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SUMMARY

We have examined the theory of both electrical and thermal
breakdown in explosive materials. Application of thermal breakdown
theory had to be modified to account for the reaction kinetics
while electrical breakdown, whose onset occurs at the steady
state temperature, was found to follow breakdown theory in inerts.

Use of breakdown theory to predict critical fields in
explosives seems feasible but is hampered by the lack of an
adequate data base. This lack of experimental data also prevents
a resolution of the question of possible electric field effects
on thermal explosion parameters. It should, however, be
relatively simple to distinguish between thermal and electrical
breakdown in any given experiment by a consideration of initial
temperature and explosion induction time.
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I. INTRODUCTION

Dielectric breakdown is a universal response of materials
to the application of sufficiently intense electromagnetic
fields. While the interaction of electromagnetic radiation
with ineit dielectrics has received attention from buth
theorist -6 and experimentalist 7 - 9 , relatively little work
has been done on the coupling of radiation to explosi,,e materials,
a matter of some recent interst. We may also note experimental
evidence indicating generation of intense polarization fields
in a detonating explosive 1 0- 1 2 . An understanding of breakdown
phenomena may thus help elucidate fundamental detonation processes,
even in the absence of externally coupled fields.

Theories of breakdown in solids divide broadly into studies
of thermal breakdown and purely electrical breakdown, with
a number of subcategories for the latter. We shall briefly
review each process and consider the application to an explosive
medium.

II. ELECTRICAL BREAKDOWN

1. FORMULATION OF BREAKDOWN CRITERION. In electrical
breakdown we assume that the electron distribution depends
directly on the applied elec.tric field P. The critical breakdown

i-Frohlich, H., "Theory of Electrical Breakdown in Ionic Crystals,"
Proc. Roy. Soc. A160, 230 (1937).

2Frohlich, H. and Paranjape, V., "Dielectric Breakdown in Solids,"
Proc. Phys. Soc. Lond. B69, 866 (1956).

3 0'Dwyer, J. J., "Dielectric Breakdown in Solids," Adv. in Phys.
7, 349 (1958).

4Seitz, F., "On the Theory of Election Multiplication in Crystals,"
5 Phys. Rev. 76, 1376 (1949).
Stratton, J. A., "Theory of Dielectric Breakdown in Solids,"
Progress in Dielectrics, Vol. 3, Ed. Birks (1961, Wiley).

6Von Hippel, A., "The Electrical Breakdown Strengths of Ionic
Crystals as Functions of Temperature," Phys. Rev. 56, 941 (1939).
Vorobev, A., "Anisotropy of the Dielectric Strength of Rocksalt,"
Soviet Phys. Solid State 4, 1441 (1962).8 Caspari, M., "Direction of Breakdown in Alkali Halide Crystals,"
Phys. Rev. 98, 1679 (1955).

9 Davisson, J. W., "Directional. Breakdown in Crystals," Progress
in Dielectrics Vol. 1, Ed.-Birks, (1959-Wiely).

l1Hayes, B., "The Detonation Electric Effect," J. App. Phys.
38, 507 (1967).

llDremin, A. et.al, "Shock Induced Electrical Polarization,"
Proc. 6th Int. Symp. on Detonation, (1975).1 2 yakushev, V., et.al, "On the Measurement of Polarization Relaxation
Time in Homogeneous Explosives," Zh. Experm. Teor. Fiz. 54,
396 (1961).
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field 0 will be that marking the onset of some instability
in the conduction current.

We consider first the case of low carrier density and
follow the average behavior of a single electron interacting
with the applied electric field and with the lattice. As the
density increases, electron-electron interactions become important
and a single electron picture will no longer suffice. We will
later calculate the critical density for a single electron
approximation and consider the necessary modifications when
the low density restriction is violated.

For a steady state to exist, an equilibrium must be maintained
between the energy supplied to the electron by the external field
A(M,E), and the net energy transferred from the electron to the
lattice via collisions with phonons, which we shall designate
B(E). E represents the total electronic energy.

