
AD-A093 933 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE-ETC F/6 9/2
THE DESIGN PROCEDURE LANGUAGE MANUAL(U)
SEP 80 J BATALI. A HARTHEIMER NO01475-C-O693

UNCLASSIFIED AI-M-598 NL

-..... I IIII

Er llllll

UNCLASSIFIED I
SECURITY CLASSIFICA YJ OF THI ANuWhj&jrlL~..d)

REPORT DOCUMENTATION PAGE BEFORE CMLTN -R

IREPORT N4UMf4R 2.GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMEwrn

AIM 59S' 06 93 ?S __________

TlT.E ~ £.L:.g.; ~ ' -5, TYPE O! PEPORT & PERSOf COVERED

The Design Procedure Language Manuals 7mrnu r

47 PIRPORMING ORG. REPORT NUMBER

7. AUTNOR(p) II. CONTRACT OR GRANT NUMBER(@)

O ohn Batali Anne Hatemr4-75-C-O43

9. PERFORMING ORGANIZATION NAME AND ADDRESS .W--P RAM MNT. PROJ ECT, TASK

Artificial Intelligence Laboratory AREA &WO K(UNIT NUMBERS

0y
545 Technology Square
Cambridge, Massachusetts 02139

It. CONTROLLING OFFICE NAME AND ADDRESS 1I2. _4WORT *Ts

Advanced Research Projects AgencyJI SeilbP,4
1400 Wilson Blvd L^MEOfPAS
Arlington, Virginia 22209 81____________

14. MONITORING AGENCY NAME & ADORESS(I! diflernt from Controllnj 0114c6) 15. SECURITY CLASS. (of tiNs ,.porf,

Office of Naval Research ~ NCLASSIFIED
Information Systems _______________

V 15a, S. DECLASS -4ICATION/ DOWNGRADING

Intengted iruitsa

Thistmanualodescribes thcen esign lProced .agae(P) o S ein

17ITRacUTIvNSEl N or f wrtasatenb ter pr Bogram. DfLo s t h layou lanuag fo th

proect KYWRS(othne pogevras se calykaIeniywb od snta adbaebretee
LIPbdIntegrated Circuitdsg ytm(IPC bigdvlpda h

DD mputer A473 dEDITONsFignO5ISOOLT N ASFED.'/I/
DaaB s 012.1-60

KO. ~ ~ ~ ~ ~ ~ EC R T CLASITIC TIO OCntnu TNn PAGers
siden Itt ne enayterIeniyeyblckd)

'Thi- jauldsrbsteDsg rcdueLnug DL o S ein

Artificial Intelligence Laboratory at MIT. The LISPIC design environment will
combine a large set of design tools that interact ghrough a common data-base.

This manual is for prospective users of the DPL and covers the information
necessary to design a project with the language. The philosophy and goals of
the LISPIC system as well as some details of the DPL data-base are also discussed.

i

rI7

.rq

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 598 V.L.S.I. Memo 80-31 September, 1980

THE

DESIGN PROCEDURE LANGUAGE
MANUAL

by John Batali and Anne Hartheimer

Abstract: This manual describes the Design Procedure Language (DPL) for LSI

design. DPL creates and maintains a representation of a design in a hierarchically

organized, object-oriented LISP data-base. Designing in DPL involves writing
programs (Design Procedures) which construct and manipulate descriptions of a

project. The programs use a call-by-keyword syntax and may be entered interactively

or written by other programs. DPL is the layout language for the LISP-based

Integrated Circuit design system (LISPIC) being developed at the Artificial Intelligence

Laboratory at MIT. The LISPIC design environment will combine a large set of design

tools that interact through a common data-base.

This manual is for prospective users of the DPL and covers the information

necessary to design a project with the language. The philosophy and goals of the

LISPIC system as well as some details of the DPL data-base are also discussed.

This report describes research done at the Artificial Intelligence Laboratory of the

Massachusetts Institute of Technology. Support for the Laboratory's V.L.S.I. research

is is provided in part by the Advanced Research Projects Agency of the Department of

Defense under Office of Naval Research Contract number N00014-80-C-0622 and in

part by the Advanced Research Projects Agency under Office of Naval Research

contract N00014.75-C.0643.

81 1 i :

2 - DPL Manual

CONTENTS

1. INTRODUCTION.. 6

1.1 The Manual .. 6
1.2 Designing With DPL .. 7
1.3 Credits.. 10

2. INTRODUCTORY EXAMPLES 11

3. THE DATA-BASE.. 16

3.1 Types ... 16
3.2 Prototypes.. 17
3.3 Virtual-Copies.. 17
3.4 Instances ... 19
3.5 Storing and Accessing Information 22
3.6 What Happens When Something is Made........................... 22

4. BUILDING THINGS.. 24

4.1 Creating Types... 24
4.2 The Type RECTANGLE ... 25
4.3 Instantiating Types.. 26
4.4 The Structure Built by a Type.. 28
4.5 Naming Things .. 28
4.6 Accessing Parts and Parameters..................................... 29
4.7 The General Access Function.. 30
4.8 Additional Features of DEFI.AYOUT.................................. 31

5. PLACING THINGS... 33

5.1 Coordinate system .. 33
5.2 Points ... 3
5.3 Implicit Parameters.. 34
5.4 Translation ... 36
5.5 Unitary Transforms 36
5.6 Placement by Parameter ... 38
5.7 Invoke .. 39

-3- DPL Manual

5.8 *L IST * .. 4

6. THE DPL WIRING SYSTEM .. 41

6.1 Wire System Commands ... 41
6.2 Wire System Example... 43
6.3 External Wire Commands.. 45
6.4 Connection Points... 45

7. CONSTRAINTS.. 47

7.1 Using Constraints ... 47
7.2 Defining Constraints .. 48

8. REPLICATORS 50

8.1 Calfling Replicators.. 50
8.2 Accessing Replications... 51
8.3 Defining Replicators;... 52

9. USING DPL... 54

9.1 Interacting with DPL .. 54
9.2 What Objects Look Like .. 55
9.3 CIF .. 56

10. EXAMPLE... 57

10. 1 DPL design style ... 57
10.2 The REGCELL.. 58
10.3 Discussion of the REGCELL program............................... 62

11. LIBRARY.. 65

11.-1 Some Constraints.. 65
11.2 Some Types .. 65
11.3 Some Replicators 68

S4, DPL Manual

12. GLOSSARY... 71

12.1 Types.. 72
12.2 Naming.. 73
12.3 Access Functions.. 74
12.4 Points 75
12.5 Transform Functions .. 75
12.6 Wiring Commands ... 77
12.7 Constraints ... 77
12.8 Repticators ... 78
12.9 CIF.. 79
12.10 Implicit- Parameters .. 79
12.11 *LIST*... 79
12.12 Layer Sizing... 80
12.13 Variables... 80
12.14 Constants ... 81

- DPL Manual

ACKNOWLEDGMENTS

We would like to thank Ned Goodhue for drawing the figures. Neil Mayle,

Howard Shrobe, Jon Taft, Gerald Sussman, Daniel Weise, and Ron Rivest read and

commented on drafts of this manual. Chuck Rich helped us figure out how to use the

text-justifier.

INTRODUCTION 6- DPI. Manual

1. INTRODUCTION

1.1 The Manual

This manual describes the Design Procedure Language (DPL) for LSI design.

DPL creates and maintains a representation of a design in a hierarchically organized,

object-oriented LISP data-base. Designing in DPL involves writing programs (Design

Procedures) that construct and manipulate descriptions of a project. The programs

use a call-by-keyword syntax and may be entered interactively or written by other

programs. DPL is the layout language for the LISP-based Integrated Circuit design

system (LISPIC) being developed at the Artificial Intelligence Laboratory at MIT. The

L.ISPIC design environment will combine a large set of design tools that interact

through a common data-base.

This manual is for prospective users of tile DPL and covers the information

necessary to design a project with the language. The philosophy and goals of the

LISPIC system as well as some details of the DPL data-base are also discussed. The

implementation of the language is not discussed here except for those details that are

felt to be instructive when attempting to understand the language. The manual is

organized as follows:

The introduction describes the key features of the LISPIC system, the data-base

and DPL.

Chapter 2 contains some introductory examples of the use of DPL. The

examples consists of definitions of several cells and pictures of the cells.

Chapter 3 presents an overview of the DPL data base. Here we discuss abstract

structures used to represent designs.

Chapters 4 through 8 present DP[itself. The functions and forms most useful

for using DPL when designing a project are presented and explained. Tihe material in

these chapters constitutes all of the information necessary to use Ihe language.

Chapter 9 discuses how DPL "looks" to thi user. It presents interaction details

as well as functions for translating between DPL and CIF.

Chapter 10 presents a fairly hefty example which exercises many of the features

INTRoDUC lION -7 DPL Manual

of the language. The example also demonstrates tile design style which DPL

supports.

Chapter 11 is a library containing tile definitions of objects available in the basic

DPL system. This chapter is useful both as a set of examples of the use of DPL and as

a reference for designing.

Chapter 12 is a glossary of DPL functions and variables. The syntax and usage

of functions are summarized. This is where we explain how all the functions evaluate

their arguments. The most useful DPL functions will have been met earlier in the

manual. The glossary also contains functions which are less useful or more "low

level" then the functions explained in the body of the manual.

1.2 Designing With DPIL

VLSI design is complicated. A large IC design may contain several thousand or

more pieces of materiat Designers think of thiir (esigns not in their full complication

but rather as collections of of parts which nay be further decomposed into other

pairts. Such a hierarclical viewpoint both expresses the desioner's understanding of

his design and economizes his thinking &bout it. Unnecestary detail is suppressed so

that the gate, module, subsystem or system of interest may be dealt with.

A set of design tools should be able to represent the design in as much the same

way the designer does as possible. Thus the basis of a set of design tools should be a

data-base representation of designs that is flexible, extensible and hierarchical. The

goal of the LISP based Integrated Circuit (LISPIC) design project is to produce a

design system consisting of a large number of design tools - simulators, design

verifiers, routers etc. integrated with one another through a common data

representation.

The Design Procedure Itanguage (DPL) is a collection of LISP functions that

construct and manipulate a hierarchically organized object oriented data base. DPL

is intended to be a user language - t can actually be used by a human to build

projects. DPL may also be used by programs such as PLA generators, routers, and

node-extractors Since it is embedded in LISP, DPL inherits the power of a full

programming language. LISP progranis can be written that call DPL lunctions and

INTRODUCTION -8- DPL Manual

vice-versa.

The LISPIC system is illustrated in Figure 1. The LISP-based data base is

manipulated by the DPL language. Other programs and systems communicate with

the data-base through DPL. The other systems may communicate and cooperate with

each other through this common representation. (Note: Not all of the systems

pictured are available yet.)

Using DPL consists of designing a project by specifying a procedure that will

build it. This is the reason for the name "Design Procedure Language". A design

procedure constructs a data-structure which holds a description of a design. The

descriptions may include procedures for further manipulation of the data-base. At

some point the designer will want to actually construct a physical implementation of

the project, but for most of the design process that is not necessary. What is

necessary is the construction and maintenance of a structure that represents the

design. Since much in a design description is procedural, a description can help to

build itself. Such procedural descriptions also allow the DPL data-base to be modified

by other programs.

We should point out that the need to do this sort of thing is the reason why the

system is implemented in LISP. More than any other programming language, LISP

easily handles arbitrary structures that may contain procedural parts and may even be

able to build themselves. The simple syntax of LISP allows programs to write

programs easily, and the interpreter allows a "real-time" interaction between the

designer and the language.

Parameters to DPL design procedures use call-by-keyword syntax. The

parameters may be assigned default values. Constraints among the parameters may

be specified by the designer. Parts and parameters of objects may be named and the

named information may be accessed by functions which follow path descriptions and

tran 'orm objects.

The DPL design process involves the following stages: The designer specifies

procedures for constructing pieces of the design. These pieces are then used to build

more complicated representations. The procedures may refer to information stored in

the structure earlier. Mistakes may be corrected and changes implemented by

making use of information in the existing structure. The final design is a complicated

LISPIC ENVIRONMENT

Other systems
PLA GrpisText Node Simulator-

Generator ac geEditor Extr actor

Created possibly on

DPL in LSP)another system

Mask (in CIF)

Data Base

Figure 1

INTRODUCTION .10- DPL Manual

yet organized hierarchical structure which may be used to produce mask

specifications.

1.3 Credits

DPL was written by Gerald Jay Sussman, Howard Shrobe, Neil Mayle, and John

Batali. The language is based on two earlier IC layout languages, one by Jack

Holloway and Sussman, the other by Shrobe. Ron Rivest, Daniel Weise, Anne

Hartheimer, Howard Cannon, Tom Knight, Jon Taft and Paul Penfield contributed

help, advice and enthusiasm.

Li1

INTRODUCTORY EXAMPLES - 11- DPL Manual

2. INTRODUCTORY EXAMPLES

In this chapter we present three illustrations of the use of DPL. The examples
are included here to motivate the detailed description of the language in later

chapters. We suggest the reader look at the examples before reading on, note the

interesting points, and refer back to the examples while reading the rest of the

manual.

The three example cells are described in DPL expressions and are accompanied
by pictures of their layouts.

The definition of PASS- IRANSISIOR specifies that an object be built from several

rectangles called CIIANNI. , SOUIiCI -)III USIONI, DRAI[N-D IFIUSION and POLY-PiECE. The
channel region is a rectangle of the layer "channel" whose length and width are

determined by the parameters passed when this object is built. All of the parts of the

pass-transistor are given names. The positions for the source and drain

diffusions are determined by aligning points on them with points on the channel

rectangle. Also, a point P is named. An instantiation of the pass-transistor with a

particular set of values for its parameters is shown in Figure 2A.

The INVULRTr "calls" the pass-transistor. It also calls a "standard-pullup" which

is a cell defined elsewhere (see Library). The inverter's parameters are constrained

so that the inverter-ratio is equal to the ratio of the pullup-ratio to the pulldown-ratio,
etc. Note that the pass-transistor is placed by lining up its top-center with the

location of a named point, (DIFFUSION-CONNECTION), the pullup. Also a point,

(INPUT-PT), the inverter is named (Figure 22). The location of INPUi -PT is determined

by following a path of named parts: riJur-Pr is located at the CENI-I.-E T point of the

part named PO Y-PIrc1 of the part named ,u i)ow of the inverter.

iur FEll is a cell that could be used to refresh a signal. It calls INVERTER twice, with

different parameters. It thus makes use of two different versions of PASS-TRANSISTOR.

