‘AD-A093 933  MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE=--ETC F/6 9/2
THE DESIGN PROCEDURE LANGUAGE MANUAL (U)
SEP 80 J BATALI» A HARTHEIMER NO0O14~T75-C~0643
UNCLASSIFIED AI-M~598 NL

EEER}

_— \
END
oate
euco

2-8. |

oTIc i




ADA093933

_COPY

i
i

L IR

bl it

. :‘*

LR

e

C 10 ; John/BataH A Anne 4artheirqgr

]

/D A2 { p
uncLASSIFIED ( )

SECURITY CLASSIFICAT 3 GF THIS PABE (Whe o-htered)
READ INSTRUCTION:
REPORT DOCUMENTATION PAGE B R Pt R
!. REPORT NUMRER 2. GOVY ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER

AIM 5987 A Ac9R 93#

5. TYPE OF REPORT & PERIOD COVERED

: E/emorandum r:?_f) g

PERFORMING ORG. REPORT NUMBER

The Design Procedure Language Manual.’ (,i
| . - e
L4

Py 1

- CONTRACT OR GRANT NUMBER(e)

| N?T 14-75-C-06437
NG0D14-80-C 0622

e JCRAM MENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

7. AUTHOR(»)

9. PERFORMING ORGANIZATION NAME AND ADORESS
Artificial Intelligence Laboratory”
545 Technology Square
Cambridge, Massachusetts 02139

1). CONTROLLING OFFICE NAME ANO ADDRESS _ A 12. _REPORT BATE ™ =
Advanced Research Projects Agency } | ; Sepouminamne=dd
1400 Wilson Blvd I3 ANUMBER OF PAGES
Arlington, Virginia 22209 8]

14. MONITORING AGENCY NAME & ADDRESS(! diiterent from Controlling Oflice) 18. SECURITY CL ASS. (of thia report,
Office of Naval Research % gﬁﬁ'wf o UNCLASSIFIED

Information Systems =
Arlington, Virginia 22217 iﬁ e m o
X

134, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report) BT e

Distribution of this document is unlimited.

h ' Ny
G pr-m-s97 et

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, 11 dilferent from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side If neces.ary and identily by block number)

Integrated Circuits
Computer Aided Design
Data-Bases

<|110. ABSTRACT (Continue on reveras side If necessary and identity by block number)

PThis manual describes the Design Procedure Language (DPL) for LSI design.

DPL creates and maintains a representation of a design in a hierarchically
organized, object-oriented LISP data-base. Designing in DPL involves writing
programs (Design Procedures) which construct and manipulate descriptions of a
project. The programs use a call-bykeyword syntax and may be entered
interactively or written by other programs. DPL is the layout language for the
LISP-based Integrated Circuit design system (LISPIC) being developed at the

UNCLASSIFIED /o /) 'L‘I?[Z;

SECURITY CLASSIFICATION OF THIS PAGE (When Date Batersd)

DD 'FO"” 1473  EOITION OF 1 NOV 63 IS ORSOLETE
S/N 0102-014- 6601 |

JAN 73




SArtificial Intelligence Laboratory at MIT. The LISPIC design environment will
combine a large set of design tools that interact ghrough a comnon data-base.

This manual is for prospective users of the DPL and covers the information

necessary to design a project with the language. The philosophy and goals of
the LISPIC system as well as some details of the DPL data-base are also discussed.

[};5;1.5_‘.,. S f/
,/ T /

N




MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Memo No. 598 V.L.S.I. Memo 80-31 September, 1980

THE
DESIGN PROCEDURE LANGUAGE
MANUAL

by John Batali and Anne Hartheimer

Abstract: This manual describes the Design Procedure Language (DPL) for LSt
design. DPL creates and maintains a representation of a design in a hierarchically .
organized, object-oriented LISP data-base. Designing in DPL involves writing
programs (Design Procedures) which construct and manipulate descriptions of a
project. The programs use a call-by-keyword syntax and may be entered interactively “‘
or written by other programs. DPL is the layout language for the LISP-based |
Integrated Circuit design system (LISPIC) being developed at the Artificial intelligence ;
Laboratory at MIT. The LISPIC design environment will combine a large set of design
tools that interact through a common data-base.

This manual is for prospective users of the DPL and covers the information
necessary to design a project with the language. The philosophy and goals ot the
LISPIC system as well as some details of the DPL data-base are also discussed.

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the Laboratory's V.L.S.I. research
is is provided in part by the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research Contract number NO0014-80-C-0622 and in
part by the Advanced Research Projects Agency under Office of Naval Research
contract NO0014-75-C-0643.




i -2- DPL Manual
CONTENTS
1. INTRODUCTION ...cooiiiititiirccirensee e cercese e e eesssessessessnssnes 6 ‘
1.1 The ManUAD ........ooviiii et e e eaane 6
1.2 Designing With DPL ... e e 7
1.3 Credits ..o st senne 10
2. INTRODUCTORY EXAMPLES ...t ee e 11 1
3. THE DATA-BASE ...ttt ese s ssssane e ssnase 16
Bl TYPES oottt ettt e e e s et ee st ere s eennens 16
3.2 ProtOtyPeS ...oociiiviiieiiiiiiiniitt e e st sn e e e sbe e et e e s s 17
3.3 VirtUal-COPIBS ...oooveevireertirreirieiviraee et eseeesreeeeeranasmnetesssssseessessennnnns 17 {
B4 INSLANCES ...ooiieeviiiieiiie et b s ares 19
3.5 Storing and Accessing Information ............ccc.coceeriiiiiiviicinn, 22
3.6 What Happens When Something is Made .......c..ccccvveveviiveeceeeonen, 22 ‘
4, BUILDING THINGS ... cccesne e ceererrrreeaeees 24
4.1 Creating TYPOS ......oviiiiriceiicie ettt s etae s s ee s estnesee e siaaeeaes 24
4.2 The Type RECTANGLE ..........ccceiniriiiimicieee e 25
4.3 InStANtiating TYPES .ooviviiii ittt eeee e e s 26
4.4 The Structure Built by a TYPe ..ccceeeiiiviiiiie et 28
4.5 Naming TRINGS ..cc.ooooiiiia e 28
4.6 Accessing Parts and Parameters ...............cccocecevveeie i, 29
4.7 The General Access FUNCLion .........cc...cccccoiviiiviiiiei e, 30
4.8 Additional Features of DEFLAYOUT ..., 31
5. PLACING THINGS ...ttt ereevessaaans 33
5.1 Coordinate SYSteM ..ottt 33
B.2 POIMS ...t ae s 33
5.3 (MPHCIt PATAMEIEIS .v.oooovvereeeeeeoooeeoeoeooeoeoeoeo oo 34 ‘
5.4 Translation ..........cccooviiiniiiii et 36
5.5 Unitary Transforms ........coocoien i et 36
5.6 Placement by Parameter ...........c.....ooocvviineciee e eeee e ees e 338
] 5.7 INVOKE ..ottt st 39 ﬂ
; 1
i
- e a4 =




f -3- DPL Manual

5.8 MLIST Y et et r s 40

6. THE DPL WIRING SYSTEM .......coovvrirnrierecrnriecieens N 41
6.1 Wire System COmMMAaNAS .....c.ccovviveiiiiisirreeseie e seree v e e 41
6.2 Wire System Example ........cccceveiiiininirenrniecesirers s 43
6.3 External Wire Commands .........ccccccvrivcinvirinninicnie e e 45 :
6.4 ConNeCtion POINES ......cooiiviiiiiiiiiieccie e ebe s 45

7. CONSTRAINTS .ottt e saessrnr e rree e ver 47
7.1 Using CoNSraints ..........cccovvieieinieiiinnteseseiircneriviee e e sene e 47 ;
7.2 Defining Constraints ............cccoceevevviiiviccnie oottt ceeranes 48

8. REPLICATORS .....cococieititriireeinieieereressnresreeneseessnsssnsnssesssonsenes 50
8.1 Calling Replicalors ......cccoooviviiiiiiiin et e e aeeaees 50
8.2 Accessing RepliCalioNS ..o ceeevae s 51
8.3 Defining Replicalors ... 52

9. USING DPL ..ottt nrnttree s sre s sn s serss s ns e ae s 54
9.1 Interacting with DPL ... e 54
9.2 What Objects Look LIKE .........cccvveeeiinriieere e 55
.3 CIF ettt aa st e b reebear s 56

10. EXAMPLE ..ot ettt s ssnees 57
10.1 DPL deSIgN StYIE ...t 57
10.2 The REGCELL ...ocooviriiireiiccceieircceerene et st ae st srne s e 58
10.3 Discussion of the REGCELL program ............ccoovcerimvrenrarenenennn, 62

11. LIBRARY ...t sssiivvc e ceesssennses s sss enesennes 65
11.1 Some CONSEIAINS .......cccviieiirreciintir e eee s e e sen e 65
11.2 SOME TYPEOS .oiviriiiieieeiree e sere bt arreeesabe e s antesreaseesansatvessaersneens 65
11.3 SoMe RePlCALOrS .....c..covviiririiii ettt e saneene 68




-4- DPL Manual

12. GLOSSARY ...ooiieierireriiitiiene e rerea e sessesasnssesssseasesssanesas 71
121 TYPES woivieiiiiiciiet ittt et as e et e e ane s 72
12.2 NAMING ociiiiiiiiret s sae et e 73
12.3 ACCESS FUNCHONS ....oovvvveiinriniiireeeeieccries s essnrrec e esnbberan 74
V2.4 POINES .ooovinveiiiieieies ettt e s e e e ees s sreasse s srnsnssrrte s s e e e s sesaaeens 75
12.5 Transform FUNCHIONS ...c..oovvvvviieiiieciecreeeces e s e 75
12.6 Wiring COMMANGS .........ooriiriiieiinrererrrenerissee s crenessreesaseenneniens 77
T2.7 CONSILAINES ...ooieeeeiiiirier e cerirren e e e et iie e s serr e s sencnnnssrvesna e e b eaaeeas 77
12.8 RePlCAONS ....coeeiiiiiieiiniiirrcieirne e vrree s estre e e s e st e eaaet e e e 78
T2.9 CUF ittt b e sbesa e s e e sasteranas e e aaneseraanane 79
12.10 IMmplicit-Parameters ..........c.cccooecveiin v ceee e 79
T2.01 PLUST Y e ettt et b e r et be et aee bt e 79
12.12 LAYEN SIZING oovvveievervnieeveie ettt s v ceveestasassessssarasateteesenassaeases 80
1213 VANADIES oottt e e e 80
12.14 CONSIANS .....ooveiiiiiiniiiiiess et eseerteeere e e reeasstsseseasasrsaerans 81




DPL Manual

o

ACKNOWLEDGMENTS

We would like to thank Ned Goodhue for drawing the figures. Neil Mayle,
Howard Shrobe, Jon Taft, Gerald Sussman, Daniel Weise, and Ron Rivest read and
commented on dratts of this manual. Chuck Rich helped us tigure out how to use the

text-justifier.

e




INTRODUCTION -6- DPL Manual

1. INTRODUCTION

1.1 The Manual

This manual describes the Design Procedure Language (DPL) for LS! design.
DPL creates and maintains a representation of a design in a hierarchically organized,
object-oriented LISP data-base. Designing in DPL involves writing programs (Design
Procedures) that construct and manipulate descriptions of a project. The programs
use a call-by-keyword syntax and may be entered interactively or written by other
programs. DPLU is the layout language for the LISP-based Integrated Circuit design
system (LISPIC) being developed at the Artificial Intelligence Laboratory at MiT. The
LISPIC design environment will combine a large set of design toois that interact
through a common data-base.

This manual is for prospective users of the DPL and covers the information
necessary to design a project with the language. The philosophy and goals of the
LISPIC system as well as some details of the DPL data-base are also discussed. The
implementation of the language is not discussed here except for those details that are
felt to be instructive when attempting to understand the language. The manual is

organized as follows:

The introduction describes the key features of the LISPIC system, the data-base
and DPL.

Chapter 2 contains some introductory examples of the use of DPL. The

examples consists of definitions of several cetls and pictures of the cells.

Chapter 3 presents an overview of the DPL data-base. Here we discuss abstract
structures used to represent designs.

Chapters 4 through 8 present DPL itself. The functions and forms most useful
for using DPL when designing a project are presented and explained. The material in

these chapters constitutes all of the information necessary 1o use the language.

Chapter 9 discusoes how DPL "looks” to the user. It presents interaction details
as well as functions for transiating between DPL and CIF.

Chapter 10 presents a fairly hefty example which exercises many of the features




\ it Trer e

———— e — e &~ _ o

vl

INTRODUCTION -7 DPL Manual

of the language. The example also demonstrates the design style which DPL
supports.

Chapter 11 is a library containing the definitions of oubjects available in the basic
DPL system. This chapter is useful both as a set of examples of the use of DPL and as

a reference tor designing.

Chapter 12 is a glossary of DPL functions and variables. The syntax and usage
of functions are summarized. This is where we explain how afl the functions evaluate
their arguments. The most useful DPL functions will have been met earlier in the
manual. The glossary also contains functions which are less useful or more "low

leval” then the functions explained in the body of the manual.

1.2 Designing With DPL

VLS design is complicated. A large 1C design may contain several thousand or
more pieces of material  Designers think of thoir designs not in their full complication
but rather as coliections of of parts which may be further decomposed into other
parts. Such a hierarchical viewpoint both expresses the desivner’'s understanding of
his design and econonuzes his thinking about it. Unnecessary detail is suppressed so

that the gate, module, subsystem or system of interest may be dealt with.

A set of design tools should be able to represent the design in as much the same
way the designer does as possible. Thus the basis of a set of design tools should be a
data-base representation of designs that is flexible, extensible and hierarchical. The
goal of the LISP-based Integrated Circuit (LISPIC) design project is to produce a
design system caonsisting of a large number of design tools - simulators, design
verifiers, routers etc. - integrated with one another through a common data

representation.

The Design Procedure Language (DPL) is a collection of LISP functions that
construct and mamiputate a hierarchically organized object-oriented data base. DPL
is intended to be a user language - it can actually be used by a human to buiid
projects. DPL may also be used by programs such as PLA generators, routers, and
node-extractors. Since it i1s embedded in LISP, DPL inherits the power of a ful

programming language. LISP programs can be written that call DPL functions and




INTRODUCTION -8- DPL Manuai

vice-versa.

The LISPIC system is illustrated in Figure 1. The LISP-based data base is
manipulated by the DPL language. Other programs and systems communicate with
the data-base through DPL. The other systems may communicate and cooperate with
each other through this common representation. (Note: Not all of the systems

pictured are available yet.)

