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4II¢.S’]'I\'_.-|_("¥.)I"his paper presents algosithms for computing constraints on the position of an ohject
due 1o the presence of obstactes. Fhis prablem arises i applications which require choosing how
o arrange or move objects among other objects. The basis of the approach presented here is to
characterize the position and orientation of the object of interest s a single point in a Configuration
Space, in which cach coordinate represents a4 degree of freedom in the position and/or orientation
of the object. 'The configurations forbidden o this object, due to the presence of abstacles, can then
be characterized as regions in the Configuration Space. The paper presents algorithms for computing
these Configuration Space obstacles when the ebjects and obstacles are polygons or polyhedra. An

approximation technique for high-dimensional Configuration Space obstacles. based on projections of

obstacles slices, is described. $
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Inrcedduicthion

1. hatroduction

Anancreasing range of computer appheations deal with models of o and three-dimensionad
abjects. In these applications. ohjects must often be placed among other objects a moved e such
oty s that noomtertorence rom nearby objects tesult. Inthas papers these topes of prablems
are called spatial planng problems. Among the many apphications where spatial plinnimg plays an
tmportant role are;

i.  Plnning the livout of o building |8 Le. the arrangement of walls, corridors, rooms, and

cquipiient so s to fadill a user's design constraings as well as mphicit consistency constraints.,

20 Pluning how to machine a part using a Numierically Controlled Machine Tool [47]. which

requires plottimg the path of one or more catting surkaces soas o produce the desired part.

Yo Pl the livoat of an 1C chip [15] so as o minimize area, subgect to geometric design

constramts,

4. Plnning how 1o assemble o part using an industrial robot [18] [19] [38]. which requires

choosing how 1o prasp ubjects, move them withoat collisions and bring them into contact.

Probiems m spatial planming generathy myvalve (at least) two nnporiant & pes of considerations:

1. Geometry (he fepal solutions must be chuaractertzed, which imvolves considering inter-

actions between the shapes of objects and obstacles.
2. Opisizanon - The bestsolution must be chosen from among the legat solutions.

This paper deals primarily with computing constraints on the position of an object due to the presence
of obstacies, hus its focus is on the geometric aspect of spatial planning. The development throughout
will be based on polyhedral object models, although many of the results and approaches are ap-
phicable o other classes of object models.

Recently, there has been a rapid growth of interest in eflicient alporithms for geometric problems.
Previous work! has focused on algorithims for (1) computimg conves halis [9 {12 [15] [29]. (2) inter-
secting comvex polygons and polyhedrea [S][241 133} 1351 Q) intersecting, halt-spaces 171 130] (4) decom-

posing polygons [32], and (8) closest-point prablems (34}, This paper formulates two other geometric

Yihe relerences cited hese are representative of the current Iterature: they are by no means a complete survey

MG apscap--ai ancangd
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problems. Fdspace and Fandpath, with onpornt apple ations me spatal planoimy - descnbes an
appraach e ther solatton and presents alpornthins for the centeal prablem posed by the approach.
Previous work on these problems is brielly review ed i Section 11,
o Spatial Planning Problems
Fet B beacomvex palvhedron that contams Ay, other, possibly overlapping, conves polyhedra 23,
. A .
designated as obsiaclos. 1 et v be the union of Ay conves polyhedia A, e A U.', A Fguare ‘
1 dlustrates twockaed geometie problems: defined below (where position s used to mean both
; tanstation and orientation):
i
1. Findspace  Find o positon tor A mside Bosuch that Vevy A, o B8, A Phisascalled &
sidfe position.
20 Findpath  Tind apath for A from position s o position g such tat Vs alwav o IEand A
never inerlaps any of the 13, Phisis called a safe path, .
Verstons of the Findpath and FFindspace problems oceur e niany spatal planmng appheations,
For example, the approaches 1o object Lnvout (template pachmgy m JH T and J10) aie based on
solutions o Findspace in two dimensions. Also, sastems tor progeammimg mdustoal tobots usimg
object medets [0 [38] must solve 3-dimensional Findspace and Findpath problems when choosing
grasp points on objects o paths tor the robot,
1 The Cspace Approach to Spatial Phinning
-
I this section, an overview of the Confipuration Space approach o spatial planning will be

presented. Sections S through 10 discuss the approach more formally.

The position and orientation of 4 rigid solid can be represented as . single 6-dimensional point,
called s configuranon.  The 6-dimensional space of configurations for a solid, 4, i called its
Configuration Space and denoted Cspace . For example, a configuration may have one coordinate

vatue for cach of the 7, y, = coordimates of a selected point on the ohjeet and one coordinate value for 1
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Figure 1. The definition of R B, and A for Findspace and Fin-inath problems in two dimen-
stons. () The Fmdspace problem s o find a position for A whe does not overlap any of the
1, (0 The Findspace problem s to find a path for A from s to g that avends the B,
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Figure 2. The C'space y obstacle due 10 F3. for fived onentation of A

cach of the objects Fuler angles® . I general, an 2 dimensional configuration space can be used to
model any system that can be characterized with 2 parameters. An example is the configuration of
an industrial robot with n joints, where zeis spically 5 or 0. In Cspaed . the set of conligurations
where A overlaps B will be denoted CO{B), the Cspacey Obstacle due o 120 Sinubardy. those
configurations where A s completely ansede 13 will be denoted (). the Cspacey Inrerior of B,
Yogether. these two Cspace y constructs embody all the information needed to solve FFindspace and
Findpath problems.