The version used is determined by how the constraint system sets the values of the

inverter's parameters when it is called. The second inverter is placed far enough

away from the first to allow room for the connection. Variables representing

design-rule constants, * POLY-f o-Poi Yo and *1rrAUI r- oY-sizF", are used to specify

placement. The connection between the two inverters is made with the DPL wiring

system. The wire begins at a point on the boundary of a part of a part of a part of

INTRODUCTORY EXAMPLES .12- DPI_ Manual

INPUI- INVlh1R t R. It runs horizontally to a point hallway between the inverters and then

"jogs" to the input of the second inverter (Figure 2C).

The figures show the structures built when the three object definitions are

called. They also show how the location of the point named P in PASS- I ANSISIOR is

transiormed as the structures are built.

Note: The definitions of PASS- IRANSISIOR and INV[RT[R presented here are not the
same as the definitions in the library. They are, however, perfectly legal DPL and

would "work" as defined. We have made some changes to make the examples

simpler. BUI f LR is not available in the basic library.

(deflayout pass-transistor ;;; PASS-TRANSISTOR
((pr imary-parameters

((channel-length 2)
(channel-width 2))))

(part 'channel rectangle
(layer 'channel)
(length (N> channel-length))

(width (>, channel-width)))
(part 'source-difrusion rectangle

(layer 'dirr)
(length *dirr-ovorhang*)
(width (>> channel-width))
(top-center (> bottom-center channel)))

(part 'drain-difrusion rectangle
(layer 'dirr)
(length *dirt-overhang*)
(width (>> channel-width))
(bottom-center (>> top-center channel)))

(part 'poly-piece rectangle
(layer 'poly)
(length (N) channel-longth))
(width (+ (Y channel-width)

(* poly-overhang* 2))))
(setq-my p ()> center-right poly-piece)))

INIRODUCIORY EXAMPLES 13 DPL Manual

(deflayout inverter * INVERTER
((Pr inary -paraimoters

((pu1l up length 8)
pe lup w idth 2)

(pil I down width 2)
(pi I ip -ra t io n ilI)
(pit I ldowni-ratio itil)
illverter-rat o10 niI)))

(cons tra in ts ((r* puiIIpII)1019th PitllIup "-a I10 pulIlIup-width)
(c* putl ldowii Ilgtll pul Idown ratio pul ldown-width)
(c* pullip ratio inverter-iatio puildown-ratlo))))

(pa rt 'pull-up sI indard -p11]up
(channelI leogli pull up - ng th)
(Ohannel Width (>pkillup-width)))

(parIt 'Pull -down pass -t'ao;s is to;
(channel length (mpll down-length))
(cliiim wiul l (pull downl-width)
top- Center (ifdtision connect ion pill]I up)))

setql my input pt (cujitor left. poly pijle pull1 down)))

(deflayout buffer BUFFER
((pr ilary-paramleters ((input - ratio 8)

(Output- ratio 4))
(part. input- inverter inverter

(pull Iup -rat io 4)
inverte~r- rat t0 i) ilplt ratio)))

(part 'output inlverter inverter
(ratio (>> outplt-ratio))
(center -left (p - to r ight ()center-I ight illput-ilvertol-)

(*polyto poly*
dtifaultpoly-size
poly-to poly))))

(wire 'connection
(run-layer 'poly)
(front (pt-above (h ottonl-righl gato-poly transistoi pull-up input-inverter)

(11.1lf *default poly-size*)))
(to-n (4 () x p put l-(lown inplt-invortur)

polyto-poly

(half *default poly-size')))
(jog-y ()illplt-pt Ou~plut- inverter))))

channel-widtlh =2

channettlength =2

Instance of STANDARD PULLUP

P = (3.0) I-named "pulup"

(>P) returns (*pt* 3. 0)1

Figure 2A -- pass-transistor

-4-

P is now a,(3,-12)
Point named "inputpt".

Transform =(identity 0 -12) (>> P pull-down) returns
('PT3 .12)

Instance of PASS I RANSISTOR

named "pull-down"

Figure 2B -. Inverter

9 hrkV

Instance of INVERTER

F-Fh - r -- i named "output inverter"

Transform =

(identity 15.0)

Point P is now at (18, 12)

- - ; (>> P pull down oulpti-nverter)F I -etuins(P" 18. .12)

- IJ

fnstance of INVERT ER

named "irput-inver!er".

Figure 2C -- Buffer

L_

THE DATA-BASE .16 - DPL Manual

3. THE DATA-BASE

In this chapter we discuss the data base used by DPL and the vocabulary

needed to explain the particulars of the language. We discuss the data structures of

DPL, explain what is in them, and show how they are used by the language to build

descriptions of designs.

This chapter need not be understood fully to use the language. The

implementation details and more complicated ideas are reasonably interesting but the

only way to understand DPL is to use it. We recommend that this chapter be

skimmed for the basic ideas and the later chapters examined more carefully -- they

are more useful for using the language. For the most part, the difficulty of a concept

is inversely proportional to its utility.

In the sections that follow, various abstract objects are introduced and

discussed. The low-level implementation of these structures (i.e. lists or atrays or
whatever) is not important and in most cases is invisible to the user.

3.1 Types

A type in DPL holds a procedure that builds data structures. These structures

contain descriptions of various kinds. The procedure stored in a type is called the

maker function of the type. A type also contains information about its maker function

such as the parameters it may take, their default values, and constraints among the

parameters, A type may also contain information about the structures produced by its

maker function.

A type may be thought of as a description of a class of objects that share some

common features These objects are the structures produced when the maker

function is run with various values for its parameters. The structures produced by a

type thus aro related by the way they were created. Usually one creates a type

whenever a certain object or module is important enough to be given a name.

In the introductory example, PASS -I RANS I ST 0,, 1 NVf R H R, and fuii Ii R are all types.

(The command M I I AYOW defines a type.) In all cases we have a certain conceptual

entity which can nevertheless take a wide variety of forms. Inverters can be built with

-- - ,..-. . ..

THE DATA-BASE 17 - L)PL Manual

9 many ratios, NOR-gates can be built with different niumbers of inputs.

A type may specify that tile Structure it builds includes structures built by other

types. Types may thus "call" other types. Objects are built by defining simple types

which are called by progressively more complicated ones.

3.2 Prototypes

Thle structure that is built by a type is called a prototype. A prototype holds the

description of certain parts of a design. rhe prototype and the description in it are

produced by a "call" to the type with a particular set of values for its parameters. The

description depends on the values of the parameters in a way that depends oil the

details of the maker function of the type. The different p~rototypes produced by a type

will resemble each other since they were pioduced by thle same procedure, but they

will differ if their parameters differ.

The distinction between types and prototypes is this: Types hold programs that

produce prototypes. Prototypes hold descriptions. Thle user defines types by

specifying thle details of the maker function. Thle maker function is used] to construct

a prototype and thus a description of a piece of the design. The user never directly

touches a prototype -- hie only tells a type how to build one.

In addition, the user may place any other information on a prototype he desires.

ft is often useful to name a part of an object or specify the value of a numerical

parameter. This, as well as the addition of parts to a prototype, is done by inserting

the appropriate commands in the maker function of the type.

3.3 Virtual-Copies

If the maker function of a type "calls" another type, the prototype built by thle

"called" type wiff be a part of the prototype built by the "calling" type. A prototype

that is a part of another prototype is called a virtual-copy (VC) in DPL. A VC always

has two pieces of information on it: its parent, which is the prototype it is a part of,

and its prototype, which is the prototype being called.

The virtual copy is so namned because the description of the prototype is

low-7

PART HIERARCHY

Type B-

TYPE A
Prototype B Maker Functi-On

Maker Function Into
Proto's made oi

Parts

* ~oT

- A'di0prs frovin A because

PROTOT E Ait was made with
f different pat ameters

VC ofProto A Pr

I arnt 1 Parts q,

IP(G(O 10 ~ VCs made 0Tp

Creatled as a 'partI' of proto B Created when "Maker" of \Ptolc
when Pinto ft is made by "maker" Type A is called
of Type D TypeA is
railed (dotted line) by Type B'S
make'rr function. 1V-oPotoA Wo lt

'PatI" of another prototype

FIGURE 3
Note VC's, Types, and Prototypes contain other fields not shown

THE DATA-BASE .19- DPL Manual

available in the VC. The copy is "virtual" because the information is not on the VC,

but on the prototype of the VC. Thus several prototypes can use a prototype as a part,

each having a different VC of the that prototype. (See Figure 3.)

Information about a VC may be obtained by accessing the corresponding part

or parameter of its prototype. For example. a prototype of IvI It III will have a value

for its pulldown ratio. To find the pulldown ratio of a VC of that prototype, an access

function finds the prototype and gets the information from there. The VC "looks" just

like its prototype. One may pretend that the prototype's structure is really copied into

the VC. Prototypes are not copied into VCs because it is more efficient to have only

one prototype which is pointed to by its VCs.

It may be necessary to attach other information to a VC besides its parent and

prototype. A particular VC may have a certain "reason" (for being a simple inverter,

say, as opposed to a superbuffer). In general, infor mation that is shaied by more than

one VC belongs on a prototype, while Inlormation that is specilic to a VC may be

stored there.

In addition to using some prototypes as paits of others. it is possible to specify

that a certain type includes "all" of ariothei type, phls some more information. In this

case, the original type is called the supertype of the one that specifies the changes.

The subtype has all the parameters of its supertype, plus any others declared when

the subtype is defined. (See Figure 4.)

The difference between calling a type as a part of another and declaring a type a

supertype of another, is that th- subtype is really a modified version of its supertype,

while a part is a different entity from its parent.

3.4 Instances

Up to this point have spoken only of information that is "fixed" on objects.

Parts. parents, and narameters are all kinds of information that must be specified

when describing an object. It is possible for some information about an object to

depend on the context in which the oblect is viewed. An example of this sort of

information is the geometric transform a VC undergoes when it is actunily placed

somewhere in a design.

TYPE HIERARCHY

Type B is a supertype of Type A

Type C is a supertype of Type B
Type C ..

Type B cor tains all of Type C's parameters

plus (optionally) others added when

Type B was defined.

Type B , .

/"-
Ei n

Protdope B /

/Type 0

TyeASupei prototype 0

iJ Li
S/ When Type B's maker hnction is) led,

. ' 1 ype C's maker function is executed first

When C's maker ftirction is tinishtd. Type B's

- malkel funtction executes. adding oi deleting
.-.- .. .items created by C

S'rololype (A is iderilical It Piofotype C except as

modified by B's maker function

FIGURE 4

1 HE DATA-BASE -21 - DPL Manual

When building a prototype, it is necessary to specify where each of its parts is to

be placed. We must specify how the coordinate system of the prototype being used

as a part is to be transformed in the coordinate system of the parent prototype. In the

introductory example. the pullup is placed so that its origin is at the origin of the

inverter's coordinate system (by default). When we use this inverter in another

prototype we must specify where the inverter is to be placed. The output-inverter of

the example is placed with its origin at the point (15, 0) in the buffer's coordinate

system.

The specification of a transformation is not a part of a VC because the same VC

may be viewed in different ways. The pullup transistor inside the inverter may be

viewed in the coordinate system of the inverter as the inverter prototype is being built.

We may then wish to view it later, from a coordinate system in which the inverter is a

part.

Another reason that a transform most be separate from a VC is that we want a

VC to be "the same" (i Q) no matter what coordinate system it is viewed from. The

transform, on the other hand, changes with the viewpoint.

A VC is contained in an object called an instance which contains a VC and

"augmentation" describing the context in which the VC is viewed. In the artwork

description of an object, the augmentation is the transformation of the coordinate

system of the prototype into the coordinmate system of the parent. So in this case: an

instance is a VC plus a transform.

Much of this is similar to CIF. Prototypes correspond to CIF symbols and

instances correspond to calls to symbois. CIF has no need to distinguish between

VCs and instances because objects are never accessed in CIF except to call them.

Plato probably had the idea first, speaking of "ideals" of which real world

objects were just crude imitations. The term "virtual copies" comes from Scot

Fahlman who used them in much the same way we do.

THE DATA-BASE - 22- DPL Manual

3.5 Storing and Accessing Information

DPL has functions for storing and accessing information. Some information is

necessary to specify a prototype's structure, such as its parts. Other kinds of

information may simplify the design process, such as the named points wheie wires

may be attached. A number that is the result of a complicated computation may be

computed once and stored. For that inatter, totally useless information may be stored

if desired.

To store information oil a prototype, a "cell" is created on the prototype and

given a name. Any LISP object may then be placed in the cell as its "value". Tihe

value of an existing cell may be modified by placing a new value into the cell.

If one of the parts of a prototype is named, a cell on the prototype will be created

with the part as its value, and the part's name as the name of the cell. This part, an

instance, may have as its prototype, another prototype with a named part, and so on.

If one asks for the location of a named point or part "deep" inside several levels of

parts, the transforms of all the parts must be composed to find the location of the

obtect in the current coordinate system.

DPL provides access functions that are used to extract values from cells. In

addition to simply extracting values, the access functions will apply the appropriate

transforms to objects that depend on the context in which they are viewed. In Figure

2 we show the transforms that must be applied to point P in successive instances of

tho' type PASS 1ltANI ,liO..

DPL also provdes functions for locating the corner points of an instance as well

as its bounding box and horizontal and vertical dimensions.

3.6 What Happens When Something is Made

When a typc is cilled:

I The values of the supplied parameters are evaluated.

2 For each parameter defined on the type, a cell is created will that name. At

this point all the cells hoy,; no value assigned to them, but each cunfairi iilo mahtion

-Roar

1 HE DATA-BASE .23 - DPL. Manual

9 about any constraints that apply to it.

3. The supplied values are then used to fill the cells. If placing a value in a cell

allows a constraint to run -- because the added value completes one of the sets of

parameters on which a constraint depends -- the procedure for that constraint then

runs. If the result is to set a previously unassigned cell, then the process repeats until

no more constraints can run.

4. When all supplied parameter values have been placed in cells and all

triggered constraints run, any cells that still have no values are given their default

values. At this point the system has all the information it will get about how to build

and place the prototype.

