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SUMMARY

We have examined the theory of both electrical and thermal
breakdown in explosive materials. Application of thermal breakdown
theory had to be modified to account for the reaction kinetics
while electrical breakdown, whose onset occurs at the steady
state temperature, was found to follow breakdown theory in inerts.

Use of breakdown theory to predict critical fields in
explosives seems feasible but is hampered by the lack of an
adequate data base. This lack of experimental data also prevents
a resolution of the question of possible electric field effects
on thermal explosion parameters. It should, however, be

relatively simple to distinguish between thermal and electrical

breakdown in any given experiment by a consideration of initial
temperature and explosion induction time, s
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I. INTRODUCTION

Dielectric breakdown is a universal response of materials
to the application of sufficiently intense electromagnetic
fields. While the interaction of electromagnetic radiation
with ineit dielectrics has received attention from both
theoristl~® and experimentalist7-9, relatively little work
has been done on the coupling of radiation to explosive materials,
a matter of some recent interst. We may also note experimental
evidence indicating generation of intense polarization fields
in a detonating explosivel0-12 an understanding of breakdown
phenomena may thus help elucidate fundamental detonation processes,
even in the absence of externally coupled fields.

Theories of breakdown in solids divide brvadly into studies
of thermal breakdown and purely electrical breakdown, with
a number of subcategories for the latter. We shall briefly

review each process and consider the application to an explosive
medium.

II. ELECTRICAL BREAKDOWN

1. FORMULATION OF BREAKDOWN CRITERION. In electrical
breakdown we assume that the electron distribution depends
directly on the applied electric field ¥. The critical breakdown

lFrohlich, H., "Theory of Electrical Breakdown in Ionic Crystals,"”
Proc. Roy. Soc. Al60, 230 (1937).

2Frohlich, H. and Paranjape, V., "Dielectric Breakdown in Solids,"
Proc. Phys. Scc. Lond. B69, 866 (1956).

O'Dwyer, J. J., "Dielectric Breakdown in Solids," Adv. in Phys.
7, 349 (1958).

%8eitz, F., "On the Theory of Election Multiplication in Crystals,"
5Phys. Rev. 76, 1376 (1949).
Stratton, J. A., "Theory of Dielectric Breakdown in Solids,"
Progress in Dielectrics, Vol. 3, Ed. Birks (1961, Wiley).
Von Hippel, A., "The Electrical Breakdown Strengths of Ionic
7Crystals as Functions of Temperature,” Phys. Rev. 56, 941 (1939).
Vorobev, A.; "Anisotropy of the Dielectric Strength of Rocksalt,"
Soviet Phys. Solid State 4, 1441 (1962).
Caspari, M., "Direction of Breakdown in Alkali Halide Crystals,"
Phys. Rev, 98, 1679 (1955).
9Davisson, J. W., "Directional Breakdown in Crystals," Progress
in Dielectrics Vol. 1, Ed.-Birks, (1959-Wiely).
10Hayes, B., "The Detonation Electric Effect," J. App. Phys.
38, 507 (1967).
lpremin, A. et.al, "Shock Induced Electrical Polarization,"
Proc. 6th Int. Symp. on Detonation, (1975).
Yakushev, V., et.al, "On the Measurement of Polarization Relaxation

Time in Homogeneous Explosives," 2Zh. Experm. Teor. Fiz. 54,
396 (1961).
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field ¥_ will be that marking the onset of some instability
in the Conduction current.

We consider first the case of low carrier density and
follow the average behavior of a single electron interacting
with the applied electric field and with the lattice. As the
density increases, electron-electron interactions become important
and a single electron picture will no longer suffice. We will
later calculate the critical density for a single electron
approximation and consider the necessary modifications when
the low density restriction is violated.

For a steady state to exist, an equilibrium must be maintained
between the energy supplied to the electron by the external field
A(F,E), and the net energy transferred from the electron to the
lattice via collisions with phonons, which we shall designate
B(E). E represents the total electronic energy.

We consider an applied electric field F pointing along
the z-axis of our cartesian coordinate system. A conduction
band electron will be accelerated by the field feeling a force

dpZ

= eF (1)
9t . pyEmp

We adopt the convention that a previously defined vector symbol
appearing without an arrow refers to the abso.ute value, The
buildup of momentum in the Z-direction will be retarded through
collision with the lattice leading to an average drag force

dp, z
at  parrree T(E) (2)

where we have defined an average collision time t (E) which
is a function of the electronic energy E.

Equilibrium requires

sz sz
aT *\aT =0 (3)
LATTICE FIELD
We define a current density 3(E) by
b
e = =, (4)
5

:

$
4
2

%
§
g
3
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where m is the effective mass of an electron in a conduction band.
The energy given up by the electric field may be obta%ngd in a
straightforward manner from the Maxwell eguations as J-F. Using
Equations (2)-(4) we then have for the net energy per unit volume
transferred from the field to the electron

A(E,E) = 92—5;—‘5—’- ) (5)

The net rate of energy transfer to the lattice may be calculated
by summing over all lattice modes, the probability that the
electron will either absorb or emit a phonon of wave vector q.

- emission _ absorption
B(E) g fog  Plk-q,k) Plk+q, k) : (6)

The total Hamiltonian of the system is taken to be

= +
H Helectron+thonon He-ph (7)
with He-ph representing the electron-phonon interaction,
considered small relative to the total Hamiltonian.