If the onentation of a4 conves polygon A is fixed, Cspacey is sunply the (1, y) plane. This
iv 50 hecause the (z, y) posiion of some reference wertex ruy is suflicent 1o specify the polygon's
configuration. In this case, the presence of another convex polygon £ constrains rey o be outside
of COL(B). a Targer comvex polygon, shown as the shaded region in Figare 2. Thus, the Findspace
problem can be transformed to the equivalent problem of placing rvy outside of CO (1), bul inside

CIy(R). Similarly. for muitiple obstacles 3, i Tocation for A is safe iff roy s not inside any of the

‘the relatne retation of one coordmate watem rekuive to another can be speaificd m terms of three angles usually
eferred 1o as Fuler angles (83 Theswe anples indicate the magmitude of three successive rotations about spectfied axes,
but no umbonm convention for the chowe of aves evsts
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SIS

Vigare 3. The Dindpath problem and ats formulanon using the COLUE) 0 The shortest cothsion-fiee: paths
connect the ongm and the desttnation via the vertices of the €O polygons

1 CO (). butis inside C1(12). Subsequent sections discuss algorithms for CO4(B) and CLy(1). ‘ ‘
If the orientation of A s fixed. then the Findpath problemsy for the polygon .4 among the B, is

cquivalent e Findpath problem for the point ro among the CO(13,). Wien the COL(B,) are

polvgons, the shortest? safe paths for roy dre piccewise incar paths connecing the st and the

goal via the vertices of the CO palygons. Figure 3. Therefore. Findpath can be formulated as a

graph search problem. The graph is formed by connecting all pairs of €O vertices (and the start

and goaf) that can "sce” cach other. i.c. can be connected by a straight line that does not ntersect

any of the obstacles. The shortest path from the start to the goal in this visibility graph (Vgraph) is

the shostest safe path for A among the B3, [21]. This algorithm cfliciently solves Findpath problems

when the orientation of 4 is fised. but the paths it inds are very susceptible o inaccuracies in the
object model. These paths wuch the Cspace y obstacles, therefore if the madel were exact, an object ,
moving dlong this type of path would just touch the obstacles. But an inaccurate model may result in l
a collision, Furtherinore. the Vgraph algorithm with three-dimensional ohjects and obstacles docs not !

find optimal paths.

Yl asumes TFuchdean distance as o omeine For the optimalty conditions using a tecthnear (Manhanan) metne, see
[16]
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Figuee 4. Shee projecons of Cspace v obalacles computed using the (. y)-atea swept o by 4 over a
tange of @ vatues Fach ol the shaded obstackes o the (o9 projection of 4 0 shice of O (13} The figure
abe shows g pohronal spprosamation 1o the shiee projecton and the polygonal approviitton to the swept
volume lom which it denves
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When A s a three-dimensional solid which is alfowed to rotate, COL\(12) is o« complicited curved
object in a 6-dimensional Cspace . Rather than compute these ohjects directly. the approach taken
here is to use a scquence of two- and three-dimensional projections of the high-dimensional C'space
obstacles. In particular. the 6-dimensional Cspace y obstacles for a rigid solid can be approximated
by several 3-dimensional projections of CO slices. A j-slice of an object C € R" i defined to be
{(Bi,...,Bn) € C |7, 2 B, < 7, ). where 3, and 3 are the Tower and upper bounds of the slice,
respectnely, Then, if K is a set of indices between 1 and n, g KC-slice is the intersection of all the -
slices for 3 € K. Notice that & K -slice of C is an object of the same dimension as C. Shices can then

be projecled onto those coordinates not in K to obtain objects of lower dimension,

As an example of the slice projection technigue, Figure 4 shows, shaded. the (z, y) projection of

-slices of CO ((B) when A and B are convex polygons. These shises represent configurations where
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A overlaps B or soine onientation ot A in the spectficd range of 8. Scenon 10 shows that these shee
prajections are the Cspace  obstacles of the arca (colume) swept out by 4 over the range of orienta-
tions of the slice. Note that approximating. the swept volume as i polvhedion leads to @ polyhedral
approximation tor the projected stices, as shown in Figure 4.
The shice projection technigue has two important propertics: '
1. A solution o a Findspace problem in any of the shices ts a solution to the origimal problem.
but since the slices are an approximation to the Cspace obstacle, the converse is not necessarily
true.

2 e shice projection of Cspace | obstacle cian be computed without having to compute the

Imgh dimensional Cspace y obstacle, see Section 10.

Phe shice projection method can also be used to extend the Veraph algorithm deseribed carher to
find safe (hut sub-optimal) paths when rotations of A are alfowed {21} A number of stice projections
of the Cspace obstacles are constructed for different ranges of oricntations of A, The problem of
planning safe paths in the high-dimensional Cspuce 4 is decomposed into (a) planning safe paths
vi CO vertices within cach slice projection and (B) moving between slices, at configurations that
are safe moboth shices. Both of these types of motions can be modcelled as links in the Vgraph,
therefore the complete algorithm can be formulited as i graph search problem. This approach 1§
Mustrated i Figure 5. However the Vgraph algorithin has several drawbacks when the abstacles are
V-dimensional, In particutar,

1. Optimal paths in higher dimensions do not typically traverse the vertices of the Cspace

vbstacles.

2. In higher dimensions, there may be no paths via vertices, within the enclosing polyhedral

region F2. although other types of safe paths within R may exist.

These drawbacks may be alleviated by introducing additional nodes in the Vgraph which do not
correspond o vertices [21]. An alternative strategy to finding safe paths in Capace 4 is discussed in
[20}.

The key to the Cspace approach outlined above is computing the Cspace obstacles; the rest of

the paper is devoted to this problem.
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Figure & An athistaoon of the Pindpath alperthm using shice: projection desenbed by 1T ozano-Peres and
Wester i PH A number of shiee proeetions of the €Cspace obstacles are construated for dilferent ranges
of onentanons of v The problem of plinnmye sde paths e the logh dimensional Cspaecy s decomposed
wto (1) planming safe paths via CO vatices within cach shice prajection and (7 inoving between shices, at
configntations that are satfe m both shees 4y represents $ o s munal conbiguyation by repiesents 4 oin s
final comfiguration and 4, w @ simple polvheded approsunation to the swept vohune of ¥ between s mihal
and final oricmation.

4. Notation and Conventions

All geomietric entities - - points, Jines. edges, planes. Taces and objects - will be treated as

Gnfinite) sets of points. Al of these entities will be i RY . the k-dimensional real Euclidean space. a.

b. z. and y shall denote points of RYas well as the corresponding vectors. A, B and C shalt denote
sets of points in R*, while 7 and K shall denote sets of integers. 4. 8. and g. shall denote reals, while
n, 1, 7, k shall be used for integers. The coordinate representation of a pointe € R". for any n, shall
bee = (V) = (n,. .. ,7.) The magnitude of a vector @ will be Jla]] and the cardinality of a set A

will be |A). The scalar (dor) product of vectors a and b will be denoted {a, b).

