
be expected to fall in the range from 250 K to 320 K, depending on season,
time of day, solar irradiation and other climatic factors. As shown in
Fig. 4-1, the change in radiated power per unit area, for a temperature
change of I K within this temperature range, is considerably larger in the
8 to 15 pm band than for 3 to 5 pm. If the objective were to detect iso-
lated, hot objects against a relatively cold background, the 3 to 5 pm
band would be more suitable, see Fig. 4-2. However, for area correlation
it is more important to reliably resolve small differences in temperature
and emissivity throughout the imaged scene than to locate a few isolated,
warm objects.

Attenuation caused by precipitation (rain, snow or hail) and aero-
sols (fog, haze or smoke) depends primarily on drop or particle size rela-
tive to the wavelength. Falling raindrops, snowflakes or hailstones are
typically larger than 15 pm in size, which results in approximately equal
attenuation for the two wavelength bands considered.

Fog may contain drops which range in diameter from less than I pm
to more than 100 pm. In fogs where most of the water is contained in drops
smaller than about 5 pm (e.g., radiation fog in the formative stage), the
attenuation is significantly lower in the 8 to 14 pm band than for 3 to 5
pm radiation. On the other hand, in stabilized advection fogs, a large
percentage of the water may form drops with diameters larger than 10 pm,
in which case the attenuation is virtually independent of wavelength (A)
for A < 14 pm.

Haze is normally dominated by particles which are smaller than 10
pm in size. The same is true for most types of smoke, particularly those
commonly used for obscuration or blinding on the battlefield ("smoke screens").
For both haze and smoke, radiation within the 8 to 14 pm wavelength band
will thus tend to be attenuated less than radiation in the 3 to 5 pm region.

Hardware availability does not appear to be a significant factor
in chosing between the 3 to 5 pm and 8 to 14 pm bands for passive imaging.
Neither do development risk and cost seem to be major considerations, even
if the 3 to 5 pm technology is more mature. The choice of 8 to 14 pm was
thus based primarily on higher scene juality and lower atmospheric attentua-
tion under certain adverse weather conditions.

334



Another important design feature is scanning format, which in
turn is closely related to detector configuration. The two alternatives
initially considered for the downlooking mode are illustrated by Figs. 4-3
and 4-4. The "pushbroom" arrangement shown in Fig. 4-3 employs a linear
array of detectors for cross-track coverage, while the line scanner in
Fig. 4-4 uses a single detector and mechanical cross-track scanning. In
both cases, down-track scan is accomplished by vehicle motion.

Either of the two configurations shown in Figs. 4-3 and 4-4 could
be converted to targetlookers by introducing a galvanometer mirror to "fold"
the optical path in the forward direction and provide elevation scanning.
However, the required angular scan range in azimuth during targetlooking
is considerably smaller than the desired angular cross-track coverage in
the downlooking mode. Some form of angular "scan expander" will thus be
needed for downlooking operation.

Figure 4-3 "Push-Broom" Figure 4-4 Line Scan,
Scan, Using Employing Single
Linear Detector Detector
Array

Sensitivity is primarily determined by integration time per reso-
* •lution cell. A linear array offers obvious advantages in this respect,

over a single detector. For a given integration time per cell, the frame
time is reduced by a factor at least equal to the number of detectors in
the array. Conversely, for a certain frame time, the integration time per
cell can be increased by the same factor. However, separate amplifiers
are needed for each detector and unless all detector/ amplifier combina-
tions have identical characteristics, the sensed image will contain pattern
noise. This is avoided if the same detector/ amplifier assembly is used
for all cells, but at the expense of shorter integration time and thus
lower signal-to-noise ratio per cell.
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A third option is a compromise between the two alternatives illu-
strated'in Figs. 4-3 and 4-4. An array containing a relatively small number
of detectors could be used in a configuration similar to that shown in
Fig. 4-4. For each cross-track (or azimuth) scan, each detecter would
generate one scan line. This provides for sufficient integration time per
cell to obtain the desired sensitivity, acceptable frame time and a manage-
able number of detector/amplifier combinations for which sensitivity and
gain equalization must be performed.

4,3 ACTIVE INFRARED SENSORS

As mentioned in Section 3, active sensors employing GaAs (0.9 pm)
or Nd:YAG (1.06 pm) lasers were ruled out for targetlooking operation because
of high attenuation in adverse weather and smoke. The CO las~er provides
a source for high power radiation which more readily peneirates haze, most
types of smoke and some fogs (see Section 4.2). This section reviews the
feasibility of designing a dual mode, active sensor operating at a wavelength
near 10.6 Pm.

An active imaging sensor using a CO laser as a transmitter can
be designed for either direct or coherent deiection. In the latter case,
the local oscillator signal may be deriveq from the transmitter (homodyne),
if the Doppler shift (-200 kHz per m sec velocity) is sufficiently high
for the intermediate frequency to fall above the 1/f -noise "knee" of the
amplifier. Coherent detection provides high sensitivity (equivalent noise
figure typically <20 dB) and effective suppression of background radiatiop,
both of which prove to be essential for meeting the range requirements for
the targetlooking mode.

In the passive case, discussed in Section 4.2, several detectors
were used to provide sufficient integration time per resolution cell, while
maintaining a short frame time. A similar approach for the active case
would require that the transmitted power be spread over several resolution
cells, which reduces the received power per detector by the same factor
that the2 noise is reduced through longer integraticn time.

Another factor which must be taken into account is that the maximum
effective collecting aperture is approximately the same as the transmitter
aperture when coherent detection is used. Thus, if the aperture is made
larger to collect more reflected power, the diffraction-limited beamwidth
will be reduced. For given values of frame time and scanned field, the
dwell time per resolution cell then decreases by the same factor as the
power increases. The signal-to-noise ratio (SNR) stays constant, but reso-
lution is improved.

For any reasonable aperture diameter, the diffraction-limited
resolution is considerably higher than needed in the sensed image. At the
same time, the SNR obtained with available transmitter power would be in-
adequate at the desired maximum range if the potential resolution were
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fully realized*. To achieve a better balance between SNR and resolution,
one can apply either or both of the following techniques

0 Integrate over several diffraction-limited resolu-
tion cells to generate each "pixel" in the sensed
image

* Space consecutive scan lines further apart than
one beamwidth.

A combination of these approaches can be selected to provide for
a nominally square grid in the sensed image, as well as integration of
several independent samples to reduce the effects of fading.

The factor which ultimately limits the aperture diameter is the
finite round-trip time required for laser energy to propagate to the scene
and back to the sensor. If the beam is scanned a significant portion of
one beamwidth during that time, some of the reflected energy will not reach
the detector. This lag angle effect can be compensated for, but only within
a limited range interval.

The modulation waveform must be device compatible and also provide
the desired range accuracy. Either frequency or amplitude modulation could
be used, but the latter appears to present the lowest development risk.
One time-proven approach, employed in optical surveying instruments for
decades, would be to use sinusoidal or square-wave amplitude modulation,
implemented by means' of a modulator located outside the laser cavity (to
maintain a continuous local oscillator signal for the mixer). Range is
determined by measuring the phase shift between transmitted and received
modulation envelopes. To obtain desired accuracy it may become necessary
to use a high modulation frequency, which can cause range ambiguities.
These could be resolved by alternating between two different modulation
frequencies.

5. SUMMARY

This paper has presented the sensor requirements for DARPA's Auto-
nomous Terminal Homing Program and prcvided a sune.ary of the advantages,
disadvantages and design options of both radar and electroptical sensors.
A passive, 8 to 14 pm dual mode imager and an active 10.6 pm coherent dual
mode imager were identified as the most promising design option for meeting
both accuracy and adverse weather/night requirements.

SDue to frame time limitations and the resultant limitation on dwell time
per pixel for a high resolution system.
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Paper No. IIIA-2, Presented at the Workshop on Imaging Trackers
and Autonomous Acquisition Applications for Missile Guidance,
19-20 November 1979, Redstone Arsenal, Alabama.

EVALUATION OF SCENE MATCHING CONCEPTS
FOR AUTONOMOUS ACQUISITION TERMINAL HOMING

M. Svedlow
The Analytic Sciences Corporation

Reading, Massachusetts 01867

ABSTRACT

Advanced scene matching concepts for application to autonomous
terminal homing have been investigated as part of the Autonomous Terminal
Homing Program. ATH program objectives are to develop a precision terminal
guidance system for fixed targets capable of operating successfully during
both day/night and adverse weather conditions using synthetically generated
references. Scene matching issues and a conceptual framework to address
these issues are presented. Functional comparisons between different proc-
essing components are summarized, and suggested approaches to the develop-
ment of a robust scene matching processor are presented.

INTRODUCTION

The Autonomous Terminal Homing Program is a multiphase program,
one aspect of which is the development of advanced scene matching concepts
for high accuracy, autonomous guidance during the terminal phase of flight.
A sensed image collected during flight is compared with a synthetically
generated reference image (or data set) of predicted scene signatures (pre-
pared prior to the mission) to estimate vehicle position. This position
estimate is used to update the inertial navigation system (INS) aboard the
vehicle. It is expected that there will be several match updates during
the terminal phase of flight. Initial updates (at distances far from the
target) will be in a downlooking mode where the sensor scans the ground
directly below the vehicle. As the vehicle nears the target, the sensor
will switch to a cargetlooking mode, imaging the target directly.

Imaging conditions and the mission scenario impose ceitain con-
straints on scene matching requirements. The system will be directed
against fixed targets aad wgill be required to operate during adverse
weather and day/night conditions using synthetically generated reference
images. ie fixed target scenario relieves the requirement for scene match-
ing against targets with unknown orientation since the INS will provide an
approximate position estimate relative to the target and an accurate heading
estimat~e. Adverse weather and day/night conditions coupled with the use
of synt het i c references requ:, re an i nsens it i vi ty to Si gna ture p r1t! i ct ion
uncert ainties which occtir as part ot the reference preparation process.

-iis-wo-r-k was supported by -te Defense Advanced Research Projects

Agency under Contract No. DAAK40-78-C-0032.
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The following sections summarize the conclusions of the investiga-
tion performed for the ATH program. Included are: issues to be addressed
by the match processor, conceptual approaches to scene matching, a compari-
son of approaches considered during the study, and suggested scene matching
approaches for fixed target, day/night, all weather, autonomous terminal
homing.

SCENE MATCHING ISSUES

The system context requires that certain issues be addressed in
the design of a scene matching algorithm. These are:

* Geometric distortions

0 Contrast reversals/intensity ,ispredictions

Relative geometric distortions between the reference and sensed images are
a result of the uncertainty in the vehicle's position relative to the target
at the time the sensed image is collected. The INS will provide an accu--
rate estimate of vehicle heading, so that angular scanning parameters of
the sensor can be accurately estimated. However, only an approximate esti-
mate of vehicle position will be provided, resulting in some uncertainty
in viewing aspect. Generation of reference images from aspects differing
from that at the time of imaging will yield relative perspective distortLous
between the images.

Contrast reversals/intensity mispredictions are characteristics
of changes in scene signatures and the predictive process which is part of
reference preparation. Relative intensity levels of different surfaces
within a scene way change with time of day or environmental. conditions
resulting in contrast reversals between the different surfaces. This is
particularly evident for a passive thermal band sensor (e.g., roofs of
buildings may be warmer than the surrounding ground during the day, where-
as at night the roofs may he cooler). Since reference preparation is a
predictive process, it is possible that mispredictions of the intensity
leels of surfaces in the scene will occur, Match algorithms should be
designed to be insensitive to these image characteristics.

CONCEPTUAL APPROACHES

There are two fundamental approaches to the scene matching pro ess:

* Correlation processors

* Featutire matchiing processors

Lilhl, ) Core l~ Ion processtol ,ppi cai(h is a Vw riation Ot the CI( (- -€i it i
I)')l it'dilr' whe.I'cr I I(i e 0 11 11,1ge is shliitf ' d relativ, e to the tother imllaige, Ind .1

ao-rel,:tiin valor i.,•s timptife, -it each oftset. The particular correlat itoi

ti i t loll u(sed 111,y ilav•e tlt' ,) a .)Irv _ I ill)t1er of fIorms (e.g ., crol- atioll on co t--

I- iez.t, I .t ,i SjiA et -i )K, mlii absolulte Iidifference . ' eat• 0 u - a tll-t k•fillflri
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processors extract designated sets of features and their associated descrip-
tors from the images (e.g., lines and their orientations). Matching pro-
ceeds using only the extracted features which may be stored in either an
image or tabular format.

Both of these approaches are compatible with the conceptual repre-
sentation of a scene matching processor shown in Fig. I. This representa-
tion does not necessarily indicate the operational flow. The order of
processing may differ and any iterative processing which may be performed
is not shown. The functional blocks were selected to address key require-
ments of the match process. A brief description of each of the processing
segments is provided in Table 1.

GEOMETRIC I "EMERI . o , I CE
CORRECTION PROCESSING jOPNSATION FUNCTION LOCATION UP§ rE

Figure 1. Conceptual Representation of Scene Natching Algorithm

TABLE I
DESCRIPTION OF PROCESSING SEGMTENTS

PROCESSING SEGMENTS DESCRIPTION

Geometric correction Correction for relative perspective dis-
tortions between the reference and sensed
images via image reconstruction.

Intensity processing Compensation for contrast reversals/!inten-

sity mispredi ct ions

Geometric compensation Compensation for rtsidual geometric dislor-
tions

Match function Similarity measture used for matching the
images

Match location Provision for- subrixel est ilmation and anl

indication of the match qualit.y (i.e., a
match ,t i s c r im i ii- tit

Guidance update Mechanism for ititerft.cing with and pro-
viding the upilate intormation to the INS

Corrective mneaSulre-s actuallv correct, for pred- cted d istort ions (e.g.
gerneratiug reference- images from h,'pothesized set, sor positions fort
matching), whereas Compensatory IledsUrS are ursd to dL CSetitirzV the
match processur to distortions (e.g., resolut ion redlutttt.in bs filtelrinI1)
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FUNCTIONAL COMPARISONS

Several organizations participated in the development of scene
matching concepts (Refs. I to 8) for the ATH program. A functional com-
parison of the different approaches to each of the processing segments is
presented in Table 2. This table summarizes the approaches used to correct
and compensate for geometric distortions, compensate for contrast reversals/
intensity mispredictions, and estimate the match position between reference
and sensed images. An evaluation of the applicability and effectiveness of
these approaches is indicated.

TABLE 2

FUNCTIONAL COMPARISON OF PROCESSING SEGMENTS

MATCH FUNCTIONAL PREFERRED ACCEPTABLE QUESTIONABLE
COMPARISON

Deterministic * Estimated

Geometric Correction Correction Correction
- Projection * None
- Search

Geometric Filtering * Multiple

Coinpensa t ios Window Application Subareas
M Match Tolerancest

* Threshold IGRADI IGRADI with * IGRAD I
Intensity e Line Extraction Adaptive * None

It ens i t Normalization
Processing

* Height Conversion

Range * Slant Range .. .IGRAD)
* Line Extractioi"

:laatch Funct • Normalized 1 Phase o Endpoint Ma tch
""Cor-eelAtion Correlat ion 6 Ulliorina I zed

* Line Match Correlation

Used with geometric corrocti, n

Fe.atiure matching a igorithm

G,:orlet Ii -I- .C t ri - G( . o)lfit-tri(" P)r0CVSS ii. is diVilt, It i to LwO

.a S: - ts iV¢t e ftil coIi pt'll s. or y to ir " . The stggestd o rreC t I ,

pI> 0ý OS S 1ig A111 1ru,1 lu 1 S t L) O # d t' t ( i III i 11 tI c( r 1t'v t i,)1) Thiis i letho le I i

.1l 1 Ot the geouriet ti L- C nf ,-i t 1,,fl ,'vii I ( i .II., th't'thic , dime ,is onal riit -
,.If, r' 1,,.hI, hy\' 1 ,thes ie. os tI' n .,' ._s seus,1r ,lnilil'r pointing ii )for-
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With an active ranging sensor a single projection of the sensed
image is generated for matching (Ref. 1), For this method both the refer-
enice and sensed images are projected onto a plane perpendicular to the
nomi !a! line-of-sight (projection with viewpoint at infinity (see Fig.
2)). This type of projection is possible with an active sensor since both
range iata and angular information are available. The advantage of this
approa I,. is that it. provides a single-pass match procedure (minimizing
comnputa~ion time).

fl-43186

NOMINAL
LINE-OF-SIGHT

/AI
LINE-OF-SIGHT

PLANE ORTHOGONAL TO NOMINAL

LINE-OF-SIGHT

SCENE

Figure 2 Sensed Image Projection to Plane Perpendicular to
Nominal Line-of-Sight

With a passive sensor range data is not available (precluding
u:.e of the single projection technique). ,1ultiple reference images are
reconstructed from a set of hypothesized sensor positions from difterent
perspectives within the search basket using the three-dimensional scene
model and a search is performed to determiie the match update.

Estimated ccrrection as a self contained 3pproach is not suggested
as a preferred approach. In the estimated correction approach proposel in
Ref. 2 the distortions between the reference and sensed images are estimated
using only the image data. No a priori three dimensional information is

"--Aqo•ever, a t-e (hnique for generating a range image using sequential passive
senlsor images has been proposed (Ref. 9).
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used. However, it is possible that this procedure couild be used as a
supplemental processing segment to estimate range to the target for a pas-
sive sensor. Estimates of azimuth, elevation and range offsets are required
for a position estimate. Match processors inherently provide estimates of
the angular offsets for both active and passive sensors. With an active
ranging sensor, range to the target is provided by the sensor range data.
However, no range data is available for a passive sensor. Estimated cor-
rection could be used to estimate the relative scale difference between
the reference and sensed images, and thus estimate the range to the target.

Geometric Compensation - This type of processing does not employ
distortion correction procedures, but rather desensitizes the match proc-
essor to the distortions which are present. Geometric compensation is a
procedure which may be used with geometric correction to desensitize the
processor to residual distortions. Suggested approaches for correlation
processors are filtering and application of a window function (Refs. I ana
5). (Filtering is a convolution performed in the spatial domain and the
window function is equivalent to convolution in the frequency domain.)
Both methods reduce the effects of distortion on the match processor. For
feature matching processors, tolerances between matching features can be
specified to compensate for residual geometric distortions. Designated as
questionable is a multiple subarea approach which does not. use a priori
three-dimensional information in the match process (Ref. 8). This approach
assumes small distortions within the respective subareas (which may not be
the case, particularly with low altitude downlooking sensed images) and a
first order polynomial model for the geometric distortions between subareas
(which is not necessarily sufficient for the perspective distortions that
occur). However, the notion of a multiple subarea approach could be used
aF a supplemental processing segment to provide an estitnate of range for a
passive sensor (via estimating the relative scale difference between images).

Intensi.!ty Processing for Intensity Signatures - The objective of
prepDcessing intensity signature images is to compensate for contrast
reversals and intensity mispredictions which occur as part of the reference
image prediction process. Edge magnitude enhancement procedures address
the contrast reversal problem by retaining those structures (edge mnagni-
tudes) that tend to be the most predictable. Thresholding (or adaptive
normal ization) of these edge magnitudes then compensates for the mispre-
diction of intensity magnitudes. Suggested approaches for intensity proc-
essing are a thresholded magnitude of the gradient (edge enhancement) or
line extraction scheme since both of these address the contrast reversalI and intensity misprediction issues, Questionable approaches are no intens-
ity processing and edge magnitude enhancement techniques without tmhreshold-
ing or normalization (which do not compensate for intensity mispredictions).

Iitensitv Processing for Range Signatures - Processing tor range
inages itffers fr•,in that of iltensity images since range is a predictm•ble

gnl, t 1 re. Suggested approaches for range processing depend on the type
of t.lgorithm ,1ml match processor used. Suggested range processiiug methods
1ire cnversin olf slant ranlge to height, retention ot tile slant ,ange :;iglla-
tore, and the eXt raction of lines (which is applicable to feature matching

S4,)r it hins). The mag n it ude ot the gr-adient as a sle process ing approaIh
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is questionable. Since the Igradl alone accentuates only far edges of
scene structures and eliminates useable match signature information con-
tained in the spatial direction of the range gradient.

M1atch Function/Procedure - The match function and procedure used
are dependent on the type of match algorithm. Suggested are normalized
correl-tion* (for a correlation processor) and lire matching (for feature
matching algorithms (Refs. 4 and 8)). Endpoint matching (Ref. 6) is not a
suggested approach since it depends on a potentially noisy signature.