Using DPL consists of designing a project by specitying a procedure that will
build it. This is the reason for the name "Design Procedure Language"”. A design
procedure constructs a data-structure which holds a description of a design. The
descriptions may include procedures for further manipuiation of the data-base. At
some point the designer will want to actually construct a physical implementation of
the project, but for most of the design process that is not necessary. What is
necessary is the construction and maintenance of a structure that represents the
design. Since much in a design description is procedural, a description can help to
build itself. Such procedural descriptions also allow the DPL data-base to be modified
by other programs.

We should point out that the need to do this sort of thing is the reason why the
system is implemented in LISP. More than any other programming language, LISP
easily handles arbitrary structures that may contain procedural parts and may even be
able to build themselves. The simple syntax of LISP allows programs to write
programs easily, and the interpreter allows a "real-time" interaction between the

designer and the language.

Parameters to DPL design procedures use call-by-keyword syntax. The
parameters may be assigned default values. Constraints among the parameters may
be specified by the designer. Parts and parameters of objects may be named and the
named information may be accessed by functions which follow path descriptions and

transform objects.

The DPL design process involves the following stages: The designer specifies
procedures for constructing pieces of the design. These pieces are then used to build
more complicated representations. The procedures may refer to information stored in
the structure earlier. Mistakes may be corrected and changes implemented by

making use of information in the existing structure. The final design is a complicated




LISPIC ENVIRONMENT

Other systems

PLA Graphics Text Node Simutator
Generator Package Editor Extractor
y § /( /_7 ’/{
'| y _,/'/ //
\ / pd /./
/ e o
\\\" Il’). ;/// - //
- y £ ¥
DPL. (intisP) < CIF File
\\
\,\\
.
\\*
Mask (in CIF)
Data Base l
Chip
Figure 1

Cuealéd possibly on

another system

>




INTRODUCTION -10 - DPL Manual

yet organized hierarchical structure which may be used to produce mask
specifications.

1.3 Credits

DPL was written by Gerald Jay Sussman, Howard Shrobe, Neil Mayle, and John
Batali. The language is based on two earlier IC layout languages. one by Jack
Holloway and Sussman, the other by Shrobe. Ron Rivest, Daniel Weise, Anne
Hartheimer, Howard Cannon, Tom Knight, Jon Taft and Paul Penfield contributed
help, advice and enthusiasm.




INTRODUCTORY EXAMPLES -11. DPL Manual

2. INTRODUCTORY EXAMPLES

In this chapter we present three illustrations of the use of DPL. The examples
are included here to motivate the detailed description of the language in later
chapters. We suggest the reader look at the examples before reading on, note the
interesting points, and refer back to the examples while reading the rest of the

manual.

The three example cells are described in DPL expressions and are accompanied
by pictures of their layouts.

The definition of pass-1rans1SioR specifies that an object be built from several
rectangles called CHANNLL, SOURCE-DTIIUSION, DRAIN-DIFFUSION and POLY-PIECE. The
channel region is a rectangle of the layer "channel* whose length and width are
determined by the parameters passed when this object is built. All of the parts of the
pass-transistor are given names. The positions for the source and drain
diffusions are determined by aligning points on them with points on the channel
rectangle. Also, a point P is named. An instantiation of the pass-transistor with a

particular set of values for its parameters is shown in Figure 2A.

The InverTEr "calls” the pass-transistor. It also calls a "standard-pullup” which
is a cell defined elsewhere (see Library). The inverter's parameters are constrained
so that the inverter-ratio is equal to the ratio of the pullup-ratio to the pulldown-ratio,
etc. Note that the pass-transistor is placed by lining up its top-center with the
location of a named point, (DIFFUSION-CONNECTION), the pullup. Also a point,
(INPUT-PT), the inverter is named (Figure 2B). The location of 18ruT-PT is determined
by following a path of named parts: (nrur-er1 is tocated at the cenitr-LEFT point of the
part named poLy-r1rCe of the part naimed ruL1 nown of the inverter.

surren is a cell thal could be used to refresh a signal. It calls INVERTER twice, with
different parameters. It thus makes use of two different versions of PASS-TRANSISTOR.
The version used is determined by how the constraint system sets the values of the
inverter's parameters when it is called. The second inverter is placed far enough
away from the first to allow room for the connection. Variables representing
design-rule constants, *roLy-10-r0ty* and *nDEFAULT-POLY-S1Z2F*, are used to specily
placement. The connection between the two inverters is made with the DPL wiring

system. The wire begins at a point on the boundary of a part of a part of a part of




INTRODUCTORY EXAMPLES -12- DPL. Manual

INPUT- INVERTLR. [t runs horizontally to a point halfway between the inverters and then
“jogs” to the input of the second inverter (Figure 2C).

The figures show the structures huilt when the three object definitions are
called. They also show how the location of the point named p in PASS-IRANSISIOR iS
transiormed as the structures are built.

Note: The definitions of PASS- TRANSISTOR and INVERTER presented here are not the
same as the definitions in the library. They are, however, perfectly tegal DPL and
would “"work"” as defined. We have made some changes to make the examples
simpler. BuittR is not available in the basic library.

(deflayout pass-transistor v s PASS-TRANSISTOR
‘({primary-parameters

{(channel-length 2)

(channel-width 2))))
(part ‘channel rectangle

(layer ‘'channel)

(length (>> channel-langth))

(width (>> channel-width)))
(part ‘source-diffusion rectangle

(layer 'diff)

(length *diff-ovarhang®)

(width (>> channel-width))

(top-center (>> bottom-center channal}))
(part 'drain-diffusion rectangle

(layer 'diff)

(length *diff-overhang®*)

(width (>> channel-width))

(bottom-center (>> top-center channel}))
(part ‘poly-piece rectangle

(layer ‘poly)

(length (>> channel-longth))

(width (+ (>> channel-width)

(* *poly-overhang® 2))))

(setg-my p (>> center-right poly-piece)))




ey~

» b

INTRODUCTORY EXAMPLES -13- OPL Manual

(deflayout inverter
‘((primary-paramaters
({pullup tength 8)
{(pullup width 2)
(pulldown-length 2)
(pulldown width 2)
(pullup-ratio nil)
(pulldown-ratio nil)
(inverter-ratio nil)))
(constraints ({c* pullup-length pullup ratio pullup-width)
(c* pulltdown Jenglh pulldown ratio pulldown-width)
(c* pullup ratio inverter-ratio pulldown-ratio))))
(part ‘pull-up standard-pullup
(channel-length (>> pullup-Tlength))
(channel widlth (>> pultiup-width)))
(part 'pull-down pass-transistor
(channel Tength (>> pulldown-length))
(channel width (>> pulldown-width))
(Ltop-center (> diffusion connection pull up)))
(setg my input pt (> center left poly picece pul) down}})

t13 INVERTER

(deflayout buffer s :: BUFFER
"({primary-parameters ((inpul-ratio 8)
(output-ratio 4)}))
(part "input-inverter inverter
(pullup-ratio 4)
(inverter-ratio (>> input-ratio)))
(part ‘oulput-inverter inverter
(ratio (>> output-ratio))
(cenler-left (pt-to right (>> center-right input-inverter)
(+ *poly-to-poly*
*defaull-poly-size®
*poly-to poly*))))
(wire 'connection
(run-layer ‘'poly)
(from (pt-above (>> botlom-right gate-poly transistor pull-up input-inverter)
(half *default poly-size®)))
(to-x (+ (>> x p pull-down input-inverter)
*poly-to-poly*
(half *default-poly-size®)))
(jog-y (>> input-pt output-inverter))))




channel-width = 2
channel-length = 2

Instance of STANDARD PULLUP

™ /
Figure 2A -- pass-transistor | : - g
T
— | :
i

Pis now at (3,-12)
Point named "input.pt".

\\_‘_5— —}" J

Transtorm = (identity 0 -12) {>> P pull-down) returns
(*PT*3 -12)

Instance of PASS TRANSISTOR
named "pull-down”

Figure 2B -- Inverter




——
——

Instance of INVERTER
named “output inverter”

Transform =
(identity 15.0)

— — ——_

|
[
I P P
J

Point P is now at (18,-12)

(>> P pull-down output-inverter)

l tetums (*PT* 18 ..12)
“-__—\_ //

Instance of INVERTER

named "input-inverter”.

Figure 2C -- Buffer

e




-

THE DATA-BASE -16 - DPL Manual

3. THEDATA-BASE

In this chapter we discuss the data base used by DPL and the vocabulary
needed to explain the particulars of the language. We discuss the data structures of
DPL, explain what is in them, and show how they are used by the language to build
descriptions of designs.

This chapter need not be understood fully to use the language. The
implementation details and more complicated ideas are reasonably interesting but the
only way to understand DPL is to use it. We recommend that this chapter be
skimmed for the basic ideas and the fater chapters examined more carefully -- they
are more useful tor using the language. For the most part, the difficulty of a concept
is inversely propaortional 1o its utility.

In the sections that follow, various abstract objects are introduced and
discussed. The low-level impiementation of these structures (i.e. lists or airays or
whatever) is not important and in most cases is invisible to the user.

3.1 Types

A type in DPL holds a procedure that builds data structures. These structures
contain descriptions of various kinds. The procedure stored in a type is called the
maker function of the type. A type also contains information about its maker function
such as the paramelers it may take, their defauit values, and constraints among the
parameters. A type may also contain information about the structures produced by its
maker function.

A type may be thought of as a description of a class of abjects that share some
common features These objects are the structures produced when the maker
function is run with various vailues for its parameters. The structures produced by a
type thus are related by the way they were created. Usually one creates a type

whenever a certain object or module is important enough to be given a name.

In the introductory example, PASS - TRANSISTOR, INVERTER, and 8ul 1R are all types.
(The command ot 11 avour defines a type.) In all cases we have a certain conceptual
entity which can nevertheless take a wide variety of forms. Inverters can be built with




THE DATA-BASE 17 - DPL Manual

many ratios, NOR-gates can be built with different numbers of inputs.

A type may specify that the structure it builds includes structures built by other
types. Types may thus "call” other types. Objects are built by delining simple types
which are called by progressively more complicated ones.

3.2 Prototypes

The structure that is built by a type is called a prototype. A prototype holds the
description of certain parts ot a design. The prototype and the description in it are
praduced by a "call” to the type with a particular set of values for its parameters. The
description depends on the values of the parameters in a way that depends on the
details of the maker function of the type. The difterent prototypes produced by a type
will resemble each other since they were produced by the same procedure, but they
will ditfer if their parameters differ.

The distinction between types and prototypes is this: Types hold programs that
produce prototypes. Prototypes hold descriptions. The user defines types by
specifying the details of the maker function. The maker function is used to construct
a prototype and thus a description of a piece of the design. The user never directly
touches a prototype -- he only tells a type how to build one.

In addition, the user may place any other information on a prototype he desires.
it is often useful to name a part of an object or specify the value of a numerical
parameter. This, as well as the addition of parts to a prototype, is done by inserting

the appropriate commands in the maker function of the type.

3.3 Virtual-Copies

if the maker function of a type "calls” another type, the prototype built by the
"called” type will be a part of the prototype built by the "calling” type. A prototype
that is a part of another prototype is called a virtual-copy (VC) in DPL. A VC always
has two pieces ol information on it: its parent, which is the prototype it is a part of,
and its prototype, which is the prototype being called.

The virtual copy is so named because the description of the prototype is

— A



——

PART HIERARCHY
TypeB |— __ _
N
i S
TYPE A P
-~ N

Prototype B Maker Function ]:

: Maker Function Info

* Proto’s made J Tq 10, ]
{Pans | [o] ]

PROTOT ?E A
|‘|l p‘".’-' Type 1b
VC of Proto A Params
Parent 3 Parts Y !
o+ VC's made o \,
Proto 7? "\
’ ‘___,» \\ h
e — AN \
Created as a "part"” of proto B Created when "Maker" of \
when Proto t1s made by "maker” Type Ais called ?
otType 3 TypeAis !
ralled (dolled line) by Type B's -

maker function. VC of Proto A «

"Part” of another prototype

FIGURE 3

Note VC's, Types, and Prototypes contain other fields not shown

f

A’ differs from A because
it was made with
ditferent parameters

» !
!
1 S




e

THE DATA-BASE -19- DPL Manual

available in the VC. The copy is "virtual" because the information is not on the VC,
but on the prototype of the VC. Thus several prototypes can use a prototype as a part,
each having a different VC of the that prototype. (See Figure 3.)

information about a VC may be oblained by accessing the corresponding part

or parameter of its prototype. For example. a prototype of invtritr will have a value ‘

i for its pulldown ratio. To find the pulldown ratio of a VC of that prototype, an access
function finds the prototype and gets the information from there. The VC "looks" just
like its prototype. One may pretend that the prototype’s structure is really copied into
the VC. Prototypes are not copied into VCs because it is more efficient to have only

one prototype which is pointed to by its VCs.

it may be necessary to attach other information to a VC besides its parent and
prototype. A particular VC may have a certain "reason” (for bemng a simple inverter,
say, as opposed to a superbuffer). In general, information that is shared by more than
one VC belongs on a prototype. while mformation that is specific to a VC may be

stored there.

In addition to using some prototypes as paits of others. it is possible to specity
that a certain type includes "all” of another type, plus some mote information. In this

case, the original type is called the supertype of the one that specifies the changes.

The subtype has all the parameters of its supertype, plus any others declared when
the subtype is delined. (See Figure 4.)

The ditference between calling a type as a part of another and declaring a type a
supertype of another, is that the subtype is really a modified version ol its supertype,

while a part is a different entity from its parent.

3.4 Instances

Up to this point have spoken only of information that is “fixed" on objects.
Parts. parents. and parameters we all kinds of information that must be specified
when describing an object. It is possible for some information about an abject to
depend on the comntext in which the object is viewed. An example of this sort of
information is the geometric transform a VC undergoes when it is actunlly placed
somewhere in a design.




Type B is a supertype of Type A

Type C is a supertype of Type B

Type B cortains all of Type C's parameters

plus (optionally) others added when
Type B was defined.

TYPE HIERARCHY

Type B

Supertype
Prototypes

.,

\

\

Protét\ype B

Type 0

Superprototype

When Type B's maker function is ¢ alled,
Type C's maker tunction is executed first
When C's maker function is fintshed. Type B's
maker function execules, adding or deleting

tems created by C

i'rototype H is dentical to Prototype C except as

moditied by B's maker function

FIGURE 4




THE DATA-BASE - 21- DPL Manual

When building a prototype, it is necessary to specily where each of its parts is to
be placed. We must specify how the coordinate system of the prototype being used
as a part is to be transformed in the coordinate system of the parent prototype. Inthe
introductory example. the pullup is placed so that its origin is at the origin of the
inverter's coordinate system (by default). When we use this inverter in another
prototype we must specify where the inverter is to be placed. The output-inverter of
the example is placed with its origin at the point (15,0) in the buffer's coordinate
system.

The specification of a transformation is not a part of a VC because the same VC
may be viewed in different ways. The pullup transistor inside the inverter may be
viewed 1n the coordinate system of the inverter as the inverter prototype is being built.
We may then wish to view it later, from a coordinate system in which the inverter is a

part.

