#

AD=A093 935

MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE-=ETC F/6 9/2
TOHARgS A gETEER DEFINITION OF TRANSACTIONS. (V)
€ 80 BSK

UNCLASSIFIED AI=-M=609

'

g
7"‘

B R T O G e ity L - . IR

3w it

: /
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEF O D ON S RN

2. GOVY ACCESSION NO,| 3. RECIPIENT'S CATALOG NUMBER

@ Ai"sjﬁg D433 935

4. TITLE (and Subtitie)
- emorandum .
C? 3 tep? .,

Towards a Better Definition of Transact1ons-} AT T T T T I T T

v

1. R

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(e)

- <r——

. PERFORMING ORGANIZATION NAME AND ADDRESS \)Q 10. PuggnA: ELEﬁE:‘TT'NPu':nOaJEESsY' TASK
Artificial Intelligence Laboratory”

545 Technology Square
Cambridge, Massachusetts 02139

11. CONTROLLING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency
1400 Wilson Blvd

Arlington, Virginia 22209

14. MONITORING AGENCY NAME & ADDRESS(I! different
Office of Naval Research
Information Systems
Arlington, Virginia 22217

i

ADAOY3935

qu’_ I et

—(2)23/

15. SECURITY CLASS. (of (AW 7 dpwrer~—
UNCLASSIFIED

Dec ember

. NUMB OF ™

1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

- b
o L >
Distribution of this document is unlimited. - p ,1~1fi :
' ’y ., Jal
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, H ditlerent from Raeport) K . !

18. SUPPLEMENTARY NOTES

None

19. XEY WORDS (Continue on reverse side if necessary and identify by block number)

Interactive Systems
Transactions -
Data Bases

20. ABSTRACT (Continue on reveree eide If sary and identify by dlock number) .

This paper builds on a technical report written by Carl Hewitt and Henry
Baker called "Actors and Continuous Functionals". What is called a

"goal oriented activity" in that paper will be referred to in this paper as
a "transaction”. The word "transaction" brings to mind an object closer in
function to what we wish to present than does the word "activity". This
memo, therefore, presents the definitions of a reply anq a transaction as
given in Hewitt and Baker's paper and points out some discrepancies in their

definitions. 7
DD ,’ 5%, 1473 eoition oF 1 nov €8 13 ossOLETE o

JAN 73 S/N 0102-314- 6801) UNCLASSIFIED 1/ f
‘ %yﬁa SECURITY CLASSIFICATION OF THIS PAGE (Whon Dare Bnterd)

il FILE COPY.

{
}

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.1. Memo No. 609 December, 1980

TOWARDS A BETTER DEFINITION OF TRANSACTIONS

Barbara S. Kerns

\%
ABSTRACT: This paper builds on a technical report written by Carl Hewitt and
Henry Baker called "Actors and Continuous Functionals". What is called a
“goal-oriented activity" in that paper will be referred to in this paper as
a "transaction". The word "transaction" brings to mind an object closer in
function to what we wish to present than does the word "activity". This
memo, therefore, presents the definitions of a reply and a transaction as
given in Hewitt and Baker's paper and points out some discrepancies in their
definitions. That is, that the properties of transactions and replies as
they were defined did not correspond with our intuitions, and thus the
definitions should be changed. The issues of what should constitute a
transaction are discussed, and a new definition is presented which eliminates
the discrepancies caused by the original definitions. Some properties of
the newly defined transactions are discussed, and it is shown that the results
of Hewitt and Baker's paper still hold given the new definitions;w/

This report describes research done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. Support for this research was
provided in part by the Office of Naval Research of the Department of Defense
under Contract NOO014-75-C-0522.

[Rsenesion Tor /
rrIs 67Ul v

DTIC T°% L
Yeannow .~ &4 - |
Justificotien..o o -

By - - e
Distrih:;’ulf::ﬂl
Avail: vttt Ca0 s

i L

!]

Dict ! { AP

203

DU s 4 e A U N A et

et et -

-~ 811 19

g T PN T AT S, VRN~ AT oD el 2, vyl ooy SO S Toegalipee: Arbpicmit o3, mer .

S e et e, e

PACE 2

I Intioduction

A transaction corresponds (o our usual notion of a subcomputation needed for
subroutines. 1t includes those cvents which occur hecause a certain request is made, up to
and including the resultant reply. The notion of a request, followed by steps leading 1o a
veply, appears over and over apain in nany different kinds of programming applications.
Kecursive Tunction invocation, data bases, and interactive systems, for example, cach
lustrate the need for the coneept of a transaction. In recursive function invocation a
requent 15 tade for the value of some expression, and a reply is subsequently returned.
When working with data baces, one often wishes to retrieve a piece of information and
thue will <ubnut a request, Here again, the activity involved in replying to that request
cotintitutes & transaction, Interactive systems are really nothing more than a series of
requests and rephes, Lisp, for example, uses the elassie “read-eval-print” {oop.