Additional Operational Issues - In addition to the corrective
measures required for geometric distortion and contrast reversal/intensity
misprediction, other operational issues should be addressed in the design
of a high accuracy, missile compatible, closed-loop guidance match proc-
essor. These issues are listed below,

"" Reference preparation requirements (intensity, sur-
face shell, wire frame)

"* Reference data storage and handling/image selection
procedure

* Guidance update generation technique

Pre-mission estimation of match performance and
real-time evaluation of fix reliability/accuracy

* Computational/processor requirements

SUGGESTED ALGORITHM1 APPROACHES

Suggested approaches to algorithm development fnr both correlation
processor and feature matching concepts "re prLsented in Figs. 3 and 4.
Both include processing for geometric correction and contrast reversal/
intensity misprediction compensation. The additional operational issues
outlined in the previous section are also important. Several of these are
indicated in the figures at the appropriate functional positions.

Correlation Algorithni (Fig. 3) - The single projection and multi-
ple reference search techniques are suggested for the geometric correction
procedure with a threshold (or equivalently normalized) edge magnitude
enhancement procedure for intensity signature preprocessing. Any required
filter/window compensation is also suggested.

Suggested approaches for the match function are normalized corre-
lation (achieved via image spatial normalization or normalized match func-

-;Normalization may be equivalently achieved at the intensity processing
stage via thresholding operators and adaptive normalization, rather Than
its explicit use in computing the match function.
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tion) with a bounded penalty function for r;Ange data (t~o avoid overweight-
ing spurious large range data errors). Alsc: included are subpixel estima-
tion, premission performance estimati1on (probability of false fix (P ff ) or
equivalent indicator), real-time fix reliability/accuracy estimationl and
the guidance update procedure.

GM' 1ý 11 II INTENSITY GEOMETRIC TMAITC H N MATCti4 FoN
NJ IPNAION LYIJC1O LOCATION UjPDATIj

*PROJECTION a INTENSITY 0 FILTERING 8 NOH1MALI.ZED a SUBP;XEL a INPUT ro
IACTIVE) COnRRLATIQN EFiIMATOR NAVIGATION

SI/TILEVEL i rILTn
I GRAD I

*SEARCH" a RANGE m WINDOW v 8OIJNDEO a MiPTCH a ACCUrACY
IPASSIVE) APPLICATION ~NtiON DiSCnIMINANT ESlIMATE

HEIGHT (RANGE

SLANT DATA)

I P1,

Figure 3 Correlation Algorithm Approach

Feature M1atching Algorithm (Fig. 4) - Suggested geometric correc.-
tion is the same as for correlation processors. Feature extiaction proqTides
compensation for contrast reversals and intensity mispredictions. Geometric
compensation for residual distortions can be addressed by allowing toleranlces
between matching features.

GEOMETRIC INTESITY GEOMETRIC AC jcJ..Ycoi(ci
CoRR -ECtION, P0ESSING COMPENSATIONl" FUNCTON A170]. lrn?,.TLj

V*PROJECTION *FEATURE UORIENTATION/ SIMILARITY *SUBPIXEL *iNPUT to
1ACTIVE) EXTRACTION PROXIMITY MEASURE ESTIMATOR NAVIGATION

TOLERANCES F illT
LINES MATCH

HISTOGRAM
oSEARCH LINE s MATCH *ACCUFIACY

MPASSIVE) DESCRIPTORS SINGLE OR DISCHIMiNAN I ES TIPAr[I'

NEIGHBORHOOD
ENTRIES

0 pilf

Figure 4 Feature Miatching Algorithm Approach

Since matching is performed on extracted features, the feature.,
can be matched by using only the feature list tables (a match histograin
app roach) , o r by sh if ting one image relIat ive to the othe r a:id coiaput i ii a
mnatch value at each offset (similar to the correlation algorithm proceiture).
With1 the match histogrampi. oah the mnatch value between two features is
a1ccudnUlatedl in ahistogram at aj posit ion corrcspondlng to the offseý between
the f eatu res. 'o accOmodate tolerances for geometric distortion COMPelis:-1-4
t ion, the match va lue can be entered at all point% within, a ntvighboi hood
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of the offset (which will tend to smooth the resulting match histogram).
Both the correlation approach and match histogram approach are conceptually
equivalent and differ only in the computational procedure. The particular
selection will depend upon the match scheme. The additional functional
requirements shown in Fig. 4 are the same as for the correlation processor,
including subpixel estimation, pre-mission performance estimation, fix
reliability/accuracy estimation and guidance update.

SUMMARY

Concepts have been presented which were important in the develop-
ment of scene matching processors within the context of the ATH program.
Specifical.ly, operating conditions include day/night, adverse weather con-
ditions with a fixed target objective using synthetically generated refer-
ences. Each of the primary issues has been outlined and suggested process-
ing approaches have been presented.
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AN AUTOMATIC IMAGE RECOGNITION SYSTEM FOR MILITARY IMAGE ANALYSIS

Durga P. Panda and Raj K. Aggarwal
Honeywell Systems and Research Center

2600 Ridgway Parkway
Minneapolis, Minnesota 55413

ABSTRACT

Honeywell has been involved in state-of-the-art image analysis
research for target screening as well as guidance application under
contracts from DARPA, AFAL, NV&EOL and other government agencies. Over
the past two years Honeywell has developed a context dependent automatic
image recognition system* for analyzing the imagery automatically and
detecting tactical as well as strategic targets in the image. The main
features of the image recognition system are sequential frame processing,
symbolic image segmentation, syntactic recognition, recognition of multi-
component objects and conflict removal. In this paper we describe various
components of this context dependent automatic image recognition system
and information flow between these components.

INTRODUCTION

A general block diagram of the automatic military image recognition
system is shown in Figure 1. The image is first segmented and man made
object (MMO) is detected in the segmented image by a statistical technique.
The output of the MMO detector is processed by secondary screening target
detector which further reduces false alarms based upon true size, tempera-
ture, etc., of the targets on the ground plane. Sequential frame analysis
is used to improve the performance of the target detector. A syntactic
recognition scheme uses knowledge of the component description of the
targets in recognizing targets that are large enough to show component
detail. For images that are too small to show any detail a statistical
recognition scheme is used. Sequential frame analysis is employed to
take advantage of frame to frame consistency in the imagery to improve
the overall performance of the system. The small image statistical
classifier and the large image syntactic classifier are combined by a
configuration analysis scheme to recognize multiple component structures

*This research was conducted under a joint sponsorship of DARPA (Major
Larry Druffel, Image Understanding Program Manager) and AFAL (Mr. Hank
Lapp, Thermal Imaging Group).
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Figure 1. Context Dependent Automatic Military Image Recognition System.
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Figure 2. Blook Diagram for Prototype Similarity Transformation
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such as SAM sites, vehicle convoys, airport and to remove conflicts.
The output of the conflict removal function is recognized targets that

have tactical importance or are important based on mission analysis.
In the following sections we describe the individual components of the
system in detail.

SEGMENTATION

Image segmentation is performed by prototype similarity transforma-
tion technique [1] which is a method for transforming an image into a set
of symbols, each of which represents the relationship of a local region tc
other parts of the image. A general block diagram of prototype similarity
transformation is shown in Figure 2. Generating prototypes is equivalent
to finding a maximal set of mutually dissimilar cells. A cell is a pixel
or a collection of pixels, depending upon the required resolution in the
segmented scene. The generated set of prototypes is used to label each
cell in the image. A priori information about the scene is used to guide
an inference process to give meaning to each cell in the symbolic image.

Segmentation of individual components of a target can also be done
by using the prototype similarity transformation technique. This is done
by interactive use of the technique at progressively higher cell resolu-
tion as shown in Figure 3.

In the segmentation technique, results of the segmentation of previous
frame are used as the starting points of segmentation in the present frame.
In prototype similarity transformation in the initial choice of prototypes

is the same as the prototypes generated in the previous frame. The advan-
tage of this is that the performance of the segmentation technique approaches
the asymptotic value as time proceeds.

SECONDARY SCREENING IN TARGET DETECTION

Secondary screening is a target detection function which is based on
the concept that if a segmented object is indeed a target the±n appropriate
features values of the object transformed to the ground plane should match
those of the actual target. This concept of matching true object features
in ground plane is shown in Figure 4. Implementation of the secondary
screener along with a conventional statistical classifier improves the
target screener performance by using a priori knowledge about the true
target parameters.

The output of segmentation is used to detect and recognize targets
ouch as tanks and trucks. A preliminary screening of non man-made objects
(MMO) is first performed on the segmented image by a linear classifier.

The detected objects are further screened based on the true size,
temperature or other physical properties. Classification for secondary
screening is performed using image features, sensor parameters and physical
dimensions of all anticipated targets. The sensor parameters needed are
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the angular subtense of the Field of View (FOV), pixel diiaensions of
the FOV in the image plane, the angle of depression of the LOS and the
altitude of the sensor location or carrying aircraft.

System noise in an image recognition system affects the performance
of the system in two ways. Firstly, the target may fail to meet the
segmentation criteria of the system, resulting in a missed target.
Secondly, the feature values of the segmented objects may be erroneous,
resulting in missed targets as well as false alarms. Improved false
alarm and detection is achieved by accumulating information regarding
the locations and the feature values of the objects from frame to frame.

In the sequential frame analysis 'je first detarmine an interframe
sequence of extracted objects containing a given candidate target in
the present frame. We then determine if the classifier result on the
candidate target in the present frame is consistent in certain manner
with the classifier results on other objects from the past frames in-
the sequence. An inconsistent classifier result is modified in some
prespecified manner that yields better classification results. This
method of "smoothing" the classifier result consists of three distinct
steps, frame alignment, interframe object matching and decision smoothing.

The frame alIgnment technique estimates the relative translation,
rotation and scale change between two successive frames. To estimate
this frame-to-frame change, segmented image frames and an associated
feature vector for each segmented object in the frame are computed
first. A symbolic matcning of segmented objects in the two frames is
then performed to determine the correspondence between objects in the
successive frames. The classifier decision made on a candidate target
In the present frame is modified based on the decisions made on the
same object in the immediate past frames using maximum likelihood
estimate.

SYNTACTIC AND STATISTICAL TARGET RECOGNITION

At short ranges, when tbh target images are large enough to show
detailed components lingulstic recognition techniques are used to class-
ify the detected targets into one of the various target types. When
the target image is too s3mall to show any structural detail, a Knn
Classifier is used to classify the targets.

A3 it turns out, the number of features required for statistical
pattern recognition Is often very large, which makes the idea of des-
cribing complex patterns in terms of a (hierarchical) composition of
simpler subpatterns very attractive. Aiso, the number of possible des-
criptions is very large in the case of tactical targets from relatively
close range. In such a case it is Impractical to regard each descrip-
tion as defining a class. Consequently, the requiremert of recognition
is better satisfied by a syntactic description of each class rather
than by Its classification.
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The assumption in this syntactic approach to tactical target recog-
nition are:

0 Images of tactical targets are large enough to show
structure.

* It is easier to recognize target components than the
target.

The first assumption deals with the sensor-target range. If the range is

too large to show any details inside the target, one would have to resort
to statistical recognition techniques. But as the sensor-target range
decreases and the target structure becomes discernable, syntactic recog-
nition schemes become feasible. From our experience, if the target area

is of the order of one-half to one percent of sensor FOV, syntactic
recognition schemes are feasible. This translates to about a ten centimeter
pixel resolution.

The second assumption deals with the relative ease of recognizing
target and its components. If it is easier to recognize a target than
its components, as would be the case when target image is only a few
pixels, one would not employ syntactic recognition schemes. But in low
quality images where the recognition based on target outline is not very
reliable, a syntactic scheme can be successfully used to recognize targets
provided the assumption on target image size holds. Even for good quality
images, target orientations will result in different target outlines.
Consequently, one will need several classifiers for each type of target.
In principle, one set of syntactic rules can be generated to recognize
the target from all aspect angles. Syntactic recognition schemes can
also be successfully used for partially occluded targets where conceivable
statistical recognition schemes would f,-il.

A syntactic target recognition technique has been successfully
developed and demonstrated for FLIR images [3] by Honeywell. An example
of syntactic target recognition is shown in Figure 5. The top row of the
figure shows, from left to right, the input image, coarse segmentation,
component extraction. The bottom row of Lhe figure shows, from left to
right, classification of the -,)mponents and target recognition.

Small image statistical classifier and large image syntactic classi-
fier are combined into a single adaptive target classifier system. The
system is guided by a control module which is programmed to select one of
a set of criterion functions In selecting appropriate classifier. Further
detailed description of the system Is given in AIRS program final report [4].

CONFLICT RKMOVAL USING A NETWORK KNOWLEDGE MODEL

Conflict removal combinoc ohbict Information and relational context
information for modifying classifier dlo'islons that are incon.istent with
our world knowledge. The process requires modeling and representing the
worl d knowledge regard ing obect s in t ho scone and determining an opt.imi 1
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way, called search strategy, of examining the scene using the knowledge
model. rhe method can also be used for recognizing scene components con--
taining multiple objects. Examples of such objects are airports, SAM
sites, convoys, and bunkers. Various methods of modeling the knowledge
and using the model to recognize mission oriented scenes exist in the
literature [5]. The methods depend on the particular application of the
system. We have combined appropriate concepts from various systems and
developed a knowledge model and a search strategy for military tactical
importance in imagery [6].

Conflict removal is performed by detecting inconsistent configura-
tions in the scene. An example is a tank in the middle of a river. If
the structural relationship between two recognized objects, one recognized
as a tank and another recognized by the background classifier as a river,
is such that the tank is located in the middle of the river then that
particular configuration is flagged as inconsistent with the world know-
ledge network model. In such cases the target, the tank in our example,
is reclassified to a "don't know" category. This conflict or inconsistency
is removed by a sequential frame analysis, which is analogous to a human
operator taking several looks at the scene of interest when he is not
confident of his recognition result for the given scene.

Conflict removal can be effectively applied in reducing false alarm.
and using a priori scene or mission information in recognizing complex
targets. Consider, for example, the mission of detecting and locating a
track convoy. A network model is used [4] for representing the essential
relational structure of a convoy. A FLIR image frame with a vehicle convoy
is shown in Figure 6a. The image is highly texturous and contains many
"blobs" that have the general appearance of the desired target. Indeed,
statistical detection of target results in a large number of candidate
target objects as shown in Figure 6b. flowevet, the relational structure
of many of these candidate target objects is not compatible with The
description of the convoy. Application of the relational constraint in
the network model of convoy results in the targets shown in Figure 6c,
leading to the final display of the result as in Figure 6d.

With the application of conflict removal, its output constitutes
final system output as shown in Figure 1.

CONCLUS I ON

Automatic target screener technology has come a long way since the
ptoneerilg Augmented Target Screener Subsystem [7,81 (ATSS) of USAF.
Hloneywell has leveloped the technology to a point where more and more
advanced A rprirt i nowledge can he uscd In the target screener. Many of
the general artificlal intelligence techniques have been successfully
adapted to solve the real world problem In target screener. This has
greatly enhance,1 the target screener in capabillty as well as perfor-
inance. In experiment:al analysis thto target sc reener sYst em has re ognrized
,;mall inlmage and large I nage lanks, trtueks and vehil ,e conyVOvs In v;,r-t ous
conditions of contrast, chitAtor, as/,0ct azlli e, ec lu' Ion and range-to--t arget.
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TARGET DISCRIMINATION WITH MULTI-DIMENSIONAL SENSORS

Douglas N. DeFoe
CAI, a Division of Recon/Optical, Inc.

550 West Northwest Highway
Barrington, Illinois 60010

ABSTRACT

This paper examines one method of detecting, acquiring and
windowing a target by using more than a single kind of information.
Specifically, this method of target discrimination was developed for
a Passive Tracker/Ranger System in order to detect aircraft. Inherent
to the Tracker/Ranger is the production of range and motion information,
as well as brightness of the scene. Fortunately, these three character-
istics are those which are most likely to distinguish an aircraft from
other objects, so the task of detection is easily implemented with such
a system. Nevertheless, the method applies equally to the detection of
other classes of targets whose distinguishing characteristics are less
obvious to a given sensor system.

INTRODUCTION

The tasks of target detection, acquisition and windowing by an
imaging sensor rest on the ability to discriminate the image of a target
from the image of the background. Of course, the implication is that
there exist some key characteristics (or, more properly, scme combin-tions
of characteristics) by which tsa'get objects are distinguishable from
non-target objects. Table i is a list of several candidate characteristics
which are both observable by imaging sensors and may help to discriminate
one class of objects from other classes.

TABLE I. SOME DISTINGUISHING CHARACTERISTICS

* Brightness • Motion

* Color * Range

0 Surface Texture & Size

0 Edge Smoothness * Shape Composition

a Symmetry • External Spatial Relationships

* Periodicity * Internal Spatial Relationships
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Note that various types of resolution (contrast, spectral, spatial,
etc. ) can play crucial roles in the definition of these terms. For any
one characteristic we may wish to detect certain values within set
bounds or, more loosely, values sufficiently different from a norm or
mean. For example, if in an acquisitin mode, the system may be set
to detect differentness, but If In a reacquisition mode the system may
be set to detect values within bounds of the last known value. Further, in
a reacquisition mode new characteristics may become significant, such
as position and track. For any specific case then, these terms must
be carefully defined.

The particular set and relative importance of characteristics
must takc into account the particular class of targets to be detected
and possibly the geometry and circumstances of observation. The
point made here Is that no one of the candidates nor any one combination
is either sufficient or a necessary measure of "class"-ness. How-
ever, the probability that a given object belongs to a given class Is
at least as much a function of degree of concurrence as it is a function
of magnitude of occurrence.

Based on this argument, in order for a sensor to more reliably
discriminate certain types of objects, it is necessary that it detect
or calculate a set of characteristics and examine their spatial coin-
cidence. Both the implementation of generating raw maps of character-
istics and the formal equation which combines them into a composite
map are case specific; nevertheless, composite mapping is a powerful
technique for a variety of tasks required by an autonomous weapon system.

IN-S

I I /

[~ i~ h ilhJM ýI12i

Figure 1. Composite Mapping

SSeveral features of composite mapping are worth enumerating

at this point. Detection, acquisition and windowing can be controllcd
by a single composite map equation, in that acquisition is no more than
v decision to track a detected target and windowing is automatically
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defined as the set of map locations at which a target is detected.
With only slight modification and/or level gating, the same equation
can be used in a reacquisition mode. Threat assessment and recognition
programming can profitably use the same technique. Besides its
applications, it is noted that a major strength of composite mapping
is that multiple targets rere processed in parallel. Furthermore,
with proper formulation, the composite map values are more closely
related to the confidence of "class"-ness than to any specific character-
istic of the target. Finally, mapping provides excellent methods of
discriminating against noise, in that both spatial coherence and temporal
continuity can be imposed as conditions to detection.

In summary, composite mapping consists of the mapping of
specific characteristics in a scene and combining these maps into a
single map in a way which discriminates one class of objects from all
others. It is a simple, powerful and valuable technique for many
aspects of autonomous image analysis. The following describes a
specific implementation of this technique as a method for detection of
aircraft from an airborne platform.

BACKGROUND

Under Air Force Contract F33615-78-C-1562 CAI was tasked
with conducting the preliminary engineering design of an Advanced
E-O Tracker/Ranger System. The system is to be used on tactical
fighter aircraft and linked to the gum director computer. One of the
subtasks was to define an approach to long range autonomous detection
and acquisition. Naturally, the two related tasks of windowing and re-
acquisition are implied for the proper operation of a tracking system.
As previously pointed out, each of these subtasks can be thought of as
a form of target discrimination. Prior to detailing a discrimination
method, however, it is appropriate to describe the entire system and
define some of its relevant capabilities.

CAI's approach to tracking and ranging utilizes area correlation
as the calculation process. For ranging, two lenses and sensors are
mounted with parallel optical axes. Because the parallax between two
views of an object produces a misregistration inversely proportional
to the range, the range of an object can be calculated by cross-correlating
the two images in the pair of CCD image planes. Similarly, tracking
Is accomplished by the cross correlation of two images displaced Wn
time rather than space.

5 TARG , AT RMFG R

/

FIgure 2. Ranging and Trac"dng Geometry
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CAI's correlation algorithm has several important features
which reflect on the system rize, speed of calculation and autonomous
operation. First is the high accuracy which measures image mis-
registration to small fractions of a pixel. As a result, precise
ranging and tracking functions can be packaged in a small volume.
Demonstration hardware has shown an rms error in image shift
calculation at .02 pixel for a 10:1 signal-to-noise ratio. With filtering
to reduce the noise, the error drops to a fraction of this value.