5. All prototypes built from the same type with the same parameter values will be

identical. Therefore, before a new prototype is constructed, all previously

constructed prototypes of the type are examined. If one is found with parameters

identical to the ones being requested. that prototype is used. Otherwise the maker

function of the type is run to construct the new prototype.

6. Once the prototype is made or found, a new instance is constructed from the

prototype. The transform given to the instance depends on whether a transform is

specified when the type is called. If no transform is specified the instance is given the

"identity" transform.

7. The instance may then be named. DPL commands also exist to move it

around, rotate it, and extract information from it.

L L I I i

BUILDING THINGS .24 - DPL Manual

4. BUILDING THINGS

In this chapter we introduce the DPL functions which build objects.

4.1 Creating Types

The most important aspect of the DPL design process is the creation and calling

of types. A type is created by A n[ut AYOWi expression, which contains thle maker

function of the type. a procedural description of the structure created when the type is

called.

Deflayout takes the form:

(fI) LAYOU I t ype nime) (pa rain-I is t>
< form -D
< formn- 2

<form- n)

where typo niie is the name being given to the new type, and <f orm -1I through

, om(,constitute the inker function of the type. The forms may include any LISP or

DPL expressions. * p a am I 1StL? is a list in which each element is a pair of the f orm $
('.param-nalrne> (value'). .vaiue) may be any LISP object. The only form in this

expression that is evaluated is (parain- l ist).

pirain- I i si holds inloiniation about the parameters that the maker function of

the type may take. This information may include parameter names, their default

values, and constraints among the parameters. <p aramn- i s t) may contain all, some.

or none of the above information. It may also contain other information a1botut the

typp hcides that ucied in the type's maker function.

To nanie para 'iotors anid assign themn default Values, a list of the following form

171115t b0 irmmAijred in) pai amr Iis t >:

(i~~ I v a I -1

This list is a pair whose first Item is mImi MAli PiAMi f Iils andl whose second item is a list

BUILDING THINGS .25- DPI- Manual

of parameter names and values. The (nae-i> are the names of the parameters that

the type's maker function may take. The, va I - i > are the parameters' default values.

An example of the use of ot i I AYOUI is:

I (deflayout square-contact '((primary-parameters ((layer 'poly))))
2 (pait 'cut rectangle (layer 'cut))
3 (part 'cover rectangle (layer 'metal))
4 (part 'stuff rectangle (layer (>> layer)) (length 4) (width 4)))

Here we define a type called SQUAW CON IACI. It has one parameter: i AY R (the

material it will be made of) which is given the default value of roi Y. Lines 2.4 are uses

of the DPL procedure 'AR I which adds a part to the object being built by calling

another type. Making a SQI:rlt -CONIACI involves creating the parts described in lines

24.

4.2 The Type RECTANGLE

The artwork description of an IC design is ultimately decomposable to a

collection of rectangles. The DPL type RI C IANG[I is the primitive type used to build the

artwork descriptions of other types. R[CIANGI1 specifies the mask layer and

dimensions of a rectangular piece of a design.

The primary-parameters of RECIANGI f are I AYFP, L[NGlll, and WDmll. i [NCIIt refers

to the Y dimension of the rectangle. wmIIII refers to the rectangle's X dimension.

Rectangles may only be built with their sides parallel to the X and Y axes. [AYI n refers

to the material from which the rectangle will be made.

RLCIANGI.f is defined with the constraint that if either lINGliI or WiniII is not

specified it will be set to the default size for I AYt R. A list of the default layer sizes is

included in the glossary.

When using NMOS technology, the available DPL layers are: Di 1, P01 Y, CuT,

Mr [Ai. ION and CIIANNI t. The CIIANN[I layer is used to represent the channel region of

transistors. The CIIANNI I layer is included in DPL to make it possible to explicitly refer

to the active region of a transistor, as well as to separate the source and drain

diffusions. In addition, this representation is physically more accurate than simply

crossing rectangles of Pot Y and Difr, since the channel region of an NMOS transistor

actually contains no diffusion. It is possible, however, to design without using the

-- " J " mt l - • = = " ".. Ilm l l

BUILDING THINGS .26- Ufi ManulM

channel layer.

4.3 Instantiating Types

Once a type has been defined with DI I I noU, instances of that type can be built.

P'ARIi is the procedure used to instantiate a type, A call to l'AHIf creates an instance of a

type.

PAR I takes the Iformn:

(PARI (nanle' <type> (<param 1> ,val-l>)

(param 0 Ii val n)))

where n'ameN is the namne given to the instance which PARI creates and '.typo) is thle

name of the type that will be used to create the instance.

The remainder of thle PAR! procedure consists of the paranietuts that will be

passed to the maker function of xtype>. Parameters and values are passed with a
1,call by keyword" syntax Each pararnetei is specified by a pail in which pal-.Inj is

the patrameter namre and va I i >is its value. Any primary parameters of thle type may

be assigned values Pairameters not listed will take their default valuies. 11he

par.amseters inay he specified in any order. Other information may be placed inl thle

parameter list as well (see Section 5.6).

In the PAR I commnand, ,type sis not evaluated, "nalue> is evaluated. For each of

the parameter pairs, k pariam- I is not evaluated, (vat i i is evaluated.

PAR I is usually used within thle MI IANOUI procedure of a type. It is a way of

specifying the stfucture that the type being dolined will build. When the type is called.

the Instanc~e created by the rAil I conllathI Will be inicluded inl thle stl uClulie beingy bi.1

The instance built by a 'All I commnand is considered to be a 'pat["' of the object

inl which it is placcd. It is thle parts of an object which constitute the(obje.ct's- Structure.

It is the parts of anl object which ar e displayed when the object is viewed. "Paitness"

is contrasted with other kinds of information stored onl anl object that do not explicitly

specify the object's structure.

BUILDING THINGS - 27-

An example of a PARI procedure is:

(part 'trans-I pass-transistor (channel length 8) (channel -width 4))

This creates an instance of PASS- I|RANs Ii0o1. The instance is named IRANS- i and built

with a channel length of 8 and a channel width of 4 (lambda). It is shown in Figure 5.

The type PASS- IlANS I SI is defined in the introductory example.

Another transistor is created by:

(part 'trans 2 pass-trans istor (channel -length 8))

This produces an instance of PASS- I IANSISi OR named I HANS-2 with a channel length of

8 and a channel width of 2. Since ('IANNI I - WiD)l is (lot listed in this ,AmZI procedure, it

is set to the default value specified for CiIANNtl W I)ii in the DMuAYOUI Of

PASS I IANSISIOR. See Figure 5.

Channel lenyljh Chanmnel length

8 =8

i>

Channel-width Channel- widih

=-4 =2

Figure 5 -- Two instances of the type PASS-TRANSISTOR

BUILDING THINGS .28-

4.4 The Structure Built by a Type

When a type is called with iat1, the LISP variable *Mt* (pronounced
"star-me-star") is bound to the representation ol the structure being built by the

type's maker function. In other words, while a structure is built, it is attached to .Ml 0.

This means that when a type is called, "mi * will be bound temporarily to the type's

parts as they are built. When the maker function of the type is finished, the structure

in *Mt - is placed in an instance. This instance may very well be a part of another

structure.

Since a Diu f I AYOUI is a specification of a type, when writing a)[I AYOUI, one can

think of the structure that will be built when the type is called as *'m . ml * acts as the

temporary name of the structure while it is being built, so that it is possible for
information to be added to and retrieved from the structure. We have already seen

one way in which information is added to the structure built by a type - the PAR I

command makes the instance it produces a 'part" of *ME*.

4.5 Naming Things

In the course of the design process, it is often useful to store information on

•Mi *. Such inlormation may be useful for constructing "Mi ° or it may be useful later,

whn the instance is complete, for building other objects.

I he function si I MY stores a piece of information on 'Mi * and gives it a name.

(SII MY na1me, <value>)

stores ,value' on "I - and names it <nie. '.val we may be any LISP object. st 1-MY

evalurtes both its arguments. The function s(10 My is identical to si 1 my except that

's I 0 Mv does nnt evaluate .,,m ,n Thus si IQ MY is often more convenient to use, and

we will use it in mo';t examples.

rile values stored by It to my may be accessed by the DPL access functions

decribed below.

For example, within the)1 i i AYOUI of a type, the locations of several parts may

depend on the height of the VDD bus. (st io-MY vo-lil inIt ?0) will stole the value 20

on emL and will name it vm-il IGli. It is possible to access this value later in the

BUILDING THINGS - 29 -

T DE I LAYOU I to specify the locations or dimensions of parts of -ME.

4.6 Accessing Parts and Parameters

Within a [)(I IAYOUI procedure it is often necessary to refer to parts of *mre (or

parts or parameters of those parts), as well as to information placed on omf * by

St io-my. Accessing such information call be done with the function >> (called

"arrow- arrow").-

(>> <thing-I) (thing-2) (thing-n>)

will retrieve the value of (t h ing - which belongs to <(t.h ing - 2>.. which belongs to

< th i ng -n'> which belongs to -mi s. (None of the elements in an) form are evaluated

unless they are non-atomic.)

For example, suppose we are writing the D[I I AYOUI procedure for a type named

REG ISI f which includes as a part an instance named smi I -ci I . sil I Ic if L, in turn,

contains as a part an instance of PASS I PANS I SI1 named I RANS- 3. To find the value of
the CIIANNI k-I41NGIII Of ITlANS-3 Of S1111 I -Cl II of HICISILR, we write:

(> CIIANNI I -I INC III IIHANS -3 Sn1 Iff CC t

(This expression is read: "The channel length of trans-3 of shift-cell of M*.")4

To access a part or parameter of -ml*-, or a something stored on *mt * by SFTQ-MY.

we write:

(>> (thing)

For example, (St IQ-MY VDD-nIf [GlT 2n) followed by (Y) vmn lit 1611) will return 20.

>) is used to access the values of the parameters with which the type was

called. This is the way in which the parameters direct the construction of an instance.
The Dfin iYO1J of l'ASS-ITANSISIOR has two parameters, CIIANNH WIDIH and
CIIANNI'l -1 1 NG III, (see Introductory Examples). The following command is included in
the orIIAYOU1 of PASS IIRANSISTOR:

(part 'dlff-piece rectangle
(layer 'ditr)
(length (- (5) channel-length) (0 2 0difr-overhang0)))
(width ('0 channel -width)))

This command specifies the values for the parameters 11 NG I H and w IloTI i of the type

RICIANGli by accessing the values that C(JIANMIl I iN Miii and CIIAMMI I -wimi)t are assigned
when PASS - HAMS ISI OH is called. If we call lASS I RANS IS lOl in the following way:

BUILDING THINGS -30 - DPL Manual

(part 'trains-4 pass-transistor
(channel-length 4)
(channel-width 100))

CtlANNrL -i [NGT11 and CItANN I WIDtii are assigned to the values 4 and 100. These values

are then used when the type RtCIANGI is called by the maker function of

PASS- TRANSISTOR.

4.7 The General Access Function

The general DPL access function is ItE.

(1iE (name> <thing>)

finds the information named <name> on < th ing>. (Both arguments are evaluated.) 1t t

knows about all DPL structures and may be used to access parts and parameters of all

of them. For example, one may use the following to find the lIMARY -IPARAMI 11itS of a

type named A- IYPE:

(the 'primary-parameters 'a-type)

IH[may also be used to access named information from *m" For example, the

following two expressions will return the same value:

(the 'channel-length *me*)

(>" channel length)

In fact, >' is defined in terms of i t. The expression

(>> mumble fumble grumble)

expands to:

(the 'mumble (the 'fumble (the 'grumble *me*)))

> is the most useful way to get information from *mt • and is usually used in

I I AYoui expressions. ii is used to get information from objects other than .mi - and

thus is most useful when interacting with LISP while debugging designs.

When accessing information from parts of objects 'mu and , transform the

'jblects correctly so that the object is always viuwed in the current coordinate system.

A

J4

BUILDING THINGS .31 - DPL Manual

4.8 Additional Features of DEFLAYOUT

There exist additional capabilities of Il f l AYOMr which are not used as often as

those described above. This section will introduce these capabilities.

4.8.1 Supertypes

At ri aYOuI allows one to make new types by adding to old ones. <type-naine> may

be written as a list of two elements, the first name referring to the name of the new

type, the second name referring to the name of the old type. A new type is made

which is identical to the old type, but with the addition of whatever information is

included in the new DI II AYOUI procedure. The previously defined type is called a

supertype of the new one. The new type has all the parts ad parameters of the

supertype, yet it may be given additional parameters as well as additional parts.

An example of the use of a supertype is a depletion-mode transistor. It is

identical to a normal transistor with the addition of a rectangle of ion implantation.

The definition of a depletion-mode transistor is:
(deflayout (rect-d let rect-fot) '()

(part 'implant rectangle
(layer 'ion)
(length (+ (' channel-length) (* 2 *ion-overhang0)))
(width (+ (> channel-width) (0 2 0ion-overhang*)))

(center () center channel))))

In this example, nrci-n-ii t is the name of the new type. tict-Ill is the name of the

type that constructs "normal" transistors -- it will be the supertype of RECl-D-fLT.

RCtT-O-1[t includes all the parts and parameters of rici -ii i with the addition of the

part created in the example above, a rectangle of ion implant. Note that our new type,

Rci c-D-f i, includes no parameters in its parameter list. However it actually does

have parameters -- the parameters of Ri ci- if (which happen to be a channel-length

of 2 and a channel-width of 2). itfcr-l -r r could have been given additional

parameters, but here we have limited its parameters to those of RI c I-r [t.

A supertype is used if a type being defined differs only slightly from a

pre-existing type, and it is desired that the new type have the same or very similar

parts and parameters as the supertype. The advantage to using the supertype

construction rather than calling the supertype as a part is that only the differences

between the new type and the supertype need be specified.

BUILDING THINGS -32 DPL Manual

4.8.2 Additional Parameters to DEFLAYOUT

The values of a type's primary parameters determine the structure of its

instances. DlrI AYCU I may also be given parameters which specify information about

the type other than that which directly determines the structure of its instances

The auxiliary-patameters of a type is a list of some of the names used to store

intcrmation on the instances of the type. For example, if a point named cONNI c i ION-Il

is named with a st i0 MY command inside a mD II AYOI, the name CONNI CI iON P1 may be

included in the auxiliary-parameters of the type. Auxiliary parameters are usually

used by programs which manipulate types, such as the constraint system described in

Chapter 7. Auxiliary-parameters are included in a type by placing a list of the

following form in the param- I ist of a mI AYOuI:

(AUXiI IARY PARAMIIRS (<nanel', <name2) . . .

where the <namei' are names that will be assigned to things in the body of tile

i)trM AYOIr.