The concept of a trannaction is therefore an important one, and is extremely
useful i reaconng ahbout sequential program semantics. We need to establish a robust
delinttion of v trapcaction that applies (o distributed systems as well, where many
michines or procecsor interact throuph a network. Communication between processes is
neeesary lor concurrent propramming to be useful; thus we wish to construet and
eramine a dehinition of a transaction wineh can be used to reason about such inter-process
COMMUMPALIoNn,

I Bacl ground

Actor~ and events are the basic concepts of the actor theory. Actors
commumcste with one another by <ending messenpers to cach other. Fach messenpey
contans antormten which the receiving or "tarpet” actor then acts upon. An actor may
create another acton, v Lact, most messengers (which are also actors) are created just
betore hamg went off 10 another actor, An event occurs when a messenger arrives at its
tarpet actor. Often we use the notation:

BT <nv M)

16 mean thit tarpetil) = 1 and messenger(E) = M.

B S

Sbin e =

T

R I e ey

L A i e W g St 52818y i e i

PACE 3

Actors which a given actor directly knows about are called its "acquaintances”.
For an event E, the "participants” of £ are the tarpet(E), the messenger(E), and the
acquaintances of tarpet(E) and of messenper(E). An actor maintains a vector of
acquaintances, which may or may not change over time. [t may gain new acquaintances (or
forget old ones) through the acquaintances of a messige sent to it. An example of an
sctor whose acquantances change over time is 3 “cell”. It has one acquaintance, and can
receive cither a “contents? request, in which case it replies with its acquaintance, or a
update request, in which case it forpets its old acquaintance and remembers the new one
riven Lo it by the update request. The behavior of other actors whose vectors of
acquaintances may change with time are given in [Hewitt and Attardi, 1978).

The significance of an event causing an actor to change its vector of
acquaintances is that sueh actors therefore are "order-dependent”. That is, the order in
which they recetve messages can cffect the replies they send to these messages. Such
wctors are "sernlized” so that they can assign an "arrival ordering” to their messengers. If
the mesaape of event Ly arrives at a serialized actor S before the message of event Es,
then we write:

£, -ang -»> E,
Another tvpe of ordering 15 the "activation ordering”. Il as a result of
receving a messenger Moin an event F, the targel actor sends another messenger M, to
an actor A, then Fy is said to activate [5 where Eg is the arrival of M, at A, We write:

E?_ -qct-> E3

The tranvitive closure of these two kinds of orderings is called the "combined
ordering”, and according to the above two examples we could write:

El s~ E3

-~ ¢ Ay Mg - AT - Pyt vt ~
T T e R g e

= ¢ <ot s T g

o 2o

TR o Xt et 7% i cn P e .

PACE 4

i Transactions
Il Request and Reply Events

I order to study transactions we must have a formal definition of a request and
areply. A requestas simply the messenger in any event of the form: . i

[.. <~~ [request: .reply-to: ¢})
where ¢ 15 a continuation. The definition of reply as given in {Hewitt and Baker, 1977) »s:

1 an event Fois of the form .

[o <~~ [request: . reply-to: ¢}]
then any event F ol the form

(¢ = ~~ [replv: o]
such that Foacr->07 will be said to be a reply 1o F.

(We will Trequently tefer (0 an event whose messenger is a request or a reply as a
reguest of veply event, respectively, We wse the notation "reply(RQ)" to mean the event
whooe e cnper i the reply of the request event RQ. This paper assumes that at most
one reply exints for each request) But this delinition of 3 reply is too strict. Gonsider
the cve in which a tequest is sent 1o a seralized actor X in event RQ. Suppose that
hetore <ending a seply, N demauds that 1t receive "pormission” to do so, Pormission is
sranted m the Torm of the recvipt of a clock pulse, which may arrive before or alter the
receipt of the request event. Calling the event in which the elock pulse arrives at X
event £, we bave B[N <~~ pulse]. The pulse allows the reply to the first message to be
sent, and it artives at the continuation in event KP, such that RP: [C <~~ {reply: ..} 1

RQ: (X < ~~ [request: M, reply-to: C))
|

arry

E: [N <~~ pulse) -act- > RP: [C <an [roply:))

We nee that RQ arryg »E-act “RP. There is no activation ordering between RQ and RP;
but RP <hould <till constitute a reply to RQ. We therefore propose that the definition of
reply be weakened to:

Il an event B s of the form

[« o~~ [request: .,reply-to:]
then any event E' of the form

(¢ <~~ [reply: ..]]
such that k---E will be sad to be a reply to E.