Another reason that a transtorm must be separate from a VC is that we want a
VC to be "the same” (10) no matter what coordinate system it is viewed from. The

transform, on the other hand, changes with ihe viewpoint.

A VC is contained in an object cailed an instance which contains a VC and
"augmentation” describing the context in which the VC is viewed. In the artwork
description of an object, the augmentation is the transformation of the coordinate
system of the prototype into the coorditiate system of the parent. So in this case: an

instance is a VC plus a transform.

Much of this is similar to CIF. Prototypes correspond to CIF symbols and
instances correspond to calls to symbois. CIF has no need to distinguish between
VCs and instances because objects are never accessed in CIF except to call them,

Piato probably had the idea first, speaking of “"ideals" of which real world
objects were just crude imitations. The term "wvirtual copies” comes from Scott

Fahiman who used them in much the same way we do.




THE DATA-BASE -22- DPL Manual

3.5 Storing and Accessing Information

DPL has tunctions for storing and accessing information. Some information is
necessary 1o specify a prototype’s structure, such as its parts. Other kinds of
information may simplity the design process, such as the named points wheie wires
may be attached. A number that is the result of a complicated computation may be
computed once and stored. For that matter, totally useless information may be stored
if desired.

To store information on a prototype. a “cell” is created on the prototype and
given a name. Any LISP object may then be placed in the cell as its "value". The

value of an existing celf may be modified by placing a new value into the cell.

It one of the parts of a prototype is named, a cell on the prototype will be created
with the part as its value, and the part's name as the name of the cell. This part, an
mstance, may have as its prototype, another prototype with a named part, and so on.
it one asks for the locabion of a named point or part "deep” inside several levels of
parts. lhe transforms of all the parts must be composed to fing the location of the

ohject in the current coordinate system.

DPL provides access functions that are used 1o extract values trom cells. 1o
addition to simply extracting values, the access functions will apply the appropriate
transtorms to objects that depend on the context n which they are viewed. In Figure
2 we show the transforins that must be applied to point P in successive instances of

the type PASS TRANSTSIOR.

DPL also prov.des functions for focating the corner pomnts of an instance as well

as 15 bounding box and horizontal and vertical dimensions.

3.6 Whotl Happens When Something 1s Made
When a type s called:
1. The values of the supphed parameters are evaluated.

2 For each parameter detined on the type, a cell is created with that name. At

this pont all the cells have no value assigned to themn, but each cuntairiss intocmation




THE DATA-BASE - 23 - DFL. Manuat

about any constraints that apply to it.

3. The supplied values are then used to fill the cells. If placing a value in a cell
allows a constraint to run -- because the added value completes one of the sets of
parameters on which a constraint depends -- the procedure for that constraint then
runs. If the result is to set a previously unassigned cell, then the process repeats until

no more constraints can run.

4. When all supplied parameter values have been placed in cells and all
triggered constraints run, any cells that still have no values are given their default
values. At this point the system has all the information it will get about how to build

and place the prototype.

5. Al prototypes built from the same type with the same parameter values will be
identical.  Therefore. before a new prototype is constructed, all previously
constructed prototypes of the type are examined. It one is found with parameters
identical to the ones being requested. that prototype is used. Otherwise the maker

function of the type is run to construct the new prototype.

6. Once the prototype is made or found, a new instance is constructed from the
prototype. The transform given to the instance depends on whether a transform is
specified when the type is called. If no transform is specified the instance is given the

"identity" transform.

7. The instance may then be named. DPL commands also exist to move it

around, rotate it, and extract information from it.




BUILDING THINGS - 24 - DPL Manual

4. BUILDING THINGS

In this chapter we introduce the DPL functions which build objects.

4.1 Creating Types

The most important aspect of the DPL design process is the creation and calling
of types. A type is created by a bittavour expression, which contains the maker
function of the type. a procedural description of the structure created when the type is
called.

Deflayout takes the form:
(DEILAYOUT <Lype -name> <(param-list>

<form-1>
<form-2>

<form-nd>)
where <type name> is the name being given to the new type, and <form-1> through
faem- > constitute the maker function of the type. The forms may include any LISP or
DPL expressions. .param-1ist> is a list in which each element is a pair of the form
{«param-name> <value>). <value> may be any LISP object. The only form in this

expression that is evaluated is <param-1ist>.

<param-1ist - hokls information about the parameters that the maker function ot
the type may take. This information may include parameter names, their default
values, and constraints among the parameters. <param-1ist> may contain all, some.
or none of the above information. It may also contain other information about the

type bocides that used in the typa’s maker function.

To name para neters and assign thein defaull values, a list of the following form
must bemcluded in - param 1isty:
(PRIMARY DARAMETERS

(- name 1° <val-1>)
(«nany 70 <val-ae)

(<name n> <val-n>)))

This list is a pair whose first item is priMArY paramt 1ERS and whose second item is a fist




BUILDING THINGS -25- DPL. Manual

of parameter names and values. The <name- i> are the names of the parameters that
the type’s maker function may take. The «vai-i> are the parameters' default values.

An example of the use of vttt AYou! is:
1 (deflayoul square-contact '((primary-parameters ((layer 'poly))))
2 (pai't ‘cut rectangle (layer 'cut))
3 (part ‘cover rectangle (layer ‘'metal))
4 (part 'stuff rectangle (layer (>> layer)) (length 4) (width 4}))
Here we define a type called squaat -conTaci. It has one parameter: tAY(R (the
material it will be made of) which is given the default value of rotv. Lines 2-4 are uses
of the DPL procedure prart which adds a part to the object being built by calling
another type. Making a sQt.wrt -CONTACT involves creating the parts described in lines

2-4.

4.2 The Type RECTANGLE

The artwork description of an IC design is ultimately decomposable to a
collection of rectangles. The DPL type riciANGIt is the primitive type used to build the
artwork descriptions of other types. RICTANGIE specifies the mask layer and
dimensions of a rectangular piece of a design.

The primary-parameters of RECIANGIE are LAYER, LENGTH, and WIDTH. L ENGIH refers
to the Y dimension of the rectangle. wintu reters to the rectangle's X dimension.
Rectangles may only be built with their sides parallel to the X and Y axes. LAYiR refers
to the material from which the rectangle will be made.

RECIANGLE is defined with the constraint that if either 118GIH Or WIDIH iS ot
specified it will be set to the default size for (avtnr. A list of the default layer sizes is
included in the glossary.

When using NMOS technology, the available DPL layers are: piit, POLY, CUT,
MEiAL, 10N and cuannit. The cnannii layer is used to represent the channel region of
transistors. The cuannrt layer is included in DPL to make it possible to explicitly refer
to the active region of a transistor, as well as to separate the source and drain
diffusions. In addition, this representation is physically more accurate than simply
crossing rectangles of roty and n1fr, since the channel region of an NMOS transistor
actually contains no diffusion. 1t is possible, however, to design without using the




BUILDING THINGS - 26 - DPL Manual

channel layer.

4.3 Instantiating Types

Once a type has been defined with bt 11 avout, instances of that type can be built.
vani is the procedure used to instantiate a type. A call to Par) creates an instance of a
type.

part takes the form:

(PART <name> <type> (<param 1> <val-1>)
(<param-2> <val-2»)

i(param'n> val-md))
where «name> is the name given 10 the instance which pARY creates and <iype> is the

name of the type that will be used to create the instance.

The remamder of the rart procedure consists of the parameters that will be
passed to the maker function of «type>. Parameters and values are passed with a
"call by keyword” syntax [ach parameter is specified by a pair in which (pavam ivis
the parameter name and  vail - i> isits value. Any primary parameters of the type may
be assigned values Paramelers not listed will take their default vilues. The '
parameters may be specified in any order. Other information may be placed in the

parameter list as well (see Section 5.6}.

In the Ppam1 command, <type> is not evaluated, <name> is evaluated. For each of

the parameter pairs, (param- i> is not evaluated, <vai > is evaluated.

PaR1 is usually used within the otiiavour procedure of a type. It is a way ot
specifying the structure that the type being dehned will Build. When the type is called.

the instance created Ly the rant commiand will be included in the structure being buiit.

The instance built by a rart command is considered to be a "part” of the object
in which itis placed. 1tis the parts of an object which constitute the cbject's structure.
Itis the parts of an object winch are displayed when the object is viewed. "Partness”
is contrasted with other kinds of information stored on an object that do not explicitly

specity the object's structure.




BUILDING THINGS - 27 -

2 An example of a par1 procedure is:
(part 'trans-1 pass-transistor (channel-length 8) (channel-width 4))

This creates an instance of rass-i1ransisior. The instance is named 1RANS-1 and built

with a channel length of 8 and a channel width of 4 (lambda). It is shown in Figure 5.
The type rass- 1rans1sior is defined in the introductory example.

Another transistor is created by:

(part 'trans-2 pass-transistor (channel-length 8))

This produces an instance of PASS- TRANSIST0R named 1RANS -2 with a channel length of

8 and a channel width of 2. Since cuannti -winin is not listed in this rar1 procedure, it
is set to the default value specified for cuaNNt1L -WiDiH in the DritAvour of

PASS - IRANSISI0R. See Figure 5.

,P N
Channeldength Channel-length
-8 = 8
4 V
X8> <>
Channel-width Channel-width
= 4 =2

Figure 5 -- Two instances of the type PASS-TRANSISTOR




-

BUILDING THINGS - 28 -

4.4 The Structure Built by a Type

When a type is called with rari, the LISP variable =*mMt* (pronounced
"star-me-star"”) is bound to the representation of the structure being built by the
type’s maker function. In other words, while a structure is built, it is attached to *mLe.
This means that when a type is called, *Mi+ will be bound temporarily to the type's
parts as they are built. When the maker function of the type is finished, the structure
in *mt* is placed in an instance. This instance may very well be a part of another

structure.

Since a vt Avout is a specification of a type, when writing a bt LAYOUL, one can
think of the structure that will be built when the type is called as *Mt *. *Mt* acts as the
temporary name of the structure while it is being built, so that it is possible for
information to be added to and retrieved from the structure. We have already seen
one way in which information is added to the structure built by a type - the pagl

command makes the instance it produces a "part" of *MEs.

4.5 Naming Things

In the course of the design process, it is often useful to store information on
«Mt*. Such information may be useful for constructing *mt + or it may be useful later,

when the instance is complete, for building other objects.

I'he function st1 My stores a piece of information on *Mi « and gives it a name.
(St1 MY <pame> <value>)
stores <vatue® on *Mt* and names it <nams>. «vatlue> may be any LISP object. sti1-My
evaluates both its arguments. The function St 1Q My is identical to st 1 My except that
SE19 My does not evaluate <name>. Thus st10-My is often more convenient to use, and

we will use it in most examples.

The values stored by st10 MY may be accessed by the DPL access functions

descnbed below.

For example, within the ni1iavout of a type, the locations of several parts may
depend on the height of the VDD bus. (St10-MY VOD-HEIGHT 20) will store the value 20

on *Mt* and will name it vbn-ne16H1. It is possible to access this value later in the

l ‘I\ i . Ili 4 Y.A_ﬁ | ) N




BUILDING THINGS - 29 -

DEFLAYOUT to specify the locations or dimensions of parts of *mMee.

4.6 Accessing Parts and Parameters

Within a nrfiavout procedure it is often necessary to refer to parts of *mMre (or
parts or parameters of those parts), as well as to information placed on *mMt* by
st19-My. Accessing such information can be done with the function >> (called
"arrow-arrow").

(>> <thing-1> <(thing-2> . . . <(thing-nd)
will retrieve the value of <thing- 1> which belongs to <thing-2>. . . which belongs to
<thing-n> which belongs to *Mi«. (None of the elements in an >> form are evaluated

unless they are non-atomic.)

For example, suppose we are writing the et avoutl procedure for a type named
RLG1SteR which includes as a part an instance named SHIFT-CtiL. SHIFT-CELL, in turn,
contains as a part an instance of rass- 1rans15108 named 1raNS- 3. To find the value of
the CHANNE L -LENGTH Of TRANS-3 of SitTiT-Clti of REGISTER, we write:

(>> CHANNEL-LENGTH TRANS-3 SHIf(-CELL]).

(This expression is read: "The channel length of trans-3 of shift-cell of *Mg*.")

To access a part or parameter of *Mi +, or a something stored on *Mr by SETQ-MY,
we write:
(> <thing>)

For example, (Sf10-My vDD-nf [GHT 20) followed by (>> von ug 16Hi) will return 20.

»> is used to access the values of the parameters with which the type was
called. This is the way in which the parameters direct the construction of an instance.
The bprriAyour of PAsSS-TRANSISTOR has two paraméters. CHANNEL WIDTH and
CHANNEL -LENGTH, (see Introductory Examples). The following command is included in
the neit Avoui of PASS INANSISTOR:

(part 'diff-pioce rectangle
(Vayer 'diff)
(length (+ (>> channel-length) (®* 2 *diff-overhang®)))
{width (>> channgl-width)))
This command specifies the values for the parameters 11 NGin and wibiu of the type
RICTANGL T by accessing the values that CHANNTL 1ENGTH and CHANNEL -WIDTH are assigned

when PASS - TRANSISTOR is called. If we call vass 1ransiston in the following way:




BUILDING THINGS -30- DPL Manual

(part ‘trans-4 pass-transistor
(channel-length 4)
(channel-width 100))
CHANNEL -LENGTH and CHANNEL -wIDTH are assigned to the values 4 and 100. These values
are then used when the type rtCianGiLt is called by the maker function of

PASS - TRANSISTOR.

4.7 The General Access Function

The general DPL access function is THE.
(THE <name> <thing>)
finds the information named <name> On <thing>. (Both arguments are evaluated.) 1t
knows about all DPL structures and may be used to access parts and parameters of all
of them. For example, one may use the following to find the eRIMARY - pARAME TERS oOf &
type named A-TYPE:

(the 'primary-parameters ‘'a-type)

THL may also be used to access named information from *Mt*. For example, the
following two expressions will return the same value:

(the 'channel-length *me®)
(>> channel length)

In tact, »> is delined in terms of 1nt. The expression
(>> mumble fumble grumble)

expands to:

{the 'mumble (the 'fumbile (thse 'grumble *me®)))

>> 1S the most usetul way to get information from *mre and is usually used in
nEFLAYouT expressions. 111 is used to get information from objects other than *Mi * and

thus is most useful when interacting with LISP while debugying designs.

When accessing information from parts of objects ur and >> transform the

abjects carrectly so that the object is always viewed in the current coordinate system.

i
|
i
.
!
J




BUILDING THINGS -31- DPL Manual

4.8 Additional Features of DEFLAYOUT

There exist additional capabilities of nif1avout which are not used as often as
those described above. This section will introduce these capabilities.