FRACTION 0F A
PROCESSING

ELEMENT (WAS)

ESPONSE LOWER FREQIUE4CY LIMIT IS Wi

02 - " -

.07 1/100 .0 - ...

! 06

000

'03LOW PASS FILTER ICOAK F.EQUJECY _4;

Figure 3. Correlator Accuracy Figure 4. Correlator Demonstrator Accuracy
(Noise Filtered)

L oo JSENSOR FORMA The second relevant feature is
that the correlation is performed on
relatively small subfields or windows.
This means that the image in the field-

L• of-view can be processed as a map of
several smaller fields. Naturally, this

[i abilit SESRFO h segmd elvnt theiatue inosml

PROIM a ovew lapped processing areas is of

" - crucial tmportance for using the correl-
ation output in composite mapping.

M;AP

'0 0

o 0 0

Pigure 5. Information Flow

The third important feature is that CAI's algorithm lends itself
to Ipeline processing. That is to say that the formula for the calcut tion
of ITli2roglstration can be implemented In a form which builds up the
resuit as the Image on the sensor is read out. After the last pixel of

, 'c Irrelation subfield has been read only a few arithn•etic operations
S- T r0ul red to produce the result. Tbe importance of this is that
ciri catiun is performed at the imaging rate and very high speed operation q
is puo,.i;ble.j
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Physically, the system (see figure 6) consists of an essentially
spherical 8-inch head which houses the optics, image planes and a
third axis torquer and e"-oder. Two lenses are used primarily for
ranging, and a third lens with a larger field-of-view is used solely
for tracking. Behind this head is a cylinder which houses the elec-
tronics, the two primary axis torquers and other necessary sub-
systems. For the detection mode of operation, only the ranging
portion of the system would be used because of the better resolution
afforded by these lenses. Range, motion and brightness maps would
all be at the same scale, coming as they do from the same portion
of the system.

SHAFT PITCH Y. A _ SHAFT mn .,

ENCODER TOWMUER +TORUIUR pLl TORQUER [1 ER SLIP RING. ASS

fir 11'IA

RANGER LENSES ELECTRICS

TRACKER LENS

Figure 6. Airborne E-O Tracker Layout

The last step required to set the stage for composite mapping is
the generation of high resolution, high "contrast" maps of the appropriate
characteristics. Each of the features discussed above makes it possible
to generate such maps of range and motion, but the realization is accomp-
lished by a second kind of pipeline operation - the pipeline correlation
of the set of overlapping windows in
the field-of-view. This step, which
is easily implemented, yields a ARRAY I I ARRAY A?

signal similar to the video signal, -l -- Y

but whose amplitude is not the J
brightness but the image shift. -n-f
This signal is produced at the same
rate and with essentially the x x
same re:-olution as the video
signal. While the correlation d... - . .
maps are derived from subfields
containing several pixels and .. . .
it would eem that the resolution PRO-

Is reduced, in fact the correlation CS -

result is the shift of the larger FI---_.
portion of the image, rather than
a blurred value. Hence, it is
reasonable to consider the re- Figure 7. Pipeline Subfield Processing
solution as nearly equivalent to
a pixel-by-pixel remolution,
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The Tracker/Ranger System is, then, a compact imaging sensor
which for each field-of-view can produce three data maps of brightness,
range and motion. That these three characteristics can he considered key
characteristics for discriminating aircraft from background is obvious.
There remains only the need to formalize an equation which will combine
them in a composite map.

THE COMPOSITE MAP EQUATION

For the application of detecting airborne targets, several considerations

must be included in the composite map equation.

1. Brightness is not in itself reliable information. In the absence
of range or motion information indicating the probable presence
of a target, brightness variation should be ignored. However,
where range or motion information indicates the presence of
a target, unusual brightness should be considered corroborating
information.

2. Against a fairly close background it is uncertain whether range
or motion of a target will be a distinctive characteristic. How-
ever, against a nearly infinitely distant background target range
is assured to be a distinctive characteristic. Hence, for a mean
range greater than some threshold it is appropriate to weight
the equation in favor of range information.

3. Because the system is mounted in an airborne platform, motion
information is relative rather than absolute. Furthermore, if
there is a target in the field-of-view it is not known a priori
whether an exceptional or unusual value for motion would pertain
to a target or background. For a target covering a small portion
of the field, target motion would be unusual, while for a target
covering a large portion of the field the background motion would
be the unusual value. This ambiguity can be resolved if one
assumes that targets always are nearer in range than background.
For any composite map location, then, the sign of the amplitude
should be solely determined by the range map value for that
location.

4. Motion can be reduced from a vector to a scalar because for this
application we are interested only in detecting a distinctive
vector. The reduction of order is accomplisied by subtracting
the mean vector and taking the magnitude of the resultant for
each map location.

5. Again, because we are interested only in distinctive values for
detection and acquisition, we should normalize each map by
subtracting the mean and dividing by the standard deviation
prior to the generation of a composite map.
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Taking these considerations into account, the equation for amplitude
of the scalar map ac location (i, j) is given by:

j [M9 Ji R i'j 1  + D R, lij [1 11+'
where:

C is the composite map value

DM, i] is the normalized scalar motion map value

DR, iJ is the normalized range map value allowing for the weighting
discussed above

Bij is the normalized grey level

The manner in which the range map is weighted is by offsetting the mean
value to a value midway between the actual mean and the value for the
maximum desired detection range. The effect is to make it much less
probable that composite map values for background will be positive, ayid
only slightly less probable that values for targets will be positive. Because
the motion and brightness components at-e absoiute valued, a stronger
distinction between target and background is forced.

By this equation a composite nmap is generated. A threshold is set
as a tradeoff between false alarm rate and probability of detection. A
further constraint on the detection logic Is imposed, such that three adjacent
map locations must have amplitudes greater than threshold for the system
to indicate the presence of a target. Excellent results for this method
have been predicted on statistical computer runs.

RESULTS

In the following results, the threshold level has been set to keep
the false alarm rate at one per hour. Note that this figure does not reflect
using temporal continuity as a constraint, so a false alarm will have only
minimal effect on the system and will disappear on the next generated map.

Figures 8 and 9 show the predicted probability of detection for a
head-on view of a MIG 23 at ranges of 18, 000 ft and 24, 000 ft against
an infinitely distant background. Figure 8 shows the effect of motion,
assuming that the target brightness is statistically indistinguishable from
the backgloumd and figure 9 shows the effect of brightness variation,
assuming no detectable motion. Based solely on range information,
this worst-case view of a target shows 21% chance of detection at 24, 000
feet and 73% chance of detection at 18, 000 ft. Only a small amount of
motion or brightness variation or a slightly better cross-sectional cover-
age brings the probability of detection to more than satisfactory levels.
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Figure 8. Probability of Detection vs. Motion Figure 9. Probability of Detection vs.
Brightness
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Figure 10. Probability of Detection vs.
Coverage and Motion

As these examples illustrate, the detection method gives very good
results for even the worst cases. We expect to be able to deteoct at long
rantges airborne targets in any geometry 61 th few failures. Equally import-
ant, we expect a false alarm rate which Is quite satisfactory for either
man-In-the-loop or autonomous systems.
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CONCLUSIONS

As demonstrated by the Advanced E-O Tracker/Ranger System
designed by CAI, composite mapping is a technique which offers the ability
to detect and acquire targets of a particular class with great precision,
as well as provide an automatic windowing function. Since this technique
Is essentially a form of image processing which, loosely speaking, makes
objects of a particular class 'bright, " multiple targeting is a built-in
feature. Further, it has potential as a method of target recognition.
Carrying the analogy of brightening targets along, some characteristics
which indicate target type within a class can be included to give the map
"color." Threat assessment might require a different set of characteristics,
but is just as easily implemented. It is not difficult to perform a variety
of analyses once the hardware for mapping various characteristics exists
in a sensor.

Both motion detection and range detection are realizable procedures
with today's technology. Together they provide thi basis for the autonomous
targeting of aircraft by passive imirging sensors.
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Paper No. IIIB-3, Presented at the Workshop on Imaging Trackers
and Autonomous Acquisition Applications for Missile Guidance,
19-20 November 197.9, Redstone Arsenal, Alabama.

MAN-MADE OBJECT DETECTION

H.C. Schau
Martin Marietta Aerospace

Orlando, Florida 32855

Abstract: A series of algorithms is presented which detect and localize
man-made objects in images. The technique presented has low memory re-
quirement, is easily implemented, and makes use of any a priori information
in a natural manner. Results 'are shown for both hot and cold targets in
8 to 14 p FLIR images. A discussion is included concerning th.e extension
of this technique to aid the target classification problem.

1.0 INTRODUCTION

The areas of image processing and image pattern recognition have seen
meteoric growth in the last several years, particularly in their applica-
tions to fire control systems arid autonomous acquisition devices. This
rapid growth has been precipitated by a new generation of solid state
sensors and a host of powerful microprocessors available in militarized
configurations. The microprocessor revolution has stimulated the already
active area of digital signal processing and eased hardware constraints on
the implementation of numerical algorithms developed in the researci' labor-
atory. Whereas in the past, target detection techniques were limited ti,%
the availability of hardware, the current techniques which are envisiouHod
to be primarily under software control exist under a new set of constraints
such as memory, number of multiples (speed), and the ease by which a priori
information may be employed to aid the decision process.

As might be expected, the great activity in tie area of autonomous ac-
quisition has broUght about a myriad of techniques for target detection and
identification.6,8 This is desirabme since applications are usually spec-
ific in their requirements so that cnly a few of the many techniques can
even be considered for implementation. In this paper we present a tech-
nique for localizing man-made objects (AMO) and performing a first order
classification on the detected objects. The overall technique is presented
as a series of individual numerical algorithms, and each is discussed separ-
ately in the next section. The desired output is the position and extent
of possible man-made objects which have properties, such as size or shape,
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which fall within preset bounds. The techniques will be demonstrated with
FLIR (forward-looking infrared) scenes in the 8 to 14 V atmospheric window.

It was initially e'pected that the line-to-line ac coupling of a FLIR
sensor wou.d require some form of quasi-dc restoration prior to any attempt
at target localization; however, results have shown that in general this
is not necessary. A dc restored scene (the data shown in thlis paper is
originally dc, a FLIR simulation routine ac couples each line while giving
several percent gain and bias offset to account for !.ED and amplifier
nonuniformity) results in fewer false target regions that must be con-
sidered and thrown out. Results between raw FLIR data and their dc restored
counterpart are not appreciably different. Although only 8 to 14 p data
are shown here, it is expected thLt with mi-ot adjustments the technique
will work for imaqes in any wavelength band.

Figure 1 shows a flow chart of the individual algorithms which make
up the overall technique. As will be discussed in more detail later, the

i• , •wLAPLAC IAN/

1 E AT O STEI N

LF PSLUDEDG THRESHOLDD

SIUA MARAGCLSTR I- OR FAS I--RIGINAL,'" IMAGE
NEIGr4 B A L BI

-- 
AAEA LFW
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; Figure 1. Man-Made Object Detection Sequence
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advantages of the overall technique are its simplicity, lcw memory re-
quirement, and ease in application of a priori information. Disadvantages
are the requirement of a preprocessor such as an edge extractor, and the
use of global rather than local information. This can cause problems in
scenes with two or more closely (within several pixels) lying targets,
since several close targets could be accidently considered as one. No
problems have yet been encountered in this area.

The basic philosophy of the MMO detection technique under consideration
is that either there is a gradient at the object-background boundary (regard-
less of whether the target is hotter or colder than its surroundings) or
the target has more internal structure (with higher spatial correlation)
than natural clutter. In reality both cases are accepted.

2.0 ALGORITHMS

2.1 Preprocessor - Threshold

The first two sections shown in Figure 1 are the preprocessing and
threshold algorithms. The preprocessor is a neighborhood modification pro-
cessor (NMP) shown in Figure 2. The choice of sobal, laplacian, etc., de-
pends somewhat on the application. We have not found any one type to be a
clearly superinr preprocessor in our work (we employ the modulus of any
filter in this work, so that all preprocessed results are positive). Since
most workers are familiar with results of preprocessors such as those con-
sidered here, we will include preprocessiny results in a later section.

0 0 0 0 0 0 0 0 0 0

S0 0 0 0 0 X :;X2 0 ý0 0 0
i .P X3 P

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

X. INPUT INIENSITY AT POSITION i OF N[IGHBORH1OOD OF P

F(X) - OUTPLIT INMENSITY AT POINT P

Figure 2. Neighborhood 14olification Preprocessor
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The next block (Figure 1) is the threshold algorithm. This algorithm
works on pixel pairs where the first value is the pixel grey level at a
particular location while the second value is edge or laplacian value
at the same location, A specified number of the numerically largest
processed values are then retained while all other pixels are thrown out
("N" in Figure 1). Typically 1.5 to 3.0 percent of the pixels are saved.
From the remaining pixels, the grey level histograms are formed as shown
in Figure 3. Notice that this is quite different than th2 total grey
level histograms as illustrated. The thinned histogram is then used to

* IF1iNNEC) HIST'OGRAM

PROCESSED
VALUE
VALUE, TOTAL HISTOGRAM

LAPL ACIAN,
ETCI

GREY VALIJEX -

Figure 3. Histogram Thinning Process

produce two binary (one bit) thresholded images by a right seeking and left
seeking algorithm. The basic assumption is that the left seeking threshold
is looking for hot targets. The search is started on the right side of the
histogram (hot side), and the threshold is aefined as the first valley after
the first peak. All pixels to the right of this threshold are set black
(binary 1) while the rest of the pixels are set white (binary 0), including
pixels thrown .away which are always set to white. If the search extends for
more than half of the total number of pixels contained in the thinned histo-
gram, pixels to the left of the threshold are set black while these to the
right are set white. The right seeking alrorithm works simiiarly from the
left and presumes to find cold targets. Figure 4 illustrates the two algorithms.
Due to the relatively few number of pixels (200 to 1000) to be distributed
among 256 histogram "bins," some smoothing of the thinned histograms is re-
quired to define peaks and valleys. Although smoothed estimates of the
thinned histograms may be produced, this has been found to be unnecessary.
If a peak is defined as at least two successively decreasing pulses and a
valley as at least two successively increasir,t pulses, the noisy nature
of the thinned histogram does not appear to effect rcsults. This allows
effective operation of the algorithm while not requiring further numerical
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RIGHT SEEKING LEFT Sc%.KING

HISTOGRAM

Figure 4. Histogram Mode Clustering Algorithm for Locating Thresholds
Which Find Hot Targets (Left Seeking) and Cold Targets (Right
Seeking)

processing to produce smoothed estimates. Employing global information in
this form has the advantage of requiring only very small amounts of memory
while,. retaining simplicity. Histogram manipulations may be performed easily
on a microprocessor. The resulting one bit images contain at most 1.5 to
3 percent of the number of data points of the original image. As an example,
consider a 512x512, 8 bit image; resulting binary images would require typi-
cally 103 bits of storage as compared with 2xlO6 bits in the original image.

The next set of figures illustrate the threshold technique. Figure 5
is a FLIR image showing a burning hulk (bright object left of center), ar-
mored per-sonnel carrier (APC) (left of burning hulk), tank obscured by a
tree (center), and two tanks to the right (one only partially visible in the
field of view). rhe scene is 128x128 pixels. Figure 6 shows the thresholded
scenes for the sobal (left seeking in 6A, right seeking in 6B) and laplacian
(left seeking in 6C, right seeking in 6D) operators. Notice that the sobal
finds boundary points while the laplacian finds interior points as expected.
Figure 7 shows the thresnolded images for the third central moment operator.
Figure 7A and 7B illustrates 1x7 window (left seeking in 7A, right seeking
in 7B), while 7C and 7D present a 3x3 window size (left seeking in 7C, right
seeking in 7D). It can be seen that the third central moment acts much like
both sobal and laplacian. Although it will not be shown, the second central
moment (variance) has been found to be very useful also. It can be observed
that in all cases target points are turned black while only a few background
points are chosen. The threshold algorithm is somewhat bothered in this
da.a set by a line of data drop-.out along the left hand margin. This data
tends to use up the available data for the thinned histogram (only a fixed
number of points are e:cployed), since it is a region of high gradient. In
any event the result of the algorithm can be seen.
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igure 5. 8 to 14 11 FUIR
Scene Containing
Tanks, APC, and
Burning Hulk
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A B

C D

Figure 6. Thresholded Scene from Figure 5. Upper Scenes Display
Sobal (bA - left seek-Ing, 6B -riaht seeking); Lower
Scences Show Laplacian Modules (6C -left seeking, 6D-
riqht seeking)
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A B

JW,

C D

Figure 7. Thresholded Scene fromn FiqUre 5. Upper Scenes flisnlay 7x'7 Third
Central Moment (6A - left s.eekina, 6B - riaht seeking); Lower
Scenes Show 3x3 Third Central Moment (6C. left seeking, 6D-
right seeking)
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2.2 Spatial Clustering
1 O

The binary image produced by the thresholding algorithm is then seg-
mented on the basis of pixel clusters. This is performed through a clus-
tering algorithm. There are a great variety of clustering algorithms
available; we have chosen one known as an agglomerative mutual neighbor-
hood clustering algorithm. Figure 8 gives a brief explanation of the
algorithm while Figure 9 shows an example of how results vary as a function
of depth of clustering. The depth of clustering may be chosen without any
prior knowledge and will not appreciably affect results (we have chosen a
depth of clustering of 5). When knowledge of target size or correlation is
known, the depth of clustering may be changed to enable the algorithm to
work slightly more t•fficiently. An example might be the prior knowledge
that one is trying to locate a bunker rather than a tank. In any regard the
results are not critically sensitive to the depth of clustering chosen.

GIVEN AN ARRAY OF LABELED POINTS li(Xi Yi) MUTUAL NEIGHBOR

VALUE BETWEEN LABELED POINT 1 . AND 1 IS DEFINED AS

mnv(li l ) = M+N WHERE

1. IS THE Mth NEAREST EUCLIDEAN NEIGHBOR of 1

I. IS THE Nth NEAREST EUCLIDEAN NEIGHBOR OF 1.J I

THE TIGHTNESS OF CLUSTERS MAY BE EXTERNALLY CONTROLLED BY

THE DEPTH OF CLUSTERING

Figure 8. Region Segmentation Using Agglomerative Mutual Nearest Neighbor-

hood Clustering

2.3 Bit Quad Statistic

After the binary image has been clustered into several groups of
pixels, each group is considered as a possible target location. A natural
statistic for binary images are the number of bit quads as shown in Figure
10, of which there are 6 types. Counting the number of each type in each
pixel cluster is simple and may be done in a parallel or pipeline manner.
By simply counting the number of bit quads, global properties of the re-
gion under consideration may be estimated as shown in Figure 11. In the
examples to be shown, the area, length-to-width ratio, and Eular number
are set with rather wide bounds to reject regions that do not fall within
our definition of a target.

Figure 12 shows the next frame of FLIR data following that shown in
Figure 5. Figure 13 shows in order from the top the results of a sobal
operator and the left and right seeking threshold algorithms. The binary
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BASIC DESCRIPTOR OF A BINARY IMAGE SHAPE AND TOPOLOGICAL ATTRIBUTES
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Figure 10. Shape Descriptors FigUre 11. Global Properties Comn-
Using Binary Images puted From Local Bit Quad Counts
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images were clustered and shape parameters computed. The five regions which
passed are shown in Figure 14; four additional regions were reJected. Finure
15 shows the original scene reduced in intensity with the five "passed"
regions highlighted. It can be seen all are targets. Figures 16 through 18
show a similar sequence for the third central moment operator where only
four regions are found. This is not too surprising since the rejection
of false targets was trained with the sobal results. In both cases no
targets were found for the right seeking threshold.

3.0 COLD TARGETS

Perhaps the more difficult problem in detection uf man-made objects
is finding cold targets. Figure 19 shows a FLIR image of two burning
hulks, (bright objects upper left) with a road running diagonally just
below them. Several cold tanks are located above the road directly across
from the hulks just to the right of the center of the image. Two muzzle
flashes are seen. Figure 20 shows the highlighted results of the complete
algorithms with the right seeking threshold. Notice that all operators
found some part of the tank group. Notice also the data dropouts on the
left margin has again caused several false targets. Figure 20E shows the
third central moment operator with the left seeking threshold which has
found the hulk. Other operators found no targets with the left seeking
threshold. The hi41k was also found in the 7x7 third moment - left seeking
algorithm (upper hulk in 20D) and the 3x3 3rd moment - left seeking (20F).
It can be observed that the technique does a credible job of finding the
MMO in the scene. Hulks are generally not found because we have set the
limits on area and Eular number to reject regions of unstructured hot
pixels which occur in high density.