The following operations are defined on sets of points in R™;
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.

Figure 6 Linked Pohbedin can be used 10 model the gross geometty of mamipulators

APB={a-tbla€cAbeEDB}
DA = {—ajac A}
It aset 4 consists of asingle pomt e then a¢fB == {a}PB == ADDB AN AGDB == AD(ON).
Note that. tipically A A 2 {2a]a e AYand A SO A = Hahhough AP B = B A The set
difference and set complement operations will be denoted A = B and - A respectively.

Rigid objects will be represented as sers of possiblv overlapping camnvex polyhedra sinee this repre-
sentation snuplities the algoritins for computing CO. Theorem | below tollows directly trom the
definition of COz i qusuties the use of this object representation.

Theorem 12 IFA == Uf‘ (A and B = Uj”__, B;:

ka ky

ouB) = J U co.m)

1 y=1
The position and vrientation of a polyhedron will be defined relative o an initial position and
orientation. In this initial position, some vertex of the polyhedron coincides with the ongin of the
glohal coordinate frame. For a polyhedron P this vertex s called the reference vertex of Por rup,
o the sequel, & different kind of object, called Liked polvhedra. is used. These objects are

kinematic chans with polyhedral finks and prismatic or rotary joints' Figure 6. The relative position

Vinnis are represemted absttacth 1o ther representation as polvhedra do not detetmime their motion properties in
f \ )
partcubar, some aalues of e Jont parameters may cause oserlap of adjacent hinks
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and oricntation of adjacent links, A, and A, | (. is determined by the ¢ joine paramerer angle) 26,

The set of yoint patameters of o linked polyhedron completely specifies the position and orientation of

all the links.

5. Configuration Space and C'space Obstacles

The configuranion of @ k-dimensional polyhedron. A, is a pointa = (31, .., ) € R withd =
k | (‘z) where (..., w)is the position of roy and (3 ¢, ..., ) are the Euler angles specifying
the orientation of A relative to its imitial orientation. 'The configuration of a linked polyhedron having
d joints is the d-vector of the joint parameters. The d-dimensional space of configurations of A is
denoted Cspace 4. A in configuration z is (A),2 A in its initial configuration is (A)o.

The fundamental obseryation about Configuration Space is that, in Cspace . the (A), is repre-
sented by the veetor z. Given this. the basic problem in the Cspace approach to spatial planning is to
define how the obstacles I3, map into Cspace . The mapping chosen here exploits two fundamental
properties of objects: Their rigidity, which allows their configurations to be characterized by a fow

parameters. and their sofidiry, which requires that a point not be inside more than one object.

Definition: The Cspace y vbstacle due 1o B. denoted CO ((B), is defined as follows:
CO\(B)={z € Cspace, | (A}, NDB # 8}

Thus, il € COL(B) then (A), and B cither touch or overlap. Conversely. any configuration
z & CO(X) (for all obstacles X) is safe. The following defines a Cspace 4 entity complementary to
CO4(B).

Definition: ‘The Cspace y interior of B, denoted CTL(13), is defined as follows:
CL\(B) = {z € Cspaces | (A), C B}

The sets CO((B) and CI1(B) are difficult to compute and manipulate since they are curved,
6-dimensional objects when A and B are polyhedra. Instead, this paper will deal with projections

of slices and cross-sections®  of CO(B). For example, for fixed Fuler angles of A, the Cspace,

A cross-section is a slice whose lower and upper bounds are equal.
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obstacke due o 70 denoted COYER) indicating that it is aset of zyz positions. rather than the
full confienrations. O () = the projection onto the £, y, = cordinates of . Fuler angle cross-
secnon” T general. the supescript o CO and Cwill mdicate the composition of their members,

e COVR) and COV) denote sets of (2, y) and (1, y, 0) values respectively.

6. The Sliding Algorithm for CO™¥

Fhis section presents o« "nane™ algorithm for computing COY(B) when A and B are convex
polvgons and the arientation of A is fixed.  In subsequent sections. more efficient algorithms are
presented for this case.

When the orientation of 4 i fixed. the configurations of A are simply the positions of the
reference vertex roy. Clearly, the boundary of (O ({13) is the Jocus of vy where A just touches 13,
This suggests a simple algorithn for compating COYM(B): slide A around the perimeter of B and
trace the path of ro . The e shiding 1s merely suggestive: in practice. knowing which vertex first
touches an edge completely defines the path of ro over that edge.

[he central step of this STiding algorifon is 1o determiine whiat point (or edge) of A first contacts
cach cdge of B and vice versa, Figure 7. The normal vector of cach edge of I3 defines an approach
direction for the edge. 114 s moving from a great distance towards an edee of 12 qlong the normal
dircction, and no edge of A is parallel to one of B then contact will first happen at a vertex of A, This
contact vertex is the one with the minimum perpendicular distance o the edge of 2. As this vertex
"slides” along the edge of I3, vy traces an edge of COYY(3) which is paraliel to the edge of B and
of equat fength. But this edge is displaced by the disto-ce trom the contact vertex (o ruvy, projected
along the normal 1o the edge of B, Interchanging the rocs of A and /3 shows that cach edge of A and
some vertex of BB gives rise to an edge of CO'MI. T new edge is traced out by rvy as the edge
of A "shides” along the contact vertex of B e s wew edge iy paralfel 1o the edge of A and
of equal length, but displaced from the contact vertex ot 13 by the perpendicular distance between the

edge and rvq. I A and B have pairs of parallel edges. then CORY(I3) will have a parallel edge for

cach such pair, displaced as above, but whose length is the sum of the two cdges.
SWhen A< oricntation is fixed. we assume without Toss of gencralny that s oats mihal onentation, 1¢ A 15 simply
( V)o displaced by some 3-vector 1.
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v cv

Frgure 7. Mlustraton of Shiding algotthm, ce e contact vertices

‘The Shding algorithm needs Ofjedges(A)] X Jedges(13)]) operations to comipute COZY(1) for
comex A and B, This s not optimal; Section 8 deseribes an O(Jedges(A)] | Jed ges(IB)]) agorithm

for this task.