The quantum mechanical probabilities of emission and absorption
:re then given by the usual "Golden Rule" transition rate formula

P® (k-q,k) = §E|<k-qlne_ph|k>|2(nq+1) )

ﬁZ *\2 nZkZ}
XG{Z—ﬁ(ﬁ"q) +’hwq - m ,

a 21 x?2 > n2k? (9
p3 (k+q,k) = ﬁ_|<k+q[He_ph|k>|2nq6{55(§+q)2 - fug - 5o (9

The matrix element <ﬁt§lHe_ph!ﬁ> represents the probalkility

T plitude for an electron initially in a state of wave vector

> to scatter to a final state of wave vector |ktg>. & is the
Dirac delta function ensuring consarvation of energy and n

is
a phonon density function given by the quantum statistical9
distribution for Bose particles
1
n = . (10)
q éhmq kT_l

L/

et i
- —
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The condition for the existence of a steady state is then given
by

2p2¢ (E 21
9__5*_(_2. - £ g fug (| <k=-g|Hy_op k]2 (n +1)¢,

(11)
-|<k+q|H°_ph|k>|2n §,} .

§, and §, refer to the delta functions of Equation (8) and (9)
respectively. To complete the calculation it is necessary to
specify functional forms for J(E) and for the interaction
matrix elements.

The left side of Equation (2) represents the rate of change
of momentum pz due to electron-phonon interactions. The total
rate of electronic momentum change may be obtained by summing
the probabilities that the electron will either absorb or emit
any lattice phonon. We may thus rewrite Equation (2) in the
form

HNDY S R Sy P phl ¥> [ (ng+1e,
(12)
(k +k)

2. THE ELECTRON-~PHONON INTERACTION.

a. Polar Molecules., The electron-phonon interaction
term will depend on the polarization properties of the molecular
lattice. In polar molecules the longitudinal optical modes
produce long range dipole fields with which the electron may
be strongly coupled, and interaction with acoustic phonons
is neglected.

The energy of an electron in a field is given by the
expression

He-ph - e$(r) , . (13)
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where (r) is the scalar potential function. The divergence
D is related to the polarization field P by

D = E+4nd . (14)

The vanishing of the divergence then gives the polarization
produced by the optical phonons as

b=V, (15)

The polarization and the potential are expanded in fourier
components

> >

B(x) = /%= ) éq(aqelq’r+aq+e°1q'r) , (16)
q
1 ig.r,, + -igq'T . (17)
o(x) = = ] ¢ e +¢ e
ARt q

C is a constant which will be determined and the transformed
coordinates aq,a& correspond to the phonon annihilation and

creation operators in second quantized representation.
Substituting (14) and (15) into (13) we obtain

_ —4nic + _ 4mic  _+
q 3 %q'Yq g %g (18)

Substituting (15) and (16) into (1l) gives

-1 4nieC ig-r _ + _~iq°7, . (19)
H = ——— -
e-ph JV g q {aqe aq © !

RN W
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The constant C is calculated in Appendix A and is chown to be

_ 1 hw,% 1 1 X
C = i {7—} {E: €

Yoo (20)

Equation {19) gives the Frohlich interaction term13 for polar
crystals.

Using (17) and the selection rules for harmonic oscillater

transitions (cf. Appendix A) we have for the absorption and
emission transition rates

a 2ne2hel1 1] %5 (21)
P rrr{*‘%ﬁ

Em € qz

e _2me? w1 _ 1] (°g™hH
P'rvrk ﬂﬁr%- (22)

b. Non-Polar Molecules. F. Seitz has shown5 that
He—ph will arise largely from the electron-acoustic phonon

coupling in non-pclar molecules. Let V(;-§u 1) equal the

potential energy of an electron at position r due to the uth
ion in ‘the %‘¢4 uynit cell. xpi*denotes the lattice
vector to the origin of the unit cell.

Let

> -+
x'ﬂ,g' - ﬁu,f— * uuﬂl ! (23)

where Eu . represents the displacement from the equilibrum
[

position Ru'

To first order the total potential at r may then
be given by

l3Frohlich, H., "Electrons in Metals," Adv. in Phys. 3,325 (1954).

[R——— S

whgh
AR
J
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V(r) =} v(r-X, o (24)

) =] V(x-R, ) + 8  -VVir-R
L,u ! L,u

s U ¥,2

We see that the lattice vibrations induce an energy shift from

the value perceived by an electron in the undistorted lattice.

This energy shift

AV = § R VV(z-R ) (25)
Lu u

2

is considered to be the quantum mechanical perturbation operator,
where the displacement Ui is a phonon operatco™ and VvV operates

on the electronic states only.

The phonon operator a e is expanded in normal coordinates
yiving Ho
%elq'Ru foa) (26)

AV = J Vv(r-R . o
)

U

,26 (a

R
u,l) z (ZMNwa)
a a

a represents the sum over both wave-vector and poclarization and M
is the ionic mass. When (26) is substituted into the matrix
element for electron-phonon coupling one obtains for the
transition probabilities

2 1
. - 21 I ﬁq(nq+l)6 (27)
h 2MsVn !
2 2
a_ o L Hangs (28)
P = n 2Msw -
In deriving (27), (28) we used the acoustic-phonon d%spersion
relation ug = sq with s tae sound velocity. Use of14 Green's
Theorem allows conversion cf the electron state matrix element
involving VV into an elect~<:. overlap integral of the form
= * ' 3
I=D/[y* ' d¥r . (29)

14

Ziman, J. M., Electrons and Phonons, ¢ “~rd V. Pres., (1960).