Other information may be specified in a mi Im AYOUI parameter-list. Any pair of the

form:
(,narne" KvdlttQ)

in the ,param-) istof a O m AYO will cause the information in ,vaiue, to be stored on

the type and named Documentation. version numbers, device parameters are all

kinds of information one might want to store on a type.

PLACING THINGS .33 - DPL Manual

5. PLACING THINGS

When defining a type it is necessary to specify both the structure of its parts and

their location. This chapter will explain the DPL functions, data structures, and

variables used to specify placement.

5.1 Coordinate system

Every structure specified by a i II AYOUi has its own coordinate system. Each

PARt procedure in the i I I AYOULI will place the instance it creates at a certain position

in the coordinate system of "Mi . Unless the PART command is given explicit

placement information, the part is placed with its origin at the origin of Mrm.

Since parts are themselves calls to types, each part is constructed with its own

coordinate system in which its parts are placed. However, within a Ui I AYOU

piocedure all parts of parts are transformed when accessed by im or >> to their

positions in the coordinate system of -MI .

5.2 Points

Points may be created by the function PT.

(Pt <x-coord) <y-coord>)

creates a point with the given coordinates in "Mi *. For example, (pt 4 3) creates a

point with the coordinates (4,3). Pi is often used with the DPL placement functions

which will be explained in this chapter.

The X and Y coordinates of a point may be accessed by the functions > or lit.

If the expression

(setq my connection-point (Pt 5 61)

is used in a DI ii AYOU1, the function

() x connection-point)

will return 5.

DPL provides a number of functions which deal with points. They include

functions which construct new points from existing ones, a function which tests

PLACING THINGS .34- DPL Manual

values for "pointness", and functions dealing with the placement of points. These are

explained in the glossary.

5.3 Implicit Parameters

Every instance possesses pre-nained information useful for placing the instance.

This information is called an instance's implicit parameters because it is never

explicitly placed on the object, yet it may be accessed.

Probably the most useful of the implicit parameters are corner-parameters

and apparent-corner-parameters, pre-named points on every object which

contain the locations of an object's corners, center-side-points, and center. The

corner-parameters are:

top-left top-center top-right
center-left center center-right
bottom-left bottom-center bottom-right

The corner. parameters refer to the locations held by the appropriate points in

the coordinate system of the object before the object had been transformed. !! the

instance has been rotated or mirrored the corner-parameters will be transformed as

well. Thus, for example, the iOP-CtNIIR of an instance that has been rotated 90

degrees counterclockwise will be on the left side of the instance.

It is often more useful to refer to the points on an instance which indeed appear

to be the top-right, bottom-center, and so on. The apparent-corner-parameters are

provided for this purpose. The names of the apparent-corner parameters are

obtained by concatenating "apparent-" with the names of the corner- parameters.

Figure 6 shows how the corner-parameters and apparent-corner-parameters of

an instance transform when the instance is transformed.

The values of corner-parameters and apparent-corner-parameters may be

accessed by) . For example,

(> apparent hottom right rjate-poly pulldown inverter-t)

will access the AP'AIeI N1 im mmm-Pi;um of the cAli mom Y of the PUi i i)OWN of iNVI RI11B-I of

Corner-parameters and apparent corner-parameters are useful for the

PLACING THINGS - 35- [lNt Manual

Top. ight

Appmierit cenler -lft Appair l top light

[o p-light

//

BoUll i left AplpawFnt cenle-lel"ft ll ft

Xdin Ajparentxdim

Unrtainsfomied Pullup ['ullhip iolated 90 deg CCW

Figure 6 --So1 e implicit plranieters of an Instance

placement of objects. They allow objects to be placed by reference to other objects,

rather than by their numerical coordinates. Corner parameters contribute to the

flexibility of the design because relative placement allows one to change or move a

part without changing the specification of the objects near it. Corner parameters are

also useful in that they reveal the reason for the particular positioning of a part, far

more than a numerical parameter.

Other implicit parameters of every instance are HOttiND6 iiox, ORIGIN, Xw)IM, and

Yi)i. The iBouiiNG O-inx of an instance consists of a representation of two diagonally

opposite points on an imaginary rectangle surroLnding the instance. It is computed

by taking the extreme values of the coordinates of the bounding box of the parts of

the instance, or the corner points if the instance is a Ri CI ANG[F.

The o0il GiN of an instance is the point (0, 0) in the coordinate system of the

instance. Accessing the ORt I; of a part of "Mi ° or of a part of a part will give the point

in the coordinate system of .m - that the origin of the part occupies.

- - -"Po-~--

PLACING THINGS - 36- DPL Manual

The xoim of an instance is the distance between the Cl N111 iii and

CENI[R-RIGIIl of the instance. Thle APPAIU INI-XI)IM is the distance between the

APPARINI-CENIEfl-1111 and API'AWItN C1LR1-11RII of the instance. Ynil4 and

APPAPINI-YOIM give the corresponding distances between the 1OP-Cu~i and

BOt tOM-Ct NIER.

5.4 Translation

One way to place parts within a Mn II AYOUI procedure is to make the part with a

PAR[procedure, and then move the part to the desired location, When a part is

created it is placed at thle origin of -mi -. It may then be translated to the desired

location by the DPL function ALIGN.

At IGN moves an object to another location, maintaining its orientation (without

rotating or mirroring it).

At IGN takes the form:

(ALIGN <object' <rof-point) taiget-poit>)

where objoct) is the thing to be moved, < rer po int is a point, usually on tile object,

arnd ~ rit-po int, is the point to which <. rer -po int> is to be relocated., object> Will

be moved so that (ref-point) is at <target-poirit>. All three argumnents to Al iGN are

evaluated.

For example,

(align (NI conliict-1)
(top-center contact 1)
oNbottoin-center source-difrusion trans-i))

will move CONIACI- Iso that its lop ci Niti is at the 1301IOM-CLNIIR Of the

SOURCI DII ffUS ION Of I RANS - I. This example is illustrated in Figure 7.

5.5 Unitary Transforms

Instances may be rotated or mirrored by the unitary transform functions. Each

unitary transform function corresponds to an element of the group of symmetries of

the square. Each unitary transform function takes an instance as an argument and

transforms the instance as described below, flotation and mirroring is performed

PLACING THINGS 37 - DPL Manual

IIIl
t b otllom centel _-... . (top-center contact 1)

trans 1)

Contact 1

Figure 7 -- Placement by alignment

about and across the origin of -Mu'.

IDENTITY Performs no rotation or mirroring of the instance.

ROT90 Rotates the instance 90 counterclockwise.

ROT180 Rotates the instance 180".

ROT270 Rotates the instance 270' counterclockwise.

NEGX Negates the X coordinates of the instance. (Mirrors the instance

across the Y axis.)

NEGY Negates the Y coordinates of the instance. (Mirrors the instance

across the X axis.)

INT-POS The composition of 1019O followed by NtGx. (The values of the

coordinates are interchanged.)

INT-NEG The composition of itoici followed by NtGy. (The values of the

coordinates are interchanged and negated.)

For example,
(negx (>> trans-7))

will mirror the instance named tIANs- 7 across the Y axis.

Note that each application of a unitary transform function to an instance

PLACING THINGS .38- DPL Manual

composes the new transform with the previous transform of the instance.

If both At IGN and unitary transform functions are to be applied to an instance, it

is usually more convenient to apply the unitary transform functions before translating.

This is because translation is usually used to place the object in its final location. If

one translates before rotating or mirroring, it is very difficult to predict where the

instance will be ejected.

5.6 Placement by Parameter

We have seen that objects may be created and then moved around. it is also

possible to place objects by supplying parameters to the PAR (procedure.

The translation of an object may be specified by including as a parameter to PAHI

the name of a reference point on the object and its target location. The points most

commonly used as translation parameters are con er-parameters and

apparent corner-parameters. For example,

(part contact I square-contact

(layer 'diff)
(lop conter ()> bottom-center source-diffusion tranS-1)))

will do the same thing as

(part 'contact-I square-contact (layer 'ditr))

(align (>; contact-I)
()> top-center contact-I)
(>> bottom-center source-diffusion trans-I))

Note that when passing the name of a point to PAR i, as a reference point on the

object,) > is not necessary. (Like the point r o1-CI t R in the example above.)

Points other than corner-parameters and apparent-corner parameters may also

be used as reference points. For example, if coNw c roN-ro iN was a named point on

,an inverter,

(part 'inverter I inverter
(connectiof) point (>> boltom-)ert ,oly-rect)))

would place i ilii?-i so that CONNI C I ION- 1'01NI was at the Rolim- i i il of iO y-nrc.

Rotation and mirroring can also be performed by supplying parameters to PARl.

PARI may be called with a parameter whose name is xf NM and whose value is the name

of one of the unitary transform functions, in which case the unitary transform function

is applied to the instance.

PLACING THINGS -39- DPL Manual

If both a translation parameter and a unitary transform are passed as parameters

to a PAR] procedure, they may be listed in any order. The unitary transform will be

applied to the part before it is translated.

For example,

(part 'be butting-contact
(xfrm 'rot90)

(bottoin-conter ()) center-left gate-poly trans-I)))

will rotate butting contact tiC 90', and then place it so its ItO! tOM-C|NiIR is at the

CINIII-LI! I ofthecA I 'OLY Of IRANS IOf *MI0.

The two methods of placing objects placement by function and placement by

parameter -- each have advantages in) certain situations. Placement by parameter is

less wordy than placement by function. I owever placement by function is often

easier to read, especially when either the reference point or the target point is a

complex formulation, or when one is passing many parameters to the PART procedure.

For example,

(part ' iv2 in I ine- inverter
(eniancenient-width 10)
(enhancement-length 3))

(int-neg (>> iv2))
(align (>> iv2)

(>> apparent-top-right iv2)
(pt (- (') x top-left poly-conltact) 2) $

(- (>> y bcttoOn- riglt Vi)l)-contactl) 3)))

is equivalent to

(part 'iv2 inl ine-inverter
(enhancelent -width 10)
(enhancement-length 3)
(xfrm int-neg)

(apparent-top-right (pt (- (x x top-left poly-contact) 2)
(- I>> y bottom-right VDD-contact) 3))))

5.7 Invoke

Many of the objects created during the Course of a design are meant to "line up"

or "fit" other objects. The driver for a PLA column, for example, must be the same

width as the column, and its outputs must match up with the inputs of the column.

The design of such types is made easier if an instance of the other object is available

to match up with the one being made.

The DPL function INVOKI is identical to the PAI function but the instance that is

created is not made a "part" of the new object. The invoked instance may be moved

--a

PLACING THINGS -40- DPL Manual

around and the information inside it may be accessed, but the structure of the new

type will not include the structure of the invoked type.

Example:

(deflayout pla-driver ()
(invoke 'column p18-column-cell)
(part 'vdd-hus rectangle

(layer 'metal)
(center-left ()N center-left column))
(center-right (> center-right column)))

(aiid more forms of the maker function>)

This shows how a type is invoked and then used to specify the dimensions of

another cell. Note that the III A-CO UMN-ClI I will not be a part of the Nl A-I)RIVIR , but the

information in the column cell can be used as the driver is being built.

5.8 *LIST*

Many DPL objects keep lists of other kinds of objects. Some of the lists contain

objects that are "transformable", like instances or points. In this case it is useful to

have them transformed into the current coordinate system. The DPL structure that

allows this to be done is called a -t iSI*. It a OL1SI" is stored in a cell on an object,

each element of the -i lisl will be transformed as it is "brought out" of the structure

with li or >).

A .t ist • is made out of a LISP list by the function MAU. -1 ISI-Ol, the list inside a

°I isi * is obtained with the function nit -i is -oi. For example:

(derlaycut a-useless-type ()
(part 'moe rectangle (layer 'poly))
(part 'larry rectangle (layer 'dirf))
(part 'curley rectangle (layer 'metal))
(setq my stooges (make-list-of

(list (moe)
(> larry)
(>> curley)))))

creates three rectangles of default sizes on top of one another and a 01 Isle

containing them is made. If the following code is in the maker function of another

type:

(part 'meanies a useless-type (bottom-left (pt 100 100)))

asking for (the-I ist-of ()> stooges mean ies)) gives the list of the three instances,

each transformed correctly.

4

I HE DPL WIRING SYSTEM -41 DPL Manual

6. THE DPL WIRING SYSTEM

Most of the rectangles in a large design serve to connect objects. This chapter

introduces the DPL wiring system which consists of special procedures for creating

and manipulating such rectangles.

Wires are specified by indicating the layer and width to be used, and the path

the wire is to follow. Wires may change layers, in which case the wiring system will

automatically insert the correct contact, or make any number of side branches.

Wires are made by placing rectangles. In the DPL wiring system, wires are

placed by aligning new rectangles of a specified width and layer so that they join

previously placed iectangles. The length of each rectangle is delermined by the path

the wire is to follow.

To join rectangles, wires make use of a special kind of point called a

connection-po'nt (CP). A CGP is a (lata structure which keeps track of the layers of

the wires connecting to it as well as its coordinates The current-CPo' a wire is a CP

containing the point wtic|re the next iectangle is to be attached. The (urrent CP may

be thought of as the current position of the wire.

Wires are considered to be parts of n.ir . During the construction of a wire, the

variable eim wlli will be bound to the wire being constructed. Wires are instances

of the special type wii . Like all instances, they have implicit parameters which may

be useful when placing other parts of -wn • near wires. The boundingbox of a wire is

computed by finding the extreme VAues of the coordinates of its component

rectangles.

6.1 Wire System Commands

The most common way to use the wiring system is with the procedure wiinl. Iit

is usually used within a 01 1i AYOuu and lakes the following form:

(WI RI <name, I ist of -w ire co inands

wiirr names the wire it builds '.name. name is evaluated. If (name) is Nit the wire is

given no name. The first and last CP's of the wire are named S IAl and I NI. The

THE DPL WIRING SYSTEM -42- DPL Manual

construction of the wire is controlled by the following commands which may occur
inside a willE procedure. (Each wire command evaluates its argument.)