The Stiding algorithin derives the edges of COY(03) from the interaction of one of (a) an edge
of B and a vertex of A, (b)Y an edge of A and a vertex of 13, or (¢) an edge of A and an cdge of
B Smilarly, cach face of COR(B), for A and I3 convex polvhedra, can be computed from the

interaction of one of

i atace of A and a vertex of B or a face of B and a vertex of A,

b, aface of A and a coplanar edge of I or vice versa,

i m, =
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N |
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|

L L

Fignre 8 toatton of the Proof of Theorem 2 Ay location of rey i s Gase o ot which 4 and 74 have a
pomnt m consnon (eypressible as band o), can be evpressed as « ba’ Ahactoe COYTUY - e (),

¢ ancdae of A and a non-pariliel edge of B,

d. atace of A and a coplanar fice of B.

7. Vector Set Sums and Configuration Space Obstacles

The fundamental result of this section is the following;:

Theorem 2: For A and B sets in R, COY(B) = B (A).

Proof: 11 ¢ is an (r, y, 2) configuration of A then (A), = ¢ ) (A)y. Therefore, if a € (A), then
a == a’ e, wherea' G (A, see Figure 8. 116 € BN (A).. thend = a' -} ¢ and therefore ¢ == b-—a'.
Clearly, the converse is also true,
]

€A and B are convex then A €D BB and A € B are also convex {13 Il therefore CO¥(B) is

convex. Also, for 12 and A in their initial configurations,

o );"“((A)u) = ((/\)u O (B) - (x '()f\”:((n)O)'
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S g O

Figure 9. Characierzation of €179 i emis of set addiion The outermost polygon w78 the imnetmost s
CTUVEY e dashed pohvgons are copres of (V) placed ac sermices of B therelore the convey hull of the
mner polygon and these dishied polvgons s CEH) U e by Eheorenr 4 Note that < 204 Vg £ 1
the shaded regrons ae £ (L) s ()g),

A related characterization of CHY(B) is also possible. For ¢ an {r, y, 2) configmation, if ¢ €
CHYB) then e @ (A)a C B. Since CHP(B) is the setof all such e, then CH(B) ep (A)o C B
and furthermore CH7(B) is the maximal sucﬁ set, see (a) and (D) below. Clearly it B = X B (Ao
then X = CTP(B), see (¢). Figure § illustrates these results,

Theorem 3: -or A and B convex polyhedra,

() VXX B (A) CB=XCCI(B)

0 CIEB @ (ANCB

© CIv(CorB) =B
Note also that CI(B) = —CO.(—B), ic. for A to be inside B. it must he outside of B's

complement.
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8. Mgorithms for CO* (£8) and CO(D)

[heorem -4 provides w way of computing COY ) exactly for conves Vand B I addiion,
provides an approximation technigue for COYY (1) when A and I3 are non-convex.

Chearew 4 For polvhedra A and BB,

conv(A |- BB) == conv(A) (f conv(B) = conv{vert(A) o]+ vert(B))
where conv( X} denotes the comvex hull © of set X and vert( X) 15 the set of vertices f X
Proof; Fist show that conv(A ¢ 3) =+ conv(A} (s conv(B).
(2)

Fhe definition of comvex hall states that any a € conv{A) can be expressed as an alline combina-
tion of points in Ao Hhis may also be done for any b € eono(B3). W x & conv(A) B conv(B),
a € conv(A).b & conv(B).a, EAL, €EB.Y v =17, >0. ZJ B, = land B, > 0 then

r=a+b= (Zq,a,) b= 2'1,(a,- -+ b)
i i

= 2‘7/(“‘/ + Eﬁjbl) = 271(2/3}“; 4 Eﬁ)b))
i J ? 7 J

== Z’y, Zﬂj(a, + b)) -- ZZq,ﬂj(a, 4-b,)
i 2 J

i
But. since 3, Z, 1.0, band 1,8, 2> 0. £ v an affine combimation of pomts in A () B and
therefore belongs to its comex hull. Theretore conto(A) (3 conv(B3) CC conv(A (P B).
Q)

Ifz € conv(A B B), thenfora, € Aand b, € B,
I = Z'Yl(a: + b1) = 2'71‘1: ’+ 2‘71“’1-

‘Therefore, r € conv(A) @ conv(B).

This establishes that conv(A @ B) = conv(A) (1 conv(B). Replacing vert (A) for A and vert(B)
for B and using the fact that conv(A) = conv(verl(A)) [13]. shows that conv{verl(A) B vert(B)) =
conv(A) @ conu(B).

TIhe conver ull cont{A). of a noncmply set A C R {Z:‘th,r, | 1, € Ay, > (),Z:':l-y, o ln s
1,2,...}) (13 pls]
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Corollary: For conves polihedea A and 12 A Qa3 cone(vert (V) pr vert{(18)) and theretore

COYB) = convlvert(I3) Y vert((A)).

Proof: The first part of the corollary follows directhy from the fact that, for comen AL A =
conu(A). The sccond part follows from Theorem 2.

]

Many algorithms exist for finding the convex hall of a finite set ot paints on the plane, ¢.g. 9]
1T3SH29). 1291 also describe an elticient algorithin for pomts m R Vhese algorithms are known
to run in wosst-case ome O{elog v), where vis the size of the mput set. Theretore. Theotem -4 cads
mmediately o an algorithm tor CO™ and an upper bound on the computanonal complexaty of the

prablem.

Theorem 5 FFor comex A, B C R, COZ(B) can be computed i tme On? log n). where

n == {vert(A)] -+ |vert(B)].