[ ——————E I
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Estimates of I in cemiconductors15 give values of the order of
one electron volt.

3. RELAXATION TIMES. The term (kg~k)/k appearing in the

expressior for the relaxation time (Equation (12)) may be obtained

from energy and momentum conservation. Conservation of energy
gives

cos (k,q) = %% + E%% ' (30)

where the minus or plus sign refers to emission or absorption,
respectively. Averaging over the azimuth® angle gives

k

2
2 _ -9 = mfiw
T +

z  2k? k2

. (31)

We assume a dense distribution of modes q and pass from a sum
to an integral with the standard approximation

v )
L > Tmmys [ &P
q

(2;(1&)3 1 [ p2dpd(cos @) , (32)

where p = hq is the phonon momentum and 6 is the angle between
k and g, the initial electron momentum and phonon wave vector.
The integrations over the probability functions, either of

the form of (21-22) or (27-28), involves an integral over a
delta function, § (ha(ksd)? - BZEZ 4 4 defined i

elta function, #r (Kig T wq) , as defined in
(8-9). The integral over cos 6 can then be written

15Ershov, A. P., "Ionization During Detcnation of Solid Explosives,"

Fixiba Gor. Vary, 11, 938 (1974)..

SIS
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242 2
[ d(cos 9)6{%5g + hoe t‘2553 cos 6}

q

> }

_he_m n
d(cos 8)8 {cos 8 + —73— +
= Jaf ) h’kq  2mh’hqg

h?kq/m

where we have used the well known property of the delta function

s(e(x)y =35 SBx-w (34)
i lf'(xi)l

where x; are the voots of f(x).
The integration over cos 6 then gives

[ d(cose) s(£(e)) = hziq : (35)

Equation (12) may now be written

1 _ - vm__ 3 2mw
TEY = 3Ry U a%6g(1 + £o7 ) (ng + 1)dq

(36)
F g3 - e 1
* ] a6 (L 12 )nqdq Yoy

where Gq is just the probability function without the delta

function factor.

For electron energies E>>ﬁwq the factors l+2mw/hg? will

both be approximately equal to one. The integral may then be
approximated by

S AR A W
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1 - vm
T (E) 2(27) 2hZk3

/ q3Gq(2nq + 1)dq . (37)

For long wave length phonons the integrand goes to zero. We
may therefore set the lower limit of integration equal to zero
while the upper limit may be approximated by

Inax 2k . (38)
For polar molecvles it is found that the optical phonons are
relatively dispersionless. The factor 2ng+l may then be removed
from the integral. Using (21-22) in (36) we have
T H S }
T (E) E§ eﬁm7ET_l ’ (39)
where
2 /o
_ e°/mu 1 _1 40
T, ni-C S (40)
For non polar molecules we use Equation (27-28) and approximate
n = l 2._]52
g eﬂzsq7kT_1 fisg . (41)
The relaxation integral then takes the form
=, +3/2
V2 12k, TVE
y 2 B : (42)
T (E) 27 S2NMBH

where it has been assumed that the main acoustical interaction 's
with the long wavelength phonons.

13
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4, RATE OF ENERGY TRANSFER TO THE LATTICE. The energy
transfer rate to the lattice may now be written down as

_ Vm
B(B) = T 2R%k / quﬁwdq . (43)

In polar crystals the integral diverges as q»b.qmin is then

obtained by conservation of energy (equation along with the
approximations)

k » k' = 2k ’ (44)
k -k Qin (45)
This gives as the lower limit in (40)
=
9min T Hk (46)

Performing the integration we then have the

following expressions
for B(E). 1In polar crystals

Jﬁezwz 1 H 1 4
B(E - (= - & 4E
(B) =75 ‘&= e g log g (47)

In non-polar crystals, taking the lower limit of the integral
equal to zero we have

14
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5. CALCULATION OF CRITICAL FIELDS. The critical field Fp
for breakdown 1s now calculated from the energy balance
Equation (11) with a particular choice of electron energy E.

If E is chosen equal to the ionization energy Er we obtain the

following expressions for the critical field dependence on energy
and temperature. For poclar modes:

% X
F = melo3/2 - 4E 2

3 1 I
= — 2y —= {1 N,
c ~ an/2% (ew e) VEq {log Ru P4 eﬂw/kT_l} * (48)
For acoustic mcdes:

37212 (k.T)®
poo BB 2w (49)
o] 2%1eh s

In Figures 1 and 2, we have graphed the behavior of the
critical field as a function of tamperature for a reasonable
choice of physical parameters.

To illustrate the use of Equation (48) for a typical polar
molecule, we will estimate the breakdown voltage for TNT. 1In
Figure 1, we have chosen EI as 6e.v.15 and have taken for u

a typical frequency of 1014, The other parameters chosen were

T=3000K, m=m (electron) and (l/em-l/e)zié— where €5 is the
o]
free-space permittivity.

field, Fo=106 v/cm,
order of

We then obtain for the critical breakdown
This value should be accurate to within an
magnitude given the uncertainty in the physical parameters.