4.8.1 Supertypes

perLayous allows one to make new types by adding to old ones. <type-name> may
be written as a list of two elements, the first name referring to the name of the new
type, the second name referring to the name of the old type. A new type is made
which is identical to the old type, but with the addition of whatever information is
included in the new otriLavoui procedure. The previously defined type is called a
supertype of the new one. The new type has all the parls aid parameters of the
supertype, yet it may be given additional parameters as well as additional parts.

An example of the use of a supertype is a depletion-mode transistor. It is
identical to a normal transistor with the addition of a rectangle of ion implantation.
The definition of a depletion-mode transistor is:

(deflayout (rect-d fet rect-fol) ‘()
(part 'implant rectangle
(layer "ion)
(length (+ (>> channel-length) (* 2 *ion-overhang®)})
(width (+ (>> channel-width) (* 2 *ion-overhang®)))
(center (>> center channel))))
In this example, RiCt-p-111 is the name of the new type. rici-ft1 is the name of the
type that constructs "normal" transistors -- it will be the supertype of RECT-D-FET.
RECT-D-FET includes all the parts and parameters of rect -1t 1 with the addition of the
part created in the example above, a rectangle of ion implant. Note that our new type,
RECT-D-FE1, includes no parameters in its parameter list. However it actually does
have parameters -- the parameters of recr-t£1 (which happen to be a channel-length
of 2 and a channel-width of 2). rici-n-it1 could have been given additional

parameters, but here we have limited its parameters to those of RECT-FET.

A supertype is used if a type being defined differs only slightly from a
pre-existing type, and it is desired that the new type have the same or very similar
parts and parameters as the supertype. The advantage to using the supertype
construction rather than calling the supertype as a part is that only the differences
between the new type and the supertype need be specified.




BUILDING THINGS -32 - DPL. Manuat

4.8.2 Additional Parameters to DEFLAYOUT

The values of a type's primary parameters determine the stiucture of its
instances. Dii1ayeur may also be given parameters which specity inforimation about

the type other than that which directly determines the structure of its instances.

The auxiliary-parameters of a type is 4 list of some of the names used to store
infcrmation on the instances of the type. For example, if a point named CONNI CT110N-p)
is named with a s110-MYy command inside a b 11 Ayout, the name CONNECTION PT may be
included in the auxiliary-parameters of the type. Auxiliary-parameters are usually
used by programs which manipulate types, such as the constraini system described in
Chapter 7. Auxiliary-parameters are included in a type by placing a list of the
following form in the <param-1ist> of anttiavour:

(AUXEL TARY PARAMLTIRS (<nam@l> <name2> . . .})
where the <namei> are names that will be assigned to things in the body of the

DEFTAYOUT,

Other information may be specified in a o111 avout parameter-list. Any pair of the
form:
(<namu> <(vdalue>)
i the <param-1ist> of aprirayon will cause the information in <vatue> to be stored on
the type and named Documentahion, version numbers, device parameters are all

kinds ot information one might want to store on a type.

Al ittt it - .




C—— 4

PLACING THINGS -33- DPL Manual

5. PLACING THINGS

When defining a type it is necessary to specify both the structure of its parts and
their location. This chapter will explain the DPL functions, data structures, and

variables used to specify placement.

5.1 Coordinate system

Every structure specified by a pti1avoul has its own coordinate system. Each
PART procedure in the ptiiavous will place the instance it creates at a certain position
in the coordinate system of *Mi*. Unless the rart command is given explicit

placement information, the part is placed with its origin at the origin of *Mes,

Since parts are themselves calls 1o types, each part is constructed with its own
coordinate system in which its parts are placed. However, within a nttiAvour
procedure all parts of parts are transformed when accessed by 1t or »> o their

posilions in the coordinate system of *mt s,

5.2 Points

Points may be created by the function pr1.
(PT <x-coord> C(y-coord>)
creates a point with the given coordinates in *Mt*. For example, (pt 4 3) creates a
point with the coordinates {4,3). r1 is often used with the DPL placement functions
which will be explained in this chapter.

The X and Y coordinates of a point may be accessed by the functions >> or 1ht. :
if the expression
(setq my connection-point (Pl 5 61)
is used in a vt 11 AYOUT, the function
(>> x connection-point)

will return 5.

DPL provides a number of functions which deal with points. They include

functions which construct new points from existing ones, a function which tests




R

PLACING THINGS -34 - DPL Manual

values for "pointness”, and functions dealing with the placement of points. These are
explained in the glossary.

5.3 Implicit Parameters

Every instance possesses pre-named information useful for placing the instance.
This information is called an instance’'s implicit parameters because it is never

explicitly ptaced on the object, yet it may be accessed.

Probably the most useful of the implicit parameters are corner-parameters
and apparent-corner-parameters, pre-named points on every object which
contain the locations of an object's corners, center-side-points, and center. The

corner-parameters are:

top-left top-center top-right
center-left center center-right
bottom-left bottom-center bottom-right

The corner-parameters refer to the locations held by the appropriate points in
the coordinate system of the object before the object had been transformed. ! the
instance has been rotated or mirrored the corner-parameters witl be transtarmed as
well. Thus, for example, the 10oP-cenTir of an instance that has been rotated 90

degrees counterclockwise will be on the left side of the instance.

It is often more useful to refer to the points on an instance which indeed appear
to be the top-right, bottom-center, and so on. The apparent-corner-parameters are
provided for this purpose. The names of the apparent-corner parameters are

obtained by concatenating "apparent-" with the names of the corner-parameters.

Figure 6 shows how the corner-parameters and apparent-corner-parameters of

an instance transform when the instance is transformed.

-

The values of corner-parameters and apparent-corner-parameters may be
accessed by >>. For example,
(v> apparent hottom right gate-poly pulldown inverter-1)
will access the arpari NI Boi10M-RIGHT Of the Gatt ror Y of the pui LOOWN of TNVERIER-1 of
MES,

Corner-parameters and apparent corner-parameters are useful for the




PLACING THINGS -35- DL Manual

Top-right

|
Apparent center-left | Apparent top-right

4 —— .
s r -« h.)’;_) right

\ ;.' Apparent top nght
\ at

3 ;"l‘f- L 7 D g

Apparent center-left

Bottom left

el [ |

> - -
Xdim Apparent-xdim
Untianstormed Pullup Pullup 1otated 90 deg CCW

Figure 6 -- Some implicit parameters of an Instance

placement of objects. They allow objects 1o be placed by reference to other objects,
rather than by their numerical coordinates. Corner parameters contribute to the
flexibility of the design because relative placement allows one to change or move a
part without changing the specification of the objects near it. Corner parameters are
also useful in that they reveal the reason for the particular positioning of a part, far

more than a numerical parameter.

Other implicit parameters of every instance are BOUNDING-BOX, ORIGIN, XDIM, and
yniM. The soumninG-Box of an instance consists of a representation of two diagonally
opposite points on an imaginary rectangle surrounding the instance. It is computed
by taking the extreme values of the coordinates of the bounding box of the parts ot
the instance, or the corner points if the instance is a RICTANGLE,

The onigin of an instance is the point (0, Q) in the coordinate system of the

instance. Accessing the oricin of a part of *mi« or of a part of a part will give the point

in the coordinate system of +mi » that the origin of the part occupies.

Xdm

3ottom left




PLACING THINGS -36 - DPL Manual

The xoim of an instance is the distance between the cCtnitr-1t11 and
CENTER-RIGHT of the instance. The APPARENI-XDIM is the distance between the
APPARENF-CENTER-1EE)  and  AppARENT CENTER-niGHT of the instance. yboiM  and
APPARINT-YDIM give the corresponding distances between the 1op-ciNiiR and
BOTTOM-CENTER.

5.4 Translation

One way to place parts within a nti1avour procedure is to make the part with a
pART procedure, and then move the part to the desired location. When a part is
created it is placed at the origin of *mi+. It may then be translated to the desired
fucation by the DPL function ALIGN.

ALIGN moves an object to another location, maintaining its orientation (without

rotating or mirroring it).

At 16N takes the form:
(ALIGN <object> <ref-poinl> <ltarget-pointd>)
where <ot jects is the thing to be moved, <ref point> is a point, usually on the aobject,
and <targat-point> is the point to which <ref-point> is to be relocated. <object> will
be moved so that <ref-point> is at <target-point>. All three arguments to ALIGN are

evaluated.

For example,
(adign (> contact-1)
(»> top-center contact 1)
{>> bottom-center source-diffusion trans-1))
will move CoNIACI-1 so that its 1op cinrtn is at the sortom-Cinitr of the

sounrce pitrusion of irans-1. This example is illustrated in Figure 7.

5.5 Unitary Transforms

Instances may be rotated or mirrared by the unitary transtorm functions. Each
unitary transform function corresponds to an element of the group of symmetries of
the square. Each unitary transform function takes an instance as an argument and

transforms the instance as described below. Rotation and mirroring is performed




-«
PLACING THINGS -37 - DPL Manual
L-Trans-1
(> bottom centes
—_—— ~~——{(>> top-center contact- 1)
soutee diffusion ~-q. »I
trtans 1)
_Contact-!
Figure 7 -- Placement by alignment
about and across the origin of *Mi».
E
l; 10eNTITY  Performs no rotation or mirroring of the instance. ‘ 1

ROT90 Rotales the instance 90 counterclockwise.
ROT180 Rotates the instance 180"
; | RoT270  Rotates the instance 270° counterctockwise.
i NEGX Negates the X coordinates of the instance. (Mirrors the instance
across the Y axis.)
NEGY Negates the Y coordinates of the instance. (Mirrors the instance
| across the X axis.)
i INT-POS  The composition of ro190 foliowed by nfGex. (The values of the
coordinates are interchanged.)

INT-NEG  The composition of roiso followed by nicy. (The values of the

coordinates are interchanged and negated.)

For example,
{negx (>> trans-7))

will mirror the instance named 1RANS-7 across the Y axis.

Note that each application of a unitary transform function to an instance




PLACING THINGS -38- DPL Manual

composes the new transform with the previous transform of the instance.

it both aiicN and unitary transform functions are to be applied to an instance, it
is usually more convenient to apply the unitary transtorm functions before translating.
This is because translation is usuafly used to place the object in its final location. M
one translates before rotating or mirroring, it is very difficult to predict where the
instance will be ejacted.

5.6 Ptacement by Parameter

We have seen that objects may be created and then moved around. it is also

possible to place objects by supplying parametars to the par( procedure.

The translation of an object may be specified by including as a parameter 1o par!
the name of a reference point on the object and its target location. The points mast
commonly used as translation parameters are corner-parameters  and
apparent-corner-parameters. For example,

(part contact 1 square-contact
(layer 'diff)
{top centev (>> bottom-center source-diffusion trans-1)))
wili do the same thing as
(part ‘contact-1 square-contact (tayer 'diff))
(align (>> contact-1)
(>> top-center contact-1)
(> bottom-center source-diffusion trans-1))

Note that when passing the name of a point to rari, as a reference point on the
object, >> is not necessary. (Like the point roe-cenier in the example above.)

Points other than corner-parameters and apparent-corner-parameters may also
be used as reference points. For example, if CoNNECTION- POINT was & named point on
an inverter,

(part '"inverter 1 inverter
(connection point (>> bottom-Jeft roly rect)))

would place 1uviR1ER-1 50 that CONNECTION- POINT was at the BoTioM-t 111 of POLY-RECT.

Rotation and mirroring can also be performed by supplying parameters to PaRrt.
PART may be called with a parameter whose name is xt kM and whase value is the name

of one of the unitary transtorm functions, in which case the unitary transform function

is applied to the instance.




A A

PLACING THINGS -39 - DPL Manual

If both a translation parameter and a unitary transform are passed as parameters
to a raRr1 procedure, they may be listed in any order. The unitary transform will be
applied to the part before it is translated.

For example,

{part "bec butting-contact
(xfrm 'rot90)
(bottom-center (>> center-left gate-poly trans-1)))

will rotate butting contact sc 90°, and then place it so its BOIIOM-CENTIR is at the
cenrer-L1r1 of the catt - poLy of TRANS 1 Of sMis,

The two methods of placing objects -- placement by function and placement by
parameter -- each have advantages in certain situations. Placement by parameter is
less wordy than placement by function. However placement by function is often
easier to read, especially when either the reference point or the target point is a
complex formulation, or when one is passing many parameters to the rar1 procedure.

For example,

(part 'iv2 inline-iaverter
(enhancement-width 10)
(enhancement-length 3))
(int-neg (>> iv2))
(align {>> iv2)
{(>> apparent-top-right iv2)
(pt (- (> x top-left poly-contact) 2)
(- (>> y bettom-right vhl-contactl) 3)))
is equivalent to

(part 'iv2 inline-inverter
(enhancement-width 10)
(enhancement-length 3)
(xfrm "int-neg)
(apparent-top-right (pt (- (»> x top-left poly-contact) 2)
(- (>> y boltom-right VDD-contact) 3))))

5.7 tnvoke

Many of the objects created during the course of a design are meant to "line up”
or "fit" other objects. The driver for a PLA column, for example, must be the same
width as the column, and its outputs must match up with the inputs of the colurnn.
The design of such types is made easier if an instance of the other object is available
to match up with the one being made.

The DPL function 1nvokt is identical to the pant function but the instance that is
created is not made a "part” of the new object. The invoked instance may be moved




PLACING THINGS -40 - DPL Manual

around and the information inside it may be accessed, but the structure of the new

type will not include the structure of the invoked type.

Example:
(deflayout pla-driver ()

(invoke 'column pla-column-cell)

(part ‘vdd-bus rectangle
(layer ‘metal)
(center-left (>> centar-laft column))
{center-right (>> center-right column)))

<and more forms of the maker functiond)

This shows how a type is invoked and then used to specify the dimensions of
another cell. Note that the piA-coLumMn-C1i1 will not be a part of the P1LA-DRIVIR, but the

information in the column cell can be used as the driver is being built.

5.8 *LIST®

Many DPL objects keep lists of other kinds of objects. Some of the lists contain
objects that are "transformable”, like instances or points. In this case it is useful to
have them transformed into the current coordinate system. The DPL structure that
allows this to be done is called a =11st«. It a *L1S1* is stored in a cell on an object,
each element of the *1 151+ will be transformed as it is "brought out™ of the structure

with 14t or »>>.

A *L1s1= is made out of a LISP list by the function MAKE -1 151-0i, the list inside a
+*1 151+ is obtained with the function tur -1 1s1-0r. For example:

{deflayoul a-useiess-type ()
(part 'moe rectangle (layer ‘poly))
(part ‘larry rectangle (layer 'diff))
{part 'curley rectangle (layer ‘'metal))
(setq my stooyes (make-list-of
{list (> mos)
(>> larry)
(>> curley)))))

creates three rectangles of default sizes on top of one another and a °1isie
comaining them is made. {f the following code is in the maker funclion of another
type:

(part 'maanies a useless-type (bottom-left (pt 100 100)))

asking for (the-1ist-of (>> stooges meanias)) gives the list of the three instances,

each transformed correctly.