We consider an applied electric field ý pointing along
the z-axis of our cartesian coordinate system. A conduction
band electron will be accelerated by the field feeling a force

dpZ
t= eF (1)

FIELD

We adopt the convention that a previously defined vector symbol
appearing without an arrow refers to the abso-ute value. The
buildup of momentum in the Z-direction will be retarded through
collision with the lattice leading to an average drag force

dpz -P

Sdt T (E) (2)
LATTICE

where we have defined an average collision time T(E) which
is a function of the electronic energy E.

Equilibrium requires(dP~ dPSdz) + =0 (3)

a/ LATTICE FIELD

We define a current density i(E) by

=(E) e (4)eý

5
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where m is the effective mass of an electron in a conduction band.
The energy given up by the electric field may be obtalned in a
straightforward manner from the Maxwell equations as -F. Using
Equations (2)-(4) we then have for the net energy per unit volume
transferred from the field to the electron

A(ý,E) = e 2 Ft (E) (5)m
The net rate of energy transfer to the lattice may be calculated
by summing over all lattice modes, the probability that the
electron will either absorb or emit a phonon of wave vector q.

B(E) n remission - absorption
q q (k-q,k) (k+q,k) . (6)

The total Hamiltonian of the system is taken to be

H = Helectron+H phonon+H e-ph (7)

with He-ph representing the electron-phonon interaction,

considered small relative to the total Hamiltonian.

The quantum mechanical probabilities of emission and absorption
-re then given by the usual "Golden Rule" transition rate formula

pe (k-q,k) = 2l<k-qlHe phlk>12(nq+l)

I2 + 2k2}

Xs{•(•-q)2+ 1q -2

212 h2k2 (9)

pa(k+q,k) = l!<k+q[H e k>12nq6{•(•+•)2 - - -- (9)

The matrix element <±'qlHe-ph !ý> represents the probability

amplitude for an electron initially in a state oý wave vector
Ik> to scatter to a final state of wave vector fk±q>. 6 is the
Dirac delta function ensuring conservation of energy and n is
a phonon density function given by the quantum statistical
distribution for Bose particles

1.

"nq = e (10)
q ehwq/kT~l

6j
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The condition for the existence of a steady state is then given
by

e2 p2 T(E) fW (I1k-qlH jk'1 2 (n +1)6
m q q a-p hq I

,-I'k+qlH e_ph jk>12n q a2 )

. and 62 refer to the delta functions of Equation (8) and (9)
respectively. To complete the calculation it is necessary to
specify functional forms for J(E) and for the interaction
matrix elements.

The left side of Equation (2) represents the rate of change
of momentum PZ due to electron-phonon interactions. The total
rate of electronic momentum change may be obtained by summing
the probabilities that the electron will either absorb or emit
any lattice phonon. We may thus rewrite Equation (2) in the
form

1 2H k f-k) IIkkqleh Ik,12 (nq+l)6 1
T(E) I- ki- ek-pH qp

(12)
+ (kf4.k)

k e-h "k+qIHeph'k"nq6 2

2. THE ELECTRON-PHONON INTERACTION.

a. Polar Molecules. The electron-phonon interaction
term will depend on the polarization properties of the molecular
lattice. In polar molecules the longitudinal optical modes
produce long range dipole fields with which the electron may
be strongly coupled, and interaction with acoustic phonons
is neglected.