6. TIME LAG BEFORE BREAKDOWN. We shall make a rough
estimate of the time till breakdown assuming a critical field
Fg * 106 v/cm has been applied.

Let the electron be accelerated from rest and assume that

it ionizes another electron immediately upon attainment of the
critical energy

%mvg =1 . (50)

15

A AR RS2 A AR AN A st =

£
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FIGURE 1 CRITICAL BREAKDOWN FIELD
CRYSTALS. F _{100°K)=10%V/cm

AS FUNCTION OF TEMPERATURE (°K) IN POLAR
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FIGURE 2 CRITICAL BREAKDOWN FIELD AS FUNCTION OF TEMPERATURE (°K) IN NON-POLAR i
CRYSTALS. F_{100°K)~0.6 x 10°V/cm :

T°K)
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If we take I = 6e.v, characteristic of TNT then

- 2T - 6
Ve = Vo 1.4 x 10°m/s . (51)
With a relaxation time 1 = 10"14 sec, an electron will achieve
a velocity
eFB 5
VB = —m—- T =1.7 x 10 m/s (52)

before collision, which is not enough to achieve ionization. We
rmust then ask how many collisions, on the average, will occur
before an electron will have sufficient time tp between collisions
to achieve the critical velocity Vg. We can estimate this by
writing down a probability function P(t) representing tha
probability that a time t has passed with no collisions, We

shall take a model P(t) as

p(t) = e V/7 (53)

which has the proper boundary behavior

P(o) =1 and P(=) =0 , (54)
and which also falls off rapidly for t>t. We may also formally
derive Equation (53) by noting that P(t+dt) represents the

probability that no collision will occur in a time t or in a
following time interval dt. We thus have

P(t+dt)

P(t) P(dt) . (55)

expanding P(dt) about t = 0 and applying the boundary condition
we have

P(t+dt) = P(t) {1+§§ dt} ) (56)
£=0

1 _ -ap

1f we make the identity t F

we may formally obtain
the equation

18
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dp _ -P{t)
dat ~ T

. (57)
Integrating (57) gives us the probability function of Equation (53).

The time needed for a single electron to achieve breakdown
is given by

14

ty = mVp/eFy = 9 x 10 sec (58)
with the values of Vy and FB given above. We thus have
P(ty) = e = 1/8000 . (59)

It will take on the average 8000 collisions to produce a single

ionization event. The time for each ionization event is thus
given by

t; = 8000t = 8 x 1071 gec (60) «

To estimate now the total number of ionizing collisions n which
will characterize dielectric breakdown of the material we equate
the energy supplied by the field t+n the electrons with the energy
required to raise the lattice to some critical temperature T,.
After n collisions we have 2I' free electrons so we set

n —3 -
271 = cvpV(To T) . (61)

V represents the volume of the cone to which the 2" electrons
are assumed confined. The breakdown time Ty will be given by

Ty = Nty . (62)

The volume of the cone V is given by

A A AR A BRSO e o

Vv = 1/3H(VTB)3tan2a (63)

where Vv is the average velocity in the field direction given by
the condition
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v=k Vg (64)

and « is the half angle of the cone. Tan o may be evaluated by
assuming that motion perpendicular to the applied field is governed
only by thermal diffusion. The thermal velocity Ve is determined

by .
()
v, = \'m . (65)

After a time Ty corresponding to n collisions the electrons may

diffuse out to a distance

! 3
% 2kT t (66)

£ = n ™ B

where the n;'s term comes from the drunkard's walk solution. We
then have
tan « = (2knT)*/kVg . (67)

Substituting (62-67) into (61) and taking the log of both sides,
we obtain a transcendental equation for n

c.pATnk T
- 4logn _ v B 3
n Tog 2 log) =3 Vgpts // log 2 . (68)

We take ¢y = .2 cal/gm, p = 1.6 gm/cm3, AT = 100°K with the other
constants as before. We have solved Equation (8) graphically (see
Figure 3) and obtain for n

ns 52 ., (69)

We then have

T 3 z -9
'y 52tB 4 x 10 sec . (70)

Thus the time delay until breakdown after the sudden app‘ication
of a critical field is of the order of nanoseconds.

20
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FIGURE 3 GRAPHICAL SOLUTION OF EQUA
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7. CHARACTERISTIC RESULTS. The prediction of actual
breakdown fields from formulas such as (48) and (49) requires
knowledge of various material parameters such as the effective
mass, dielectric constants, ionization potentials, etc.
Unfortunately many or most of these have not been measured for
explosive materials. Lack of an adequate experimental data
base precludes accurate predictions of breakdown strength in
explosives. Some generAal characteristics of breakdown may,
however, be given. These include:

1. It occurs very rapidly. Experimental breakdowns
are observed to occur in less than 10"8 sec, with some instances
as iong as 107% awx.

2. It is the breakdown of an equilibrium condition and
therefore occurs at an essentially constant temperature., Breakdown
mey thus occur at low or room temperatures.