4.0 IDENTIFICATION

The algorithm set described herein is not intended to identify PIMO,
but does yield additional information that may aid in classification.
Consider the distribution of bit quads from Figure 14 for five targets.

N(l) N(2) N(3) N(4) N(D) Target - Side View

24 8 0 0 0 Tank - Deck
11 8 3 3 0 Tank
10 12 8 3 0 APC
12 42 12 0 0 Burning Hulk
11 4 5 0 0 APC

A glance at this limited set indicates there may be some classification
information contained in the bit quad statistics. In any regard, it is
important to train the rejection routine (and classification routine if
this proves feasible) with the particular preprocessor (e.g., sobal, la-
placian, etc.). This can be seen by the average bit quad distribution
for several preprocessors compared for the same target group.
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N(1) N(2) N(3) N(4) N(D) Type

11.25 13.0 5.0 2.0 0.5 Sobal
19.25 2.25 0.25 0.25 0.75 Laplacian No. 1
12.0 5.0 0.75 0 0.25 Laplacian No. 2
15.25 8.0 1.25 0.25 0 Third Central •1oment

Laplacian No. I - - 4 -2
1 -2 1

Laplacian No. 2 ( 8 -)
-1 I- -1

Results are as expected; edge extractors such as the sobal provide bound-
aries which have high N(2) counts where laplacians enhance isolated in-
terior points (high N(1) values). The third central moment operator
achieves results between these two.

5.0 CONCLUSION

As stated in the introduction, there are a variety of numerical tech-
niques for localizing and classifying potential targets for fire control
and autonomous acquisition applications. This is necessary since each
application has specific constraints and will permit consideration of
only a few possible solutions. in this paper we have presented a tech-
nique for de4 ecting and classifying military targets in unrestored FLIR
imagery. The algorithms presented require a minimum of memory and are
c-pable of fast implementation. Prior information is employed in a
natural manner tc enhance performance; however, no penalty is paid for
instances where this information does not exist. By making the algorithm
not independent on any one piece of specific information, results are
generally consistent for many applications and conditions,

Results are encouraging on data sets containing both hot and cold
targets in the presence of false targets. It is expected that this tech-
nique will lend itself to the solution of many autonomous acquisition
problems when a final algorithm is added which considers each potential
target region and per orms an identification on the basis of a set of
extracted features.', Work toward this end is currently in progress.
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Abstract

Analysis of a frame sequence for the recognition and tracking of moving objects
is becoming one of the active areas of computer vision. Difference pictures have
been used for the motion analysis and the segmentation of a dynamic scene. This paper
is concerned with the problem of classifying regions of a difference picture. We

modify the method of Jain and Nagel for the classification of the regions in a difference
picture resulting in a more robust approach. A novel method is proposed for the
identification of the regions due to the occlusion of two or more moving objects. The
results of several experiments are presented,

Introduction

Computer analysis of motion is attracting increasing attention of researchers [6,7'.
Change detection is an important part of motion analysis. In some systems each frame

of a sequence describing the dynamic scene is segmented and then matching techniques are
used for the change detection in the frames [5]. In other systems low level methods
are used for change detection [1-4]. This paper is concerned with the latter approach.

Motion of the objects results in the transformation in the frames of a sequence
describing the dynamic scene. A binary difference picture can be prepared to represent
changes in the frames due to transformations resulting from motion, by comparing
intensities at the corresponding pixels of two contiguous frames of the sequence. The
regions of connected 1 entries in the difference picture due to the covering of the
background by a moving object image, the uncovering of the background by a moving object,
or botb the covering and the uncovetlng of the background are called regions of type

0, B, or X, respectively [2, 3, 4]. It has been shown that the knowledge of the type
of a region gives important information for motion analysis and for segmentation of
scenes into stationary and nonstationary scene components. For determining the type
of regions Jain and Nagel [2] proposed a method based on the computation of a ratio
called CURREF. This ratio has been used by Jain et al. [4] for the extraction of
images of the moving objects from an image sequence.

In this paper it is shown that the ratio CURREF may give incorrect classification

in some situations for the X type regions. Also, the method of Jian and Nagel gives

wrong classification in case of the occlusion of tw) or more moving objects. We

modify the method of classification by slightly changing the definition of the ratio.
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The modified ratio removes the limitations of the classification proposed by Jain and
Nagel.

Occlusion of moving objects poses problems. We propose a method for the detection
of regions in a difference picture due to occlusion of two or more objects. The
difference picture region due to the occlusion of one or more moving objects by other
moving objects are termed OC type regions. It is shown that the OC type regions can be
indentifled in the case of the running occlusion also.

A region in a difference picture is defined in [1-4] as a set of 4-connected points.
It is observed that the regions formed by a set of 8-connected points are more robust in
motion analysis. We present some examples supporting this fact. The results of the
modified method for classification of the regions in the 0, B, X and OC regions are
presented.

Definitions

A frame is a two dimensional array of size M X N. All images, unless otherwise
stated in this paper, have the same size. Consider an image A overlayed on another
image B. The position of a segment S of the image A in the image B would mean the
corresponding pixels in the image B which represent the segment in the image A. For
brevity, when there is no ambiguity, we say "some pixels of segment S in B" in place
of "some pixels from those pixels in B which correspond to the position of the segment
S in A".

A Difference Picture (DP) is a binary picture generated by comparing two frames.
The DP is generated by placing a '1' in those pixel positions for which the corresponding
pixels in the two frames being compared have an appreciable difference in their grey
level characteristics. The difference picture is usually prepared for two frames of the
same dynamic scene taken at contiguous time instants. These frames will be called the
previous aiid the current trames of the frame pair.

It should be mentioned here that in [1-4] criginal TV frames were condensed and
then the difference picture was prepared using comparison based on the second order
statistics. In this paper we present results of our experiments with computer generated
frames of size 50 X 50. For comparing two frames we use gray levels of the corresponding
pixels; if the gray levels of the corresponding pixels in the frames under comparison
differ by more than 10 then the pixels are considered to be different.

A DP region is a set of 4-connected nonzero DP pixels containing at least 10
elements. A pixel is considered to be an edge point if the value of the Sobel operatocr
at chat point is above a given threshold.

A previous frame edge picture is a binary picture having a I entry in those pixel
positions which are edge points in the difference picture and in the previous frame.
Similarly a current frame edge picture has ] entries in those pixel positions which are
edge points in the difference picture and the current frame.

For the classification of the regions of a difference picture the ratio CURREF was
defined as:

CURREF - CC/CP

Where CC(CP) is the number of points which are botn extreme points of the DP region
and edge points in the current (previous) frame. The extreme points of a region are the
leftmot and rightmost I for a row and topmost and bottommost I for column. It has been
!;hown f2) that for O,B, and X type regions the value of this ratio is greater than I,

: less than 1, and about 1, respectively.
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Displacement of a Straight Line

Let us consider a very simple situation; namely, the displacement of a straight
line segment in a frame sequence. One can easily verify that a displacement of the
line usually results in two lines in the difference picture. One line is at the
previous frame position of the line segment and the other is at the current frame
position. The lengths of the lines in the difference picture will be same as those
of original lines. There is an exception to this fact, however. When the line is
displaced parallel to itself, there will be still two line segments in the difference
picture, but their lengths will be equal to the displacement. One line will be part
of the line segment in the previous frame and the other line will be part of the
line segment in the current frame. Note that if the line is displaced by more than
its length along the direction then the lengths of the fragments will be equal to
the length of the segment. A very important fact is that if a line is displaced in
the direction of its orientation and the displacement is less than the length of
the line, then DP has only fragments of the line in its current and previous positions.

Motion of a Homogeneous Segment

An image segment may be displaced, rotated, or changed in the size or shape
due to the motion of the object resulting in the segment. Let us consider simple
displacement. Due to the displacement, no new edges will be generated in the frame
and there will be no change in the lengths of the edges.

The entries in the difference pictures may be obtained by marking all those
points which are segment points in one frame and are not segment points in the other

frame. A very interesting and useful fact is that all the regions in the difference
picture are bounded by edges at those pixels which are edges either in the previous
or in the current frame. Note, however, that for those po 4 nts which are edge points
in the previous as well as the current frame, there will be no edge point in the
DP. This happens only when an edge is displaced in the direction of its orientation.
A direct conseqiuence of this fact is tihat in many cases an object may result in
two regions in DP, one at the front end and the other at the rear end. This occurs
when in the segment corresponding to the object there are at least two different
edge segments parallel to the direction of the motion (see r4]). The region at
the front end is due to the covering of the background by the iwage segment. The
region at the rear is due to the uncovering of the background. Note that the region
at the front will be bound on all but one sides by the edges in the current frame
but on one side by edges in the previous frame. Note that for the object under
consideration the extreme points of the region and the edge points are same.

When the motion is in the direction such that no two edge segments are parallel

to the direction of the motion, the regions at the front and rear ends may not be
clearly separated. Depending on The shape of the segment, they may be either 4-connected
or 8-connected. The 4-connectivity has been used for defining a region [1--4], but it
seems that 4-connectivity is very sensitive to shape and distance moved. This is
Illustrated in Fig. 1. Note that if the displacement of the object is such that the
image in Fig. 1 is displaced by 2 pixels each to the south and the east then there are
two 4-connected regions in the DP; if the displacement in these directions is 4
pixels each then there is one 4-connected region; and if the displacement in these
directions is 6 pixels each then there are two 4-connected regions in the DP. In
all these cases the DP has only one 8-connected region. This example illustrated

that 8-connected regions are wore consistent for motion analysis.
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Note that when there is only one region due to the motion of the object the
extreme points of the region no longer cover all the edge points. Many edge points
may be lost i.e. may not be considered in the computation of the CURREF. Some of the
lost edge points may be previous edge points and some may be current edge points.
If the shape of the object is such that equal number3 of both edge points are lost
then the result may not be affected much. The result would still classify the region
an X type. In many situations (see Fig. le), however, this may not be true. If
mcre previous frame or more current frame edge points are lost then the classification
based on extreme points of a region may give the wrong classification. The ratio of
current edge points to the previous edge points would classify the regions correctly.
Thus we modify the ratio CURREF to be

CURREF = CEP/PEP

Where CEP(PEP) is the number of current (previous) frame edge points for the region.

Two Segments in a Frame

As the next step in the understanding of DP, let us consider a frame sequence
containing two homogeneous segments. If the motion of the objects corresponding to the
segment is such that the segments are in two different parts of the frames then
each segment may be considered independently and all the facts about the DP discussed
in preceding sections will hold.

As the first type of interaction between the segments consider Fig. 2. In
the previous frame the objects A and B are such that the segments are separated by
the background component. In the current frame, however, the object A is occluded
by the object B resulting in the image segment shown in Fig. 5b. In the DP the regions
at the occlusion end of the objects will merge to form a single region. In Fig. 2c
both the regions at the occlusion end should have been type 0, but the resulting region
due to the merger will not be necessarily type 0. The type of the region at the
occlusion end is governed by several interacting factors, such as: shape of the objects,
displacement of segments, distance between the segments in the previous frame, amount
of occlusion. Depending on these factors, some current and/or previous frame edges
he lost. The ratio, and hence the type of the region depends on these factors. A
region at the occlusion end may have ratio CURREF anywhere between very small and very
large, classifying a region in any category.

Observe, however, that the leading edges of both objects in the direction of
motion in the previous frame will be part of the occluding region and these edges were

* disjoint in the previous frame. Thus for the occluding region in DP there will be
at least two disjoint previous frame edge fragments. (An exception to this is when a
bigger segment completely occludes a smaller segment.) This will result in two
separate current frame fragments also. In the case of a single segment there are
single current frame and previous frame edge fragments. Thus the presence of two or
more fragments in a region indicates occlusion. It should be mentioned here that it
is possible that one or more image segments may be displaced such that there is only
one region due to the segment in the DP and this region is merged with the region due
to the other object; in this case also the above observation is valid.

SRunn in& Occlusion

By running occlusion we mean that though there is no occlusion in the previous or

the current frame, an object has occupied the position in the current frame wl'ich was
octuupied by other object in the previous frame. This is shown in Fig. 3. The regions at
the rear end of A and the front end of B are not affected, but the regions at the front
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end of A and the rear end of B merge to form a single region in the DP. In the merger
some edges are lost. The lost edges are some previous frame edge fragments of B and
some current frame edge fragments of A. This tends to make the class of the region
random. Fortunately the observation made in case of occlusion is valid in case of
running occlusion also. There will be two or more edge feagments of previous edges
and of current edges. The feature which could help us in distinguishing running
occlusion from the occlusion is the fact that the regions at the other ends of the
objects, if any, are similar type in case of occlusion but are different type in case
of running occlusion.

Classification

Based on the preceding discussion, a region of the DP may be classified using
the following approach:

Find the DP and the current and previous frame edge pictures.

For a DP region find the number of disjoint current frame and previous frame
edge fragments for the region.

If the number of current frame edge fragments or previous frame edge fragments is
more than I then the region is OC type.

If the number of fragments is 1 each then compute the ratio CURREF. If the CURREF
is more than 1Fa then the region is 0 type; if the CURREF is less than 1- ý then the region
is B type, and if the CURREF is between I- ý to i+a then the region is X type. In this
paper we set values of a and to 0.1.

Results

Figs. 1 through 3 show several frame pairs and their DPs. The classification approa(I escribed in the preceding section has been applied to the regions of these difference
pictures and several other frame pairs. Fig. 1 shows a frame pair in which an object
results in one DP region. The CURREF for the region in Fig. le is 1.016 and hence it
is classified as a X type region. The CURREF using the old method is 0.828 and hence
misclassifies the region as B type region.

In Fig. 2 the occlusion of the object results in the DP having three regions. The
region Q has more than 1 edge fragment in previous and current frame edge pictures and
hence is correctly classified as OC type. Regions P and R are classified as B type. This
gives us the correct information that the DP is due to the occlusion. In the DP of Fig. 3
the region Q is classified as OC type and the region P and R are classified as B and 0
type, respectively. This information tells us that there is running occlusion in the framf

Conclusion

This paper presents a better method for the classification of regions in the
difference picture. It is shown that the new definition reduces the possibility of
misclassification of a region. 4-connectivity definition gives regions which are too
sensitive to noise and coincidences. The 8-connectivity definition is more robust for
the classification of regions.

A method is proposed for the recognition of regions due to the occlusion and the
running occlusion. Our experiments with several computer generated sequences show that
the methods proposed are robust. This demonstrates that even complex processes like
occlusion can be analysed using only low level processing.
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Paper No. IIIB-5, Prenented at the Workshop on Imagiing Trackers
and Autonomous Acquisition Applications for Missile Guidance,
19--20 November 19?9, Redstone Aisenal, Alabama.

COMBINED APMS FOR IMAGE UNDERSTANDING

Dr. John F. Lemmer

Pattern Analysis and Recognition Corporation
228 Liberty Plaza

Rome, New York 13440

ABSTRACT

The many approaches of Pattern Recognition and Artificial Intelli-
gence to -the image understanding problem are both complementary and
overlapping. Various apprcaches are compared and contrasted. A
Combined Approach for research Methodologies and Systems (Combined
ARMS) is proposed.

INTRCDUCTION

The question, "Is iaiage understanaing Pattern Recognition (PR)
or Artificial Intelligence (A)?" continues to evoke emotion [4]
It is the thesis of this3 paper that if image understanding
is to offer real solutions to real problems, it must, as a minimum,
use both the PR and Al approaches. In this papei- ire argue further
that, even now, the major differences between souie PR and some AI
approaches lie largely ir. the poirt of view of the experimentor and in
the experimer.tal environment. We feel that researchers can profit
from both points of view and that experimertal environment, fully
supporting both approaches could accelerate the growth of image
understanding. We also provide some concrete suggestions as to how
the two poinis of view can be operationally merged.

To begin, we will show examples of Pattern Recognition (both
decision theoretic and syntactic) and Artificial Intelligence applied
to the same probler,.. The first pass through the examples will
illustrate use of cach technique in solving that part of an example
problem to which it is best adapted. The second pass through the
examples will show ea,7h technique extended to solve more of the
overall problem. On th.is pass, it will be clear that each technique
begins to borrow from the otheis. rf'nally we will suggest a method
of combining the techniques which will hopefully preserve the best of
each.
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IMAGE UNDERSTANDING TECHNTOUES

A high level recognition problem is i.lustrciteid in Figure I.
Given an image as shown symbolically in the figure, the objective is
to classify the cross hatched object as a dam. Decision Theoretic
Pattern Recognition (DTPR) techniques seem especially well adapted
to segmenting the image into regions of "land", "water" and "concrete."
Syntactic Pattern Recognition (SynPR) and AI techniques seem best
able to conclude, given the segmentation, that the concrete object
is a dam. Why this is so will now be illustrated.

Decision Theoretic Pattern Recognition (DTPR)

At one level DTPR maps picture points (pixels) in image space into
points in measuremornt space so that, hopefully, image points which
ought to receive the same classification will cluster, together when
mapped intc this space. This mapping and clustering is illustrated
in Figure 2. In the figure it is assumed that two measurements have
been made cn each nixel: gray level and some texture feature termed
"roughness.'K These measurements will be sufficient to separate
"water" pixels from "concrete" pixels if and only if such pixels map
into effectively disjoint regions of measurement space. If the
measurements achieve separation, then an image pixel can be classified
according to the region into which it mars in measurement space.
Thus, DTPR "`:]as..sifiers" are nothing more than procedures for describing
and determirning the measurement space irncion into which image pixels
fall. The major thrust of practical DTPR is not to produce clever
classifiers, as many suppose, but to find appropriate measurements.
If measurements do not cause like pixels to cluster, no classifier
caa do j. good job. !L is in the selection of measurements that problem
domain knowledge is most often incorporated into DTPR.

Once plixels have been classified, regions can be found in image
space in which neighboring pixels have received like classification.
It is coe.,son, in DTPR, to then make measurements on these regions
in orde/- to ctt-mpt to f'_1d a higher level classification for the
region.

Syntactic Pattern Recognition (VynPR)

Syntactic Pattern Recognition applieJ to image understanding attempts
to express the (spatial) relationship among primitive entities in the
form of a g,,rammar. 1 Foc example, a grammar capable of classifying -ii
o00 jecrt a.-; (him m ght include a production: of the following form:

Large Water of Body

)AM Z-'--f' L AND -Concret.LANDA Af LAND

Long NMirrow Water of BodV
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S~Land

Land Concrete

Water

Figure 1 Example Problem

grav level

Water

Water Region

Land Land

Concrete

WRegion

Water.

I roughness

Image c.;pace Measurement Space

Figure 2 Mapping to Measurement Space
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This production would explicitly represent the spatial relationship of
contextual information implying that the concrete object was dam,

To classify the concrete object, the terminals (i.e. water, land)
would be parsed. Note that it is not necessary that all terminals be
recognized before parsing begins. This production coupled with
parsing strategy could be utilized so that recognition of concrete
and a large water body would, for example, trigger a search for a long
narrow water body. It is possible that the grammar would a'so contain
a production in which "DAM" could be further parsed as a "hydroelectric
plant."

Artificial Intelligence

An AI "expert" system [2] might attempt to capture a human expert's
knowledge in a form suitable for machine use. For example, an expert
photo interpreter might say "a dam is usually a large concrete object
with a large body of water on one side and stream or river on the other,
etc." This knowledge could be represented by productions as shown in
Figure 3. The nodes represent events. The directed edges imply
directions of inference (and often, the opposite direction of cause
effect). The weights, wi, (probabilities in recent work [2]) represent
the strength of the inferences which can be made from various events,
Such expert knowledge is already available for some photointerpreta-
tion techniques, and available in a form almost ready for inclusion

in an expert system. For example see [6].

Like the syntactic approach, knowledge in the production can be
utilized to trigger, searches for other events. Like the SynPR approach,
the AI approach could have productions of <dam> and <quay> leading to
some common events. Unlike the SynPR approach, no geometric relation-
ship is implicit in the structure of the productions themselves.

'I However, such information can, if desired, be included in the definition
of the AI events.

SOLUTION OF THE "ENTIRE PROBLEM"

It has not yet been discussed how any approach solves the entire
problem of going from pixels to "DAM." How does SynPR obtain its
terminals? How does Al recognize events? How does DTPR conclude that

the concrete object is a dam? Restated, no approach as described so
far goes from pixels to high level symbolic representation.