Fv chwping the requirement of an activation ordering between the request and its
ascocisted 1ephy to a combined ordering, we allow evems which are ordered by arrival
ordenng to enter the path between request and reply.

H. 1. Redefining Trancactions

Hewitt and Eaked's deflimtion of a transaciion (given this paper’s assumption that
al most one reply evists for each request) is:

tranzactiontRQ) = RQ--2 N --2reply(RQ)
where RQ v0an event whose messenger 15 4 request,

Intuinively, a (ransaction is an attempt to characterize the notion ol a process in
com enbioml propramming binpusges, snece only those events which contribute towards the
vequest. reply are nchuded i the trncaction.

For esaple, consider an event RQ, i which a message M arnives at a serialized
actor N with continmition G, that 1, RQ 2 [N < ~~ [request: M, reply-to: Cl]) Let X
then eecive a second mescage M) such thae RQ,: [X <~~ [request: M’, reply-to: C'} 1
N rephies to MY st by cending K 10 the continuation C'. It then rephies to M. The
tollowing events and ordening:, are relevant,

TSP = N) T SRR AP N P g (S g M, £ oz o0

2N e

RO o0, KOs
RE 0 s~ R
R, (6 ~~ R
Rd, sr o RP,
KO- -t RP,

RQ,: (N < ~~ {requese: My reply 10: G)] -acr-> RP,: [C <~~ R)
{
RN
v

RQ [N - ~= frequest: M aeply 100 G} -at- » RIY: [C' <~~ R

Now, trueactionikQ) = {RQ,, RP',5, and transicnion(RQ,) = {RQ,, RP,} Although
Ry - oRQu, RQu 1 not an clement of transactiontRQ), because 1t is not true that
R\“;\ 'Rl".

However, av originally pointed out by Graig Schaffert, we note that a
dectepuey can urse with ths defimition. Gonsider the case in lli. above in which a clock
pul- ¢ woeowed to actinvate the reply to a request, According to Hewitt and Baker's
detintian of 4 toaction, trinsactiontRQY = {RQ, E, RP'L But if the clock pulse arrives at
\ betore KO, we have the Yollowing sitntion:

L Ty ’ K(‘) IR RP
Now i actioniROD = JRQ, RP'L This rares several questions concerning just what
~ Y q [‘

“hould b included i a trancaction. Should Fobe included in the transaction in either case?
Should 1t not? Should the whole computation fail to be recogmzed as a transaction?

PACE 1

In keeping with our intuitive discussion of transactions, it seems that we
~houldn’t throw out the whole computation, but we must now decide whether E should be
included or not, and in either case, its wnclusion or exclusion should be consistent and not
dependent on the arrival ordering of F.

Carl Hewitt has proposed that those events which are not request events or
tephy events twhere a reply is extended to include complaints), should not be allowed to
be members of any transaction. This constraint is in keeping with our concept of a
transaction as that "thing” whieh models the classical notion of a process as a set of
nested reguest events and events which reply to those requests,

Adding thie constraint to our definition of a transaction, we see that in order to
determine whether D <hould be included in transaction(RQ), we must know whether it
connttbntes v regueat event or not (clearly it is not replying to X). If E is not a request
event, then Iowill not be a member of transaction(RQ) regardless of where it comes in the
vrival ordering of N with respeet to RQ. However, if £ is a request event, it necessarily
oo avcecnted reply event. We wall aswume then that there is an event R such that R =
rephil . We ean now put some constiamt on R in order to include or cxclude E tand R)
trons tranactiom KO Following our intutions (this 15 a delinition, after all), we add the
con-trunt thataf s a request, e order for F to be an clement of transaction(RQ),
R--- teph (RQ). More formally, we now have:

'or ~ome request or reply event F') E'+ transaction{RQ) i
RQ —->F' F'-- LreplviRQY, and il F' 1s a request event,
then reply(t’)--~>reply (RQ).

What this means by that if & request event is to be part of a transaction, its associated
reply event chould be also. For the clock pulve example then, transactiontRQ) = {RQ, RP;}
where s not included at all, since Fis neither a request nor a reply event. Note that
ainee v have added constrants to the detimition of transaction but not elinunated any,
that mo event which was not part of a given transaction will now be defined to be. We
have only chamited certan " hoe” cvents from some transactions. We will examine
later how thi clfeets wome of the results presented in [Hewitt and Baker, 1975).