™



THE DPL WIRING SYSTEM -4 DPL Manual

6. THE DPL WIRING SYSTEM

Most of the rectangles in a large Jdesign serve to connect objects. This chapter
introduces the DPL wiring system which consists of special procedures for creating

and manipulating such ectangles.

Wires are specitied by indicating the layer and width to be used, and the path
the wire is to follow. Wires may change layers, in which case the wiring system will

automatically insert the correct contact. or make any number of side branches.

Wires are made by placing rectangles. In the DPL wiring system, wires are
placed by aligning new rectangles of a specified width and layer so that they join
previously placed rectangles. The length ol each rectangle is determined by the path

the wire is to follow.

To join rectangles, wires make use of a special kind of point called a
connection-point (CP). A CP is a data structure which keeps track of the layers of
the wires connecting to it as well as its coordinates. The current-CP o' awire is a CP
containing the point where the next rectangle is to be attached. The current CP may

be thought of as the current position of the wire.

Wires are considered to be parts of *Mt . During the construction of a wire, the
variable <1t wint ¢ will be bound to the wire being constructed. Wires are instances
of the special type wirt . Like all instances. they have implicit parameters which may
be useful when placing other parts of *m ¢ near wires. The bounding-box of a wire is
computed by finding the extreme vilues of the coordinates of its component

rectangles.

6.1 Wire System Commands

The most common way to use the wiring system is with the procedure wirt. wiRt
is usually used within a ni 11 avour and takes the following form:
(WIRE <name> .. <1ist of -wire commands>. )
witt names the wire it builds <name>. <name> is evaluated. If cname> is N11 the wire is

given no name. The first and last CP's of the wire are named stari and 1Ny, The




nag——.
THE DPL WIRING SYSTEM -42 - DPL Manual

construction of the wire is controlled by the following commands which may occur
inside a wint procedure. (Each wire command evaluates its argument.)

(RUN-LAYER <layer>) Sets the layer of the wire. If the wire had already placed
rectangles of a previous layer, the next time a rectangle is placed the appropriate
contact is made at the wire's current-CP. The nun-LAYLR command sets the width of
the wire to the default width for that layer (see Glossary). A ruN-tLaveR command must
come belore any of the commands that actually place rectangles.

(RUN-WIDTH <width>) sets the width of the wire. RUN-WIDTH must come after the
RUN-LAYER command if it is to affect the width of that layer.

(FROM <place>) sets the current-CP to <prace>. <place> may be a point, a CP or
another wire. If <place> is a wire, the last CP of the wire is used. A 1rom command
must precede any of the commands which actually place rectangles. The 1roM
command may be used at other places inside a wirRt command in which case it moves

the current-CP from its previous location to <place> without placing any rectangles.

(TO-X <place>)

(TO-Y {place>)

These commands place rectangles. <place> may be a number, in which case it is
interpreted as a coordinate of the destination of the wire in the specified direction. It
<place> is a point or @ CP, the appropriate-coordinate will be extracted and used. Like
all commands that place rectangles, this may cause a contact to be dropped if the
layer has been changed since the last rectangle was placed. The current CP is then
updated to the new point.

(T0~PT <place>) places a rectangle which extends from the current-CP to
<place>. <place> may be either a point or a connection-point. One of its coordinates
must be equal to a coordinate of the current-CP.

(+X <number>)

(+Y <number>)

(=X <number)>)

(-Y <number>)

Each of these commands extends a rectangle from the current-CP the specified
distance in the specified direction.

B |



THE DPL WIRING SYSTEM - 43 - DPL Manual

(J06-X <placed)

{JOG-Y <place>)

These commands extend the wire to the point or CP specified by -place> by
running first in the specified direction and then in the other. For example, if the
current-CP is at point (0,0) and the command (J0G-Y (#1 1¢ 10)) is given, the resultis a
rectangle from point (0, 0) to point (0. 10), and then a rectangle from point (0, 10) to
point (10, 10).

(SAVE-CP <name>) names the current-CP of the wire <name>, and stores it so it may

be accessed later.

(RESTORE-CP <name>) moves the current-CP of the wire to the specified

connection-point.
(DROP-CONTACT) places a square contact of the current layer at the current point.

In addition, any LISP or DPL forims may be placed in a wirt form. 1t is often
useful to use LISP conditionals to direct the construction of a wire. Any DPL
commands that create or name structure (such as par1 and st iQ MY), except the above

wiring commands, wilt atfect the object the wire is part of, not the wire itself.

6.2 Wire System Example

The following is an exampie of the use of the DPL wire system. [n the example
we assume that smi+ has been given the parts 1raNs 1+ and 1rans 2 which are
pass-transistors, and cONT-1 which is a poly-to-metal contact. The example is
illustrated in Figure 8.

(wire "wirg-ex
(run-layer 'diff)
(from (>> bottom-center source-diffusion trans-1))
-y
(to-x (>* centar coat-1))
(save cp ‘fork)
(jog x (>> bottom-center source-diffusion trans 2))
(restore cp "fork)
(run layer ‘'poly)
{to-y (> top cunter tont 1}))

Our wire, wint tx, begins as a wire of ditfusion at the bottom-center of the
source diffusion of 1aans 1. After runiing 4 lambda down, it runs to the X coordinate

of the contact cont 1. The current-C# s then saved and named 1ork because we will




Trans-1

/

Diffusion

-

CP "Fork"

Trans-2

Diffusion

-~
Butting contact placed

automatically

Poly

Cont-1

Figure 8 -- Wire System Example

™



THE DPL WIRING SYSTEM - 45 - DPL Manual

want to resume wiring from there fater. The wire is then run with a JoG-x command to
the bottom-center of the source diffusion of TraNs-2. The saved CP rogrk is then
restored, and the layer is changed to poly. Finally, we run the wire from the restored
CP to the top of cont-1. Note that the wiring system automatically places a butting
contact where the layer changes.

6.3 External Wire Commands

Wires may be given additional rectangles after they have been made. The
commands which do this correspond to the above commands except that the names

have "wire-" concatenated to the front. Each external wiring command takes two
arguments: the first is the wire to be manipulated, the second is the same argument as
that passed to the corresponding internal wiring command. For example:

(WIRL -JOG-X <wire> <place>)

It is possible to build a wire entirely from the "outside"”. An empty wire may be
created by using wiri with a name and no other wire commands. The wire can then

be yiven rectangles with the external wiring commands.

6.4 Connection Points

CPs named during the construction of a wire may be accessed during the
construction of the wire. The special symbol *curninT -wirE®, when used as the last
symbol in an >> command, allows one to access a named CP of the current wire. For
example:

(>> fork *current-wire?)
After a wire is complete, a named CP may be accessed as if it were named information
on the wire. In the wire system example above,

(>> fork wire-ex)

will access the CP 1.k,

The point which is the location of a CP is obtained with the function ¢1.cp. For
example,

(pt-to-!aft (pt-cp (> fork wira-ex)) 5)

will return the point which 1s 5 to the left of the 1 orx of WIRE-EX.




THE DPL WIRING SYSTEM - 46 - DPL Manual

One may access the X and Y coordinates of a CP as if it were a point:

(>> x fork wire-ex)

It should be noted that when the wiring system automatically places a butting
contact at a CP, the butting-contact is placed with its center at the CP. This means
that other poly or diffusion wires connecting to the butting contact may not end
directly at the CP, but at a point to one side of it. In the example in figure B, if we were
to attempt to run a horizontal poly wire from the CP named roRrk, the poly actually must
connect 1 lambda below the CP -- or else it would partially cover some diftusion and
make an illegal butting contact. The wiring system automatically adjusts the
endpoints of the wires to make legal butting contacts, but in so doing may cause the
wires to begin and end on points other than the specified CP. One should use the J06
commands near butting contacts to allow the system to bend wires when such
situations develop.




CONSTRAINTS - 47 - DPL Manual

7. CONSTRAINTS

In many cases the parameters of a type are related. Often some parameters may
be derived from others. The DPL language uses constraints to allow the user to
specify only those parameters necessary to "constrain™ the rest.

For example, a standard transistor’'s resistance is determined by the ratio of its
channel length to its channel width. If the ratio is ¢, the channel length t, and the
channel width w, then 2 = 1/w. But also /w =1L and w = 1/72. The complete
specification of the transistor may be accomplished by setting only two of the three

parameters.

Constraints do more than allow one to specify fewer parameters. Much of the
computation necessary for determining the layout of an object can be done with
constraints. For example, it may be necessary to fix a transistor's ratio and width,
allowing its length to vary. In another case one may want to specify the length and the
width of a transistor and later ask for its ratio. Or, one could specity all three and let

the program complain if they were set inconsistently.

In some cases it is useful to specily constraints among parameters which are not
used to build the instance. For example, the width of a cell may be determined by the
distance between two control lines. We may write a constraint between the positions
of the control lines and the width of the cell. If the points where the control lines enter
the cell are named as auxiliary parameters of the type, it is possible to express the

width of the cell in terms of these positions.

7.1 Using Constraints

To specify constraints between parameters of a type, the following list must be
included in the <param-1ist> of the type's ntLiiavour:

(CONSTHAINIS ((<c-1> <(param 1> <param-2>)
(<c-2> <(param-3> <param-2> <(param-4>)))

The «c-i> are names of constraints. Several constraints have already been defined
(see library); others may be defined by the user. The <param-i> are the names of
primary or auxiliary parameters of the type among which the constraint is to be

applied. A single parameter may be mentioned in several constraints.




CONSTRAINTS - 48 - DPL Manual

A useful constraint is ¢* which constrains three arguments so that the first is the
product of the second and third. ¢* may be used to specity the constraints of a
transistor:

(deflayout ‘transistor-1 tramsistor
‘((primary-parameters ({channel-width 2)
(channel-length 2)
(ratio 1)))

(constraints ((c* channel-length ratio channel-width))))
...forms of the maker functiom...)

This example uses only one constraint and applies it to three primary-parameters.

It it is desired that one of the arguments be a constant, that value (usually a
number or a point) may be given to the constraint directly, instead of passing the
name of a parameter. For example, one may wish to maintain a ratio of 4 between an
inverter's pullup-ratio and its pulldown ratio. This could be accomplished by:

(c®* pullup-ratio 4 pulldown-ratio)

If an attempt is made to specify an inconsistent set of parameter values to a type
defined with constraints, an error will be signaled.

7.2 Defining Constraints

Constraints are defined by the command DEFCONSTRAINT. A constraint must be
defined before it can be used in a DEFLAYOUT.

DEFCONSTRAINT takes the form:
(DELFCONSTRAINT <(name> <argtist>

(<arg-1> (<arg-2> <arg-3>) <{procedure>)

(<arg-2> (<arg-1> <arg-3>) <procedure’))
where <name> is the name used to call the constraint. <arglist> is a list of the variables
that will be bound to the values specified when the constraint is called. The forms
following <arg1ist> each begin with the name of one of the variables. This is followed
by a list of the variables that can be used to compute the first variable it they all have
been given values. The last item is the actual procedure that can be run, using those

variables, to compute the value of the first variable. The best way to clarify

0f tCONSTRAINT is to present the definition of a simple constraint:




CONSTRAINTS -49 . DPL Manual

(defconstraint c¢* (prod ml m2)
(prod (ml m2) (* ml m2))
{mt (prod m2)
(if (= m2 0)
'bail-out
(77 (float prod) m2)))
(m2 (prod ml)
(if (= m1 0)
"bail-out
(/7 (float prod) ml))))

This is the c+ constraint discussed above. |l takes three arguments, and
constrains the first to be the product of the other two. If the procedure evaluates to
the string BA11 -out, the constraint will not attempt to set a value.

|

Constraints may be used between primary-parameters, auxiliary-parameters and [
constants. It is also possible to specify corner and apparent-corner parameters as ‘L
arguments to a constraint. In fact, the type rtcrancit is defined this way. One may

specify the bottom-left and upper-right of a rectangle, for example, and the constraint

will determine the proper length and width to make the rectangle.




REPLICATORS -50- DPL. Manual

8. REPLICATORS

Many designs contain situations in which a small number of objects are
replicated in highly regular arrangements. A row of identical register cells may be
used to store the result from a column of bit-slice adders. A PLA or a shifter is
typically made of a two-dimensional grid of identical parts.

Replicators in DPL allow the user to create such structures. They also make
use of the regular nature of the structures to represent them efficiently. All that is
stored is the list of instances which appear in the replicator and a function that
computes the transform of an instance for a given set of coordinates. The functions
examining the structure of the replication put this information together and produce
the parts of the replication. When examined with tit, a replication "tooks like” it has

many parts, while actually only a few instances are stored.

The most uselul replicators build rows, columns or 2-dimensional grids of
instances. These replicators are defined in the library. 1t is also possible to define

replicators for special purposes.

A replicator” is similar to a type. It holds the procedure to construct a
replicated set of instances. A "replication” is what a replicator produces -- an
instance that looks like it has many reqularly placed parts.

8.1 Calling Replicators

It a replicator has been defined, it is called with the command ri PLICATE:

(REPLICATF <name> <(replicator Lype> -dimensions> <list of-instances>
..<other parametars> .. )

This command is similar to the rak' command except for the . dimens ions> and
<list-of-instances™ arguments, which are Loth evaluated. |t calls the replicator
named <replicator type> and gives it the name <name> in *Mt*. The «dimensions>
argument is a list of the values of the dimensions the desired replicator.  The
<list-of -instances> IS a hst ot instances that will be used in the replication. These
instances may have been invokin or actually made as parts of *mt . In either case,

after the repiicalt command, they will be removed from wherever they were before

and treated as parts of the replication.

S




REPLICATORS -61-

The replicator row takes a single instance and places a row, spacing the parts
using the sum of the parameters r11cH and spacing. If the parameter piicH is not
specified in the call to rRiPt 1CATE, the instance is checked to see if it has an #-PITCH
parameter. If so. that value is used. Otherwise, the apraRINT-xDIM is used. (Needless
to say. this is done with constraints.) The spacinG parameter defaults to zero. The
following commands

(invoke 'pl rectangle (layer 'poly) (length 10) (width 10))
(replicate 'rl row (10) (list (>> pl))
(spacing 1))
give a replication of ten poly squares, spaced one apart.