Syntactic Pattern Recognition and Artificial Intelligence

A simplistic answer is obvious: DTPR is used as a terminal or
event recognizer, fo, SynPR or Al. Indeed if one looks at current
work, especially in Al. one usually finds decision theoretic procedures
imiPlicltly present and bur ied deep in the system. These procedures,
how•ver, ave gel'ially handled in an ad hoc manner, hard to modify or
isolate firom thoe iest of the system. F1,81
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While such an approach to detecting primitive events might be
adequate in an experimental environment, it is likely in a real
environment that the primitive recognition must receive a great deal
of attention. Proper selection of measurements and proper analysis of
measurement variation will be key aspects of the ability to
adequately recognize terminal or primitive events. It is at the
measurement level that both sensor effects and distortions external
to the sensor will have their greatest effects. It is unlikely that
preprocessing (such as producing albedo images) will be able to account
for all such effects.

Experience in practical application of DTPR shows that measure-
ments selected according to some model of the sensor and environment
almost always pe2form differently than expected and cause problems
which effect the utility of various measurements. There is no sub-
stitute for the analysis of large amounts of real data. Indeed it
is likely that there will be a feedback effect. SynPR terminals and
AI events will dictate initial measurements, but the acmual perfor-
mance of the measurements on real images will undoubtedly at times
suggest different terminals and events. Thus, one may conjecture that
significant image understanding progress on real problems will require
an experimental environment which provides tools for all approaches
and minimizes the isolation of experirientors. We will return to this
ideal later. Indeed, the environment should support a single person
conducting all types of experiments.

Decision Theoretic Pattern Recognition

We have yet to answer how DTPR might classify the concrete object
of our example as a dam. In answering the question we will uncover a
surprising similarity between DTPR and AI expert systems.

In order to classify the concrete object as a dam DTPR would
probably expand the dimensionality of the measurement space. For
example, in addition to gray level (GL) and roughness, DTPR might expand
to region analysis and include the length (L) and width (W) of the slab
and the length of the two adjacent bodies of water, (WLl & WL2), as
shown in Figure 4.

Assume that the above measurements are adequate to have dams cluster
in measurement space. Notice that the measurements selected imply a
sequential order for making the measurements (L and W cannot be computed
until pixels have been formed into a region). In practice, such
sequential measurement extraction is greatly expanded upon so that a
hierarchial decision tree is produced such as shown in Figure 4. In
the decision tree approach, certain measurements are made only if
certain results are obtained from previous measurements. Thus, DTFR,
like SynPR and AI, has a control strategy. Indeed, there are many
rmethcds for optimizing the structure of the decision tree to control
error rate, measurement cost and other properties. [7]
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Operationally speaking it becomes difficult to distinguish DTPR
using a decision tree from an expert Al system incorporating a control
strategy. Both the DTPR approach and the AI approach will cause a
sequence of measurements to be made until a classification is achieved.
However, in the Al approach, the sequence of measurements is usually
thought of as determined dynamically during classification while in
DTPR the sequence is essentially determined before classification
begins. Intuitively, in Al, the results of the measurements made so
far, together with the data in the knowledge base itself are processed
to dete:mine what measurement should be made next. In DTPR, the next
measurements to be made can be "looked up" in the decision tree.

Combined Image Understanding Systems

It may be argued that expert AI systems with a control strategy
are more flexible, adaptable, and understandable than DTPR decision
trees. It may be argued that DTPR with decision trees is more
efficient than A!. A discussion of this point will lead to an idea
of how a combined system might possess the best of both approaches.

Expert systems are more adaptable since they can, in general,
compute the next measurement to be made given any sequence :-nd value
of previous measurements. Thus, as a new problem is encountered, a
good sequence of measurements can be determined dynamically. Also,
it is possible to alter the measurement sequence by introducing
hypotheses about the classification. In terms of image understanding
applied to map updating, the hypothesis might be formed based on old
ma, 'ý. In terms of image understanding applied to autonomous target
acquisition, hypotheses might be formed from data acquired before
launch from sensors not located in the autonomous acquisition system
itself.

Presumably, however, if the same classification problem is to be
solved repeatedly using the same type of data, the control portion of
the expert system would request nearly identical sequences of measure-
ments, it is unlikely that the dynamic control process would optimize
the sequence of measui'ements to the same degree that could be done
"off line" by techniques applied to DTPR decision trees. Thus it would
make sense to have repetitive problems (and those of autonomous acquisi-
tion or of mapping are likely to be repetitive) initially analyzed by
an expert system and optimized and studied for efficiency by a DTPR
system. A structure for such a combined system is shown in Figure 5.

The expert input shown in Figure 5 may come from a "problem domain"
expert who knows little or nothing of computer procedures for classifica-
tion. For example, in the autonomous acquisition problem, he might be an
expert photo interpreter. The measurement expert input comes from someone
who ha3 broad knowledge concerning the raw data from which classification
is to begin. The feedback loop is present since it may not be feasible
to recognize some of the primitive events specified by the problem domain
expert. The problem statement indicated in the figure can be considered
as some hypothesis which will recur frequently.
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SUMMARY

The above discussions have focused on overall similarities of various
approaches to image understanding without glossing over the differences.
Indeed, ways of capitalizing on the differences have been suggested.
Table 1 summarizes the similarities of the variou- approaches. Table 2
lists differences in three major areas, use of expert knowledge, use of
image context, and methods for controlling the classification process.

The environments in which PR and AI experimentation are carried out
are often quite different. Table 3 attempts to highlight a number of
these differences. We feel that it is quite possible that performance
on real image understanding problems could be enhanced by combining the
two environments. Such a combination might result in an experimental
flow as shown in Figure 6. Figure 6 represents the same flow as Figure 5
but highlights different aspects.

We feel that the major approaches to image understanding are both
complementary and overlapping. We feel the time is at hand for practical
image understanding to be implemented from a synergistic combination of
techniques. We feel that the exploration of such synergism should take
place in a common environment conducive to all points of view, utilizing
the strong points and compensating for the weaknesses of each approach.
The environment should be one in which no technique is presumed, a priori,
to be superior to another. Finally, it should be an environment which
encourages research in how real images can be practically understood,
using humans for some tasks, if required. It should not be a system for
investigating how ideal images ought to be classified.

ACKNOWLEDGEMENTS

My thanks to Jim Cambier and Mike Zoracki for their comments and
suggestions on the original drafts, and to Nancy DeGeorgio for preparing
the drafts and manuscript.
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All potentially use expert knowledge from problem domain but

* differ in "other" knowledge experts must possess
to develop the knowledge

* differ in "explanatory" capability

All can use context but differ in "naturalness" of
structuring

All offer a control scheme but differ in efficiency,
optimality, and adaptability

All rely on basic image measurements but

"* differ in how measurements are selected

"* how well performance is analyzed

Table 1 Similarities

DTPR SYNPR AI

* Choice of Measuremets Structure of Grammar Inherent in Production
Use of System

Knowledge K Structuring Decision

Tree

* Elements in Feature Inherent in Structure Spatial Relations
Vector or of Grammar Between Segments can be

* Decision Criterion included in events in
at Node in Decision production system
Tree

* Implicit in Decision Inherent. in Parsing Dynamic Choice of Next.
C t Tree: Stratet1 y Action

* Optimized "Off Line" Supports Dynamic Hypothesis
Formation and Explanations

'I,. 1) 1 tt renc, es
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PR

* Extensive analysis of measurement quality and variability

* Testing on large numbers of cases

0 Statistical analysis of performance

* Vary measurements to improve results

* Parameters learned from samples

AI

* Extensive Interaction with "Pure Expert"

* Analysis of performanc includes understandability

* Vary knowledge base to improve performance

* Parameters estimated by experts

Table 3 Different Environ-ments
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Paper No. IIIB-6, Presented at the Workshop on Imaging Trackers
and Autonomous Acquisition Applications for Missile Guidance,
19-20 November 1979, Redstone Arsenal, Alabama.

PROTOTYPE AUTOMATIC TARGET SCREENER*

GOALS AND IMPLEMENTATION

By

D. E. Soland, D. V. Serreyn, R. C. Fitch, T. G. Kopet
G. 0. Prom, R. C. Reitan, M. 0. Schroeder

HONEYWELL, INC.

Systems and Research Center
2600 Ridgway Parkway

Minneapolis, Minnesota 55413

ABSTRACT

The Prototype Automatic Target Screener (PATS) is being developed at
Honeywell under contract with the Army Night Vision and Electro-Optical Lab.
The system consists of hardware for image enhancement to improve the imagery
displayed to the operator of a FLIR and hardware and software for real time
detection, recognition and cueing for selected tactical targets.

The PATS system will operate with standard 525 and 875 line TV formats.
Decisions on target classification and location are updated every 1/10

second. The resultant decision is displayed by means of symbology overlays
on the video display to the operator.

The hardware consists of twenty-two 6" x 9" boards featuring charge coupled

devices to perform the high speed functions for image segmentation. It
incorporates a bit-slice microprogranunable digital processor for classifica-
tion as well as a bit plane structure frame memory. The hardware fits into
a box slightly larger tuian an ATR box and dissipates approximately 200 watts.
Each board is somewhat modular in function and boards of the same function
could be easily substituted.

*The work leh di)q to this paper was supported in part by the U.S. Army Night
%1i s i T, aid E I t ro-()l i ca I Lal]oratory Contract DAAK70-77-C-0248.
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INTRODUCTION

Under contract with the Army Night Vision and Electro-Optical Lab, Honeywell
has simulated, designed, and is in the process of fabricating and testing a
Prototype Ai.tomatic Target Screener (PATS). This program started in late 1977
and will culminate with ground and flight testing in early 1980. The system
is designed to interface with a Common Module FLIR. The PATS system will
automatically detect and recognize targets and cue the FLIR operator. This
paper discusses the goals of the PATS program and then the actual implemen-
tation of the target screener. Additional information about 'the simulation
were presented at the April 1979 SPIE Conference1

Tmaae Enhancement Goals

Three itmage enhancement functions are to be provided as part of PATS. These
are: (1) adaptive constrast enhancement, (2) DC restore for AC coupled detec-
tor systems, and (3) automnatic global gain aad bias contro'rs. The performance
goals ate such that: (i) local area control should not ex:eed 1 percent of
the total scene (,2,500 pixels) and (2) the MRT degradation should be less
than 10 percent. The synthetic DC restore will restore to the displayed
image a proportion of the DC or background component of the scene and elimin-
ate the streaking or overshoot effects commonly associated witn AC coupling.
This wilJ be accomplished such that the normalized mean square error on two
specified test patterns will be less than 20 percent. The two test patterns
are alternating horizontal black and white bars and a black and white diagonal
target.

Target Screener Goals

The target screener is designed to operate with any RS-343 standard 875 line
video as well as RS-170 standard 525 line video. Both operate at a 60 Hz
field rate. The specific FLIR system for testing will be a Lohtads Common
Module FLIR. For image enhancement, the system must process every frame but
the target screening function is required to process 10 frames/second or
every third frame. For each processed frame a minimum of ten objects must be
processed.

The target screener shall. be capable of classifying extracted candidate tar-
gets into one of five classes. These five target classes are:

* 2- ton truck

o tank

* armored personnel carrier
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* track mounted radar-contrclled anti-aircraft

* track mounted anti-aircraft missile launcher

The target classes ce'n easily be changed throuqh software. The recognition
capability goal is at ranges where the probability of human detection is 90
percent; the pxobability of recognition by the screener shall be 80 percent.
The carget scre•,er is t work from the 90 percent detection range to 1/3
that range. Originally, range mteasurements were excluded, but the PATS
system is being modified to be tested with and without measured range. In
Lohtads, range is measured by a laser.

The average false alarm rate saall not exceed one per frame processed nor-
mally. There is also a priority search mode where only the last two target
classes are the targets to be cued. The objective with this mode will be
lower false alarm rate. Specifically, the goal is one false alarm per 200
f rames.

PATS System Design

The PATS system has several ftnctions which it must perform on video data.
These functions are shown in Figure 1. The first thing that is performed is
image enhancement. This function is primarily for the displayed imagery but
also may aid the target screening function. The rest of the functions shown
in Figure 1 relate to the target screening function. Image segmentation must
first be done to outline regions or objects of interest. Once th. objects
have been segmented, certain features must be measured which are used for
initial recognition or classification within the frame. All objects in a
frame are classified as to clutter or type of target.

The object classificaticon for each frame is accumulated over a sjeries ot
f:ames. When confidence is high enough that the decision is a specific tar-
get, a symbol indicating the classification is displayed. The sequential
frame classification is called interframe analysis and is used to reduce the
false alarm rate.

in the ensuing paragraphs of this paper we will discuss the implementation
of these functions. Figure 2 shows the hardware configuration modules for
each funrtion.

The first module is the sync and timing generation. This module consists of
two boards--one for sync separation and video switching and one for system
timing. The sync separation and vAdeo switching is shown in Figure 3. The
sync separator extracts the composite sync from the video. From the com-
posite sync signal, basic sync signals such as ver'tical reset, field indica-
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tor and horizontal sync are derived. Since the video is AC coupled, the
video data must be black clamped.

Another function performed by this board is the multiplexing of video signals.

Video to the monitor can either be raw video, enhanced video, analog test
signals, or digical test signals. Similarly, the video to the target screen-
ing functions may be either enhanced video or raw video.

The second board is the system timing generator shown in Figure 4. This
board produces sync signals and clocks that are synchronized with the incom-
ing video. -"wo clocks are produced--a 455 clock and a 512 clock. The 455
clock is used for the analog CCD shift registers in PATS while the 512 clocks
are used for the digital hardware. The signals generated by the board are
commonly available in single chip form for 525 line commerical television out
rnot for 875 line. For this reason, the function had to be built from MSI
chips. The line rate must be manually set to agree with the FLIR configur-
ation. For the 875 line format, we have 512 or 455 samples per 3" micro-
seconds wherea.; with the 525 line rate we have 512 or 455 samples per 53
microseconds. The numner of samples per line is considered sufficient for
the. current system requirements but can be increased if necessary.

Th(ý image enhancement function shown in Fiqure 2 consists of t;o boards
which perform synthetic DC restoration, global gain and bias control and
adaptive constrast enhancement. These are implemented with charge coupled
devices and a microprocessor among other standard MSI and LSI parts. The.

partic,'lar functions and implementations are discussed in the references 2 and
will not be repeatud here.

The, feature extraction function shown in Figure 2 consists of autothreshold

bhardwre, intorval and first level feature hardware. The itutothre3hold hard-
Si wave? (Piqure 5) consists of two analog processing boards which do intensity

thtesholdinq and edqe derivation. Data is compared to a calculated adaptive

threshold and a digital output is produced.

-(Ji of the functions performed by the autothreshold hardware is the genera-

tien of "hot" und "cold" signals. "Hot" data consists of those values above
the. background by a specific amount whereas "cold" is data below the back-
qroond by a specified amount. The back'rTround filter is a two-dimensional
low-pass recursive filter which operates at video rates. The threshold is
computed from the video after the background estimate i- subtracted. The
threshold is based upon the variance of the video. The thr(shod value is

multiplied by a predetermined constant to provide the video comparison.
Exceedance of the thrushold produces a loqical true signal.
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The second function performed by the autothreshold boards is the qeneration
of edges for objects in the scene. The basic edge computation is a two-
-!imensional horizontal component. The edge threshold is based upon the scan
line averege, of the analog edge. After the threshold computation and edge
ccmparison, a logical edge signal is produced indicating the presence of an
edge at that particular location in tha video.

Digital signals fron, these two boards (edge, hot, arid cold) is input to the
interval boards shown in Figure 6. The PATS interval circuits include the
implementation in bipolar TTL logic of a number of functions.

* Generation of an interval based upon previous, present,
and next scan line edge, hot and cold signals.

* Validation of an interval as meeting certain practical
constraints.

o Storage and generation of key interval.-related data.

o Making interval d~ta available to the processor memory
and informing it that valid data is ready.

Interval generation is based upon the presence of a hot or cold signal in
coincidence with an edge. Without the presence of an edge the data is
invalid. Line delays are provided by digital shift registers and some of
the logic is implemented in PROMS. As a result of this hardware the follow-
ing first level feature data are stored in latches:

* Line number or Y position

a Number of intervals for each line

o Starting X position for each interval

e Width of each interval

e Background estimate at the start of each iitei-val

* Sum of the intensities within eaqh interval
,/~

* The bright count within each interval

* Indication of when the edge associat,-.d with tixi- interval
was located (start or end or both)

* Indicatvion of intei val a,3 being either "hot" or "cold"
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At the end of each line, the number of intervals and the Y position are trans-
ferred. At the end of each valid interval, data associated with that interval
is transferred.

The next function in Figure 2 is the data memory. This memory stores up to
,u2,500 sets of interval data. This is a static RAM memory and data is trans-
ferred to it via DMA control. Data from the interval board are dumped into a
FIFO shift register. A maximum of 21 intervals per line can be stored. This
data is later transferred into a second FIFO and then finally into the data
memory.

The data memory is part of the subsystem called CPUI. The CPUI system archi-
tecture is shown in Figure 7. The basic processing unit consists of a high
speed microprogrammed data processing register and arithmetic logic unit
(4-2903), a 16 x 16 high speed multiplier, a microprogram sequencer and an
addressing register and arithmetic logic unit (4-2901). The microprogram is
stored in high speed RAMs during check-ut and debug stage and will be trans-
ferred to PROMs for testing.

The CPUl is intarfaced to the various memories via the data and address bus
and also to an external computer for debug and checkout. The second computer,
A DFC LSI 11/2, is not used during the actual operational mode of the PATS
hardware. It is, however, used as part of the training of the hardware.,

Both CPU]. and CPU2 have access to the symbol generation hardware shown in
Figure 8. Only the CPU2 connection is shown. Symbols are generated by
writin," vectors into a graphics bit plane. The data is read out of the bit
plane at video rates. This is accomplished by using a parallel to serial
converter orn the output and addressing only every eight pixels. The displayed
video is replaced by the symbol. The symbol size and shape is programmable.

Once a target is detected the necessary data for symbol generation are X, Y
position within the frame, target classification and target size. As the
target moves, th. displayed symbol is era*sed and a new symbol is generated.
As the t;arget gets larger,, so does the symbol.

In the lower portion of Figure 2 is shown an A/D conversion block. There
aaze two A/D converters in the PATS converter unit shown in Figure 9. One
A/D d,?terrO;nes the dizit-tl value of the background estimate at the beginning
of each interval. The secon. '/D is ised for digitizing the entire video
i rane. Also included on the hoard are pzovisions for teoting the A/D and
testinq the frame s-ore memory, Botn converters are 8 bit high speed TRW
A/D coniverter chips.
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An additional item included as part of the A/D converter unit is a 12 bit
summer. At the start of an interval, the summer is cleared, and data is
then summed over the entire width of the interval. This gives the sum of
intensities from which the average intensity can be calculated. only the
eight most significant bits of the sum are transferred to CPU1 for processing.

The digital data coming from the second A/D converter are transferred to the
Memory #2 (frame store) at video rates. This memory is made up of memory
bit planes as shown in Figure 10. Each bit from the A/D converter goes to a
designated bit plane. The bits are shifted into a serial shift register and
on every eighth pixel, data is transferred into the actual memory chips.
Eight 16K x 1 dynamic RAMS with access times of 375 nsec are used for the
memory. This data can be randomly accessed by CPUl for calculations neces-
sary to do the recognition and classification of targets.

Software

Much of the processing for detection and recognition of targets is done in
CPUI. In Figure 11, the software functions are shown. The software sequence
is:

a Bin matching

o Median filter

o Object feature generation for clutter removal

* Clutter recognition

* Recognition features

"* Classification

* Interframe analysis

* Symbol generation

All processing in CPUl is completed in 0.1 second.

Bin matching associates the one-dimensional intervals characterized by the
interval features into sets of intervals which determine two-dimensional
objects. That is, CPUl reads interval data from the memory, reorders them

J and then writes them back. The matches of intervals on a scan line by scan
line basis is primarily determined by the location of each interval within
its scan line.
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Once a bin is complete, i.e., no more intervals match, CPUl will smooth the
boundaries of each bin using a one-dimensional median filter of width five.
The values which are input to the filters are the endpoints of the intervals
making up each bin. A separate filtering operation is done on the left and
right hand edges of each object.

Object features are computed by CPUI on the median filtered bins in a hier-
archial fashion. That is, less enpensive features are computed initially to
do preliminary clutter screening and more expensive features are computed on
the unrejected objects in order to do additional clutter screening and object
recognition.

The classification algorithm is the k-nearest neighbor. The recognition
classifier puts each active object bin into one of five target categories
using moment features for that object and stores that classification together
with the object size and location. The data is then processed by the inter-
frame analysis.