(RUN-LAYER <layer)) sets the layer of the wire. If the wire had already placed

rectangles of a previous layer, the next time a rectangle is placed the appropriate
contact is made at the wire's current-CP. The HUN-LAYLR command sets the width of
the wire to the default width for that layer (see Glossary). A IUN-LAYf R command must

come before any of the commands that actually place rectangles.

(RUN-WIDTH <width>) sets the width of the wire. RUN-W1ID0 must come after the

RUN- LAYtR command if it is to affect the width of that layer.

(FROM <place)) sets the current-CP to <Place>. <place> may be a point, a CP or
another wire. If ,place) is a wire, the last CP of the wire is used. A inom command

must precede any of the commands which actually place rectangles. The IRON

command may be used at other places inside a w iif command in which case it moves
the current-CP from its previous location to < piace) without placing any rectangles.

(TO-X (place))

(TO-Y <place))

These commands place rectangles. < p i ace N may be a number, in which case it is

interpreted as a coordinate of the destination of the wire in the specified direction. It
< place > is a point or a CP, the appropriate-coordinate will be extracted and used. Like
all commands that place rectangles, this may cause a contact to be dropped if the
layer has been changed since the last rectangle was placed. The current CP is then

updated to the new point.

(TO-Pr <place>) places a rectangle which extends from the current-CP to
<place>. <placeI may be either a point or a connection-point. One of its coordinates

must be equal to a coordinate of the current-CP.

(*X (number))

(+Y <number))

(-X (number))

(-Y (number>)

Each of these commands extends a rectangle from the current-CP the specified

distance in the specified direction.

THE DPL WIRING SYSTEM -43- DI1 L Manual

(JOG-X <place>)

(JOG-Y <place>)

These commands extend the wire to the point or CP specified by ,place> by

running first in the specified direction and then in the other. For example, if the

current CP is at point (0,0) and the command (JOG-Y (1P1 10 1o)) is given, the result is a

rectangle from point (0, 0) to point (0, 10), and then a rectangle from point (0, 10) to

point (10, 10).

(SAVE-CP (name)) names the current-CP of the wire nae>, and stores it so it may

be accessed later.

(RESTORE-CP <name>) moves the current-CP of the wire to tile specified

connection-point.

(DROP-CONTACT) places a square contact of the current layer at the current point.

In addition, any LISP or DPI. forms may be placed in a wipf. form. It is often

useful to use LISP conditionals to direct the construction of a wire. Any DPL

commands that create or name structure (such as PARI and si iQ MY), except the above

wiring commands, will affect the object the wire is part of, not the wire itself.

6.2 Wire System Example

The following is an example of the use of the DPL wire system. In the example

we assume that *Mt* has been given the parts I RAN; i and IlPANS 2 which are

pass transistors, and cONT i which is a poly-to-metal contact. The example is

illustrated in Figure 8.

(wirq 'wire-ex
(run layer 'dirl)
trot (>" bottom-conter source-difrusion trans-1))

(-y 4)
(to x (center co t -I))
(savp cp 'fork)
(jog x () bottom- cmter sourco-diffIusion trans 2))

rvstore cp 'fork)
(run layer 'poly)
(to y (, top (:elntel" ront I)))

Our wire, wit i x, begins as a wire of diffusion at the bottom-center of the

source diffusion of lHANS i. After runing ,4 lambda down, it runs to the X coordinate

of the contact CON I , The current CP is then saved and named I ORK bcause we will

Trans-i Trans-2

Diffuspon

Diffusionl Buffing contact placed
automatically

Figure 8 -Wire System Example

THE DPL WIRING SYSTEM - 45- DPL Manual

want to resume wiring from there later. The wire is then run with a joG-x command to

the bottom-center of the source diffusion of IRANS-2. The saved CP FORK is then

restored, and the layer is changed to poly. Finally, we run the wire from the restored

CP to the top of CONI-i. Note that the wiring system automatically places a butting

contact where the layer changes.

6.3 External Wire Commands

Wires may be given additional rectangles after they have been made. The

commands which do this correspond to the above commands except that the names

have "wire-" concatenated to the front. Each external wiring command takes two

arguments: the first is the wire to be manipulated, the second is the same argument as

that passed to the corresponding internal wiring command. For example:

(WIRII-JOG-X <wire> <place>)

It is possible to build a wire entirely from the "outside". An empty wire may be

created by using wiiu with a name and no other wire commands. The wire can then

be given rectangles with the external wiring commands.

6.4 Connection Points

CPs named during the construction of a wire may be accessed during the

construction of the wire, The special symbol *culmm N1 -WmII., when used as the last

symbol in an > > command, allows one to access a named CP of the current wire. For

example:

(f fork Ocurrent-wire*)

After a wire is complete, a named CP may be accessed as if it were named information

on the wire. In the wire system example above,

("> fork wire-ex)

will access the CP I HK.

The point which is the location of a CP is obtained with the function P1 cP. For

example,

(pt-to-lft (pt-cp (, fork wire-ox)) 5)

will return the point which is 5 to the left of the I ORK of WIRF -X.

THE DPL WIRING SYSTEM 46, DPL Manual

One may access the X and Y coordinates of a CP as if it were a point:
(>x fork wire-ex)

It should be noted that when the wiring system automatically places a butting
contact at a OP, the butting-contact is placed with its center at the CPD. This means
that other poly or diffusion wires connecting to the butting contact may not end
directly at the OP, but at a point to one side of it. In the example in figure 8, if we were

to attempt to run a horizontal poly wire from the OP named FORK, the poly actually must
connect 1 lambda below the OP -- or else it would partially cover some diffusion and
make at) illegal butting contact. The wiring system automatically adjusts the

endpoints of the wires to make legal butting contacts, but in so doing may cause the
wires to begin and end on points other than the specified OP. One should use the JOG

commands near butting contacts to allow the system to bend wires when such
situations develop.

CONSTRAINTS - 47- DPL Manual

7. CONSTRAINTS

In many cases the parameters of a type are related. Often some parameters may

be derived from others. The DPL language uses constraints to allow the user to

specify only those parameters necessary to "constrain" the rest.

For example, a standard transistor's resistance is determined by the ratio of its

channel length to its channel width. If the ratio is z, the channel length 1, and the

channel width w, then z = i/w. But also 1w z L and w = i/i. The complete

specification of the transistor may be accomplished by setting only two of the three

parameters.

Constraints do more than allow one to specify fewer parameters. Much of the

computation necessary for determining the layout of an object can be done with

constraints. For example, it may be necessary to fix a transistor's ratio and width,

allowing its length to vary. In another case one may want to specify the length and the

width of a transistor and later ask for its ratio. Or, one could specify all three and let

the program complain if they were set inconsistently.

In some cases it is useful to specify constraints among parameters which are not

used to build the instance. For example, the width of a cell may be determined by the

distance between two control lines. We may write a constraint between the positions

of the control lines and the width of the cell. If the points where the control lines enter

the cell are named as auxiliary parameters of the type, it is possible to express the

width of the cell in terms of these positions.

7.1 Using Constraints

To specify constraints between parameters of a type, the following list must be

included in the (param-I is t > of the type's nt iI AYOUI:

(CONSIAINIS ((<c-I> (param 1) param-2))
(<c-2N (param-3) <param-2> <param-4>)))

The <c- i are names of constraints. Several constraints have already been defined

(see library); others may be defined by the user. The <param- are the names of

primary or auxiliary parameters of the type among which the constraint is to be

applied. A single parameter may be mentioned in several constraints.

CONSTRAINTS .48. DPL Manual

A useful constraint is ce which constrains three arguments so that the first is the

product of the second and third. c, may be used to specify the constraints of a

transistor:

(deflayout 'transistor-I transistor
'((primary-parameters ((channel-width 2)

(channel-length 2)
(ratio 1)))

(constraints ((c* channel-length ratio channel-width))))
...forms of" the maker function...)

This example uses only one constraint and applies it to three primary-parameters.

If it is desired that one of the arguments be a constant, that value (usually a

number or a point) may be given to the constraint directly, instead of passing the

name of a parameter. For example, one may wish to maintain a ratio of 4 between an

inverter's pullup-ratio and its pulldown ratio. This could be accomplished by:

(c* pullup-ratio 4 pulldown-ratio)

If an attempt is made to specify an inconsistent set of parameter values to a type

defined with constraints, an error will be signaled.

7.2 Defining Constraints

Constraints are defined by the command D)ECONSTRAINT. A constraint must be

defined before it can be used in a DEFLAYOUT.

Or CONS IRA I NT takes the form:

(DtFCONSTRAINT (name) <argllst>
(<arg-1> (<arg-2> <arg-3)) <procedure>)
(<arg-2> (<arg-l> (arg-3>) <procedure>))

where <name> is the name used to call the constraint. <argl ist> is a list of the variables

that will be bound to the values specified when the cohstraint is called. The forms

following <argl st> each begin with the name of one of the variables. This is followed

by a list of the variables that can be used to compute the first variable if they all have

been given values. The last item is the actual procedure that can be run, using those

variables, to compute the value of the first variable. The best way to clarify

ul ICONS I RA IN F is to present the definition of a simple constraint:

CONSTRAINTS - 49- DPL Manual

(defconstraint c* (prod ml in?)
(prod (ml m2) (* ml m2))
(ml (prod m2)

(if (= in2 0)
'bail -out
(// (float prod) m2)))

(in? (prod ml)
(if (= m 0)

'bail-out
(// (float prod) ml))))

This is the c* constraint discussed above. It takes three arguments, and

constrains the first to be the product of the other two. If the procedure evaluates to

the string BAll -OUT. the constraint will not attempt to set a value.

Constraints may be used between primary-parameters, auxiliary-parameters and

constants. It is also possible to specify corner and apparent-corner parameters as

arguments to a constraint. In fact, the type H1 CI ANCI I is defined this way. One may

specify the bottom-left and upper-right of a rectangle. for example, and the constraint

will determine the proper length and width to make the rectangle.

$

REPLIGATORS -50- DPI Manual

8. REPLICATORS

Many designs contain situations in which a small number of objects are

replicated in highly regular arrangements. A row of identical register cells may be

used to store the result from a column of bit-slice adders. A PLA or a shifter is

typically made of a two-dimensional grid of identical parts.

Replicators in DPL allow the user to create such structures. They also make

use of the regular nature of the structures to represent them efliciently. All that is

stored is the list of instances which appear in the replicator and a function that

computes the transform of an instance for a given set of coordinates. The functions

examining the structure of the replication put this information together and produce

the parts of the replication. When examined with Iiii, a replication "looks like" it has

many parts, while actually only a few instances are stored.

The most useful replicators build rows, columns or 2-dimensional grids of

instances. These replicators are defined in the library. It is also possible to define

replicators for special purposes.

A "replicator" is similar to a type. It holds the procedure to construct a

replicated set of instances. A "replication" is what a replicator produces -- an
instance that looks like it has many regularly placed parts.

8.1 Calling Replicators

If a replicator has been defined, it is called with the command il Pt iCraIr.:

(R[PL ICAIF (name <rep Iicttor type' .d imens ions I 1ist or- instances)
•.. othe r 11,1rame t (I rs . .)

This command is similar to the pi.w 1 1command except for the. d imuns ions'. and

I ist-of- instances, arguments, which are hoih evaluated. It calls the replicator

named <replicator type, and gives it the naile namel ifi 'MI . The dimonsions>

argument is a list ol the valtes of the dimoinions the d(esired replicator. The

<iist-or-instances, is a list of instances that will be used in the replication. These

instances may have been INVOKf 1 or actually made as parts of ,mi -. In either case,

after the RIPi ICAI command, they will be removed from wherever they were before

and treate-d as parts of the replication.

LL1l

REPLICATORS -51-

The replicator Row takes a single instance and places a row, spacing the parts

using the sum of the parameters PIicof and SPACING. If the parameter Pi Ict is not

specified in the call to RI PI ICAlE, the instance is checked to see if it has an I-PITCH

parameter. If so, that value is used. Otherwise, the APPARNI -XDIM is used. (Needless

to say. this is done with constraints.) The SPACING parameter defaults to zero. The

following commands

(invoke 'pt rectangle (layer 'poly) (length 10) (width 10))
(replicate 'ri row (10) (list (>> pl))

(spacing 1))

give a replication of ten poly squares, spaced one apart.

8.2 Accessing Replications

The parts of a replication may be accessed by the form

(*REP ,coord-l> <coord-2>)

within a call to Tl or >>, where the <coord-i> are the coordinates desired. The

arguments are evaluated. The coordinates start with (0 0). If the replication is

one-dimensional, the second coordinate may be unspecified, or else must be 0. Thus

(>> (*rep 3) rl)

gives the fourth element in the Row produced above. The symbol *REP-F IRST is Used to

access the (0 0) element in a replication, and *RE P-I.ASI accesses the element in the

replication with the largest coordinates. These are useful when the size of a

replication is a parameter and one wants to refer to the end or beginning of it. For the

above replication then, the following forms are equivalent:

(>> 'rep-first rl)

(>> (*rep 0) ri)

and

()> *rep-last rI)
(>> (*rep 9) rI)

Besides their parameters, replications contain additional information. The

INS I ANC[[- I. 1 SI of a replication contains the list of instances used when the RE PL ICATE

command was called. The form (-RI P-INSTANCF (n) is used to get the nth element of

the INSIANCE -1 IST of a replication. The cell MAX-DIMS of a replicator contains a list of

the maximum-dimensions of the replication. MAX-DIMS is the same as the argument

<dimens ions> to REPI ICATE.

REPLICATORS .52 - DPL Manual

8.3 Defining Replicators

Replicators are a special kind of type. TIt y maty be 6et ined with constrain ts and

parameters. A replicator is defined as follows:

(Ill l11ItP CAliji) K ditl? (uOVdinaLt)
P h! i list,

,btody

The (name> and <pitramn i ist. are as in ofi iAyoiji nmnC Will be the name of the

replicator and .param- l ist ,Its parameter- list. The0 ' FL1 I'd t at)Jment is a list of

one or two symbols. The lenyth of cotrii~ls will be the dimension of the

replication. (boay? is a collection of LISP forms that ai-e called when the replication is

accessed. The functions in b ody , determine tli(- instance and transform of the "part"

of the replication determined by the coidinates. As fill in Ii AMPt only paraI~ list) is

evaluated.