The energy of an electron in a field is given by the
expression

H-eph - e#(r) (13)

7
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where (r) is the scalar potential function. The divergence
D is related to the polarization field ? by

5 = . (14)

The vanishing of the divergence then gives the polarization
produced by the optical phonons as

4NS= 1 .V (15)

The polarization and the potential are expanded in fourier
components

C iq'r± + -iq-r•
=(r) (a e +aq e ) , (16)

q q q

S_ q qe r+ q+e- q'r (17)

C is a constant which will be determined and the transformed
coordinates a ,a+ correspond to the phonon annihilation and

q q
creation operators in second quantized representation.
Substituting (14) and (15) into (13) we obtain

-4niC + 4TiC +*=-qaq,4q - aq (18)
q q q q q q

Substituting (15) and (16) into (11) gives

H -1 4nieC { ra+ -iqr . (19)
e-ph 1V q q ae q

qq

81
84
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The constant C is calculated in Appendix A and is shown to be

q 1 hwr {I- - 1 ½ (20)

13Equation (19) gives the Frohlich interaction term for polar
crystals.

Using (17) and the selection rules for harmonic oscillater
transitions (cf. Appendix A) we have for the absorption and
emission transition rates

2H1 e2  l. 11 (n21)f•-"V- Y q2

= 2 L qJ . 2 . (22)

5b. Non-Polar Molecules. F. Seitz has shown that
He-ph will arise largely from the electron-acoustic phonon

coupling in non-polar molecules. Let V(r-x ) equal the

potential energy of an electron at position r due to the pth
ion in the :Xth unit cell. X ,•denotes the lattice

vector to the origin of the unit cell.

Let
X + u (23)

where u , represents the displacement from the equilibrum

position R . To first order the total potential at r may then

be given by

13Frohlich, H., "Electrons in Metals," Adv. in Phys. 3,325 (1954).

9
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V(r) = [ V(r-X £) = [ V(r-R Q) + u uL.VV(r-R) . (24)L,ji, £,3j• ,

We see that the lattice vibrations induce an energy shift from
the value perceived by an electron in the undistorted lattice.
This energy shift

4.
AV= 'VV(r-R (25)

is considered to be the quantum mechanical perturbation operator,

where the displacement u is a phonon operate- and •V operates

on the electronic states only.

4.The phonon operator u is expanded in normal coordinates
giving

LV = ý •V(r-R,) h e ½eiq'RUZ (a - a) ; (26)
1 aZ 2Mw a a

a represents the sum over both wave-vector and polarization and M
is the ionic mass. When (26) is substituted into the matrix
element for electron-phonon coupling one obtains for the
transition probabilities

e - 2�1 I 2-Kq(n +1)61
Se 2Msnn (27)

h 2MsVn

pa 21 I 2 Kqn q62
h 2MsVN

In deriving (27), (28) we used the acoustic-phonon dispersion
relation wq = sq with s the sound velocity. Use of 1 4 Green's

Theorem allows conversion of the electron state matrix element
involving 9V into an elect-':. overlap integral of the form

I = D I T k*1IkI d 3 r . (29)

!- ~14im,
Ziman, J. M., Electrons and Phonons, c -'rd V. Pres., (1960).

10
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Estimates of I in cemiconductors give values of the order of
one electron volt.

3. RELAXATION TIMES. The term (kf-k)/k appearing in the
expressior for the relaxation time (Equation (12)) may be obtained
from energy and momentum conservation. Conservation of energy
gives

cos(k,q) = ±-, (30)2± kq

where the milaus or plus sign refers to emission or absorption,
respectively. Averaging over the azimuth6 angle gives

kz L _ (31)

z 2k 2  k2

We assume a dense distribution of modes q and pass from a sum
to an integral with the standard approximation

S(211h) 3  d3 p
q

- 3 H f p 2 dpd(cOs e) , (32)

Where R hq is the phonon momentum and 6 is the angle between
k and q, the initial electron momentum and phonon wave vector.
The integrations over the probability functions, either of
the form of (21-22) or (27-28), involves an integral over a-h2 4. 2* ? 2kr2delta function, 6 (-(k±q) - 2m + q , as defined in

(8-9). The integral over cos e can then be written

15Ershov, A. P., "Ionization During Detonation of Solid Explosives,"
Fixiba Gor. Vary, 11, 938 (1974)..