8.2 Accessing Replications

The parts of a replication may be accessed by the form

(*REP <coord-1> <coord-2>)
within a call to rut or >>, where the <coord-i> are the coordinates desired. The
arguments are evaluated. The coordinates start with (o0 o). If the replication is
one-dimensional, the second coordinate may be unspecified, or else must be 0. Thus

(>> (*rep 3) rl)
gives the fourth element in the row produced above. The symbo! *rep-FIRST is used to
access the (0 0) element in a replication, and *ReP-1aS1 accesses the element in the
replication with the largest coordinates. These are useful when the size of a
replication is a parameter and one wants to reler to the end or beginning of it. For the
above replication then, the following forms are equivalent:

(>> *rep-first r1)
(>> (*rep 0) r1)

and

(>> *rep-last ri)
(>> (*rep 9) ri)

Besides their parameters, replications contain additional information. The
INSTANCE-1 ST of a replication contains the list of instances used when the REPLICATE
command was called. The form (*RepP-INSTANCE <n>) is used to get the nth element of
the ins1anci -11sT1 of a replication. The celt MAx-DIMS of a replicator contains a list of
the maximum-dimensions of the replication. MAx-DIMS is the same as the argument

<dimensions> tO REPLICATE.




REPLICATORS 52 - OPL Manual

8.3 Defining Replicators

Replicators are a special kind of type. They miy be telined with constraints and
parameters. A replicator is defined as follows:
(DEEREPLICAIOR <name: ~coordinalesy

pardm-list>
<hody )

The <name> and <param list - are asin nrriavour: - name> wilt be the name of the
replicator and <param- 1 ist - 1ts parameter-list. The . coordinates argument is a list of
one or two symbols. The length of conrdinaress will be the dimension of the
replication. <boay> is a collection of LISP forms that are called when the replication is
accessed. The functions in <body > determine the instance and transform of the "part”
of the replication determined by the coordinates. As intoiiiavoul, only <param-1ist> is
evaluated.

The call (*rRiP <i> - j>) binds the variables in the <coordinatess listto <i> and <j>,
and binds *Mt* to the replication. Then - body is evaluated.

<body> must call the functions:

(REPLICATOR- INSTANCE <instance>)
(REPLICAIOR - TRANSEORM Cunitary part> x> <y>)

The argument to REPLICATOR INSTANCE B the mstance at the position specified by
the value of the coordinates. It 1s obtained by a call to *rev INSTANCE and is

determined by the values of the coordinates and perhinps some of the parameters.

REPLICATOR RANSEORM takos as arquments the three parts of the transform to be
composed with the transtorm of the arguineot to wrericaror iNsianct. This yields the
transform of the part of the replication nin and use e arguments to these

functions to construct and return the conrect sisance

The following is the dehnition of the vow replicator:




REPLICATORS -53- DPL Manual

(defreplicator row (i)
‘((primary-parameters
(pitch
(spacing 0)))
(constraints
(h-pitch instance-list pitch)))
(replicator-instance (>> (*rep-instance 0)))
(replicator-transform 'identity
(* i (+ (>> pitch) (>> spacing)))
0))

The n-r17cH constraint acts on the insrance-11s1 of a replication to find the
horizontal-pitch as described above. row takes only one instance and all its parts have
the same unitary-transform and Y position. The X position is determined by the
product of the coordinate and the sum of the parameters p11ch and spacinG. Thus for
the row replication created above, the call (>> (*rep 4) r1) returns an instance of a 10
by 10 poly rectangle with a transform of 44 in the X direction.




USING DPL - 54 . DL Manual

9. USING DPL

In this chapter we discuss how the DPL language can be used to cowntruct
project. We explain what the various kinds of DPL objects took ke wher they e
displayed on a terminal and how the designer may use DP1 at aternunal to probe the
structure of his design. We also discuss the functions that translate between DPU and
CIF.

9.1 Interacting with DPL

When the DPL system is loaded into a LISP environment, a special object s
created. This object, called a top, is very similar to a prototype. *Mt* is bound to atop
sa that commands which would otherwise appear in the maker function ot a type may
be executed at top-level LISP, the results affecting the top.

For example, typing

(part 'ivl inverter)
at top-level will make an inverter and name it 1vi in *mt* - which is bound to the top.
One may then say

(>> ivl)
and get the instance of the inverter. Tops are represented by the string "tayoul”

followed by a number: 1 Avoul - 1. In mast cases this is the only top that will be seen.

Calling types interactively (by calling vami at top level) is the way to debug
designs. One defines types white working with a text-editor and then loads the text
files into a DPL environment where he may then examine the structures of the types
On some systems where DPL may be used. graphics programs can display pictures of
mstances. Just running the maker function of a type, by using raut, is a good way to

see if the code 1s syntactically correct and contains no LISP errors.

The function 1 xamine is usetul for inspecting the structure of DPL obiects. The
command
(EXAMINI <objecl))
will place the vser in an “examiner loop™ for exanuning the structure of cobjyecr o He
may type commands to identity the components of the structure he wishes to view
The txamint function is system-dependent and will not be described in detail here

is self documenting - typing "?" or "help” will print out the avadable oplions on the




USING DPL 55 - DPL Manual

system being used.

9.2 What Objects Look Like

When interacting with DPL it is necessary to know what the DPL structures fook
like when they cre printed. The printed representations of DPL structures are for the
user's convenience and have little to do with the way structures are stored in the

compuiter.

The printed appearance of types and prototypes will vary greally among different
implementations of DPL. In general, the txamint function should be used to look at

them,

The function

(TYPL-tROM TYPE-NAMI <type-name))

returns the type with the name <type-name>.

Components of the structure of a type or prototype may be inspected with THE:

(T "TYPIL <(prototype>)
(THE PROIOTYPES <(typed)

For the remainder of this chapter, we represent types by their names, and

prototypes by the name of their type concatenated with a number.

An instance contains a VC and a prototype:
(INSTANCE (VC <prototype> <parentd>) <augmentationd)
The caugmentation> of an instance is a transform:
(<unitary-partd> <x> <y>)
(or it may be N1 which is the same as the "identity-transform,” (1mN111y 0 0)). Soa
whole instance may look like this:
(INSTANCE {VC INVIRIZ'R-5 RIGISIIR-12) (ROI90 34 10))

Since there are so many of them, prototypes of the type ricianctt are treated
differently froin other prototypes. The only time this makes a diflerence is when they
are printed out. in this case they look like:

{RICIANGEE Qlayer> Clengih> (width))




USING DPL -56 - DPL Manual

<length> is the Y dimension of the prototype and -widin 1s its X dimension.
Rectangles are used in place of normal prototypes, so an instance ot a rectangle
could look like this:

(INSTANCE (VC (RECIANGLE POY 2 4) (IDINIIIY 4 5)))

9.3 CIF

Users of DPL must interact with CIF for two reasons: Interesting cells from other
designers are available in CIF, and CIF must be given to the fabrication companies to

actually produce the chips.

CIF descriptions of cells may be translated into DPL with the 1t 1ran function.
The form
(CIFTRAN <(cif-file> <load?> <output-filed <lambda>)
translates the CIF in «cir-fite> into DPL in <output-fite>. The argument . tambda> is
the size of lambda in microns used to produce the CIF. If <10ad?> Is not nit, the
resultant DPL definitions are immediately loaded into the LISP environment and the

types produced are available to call. All the arguments to c 11 1RAN are evaluated.

The DPL produced from CIF is extremely “"bare”. Nothing is named, for
example, and thus none of the path-following features of DPL. may be used. It is
possible to edit the delinitions of the types in the output from c 11 1raN and name some

of the parts.

To obtain a CIf representation of a design, the function ciiour is used. The farm

(CIEOUY <instance> (file-name>)
criour takes an instance and recursively travels through the data-base. transiating
o CIF all the types on which «instance> depends. The final Clt command s a call to
the symbol that corresponds to the prototype of <instance~. "User extension 9 s
used for the names of the prototypes as they are translated. The name of cach type s
included in a comment after the DS command.  Alf the arguments to ciioul are

evaluated.




EXAMPLE - 57 - DPL Manual

10. EXAMPLE

In this chapter we explain in detail a pitiavour of a register cell. The program
uses most of the features of DPL, so serves as a good illustration of the language in
action  We have two reasons for presenting this example. First, the example should
help the user learn how to use DPL. Second, we want to demonstrate some of the
ways 10 use DPL to its best advantage.

10.1 DPL design style

The program below is one of many possible programs that could be written to lay
out this cell. There certainly is no one place to start or one way to proceed in such a
program. However, there are a number of guidelines to be kept in mind.

Note that very few numbers are used in the program. Almost every new part is
placed by reference to the locations of previously placed parts. Most of the spacings
and offsets between parts are determinad by the design rules of the processing
technology. DPL provides variables to specity such values.

Itis helpful to begin at some point in the cell and move in a particular direction,
creating new parts when their location may be described in terms of the existing
structure.  Specifying placement by reference to previously placed parts is
encouraged because it makes apparent the justifications for the positioning of parts.
Specifying placement numerically incorporates no information about why an object is
placed where it is. On the other hand, a "symbolic" specification of position enables
one to see, for example, that the en of a wire is to connect to the input of an inverter.

Symbolic specification of a design contributes to easier debugging. Since all the
parts depend in precise ways upon one another, moving an object will cause the parts
specified in terms of it Yo maintain their distance. This ability is 1otally absent in a cell

specified numerically, where each affected part would have to be moved.




EXAMPLE - 68 - OPL Manual

10.2 The REGCELL

The object we are designing is meant to store a bit of data; it can be written from
a bus and can write its value onto the bus. The circuit, shown in figure 9, consists of
two inverters with a feedback path to refresh the data and connections to the data
bus. During phi2 the value is refreshed. The cell is given a new value by placing the
bit on the bus and taking the phi1&load signal high. The value of the cell may be read
onto the bus by taking phil&read high.

Figure 10 is a drawing of the cell's layout in NMOS technology. We have chosen
the most straightforward design possible, to allow us to concentrate on using the
fanguage -- as opposed to a fancy layout. This layout is certainly not the smallest for
this cell. We leave it as an exercise for the reader to come up with a "minimal* layout
for this cell.

On the next pages we present the definition of REGCILL.

phit & load phi2 phit & read
Bus
U T
——— _.I l___.__—__._
vdd B
~ Z — -—1—_
T T

_ﬂl>o_ . DD___

S R PP T ——

Figure 9 -- Circuit of Regceli




Figure 10 -- The REGCELL

I
\\\\\\m ________ E

N

-

...............................................



EXAMPLE - 60 - DPL Manuai

———

1 (deflayout regcell '()

2 (part "ivi inline-inverter (ew 4))

3 (part 'GND-contactl square-contact (layer 'diff)

4 (top-center (>> center source-diffusion pulldown ivl)))
5 (part 'VDD-contactl square-contact (layer 'diff)
6
7
8

(bottom center (> center drain-diffusion transistor pullup ivi)))
(part 'bc butting-contact (xfrm ‘'rot180))
(align (>> bc)

9 (>> apparent-bottom-right bc)

10 (pt (- (>> x bottom-left contact pullup ivl) *metal-to-metal®)

11 (+ (>> y top-center GND-contactl) *metal-to-metal®)))

12 (wire ()

13 (run-layer ‘poly)

14 (from (>> apparent-bottom-center bc))

15 {jog-y (>> center-left gate-poly pullidown ivl)))

16 (wire 'phi2

17 (run-layer ‘poly)

18 (from (pt (*+ (>> x bottom-right gate-poly pulldown ivi} *poly-to-poly* 1)
19 {>> y bottom-right GND-contactl)))

20 (to-y (+ (>> y top-right VDD-contactl)

21 *metal-to-metal®

22 *defaull metal-size®

23 *metal-to-metal*)))

24 (part 'poly-contact square-contact (layer 'poly}) ;
25 (align (>> poly-contact)

26 (2> boltom-left poly-contact)

27 (pt (+ (>> x center phi2) *poly-to-poly® 1)

28 (+ (>> y top-right GND-contactl) *metal-to-metal®*)))

29 (wire ()

30 (run-layer 'metal)

31 (run-width *min-metal-size*)

32 (from (pt-above (>> bottom-right cover contact pullup ivl)

32 {(// *min-metal-size* 2.0))) ,
34 {to-x (> cunter poly-contact)))

35 (part "iv2 anline-ioverter) ‘
36 (align (>> iv2)

37 {>> top-left gate-poly transistor pullup iv2)

38 {(pt (+ (>> x lop right poly contact) *poly-to-poly®)

39 (>> y top Teft gate poly transistor pullup ivl)))

40 (part "GND contact? square-contact (layer ‘diff)

41 {top center (> center source diffusion pultldewn iv2)))

42 (part 'VOD contactl2 square contact (layer 'diff)

43 (bottom-center (>> center drain diffusion transistor pullup iv2)))

a4 (wire ()

45 (run-layer 'poly)

46 (from (> bottom-center poly-contact))

a7 (jogq y (- center-laft gate-poly pulidown iv2)))

48 (wire “feedback

a9 {run-layer “diff)

50 (from (pt-above (- bottom rcight diff contacl pullup iv2) 1)) ¢
51 (to x (pt to right (> center right vdd-contact?)

52 (¢ *diff 1o diff* 1))

53 {to y (pt above (> tnp center vdd-contact?)

54 (¢t *metal to metal®

55 (/7 *defyult metal-size* 2.0))))

56 (save-cp ‘read- turn)

57 {to x (> apparent top center diff bc))

ha {5ave cp “load turn)

5 (Lo y (- apparent top center diff bc)))

60 (wire "phil&load

61 {run layer ‘poly)

62 (from (pt ( (+> x appavent-bottom-left poly bc)

63 (+ *poly to poly®* 1})

64 (> y start phi2)))

65 (toy (> y end phi2))) 3




EXAMPLE

(wire 'phil&read
(run-layer ‘poly)
{from (pt (+ (>> x center-right feedback)
(+ *poly to-diff* 1))
(>> y start phi2)))
(to-y (>> y end phi2)))
(part 'load-trans pass-transistor (xfrm 'rot90}))
(align (>> load-trans)
(>> center load-trans)
(pt (>> x cueater philkload)
(>> y load-turp feedback)))
(part "load-contact square contact
(layer 'diff)
(center-right (pt (- (>> x center phil&load)
(+ *poly-to-diff® 1))
{>> y load turn feedback))))
(wire ()

(run-tayer ‘diff)

(from (>> load-turn feedback))

(to-x (>> apparent-center-right load-trans)))
(part ‘read trans pass transistor (xfrm 'rot90))
(align (>> read-trans)

(»> center read-trans)
{pt (> x center phildread)
(>> y read-turn feedback)))

(part ‘'read-contact squarc-contact

(layer "diff)

{center-teft (pt (+ (>> x center phil&read)

(+ *poly-to-diff* 1))
(>> y read-turn feedback))))

(wire ()

{run-layer ‘diff)

(from (>> read-turn leedback))

(to-x (> apparent-center-left read-trans)))

{(wire 'data-bus

(run-layer ‘matal)

(from (- center lefl load-contact))

(to-x (>> centar-right read-contact)))

(wire 'vddJ-bus

(run-tayer ‘metal)

(from (pt (»> x start data-bus)

(>> y center vdd-contactl)))

(to-x (> end data-bus)))

(wire 'gnd bus

(run-layer ‘'metal)

(from (pt {>» x start data-bus)

(>> y center gnd-contactl)))

(to-x (>> end data bus)))

(setq-my h-pitch (- (>> x cenler read-contact)
(> x center load-contact))))

DPL Manual




EXAMPLE - 62 - DPL Manual

10.3 Discussion of the REGCELL program

We have laid out ReGCELL by beginning with the leftmost inverter, creating the
parts surrounding it, and moving around the cell building each part as its position is
determined by its neighbors. We built the central pieces of the cell first and built the
busses extending the entire width of the cell last. The busses were built last so there
would be objects by which to specify their dimensions.