3. In the type of breakdown we have considered, dielactric
strength will be independent of sample geometry.

Other modes of breakdown also exist. In unpublished work
recently completed at NSWC J, Forbes measured breakdown fields
in a number of explosives. In the experimental setup employed,
the explosive sample was sandwiched between two electrodes.
Breakdown theory as developed in the previous section would not
be applicable as we_would expect substantial carrier injection
from the electrodesl®, This would lead to lower measured critical
fields than might be expected in an "electrodeless" geometry.

8. CRITICAL ELECTRON DENSITY. When the density of electrons
is large enough, the single electron-phonon interaction picture is
no longer realistic and the effect of electron-electron collisions
must be included in any calculation.

The critical density for the validity of the one-electron
approximation is obtained by considering the net rate of energy
transfer to the lattice. As the rates of absorption and emission
of a lattice phonon are given by Ng and (l+nq) respectively,

it wiil take, on the average an+l collisions to transfer a single

quantum of enexgy hw. The transfer rate may then be approximated
by

[EICSRHPRIe—

Eﬁ - 1 hu (71)
dtrarprcg (2Rg + 1) T(E)

16Fowler, R., and Nordheim, L., "Electron Emission in Intense

Electric Fields," Proc. Roy. Soc., 4119, 173 (1928).
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The rate of energy loss Jdue to collision with other electrons is
given byl7 Bohm and Pines as

dg _ 4rmne"
dprEcTRON  Y2ME (72)
The critical electron density for a consideration of electron-
ciectron effects is obtained when (71) and (72) are of equal
magnitude. This gives the condition
_ /72mE hw 1 (13)

BCRITICAL = 3ret (Zng + 1) (&)

In polar materials, substitution of some representative values

CRITICAL 1017(cm)-3 typical values for non-polar crystals
= 1014-15(cp) =3

CRITICAL .

gives n
gives n

Published values18 for conductivities in explosive materials
give values of o in the range of 10~10 - 10-8 (2-M)~1l, Associated
number densities are obtained from

n= 0= . (74)
e“r

Taking the effective mass equal to the electron mass and using

14

a value of t of 10 we obtain n<nCRITICAL and use of the

single electron approximation is therfore justified.

Recently G. Hammond (NSWC) has undertaken some conductivity
measurements of explosives in the microwave regime. Preliminary
results indicate substantially enhanced conductivities at these
frequencies. We shall therefore briefly outline the modifications
to the single electron treatment given above which enable treatment
of the many body electron distribution.

17Pines, D., "A Collective Description of Electron Interactions,"

Phys. Rev. 92,626 (1953).
18

Federoff and Sheffield, Ed. Encyclopedia of Explosives D1221
(1972).
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9. EFFECTS OF THE ELECTRON DISTRIBUTION. When the many
electron system 1s described by a distribution function £ defined

2 3

in such a way that —5;575 fd qd3p describes the nunber of electrons

in volume element d°a with wave vector k=§, the current density
may no longer be given by Equation (4) but is now defined by

= & 3
g = [ viddk . (75)

In general, only the asymmetrical component of f will give rise to

a current. Equations such as (&) and (12) representing probabil-
ities for electronic transitions must be augmented by factors such
as £(k) (1-£(k')) which represent the probability f(k) that the
initial state |k> is occupied and the final state |k'> is unoccupied.
Following this prescription, the current density J and the energy
transfer rate B may be computed and a breakdown field F, derived

as in section (5) which, however, accounts for the effects of

the electron distribution. It has been implicitly assumed here

that the electrons and phonons are thermally equilibriated.

In the high density case, the assumption of an electron-phonon
system in thermal equilibrium may no longer be valid. With a
sufficient density of conduction electrons the electrons may
exchange energy among themselves at a much greater rate than with
the lattice. The phonons and electrons must then be treated as a
two-fluid system with the phonons at temperature T and electrons
at temperature Tg. The applied field imparts momentum to the
electrons shifting them away from the 0-field equilibrium momentum
to some new p. This particular problem has been treated extensively

by Frohlich and Paranjape3 (1956) and we shall outline their

calculation here. ‘The equilibrium condition is given by the
vanishing of the Boltzmann equation

&%%) + (%%) ¥ (%%) =0 .  (76)
LATTICE FIELD ELECTRON
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) M(%{-)L + (%%)F} =0

The two Equations (78) and (79) are then suffi

on density

(77)

(78)

(79)

ficient, in principle,

%
|
Po and To. Calculation of Po enables }
computation of a mean conducti

I = nep .
m

The rate of energy transfer to the lattice will be given by

- 2 (af 3
B(T_,T) = f%ﬁ (S—E)L a’p ,

where the summation in E
integral and (32)

ot
pProbabilities of transitions into or out of

quation (79) has been converted to an

ftates of momentum pP.

(81) ; 1

(82)

LATTICE 1S obtained formally by considering the 1
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3
3

rh

l

=7 £ (p,p + q) - £(p + Q)P%(p + q,p)
L g

ct

(83)
+ £(p)P®(p,p - @) - £(p + @)P%(p - q,p) .

It is found that Equation (82) has a maximum at some To. Setting
J*F equal to B(T,TeMAX) then defines a critical breakdown field.