The call (*lt i > ,j) binds the variablesc. in) the ,c oo rdi it us > list to <I > and <j),

and binds smE' to the replication. Then - hody, is e Valuated.

(body) must call the fun1ctions:

(REPIICAi01t-INSIAN1f (instance.0)
(REPL ICAIOi I RiANifliM (m uni ay part. ky>)

The argument to it i'm ic.loll IN, i it; the Instance at the position specified by

the value of the coordinates It IS obtain~td by a call to it P1 11 N' I ANCF and is

determined by the valtw' of the (:tdinte,; Lid pr1issome of the parameters.

RE P I CA10 lHlI iAN' I 0kM take;, as ar(l thn ts tlin three parts of the trarmsfornm to be

composed with the transtomi otf the at(;1ntl~it In 'i lI vi 11 I N' At This yields the

transform of the part of the repim ation ill :imd Live til t MqdiinentS to these

functions to construct and metUrut tte i t, me :, i

The followimq is the definition of lb ' t fIcatfor:

REPLICATORS 53. DPL Manual

(derreplicator row (i)
((primary-parameters

(pitch
(spacing 0)))

(constraints
(h-pitch instance-list pitch)))

(replicator-instance (> (*rep-instance 0)))
(rep)icator-transforin 'identity

(I i (+ (>> pitch) (>> spacing)))
0))

The II-PITCHi constraint acts on the INS[ANC[- ISr of a replication to find the

horizontal-pitch as described above, Row takes only one instance and all its parts have

the same unitary-transform and Y position. The X position is determined by the

product of the coordinate and the sum of the parameters >ii Icl and SPACING. Thus for

the Row replication created above, the call (> (*rep 4) ri) returns an instance of a 10

by 10 poly rectangle with a transform of 44 in the X direction.

-MOEN-

USING DPL . 54 - DPi Manual

9. USING DPI

In this chapter we discuss flow the DPL lWI(JUayP caii he used to . 'iw~su t a

project. We explain what the various kinds of DPL objects look like wiei they tff'

displayed on a terminal and how the ciesigner may use DPI at a terminal to probe, the

structure of his design. We also discuIss the functions that tranIslat betweenW 1PI Mid

CIF.

9.1 Interacting with DPL

When the DPL system is loaded into a LISP environment, a special ObjOedi'

created. This object, called a top, is very similar to a prototype. -mt * is bound to at top

so that commands which Would otherwise appear in the maker fuLnction of a type miay

be executed at top-level LISP, the results affecting the top.

For example, typing

(part 'ivt inverter)

it top-level will make ant inverter and name it Ivi in) *Mt .which is hound to the top.

One may then say

~>ivi) $

and get the instance of the inverter. lops are represented by the strinq "layoul"

followed by a number: I YOUi i . In1 most cases this is the only top thal will be seen.

Calling types interactively (by calling VAIr r at top level) is the way to debug

designs. One defines types while wor king with aI text editor and then loads the textI

files into a IJP[environment where tie may then examine Ihe structures of the tyl2 ,

On some sytmswerdP. a he uelaphics programis can display piclui us ot

Instances. Just ruinnintg the maker ftarCtioii Of a1 type, by USIng PARr I, is aI good way I)

seif the code is syntactically correct and contains no LISP errors.

The function I XAM INI i usefl1 for inspecting the 5tructure of DPI. obiects. 1 he

c:ommnd

(I XAMINI <object))

will place the User in anf "examiner loop" for examiiing the LAtr udure of othj~ i . He

may type commands to identify the compunenits of the structure lhe wishes to viiew

The IXAM iNi function is, system dependent and will not he descrihed iII detail here It

is self documnentincq typing ?"or "help'* will print out fte available optoots oi i the

USING DPL 55- DPL Manual

9 system being used.

9.2 What Objects Look Like

When interacting with DPL it is necessary to know what the DPL structures look

like when they ,re printed. The printed representations of DPL structures are for the

user s convenience and have little to do with the way structures are stored in the

computer.

The printed appearance of types and prototypes will vary greatly among different

implementations of DPL. In geneial, the I XAMINI function should be used to look at

them.

The function

(UYPI -IROM 1YPI -NAMI <type-namo))

returns the type with the name < type-name).

Components of the structure of a type or prototype may be inspected with T HE:

(lll1 'IYPI (prototype))

(1 lilt ' OIOl YPI S <type))

For the remainder of this chapter, we represent types by their names, and

prototypes by the name of their type concatenated with a number.

An instance contains a VC and a prototype:

(INSIANCI (VC <prototype' ,parent'>) <augmentation))

The <augmen .at ion) of an instance is a transform:

(<unitary-part0 (x> < y))

(or it may be Nil which is the same as the "identity-transform," (I)l NI I I Y 0)). So a

whole instance may look like this:

(INSIANCI {VC INVll I 1-5 HiGISIITT-12) (ROT90 34 10))

Since there are so many of them, prototypes of the type ICIANGtLI are treated

differently from other prototypes. The only time this makes a difference is when they

are printed out. In this case they look like:

(RICIANGiI (layer> <)ngth> (width>)

USING DPL - 56. D)P. Manual

Ieng th1 is the Y dimension of the prototype and *. wioti is its X dimeniison,

Rectangles are used in place of normal prototypes, so an instance ot a rectangle

could look like this:

(INSTANCE (VC (RICIANGIE POIY 2 4) (IDINIIIY 4 5)))

9.3 CIF

Users of DPL Must interact with COF for two reasons: Interesting cells firm other

designers are available in CIF, and OIF must be given to the fabrication companies to

actually produce the chips.

CIF descriptions of cells may be translated into DPL with the Li I II AN function.

The form

(CirTRAN (drf-rile) <load?> (output-tile> (lambda>)

translates the CIF in <c ir-ri ie> into DPL in '<output-file>. The argument , ianba is

the size of lambda in microns used to produce the CIF It I odd?, is not tji , the

resultant DPL definitions are immediately loaded into the LISP environment arid the

types produced are available to call. All the arguments to c i i IRAN are evaluated.4

'Fhe DPL produce(] trom COF is extremely "bare". Nothing is named, for

example, andi thus none of the path-following features of DPI. may be used. It is

possible to edit the definitions of the types in the output from Ci I AIN and namne somle

of the parts.

To obtain a OIF representation of a design, the function c i ourt is used. Ihfe formi

is:

(C. 11OUI inistance) \r iI a-amo))

ciiomu takes an instance arid recursively travels through the data~ base. transllrirng

inuo CIF allI the types otr which , n sId nre depends. ITh e finalI C f commruand is~ a cal I to

the symbol thaI correspnds to the prototype of inst ,nc~e .. "Ibsen exlensiroi 9" is

us15d for the namies of the prototypes as they are translated. I lic namne of ea(hi type is

included in a comment after the DS command. Alt the arguine~ls to li 01 are

evaluated.

EXAMPLE -57 - DPL Manual

10. EXAMPLE

In this chapter we explain in detail a WII AYU of a register cell. The program

uses most of the features of DPL, so serves as a good illustration of the language in
action We have two reasons for presenting this example. First, the example should
help the user learn how to use DPL. Second, we want to demonstrate some of the

ways to use DPL to its best advantage.

10.1 DPL design style

The program below is one of many possible prograr,ls that could be written to lay

out this cell. There certainly is no one place to start or one way to proceed in such a
program. However, there are a number of guidelines to be kept in mind.

Note that very few numbers are used in the program. Almost every new part is
placed by reference to the locations of previously placed parts. Most of the spacings
and offsets between parts are determined by the design rules of the processing

technology. DPL provides variables to specify such values.

It is helpful to begin at some point in the cell and move in a particular direction,
creating new parts when their location may be described in terms of the existing
structure. Specifying placement by reference to previously placed parts is
encouraged because it makes apparent the justifications for the positioning of parts.
Specifying placement numerically incorporates no information about why an object is
placed where it is. On the other hand, a "symbolic" specification of position enables
one to see, for example, that the en-! of a wire is to connect to the input of an inverter,

Symbolic specification of a design contributes to easier debugging. Since all the
parts depend in precise ways upon one another, moving an object will cause the parts

specified in terms of it to maintain their dislance. This ability is totally absent in a cell
specified numerically, where each affected part would have to be moved.

EXAMPLE -58- DPL Manual

10.2 The REGCELL

The object we are designing is meant to store a bit of data; it can be written fIorn

a bus and can write its value onto the bus. The circuit, shown in figure 9, consists of

two inverters with a feedback path to refresh the data and connections to the data

bus. During phi2 the value is refreshed. The cell is given a new value by placing the

bit on the bus and taking the phil&load signal high. The value of the cell may be read

onto the bus by taking phil &read high.

Figure 10 is a drawing of the cell's layout in NMOS technology. We have chosen

the most straightforward design possible, to allow us to concentrate on using the

language -- as opposed to a fancy layout. This layout is certainly not the smallest for

this cell. We leave it as an exercise for the reader to come up with a "minimal" layout

for this cell.

On the next pages we present the definition of RE IC L.

phil & load phi2 phil & read

Bus

Vdd

Figure 9 -- Circuit of Regcell

Figure 10 -- The REGGELL

-20 1" > 30

MM,

EXAMPLE _60- L3PL Manual

I (dat layout regcell (
2 (part 'ivI inline-inverter (ew 4))
3 (part 'GND)-contactl square-contact (layer 'diff)
4 (top-center ()> center source-diffusion pulidown ivi)))
5 (part Vt)L-contactl square-contact (layer 'diff)
6 (bottom center (N> center drain-diffusion transistor puflep ivi)))
7 (part *bc butt ing-contact (xfrrn 'rotl8O))
8 (align (>> bc)
9 >> apparent-bottomi-r ight bc)
10 (pt (- (>) x bottor-left, contact pul lup il) 'ietal-to-mertal4)
11 (+ (>>' y top-center GND-contactl) "imetal-to-metal')))
12 (wire ()
13 (run-layer 'poly)
14 (from ()apparent-bottom-center bc))
15 (jog-y ()center-left gate-poly puildown ivi)))
16 (wire 'phi2
17 (run-layer 'poly)
18 (from (pt (+ (>> x bottom-right gate-poly pulldown ivi) *poly-to-poly* 1)
19 (>> y bottorn-rryht GND-contactl)))
20 (to-y (I- (> y top-right VIDD-contactl)
21 rretalI -to -metal10
22 *default metal-size*
23 *metal-to-metal*)))
24 (part 'poly contact square-contact (layer 'poly))
25 (align (>> poly-conitact)
26 (., b ottom- loft polIy-contact)
27 (pt (+ x)~ center phiZ) *poly-to-poly* 1)
28 (+ (y top-right GNI)-contactl) *metal-to-metal')))
29 (wire ()
30 (run- layer 'metal)
31 (run-w idth 'ii+ iniretalI -s sue')
32 (from (pt-above (>bottom-right cover contact pullup il)
33 (I iein-neta-sjieO 2.0)))
34 (to-x (", cnter poly-coirtact)))
35 (part 'iv2 inline -iriverter)
36 (align () iv2)
37 (>> top-left gate-poly transislor pellup iv2)
38 (pt (+ ()> x top right poly contact) *poly-to-poly*)
39 ()) y tot)]left gale poly transistor, pul trp ivlf)
40 (part 'CAD contart? square contait (layor cliff)
41 (top center (,', center, source diffusion plllown iv2)))
42 (part 'VIJI cortair t2 square conrtact (layer 'ditt)
43 (hottloim center' (>1 center- dramr diffus ion trainsistor- put trp iv?)))
44 (wire (

45 (ruo- layer 'poly)
46 (fromr (tot toi-cente poly -contact))
47 (jog y (renter- left qate-jpoly pulldown Wv)))
48 (wtio 'ferodtack
49 iun -layrnr d ff)

50 f i ouin (p I alov e (trboI I Ora r i of It t if f f ro nl a ctI p ir I tip i v? 2 I
51 1t 0 X1)1 to n oif (.CeUlt4er I ghrt Vdut-contact?)
5? (I ift to diff' I)))
53 (to (pt iloivo lo (roliirti vdil-contact2)
54 (4 i*1't i to rmetal*
55 (// uj'rfirultrimetal size" 2.0)))
5b I-;av -cli i -iad trn)
5? 1 to x(. , appar".nt loll center- dift bc))
5p a ;1,4 C 1 i (iI t u Iii

(4Ino y (, ,appa ront top c onter(ti ff hc)

61 runl layer 'poly)
6? (from (p I (, x appireril boruttomi left poly bc)
63 (4 *poly to poly* 1))
64 (-'y ;tart phi?)))
65 (to y I, y riot phi21)))

EXAMPLE - 1-DPL Manual

656 (wire 'phil&read
67 (run-layer 'poly)
68 (ft'oin (pt (+ p> x celtertright feedback)
69 (+ *polytLo-ditff 1))

70 (y start pltt2)))
71 (to-y ()> y end phi?)))
72 (part 'load- trans pass- trans istor (Osrm ro90)
73 (align ()) load-trans)
74 (>> center load-trans)
75 (pt ('x ce.nter phil~load)
76 ('y load-turn feedback)))
77 (pat load-contact. square contact
78 (layer 'diff)

79 (center-right, (pt 0 '~x center pliil&load)
80 (*poly-to-diffo 1))

81 (>> y load tur-n feedback))))

82 (wire ()
83 (mun-layer 'diff)
84 (front (>) load-turn feedback))
85 (to-s (1> apparent-renter-right load-trans)))

86 (part 'read tr-ans pass tr-ans istor (aftma 'rot90))
87 (align ('> read-trans)
88 (>> center readI tranls)
89 (pt (0 x) center phil&read)
90 (>> y read-turn feedback)))
91 (part 'read-contact squat ,-conltact
92 (layer 'diff)
93 (renter-left (pt (4 (~x center phil&read)

94 (.poly-to-iiiff* 1))
95 (y read- turn feedback))))
96 (wire (
97 (run-layer 'diff)
98 (front(m read-turn reedback))
99 (to-s x appareitL-renter-ieft read-trans)))
100 (wire 'data-bus
lot1 (iten - Iyor 'natlI)
102 (frome(' center left. load-contact))
103 (to-X 5 center-right read-contact)))
104 (wire 'vdd-bui5
105 (run-layer 'metal)
106 (froin (pt (>> x start data-bus)
107 (5) y center vdd-rontactl)))
108 (to-x (>) end data-bus)))
109 (wire 'gnd bus
110 (rim-layer 'metal)
Ill (fromt (pt (x' start data-bus)
112 (5y reeler ged-contactl)))
113 (to-s ()) end data bus1)))
114 (setil-ry h-p itch (1 x c ' enler read-contact)

115 x retier load-rontlict))))

EXAMPLE -62- DPL Manual

10.3 Discussion of the REGCELL program

We have laid out R[GC!L t by beginning with the leftmost inverter, creating the

parts surrounding it, and moving around the cell building each part as its position is

determined by its neighbors. We built the central pieces of the cell first and built the

busses extending the entire width of the cell last. The busses were built last so there

would be objects by which to specify their dimensions.