-) ' PACE 8 ‘
l
|

I i, Tropetly Ne<ted Transactions
Ve would now like to prove some propertics of these transactions, In
, puticnlar, 10 would be nice to he able 1o say that transactions are “properly nested”. “T'hat j
i 7, that tvo transactions are cither disjoint, or that one is a subset of the other.
Fidortun -l a counter-example follows, 1

Connider the following event network and its associated orderings (Where the
RO are request evemts, the RM's are reply events, and the E’s are neither. RP's
correspond to the RQ with the same subseript):

RQ, et~ RQ,

RQ-\T Sl D RQ:;, RQ4
RO, et RPy
RQ, act- » RP,
RP; -ocl- [:h l'.z

Rpa -qi{-> Eg, Eq
E) ~ang-> Ej
Fo-arrg->Fg4
by -act-> RP|
Ea -qact-> RP;

act-> E| . H

arr,

,(h'f - RQJ -aci-> RP:‘ act-> E3 ~-qact-> RPI

RQ, -ai- - RQ,
\lll'n"-‘ R()a -Gci-> RP4 act-> F.z
ar,
act-> Eg -act-> RP, '
We wish to determine which cvents are memhers of transaction(RQ,) and which

are members of (rancactiontRQ-) Transaction(RQ,) consists of RQ, (obviously), but not
RQ., <ince RP = reply(RQ5) has no ordering with respect to RP| = reply(RQ,). RQj; and
RQ, ate hoth elements, since they are ordered with respect to RQ, and RP,, and their
re<pective replies precede RP,. Then their replies RP3 and RP, are also members. E,

N My O,] gy — A

.

o bt b e it et

s i ran AR U S GRSt inaiint EAI :.._....—-m_ i givala O ACRt:n i N 5 i

PACE 9

thiough b4 we not member< of trancactiontRQ,) since they are neither request events nor
reply evente, Fmally, KPy s a member of transaction(RQ,). Therefore, transaction(RQ,) =
TRQ, RQ, ROy, RI, RPy RP L Similarly, transaction(RQ,) = {RQ,, RQ3, RQ,, RP3, RP,,
RP.5

The nterwection of transactiontRQ,) with transaction(RQ,) consists of four
events, (RQ., RQu, KP, RP,%, and slthough this set is not a transaction it<ell, it consists
of the wnion of two transactions. (t is possible to show that the intersection of two
transactions iz always equal to the union of some number ol other transactions.) However,
trancactiontRQ ;) i< clearly not contained in transaction(RQ,), nor is transaction(RQ,)
contuned in transaction(RQ).

Well, all s not lost, for we can prove at least a slightly weaker property,
thouph one which 1s wtill quite uselul. Though we can not show that given any two
transaction. with at least one event in common, one transaction must be contained in the
other, we e chow thit if a request event RQ is an element of transaction(RQY), then
tranactiontRQY « transactiontRQ'). This is called the Law of Containment for .

Tromsecinns,

Axcume that E o (ransactionlRQ) To show that E ¢ transaction{RQ’"), we must
<how

Coal 11 RQ~-->F--->reply(RQ")
and of E s 3 request event, that
Coal 20 reply(E)--->reply(RQ).
Since v tnwnractiont RQY we have:
RQ - »F---replyRQ)

and sinee RQ - trammactiont RQ'):

RQ'---2RQ--->replviRQ)--->replv(RQ’).

e =

PAGE 10

Then
RQ™--»RQ-=->L-=->reply(RQ)--->reply(RQ’)

Thuz RQ'-- === 1eplyiRQ’), which proves Coal 1.
Awtume 105 a request event in order to prove Goal 2:

reply(E)--->reply(RQ’)
Since 1« transaction{KQ) then
reply(E) - >reply(RQ),

and <iee RO« transaction(RQ’), and RQ is a request event,

we bnow
replyRQ)--->replytRQ’).

Thus reply(E) == replylRQ’). [Done)

1. Contimuous unetioml.
Hi. 1. Continntion Ordering

Lolore we go on, let’s briefly characterize those events which we have
chmnated from transactions. First of all, we have eliminated from transactions all those
events which are neither request nor reply events. Secondly, we have eliminated all those
request events whose associated reply events do not also participate in the transaction.