11
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f d(cos O)Sh2m- ±-+ ±q Cos2m q m

f d(cos 6)6 {cos a 7 m + - q2 (33)

Tkq 2nilihq)

t 2 kq/m

where we have used the well known property of the delta function

6{f(x)} = 1 6(x - i (34)
i I 7f3(xTi)

where xi are the roots of f(x).
The integration over cos 0 then gives

f d(cose) 6 (f(0)) = m (35)

h 2 kq

Equation (12) may now be written

1 Vm 2mq
(-T (E 2(2,a)2JJ2k3 {q qS( +q-q2 )nq + ld

(36)

+ j q 3 G (1 )n dq
q )qdq

where Gq is just the probability function without the delta

function factor.

For electron energies E>>iw the factors l+2mw/hq 2 will
q

both be approximately equal to one. The integral may then be
approximated by

12.! i
I!
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1kVm f q3G (2n + 1)dq .(37)

TTE)r 2(2n)2fi2k3 q q

For long wave length phonons the integrand goes to zero. We
may therefore set the lower limit of integration equal to zero
while the upper limit may be approximated by

gmax = 2k . (38)

For polar molecules it is found that the optical phonons are
relatively dispersionless. The factor 2 nq+l may then be removed
from the integral. Using (21-22) in (36) we have

1 + 2
Ti E e enw/kTl ' (39)

where

a e 2 /i" (1 1 (40)

For non polar molecules we use Equation (27-28) and approximate

S 1 .kT
T q isq/kT_ s . (41)

The relaxation integral then takes the form

1 = B)3/212k B (42)
FTE 21TS 2 NMh 4

where it has been assumed that the main acoustical interaction :".s
with the long wavelength phonons.

13
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4. RATE OF ENERGY TRANSFER TO THE LATTICE. The energy
transfer rate to the lattice may now Be written down as

B(E) = fm qG dq (43)

In polar crystals the integral diverges as q-0.q min is then

obtained by conservation of energy (equation along with the
approximations)

k k' =2k , (44)

k k' q-mi (45)
qmi

This gives as the lower limit in (40)

q MW (46)qmin = • "(46

Performing the integration we then have the following expressions
for B(E). In polar crystals

B(E) lg22 1 4EBE)4• w e v) AE lo-Ti W (47)

In non-polar crystals, taking the lower limit of the integral
equal to zero we have

B() 12 (2m) 3/2 mE 3/2
SB(E) - Ir'NM

144

I 14
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5. CALCULATION OF CRITICAL FIELDS. The critical field FB
for breakdown is now calculated from the energy balance
Equation (11) with a particular choice of electron energy E.
If E is chosen equal to the ionization energy EI we obtain the
following expressions for the critical field dependence on energy
and temperature. For polar modes:

S4EII e -
mew 3/ 2  1 1 {log 4E I½ 2 } (Fc = 4__ (- 1_)_ {log ff--} e{/kT l (48)

c 47M G 6VE el' + /kT_

For acoustic modes:

m3/2I2(kBT) M

F = 2¼T k 4s M E, " (49)
c 2 IT aliS

In Figures 1 and 2, we have graphed the behavior of the
critical field as a function of temperature for a reasonable
choice of physical parameters.

To illustrate the use of Equation (48) for a typical polar
molecule, we will estimate the breakdown voltage for TNT. In
Figure 1, we have chosen EI as 6e.v. 1 5 and have taken for w
a typical frequency of 1014. The other parameters chosen were
T=300 0 K, m=m (electron) and (I/e--/€)~2-. where eo is the

free-space permittivity. We then obtain for the critical breakdown
field, Fc.10 6 V/cm. This value should be accurate to within an
order of magnitude given the uncertainty in the physical parameters.

6. TIME LAG BEFORE BREAKDOWN. We shall make a rough
estimate of the time till breakdown assuming a critical field
FB z 106 v/cm has been applied.