Proof: ‘The set vert(13) & vert((A)y) is of size foert(A)] > Jvert(ID]. rc O(27) Apphong an
O(v log v) convex hull algorithm o this set gives an O(n? log 1) algonthn tor oo e COPC(])
This result holds only for convex polyhedra of dimension k < 3 (7).
|

The algosithm of Theoreny 5 s not optimalz an Qre) waotdhm exasts tor OV () when Aand B

are convex polygons® :

Definition: 7(A, u) denotes the suppornng plane (line) of A with vutward nommal 1 1(A, u)
contains at least one boundany point of A, call it a, and for any @’ € A then (@', u) - (@, u; Thos, all

ol Ais m one of the closed halt spaces bounded by n{A, u) and u points away from the micior of A,

Lemma 1 1A and B are convex sets then

(AD B u)N(ADB B) = (2(A, w) N A) B (x(B,u) N B) (n

"the development in this section 1s hased on that in Section 14 of [4]




18 Aeotthins tor O Y and O ()
\ \

i
| |

i i
t
! f
| |
n(A@B,u)
$ N
~
N
ath
- AN
-7 N
ria.u) _q- S N
N - A(D)B .,
‘o Y
T
N ’
A II \ \\ ,
/ N N7
N
7 ==b
- N
’ ,— ~ m(B.u)
-
// - N
/-

Figiee 100 Mostiaton for Lemma 1

Fenmma 2;

() 1 et s{ag,az) be a hne sepment and b a point. then s(ay, a,) @b o= s{ay 4 b, a, - b)is aline
wement paralielto s(ay, a.) and of equal Tength, See Figure (a).

(W) et s(ay, ay) and s(by, b,) be paraliel line segments such that (@, ay) == kb, — by) for
k = 0. Then s(uy, ay) e s(by, by) = slay + by, az 4 by) and the Yength of the sum is the sum of the

lengths of the summands. See Figure 11(b).

Theorem 62 1or comen polygons A and B30 COYY(B) can be computed i worst case time

Offvert(A)] -1 |vert(B))).

Proof. For fixed u. cach term on the right hand side of (1) 18 cither a fine sepment (edge) or a
stngle peint (vertex), it follows from 1 emma 2 that the term on the Ieft is one of®
A ancwaertex, when twovertices are combined;

b, adisplaced edge. when an edge and g vertey e combined (1 enuna 2a);
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8+b,; i
a4 h
22

a8,
b, ath,
ath
eb a b,
a

1

SO . .

Figure 11, Nustrauon fur 1 emma 2

¢ aparofdisplaced end o-end edges. when two edges ate combined (1 cimma by,

As 1w rotates counterclochwise, the houndary of A (B 13 s formed by jormimg asaccession of these e
segmemts. Note that, because of the comveanty of A and B, cach edge s encoantered exactly onee |22
p.13).

A polygon is stored as o Tist of vertices in the same order as they we encountered by the coun
terclochwise sweep of wo Fhis s equivalent o g total order on the edges. based on the angle that the
cdge makes with the 1 avs. For a polygon P, assume the j7 edge in this order e, s{v), v, ),

makes the angle 0, then

v, it e, | <Ou) <6,
WP, u)ynr = (e, if 0(u) =46,
v 0, < 0(u) < 6y

The tme for constructing the new vertices 1s bounded by a constant, since it involves it most two

vector additions, Thus A €D BB can be compuied m linear time dunng o scan of the vertiees of A and

e

At e




20 Agonthins fir OV and CORM()

' N
Il ‘\\
N,
!
[
b, l
b, B
by | --7"
Ub‘
/'ua']
Ue, z,
~~e_ |-
ub, \ uba
A
\ i
‘ |
‘Ua, i
ub3

Figme 12 The edges of 12« (A)y when 4 and £3 are comven polvgons, are found by merging the edge
hsts of 12 and - ( V)g. ordered on the angle then normals make with the positine 1 axas

B. Figure 12, Animplementation of this operation is shown in Appendiy 1L Similanly B {3 {A)y can be
computed in lincar time by first converting cach vertex a, to rvy — a,. Figure 12.

When A and/or B are non-convex polygons, COTY(B) can be computed by an extension of
the algorithm above. The method relies on decomposing the boundaries of the polygons into a
sequence of polygonal arcs whose internal angles, i.c. the angle facing the inside of the polygon,

are cach less than 7. ‘The algorithm of Theorem 6 can then he applied to pairs of arcs: the result

is a polygon whose boundary, in general, intersects itself. The algorithm requircs, in the worst case,

O(ledges(A)| < |edgrs(B)]) steps [20).
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9. Dealing with Rotations of A

If A and B are polygons, then COL(13) s an object in RY, denoted COLY(B). The shape of
CO’\""(B). when A and B are comvex. will be investigated below by examining changes in the cross-
sections” nI'CO"”" as 0 changes.

Assume a fixed value for 8. 1€A and I have no parallel edges. the proof of Theorem 6 shows that

cach edge of COTM(3) can be expressed as one of:

e = b, D s(a,(0), a, 11(0)) (2a)

¢; = a,(0) D s(bj, bj+1) (2b)
In these expressions, b, is the position vector of the 3" member of vert(B) and a,(0) is the position
of the i'* member of vert(©(A)y). which depends on 8. The order in which the a, and b, are
encountered in the counterclockwise scan described in ‘Theorem 6 determines the (2, 7) pairings of
vertices and edges.

Equation (2) shows that, for smal) changes in 8, the e rotate around b,. while the ei’ are simply
displaced. Figure 13. In addition to these changes in the zy-cross-scetion of (]O“‘”". there are discon-
unuous changes at values of 0. denoted 0:. where an edge from A hecomes parallel w one from B. For
values of 0 just greater than these 0 this pair of edges has 4 different order in the scan of Theorem
6 from what they had when @ was just less than 0:. Therefore, the (2, 7) pairings between edges and
vertices changes. There are Ofedges(A)| x |edges(13)]) such 8] in CORY°.

Between discontinuitics, the lines defined by e;’ cdges have a simple dependence on 8. The cdge
8(b,, b,.4-1) is on a linc whose vector equation is: (2, u,) = (b, u;) where u, is the constant unit
normal to s(bj, b, 4 ). L.et a,(0) make the angle @ 4+ n, with the £ axis, with n, constant, and u, make

the angle ¢, with the z axis. Then, the equation for the line including e? is

(1), 7) = (u;, ai(0) + bj)

= |la,|| cos(d + n, — ¢)) + (ij u’]) (3)

The terms arc illustrated in Figure 14. This equation holds only for@ € ¢, —n,, ¢, ;| — n,] between
discontinuitics; but within that interval it defines a planc in the space (z,y, cos#). This space is

analogous to that defincd by scmi-log graph paper. As long as the #-interval is known and cos—! is

*The cross-section of COL(11), for constant 0, s COYM(R).
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an lI; for somue @ amy vt totahien will mieichange the onder mowhich they are encountered duting the
counterclockwise scan of ‘Theorem 6

(ind { Vo) totates by 0 the o are deplaced When an ¢ff as aligned with

single valued over the interval then the mapping from (r, i, cos8) to the (r, y, 0} space is unigue. The
g-1anges can always be chosen so that this is the case.