Hewitt and Baker have defined a third ordering on events called the
continmtion ordering. In this ordering, F -conr-> E, if 1) there is some transaction «
<uch that Fy and E, are both members of v, and 2) £, ---> E,. Our redefinition of
transaction affects this ordering to the extent that now il E| -cont-> E;, we riay
automatically conelude that E; and [, are cither request or reply events since no other

i 4
¥
!
3
|

FACGE 11

type ol event my be an element of some transaction, and Turthermore, given the ordering
RQ, ot RQ», we ean conclude replvRQ,) ~conr-> reply(RQy). Tt is also the case that
some conbimuition orderings that once held between two events may no longer hold, since
come crenitt hwwe heen eliminated from transactions. But no additional continuation
orderings will hold due to the redelinition of transaction.

. i, Fork and Join Echavior

The fork and join behavior discussed in Section I1X of [Hewitt and Baker, 1975]
hold- up bewtifully under the new delinition of transaction, as long as no join occurs
without & previows, Tork first providing the components of the join. This prerequisite is
casy 1o Tultill, however, since the classic notion of a process implies that that is always
the cine.

HL . Procedures and Mathematical Functions

The definition of a procedure as given in [Hewitt and Baker, 1975] requires that
I all events mvolved 1n the procedure are either request or reply events, 2) there is at
mo.t one reply event for each request event, and 3) the transactions are properly nested.
That i+, lor any two transactions in the procedure, cither one is a proper subset of the
other, or they are disjoint.

We winh to show that any transaction which was a procedure under the old
detinition 1. ~ull a procedure under the new definition. That is, we wish to show that any
event whieh vac elimimted from a (ransaction by the nevs definition of transaction would
not howe peed asan event which could be part of a procedure anyway. Il we can do this,
then the poulte pven i [Hewitt and Eaker, 1975) for continuous functionals will still hold,
cinee they are bsed on actors which behave like mathematical funetions, and mathematical
function’ depend on procedures for their definition.

~ T T e e e e
. o i

PAGE 12

Wo have already characterized the events which were eliminated from
tranaction.. Those which are neither request nor reply events can not be part of a
procedure under the first restriction. Those request events whose corresponding reply
evintn were not part of the transaction cannot he part of a procedure either, under the
tollov inpr rea-omnp. Assume the existence ol a request event RQ which is a member of
transactioni RY, but whose reply RI'is not. Then RQ is also a member of transaction(RQ),
3% .oty reply, RP. Then transaction(R) and transaction(RQ) are not disjoint in that they
hoth contin RQ, but there is no containnient since RP is not an element of transaction(R)
{therefore transaction{RQ) is not contained in transaction(R)), and since R--->RQ, R
canot be an element of transaction(RQ) (therefore transaction(R) is not contained in
transactiontRQN. Thus, no such transaction would pass as a procedure anyway.

Thus, even with the new improved definition of transaction, we can still show
that it an actor hehaves like a mathematical function, then it is the limit of a continuous
funcuenil 1 the sense of Scott. It remains to be seen if analagous results can be shown
10 hold true for order-dependent actors,

tV. Conclusions

We have uncovered two "bugs” in the {Hewitt and EBaker, 1975) paper, one with
the definition of "reply, and onc with the definition of a "transaction”. We proposed
Altermtive definitions for both, and showed how these new definitions solved the
di~criopancies raised by the original definitions. Using the new definition of transaction,
the Low of Coxtainment for Transactions was proved, and the definitions of a procedure
and o mathematieal function were shown (o hold true. Because these definitions held, we
were ahle to maintain the result that if an actor behaves like 3 mathematical function, then

it 1= the limit of 1 continuous [unctional in the sense of Scott.

e e i B stk o hi 2t s

PR

PACE 13

V. Futwie Work

We have not vet discussed the uniqueness of replies, or indeed how multiple
replice imeht Affeet the definition of a transaction. Although normally a request has only

one 1ephy, 1t 1n concervable that an actor nught have a behavior that causes multiple replics
to be wentan response to some request.

VI, Acknowledpements

I wash to thank Carl Hewitt for many valuable discussions on transactions and
aetor. ' Vernleld and Roper Duffey acted us helpful sounding boards for some of my
deas, and cncouned mv quest for the "perfect transaction”.

VIL Bibliogaaphy

Hewitt, Goand Faker, 1. Actors and Continuous Functionals, MIT LCS TR-194,Dccember
17

Hewitt, C.oand Actwdi, G. Proving Properties of Concurrent Programs Expressed as
Fehavioral Specifications. In preparation.

Hewitt, €. and Faker, . Laws for Communicating Parallel Processes. MIT Artificial
Intelhigence Working Paper 1314A. December 197C.Invited paper at {FIP-T77

Hewitt, €. "Viewinp Control Structures as Patterns of Passing Messages™. Al Journal, V8,
1977, ppia23-364. '

P e s