10. APPLICATION TO EXPIL.OSIVES. The application of electrical
breakdown theory to an explosive medium follows closely breakdown
theroy in inerts. Since electrical breakdown is perceived as
the destruction of steady state~equilibrium condition, the most
important consideration is the nature of the electron-phonon
coupling. Important parameters are the temperature T the phonon
spectrum and the various optical constants. These considerations
apply equally well to explosives in metastable equilibrium with
their environment as of inerts. It is only in a consideration of
thermal breakdown that the exothermic kinetics of explosive
materials must be accounted for.

III. THERMAL BREAKDOWN

1. THERMAL BREAKDOWN IN INERTS. In thermal breakdown it is
assumed that the properties of the lattice may be fully described
by the macroscopic temperature dependent conductivity. As an
electric field is appl.ed, energy will be deposited through Joule
heating. This deposited energy wilil raise the temperature of
the lattice which results in an increase in the conductivity
function. The increased conductivity gives rise to an increased
current which implies a higher rate of joule heating and so on.
If the lattice is unable to dissipate this energy at a rate great
enough to overcome the joule heating, temperatures will rise
uncontrollably and thermal breakdown will be said to occur.

The critical field is then defined by the greatest field for which
a steady state solution of the heat transfer equation (Equation
(84)) is possible. Formally, the theory of thermal breakdown

in inerts consists of finding solutions to the equation

wla
ool

c.,P

v = v+ (kVT) + o(F,T)F2(t) . (84)
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cy is the specific heat per unit mass, p is the density, x is
the thermal conductivity. oF2 represents the rate of energy
deposited through Joule heating. Equation (84) says that the
input energy is partly stored as internal energy tending to
increase the temperature and partly conducted away.

Many diilectrics have been found to follow a Poole-Frenkel
conductivity % law given by

s (F,T) = co(F)e'Wkt . (85)

¢ represents a work function for electron ionization from a
valence band or a trap to the conduction band. o, may in general
be a function of the electric field F.

2. THERMAL BREAKDOWN IN REACTIVE MEDIA. With the
identification of the Poole-Frenkel conductivity function the
theory of thermal breakdown in inerts is seen to be mathematically
equivalent to the theory of thermal explosions with the joule
heating term oF2 taking the place of the usual Arrhenius kinetic
term in thermal explosion theory. If we now wish to consider
thermal dielectric breakdown in explosive materials, Equation (84)
must be augmented by an appropriate heat source term to account
for the chemical reactivity of the medium. The appropriate
equation for thermal breakdown in explosives is now given by

3T _ o ~¢/kT ~Ea/kT .
C,P3E = F 0.8 + pQZe + ¥ (kVT) . (86)

Equation (86) can equally well be though of as representing the
influence of an applied electric field on thermal explosion
solutions. An applied electric field will influence thermal
explosion parameters, e.g. induction times to explosion, only
insofar as the term@,F2exp(-¢kT) is not negligible as compared
to the Arrhenius kinetic heat generation term. Alternatively,
the concept of thermal breakdown of an explosive remains

meaningful only so 1long as the J.F term is not overwhelmed by
the Arrhenius term.

19Frenkel, J., "On Pre-Breakdown Phenomena in Insulators and

Electronic Semiconductors," Phys. Rev. 54, 647 (1938).
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As is well known, analytic solutions to Equation (86) may
not be written down in general because20 of the highly non-
linear source terms. A variety of approximate21'2 solution
schemes for various geometries have been given in the literature.
It is also possible to solve (86) in various limiting cases.

These include the steady state regime obtained by setting?3,24
%% = 0 and the "impulse thermal breakdown" obtained by setting

v+ (xkVT) = 0. We have chosen to solve Equation (86) numerically
retaining all terms except the surface loss terms, assumed to
be small for the boundary conditions chosen.

3. CRANK-NICHOLSON METHOD. Equation (86) is an example of
a parabolic partial differential equation with a non-linear source
term. 7The Crank-Nicholson?® scheme provides a numerical algorithm
for evaluating (86) which is correct to second order in time and
stable for any values of increments Ax and At. Figure 4 represents
the space-time grid for the numerical calculation. At time t=0
the solution is given at all spatial points i. The crank-Nicholson
scheme involves writing finite difference approximations for the
differential operators at points Xirtn+y where thnek represents

points halfway between the known level at n and the unknown time
level n+l.

Eqguation (86) is solved in a slab geoinetry illustrated in
Figure 5 with boundaries at x=0 and x=xf. The divergence term
then takes on the form of a second derivative, the thermal conduc-
tivity « assumed constant. The finite difference approximations
to the derivatives are given by

aT . Tin+l " Tion

(87)
t i,n+X% st !

(>3]

20Chambre, P., "On the Solution of the Poisson-Boltzmann Equation,"

J. Chem. Phys. 20, 1795 (1952).

Zinn, J., and Mader, C., "Thermal Initiation of Explosives,"
J. App. Phys. 31, 323 (1959).

Enig, J., "Approximate Solutions in the Theory of Thermal
Explosions for Semi~Infinite Explosives," Proc. Roy. Soc.
A305, 205 (1968).

23Semenov, N., Chemical Kinetics and Chain Reaction, Oxford

U. Press (1935).
24Frank—Kaminetskii, Diffusion and Heat Exchange in Chemical
Kinetics (trans. N. Thon) Princeton U. Press (1955).