The interframe analysis associates objects between frames. Using a Baye's
decision, the object is classified and a symbol is generated. The symbol
generated is directly related to the classification derived.

The second CPU can do interframe analysis and symbol generation. This allows
one to check out the object matching. CPUI will be doing this in the hardware
to be delivered. CPU2 is still needed for training and diagnostics. Figure
12 shows the functions that CPU2 can provide. It has the capability of dump-
ing data to or reading data from the two memories, and is used to gather test
data.

PATS Physical Characteristics

The PATS hardware presently consists of twenty-two 6" x 9" boards that fit
into a chassis that is slightly larger than an ATR box. Much of the space is
used for spacing between cards because of sockets used in the hardware build.
The system draws about 200 watts of DC power from the power supplies. The
power supplies provided as part of the hardware will operate with either 60
Hz or 400 Hz, 115 volts AC line power.

SUMMARY

The PATS hardware is designed to reduce operator workload, and provide real
time multiple recognition. It does not tire like human operator and hence
will operate consistently and reduce response time.
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With appropriate modification, the system can be used for target acquisition,
weapon delivery and missile guidance.
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Multi-Color Infrared Detectors t

J. D. Jensen, A. C. Bouley, S. Foti and G. M. Black
Naval Surface Weapons Center

White Oak, Silver Spring, Maryland 20910

ABSTRACT

The ability of the eye to distinguish different
colors is clearly an important source of information
gathering. It has longl been recognized that infrared
systems would profit greatly by such an ability in
areas such as target acquisition and identification,
clutter and decoy rejecti~n. No technology, however,
has as yet emerged which could offer this capability
at an affordable cost to most weapon systems. The
present in-house program has been successful in
demonstrating a new technical approach to multi-color
infrared systems which is simple, straightforward
and inexpensive. The new technology is based upon
muZtilayers of thin epitaxiaZ film detectors sand-
wiched in small dots, each dot being capable of
detecting three or more infrared colors.

I. Introduction

This paper is a brief overview of the infrared detector researc•
and development efforts conducted over the past few years at NSWC. ,-Thus
far the program has covered basic research on the materials and develop-
ment of generic demonstration devices. The program is rapidly approach-
ing the point where the technology should be transferred to industry
which hopefully could make devices available to the weapons community
within the next few years.

The nature of the present program is the development of a technology
based on single crystal epitaxial films of lI-IV-VI compounds, the main
products of this technology being photovoltaic narrow band self filter-
ing infrared detectors and photovoltaic multi-color infrared detectors.
The element involved from column II of the periodic table is cadmium;
from column IV, lead and tin; and sulfur, selenium and tellurium from
column VI. These elements form stable compounds over wide ranges of
alloy compo, sition, with the corresponding continuous range photosensitive
cut-off wavelengths from 2 to 14 microns.

II. Variable Band Self Filtering Detectors

Variable band self filtering infrared detectors (VBSFID) are detectors
having sharp cut-on and cut-off wavelengths which can be independently
controlled and continuously varied betv.'een 2 and 14 microns by adjusting
the alloy) compositions of two epitaxial layers. The desirability of this
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capability, of course, stems from the fact that targets, non-targets
and the atmosphere all contain a significant amount of spectral struc-
ture. The ability to tailor a detector to fit the spectral signature
of certain objects (in a cost effective manner) clearly represents a
desirable feature of infrared systems.

The simplest form of the VBSFID is shoun in Fig. 1. The infrared
transparent barium fluoride (BaF 2) serves as the single crystal sub-
stra-.ý upon which a single crystal filter layer is grown on one side,
and single crystal detector layer is grown on the ot,•er. The filter
layer will absorb radiation at wavelengths shorter than a cut-off
wavelength determined by the alloy composition. The detector layer
will absorb (and therefore detect) radiation at wavelengths shorter
than, a somewhat longer wavelength cut-off. The net result is a well
defined spectral band of photosensitivity. It should be pointed out
that the filter layer need not be on the opposite side of the substrate
from the detector layer. As will be shown in Section III, the detector
layer can be growr. directly on the filter layer. The detector itself
is a photovoltaic Schottky barrier device formed by lead or indium non-
ohmic contacts vacutm deposited on the p-tyle semiconductor film. Gold
is used for a common ohmic contact. The photosensitive region is the
area under the non-ohmic contact.

The materials involved in the films are Cd, Pb, Sn, S, Se and Te.
The Cd-Pb-Sn-S-Se system is shown in Fig. 2. The plot shows the
continuous variation of filter or detector cut-off wavelengths at three
temperatures. Alloys of PbSnTe are also rart of the IV-VI family which
cover part of the cut-off range shown here. Other than the binary
compound PbTe. however, these alloys have not been included in this
project. The materials are grown in a bell jar evaporator, containing
a source, shutter and substrate as shown schematically in Fig. 3. The
particular Il-TV.-VI alloy is pre-synthesized in polycrystalline form
by the reaction of the elements in an evacuated quartz ampoule held
at elevated temperatures. The material is granulated and placed in
the quartz source as shown. An extra source of the chalcogenide, S,
Se or Te is heated separately so as to mix.with 3the molecular beam.
This assures p-type conductivity in the 10 'cm :ýegion. The tempera-
tures shown in Fig. 3 are adjusted somewhat for the particular alloy
being grown. Films are grown at a rate of approxirmately two microns
per hour.

Typical characteristics of the two "components" of the sandwich
device are shown in Figs. 4 and 5. Figure 4 shows that a single layer
5-15 microns thick can be a rather effective spectral filter. Figure
S is the I-V characteristic of a short wavelength detector, PbS 8Se 2
at 77 K. 8 0

The spectral responses of a variety of detectors are shown in Figs.
0-13. dhe!e 6ata represent a varlet\ of alloys, broad band, narrow
Sh-11 01d uIE filtered devices at room temperature and below, at wave-
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lengths ranging from 2 to 13 microns. The collection of data demon-
strates the versatility of this II-IV-VI epitaxial film technology to
meet a variety of military infrared detector needs, in a manner which
should prove to be very cost effective. Many of the response curves
show some degree of oscillatory behavior. These are interference
fringes associated with the fact that the film thicknesses are compar-
able to the wavelengths involved. The unfiltered detector shown in
Fig. 9, for instance, clearly displays a rapidly damped oscillation
near the cut-off edge. Interference effects in the filter layer and
detector layer can be used together to enhance performance, such as
in the narrow band response shown in Fig. 7. Here the thicknesses of
the films were adjusted such that a fringe maximum in the transmission
of the filter layer coincides with a fringe maximum in the photoresponse
of the detector layer. The sensitivity in terms of D* relative to the
familiar spectral response chart for commercial detectors is shown in
Fig. 14. It is, of course, not valid to compare the response of our
detectors with others on this chart. This is a 1800 room temperature
field-of-view chart with the commercial detectors approaching the
theoretical limit. Our detectors exceed this limit because the filter
layer, being an integral part of the detector unit, is cooled and serves
not only as a spectral filter, but also as a cold shield. In addition,
the FOV of our detectors is limited to about 200 by a cold metal shield
in our test set up. The plot does serve, however, to show the sensitivity
of the devices relative to this familiar standard.

III. Multi-Color Detectors

Another specific area that the II-IV-VI single crystal film tech-
nology can address, is that of multi-color infrared detectors. The
general configuration of such a device is shown in Fig. 15. It is
clearly a very logical extension of the variable band self filtering
detectors, discussed in the last section. In the multi-color configura-
tion, the detector layer for one color is the filter layer for another,
except for the longest wavelength cut-off layer which only detects.
The geometry is intended to be such that a resolution element consists
of two, three or more color detectors with the detector of a specific
color being displaced from the others within the resolution element.
The elements can be made very small, limited by the particular design
and the fact that n leads must come from each u-color element. Each
layer has its own Schottky contact which can be the basis of an inde-
pendent electrical channel for the appropriate signal processing of
the various colors. It should be noted that because of the back-side
illumination through the transparent BaF 2 substrate, the incident light
is not obstructed by the leads and contacts. The band diagram for the
BaF 2 /PbS/PbS 0 5Se0 5 /Pb system is shown in Fig. 16. The manner in
which the bands ar6 bent at the interfaces is such as to contain the
photoexcited minority carrier (electrons) in the material in which it
was excited, and not such as to trap it at the interface, enable it to
recombine at the interface or inject it into the next semiconductor
layer. The spectral responses of several multi-color detectors are
shown in Figs, 17-20.
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1V. Summary

The data presented here is meant to demonstrate the potential of
the II-IV-VI single crystal film technology. The inherent advantages
of the technology and the devices produced therefrom are summarized
as follows:

* Versatility... the entire infrared region from 2-14 microns
covered by one family of alloys.

• Variable Band... cut-on and cut-off wavelengths independently

controlled.

* Cold Shielded... cut-on filter layers serve as cold shields.

* Multi-color.. .n-color cold shielded detectors made up of (n+l)
layers of different alloy compc ition.

e Low Power Dissipation.. .photovoltaic devices operated at zero
bias.

* Back-Side Configured...illuminated through the substrate so
that optically active area not obscured by leads.

* Thin Film... inherently simple film structures that should be
low cost in high volume production.

The future development of the technology is probably best directed to-
ward the non-imaging, single element or small array applications, such
as in guidance, laser detection, fuzing or remote sensing.
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A REAL-TIME DIGITAL IMAGE SIMULATION

FACILITY WITH APPLICATIONS FOR EVALUATION

OF IMAGE BASED MISSILE GUIDANCE SYSTEMS

Stephen C. Noble

Ampex Corporation

401 Broadway, Redwood City, CA 94063

ABSTRACT

A real-time digital image simulation facility is described that is suitable

for generating image sequences for the test and evaluation of imaging trackers

and autonomous acquisition applications for missile guidance. The facility can

generate synthetic images from computer programs or record video image data in

real-tinme, process it, and then display it in real-time.

The system will have the capability of recording and playing back in

real-time component color video data in 525 line format or high resolution mono-

chrome video data in 875 line format. The maximum planned simulation rate is

30 megapixels per second for 8-bit pixels.

INTRODUCTION

This paper describes a real-time image simulation facility under develop-

ment at Ampex which utilizes the recently introduced Ampex Parallel Transfer

Drive (PTD) technology. For this facility the drive technology is being extended

from 9 parallel tracks to 18 parallel tracks to increase the simulation rates avail-

able to a maximum of 30 megapixels per second. This development is internally

funded by Ampex with the principal -pplication being high quality color television

si mulation.

Simulations for a wiMoe variety of other applications are readily achieved

with this system because of the ability to record arid playback data at arbitrary

data rates from DC to 30 megapixels per second. The simulation of image

S4!quences for the test and evaluation of imaging trackers and autonomous

acquisition systems for missile guidance is one such application.
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DIGITAL IMAGE SIMULATION FACILITY DESCRIPTION

The digital image simulation facility is an integrated digital system with

digital color video storage capability combined with a dedicated high performance

digital processor (DEC PDP 11T55). The block diagram for the system is shown

in Fig. 1. The system will allow for processing either component or composite

video sicnals. in addition, the system will accept a variety of other signals.

Hardware Elements of the Facility

The hardware elements of the facility consist of a high quality video

source, video A/D converters, input and output data orocessors, a cylinder buffer

system, a parallel transfer disk (P1D/18) controller with PTD 9318 digital image

disk storage units, a set of video D/A converters, a high quality output display

and a PDP 111T55 processor with peripherals.

A/D and D/A Converters

The A/D converters and the D/A converters will be 9-bit Ampex units

for PAL or SECAM composite signals. For component color signals (e.g. RBG,
YIQ or YUV) a set of three TRW 8-bit A/D and D/A converters are designed

into the system. For high resolution monochrome signals a single A/D converter

is required for image data input.

Input and Output Data Processors

The disk interface write unit will convert the image source data for

recording onto the disk drives. *The disk interface read unit reconverts for output

to display or to system under test. Initially, it is planned to have a word rate
(18-bit words) of 10.7 MHz. Extension to 14 MHz is planned.

Output Display

For color simulations the output display is a high resolution monitor

witt 9 MHIz bandwidth video channels and a color picture tube witb four tinnes

as many color (lots as a standard color tube. The monitor is con fiqured to

operate on RBG or NTSC composite signals. Plug in (ernodiflators are also
av,,ilabe for PAL, PAL M, ard SFCAM -omposite signals F or direct outlpUt to

a system t ruder test, ro (lisplay is required. Additional displays will be required

fOr high resolItion, monochrome simulations.
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Digital Image Storage

The digital image storage system is composed of two DM9300 300 mega-

byte Ampex disk drives modified to provide up to 18 parallel data channels for

recording image data continuously for up to 30 seconds. The modifications include

read/write amplifiers, timebase correctors, signal processing circuits and servo control

circuits from the Electronic Still Store (ESS) system design. In addition, a special

system control unit and a computer interface unit is being designed and built to

control the transfer of digital video data between the digital television system, the

disk storage system and the digital processor.

Cylinder Buffer

The cylinder buffer is a 1 megabyte dynamic RAM memory configured to

allow data transfer of digitized video sampled at rates up to 18 MHz (16-bit words).
It is provided with a high speed video input interface, a high speed video output

interface, a bi-directional PTD/9318 interface and a PDP 11/55 interface which will
allow both single byte/word transfers and DMA transfers. Paralleling of data (16 bits

to 128 bits) is used to gain bandwidth. The memory is implemented with 16k
375 nsec cycle time, 200 nsec access time dynamic RAMS. Error detection and

correction is included in the design.

The cylinder buffer allows continuous data recording from the video input
to the PTD. Additionally, irteractive signal processing can be sustained by the

PDP11/55 wh.Ie refreshing the output display. The cylinder buffer simplifies the

disk accesses as all read oi write operations from the disk are of a complete cylin-

der (1 revolution X 18 surfaces). A system controller controls contention problems

and grants cylindei buffer accesses.

Digital Processor

The high performance digital processor is a Digital Equipment Corporation

(DEC) PDP 11T55. This integrated bipolar processor is ideaily suited for signal

processing. Through the use of very high speed bipolar memory integrated circuits

(IC's), the central processing unit (CPU) can move between the bipolar uemory
had the CPU in 300 ns. This is three times faster than the speed available with
computers using core memory tied to the computer bus. In additicn, a high speed
floating point unit (FPU) is provided for high speed, high precision multiplication

and addition. The processor is complemented with 96k words of Ampex core

439



memory, an Ampex Megaszore (a core memory system that emulate-. a fixed head

disk with zero latency), 16 video terminals for software development, a Versatek

printer/plotter for hardcopy, a Tektronix graphics terminal and Ampex 300 Megabyte

disk drives. A 9600 baud communication link to the AVSD PDP-1 1/45 graphics

system is planned for sharing of resources. Figures 2 ard 3 are pictures of the

Digital Video Simulation Facility. Figure 2 is the processor and video equipment

room. Figure 3 is the evaluation room (',emlorarily used for Software development on

the computer terminals).

Facility Operation

The simulation facility will record the video to be processed (component,

composite or monochrome) in a 30 second continuous period. The signal processing

experiments to be performed on the system will be carried out by the processor.

Typically, experiments wili require from one to ten hours of processing time for a

30 second simulation. For applications where computer irtensive simulations are

used repeatedly, the addition of an array processor will be required.

Facility Performance

The digital video simulation facility will provide the capability to store for

processing video Eignals at bit rates up to 240 MHz. This will provide a variety of

word iizes and word rates for various signals. The following are examples:

4-bit word radar signals 60 MHz

8-bit word composite video 30 MHz

16-bit word high resolution or

component video 15 MHz

Additional data sources include Sonar, Wide Dynamic Range IR, Low Light Level TV,

875 line high reso!ution monochrome video aad the output of an Optical Processor.

Software Elements of the Facility

A variety of signal processing software is being developed as required. The

fc.llowing list gives the most lkely candidates:

Bandwidt, rcompression

Image enhancement
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Figure 2 Processor and Video Equipmc-flt Room

Figure 3 Evaluation Room
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Image restoration

Spectral analysis
Digital filtering

Information extraction
Hardware simulation

Optical system analysis

Tables 1 and 2 describe in detail some of the signal processing experiments

possible with this system.

This digital signal processing capability provides a powerful complement to
ai optical signal analys's capability. In particular, it provides analysis, simulation

anld comparative tools which can be used to deternine the best combination of
ontical and digital technologies to solve a specific prozessiog problem.

Software Simulation Tools

The software for this system is a natural extension of the power and

flexibility of the UNIX Time-Sharing System developed at Bell Laboratories for the
DEC PDP-11 computer. A versatile set of modular signal processing piograms has
been developed which communicate via inter-process I/O c[hannels called pipes. [11
This structure allows each module to be a small program that efficiently performs

an elementary signal proce.ýing function.

Each module reads a signal data stream from its standard input file,

processes it, and writes the resulting signal data stream on its standard output file.
Several such modules may be cascaded by connecting ThFrn with inter-process pipes.
A pipe connects the standard output of one module to the standard input of the

next. The connection behaves like a normal disk file as far as each module is
concerned, but is implemented with a FiFO buffering mechanism. This allows the
module processes to execute concurrently, yet communicate efficiently with one
anothe-. This structure also eliminates the need to store intermediate data files,

but does not preclude it.

Most modules are easy to design, write, and debug, since they are typically
less than two pages long, and are written in the language C. [2] C provides a rich

selection of operations and data types iid the ability to impose useful structure on
both r.ontrol flow and data.
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- Signal data streams are a sequence of segments. Each signal segment

begins with a header which describes the sl'gnal data comprising the remainder of

the segment. The header information includes:

1. An illegal numeric quantity as a consistency check,

2. The number of samples in the segment,

3. The number of sample elements per sample (each sample is a

multi-channel vector),

4. The number of samples in a row (for 2-D signals),

5. The data type of the sample elements (e.g., integer, floating, etc.),

6. The number of bytes used by a sample element.

The actual signal data is a sequence of binary sample elements, using the

natural machine representation for each element type. Figure 4 illustrates a sequence

of signal segments. The header structure is simple to maintain; each module examines

the incoming header and outputs a header suitably modified to account for the

processing to be performed.

The UNIX shell (command line interpreter) allows the user to execute a

signal processing module merely by typing its name. Some modules require argu-

ments, and these are typed after the name, all separated by spaces. Normally, the
standard input of a program is attached to the user's keyboard, and the standard

output is attached to the display. The Shell allows these to be redirected to

files by typing a " < " or " < ", followed by the file name. It also provides

a way to pipe the standard output of one program to the standard input of the

next with the symbol " ". As an example, consider the following simulation

used in bandwidth compression simulations:

The Shell Command Line

Sht 4 4 < inage.S I Scode ht44.q I Sdeccde ht44.q I Siht 4 4 > new irnage.S

runs the 4 programs "Sht", "Scode", "Sdecode", and "Siht" simultaneously, each

deriving its input from the output of the program on its left. The left - most
program obtains its input from the file "image.S", and the right-most program is

writing onto the file "new image.S". The "Sht" module performs Hadamard trans-
forms on subpictures; the ar( iments "4" and "4" specify the number of rows and

columns in the subpictures. The "Scode" modue selects and quantizes the Hadamard

coefficients using the scheme described by the file "ht44.q". The "Sdecode" module

performs the inverse of "scode", and "Siht" does the inverse Hadamard transtorm.

443



IrI
LINE 0 LINE I-1 SO $1

so

SAMPLE # SO S1 S2 Sn-1

SO S3 S6so~ CHANNELO 0S 2~ 3 A

7.Is S3I• 7 SO S21 HNE 0 .Sn-, S2

S SEL 3 2 HEADER 14- S- ... . -1 -- HEADER 2 --

-- S1  S3 CHANNEL 1 S2 ,. S3

SAMPLE ELEMENT NUMBER $5

SEGMENT 0 SEGMENT 1 SEGMENT 2

Figure 4 A Sequence of Signal Segments

if desired, one could insert the module "Sbsc" between "Scode" and "Sdecode" to

simulate a binary symmetric channel with a specified error rate. Similary, by re-
placing " > new image.S.. with " I Stv", the compressed image could be viewed on

the television monitor. The module string can be broken at any point for debug-

ging or plotting purposes. For example, when designing a coding scheme, it would

be nice to know the probability density function of each of the coefficients. For

a given image, we can generate an approximation with the histogram and plotting

modules: Sht 1 8 < image.S I Shist-1024 1023 I Spit I mp yields a plot, Fig. 5,

which is a histogram of 8 coefficients resulting from Hadamard transforms on 1
by 8 subpictures. intermediate signals can be saved by inserting the "tee" program

which writes its standard input to its standard output, but also writes a copy to

a specified file.