Let us look at the program in more detail. We begin with the leftmost inverter,

which we name ivi, because it is a prominent piece of the cell and seems like a good

place to start. ivi is created by using the PATH function which makes an instance of

the prototype L INV[- INVEfRFR (see Library) with an enhancement channel width of 4.

This will give the inverter a ratio of 8-1 which is necessary because it will be driven

through a pass-transistor. The other parameters of INI lNt-INVI.iIlR will default as

follows: The enhancement channel length will be 2, the depletion channel length 8,

and the depletion channel width 2. (line 2)

We may now create things whose locations depend on that of ivi. We create

GND)-CONFIACII and VDD-CONIACr I placing them below and above ivi. They will be used

later to connect the inverter to the power and ground busses. (lines 3 - 6)

After making the two square contacts, we create the butting contact on the left

of ivi, and call it Bc. We rotate Bc 180' because the untransforrmed butting contact

has its diffusion on the bottom and we need it on the top. We then align Tic the

minimum metal-to-metal distance from the metal to its right and the same distance

above the ground bus. We use GNI)-CONIACI Ito find out the height of the bus. Note

that it was necessary for us to create the square contacts before making tic in order to

specify the Y coordinate of Bc. Of course we could have aligned nc with a part of lvi,

say making the APPARIN -BO! OM-RIGII of the cui of BC 3 lambda to the left of the

T m o - i of the CONI ACT of the 1ut 1uP of IVI. While this would work fine, it doesn't

really represent the reason that Tic is placed where it is. The location of tc is

determined to the right by the metal in ivi and below by the eventual location of the

ground bus. The placement we use indicates those dependencies. (lines 7 - 11)

We can finish up this segment of the cell by connecting a poly wire from the poly

of butting contact Tic to the GAII -POT Y of the ,ui nlowN of ivi. The wire starts from the

APPARINI -O IOM-CN I of Hc and does a JoG-y to the C NIIR- II I of the GAI -'OV Yof

EXAMPLE 63-

the PUt [DOWN of ivi. The JOG-Y command here will actually create a rectangle of 1

lambda in the Y direction and then a rectangle extending in the X direction. We use a

jog here to allow us the flexibility of being able to raise ic at some point in the future

without having to change the description of the poly wire. Since there is nothing

requiring Bc to be as close to the ground bus as we have made it, it is possible to move

it higher if necessary. (lines 12 - 15)

We now move to the right and create the clock line Pt112, the next object whose

position is determined by those we have already built. Its position in the X direction is

determined by the minimum poly-to-poly spacing from the Putt up of ivi. We want the

wire to run from the bottom of the cell to the top, plus one metal-to-metal distance at

the top. The extra is so that several of these cells may be stacked to allow several bits

to be stored at once. Since there will be a data-bus at the top of the cell, in addition to

the power bus, we must allow room for one metal line of the default size, plus two

metal-to-metal distances. (lines 16 - 23)

Next we form the poly contact to the right of IM2. It can be no closer to ground

than the minimum metal-to-metal distance and no closer to P1112 than the minimum

poly-to-poly distance. We place it as close as it can get to these wires with an AL. IGN

procedure using these specifications. Next we run a metal wire from the [13OM-RIGHT

of the CONTACT of the PULLUP of IVI to POLY-CONIAC1. We make it 3 lambda (minimum

metal width) wide. We must begin the wire 1.5 lambda above the bottom of the

contact so that the connection will be 3 lambda wide. The io-x command then runs

the wire to POLY- CONTACT. (lines 24 -34)

We are now ready to make our second inverter which we name iV2. We give it

no parameters as we want its ratio to be 4-1 which is the default. The 4-1 ratio is

justified because this inverter is driven directly from ivi. Its placement is determined

on the left side by the minimum poly-to-poly distance from POt Y-CONIACT. The vertical

placement is to be the same as that for lvi. The power and ground contacts are then

placed for iv2 in the same manner as for ivi. A poly wire from Po v-coNIAcI to the

GARL -POt Y of Pul I DOWN of IV2 completes the connection of the output of ivi to the input

of IV2. We again place the wire with a jog to allow us future flexibility. (lines 35. 47)

We will now construct the feedback path that refreshes ivi through P1l1? and

makes the connections to the data-bus through the control signals. The wire r roBACK

runs from the diffusion in the CONIACI of the Pru tip of IV2, to the right far enough to put

~ .-L

EXAMPLE 64 - PL Manual

it one diff-to-diff distance away from vD-COW ACTZ, then up to where the center of the

data-bus will be. Two CPs of the wire, RLA)-UImN and LOAD-IURN, are saved for later

placement of transistors. HLEUBACK then jogs to the diffusion in itc, completing the

feedback path. Note that a transistor is created when the diffusion of MfUI3OACK

crosses the Pill2 wire. (lines 48- 59)

The control lines, PIl1[&LOA and P1iI&R1 A), may now be placed. Roth are

specified horizontally by minimum distances from existing structure and vertically by

requiring that they begin and end at the same Y values as the SIARr and iwD of Pit 12.

(lines 60- 71)

The connections from the feedback wire to the data-bus may now be made. The

same procedure is used for the connections on the left and right sides of the cell.

First a pass-transistor is placed at the appropriate position. Then a contact to the

data-bus is created as close as possible to the control line. A wire is then run
connecting the pass-transistor to one of the named CPs on Fi fI)BACK. (lines 72 - 99)

All that remains is the busses. They extend from the left edge of I OAD-CONI ACT to

Ihe right edge of R[AD-CONTACT. The Y coordinate of each bus has already been

determined. (lines 100 - 113)

The last command names the ii-PItCH of the cell. Note that the cell may be

replicated so that the center of LOAD-CONIACI on one instance of RIcctII could line up

with the center of Mi AD-CONIACI on the instance to its left. We specify this here so that

the constraints in the itow replicator will place it ct ii correctly. We have designed

IlGC it so that its vertical dimension is the correct one to use for replication so we

need not specify it explicitly. (lines 114. 115)

LIBRARY - 65- DPL Manual

11. LIBRARY

The definitions here are automatically loaded into the DPL environment. There

will probably be other cells available.

11.1 Some Constraints

(defconstraint c= (vi v2) This causes the values of two
(vi (v2) v2) (v2 (vi) vi)) parameters to be equal.

(del'constraint c+ (vi v2 v3) The first valueis to bethe sum of the
(vt (v2 v3) (+ v2 v3)) ohrto
(v2 (vi v3) (-vi v3))ohew.
(v3 (vi v2) (-v1 vZ)))

(defconstraint c* (prod mil m2) The first value is to be the product of
(prod (mil m2) (* ml m12)) the other two.
(mil (prod mi2)

(if (= m2 0)
'bail -out
(// (float prod) mn2)))

(m2 (prod ml)
(if (~ =ni 0)

bail-out
(I(float prod) mil))))

(defcunstraiiit orrset (vi v2 v3) All the values are points. The first
(vi (v2 v3) (pt-sum v2 v3)) piti ob h etrsmo h
(v2 (vi v3) (PL difference v1 v3)) piti ob h etrsmo h
(v3 (vi v2) (pt-dirrerence vi v2))) other two.

11 .2 Some Types

(deflayout rectangle The structure of a rectangle is
((primary-parameters determined entirely by the values of

((layer nil)
(length nil) its parameters.
(width nil)))

(constraints
((defauilt-size-for- layer layer length)
(derault-s ize-for- layer layer width)))))

LIBRARY 66, DPL Manual

(deflayout square-contact
'((primary-parameters ((layer 'poly))))

(part 'cut rectangle (layer 'cut))
(part 'cover rectangle (layer 'metal))
(part 'stuff rectangle (layer (>> layer))

(length 4) (width 4)))

(deflayout horizontal-contact
'((primary-parameters ((layer 'poly))))

(part 'cut rectangle (layer 'cut)
(length 2) (width 4))

(part 'cover rectangle (layer 'metal)
(length 4) (width b))

(part 'stuff rectangle (layer (>> layer))
(length 4) (width 6)))

(deflayout butting-contact '()
(part 'cut rectangle (layer 'cut)

(length 4))
(part 'cover rectangle (layer 'metal)

(length 6))
(part 'poly rectangle (layer 'poly)

(length 3) (width 4) (center (pt 0 1.5)))
(part 'dirf rectangle (layer 'difi)

(length 4) (width 4) (center (pt 0 -1))))

(deflayout rect-fet This is the standard transistor -- a
'((primary-parameters rectangular FET.

((clhannel- length 2)

(channel-width 2))))
(part 'gate-poly rectangle (layer 'poly)

(length ()> channel-length))
(width (+ (> channel-width)

(* 2 *poly-overhang*))))
(pert 'channel rectangle (layer 'channel)

(length () channel-length))
(width (>> channel-width)))

(part 'source-diffusion rectangle (layer 'dirt)
(length Odiff-overhang*)
(width ()> channel-width))
(top-center (>> bottom-center channel)))

(part 'drain-diffusion rectangle (layer 'dirt)
(length Odift-overhang*)
(width (>> channel-width))
(bottom-center (>> top-center channel))))

(deflayout (rect-e-fet rect-fet) ' A "rectangular enhancement FET"
is the same as a "rect-fet".

LIBRARY -67- DPL Manual

A "rectangular depletion FET" has(derlayout (rect-d-ret rect-fet) inipat
, (0 ion implant.

(part 'implant rectangle
(layer 'ion)
(length (+ (>> channel-length)

(* 2 *ion-overhang*)))
(width (+ (>> channel-width)

(* 2 *ion-overhang*)))
(center (>> center channel))))

(derlayout (pulldown rect-e-ret) '()) Both of these are alternate names
for rect-e-fet.

(deflayout (pass-transistor rect-e-fet) '())

(deflayout standard-pullup A "standard pullup" has a contact
'((primary-parameters on its left side and a connection

((channel-length 8)
(channel-width 2)))) from the contact to the gate of the

(part 'transistor rect-d-fet transistor.
(channel-length (' channel-length))
(channel-width (channel-width)))

(part 'contact butting-contact)
(rotgO (>> contact))
(align (>> contact)

(>1 hot tom-right cut contact)
(>> bottom center

source dirfusio, transistor))
(part poly rectangle

(layer *poly) (length 3) (width 2)
(bottom-right

(> bottom-right poly contact))) $
(setq-my diffusion-connection

(pt 0 (>> y
bottom-left dirf contact))))

deflayout (inl ine-pul lup pullup) An "inline pullup" has the butting
'(primary-parameters contact directly below the transistor.

((channel-length
8)

(channel-width 2)))) The channel must be made one
(part 'transistor rect-d-'et lambda longer than necessary for

(channel-length
(1+ (>> channel-length))) the correct ratio, because the

(channel-width (>> channel-width))) contact will cover part of it.
(part 'contact butting-contact)
(align (>> contact)

(>> bottom-center poly contact)
(>> bottom-center gate-poly transistor))

(setq-my diffusion-connection
(>> bottom-center contact)))

LIBRARY 68- DPL Manual

This inverter uses the standard
(deflayout inverter

'((pr imary-parameters pullup. Note the constraints
((dl 8.0) (el 2.0) between the parameter values and
(ow 2.0) (dw 2.0) ratios.
puz pdz z))

(constraints
((c* dl puz dw)
(co el pdz ew)
(c* puz z pdz))))

(part 'pullup standard-pullup
(channel-length (>> dl))
(channel-width (>> dw)))

(part 'pulldown rect-e-fat
(channel-length (>> el))
(channel-width (>> ew)))

(align (>> pulldown)
(>> top-center

drain-difrusion pulldown)
(>> diffusion-connection pullup)))

(deflayout inl ine- inverter This inverter uses the inline-pullup.
'((primary-parameters

((dl 8.0) (el 2.0)
(ew 2.0) (dw 2.0)
puz pdz Z))

(constraints
((c* di puz dw)
(c* el pdz ew)
(c* puz z pdz))))

(part "pullup inline-pullup
(channel-length (>> dl))
(channel-width (>> dw)))

(part "pulldown rect-e-fet
(channel-length (>) 01))
(channel-width (>) ew)))

(align (>> pulldown)
(>> top-center drain-diffusion pulldown)
(pt-above (>> diffusion-connection pullup) 1)))

11.3 Some Replicators

These replications make use of the H-PIlCH and V-PITCH constraints between

their instance lists and their "pitch" parameters. The "pitch" of an instance is the

minimum distance between points where successive replicated versions of the

instance may be placed. In most cases this is the size of the instance in the

appropriate dimension "H" (horizontal) or "V" (vertical). However, if a cell is explicitly

given a parameter with one of these names, the value in that cell is used.

Li -

LIBRARY - 69- DPL Manual

This places a row of objects, The(defreplicator row (i)

((primary-parameters SPACING parameter may be used to
((pitch) (spacing 0))) insert extra space between the

(constraints
((h-pitch instance-list pitch)))) elements.

(replicator-instance
(>> (*rep-instance 0)))

(replicator-transform
'identity
(* i (+ (>> pitch) (>> spacing)))

0))

(defreplicator column (i) Makes a column.
'((primary-parameters

((pitch) (spacing 0)))
(constraints

((v-pitch instance-list pitch))))
(replicator-instance

(>> (*rep-instance 0)))
(replicator-transform

'identity
0
(0 1 (+ (>> pitch) (>> spacing)))))

(defreplicator array (i j) This takes an instance and makes
'((primary-parameters an n x m array of it. The pitches

((v-pitch) (h-pitch)
(v-spacing 0) (h-spacing 0))) default as for row and column.