The ¢ cannot be treated ina similar fashion because the onentation of the edge changes with 6,

i.c. the cquation of the surface involve products of the form rcos@ and y cos8. Instead of trying
to represent them exactly by non-planar surfaces, this section develops a simple approximation tech-
nigue that moids dealing directly with these edges. The technigue will be illustrated first for CO™
and Later for CO™V.

For fixed 0. if the Tines defined by the € are extended until they mtersect. the resutting figure
J g ng
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Vigure 14 Mlustration of terms in equation (3)

completely includes CO'Y(13). "This approximation can be very poor when the angle defined by ad-
jacent 63 is very acute, see Figure 15, The approximation can be improved by introducing additional
lines whose normals point between those ()t‘cc’_l and e'J‘. ‘These lines should be farther from b, than

any of the ¢ paired with b, in (2a).

This method can also be used to approximate the slice of CO%"(B) between discontinuities. The
e'J’ and the lines to bound the e cdges both define plances in (z, y, cos8) space, see (3). for some range
of -values. 'The boundarics of the 8-intervals also define planes whose equations are of the form
6 = ¢, — n,. Thesc plancs bound half-spaces whose intersection defines a convex pohvhedron in
(z, y, cosB). This polyhedron contains all of CO,_"-"" within the @-interval. ‘Therefore, it can be used
t approximate CO3¥ over that interval. ‘The union of the resulting convex polyhedra for cach 6-

interval is an approximation to CO}"’.

The discussion above shows how to build a set of n = {edges(B)| + [vert(B)[ half spaces

bounding 7()"""(8) within cach #-range. ‘These half spaces can be intersected to construct a convex
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Vignre 150 Approvinidimg COL) using only the " works well an vertees wis lrye ntenon angle, but
pooths Jor smatl mienor angles  The ines shown dashed can be used o ampiove the approvimation

polhedron m O(nbog n) tine 17} [30]. There are ()(]pdyrs( A - Jedges(B)]) 0-ranges that need to
be constdered: theretore. the complete approximation may he found in O(n ' log 1) time. although in
many applications. @ complete approximation might not be necessary,

Phe same techniques can also he applicd o computing (*l"””(lf) and siee the €7 only has edges
of the form {2b). the resulting polyvhedra in (1, g, cos0) are an exact representation of the Cspace 4
entity [20].

This approximation is. in principle. applicable to polyhedrain 3-dimensions; the results would be
a st of polyhedra in 6-dimensions. ‘The extension is conceptually simple, but the diflicultics of deriv-
ing and representing the three-dimensional orientation constraints make the approach unattractive.
The next section examines an ahternative to dealing with the high-dimensional polyhedra required by

this technigue.

10. Approximating High Dimension Cspace Obstacles

Section 3 introduced the vse of projections of obstacle slices as a means of approximating high

dimensional Cspace Obstacles. Figure 16 shows a decomposition of Cspacey C R* into a family
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Figure 16. z slice projections. This example shows the shice projections decomposing Cspace 4 ,
into four Cspacealy,, 1, +1]-
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ot stices Cspace[y,,7, 1 1], Fach of these new Cspaces is a 2 slice projection of Cspace . This
new family of spaces is a conservative representation of the obstacles. 1.e. it represents the worst case
constramts on copligurations of A whose z coordinates are within the range [, ;41

The power of the slice projection approach is that the family of slices captures all the constraints
needed o pln sade paths in Cspacey. Having all the slices of the COW(B,). there s no need
efer to the 7O (13, themselves, On the other hand. the algorithms in the Sections 6 through 9 are
for crosssections of CO(B). c.g. CO?¥ und CO'Y. nat for slice projection. The basic result of
this section is that these algorithms can be used to compute polyhedral approximations to the slice
projections,

The construction that relates slice projections to cross-section projections is the swept volume of an
ohject. Intuitively. the swept volume of A is all the space that A covers when maving within a range of
configurations. In particular, given two configurations for A.called ¢ and ¢ then the union of (A), for
alle < a <C ¢ is the swept volume of A over the configuration range ¢, ¢]. Generally, ¢ and & differ
only an some subsct. K, of the configuration coosdinates. For example, if ¢ and ¢ are of the form
(81, B2, B5) and K == {3}, then the swept volume of A over tae range [e, ], refers to the union of A
wer aset of configuations differing onfy on 8y The swept solume of A aver o configaration range is
denoted AlC, C’]K.

M wath the same number of degrees of

Fhe swept volume of A, a rigid object, is also a rigid objedt
ficedom. For linked polyhedra, the situation is not so simple. because of the nterdependence of the
Cspace parameters.

Note that for a linked polyhedron, the position of link 7 typically depends on the positions of
links & < j. which are closer to the base than link j. Let K = {j}.¢ = (0,).¢ = (). and [¢, €]k
define a range of configurations differing on the 5" Cspace.y paramcter. Since joint j varics over a
range of values, links{ > 7 will move over a range of positions which depend on the values of ¢ and
¢, as shown in Figure 17, The union of cach of the link volumes over its specified range of positions
is the swept volume of the linked polyhedron. The swept volume of links j through n can be taken
as defining a new 5 link. The first 7 — 1 finks and the new 3 link define a new manipulator whose

configuration can he described by the first 5 - 1 joint parameters. On the other hand, the shape of the

"Nute that. in general. the swept volume of a polyhedron s aof a polyhedron. although the development relies on
computing polyhedral approximations 1o it.

i
]
;
1
4.
i
i
j
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Figure 17, Changes in the second joint angle from @, 10 & causes changes 1 the configurations of both ink
1, and hnk A3

new link 5 depends not only on the K-parameters of ¢ and ¢, i.e. 8, and @, but also on 0 forl > ;.
‘This implicit dependence on parameters of ¢ and ¢ that are not in A is undesirable, since it means
that the shape of the new ' link will vary. | etting K = {J,...,n}. then the shape of the swept
volume depends only on the K -parameters of ¢ and ¢, while its configurition is determined by the

(7 — K )-parametens. A swept volume that satisfies this property is called displaceable.