A partial list of existing signal processing modules follows:

Shead: Put a signal header on a raw data file

Sunlace: Separates an interlaced frame into 2 fields

Slace: Interlaces 2 fields into a fram3

Sht: Computes Hadamard transform on arbitrary subpictures

Siht: Computes inverse Hadamard transforms

Sct: Computes Cosine transforms on arbitrary subpictures

Sict: Computes inverse Cosine transforms

Sdpcmcod: Performs DPCM encoding with specified linear prediclor and quantizer

Sdpcmdec: Performs DPCM decoding with specified linear predictor

Scode: Performs specified quantization scheme for each channel
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Sdecode: Inverse of Scode

Sbsc: Simulates binary symmetric channel with given error rate

Satos: Convert ascii data to signal segment

Sft: Computes Fourier transforms

Shalftone: Display image on dot matrix plotter

Stv. Display image on TV monitor

Smse: Computes NMSE between two images

Shist: Computes estimate of probability density function (histogram)

Spit: Make vector plot with aces

Sdump: Print signal header and data

Sift: Computes Inverse Fourier transforms

S2dft: Computes large 2-D Fourier transforms

Sconv: Convolve two sequences

Slaplace: Laplacian edge enhancement

Sgamma: Alter gamma

Sinterp: Zooms a decimate image with 2-D interpolation and filtering

Strans: Transpose large arrays

Sconv: Convert between signal data types

Slog: Takes logarithm of signal data

Sscale: Scales signal data

Smix: Mixes signals streams
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Table 1

I Digital Image Processing Experiments I

(Issues of General Interest to Broadcasting)

Analysis of PCOIW Sampling Schemes

Determine the characteristics of the following sampling schemes in

the various composite standards: 3 times the color subcarrier (3 fsc).

4 fsc. 3 fsc with phase alternate line coding (pale), and 3 fsc +- 5

such that an even number of samples are taken per scan line.

Each of these schemes has advantages and disadvantages relating

to sample rates and digital signal processing.

Sample Rate Conversion

Investigate the feasibility and the problems associated with the con-

version from one sampling rate to another such as 3 fsc to 4 fsc.

Problems such as the preservation of re.soiution and whether the

rate conversion should be all digital or involve a D/A and an A/D

conversion will be investigated.

Standards Conversion

Methods to implement cost effective standards conversion will be

studied In particular, interest will be directed toward techniques

that will permit substantial commonality of future braodcast pro-

ducts between the different standards - - PAL-M, NTSC, PAL ind

SECAM.

Image Magnification and Manipulation

Picture Element interpolation schemes will be studied to find ways

to generate digital zoom technique.s
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Table 1 (Continued)

Noise Reduction and Error Masking

Various techniques such as conditional line or picture element replace-

ment will be studied to improve picture quality. These simple tech-

niques will be compared to the performance of more complex digital

processing techniques.

Digital Color Decoding

Digital decoding of composite color signals such as NTSC to YIQ or

PAL to YUV interactions between this type of decoding process and

the method of PCM sampling will also be studied. Particular emphasis

will be placed on the feasibility of repeated digital recordings of video

in the composite form.
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Table 2

Digital Image Processing

(Issues of Interest Outside Broadcasting)

Image Enhancement and Restoration

A number of the more complex techniques such as inverse filtering,

wiener filtering, bandwidth extrapolation and maximum entropy will

be investigated. Emphasis will be placed on improved optical pro-

cessor performance by enhancing the processor output. New device

developments such as CCDs may make these signal processing tech-

niques applicable to broadcast television.

Bandwidth Compression

The more promising adaptive 2 and 3 dimensional techniques using

Hadamard transform, cosine transform, and DPCM coding will be

investigated. Compressions of 4 to 1 (22 Megabits/second) have

been achieved on broadcast quality color TV.

Wide Dynamic Range Image Processing

Processing of wide dynamic range infrared (0R) image data is of

interest. Direct A/D conversion and recording of I R sensor outputs

with dynamic ranges up to 13 bits (85 dB S/N) at 5 MHz band-

width is possible. Bandwidth compression, image enhancement

and pattern recognition techniques applied to this I R data is of

interest

Information Extraction and Signa: Identification

"Au tornatic analysis Of i mage ddtia in both the image spatial doin ii n

and the transform domain will be consi dered. The evaluation Af

algorithims for automatic image trackin(g arld autonomous acquisition

for missile guidance is one application.
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SUMMARY AND APPLICATIONS TO MISSILE GUIDANCE SIMULATIONS

A system capable of real-time simulations of image sequences typical

to those encountered in imaging trackers and autonomous acquisition applications

has been described.

Two distinct applications are the recording of real-time sensor data for

the evaluation of aigorithms and the synthesis of image data for the evaluation

of specific hardware.

Recording of real-time sensor data permits extensive evaluation of the

sensor itself and the testing of various algorithms for image enhancement and

analysis.

Synthesis of real-time image data permits evaluation of hardware systems

that use image data as input. This permits the generation of image sequences

that would be otherwise hard to obtain. An example would be the manipulation

of image data to represent the image obtained from a sensor on a vehicle that

was in a terrain following mode of operation. The alternatives of complex

terrain following simulators and actual flight tests are cost prohibitive in many

situations.

1. D. M. Ritchie & K. Thompson, "The UNIX TimeSharing System", C.A.C.M.,

Vol. 17, No. 7, July 1974, pp 365-375.

2. D. M. Ritchie, -C Reference Manual", in Documents for Use With the UNIX

Time-Shai-ing System, Bell Telephone Laboratories, Sixth Edition, 1975.
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IMAGE PROCESSING USING VICAR

T. A. Nagy and J. D. Childs

Systems and Applied Sciences Corporation

ABSTRACT

Image processing techniques are extensively used by astronomers (typically
on two-dimensional spatial data) in order to perform the functions of:
image enhancement, edge detection, feature extraction, image filtering, image
segmentation and pattern classification. Results of data processed by the
VICAR (Video Image Communications and Retrieval) image-processing system are
presented. The VICAR concept was initially developed by the Jet Propulsion
Laboratory (JPL) in order to process images from lunar and Martian space
probes. This concept is based on the system control of all I/O functions
and a particular calculation or operation performed in one application program.
Serial operation of ine or more application programus will result in the desired
process performed on the data. The utility of the VICAR image-processine~v
system is demonstrated through a series of images Including astronomical
objects (visual and infrared) as well as patterns. The VICAR systeM Call bL
utilized on either a main--frame computer (e.g. IBM S/360) -_On a milli-comnplt e-
(minii-VICAR developed for a DEC PDP 11/45). In addition, the results of a
conversion ,itudy of VICAR to a DEC VAX 11/780 computer is presented.

i. VICAR - A DESCRIPTION

VICAR is a general purpose digital image--processing system that was
deCveloped at the let Propul sion Laboratory In 1966. Its primary appi icat lensi
were the processing of- lunar and Mart ian space prohe data, alIthotigh it has
been used for more general astronomic al applI Icat Ions in the In terven ring \v eur s

VICAR consist s ot a systems port ion a-nd] a set of appi Icat ion rout ines.
flit- imu ge-proce~ss lg finic lios are. per formed by the appl icat ions rout ine,,,
wh ich are wr it t.en in "OH'i'RAN , as sembliy language , or some c omb inat ion of thbe
tWO lanuae. the svystems routiines, which are bash-a] ly written in :seb

laiuigt ,coot rol theit exec ut ion ot the app ic1(7 t ion rout ines, per form t ]thmo~

d10t a fanall cemenT~lt and han1"d I t' 1/ (). fhclt iser s pee t I f ,Cs t he opera! 101s t to be

per ioruuued oil the imly~oug dtlaa bvy dut ini ion of lot) spec if icat ions in thbe
VI CAR coot ro 1 1anuigva.-

Fhbe V (AIR 1_011 em ot ilit", conTIpr 1st three sets; of software:

\ I MN Ali inc I I 1 ar rgr.i'11 that raiJt I pfO( ss (descr iptin 1 i nS 1

V WAK ,not to I laiiguiacý,e- into a form recogniizable 1,y th VICA.R

(.11t1f. Ihe- oui tput of VIRAN' I!, ai ,ct of .1JI o nt( ro Langun age
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VTRAN (cont.) - and a task queue for a VICAR run. The task queue includes
references to applications programs in their intended order
of execution and pointers to necessary data sets and parameter
blocks.

VMAST The resident part of the VICAR system. VMAST consists of
the executive for VICAR along with the general system I/0
routines used by the applications programs. VMAST loads the
transient supervisor VMJC between tasks.

VMJC A transient task that prepares the computer environment for
VICAR applications programs. VMJC interprets the job
specification (output of VTRAN), sets up control blocks,
opens data files, copies image labels, builds task parameter
tables, etc. VMJC also overlays itself with the next
applications program to be executed.

There is a set of I/0 routines called VMIO that is resident in VMAST.
These routines perform such functions as assigning logical device numbers,
opening, closing, reading from and writing to data sets, loading tasks or
data into core, obtaining task parameters and terminating a task either
normally or abnormally. These routines were developed to save core space
and to provide for the most efficient transfer of large quanitie's of image
"Aata. There exists also a general-purpose VICAR subroutine set which inrludes
routines to perform data conversion, to check I/0 operations and to perform
magnetic tape utility functions.

The application programs perform the actual image manipulation and are

transient routines that are called in by VMJC through VMAST. These programs
employ the VMIO and VICAR general-purpose subroutines to perform their functions.
There currently exists a massive set of image-processing applications routines

that have been tested and utilized for several years. Included are programs
that can perform image generation, grey scale transformations, algebraic

operations, logical operations, image measurement, annotation, display,
geometric operations (rotation, magnification), image combination, projection,

correlation, filter 4 ng, and Fourier transform computation.

The Lody of applications program is expandable. The VICAR user can

easily code and incoroprate new routines into the system. VICAR provides
a particularly useful environment for testing new image processing algorithms.
The modularity of the VICAR system permits any combination of applications
programs to be employed.

.'ICAR facilitates data set managemc1.t by means of a standarized data
set labelling scheme. Each data set may have attached to it a set of labels
consisting of the following parts:

system 'abel - essential information such as the Image size in lines
and sample-. Always present.

h1i.tory label - provides processing history :-f the image. The history
label is appended optional iy with the execution of many
of the applications routines.
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user label an optional title inserted by the user to identify the
image.

Versions of VICAR have been developed for both batch and interactive
environments. In the batch version the user can set up a job scheme, have
it translated by VTRAN and submit the JCL and task queue output to the
VICAR program. Line printer listings and photowrite displays can be generated
to see the results of a particular run. With the interactive system, the
user can issue a command at a terminal which will initiate the execution of
a task on a previously-defined dataset. The interactive environment will
also provide for intermediate display and processing verification during a
job scheme, in addition to the kinds of output available with a batch system.

The user's interaction with VICAR is through the job control language.
A typical job scheme or terminal session would include the following
steps,

1. Allocation of data sets. Permanent image data sets are usually

stored on magnetic tape, one file per image. Disk data sets may
also be allocated for temporary image storage and access during
execution of a VICAR scheme.

2. Specification of applications routines. Image processing applications
routines are entered in the order in which they are to be executed.
Included are the name of the routine, the symbolic names for the
necessary input and output data sets (alloc-•ed in step 1), the
output image size, and any relevant keyword .ptions or parameter
values required for the application function desired.

3. Labelling of data sets (optional). User labels may be added or
replaced on image data sets at any point during the VICAR run.

The VICAR language also provides for setting up DO-loops to facilitate
repetitive operations. A set of VICAR control statements called a procedure
,.ay also be built and given a reference name. Such a procedure may then be
invoked from within a job scheme by name with arguments if necessary.

An excellent overview of VICAR and its uses may be found in Reference 1.
:lore specific information about the VICAR system may be found in References
?-4. A feasibility study w-s made to the effort required to convert mini-
VICAR from the DEC PDP 11/45 to a DEC VAX 11/780. (Reference 5).

IT. D11ITATION OF' THE D,'TA

Computer manipulation of data and subsequent image processing of "picture"
data is possible only if the data exist in digital form. A discussion of
the vanriou, methods to accoinplish this ý,oal is given by Castlcj:nan (Refert ncc 1)

The chara,'rt r pattern) data present h~re represent a portion of a data
page captured on 35, mm inicrofilm. A portion of one of the frames in turn
wa.- •nput to an I'MR (model 658 ) photoelectric Optical I)ata Digiter (O01,).
iThe test, data Irame was made on tlic' ODD which was soŽt up for a production
",)peration and ,u t ht, optics were rot permitted to be modified to allow
di Jitizatlon of an entire 35 mim frame. hle sensor is an EMR model 575 Imn ge
J)i.;se, -tor with a + 15!1 uniformitv over a 90Y area. 't is possible to generate
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an image of up to 4096 x 4096 (picture elements) pixels (test image was
done at 512 x 512) with a static addressing accuracy of 3% and a repeatability
of 0.1%. The ODD transfers the input image via the optics to the sensor
,i ch is an intensity function detector. The information Is then processed

by an intensity function encoder to provide a 256-level, binary-intensity-
digital output (grey level).

The digital version of Comet Kohoutek was provided by Dr. D. Klinglesmith
(NASA/GSFC) who generated the digital image from a photographic date on a
Photometric Data Systems (PDS) taicrodensitometer, model 1310A. The data was
scanned at the full scan rate (S=255) with a 50 pm spot size. The resultant
digital image was 1808 by 1981 pixels.

Both of the above digital images had a VICAR compatible header added
to the beginning of the data so that the images could then be processed by
VICAR applications programs.

III. IMAGE PROCESSING

There are a vast number of techniques and procedures that are employed
in the image processing and analysis of astronomical data. This discussion
will limit itself to three rather general areas: image enhancement, edge
detection and pattern recognition.

Imag.e Enhancement

In the process of creating a digitized image there are several factors
which can corrupt the desired image. The optics of the telescope and
digitizing systems may geometrically distort the image. Film emulsion may
be nonuniform across the plate, grain size and mottling may generate an
overall noise level, the emulsion sensitivity to the incoming radiation may
be very nonlinear. The sensitivity of the digitizer may contribute undesired
effects upon the final image.

There are several routines in the VICAR applications library which can
be used to correct for geometric distortions. GEOM and LGEOM are used to
perform spatial transformations. One technique is to have a grid of fiducial
marks (reseaux) superposed upon the imcoming image. The digitized image can
then be registered to a standard, undistorted grid and then the reseaux can
be "averaged out" of the image.

Sensitivity corrections on the grey scale can be performed by point
operations cn each pixel (picture element). If a simple sensitivity transfer
function suffices to make the overail correction, the routine STRETCH may be
employed STRETCH performs grey scale transformations using either a function
or a table. Position-dependent sensitivity corrections can be calibrated by
taking a series of flat field images taken at known exposure times. A
photometric correction file is generated and further exposures can then be

photometrically corrected using such routines as FICOR and MICOR.

Noise removal can he performed in sejeral ways. Periodic noise may
be •eiierated by Imperfect data transmission. The Fourier transform routines

FFTI and FFT2 arc. used to identify and help eliminate periodic signals present
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in I- and 2-dimensional images. Random noise can be supressed by means of
applying highpass or lowpass filters.

Figure 1 is an image or the Comet Kohoutek. The image can be considered
to be made up of the slowly-varying broad features of the comet superposed
over a star field consisting of randomly-located sharply-spiked objects.
Depending upon the application, it may be desirable to emphasize either of
these two features of the iinage.

The resulting Kohoutek digital image split up the spatial picture
into two regions as shown in Figure 1. Region A contains the head and
nearby tail features of the comet. Region B is basically a star field.

The Fourier transforms of regions A and B are shown in Figures 2 and 3.
Both transforms exhibit high frequency components away from their centers.
Such high frequency contributions are due mainly to the presence of the sharp-
spiked stars in the raw image. A predominant feature in the transform of
the comet region in Figure 2 is the strength of the low frequency components
located about the center of the figure. The presence of the comet in region A
contributes these low frequency features. Either the comet or the stars may
be supressed in the image by multiplying the transform by an appropriate
function and performing an inverse Fourier transform to generate the enhanced

image.

Edge Detection

Edge enhancement is a process of emphasizing the grey level gradient at
the borders of objects in an image. Several techniques may be employed:
subtracting a blurred image from itself and scaling the difference, filtering
the image with an apprcpriate impulse filter, or taking the derivative of
the image.

Figure 4a shows the image of several characters which were generated
at a constant grey scale intensity. A second image was generated by shifting
the original image one sample to the right and one line downward. This second
image was subtracted from the original image and an absolute value was taken
of the difference. The resulting image is shown as Figure 4b, where the edge
of the characters can be seen to staod out. This "45' derivative" technique
is most useful for distinguishing regioas of changing grey scale gradient from
regions of constant grey level.

The characters of Figure 4 a were deliberately "blurred" in Figure 4 c

by applying a box-shaped lowpass filter to the image (using the routine BOYFILT).
This blurred image was uscd to show the edge enhancement technique that employs
an impulse filter. The impulse filter for edge enhancement is basically a
positively-peaked fhnction surrounded by negative sidelobes. Figure 4d is
the result of applying such a filter to figure 4 c. An undesirable feature
of this techrique is a "ringing" effect or oversooot.
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Figure 4. Examples of edge detection.

458



Pattern Recognition

The general goal of pattern recognition in remote sensing applications
is to extract certain information from an image concerning the objects within
that image. The steps involved are object isolation, feature extraction, and
object classification. For example, a photograph of a star field can be
analyzed to determine the location and magnitude of the individual stars,
here, the "features" are the position and intensity of the stars. As another
example, a program was developed at JPL to isolate galaxies within a star
field image. These algorithms are described in two JPL publications
(References 6,7).

Figure 5 is a digitized image of a page from an astronomical catalogue.

What is desired is to set up an automatic procedure for extracting the
character information from the image. In that way, the entire catalogue can
be scanned and digitally processed to produce a catalogue data base for a

computer.

We recognize that such an image as figure 5 contains only a small closed
set of possible characters, namely the numbers zero through nine. A possible
approach for doing the analysis is:

1. Register the image. If the decimal points are used as fiducial

marks, the image may be rotated and geometrically stretched onto
a standard grid. The approximate location of the characters can
then be inferred.

2. Position each character. For each character position, a photocenter

calculation can be made to identify the precise location of the
center of the character.

3. Identify the character. Two techniques have been used for this
purpose. One technique is to perform photocenters on the top and

bottom halves and the left and right hand sides of each chardcter
to obtain position information on the different parts of each
character. This process was found to uniquely identify each
character in three steps (Reference 8). The second technique used

was to compare each of the characters with a registered standard
character set. The mean valu- of the image difference of the unknown
character and each of the characters in the standard set are

calculated; the minimum mean value difference will yield the correct
identification.

Figure 6 shows a reordered image of the characte::s of figure 5

(generated using the VICAR routine INSECT). The top ).ow of characters was
designated the standard set and was subtracted from each of the subsequent

rows. The ratio of the n'eýan value to the standard deviation 4f the image
differences was extracted ti.aIng the rovtine BOXSTATS znd Is shown in Table 1.
In all eciies except for thc character "three" there Is a striking identifica-
tion to the actual character. The "three-five" ambiguity could further be

resolved with one more tod it ional test, such as a photocenter calculation on

some port|ion of the character.

4591



,I.'

S

o

O- '0

0i 0

Q, C) - * 
•,1 t~t

Co -•o*4 ' ' -rt 0 '

460

C) ind Lt 4 A4 . . ...... -.------C•:t

- o.-........) ~ C



I
j Table I- Table of Mean/(Standard Deviation) of Difference

Of Standard Character Set From other Characters.

Standard Character Set

0 1 2 3 4 5 6 7 8 .

10 16 8 9 9 8 8 10 9 8 11

1 9 19 14 12 9 12 7 11 10 8

2 10 12 17 10 8 9 8 10 9 7

3 8 10 9 15 7 10 7 9 8 8

4 10 13 13 12 11 12 7 8 9 9

5 9 11 10 17 8 16 7 10 8 8

6 11 8 9 8 6 7 0* 9 9 8

7 9 9 9 11 6 9 7 15 8 ,

8 9 10 10 9 7 8 9 9 22

11 8 9 10 8 11 8 8 8 !

Note: There was only one character "six" in

the image.

IV CONCLUSIONS

VICAR is a versatile general-purpose image processing system. It has
had years of proven experience at many sites in performing remote sensing
applications. VICAR provides a general framnework for image work; in addition
to the large set of general and specialized applications routines existing,
new algoritlums and routines can be developed and easily implemented in a
bigh level language (FORTRAN) into the VICAR system. There axe batch as well
as interactive versions of VICAR. The interactive version, wini-VICAR, has
been implemented on a PDP-II/45.