Let us look at the program in more detail. We begin with the leftmost inverter,
which we name 1v1, because it is a prominent piece of the cell and seems like a good
place to start. 1vi is created by using the rari function which makes an instance of
the prototype InNLINL-INVERTER (see Library) with an enhancement channel width of 4.
This will give the inverter a ratio of 8-1 which is necessary because it will be driven
through a pass-transistor. The other parameters of INLINE-INvERIER will default as
follows: The enhancement channel length will be 2, the depletion channel length 8,
and the depletion channel width 2. (line 2)

We may now create things whose locations depend on that of 1vi. We create
GND-CONTACT 1 and voD-ConTacT1 placing them below and above 1vi. They will be used
later to connect the inverter to the power and ground busses. (lines 3 - 6)

After making the two square contacts, we create the butting contact on the left
of 1v1, and call it sc. We rotate sc 180" because the untransfornied butting contact
has its diffusion on the bottom and we need it on the top. We then align ic the
minimum metal-to-metal distance from the metal 1o its right and the same distance
above the ground bus. We use GND-CONTACTT to find out the height of the bus. Note
that it was necessary for us to create the square contacts before making sc in order to
specity the Y coordinate of . Of course we could have aligned nc with a part of 1v1,
say making the arpartNI-s0TiIoM-RIGHT Of the cut of 8C 3 lambda to the left of the
notroM-LEiT of the coniact of the rutiur of 1vi. While this would work fine, it doesn't
really represent the reason that sc is placed where it is. The location of 8¢ is
determined 1o the right by the metal in 1v1 and below by the eventual location of the
ground bus. The placement we use indicates these dependencies. (lines 7 - 11)

We can finish up this segment of the cell by connecting a poly wire from the poly
of butling contact B¢ to the Gart -rot Y of the pui1bown of 1vi. The wire starts from the
APPARENT -BOTiOM-CENTER Of BC and does a J0G-Y to the CtnIER-LEiT of the GAte-roLY of




EXAMPLE .63

the putLpown of 1vi. The Joe-y command here will actually create a rectangle of 1
lambda in the Y direction and then a rectangle extending in the X direction. We use a
jog here to allow us the flexibility of being able to raise 8¢ at some point in the future
without having to change the description of the poly wire. Since there is nothing
requiring BC to be as close to the ground bus as we have made it, it is possible to move
it higher if necessary. (lines 12 - 15)

We now move to the right and create the clock line pu12z, the next object whose
position is determined by those we have already built. lts position in the X direction is
determined by the minimum poly-to-poly spacing from the ruLtup of 1Ivi. We want the
wire to run from the bottom of the cell to the top, plus one metal-to-metal distance at
the top. The extra is so that several of these cells may be stacked to allow several bits
to be stored at once. Since there will be a data-bus at the top of the cell, in addition to
the power bus, we must allow room for one metal line of the default size, plus two

metal-to-metal distances. (lines 16 - 23)

Next we form the poly contact to the right of pit1z. It can be no closer to ground
than the minimum metal-to-metal distance and no closer to pni2 than the minimum
poly-to-poly distance. We place it as close as it can get to these wires with an ALIGN
procedure using these specifications. Next we run a metal wire from the BOTTOM-RIGHT
of the conTacT of the ruLLur of 1vi to POLY-CONTACT. We make it 3 lambda (minimum
metal width) wide. We must begin the wire 1.5 lambda above the bottom of the
contact so that the connection will be 3 lambda wide. The 10-x command then runs
the wire to POLY- CONTACT. (lines 24 - 34)

We are now ready to make our second inverter which we name 1v2. We give it
no parameters as we want its ratio to be 4-1 which is the default. The 4-1 ratio is
justified because this inverter is driven directly from 1v1. lts placement is determined
on the left side by the minimum poly-to-poly distance from poLy-contacT. The vertical
placement is to be the same as that far tvi. The power and ground contacts are then
placed for tvz in the same manner as for ivi. A paly wire from poty-coniaCt to the
GATE-PO1LY Of PuULLOWN Of 1v2 completes the connection of the output of 1v1 to the input

of 1v2. We again place the wire with a jog to allow us future flexibility. (lines 35 - 47)

We will now construct the feedback path that refreshes 1vt through pui2 and
makes the connections to the data-bus through the control signals. The wire f¢{DBACK
runs from the diffusion in the cont1acT of the putiup of 1vz, to the right far enough to put




-

EXAMPLE -64 - DPL Manual

it one diff-to-diff distance away from vbb-coniaCT2, then up to where the center of the
data-bus will be. Two CPs of the wire, RLAD-Tun and L0AD- 1uRN, are saved for later
placement of transistors. itinsack then jogs to the diffusion in sc, completing the
feedback path. Note that a transistor is created when the diffusion of rtrnsack
crosses the pH12 wire. (lines 48 - 59)

The control lines, PHI18LOAD and Pl 1&READ, may now be placed. Both are
specified horizontally by minimum distances from existing structure and vertically by
requiring that they begin and end at the same Y values as the starr and enp of pui2.
(lines 60 - 71)

The connections from the feedback wire to the data-bus may now be made. The
same procedure is used for the connections on the left and right sides of the cell.
First a pass-transistor is placed at the appropriate position. Then a contact to the
data-bus is created as close as possible to the control line. A wire is then run
connecting the pass-transistor to one of the named CPs on Ftinsack. (lines 72 - 89)

All that remains is the busses. They extend from the left edge of 10ap-conTACT to
the right edge of riap-conTAct. The Y coordinate of each bus has already been
determined. (lines 100 - 113)

The last command names the u-riicH of the cell. Note that the cell may be
replicated so that the center of LoAD-CONIACT On one instance of Ricctit could hne up
with the center of Rt ap-CONTACT On the instance to its left. We specify this here so that
the constraints in the row replicator will place ricctit correctly. We have designed
REGCELL SO that its vertical dimension is the correct one to use for replication so we
need not specify it explicitly. (lines 114 - 115)




LIBRARY

11. LIBRARY

DPL Manual

The definitions here are automatically loaded into the DPL environment. There

will probably be other cells available.

11.1 Some Constraints

(defconstraint c= (vl v2)
(vl (v2) v2) (v2 (v1) v1))

(defconstraint c+ (vl v2 v3)
(vl (v2 v3) (+ v2 v3))
{(v2 (vl v3) (- vl v3))
(v3 (vl v2) (- vl v2)))

(defconstraint c* (prod m1 m2)
(prod (ml m2) (* ml m2))
(m1 (prod m2)
(if (= m2 0)
'bail-out
(// (float prod) m2)))
(m2 (prod mil)
(if (= ml 0)
'bail-out
(// (float prod) m1))))

(defcunstraint offset (vl v2 v3)
(vl (v2 v3) (pt-sum v2 v3))
(v2 (vl v3) (pL-difference vl v3))
(v3 (vl v2) (pt-difference vl v2)))

11.2 Some Types

(deflayout rectangle
"({(primary-parameters
{({layer nid)
(length nil)
(width nil)))
{constraints

This causes the values of two
parameters to be equal.

The first value is to be the sum of the
other two.

The first value is to be the product of
the other two.

All the values are points. The first
point is to be the vector sum of the
other two.

The structure of a rectangle is
determined entirely by the values of
its parameters.

((default-size-for-layer layer length)
(default-size-for-layer layer width)))))




(deflayout square-contact
‘((primary-parameters ({(layer ‘'poly))})
(part ‘cut rectangle (layer 'cul))
(part ’'cover rectangle (layer 'metal))
(part ‘stuff rectangle (layer (>> tayer))
(length 4) (width 4}))

(deflayout horizoatal-contact
‘({primary-parameters ((layer 'poly))))
(part 'cut rectangle (layer 'cut)
{length 2) (width 4))
(part ‘cover rectangle (layer 'metal)
{Yength 4) (width b))
(part 'stuff rectangle (layer (>> layer))
(length 4) (width 6)))

(deflayout butting-contact '()
{part ‘cut rectangle {layer 'cut)
(length 4))
{part 'cover rectangle {layer 'metal)
{(length 6))
{part 'poly rectangle (layer 'poly)
(length 3) (width 4) (center (pt 0 1.5)))
(part ‘diff rectangle (layer 'diff)
(Yength 4) (width 4) (center (pt 0 -1))))

‘({primary-parameters
((channel-Tangth 2) rectanguiar FET.

(channel-width 2)}))
(part ’gate-poly rectangle (layer 'poly)
(length (>> channel-length))
(width (+ (>> channel-width)
(* 2 *poly-overhang®))))
(part ‘channel rectangle (layer ‘channel)
{length (>> channel-length))
(width (>> channel-width)})
(part ‘source-diffusion rectangle (layer 'diff)
(langth *diff-overhang®*)
(width (>> channel-width))
(top-center {>> bottom-centar channsel)})
(part 'drain-diffusion rectangle (layer 'diff)
(length *diff-overhang*®)
(width (>> channel-width))
(bottom-center (>> top-center channel))))

is the same as a "rect-fet".

(deflayout rect-fet This is the standard transistor --

LIBRARY - 66 - DPL Manual

a

(deflayout (rect-e-fet rect-fet) ()} A "rectangular enhancement FET"




—

LIBRARY - 67 - DPL Manual

A "rectangular depletion FET" has

deflayout (rect-d-fet rect-fet
( y ¢ ot) ion implant.
(part 'implant rectangle
(layer 'ion)
(length (+ (>> channel-length)
(* 2 *ion-overhang*)))
(width (+ (>> channel-width)
(* 2 *ion-overhang*)))
(center (>> center channel))))

(deflayout (pulldown rect-e-fet) '()) Both of these are alternate names

for rect-e-fet.
(deflayout (pass-transistor rect-e-fet) ‘()) or rect-e-le

(deflayout standard-pullup A "standard pullup" has a contact
‘((primary-parameters

n its left si n n ion
((channe)-Tength 8) on its left side and a connectio

(channel-width 2)))) from the contact to the gate of the
(part 'transistor rect-d-fet transistor.
{channel-length (>> channel-length))
(channel-width (- channel-width)))
(parlt ‘contact bulting-contact)
(rot90 (>> contact))
(align (>> contact)
(> bottom-right cut contact)
(7> bottom center
source diffusion transistor))
(part 'poly rectangle
{layer ‘poly) (length 3) (width 2)
{bottom-right
(>> bottom-right poly contact)))
{setq-my diffusion-counnection
(pt 0 (>>y
bottom-left diff contact}))))

_deflayout (inline-pultup pullup)
‘(tprimary-parameters
((channel-length 8)

An "inline pullup” has the butting
contact directly below the transistor.

(channel-width 2))}) The channel must be made one
(part 'transistor rect-d-fet lambda longer than necessary for
(channel-length the correct ratio, bec the

{1+ (>> channel-length))) corre ratio, ause

(channel-width (>> channel-width)))  contact will cover part of it.
{part ‘'contact butting-contact)
(align (>> contact)
(>> bottom-center poly contact)
(>> bottom-center gate-poly transistor))
(setq-my diffusion-connection
(>> bottom-center contact)))

-ty




LIBRARY - 68 - DPL Manual

(dof layout fnverter This inverter uses the standard

‘({primary-parameters pullup. Note the constraints
((d1 8.0) (el 2.0) hetween the parameter values and
{ew 2.0) (dw 2.0) i
puz poz z)) ratios.
{constraints

((c* dl puz dw)
(c* el pdz ew)
(¢* puz z pdz})))

(part ‘pullup standard-pullup
{channel-length (>> d1))
{channel-width (>> dw)))

(part 'pulldown rect-e-fet
(channel-length (>> el))
(channel-width (>> ew)))

(align (>> pulldown)

(>> top-center
drain-diffusion pulidown)
(>> diffusion-connection pullup)))

(deflayout in)ine-inverter This inverter uses the inline-pullup.
'({primary-parameters
{({d? 8.0) (e} 2.0)
(ew 2.0) (dw 2.0)
puz pdz 2))
(constrafats
((c* d1 puz dw)
(c* el pds ew)
(c® puz z pdz})})
(part ‘puliup inltine-pullup
(channel-iength {>> dl))
(channel-width (>> dw})})
{(part "pulldown rect-e-fat
(channel-length (>> el})
(channel-width (>> ew)))
(align (>> pulldown)
(>> top-center drain-giffusion pulldown)
{pt-above (>> diffusion-connecttion pullup) 1)))

11.3 Some Replicators

These replications make use of the H-p1ich and v-PITCH constraints between
their instance fists and their "pitch” parameters. The "pitch” of an instance is the
minimum distance between points where successive replicated versions of the
instance may be placed. In most cases this is the size of the instance in the
appropriate dimension "H" (horizontal) or "V“ (vertical). However, if a cell is explicitly

given a parameter with one of these names, the value in that celi is used.




-

LIBRARY -69 -

(defreplicator row (1)
'({primary-parameters
((pitch) (spacing 0)))
(constraints
((h-pitch instance-list pitch))))
(replicator-instance
(>> (*rep-instance 0)))
(replicator-transform
‘identity
(* i (+ (> pitch) (>> spacing)))
0))

(defreplicator cotumn (i)

'"((primary-parameters

((pitch) (spacing 0)))

(constraints

({v-pitch instance-1ist pitch))))
(replicator-instance

(>> (*rep-instance 0)}))
(replicator-transform

‘identity

0

(* i (+ (>> piteh) (>> spacing)))))

(defreplicator array (i j)
‘((primary-parameters
((v-pitch) (h-pitch)
(v-spacing 0) (h-spacing 0)))
(constraints
{((h-pitch instance-list h-pitch)
(v-pitch instance-list v-pitch)}))

{(replicator-insiance (>> (*rep-instance 0)))

(replicator-transform
'identity

(* i (+ (>> h-pitch) (>> h-spacing)))

DPL Manual

This places a row of objects. The
SPACING parameter may be used to
insert extra space between the
elements.

Makes a column.

This takes an instance and makes
an n x m array of it. The pitches
default as for row and column.