The fact that the swept volume of o linked polyhedron A does not have the same degrees of
freedom as does A forms the basis for the relationship etween shice projection and cross-section
projection. 1f the swept volume is displaceable, the T - K parameters sy be changed, but changes
to the K paramicters are not legal. Therelore, the Cspace of the swept solume of A s of Tower
dimension than the Cspace of A. In particular, configurations in Cspace  that have equal T — K
parameters and whose K parameters arce in the defining range of the swept volume, project into the

same configuration in Cspace yje ), -

If Ale, ], overlaps some obstacle 3 then, for some configuration a in that range, (A), overlaps
B. The comerse is also true. 1f Afe, €], is displaceable, then CO o, () is the setof [ — K projec-
tions of those configurations of A within [¢, @], for which A overlaps BB Equivalently, €Oy ., (B)

15 the I — K projection of the fe, €], slice of COL(B). If the configurations of the swept volume are

one of (z, y). (z, y, 2). vr (z, y, 8) then the algorithms of the previous sections can be used to compute
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CC (B and thereby compute the requned shee projections!

A tormal staement and proot of this result s induded o Appendo s Theorens S Thas theorem
i~ of practical mportance simee it provides the mechanisn undalving the bindspace and Findpath
miplementations deseabed m 120] and 2] In addition, the proat of the theorem demonstiaies the

useiulness of the Cspace conceptas a tool in theoretical analyses of spatial plinnming problems.

11, Related Work in Spatial Plinning

Ihe detimtion of the Findspace problem used here is based on that i 46 Approaches o this
problens are described by [V T and [27) The latter, which is the more relevant, is an application of the
Warnock afvonthin for ladden hine climination. 1t imvohves secnesively subdividimg the workspace un-
il anarea arge enough™ for the object s found. Thas approach has several drawbacks: (1) any non-
overbappiny sobdinvasion steategs will break up patentially uscful arcas, and () the implementation of
the predicate “farge enough™ is not specified.

1he Cspace approach o Findspace and Findpath deseribed here s an extension of that reported
i 21 Tnhat paper anapprozimate algonthm for COL (81w deseribed and the Vgraph ddgorithm
tor high dumensional Fidpath s first presented.

e Basic dea of representing posiiion constramts as geonietie figures, e.p. CORY(), has been
nsed Gndependently ym [HL P and 3 who employ ed ancalgorithin to compute COY for non-convex
polygons i a echmigue for two dunensional layout. Phie template pachimg approach described in
V0] uses a related computation based on a chain-code deseription of tigure boundaries. [36] reports
algorithms for packing of paralictopipeds in the presence of obsticles using o construct equivalent to
the CO*Y . but defined as “the hadograph of the Close Posioning Function”™. The only use of this
construct in the paper s tor computing CO tor alipned rectangular prisms,

The work by Udupa. reported in [40] [41], was the first 1o approach Findpath by explicitly using
transformed obstacles and a space where the moving object is o point. Udupa used only rough ap-
proximations o the actual Cspace obstactes and had no direct method for representing constraints on

YOS course, this tequires computmg a comves pohvhedral approvimation o the swept salumie of 4 Simple approximations
are nal difficult 10 compute [P0 but this wsoan atea where better atgorthme are tequoed . Nevenheless, the swept
volume computation i i Vdimensional operation which can be defined and cvecuted without recourse 1o 6 dimensional

consirucls
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more than three degrees of freedom. [417 abso surveys previous heuristic approaches o the Findpath
problem for manipulatars |17) [28] [44). An carly paper on Shakey [25) describes a technigue for
Findpath using a simple vbject transformation that defines safe points for o circular approximation
o the nobile robot and uses a graph scarch formulation of the problem. More recent papers on
navigation of mobile robuts are also relevant o 2-dimensional Findpath |11]123) [39]. [14] reports on a
program for planning the path of a 2-dimensional sofa through a corridor. This program does a brute-
force graph scarch through a quantized Cspace.

[31] proposcs an extension of the approach in {21] to the general Findpath problem, but using
an cxact representation of the high-dimensional Cspace obstacles. 'The basic approach is to define
the general configuration constraints as a set of multinomials in the position parameters of A, But,
the proposal still requires claboration. It defines the configuration space constraints in terms of the
relationships of vertices of one object to the fuces of the other. This is adequate for polygons. but
the equations in the paper only cxpress the constraints necessary for vertices of A to be outside of B,
i.c. they are of the form of (3} above. They do not account for the positions of A where vertices of
B are in contact with A, ‘Thus, the equations do not represent the correct construnts on the position ‘
of A. The new equations will have terms of the form x cos 0 and y cos . Lurthermaoie. the approach
of defining the configuration constraints by examining the interactien of veraces and faces does not
generalize o 3-dimensional polyhedra. 1t is not enough o consider the mreraction ot vertiees and

faces: the interaction of edges and faces must also be taken into account [6).
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n Alporthm b €CO\M13)
\ppendin 1. Algorithm for COYY(13)

Fhis appendix shows an algonithim for A ¢ B0 SLT-SUM(A, B8). when A and 13 e convex
poligons, Section § shaws how this operation can be used o compute CO™,

fach polygon is described in terms of its vertices and the angles that the edges make with the
pusitive z axis. ‘The edges and vertices are ordered in counterclockwise order, i.c. by increasing angle.
The polygon structure in the following program has the following components:

1. size — number of edges in polygon,

2. vert [0:size] — an array of vectors representing the coordinates of o vertex. 'The

i'" cdge. i = 1,...,size. has the cndpoints vert[i-1] and vert[i]. Note that

vert[0]=vert[size].