Figuros 2 through 6 in this paper are the result of line printer
output on. -;tandard 1200 lpm printers. The techniques demonstrat(d here
yield definitive results for Identification of patterns, noise removal and
edge detections with very standard sottware, computers, peripherials and
corm,,ercfally available digitizers.
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TARGET DETECTION USING HYBRID DIGITAL-ANALOG CORPELATION TECHNIQUES

M. Wohlers and J. Mendelsohn
Research Department

Grumman Aerospace Corporation
Bethpage, New York 11714

ABSTRACT

Hybrid system concepts are discussed that utilize two-dimensional digital
image processing together with analog optical matched filtering to provide gen-
eralized correlation operations of interest: for target detection in cluttered
backgrounds. The systems offer the advantages of providing many nonlinear im-
age processing and enhancement operations that can best be accomplished in a
digital fashion - together with a matched filtering or correlation operation
that is most efficientily accomplished in an analog fashion using Fourier opti-
cal techniques. An example of the application of these ideas to the location
of a building will be described.

INTRODUCTION

The field of digital image processing, particularly image enhancement, pro-
vides many examples of techniques such as histogram equalization, edge detection,
thresholding, etc. that are highly nonlinear operations and that can be achieved
very efficiently using special purposc hardware. On the other hand, the matched
filtering or correlation operation between a scene and a template whose aperture
is commensurate in size to that of the scene's, imposes a exere digital computa-
tional burden that is still well beyond the state-of-the-ait of small volume
digital hardware implementation. Fortunately, this is the area where analog
Fourier Optical techniques excL1 and so one is naturally led to consider ,lilrging
these two technologies for the task of target identification in cluttered scent's.

Although1 the basic idea of meiging digital and analog image processing t.t-0i-
nology is attractive it is not at all clear how we should explore the wide "ari-
ety of combinations of image processing operations that can be achieved. ThI is
paper presents an example of a prel miinary study that was done using computer
s imulat ion, that it tempted to explore some of these operations ,t Ipar t t'o

most intere.iting for the specific task of target location.

DIGITAL PREPROCESSINtG TECttNiQUES

An investigat ii was made of the use of digital enhancement techniqutes to
pr,'proct s:; images bh.fore analog matched filtering or cir t'.lotion techniitj ,s art'
used to determine target local ion 1 h!e real or sensed scvile. 'hlil, rtaseiuS; lot
tio' uS,' of digital enhancement arc two fold; first is the fact that the sensed
Sc tilet-S, inl gvneral, have poorr contrast tlhan thie model scenes from whinc tilc
141t chitI d filttrs are to bt' maide,, rid secondly, the model sct'xii.'s 0- not con' t in 1 all
tht' target derail present in tilt aCtuail images so that tite' t, ff'ctive "tit ) lv, I'"

till,- to the lack of this lictail c In C' Liarg in an inallog corr.'lat ,ion pi- .....
lB,)tl ot tuhes' tactor s are do'uion.stiratti. by' the sensed t .scet' and the co rie. ,, i'Ig

1111•,'l scene fol 0t'h buildizg tCa get SIlown in Fig. I ; note th' poor scene colIt i-ist

Ill,! tile addil ional roof dttaili in tIlt actual scene (as well as t 'e other obh 5cCt,
iI Clii' scent' such aS aItfomtibi lt's ilI tilt' parking lot that appear above the buliti ii g)
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The digical enhancement techniques chat were investigated were selected

w th a view toward their final implementation in hardware. Thus, the level of

processing was kept to a minimum. Specifically the images, represented by the

rnxn pixel array, F(i,j), was operated on by a translation invariant filter

¢.we point spread function is represented by the qxr pixel array H(i,j), to

yield the enhanced image Q(ij) (again an mxn pixel array) given by the con-

vo luit ion

q r

Q(i,j) =nE= 1 ,n2 ) F(i-n, + 2, J-n2 + 2)nlrl n2r] (nI2 • 'jn

The filters selected for investigation invol"c,9 the smallest arrays, H(i,j), that

yield interesting results namely, 3 x 3 arrzys. The following six arrays were

utilized in the study - the first three corLespond to high pass filters and the

last three to Laplacian filters

H2±0][l1] 11=252
0-4 0 -I -2 1

H4 1 4 -1 15 8 -1 H6 4 -2

0-1 0 -I -I 2

The images to be processed were also subjected to an initial nonlinear intensity

stretching before the filtering operation was performed. The variation of in-

t.ft'nity on the raw digital data was 0 to 255 and this variation was mapped into

10)0 to 137 on the model and 100 to 160 on the sensed scene by assigning all meas-

ired intensities less than or equ,,l to 100 to 100 and all intensities greater

than or equal to ,'ither 137 or 160 to 131 or 160 respecLivt'ly; thet in terven ing

initentnsity valutL" were linearly scaled betwetn these values. This preprocessing

was s, letted by first displaying the results of varioos stretchluni operati(lns to

a limulnli who theltn dcl';ited that the sel•cted lt've:,ls vielded thie best contrast in
the, resulting image.

Thc images prot'ess.'d by the nonlinear stretching wrt,' first corr,'lated

dirctlly without any additional fi l ,ring - th' results indicated that this

would not be acct'ptat It' s tilc the rtslti gng eorre'lation matrix had a maximum

whtno' posltio, w.i, rot re'lat ed to the, relative position of the .arget in the
5 C"t' [' ,

... .I ... .. t, , , , , wa the app1 ied t to b1)tj tillt sensed scent and the
MItodel ima.ge. 'ht.b ;uajni t ,lde or int rnsity obtaintd with the first Laplacian filter'

(14) is.; shown ili Fig. 2. Not v that the r'e'sul ting model image' was thinne'd by
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eliminating all pixels except the ones shown in Fig. 2b. The magnitude of the
resulting images (Figs. 2a and 2b) were then correlated with each other and the
resulting correlation matrix had a maximum value in the 25th row and 13th column
which corresponds (to within 1 pixel accuracy) to the relative position differ-
ential of the target between the model target coordinates and the sensed scene
coordinates. Figure 2c shows a scan through a portion of the 25th row of the cor-
relation matrix showing the position of the peak and its relative sharpness (for
reference purposes the scene was 100 pixels wide). Figure 3 shows the results
of the same operation applied to the Laplacian-filtered sensed scene as various
amounts of thinning are done to the Laplacian-filtered model. Note that the cor-
relation peak is sharpened as more thinning is done - this is because the sensed
scene did not contain the row of detail or the roof which was in the model and
which then become additional noise in the correlation operation.

ANALOG OPTICAL CORRELATION

Once the preprocessing operat.ion has been selected, the model scene or
scenes can be processed and the results stored. The real time implementation of
the concept as a target locator then requires that a system be configured that
will accept a "live" scene as sensed by appropriate devices, e.g., visual, in-
frared, or mictowave, and the preprocessing operation done to the scene before
the final correlation with the previously stored model scenes. We envision a
system in which a digital image preprocessing module will provide the necessary
scene conditioning or preprocessing. The ti;o-dimensional image emerging from
this module will be impressed upon an optical beam that will then be processed
in an analog fashion through an optical matched filter system shown .chviiatically
in Fig. 4. This system used fixed holographic optical elements that allow (Fig.4b)
for the parallel processing of the incoming scene with many different matched
filters. Thus one can simultaneously achieve the correlation %f the preprocesst.cd
live scene with many different modeled scenes - this allows for the identiiica-
tion of the target in the scene as well as the accommodations for different t.irg,'t
or ientation or scale. References I through 3 discuss some of the ram ifiocat ion 0 I
the analog optical matched filtering technology. A furthr note is worth co,'m-
mentting upon .ilince it Will impact the necessary optical components and that iýý
the fact that a coherent opi ical matched filter is not required if the :ent, pr,-
processing and model preprocessing results are first converted to intensity iiags,
i*e., magnitudes taken, before the correlation operation (see Ref. 4). The re-

suits desc.ibed in Figs. 2 and 3 of this paper employed "intensity" images in the
correlation operation and thus would be suitable for an incoherent miatcht-d filtcr
nip 1 emen n tat ion.

SU1MMARY

This paper presented the result,; of very pre I iminarv studies that df, lost rate
that simple digital inmage e'nhancement techniques could bI applied to scne,.d i.ýl
agvry so that substequent cOrrc lation (that can be ac ;.veed very tt ic it i tly withI

aa log optical procý-seors) yild target lOLEttion ev though initial s,. .d imatge 1V
has poor contrast and the availabet, models of the targets c.nrtaiin only part i'll i -
tail. The re-sulting hybrid digital/aanalog systems offer the potcntial o tht- Ihigh

proocessing rates achiev-ble with ani.log optical ,;ystems together with tic non-
lirlear imago prot.ssing opt rations that can be implemented most effici,.ntly with
digital procets sing.
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PERCEIVED IMAGE QUALITY-TV IMAGE TRACKING SYSTEMS

G. Sandhu
General Research Corporation, Huntsville, AL 38505

E. V. LaBudde
Burroughs Corporation, West Lake, CA 91361

ABSTRACT

Results of the subjective tests designed to determine the importance of
random noise interference in various portions of the video band are reported.

Broad, narrow and mixed bands of white noise distribution effects throughout
the video band are investigated. Good agreement results between the ex-
perimental data and predicted performance from computer simulation models.
The analysis indicates that noise equalization, by preemphasizing and de-
emphasizing a certain portion of the video, results in a considerable
improvement in resolution and gray scale of the image.

1. INTRODUCTION

Recent advances in solid state imaging devices and solid state analog
memory and correlation devices have made it feasible to develop a practical
fire-and-forget terminal seeker employing image correlation and television
trackers. The basic performance limitation, however, has been the perceived
limiting resolution and gray scale of the target image in a cluttered
environment. In this study, we seek to answer as precisely as possible the
following questions: What is the relative importance of random noise in
various parts of the video spectrum? How does the human visual mechanism
resolve the image in the presence of noise? Is it possible to model the
eye as a system block with reasonable accuracy in arriving at an overall
assessment of interfering effects? How effectively does noise equalization
improve system performance? Prelininary answers to these questions are
reported here. They are "preliminary" because they depend to a large extent
on the test equipment used, the viewing conditions, and observer judgements.

Broad, narrow and mixed bands of white noise spectrum are added to the
output of an imaging sensor viewing the standard resolution chart. The
limiting resolution and gray scale of the resultant image are observed by
two independent observers without the "a priori" knowledge of the simulated
conditions. The results are recorded as a function of signal. tD noise (S/N)
ratios. A theoretical model of predicting the limiting resolution is
developed and its performance is compared with the experimental data. Cood
agreement results between experiment data and the predicted performance from

computer simulation models. To minimize noise interference effects, noise
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equalization techniq,-es are applied. A certain portion of frequencies in
tLe video signal is boosted (preemphasized) before the video is processed
and the same band is suppressed (deemphasized) at the receiving end.
Considerable improvement in both limiting resolution and gray scale results
over all possible ranges of SIN ratios.

2. HUMAN VISUAL MECHANISM

The conventional means of specifying the S/N ratio of an image resolving
system is to relate the peak signal to rms noise. This figure of merit does
not relate the limitations imposed by the noise to the increased Modulation
Transfer Function (MTF) at spatial frequencies less than the limiting spatial
frequency. It is desired to evaluate the broadband implications more
rigorously, when the observer's ability to recognize information is impaired.
The primary parameters [1-4] relating to this impairment are, signal MTF,
target contrast, eye Contrast Threshold Function (CTF) and noise power
spectrum. The spatial domain interrelation between these parameters is
shown in Figure 1. The eye contrast threshold response at 60 centimeters
viewing distance corresponds to the acquisition mode. Once the target is
acquired, the observer moves closer (20 centimeter viewing distance) for
identification.

As seen from Figure 1, the limiting resolution, fk, is 620 TV lines
(signal MTF = eye CTF) in the acquisition mode and 660 TV lines in the
identification mode. The increased identification limiting resolution is
due to the fact that the viewer has zeroed in on a particular object and is
not interested in the spatial frequencies which clutter the object. The
perceived limiting resolution in the presence of noise can be derived by
subtracting the square-root of the sum of the noise modulation squared and
the eye contrast threshold squared or the value of fk satisfying the
following relation

f

12 2f NPS(f)df + CTF (f ) At*MTF (f ).
0

where A is the apparent target contrast. For a typical case of OdB
(I volt'rms white noise over 5 MHz or 400 TV lines) S/N ratio, the perceived
limiting resolution in the acquisition mode decreases to 180 TV lines. We
will varify this from the experimental data in the following section.

3. EXPERIMENTAL RESULTS

The test set used to simulate noise conditions is illustrated in
Figure 2. In a test, 1wo observers view an image of a resolution chart
and gray scale with no .nnowiedge of simulated noise conditions. All noise
is frequency-limited with .' response of 18 dB/octave up to 3 Mfz and a
response of 12 dB/octave from 3 to 5 MHz. A standard EIA resolution chart
is viewed on a monitor at a distance of about 60 centimeters from the
observer under normal lighting conditions. The detailed test set description
is described in [4].
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3.1 WIDE BAND GAUSSIAN WHITE NOISE

White gaussian noise is acdded to the video signal before displaying
the image of the resolution chart on the monitor. The corresponding
resolution and gray scale is observed for a specified S/N ratio, The
results are shown in Figure 3. It is seen that observed horizontal
resolution is very close to the theoretical model prediction over a wide
range of S/N ratio. Both horizontal and vertical resolution appear to
fall off linearly (20 TV lines/dB) for S/N ratio below 10 dB. The gray
scale is also a linear function of S/N ratio, but over a large range
(0-20 dB).

600 • . . ..

I LIOS*O OLOAIN NIS WR WEYEE

t 2 - -- .. .. .r t NO1 ýIODZO A ANIII/T.WN 6leWT - --

VERTIC- 
,ORESR (LUTIO

-LRABE -ERTIAL VESOLUtO

The perceive NO-ITS qualityQrEsu n NOI

noise simulations is shown in Figure 4 for a constant noise power spectrum
Fand a constant noise rms valo. It is Interesting to observe in Figure 4(a)

that vertical resolution falls rapidly up to a cutoff frequency of 10 Ktlz.
The same phenomenon also appears, although less dramatically, for higher
values of S/N, ration [4]. It appears that low-frequency noise, particularly
less than 10 Ktlz, is extremely objectionable. The rapid decline of
horizontal resolution aL I to 5 M1Iz can he expected since most of the white
Gaussian noise lies in this, region for constant rms input noise. The gray
scale appears to fall uniformly with upper cutoff frequency in all the
cases as shown h) Figures 4(b) and 4(d).
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3 . 3 BAND-LT1l TED 1I1II l-FEROIJENCY NOT SE

White Causs ian noise from a nio se generator is pas~sed through a high-
pass filter Whose cutoff frequency is varied from 0.1 to 4 Mlhz . For each
readinug, the, n'r.o Ie source output Is adjusted to prov ide a constant ras
noise input to thI video signal1 . The results are shown in Figure 5 (a) and

5b.Figure (c and 5i(d) show the results Of con.ntont noise power
Spec t rul.
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'Pie no I se ef fect s seem very severe in the f requency range of 0, 1 t o I MHz
Figure 5(c) shows that a 0.45 V2 change Iin noise power between 0.1 and] 1 Milz
resuilt in an Improvement Iin hor izont al resolut ion of 100 TV I foe.s (225 to 325),
whlile a 1 .5 V2 cha1g Innis ower- bet wee(n I and 4 Mhlz reosulIts in s im ilar improve-
ment Ini resolut ion of 100 TV liInes (325 to 1425). T1his ndfi~at es that. a decrease

af almost one-t~hird inl noiIse power Iin thli v ldt:,) band of 0. 1 to I M~z. result,; Ini
the sa'nt imlpr(vt-wert In) rt-ou It iof as ~in thlie I-- to) 5 Mliz v ideoJhald . As a resti1 t

pr eemjsITha S I!;] Is 1(I( eenipha ii is ol f vId (let) soi lena I fo r noI:se eq ua I za, t I on mus,ýt sp read ove r
t he teles r angeI'V1,*1ý( III 0. o I >Illz t o ha ve t I!a .prec I abi) e etf ec ot..
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3.4 BANDPASS WHITE GAUSSIAN NOISE

The white Gaussian noise generator output is passed through a bandpass
fi'lter before being added to the video signal. Filter center frequency was
varies from 0.1 to 4 MHz for a constant Q, and each time the noise source
output is adjusted to get constant rms value at the output of the filter.
The filter rolloff is 18 dB/octave in the frequency range of 0 to 2 Miz
and 12 dB/octave from 2 to 5 MHz. The measured filters response is reported
in [4]. Figure 6 illustrates the results of band limited noise interference.
Both resolution and gray scale appear very sensitive to noise power around
100 Kliz. The horizontal resolution has a maxima and vertical resolution
has a minimna when the noise power is spread from the low-frequency range
to the high-frequency range. B~oth maxima and mininma occur at approximately
100 K1lz. Their sharpness depends on the amount of noise power contained
per cycle.

I AC'7

W AI l -

Figure 6a. Bandpass GdUssian White Noise Effects Figure 6b. Concluded
(Continued)

3. 5 BAND-REJEcT WH'IFF CALUSSIAN NOISE

For thet hand-reject ile s imulat ion, out put of the no ise source is
passed thlrough t he band-rejec filter before beinug added to video. The
center f requency v I variled from 0. 1 to 5 Miz for a constanft Q and at const ant
rins tlOl1it outpu)It. The observed data for resolut ion and gray scale as a
11nuCt I01n of hand-rcJ ect center frequency is shown In Fi'gure 7. Tlie ve.rtical
gray s;cale decgrt.-dc In the. frequency range of J.1 to 1 Milz (at resul t

01p1o10SItt' to t hat 01 theV bt1ndpaiSS Woise S irnulat 10n).
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Figure 7a. Bar~d Rejects White Gaussian White Noise Figure 7b. Concludea
Effects (Continued)

4. NOISE KqALIZATION

In almost all the observations made during noise simulation, noise
effects appear relatively more severe in the frequency range of 0.1 to 1 M4Hz
in the video spectrum. This indicates that if a certain band of frequencies
(near 0.1 to 1 MHz) in the video signal is boosted before the video is
processed (preemphasized) and the band is suppressed at the receiving end
(deemphasized), a considerable system improvement can result. The process
is called noise equalization and is frequently used in FM transmission.

n(KG)+W r w/K c
Preemphasis networks FP = K [s-w ) must have the frequency

response shown in Figure 8.

G C

SdB

fC!K fC

,Jicure 8. Prcamphasis Netvork rrequeicy Response
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Deemphasis is the reverse of preamplification, having a transfer function
of the form:

TFD [s+w -] n(KGc)TF K(s.----w )

Figure 9 illustrates the system performance observed with two sets of
equalization parameters, (K=4, fc = 1 MHz) and (K=7, fc = 5 M1Hz) for the
simpliest form (n=l) of noise equalization.

Considerable improvement in resolution and gray scale results,
particularly for frequencies below 1 M1lz. The improvement is uniform only
in the case of horizontal gray scale as shown in Figure 9(b). It seems that
equalization parameters (fc, K) are a function of noise power spectrum and
higher order form of noise enualization may result in a further improvement.
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Figure Ua. Noise Equilization Effects (Continued) Figure 9b. Continued
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5. CONCLUDING REMARKS

From the large data base observed, it appears that the noise inter-
ference in the 0.1 to 1 Mhz video spectrum severly limits the preceived
Lacge qaaiity. Noise equalization by priemphas*zing and deemphasizing
the video over this range results in a significant improvement. The eye
image resolving models reasonably correlate with the experimental data.

As an application to image tracking system, the perceived horizontal
and vertical limiting resolution can be transformed to minimum area of
the resolution element that can be resolved. One can then establish the
probability of detection, identification and recognition of the targets
under various system specifications and operating conditions. Detailed
digital computer simulation have been developed by treating the
electro-ootical system as an information system. Signal MTF, target
contrast and noise power spectrum is convolved with target characteristics,
atmospheric conditions, platform characteristics, TV camera optical and
electrical characteristics, video display characteristics, and observer
capabilities in arriving at the smallest area of resolution element that
can be resolved under various operating conditions. Optimum performance
"is realized by maximumization S/N ratio in the video band where the noise
effects are severe. For example, one can boost the signal MTF by aperture
correction techniques and reduce the pre-amplifier noise in the desired
frequency band by proper selection of its parameters. These techniques
have been applied [4] with favorable results.
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