25Von Rosenberg, D. Methods for Numerical Sclution of Partial

Differential Equations, Elsevif. Press (1969).
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FIGURE 4 GRID FOR FINITE DIFFERENCE COMPUTATION IN A CRANK-NICHOLSON SCHEME
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(32T) .- [Ti+l,n - 2Ty n*Tilin
X2 J.
i,n+%

2 (ax)?
(88)
+ Ti+l,n+1 _ZTi,n+1 * Ti—l,n+l ] .
(ax)?

The source term is an explicit function of temperature and is
estimated by

S(Ti,n+%) =% [S(Ti’n) + S(Ti,n+l)] . (89)

S(Ti,n+l) will be given by the approximation
S(T ) = S(T*) + (iﬁ) (T - T*) (90)
i, n+l 3T/ . i, n+l !
i,n

where

*: -

T ZTi,n Ti,n—l . (91)
The algorithm for the temperatures at the unknown timelevel n+l
in terms of known values at time level n is then obtained by
substituting (87-91) into (86). We then have

T $ oy - 2002 s (ax)?l + T
i-1,n+l kbt 9T* 2k i,n+l i+l,n+1
(92)

= - - z_(_A_z(_.)—z. - - 3 *
= Ti-int {2 <At } Tii ~ Tisln = 7 {S(Ti,n) + S(T%)
35
T(s‘T')T*} :

The boundary conditions are obtained letting the sample sit in
a heat bath at temperature T,. We then have T, =T =T for

XFINAL '©
all n. Equation (92) defines a set of linear equations in the
unknown timestep n+l.
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Solutions for all the T; at a given timestep are obtained
simultaneously by inverting the coefficient matrix defined by
(92). 1In Appendix B, we display the computer program written
for this problem. As is evident f£rom Equation (92) the coeffi-
cient matrix is in tridiagonal form. All programs were run on
the NSWC/WOL CDC 6500 computer. In Appendix C we explicitly
exhibit the tridiagonal matrix and coefficients.

4. DISCUSSION OF RESULTS OF NUMERICAL INTEGRATION. In Figure
6, we show the solutions generated for a typical set of explosive

parameters. We have taken p=1.84 gm/cm3, »c=10"3 %%%E Q=1000 cal/gm,

2=10"1* (sec) ™}, ¢ =.27 -"acl)K , and E_=2 e,v. (1 e.v. * 20,000 cal/qgm).
m

We have taken 0g=10"7 (g-m)‘l in line with Picatinney data and

have taken the electric field to be a constant during each

calculation. The constant chosen ranged from 0 through 106 v/cm.

The work function was chosen at 3 e.v. The general results
are typical of thermal explosion calculations. The temperature
in the sample rises relatively quickly to the bath temperature Tq
or slightly above. If T, is chosen below some critical temperature,
computed here as 540°K, the temperature stabilizes at Tg. When Tq
is greater than the critical temperature, the temperature rises
initially to Ty, remains there for some characteristic induction
time and then increases very steeply - indica.ing thermal explosion.
There is no indication of electric field dependence in Figure 6
since it was found that for the above choice of parameters the
applied electric field has absolutely no effect on the thermal
explosion characteristics. It is then clear that the conceot of
thermal breakdown of an explosive loses validity, being overwhelmed
by the chemical production of heat and subsequent thermal explosion

at a time well before joule heating alone could raise the temperature
significantly.

5. INFLUENCE OF THE CONDUCTIVITY WORK FUNCTION. The critical
perameter for possible electric field influence is the work function
¢. With ¢ chosen as 3 c.v. the joule heating is relatively
inefficient even for much larger values of oo corresponding
to Hammond's preliminary results. Since there are no available
experimental measurements, it seems most reasonable to select ¢
to be somewhat larger than the activation energy E,. The reason
for this is that ¢ represents the energy to ionize an electron
into a conduction band while E; only has to supply enough energy
to excite the molecule to the "activated complex" energy state.

It is, however, conceivable that under some circumstances ¢ might
be less than E_. This might arise if the conduction mechanism
did not arise From a valence to conduction band transition.
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FIGURE 6 TEMPERATURE EVOLUTION FOR DIFFERENT BATH TEMPERATURES T

A. T;=500°K, B. T,=545°K, C, T;=600°K, D, Ty =650°K
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FIGURE 7 TEMPERATURE EVOLUTION FOR DIFFERENT BATH TEMPERATURE Tg
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One possibility which suggests itself is a conduction due to

the ionization of trapped impurities?6, The trapping level could
lie relatively close to the conduction band and wonuld thus require
a smaller work function. 1In Figures 7 and 8, we have graphed
solutions indicating the possibility of radically altering the
thermal explosion parameters by applying a strong, step function
electric field. The parameters are the same as in Figure 6.

The possible tuning of explosion parameters through controlled
doping of the explosive sample also suggests itse!f,

6. THERMAL BREAKDOWN CHARACTERISTICS. The characteristics
of thermal breakdown of dielectrics have been seen to be indis-
tinguishable from thermal explosion characteristics. These include

a. relatively long induction times until explosion
b. dependence on geometry
c. high temperature phenomenon

Unlike electrical breakdown which occurs at a constant
temperature, thermal breakdown tracks the build up of temperature
during the breakdown process.