(constraints
((h-pitch instance-list h-pitch)
(v-pitch instance-list v-pitch))))

(replicator-instance (>> (*rep-instance 0)))

(replicator-transform
'identity

(* i (> (> h-pitch) (>> h-spacing)))
(j (+ (>> v-pitch) (>) v-spacing)))))

LIBRARY - 70. DPL Manual

(detreplicator flipping-array (1 J)
((primary-parameters

(v-pitch h-pitch xref yref
(x-overlap 0) (y-overlap 0)
(x-space 0) (y-space 0)))

(constraints
((fli pping-pitches

instance-list h-pitch v-pitch xrei' yref
x-overlap y-overlap a-space y-space))))

(let ((x (i 2)) (y (j 2)) which unitary)
(setq which (+ x (2 y)))
(setq unitary (cond ((equal which 0) 'identity)

((equal which 1) *nega)
((equal which 2) 'negy)
((equal which 3) 'rotl8Ol))

(replicator-instance (> (*rep-instance 0)))
(repl1icator-transform unitary

(if (x 0)
(// 1I 2) (> h-pitch))

(+ (>> xrer)

()h-pitch))
(0 (>> x-overlap))))

(if' (. y 0)
(0 (// j 2) (>v-pitch))
(+ (>> yref)

(>v-pitch))
(0 (>> y-overlap)))))))

This makes an array in which
alternate elements are flipped. It
uses a ri WrPING PliCmIS constraint
which is similar to the pitch
constraints. One can make a row in
which alternate elements are flipped
by calling 11 IPPING-ARRAY with a
second argument of 1, or a column
of alternately flipped elements by
using a first argument of 1.

GLOSSARY -71- DPL Manual

12. GLOSSARY

Presented here are most of the DPL functions and variables available for

designing projects. Functions which are used only for the implementation of the

language are not included.

Each function is presented with information about the arguments it takes. For

example

(A-FUNCr[ON <arg-) '<arg-2> . <form-i) <form-2> .

introduces the function A-FUNCTION. Arguments are enclosed in angle brackets (<)

and are given reasonably mnemonic names. Arguments not evaluated are shown with

a quote before them. (like <arg-2> above). A dot (.) in the form indicates that the

terms after the dot are optional and thus may be omitted. Three dots (...) at the end

of some optional arguments indicates that there may be any number of terms in the

argument list at that point.

Every term in the body of a form will be described. In some cases the terms

themselves must be structured in certain w,,s.

The functions will be grouped according to the kinds of DPL objects they

operate on -- transform functions are grouped together, as are functions that

manipulate points.

1r

GLOSSARY -72- DPL Manual

12.1 Types

(DEFLAYOUT '(type-nae Defines a type. If <type-name> is an
(parto-list) atom, the new type will have that

'body>) name. If the name is a list of two

atoms, the CAR will be the name of
the new type, the CADR will be used
as the "supertype" of the type.
<param-list> is a list of
keyword-value pairs. The value of
each pair is stored in a cell on the
type. <body> is the maker function of
the type and may consist of any LISP
and DPL forms.

(PRIMARY-PARAMETERS This form in the <param-list> of a
((<param-name-1) <default-value-t>) DEFLAYOUT specifies the names and
(<param-name-2) default-value-) default values for the parameters

used to build instances of the type.

(CONSTRAINTS This form in the <param- !ist> of a
((<constraint-name (param> <pare.> . DIFLAYOUT specifies that the
(<constraint-name <par.) <par.)> . constraints named are to be applied

to the parameters named.

(AUXILIARY-PARAMETERS This form in the <param-list> of a
(<param-name>...) DEIAYOUT specifies some of the

names used by the maker function
to store information.

(TYPE-FROM-TYPE-NAME <type-name)) Returns the type whose name is
<type-name>.

(TYPE? <object>) Tests to see if <object> is a type.

(PART <name> '(type> Creates an instance of <type and
(parem-) (param-2> . . .) makes it a part of .*t . If <name> iS

non-NIt, it is used as the name of the

part on *Mi.. Each of the
parameters has the following form:
('<param-name> <valuo>)

The (<param-name) may be a
defined parameter of the type, an
"implicit-parameter", or parameters
used to place the instance.

GLOSSARY - 73- DPL Manual

(DELETE-INSTANCE (Instance>) Removes <instance> from the parts
of *ME 0.

(INVOKE (name> '(type> Identical to PART except that the
(parse-I) (param-Z) . . . instance produced is not

considered to be a "part" of *mE.

(RENTYPE (type-name>) Removes all prototypes and
instances of the type and all
prototypes and instances that use
them. The type definition is still
available.

(DESTROY-TYPE <type-name>) Does a RuMIYPI of the type and then
removes the type from the list of

defined types. The type may then no
longer be called.

12.2 Naming

(ASSIGN-TO-THE (name> (object> (value>) Creates a cell named <name> on

<object> and places <value> in it.

(SET-MY <name) (value>) Creates a cell named <name> on *ME*
and places <value> in it.

(SETQ-MY '<name> (value>) The same as SET-MY but <name> is not

evaluated.

(BOUND-ON? (name> (object>) Tests to see if a cell named <name>

exists on <object>.

I"

i.

GLOSSARY 74- DPL Manual

12.3 Access Functions

(THE <nam> (object>) Finds the value of <name> in <object>.
If the value is a transformable object,
the appropriate composition of
transforms is performed to assure
that the result is viewed in the
correct coordinate system. <name>

may be the name of information
placed by DEFIAYOUT, SifQ-MY, an
"implicit-parameter", or one of the
components of a DPL structure (for
example, the prototype of an
instance).

(>) . (form-I> <form-Z> . . .<form-n>) Expands into a series of calls to TIlf.
The <object> of the last call to riiE is
ME. Accesses information from
ME as well as information nested in
parts of °mti. If the forms are atoms
they are not evaluated. Otherwise
they are evaluated and the results
used as the names.

(E>> <atom>) Returns <atom>. It is used if one
wants to evaluate an atom in a >>
form.

(MY <name>) The same as: (filt <name> *M1).

(EXAMINE <thing)) Used to interactively examine the
components of the structure of
<thing>. Allows the user to indicate
the parts he wishes to examne. The
command mi,}ii exits the prograim,

prints documentation.

I.

GLOSSARY -75- DPL Manual

12.4 Points

(PT WA> (y>) Makes a point with the given
coordinates.

(PT? <object>) Tests the object to see if it is a point.

(PT-SUM (ptl) (pt2>) These functions create a point that
(PT-DIFFERENCE (ptl) (pt2>) is the vector sum or difference of the

two arguments.

(PT-ABOVE (pt> <offset>) These functions create a point offset
(PT-BELOW <pt> (offset) from the given point the specified
(PT-TO-LEFT (pt> (offset))
(PT-TO-RIGHT (pt> <offset)) amount in the specified direction.

12.5 Transform Functions

((unitary-transform> (instance>) Applies the unitary transform
function to the instance. This gives
the instance a new transform which
is the composition of the
unitary-transform with the previous
transform of the instance.

IDENTITY ROT9O These are the unitary transform
ROTI8O ROT270 functions. Their names may be used
NEGX NEGY
INT-POS INT-NEG as the XFRM parameter in a PART

command. The names may also
appear as the unitary-part of a
transform.

(ALIGN (instance> Translates the instance so that
<pt-on-instanc > <pt-on- instance> is at
(target-pt)

<target-pt>.

(SET-TRANSFORM (instance) (transform>) Gives the instance a transform of
<transform>.

(TRANSFORM-PT (transform> (pt)) Returns the point that is the result of
transforming <pt> by the
<transform>.

,I

GLOSSARY *76, DPL Manual

The same as TRANWfRm-Pt but the
(TRANSFORM-PT-IY-UNITARY

(unitary-transtorm) 00t) argument is the name of a
unitary- transform function.

(CREATE-TRANSFORM (unitary-part) (pt)) Creates and returns a transform with
the given unitary-part and a
translation part determined from
(Pt).

(COMPOSE-TRANSFORMS <trans-i) (trans-2)) The transform that is returned is the
result of first applying <trans-2>,
then '<trans-D.

(COMPOSE-UU!TARY-TRAISFORMS (ut-i) <ut-Z>) Gives the unitary- transform that
results from applying unitary
transform (ut-2> followed by unitary
transform <(ut - I>,

(INVERSE-TRANSFORM (transform>) Returns the transform that, when
composed with transform>', Would
give the identity transform.

(INVERSE-UNITARY-TRANSFORM The same as rNvRnSI-RANSrORM
<unitary-transform>) except that this takes and returns a

unitary transform.

GLOSSARY -77- DPL Manual

12.6 Wiring Commands

(WIRE <name> . (body>) Makes a wire and names it <name> if

the name is non-NIt. <body > is then

executed with the wire bound to the
variable -lilt WIRE*. <body> may

contain and LISP forms or special
wire procedures.

(RUN-LAYER (layer)) These commands are allowed inside
(RUN-WIDTH <value>) a wIRI form. All of these have
(FROM <location>) corresponding functions for use
(TO-X <location>)
(TO-Y <location>) from "outside" the wire. Their
(TO-PT <location>) names are WiRC-<name> where the
(JOG-X <pt>) "
(JOG-Y (pt>) <name> is one of the above.

(+X <value>)
(-X (value>)
(+Y <value>)
(-Y <value>)
(SAVE-CP (name>)
(RESTORE-CP (name>)
(DROP-CONTACT)

(PT-CP (cp)) Gets the point from the
connection-point.

12.7 Constraints

(DEFCONSTRAINT '<name> Defines a constraint named <name>.
'<var-1st> When called, the constraint will bind

'<body)) whatever variables in (v a r- I s t > are

specified. Then the <body> will be

executed. The forms in the body
look like:
(<result-var> <depends-on> <code))

(None of these are evaluated when

the OrFlAYOUl is evaluated.) The

(result-va> is the variable that may
be computed if all the variables in
the <depends-on) list are specified.
The procedure to find the value of
that variable is specified by <code>.

GLOSSARY -78, DPL Manual

Defines a "default" constraint. The
(DEFDF -ULT'(nu) constraint will be effective only it no

'(body>) other attempt is made to set the
value of the parameters it
constrains, either by explicit passing
of values or other "normal"
constraints. Form and use are
identical to U fCONSTRAINT.

12.8 Replicators,

(DEFREPLICATOR '<name> Defines a replicator. The <namie> and
'(coordinate-variablos> (pa ram-lIi st0 work the same as for

(body-is> DEFLAYOUT. (coordinate-variables>
<body>)is a list of names that are used in

<body> to compute the instance at
the corresponding coordinates
when the replicator is referenced.

(*REP <1> (p>) Used in a THE or)> command, gets
the (< j><j)-th element of a
replication.

(*REP-INSTANCE Wa) Gets the nth instance in the
INSTANCE-LIST of the replication.

(REPLICATOR-INSTANCE (instance>) Must appear in the body of a
replicator. Indicates the instance
that is to be returned when the
replicator is accessed. Usually
<instance> is a call to *REP- INSTANCE
that depends on the
<coordinate-variables> of the

replicator.

(REPLICATOR-TRANSFORM Must appear in the body of a
(unitary-part> Wa <Y>) replicator. Indicates the transform

that is to be composed with the
transform of the instance given to
HEPLICAIOR- INSTANCE.

GLOSSARY -79- DPL Manual

Calls the replicator <replication>.<coordA name-s ieS> The list <coo rdinate-sizes> gives the

<param-list>) values of the dimensions of the
coordinates. The rest of the form is
identical with the PART form.

12.9 CIF

(CIFOUT <instance) <filename>) Outputs CIF translations of enough
of the data-base to build the
instance.

(CIFTRAN (tile> Translates the CIF in the <rile> into
<load?> <file-out) (lambda-size>) DPL and places the result in the file

<ri le-out>. Thei< Iainbda-s ize> is the

size of lambda in microns with which
the original CIF was produced. If

<load?> is non-NiL, the DPL forms
are loaded into the current
environment.

12.10 Implicit-Parameters

BOUNDING-BOX The implicit parameters of an
XOIM YDIN instance. All (except BOUNDING-BOX)
TOP-LEFT TOP-RIGHT
CENTER-LEFT CENTER-RIGHT have corresponding APPARENT-
BOTTOM-LEFT BOTTOM-RIGHT versions.
TOP-CENTER BOTTOM-CENTER
CENTER
ORIGIN

12.11 *LIST*

(MAKE-LIST-OF <list>) Makes a *ti st. from the list. Used
when the list will contain
transformable objects.

GLOSSARY -80.

(THE-LIST-OF (list)) Extracts the list from a -LIST*.

12.12 LayerSizing

(LAYER-DEFAULT-SIZE (layer>) Finds the default size for the layer.
Uses the "default-size" constants
below.

(LAYER-MINIMUM-SIZE (layer>) Finds the minimum size for the layer.
Uses the "minimum-size" constants
below.

12.13 Symbols

MxE When prototype is being
constructed by the maker function
of a type, eMc- is bound to that
prototype. Otherwise, "M[* is bound

to the "top".

STHE-WIRE* Bound to the wire being constructed
in a WIR[form.

CURREMT-WIRE Used to access CPs of the wire
being constructed.

(,UNNASIGNEDO) This list is placed in cells between
the time they were created and the

time they get values. If it is ever
seen, it means that an error has
occurred - somehow a cell has
been accessed that has no value.

TYPE-LIST Contains a list of the names of all
defined types.

GLOSSARY -81- DPL Manual

12.14 Constants

All these numbers are in lambda. They depend on the design rules of the

process being used.

*MIN-POLY-SIZEO 2 The minimum-size constants.
*MIN-CHANNEL-SIZEO 2
*MIN-DIFF-SIZEO 2
*MIN-METAL-SIZEO 3
*MIN-CUT-SIZEO 2
*MIN-ION-SIZE0 5
*MIN-NOGLASS-SIZEO 2

*DEFAULT-POLY-SIZEO 2 The default-size constants.
*OEFAULT-CHANNEL-SIZEO 2
*DEFAULT-OTFF-SIZEO 2
ODEFAULT-METAL-SIZEO 4
*DEFAULT-CUT-SIZE' 2
ODEFAULT-ION-SIZE* 5
'DEFAuLT-NOGLASS-SIZEO 2

POLY-OVERHANG 2 Other useful numbers.
*DIFF-OVERIANGO 2
ION-OVERHANG 1.5
*METAL-TO-METALO 3
*POLY-TO-POLYO 2
DIFF-TO-OIFF 3
*POLY-TO-DIFFO 1
*ION-TO-TRANSISTORO 1.5

-Raw