(* j (+ (>> v~pitch) (>> v-spacing})))))

——————

e .. e e s




LIBRARY -70- DPL Manual

i

(defreplicator flipping-array (1 j)
‘((primary-parameters
(v-pitch h-pitch xref yref
(x-overlap 0) (y-overlap 0)
(x-space 0) (y-space 0)})
(constraints
((flipping-pitches
instance- list h-pitch v-pitch xref yref
x-overlap y-overlap x-space y-space))))
(Yot ({x {( 1 2)) (y ( j 2)) which unitary)
(setq which (+ x (* 2 y)))
(setq unitary (cond ((equal which 0) 'identity)
((equal which 1) ‘negx)
((equal which 2) 'negy)
((equal which 3) 'rot180)))
(replicator-instance (>> (*rep-instance 0)))
(replicator-transform unitary
(if (= x 0)
(* (/7 i 2) (>> h-pitch))
(+ (>> xref)
(* (/7 1 2)
(>> h-pitch))
(- 0 (>> x-overlap))))
(if (= y 0)
(* (/7 j 2) (>> v-pitch))
(+ (>> yref)
(* (/7 32)
{(>> v-pitch))
(- 0 (>> y-overlap)))))))

alternate elements are flipped. |t
uses a FLIPPING PLICNHES constraint
which is similar to the pitch
constraints. One can make a row in
which alternate elements are flipped
by calling r11pPING-ARRAY with a
second argument of 1, or a column
of alternately flipped elements by
using a first argument of 1.

This makes an array in which '

- < .y e =R P




GLOSSARY -7 - DPL Manual

12. GLOSSARY

Presented here are most of the DPL functions and variables available for
designing projects. Functions which are used only for the implementation of the

language are not included.

Each function is presented with information about the arguments it takes. For

example
(A-FUNCTION <arg-1> '<arg-2> . <form-1> <form-2> . . .)

introduces the function A-runcTiOoN. Arguments are enclosed in angle brackets (<»)
and are given reasonably mnemonic names. Arguments not evaluated are shown with
a quote before them. (like <arg-2> above). A dot () in the form indicates that the
terms after the dot are optional and thus may be omitted. Three dots {...) at the end
of some optional arguments indicates that there may be any number of terms in the

argument list at that point.

Every term in the body of a form will be described. In some cases the terms

themselves must be structured in certain ways.

The functions will be grouped according to the kinds of DPL objects they
operate on -- transform functions are grouped together, as are functions that

manipulate points.

- _ -

— e ——————— e ot e me—en e m et s+ —— S e e e e e i

|
i




- it ’ . - . i e S e - —
GLOSSARY -72. DPL Manual
12.1 Types

(DEFLAYOUT ‘<type-name)
<param-11st>
‘<body>)

(PRIMARY -PARAMETERS
((<param-name-1> <(default-value-1>)
(<param-name-2> <(default-value-2>)

(CONSTRAINTS
{((<constraint-name <{param> <param> .
(<constraint-name <{param> {(param> .

(AUXILIARY~PARAMETERS
(<param-name>. . .))

(TYPE-FROM-TYPE-NAME <(type-name>)
(TYPE? <Cobject))

(PART <{name> '<{type>
. <{param-1> (param-2> . ., .)

Defines a type. {f <iype-name> is an
atom, the new type will have that
name. If the name is a fist of two
atoms, the car will be the name of
the new type, the capr will be used
as the "supertype" of the type.
Cparam-list> is a list of
keyword-value pairs. The value of
each pair is stored in a cell on the
type. <body> is the maker function of
the type and may consist of any LISP
and DPL forms.

This form in the <param-1ist> of a
DEFLAYOUT specifies the names and
default values for the parameters
used to build instances of the type.

This form in the <param-1ist> of a
DEFLAYOUT  specifies that  the
constraints named are to be applied
to the parameters named.

This form in the <param-1ist> of a
pefFLAaYoUT specifies some of the
names used by the maker function
to store information.

Returns the type whose name is
{(type-namea>.

Tests to see if <ob ject> is a type.

Creates an instance of <type> and
makes it a part of *mt+. If cname> is
non-wNiL, it is used as the name of the
part on *Mte. Each of the
parameters has the following form:
('<param-name> <value>)

The (<param-name>) may be a
defined parameter of the type, an
"implicit-parameter”, or parameters
used to place the instance.




GLOSSARY

(DELETE-INSTANCE <instance))

(INVOKE <name> '<(type>
(param-1> <param-2> . ., .)

(RENTYPE <(type-name>)

(DESTROY-TYPE <type-name>)

12.2 Naming

(ASSIGN-TO-THE <name> <object> <valued)

(SET-MY <name> <{value>)

(SETQ-MY '{name> <(value))

(BOUND-ON? <name> Cobject>)

-73-

DPL Manual

Removes <instance> from the parts
of sMes,

Identical to pParT except that the
instance produced is not
considered to be a "part" of smMes.

Remaoves all prototypes and
instances of the type and all
prototypes and instances that use
them. The type definition is still
available.

Does a rem1vee of the type and then
removes the type from the list of
defined types. The type may then no
longer be called.

Creates a cell named <name> ON
<object> and places <value> in it.

Creates a cell named <name> ONn *ME*®
and places <value> init.

The same as SET-MY but <nane> is not
evaluated.

Tests to see if a cell named <name>
exists on <object>.




GLOSSARY .74.

12.3 Access Functions

(THE Cname> objectd)

(3> . {form~1> <(form-2> . . .{form-n))

(E>> <atom>)

(MY <named>)

(EXAMINE <thingd)

DPL Manual

Finds the value of <name> in <object>.
If the value is a transformable object,
the appropriate composition of
transforms is performed to assure
that the result is viewed in the
correct coordinate system. <aame>
may be the name of information
placed by DEFLAYOUT, SEIQ-MY, an
"implicit-parameter”, or one of the
components of a DPL structure (for
example, the prototype of an
instance).

Expands into a series of calls to Tue.
The <object> of the last call to e is
*Mt*.  Accesses information from
*Me+ as well as information nested in
parts of *mMt*. If the forms are atoms
they are not evafuated. Otherwise
they are evaluated and the results
used as the names.

Returns <atom>. It is used if one
wants to evaluate an atom in a »»
form.

The same as: (THE <name> *Mt ®),

Used to interactively examine the
components of the structure of
<thing>. Aliows the user to indicate
the parts he wishes to examine. The
command gu11 exits the progiam, ?
prints documentation.




GLOSSARY

12.4 Points

(PT x> ¢y>)

(PT? <object>)

(PT-SUM <pt1> <pt2>)
(PT-DIFFERENCE <pt1> <pt2>)

(PT-ABOVE <pt> <offsetd)
(PT-BELOW <pt> <offsetd)
(PT-TO-LEFT <pt> <offsetd)
(PT-TO-RIGHT <pt> <offsetd)

12.5 Transform Functions

(<unitary-transform> (instance>)

IDENTITY ROT90
ROT180 ROT270
NEGX NEGY
INT-POS INT-NEG

(ALIGN <(instance)>
<{pt-on-instance>
<target-ptd)

(SET-TRANSFORM <Cinstance> <transform>)

(TRANSFORM-PT <transform> <ptd>)

-75-

DPL Manual

Makes a point with the given
coordinates.

Tests the object to see if it is a point.

These functions create a point that
is the vector sum or difference of the
two arguments.

These functions create a point offset
from the given point the specified
amount in the specified direction.

Applies the unitary transform
function to the instance. This gives
the instance a new transform which
is the composition of the
unitary-transform with the previous
transform of the instance.

These are the unitary transform
functions. Their names may be used
as the xfrRM parameter in a PART
command. The names may also
appear as the unitary-part of a
transform.

Translates the instance so that
<pt-on-instance> is at
<target-pt>.

Gives the instance a transform of
Ctransform>.

Returns the point that is the result of
transforming L by the
<transformd,

R

ERRpN—_y




GLOSSARY -76 -

( TRANSFORM-PT-BY-UNITARY
<unitary-transform> <{pt))

(CREATE-TRANSFORM Cunitary-part) <pt)>)

(COMPOSE~-TRANSFORMS <{trans-1> <{trans-2>)

(COMPOSE-UNITARY-TRANSFORMS <ut~1> <ut-2))

(INVERSE-TRANSFORM <transform>)

( INVERSE-UNITARY-TRANSFORM
<unitary-transform>)

DPL Manual

The same as TRANSFORM-PT but the
argument is the name of a
unitary-transform function.

Creates and returns a transform with
the given unitary-part and a
translation part determined from
<ptd>.

The transform that is returned is the
resuit of first applying <trans-2>,
then <trans-1>.

Gives the unitary-transform that
results from applying unitary
transform <ut-2> followed by unitary
transform <ut-1>.

Returns the transform that, when
composed with (transform>, would
give the identity transform.

The same as INVERSE- [RANSFORM
excepl that this takes and returns a
unitary transform,

4




GLOSSARY

12.6 Wiring Commands

(WIRE <name> . <body>)

(RUN-LAYER <layer>)
(RUN-WIDTH <value))
(FROM <location))
(T0-X <location>)
(T0-Y <location>)
(T0-PT <locattion>)
(J0G-X <ptd>)

(J0G-Y <ptd>)

(+X <valued)

{-X (valued)

(+Y <valued)

(-Y <valued)
{SAVE-CP (name>)
(RESTORE-CP <name>)
(OROP-CONTACT)

(PT-CP <cpd)

12.7 Constraints

(DEFCONSTRAINT *‘<name>
‘Cvar-11st>
'<body>)

DPL Manual

Makes a wire and names it <name> if
the name is non-NIL. <body> is then
executed with the wire bound to the
variable *1it-WiRE*.  <body> may
contain and LISP forms or special
wire procedures.

These commands are allowed inside
a wirt form. All of these have
corresponding functions for use
from "outside" the wire. Their
names are WIRC-<name> where the
<name> is one of the above.

Gets the point from the
connection-point.

Defines a constraint named <name>.
When called, the constraint will bind
whatever variables in <var-1ist> are
specified. Then the <body> will be
executed. The forms in the body
look like:

(<result-var> <depends-on> <code>)
(None of these are evaluated when
the oreLavout is evaluated.) The
cresult-var> is the variable that may
be computed if all the variables in
the <depends-on> list are specified.
The procedure to find the value of
that variable is specified by <code>.




GLOSSARY -78 - DPL Manual

(DEFDEFAULT *<named Definegs a "default” cor?straint. The
"Cvar-1188> constraint will be effective only if no
'<body>) other attempt is made to set the
value of the parameters it
constrains, either by explicit passing
of values or other "normal"
constraints. Form and use are
identical to DEFCONSTRAINT.

12.8 Replicators

(DEFREPLICATOR ‘<name> Detines a replicator. The <name> and
*Ccoordinate-variables> <param-1ist> work the same as for ;
{param-1ist> i ) ]

<body>) DEFLAYOUYT. <coordinate-variables>

is a list of names that are used in
<body> to compute the instance at
the corresponding coordinates
when the replicator is referenced.

(*REP <> <P) Used in a THe or >> command, gets

the (<i>.<j>)-th element of a

replication. ‘ ;
{*REP-INSTANCE <n)) Gets the nth instance in the

INSTANCE -L 1ST of the replication.

(REPLICATOR-INSTANCE (instance>) Must appear in the body of a
replicator. Indicates the instance
that is to be returned when the
replicator is accessed. Usually
cinstance> is a call to *REP- INSTANCE :
that depends on the
<coordinate-variables> of the

replicator. |
(REPLICATOR-TRANSFORM Must appear in the body of a
Cunitary-part> <x> <y?) replicator. Indicates the transform

1 that is to be composed with the
transform of the instance given to
REPLICATOR- INSTANCE,




GLOSSARY -79-

(REPLICATE <name> '<replication>
<{coordinate-sizes>
{param-11st))

12.9 CIF

(CIFOUT <instance> <filename>)

{(CIFTRAN (fila>
{1oad?> <file-outd> <lambda-size>)

12.10 Implicit-Parameters

BOUNDING-~B80X
XOIM YOIM
TOP-LEFT TOP-RIGHT

CENTER-LEFT
BOTTOM-LEFT
TOP-CENTER
CENTER
ORIGIN

CENTER-RIGHT
BOTTOM-RIGHT
BOTTOM-CENTER

12.11 *LIST*

(MAKE-LIST-OF <14st>)

DPL Manual

Calls the replicator <replication>.
The list <coordinate-sizes> gives the
values of the dimensions of the
coordinates. The rest of the form is
identical with the paRT form.

Outputs CIF translations of enough
of the data-base to build the
instance.

Translates the CIF in the <fite> into
DPL and places the result in the file
(file-out>. The <lambda-size> is the
size of lambda in microns with which
the original CIF was produced. f
<load?> is non-NiL, the DPL forms
are loaded into the current
environment,

The implicit parameters of an
instance. All (except BOUNDING-BOX)
have  corresponding  APPARENT-
versions.

Makes a #1157+ from the list. Used
when the list will contain
transformable objects.




GLOSSARY -80-

(THE-LIST-OF <11st))

12.12 Layer Sizing

(LAYER-DEFAULT-SIZE <layer>)

(LAYER-MININUM-SIZE <layer>)

12.13 Symbols

SMEe

*THE-WIRE®

*CURRENT-WIRE®

( *UNNASIGNED®)

*TYPE-LIST®

Extracts the list from a *L1sTe.

Finds the default size for the layer.
Uses the "default-size" constants
below.

Finds the minimum size for the layer.
Uses the "minimum-size" constants
below.

When prototype is being
constructed by the maker function
of a type, *Mt* is bound to that
prototype. Otherwise, *Me* is bound
to the "top".

Bound to the wire being constructed
in awIrt form,

Used to access CPs of the wire
being constructed.

This list is placed in celis between
the time they were created and the
time they get values. If it is ever
seen, it means that an error has
occurred -- somehow a cell has
been accessed that has no value.

Contains a list of the names of all
defined types.




GLOSSARY -81- DPL Manual

— -

12.14 Constants

All these numbers are in lambda. They depend on the design rules of the

process being used.

SMIN~POLY-SIZE® The minimum-size constants.
*MIN-CHANNEL-SIZE®
*MIN-DIFF-SIZE®
SMIN~MEVAL-SIZE®
*MIN~CUT-SIZE®
*MIN-ION-SIZE®
*MIN-NOGLASS-SIZE®

NN WNNN

*DEFAULT-POLY-SIZE® The delault-size constants.
*DEFAULT-CHANNEL-SIZE*
*DEFAULT-OIFF-SIZE®
*DEFAULT-METAL-SIZE®
*DEFAULT-CUT-SIZE*
*DEFAULT-TON-SIZE®
*DEFAULY-NOGLASS-SIZE®

MNOoOTR BN

*POLY-OVERHANG® Other useful numbers.
*DIFF-OVERHANG®

* ION-OVERHANG®
*METAL-TO-METAL®
*POLY-TO-POLY*
*DIFF-TO-DIFF*
*POLY-TO-DIFF*
*ION-TO-TRANSISTOR®

e

-k N W NN
. .