IV. SUMMARY AND CONCLUSIOHNS

We have analyzed the application of dielectric breakdown
theory to explosive dielectrics. In a lower temperature regime,
because the explosive is in metastable equilibrium with its
environment, breakdown theory could be modeled after that in

inerts. We have predicted electric breakdown fields on the order
of 1 MV/cm.

Ir. a higher temperature regime, thermal breakdown theory
had to be modified to account for the exothermic kinetics of
a reacting medium., It was concluded that the distinction between
thermal breakdown and thermal explosion disappears for low enough
values of the conductivity work function. At still smaller
values of ¢ a possible radical effect of applied electric field
on thermal explosion parameters exists.

A resolution of these questions and more accurate predictions
of breakdown strengths requires a substantial expansion of our
data base on explosive materials. In particular, the absorption
spectra of explosive monlecules through the infrared is of fundamental
importance and should be mapped out. Tne various material constants
such as the effective mass or the high and low frequency dielectric
constants could be determined e.g. by Raman or Brillouin scattering
experiments. Knowledge of absorption spectra would also be
prerequisite to an experimental program designed to measure molecular

26

Frohlich, H., "On the Theory of Breakdown in Solid Dielectronics,"”
Proc. Roy. Soc. Al88, 521 (1949).
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energy elaxation through the newly developed technigques of
picoseccnd spectroscopy 7. More measurements of the conductivities
of explosive dielectrics are needed. These measurements should

be made at various temperatures to test the Poole-Frenkel mcdel

and determine activation energies for conduction. Ionization
energies for explosive molecules should be measured. To separate
out space charge and electron tunneling effects, measurements

of electrical breakdown should be made with electrodes at some
distance from the explosive surface in an evacuated chamber.
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APPENDIX A

CALCULATION OF THE INTERACTION CONSTANT

To determine the constant C, we consider the interaction energy
of two point charges. Classically this energy is given by

al

E =~ (A-1)
7
4!l r1'2 €

where r,, represents the interparticle distance. The dielectric
(A

function e represents the total response of the lattice to the
perturbing radiation. This dielectric response is given by

2

(eo-em) w,

® w -2 N (A-2)

e, represents the high frequency background response due to higher

energy electronic resonances. If the polarization due to lattice

displacement (i.e., phonon coupling) is ignored the interaction
energy would be

e2

T ———{ — - (A.‘3)
4]Irl’zs°°

E =

The net energy due to electron-phonon interaction can therefore
be represented by

41r € €, (A-4)
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We may also write down the interaction energy shift due to electron
phonon interactions from the quantum mechanical perturbation formula

2
AE = § |<n|He_Ph(r1) + He_ph(r2)|o>[ .
n E(n)-E(G) . (A-5)

He-ph is given by Equation (19) and involves a sum over one-

phonon creation and annihilation operators. The matrix element
is given explicitly by

. s I S
<nlH(r) 0> = CCALL 7 q|id T, - omiarE, +o> . (A-6)

Applying the selection rules

<n'|aq]n> = /n+l Sntl,n (a-7)

' + — Iy -
<n [aq [n>= v/n Sp-1,n (A-3)
we have . -
(r) _ 4niec e'9°F
<n|Hint|O> N q . (A-9)

The denominator of (A-5), E(n)-E(o), represents a single phonon
guantum. It has been found that polar optical phonons display
little dispersion. The denominator may then be removed from the

sum as approximately constant and equal to he, with w the pclar
optical frequency.

Applying (A-9) in (A-6) and neglecting the self enerqy term we
have for AE

2 ia' (; -{")

- 2 -

pE = 2RI C 7 e = . (A-10)
q

oA SRS




BRSNS
>y oy 5 "

NSWC TR 79~331

The summation term is recognizable as a Pourier decomposition of
1

We then have

2 2
AE = -2C%41ne 1

. (A-11)
hw 1.‘1,2
Equating (a-10) ang (A-11) we the have
% %
_ 1 . he 1 _1 -
C = = (=) (;: =) . (A~12)
A~-3

P T

nwwmwm i
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APPENDIX <

THE TRIDIAGONAL MATRIX AND THOMAS ALGORITHM

Equation (71) is of the form

aju; 4 ¢t biui teju s a, ., (C-1)

where the ui represent the unknown temperatures at the spatial
points i at time level n+l. The coefficients are equal to

a3 =c; =1 , . (C-2)
Lox? L as (ax)?
P12t 2 5GE Gy, e (€=3)
d, = T pg22aat,
i i-1,n k4t ""i,n “i+l,n (C-4)
- B{S(T, ) + s(T*) - 7+ (35) )
i,n Bk o LA
The tridiagonal matrix equation for each n then takes the form
> o - - i '1
bl ¢, 0 uy dl
3P0 u, d,
(C~5)
o) a3 b3 C3 (0] -~
0
o a; _3 b, _ u da
Tmax ™t ipax~l inax-1 | i-1
L - N ] - max 4
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This matrix is inverted in Appendix B using the Thomas algorithm.
This involves computing Bi and Y; 8uch that

a.c.
Bi = bi - E&.ﬁ:l , (C-7)
i-1
dy
Yl = F]T I3 (C"B)
a.vy.
_ _ i'i~1 . (c-9)
Yy <4 T8,

“imax-l = Yimax-l , (C-10)

i ei ' . (C-11)

It should be remembered that ui

is known from the boundary
conditions.

max
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