. angle [0:size] - the ungle that the normal of an edge makes with the r axis,

monaotonically increasing, FFor convenienee angle[0]=angle[size].

fhe algonthin follows direedy from Theorem 6, notung that m this representation of polygons,
cdges are represented by successive vertices. '

SET-SUM (a, b)
{ ¢ = new-polygon (a.size + b.size); /* create new polygon of max size */
ea = 1; eb = 1; vc = 0; ang = 0; offset = 0;
do { ea = sa + 1}
until (a.anglefea] >: b.angle[1]
and a.anglef[ea - 1] <= b.angle[1])
c.vert[0] = a.vert{ea] + b.vert[0]:
do { vc = vc + 1;
ang = offset + a.angle[ea]:
if (ang <= b.angle[eb])
then if (ea > a.size) /* handle wraparound */
then { offset = 2pi; sa = 1; }
else ea = oa + 1;
if (ang >:= b.angle[eb])
then eb = eb + 1;
c.vert[vc]) = a.vert[ea] + b.vert[eb]:
}
until (ea = a.size and eb = b.size);
c.size * vc;

e e e e e e —— W - . -~ o
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Dy lc.) :
L |
B> <
(')K(cvc’) (DK(C vc’,
i
139 =
By o
1-{1,21 K-1{2}

Figure AR Tlustiation of the delinition of &y, (e, ) and Sy (¢, ).

Appendix 2. Proof of ‘Theorem 8

Assume that Cspaces C R let] = {1,2, ..., d}and K C 1. 1. K and ] - K shal) denote
sets of indices for the coordinates of @ € Cspacey. Define the following vectors, all in Cspacey:

b= (B)),c = () and ¢ = (%}) fori € I. Then,

bule,d)={beR| A %< B <}
kEK
b, (C) = <bI\ (C» C)
el\(cy‘v/) = ¢;\(C, C’) N <I>I——K(C' C)

‘These definitions are ustrated in Figure A18.

The projection operator, denoted Py [ R+ RIM is defined, for vectors and sets of vectors, by:

Prib]=(B) k€K
Pu|B)={Pu|b])|bE B}

e g - o
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Superseripts on vectors indicate projection, e.g. b = Py (b]. In addition. the vector in R com-
posed from one vector in R and one in RV s denoted (@! M bR ). where Py [(a! b)) =
a' M and Py (a! b)) = bk, i

In this notation, precise definitions for the notions of crass-section prajection and slice projection j

can be provided. The cross-section projection of a Cspace | obstacle is written as follows:
COB)cdin = P 1 [CO(B)N @y (c)].

The slice projection, i simtlar to the crossssection projection, but carricd out for all configurations

hetween Iwo cross-sections:
CO\B)e,d |n = P11 CO(B)N®y (e, )]

The K -paramicters of the two configurations, ¢ and ¢, define the bounds of the slice. Similarly, the

swept volumie can be defined in this notation:

Dehinition: The swept volume'? of A over the configuration range fe, &1y, is
) 2 £

(AlC, tJll\ )t' = U (A)u

aC O, (.

Fhe requirement discussed in Section HY that the swept volume of A be displaceable s embodied

in the following condition:

Va: |J Ahan o= (Ale,In)ar-r ) (4)
1E8K(0,c)

! Note that the I — K parameters may be changed, as in (4). but not those parameters in K. Therefore,

(Ale, €' ) i defined only if @ € dp(c).

Lemma 3: 1 (4) holds, i.c. if the swept volume is displaccable, then

Pr_n[COje. 1 (BYN®i(c)] = P £ [(CONB)S 81 (0,¢' — ) N ®x(e)).

- — ———— -

121he ssmilanty i the notation between swept volume and shee projection does not imply amy direct 1clabionship
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P'roof of lLemma:
(2)

Ita € P-4 [(CO(B)©O,(0,c —c))N®\(c)], then there existsan (! 1 2h) € CO(B)
andanr, G 6,(0,¢ — ¢) such that 2 — r.’z‘ = . Phis implics that 1y € & (c, ). Then, using
(4).

(Ahur-n o0y © (Ale, & )t =r . %)
But since (@' " 1 21') € CO\(B). then (A) - w 4 interseets B: therefore, its supersets also inter-

seet B. By the definition of CO
(@MY ECO o) (BYNO () =aE P |COy..., (B)YNEL(c)].

I

(<)
Assume a € Py, [CO e o), (B) N @1, (c)]: then,

(A[C,C’];\ )(a"’" :r")nB # 0

Forallz € ©,(0,d —c). (@' " :ch) +z € dpfe, ) and Pr_p[(a/ " ) + 2] = o’ ~h.
Pherefore, by (4)
(A)(u"' hoeh) g g (A‘C, Cl]l\)(u"’" cehye

Since these are @ff the sets that make up the swept volume, at least one of them must also overlap B

when the swept volume does; therefore there must be some 2y € 0,(0, ¢ — ¢) for which
(A)or—» . k)4 N B # 0.
By the definition of CO,
(@' M) 4 2, € COL(B) = (0! : c") € (COAB) — B4(0, ¢ — ¢)) N di(e).

Clearly, then
8 € Pi_n[(COAB) — 84(0,¢ — ¢)) N ¥ (c)]

]
‘This |.emma leads to a proof of Theorem 8.
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Theorem 8: 1 (4) holds, then
P 1 |COABYN ®ile, ) = Pl -n|CO e (B) N O k()]
Proof of Theorem:
The proof below shows that
P o[ COVBYN®i (e, )] = 1w [(COAB) & 040, ¢ ~ c)) N dk(c)].

I'he theorem follows divectly from this result and J.emma 3.

(L)

Ifa € P _n|CONB) N @, (c, )] then, for some £ € €4 (0, ¢’ — c) there is an @y such that
a) = (a'~": M 4+ M) € CoaB) N Pi(c, C)
Since 2/ N = 0, then @) — £ € &4, (c) and therefore
a; — 1 € (CONB) S 8(0,¢ — c)) N ®k(c).
Sincea = Py jay — 7}
a € P, [(COABYO O (0, ¢ — ) N®K(d)].

(2)

=

Assumea € Py I\I(CO.\(B) e B, (0, d— C)) N @K(C)]. then,
('~ "y e (COB)© OK(0, ¢ — ¢)) N @k (c).

—

Since the 1 — K parameters arc not changed by the sct subtraction, there must be an @y =

(a' =N 2} ) € COA(B). i must be in @y (¢, ). because Pu lzy — 73] = c with 7, € 8y 0,¢ —¢).

(' =% :2)') € COABYN Bkl @) = 0 € Pk [CONB) il ¢)].