Let the electron be accelerated from rest and assume that
it ionizes another electron immediately upon attainment of the
Scritical energy

2
½mV B 1 (50)

15
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FIGURE I CRITICAL BREAKDOWN FIELD AS FUNCTION OF TEMPERATURE (°K) IN POLARCRYSTALS. F,(1000K)=10 6 V/cm

16

*1
I1

__________



NSWC TR 79-331

2.5

1.5

1.100 200 300 40050

T(0K)

FIGURE 2 CRITICAL BREAKDOWN FIELD AS FUNCTION OF TEMPERATURE (OK) IN NON-POLARCRYSTALS. F0 (100o K)-0.6 x 106 V/cmn
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If we take I = 6e.v. characteristic of TNT then

VB = _m2- 1.4 x 10 6m/s (51)

With a relaxation time T = 10-14 sec, an electron will achieve
a velocity

eF B5
= eg T = 1.7 x 10 5 m/s (52)VB -m

before collision, which is not enough to achieve ionization. We
must then ask how many collisions, on the average, will occur
before an electron will have sufficient time tB between collisions
to achieve the critical velocity VB. We can estimate this by
writing down a probability function P(t) representing the
probability that a time t has passed with no collisions. We
shall take a model P(t) as

P(t) =e-t/¶ (53)

which has the proper boundary behavior

P(o) = 1 and P(-) = 0 , (54)

and which also falls off rapidly for t>T. We may also formally
derive Equation (53) by noting that P(t+dt) represents the
probability that no collision will occur in a time t or in a
following time interval dt. We thus have

P(t+dt) = P(t) P(dt) . (55)

expanding P(dt) about t = 0 and applying the boundary condition
we have

P(t+dt) = P(t) {+ -I t=Ot (56)

If we make the identity T- 1 -dPj we may formally obtain
the equation t0

18
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dP _ -P(t)
at -T .(57)

Integrating (57) gives us the probability function of Equation (53).

The time needed for a single electron to achieve breakdown
is given by

tB = mVB/eFB ý 9 x 10-14 sec (58)

with the values of VB and FB given above. We thus have

-9 {9
P(tB) = e 9 1/8000 . (59)

It will take on the average 8000 collisions to produce a single
ionization event. The time for each ionization event is thus
given by

tI = 8000T = 8 x10 sec . (60)

To estimate now the total number of ionizing collisions n which
will characterize dielectric breakdown of the material we equate
the energy supplied by the field fo the electrons with the energy
requirtid to raise the lattice to some critical temperature To.
After n collisions we have 2 n free electrons so we set

2nI = CPV(To-T) . (61)
v o

V represents the volume of the cone to which the 2 n electrons
are assumed confined. The breakdown time TB will be given by

TB = nt1  . (62)

The volume of the cone V is given by

3 2
V = 1/311(TB) tan a (63)

where • is the average velocity in the field direction given by
the condition

,-MA

19 K
_____

Iq
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v= ½ VB (64)

and a is the half angle of the cone. Tan a may be evaluated by
assuming that motion perpendicular to the applied field is governed
only by thermal diffusion. The thermal velocity Vt is determined
by

vt = ("ir). (65)

After a time TB corresponding to n collisions the electrons may

diffuse out to a distance

£ = n½ 2kT ½
n tB (66)

where the n½ term comes from the drunkard's walk solution. We
then have

tan a = (2knT)½/½VB . (67)

Substituting (62-67) into (61) and taking the log of both sides,
we obtain a transcendental equation for n

n-4 log n =log c vpATTk B T V t3 /.o (68)nm-log 2 3 BBm

We take cv = .2 cal/gm, p = 1.6 gm/cm 3, AT = 100 0K with the other
constants as before. We have solved Equation (8) graphically (see
Figure 3) and obtain for n

n z 52 . (69)

We then have

B Z 52tB ý 4 x 10-9 sec . (70)

Thus the time delay until breakdown after the sudden application
of a critical field is of the order of nanoseconds.

2
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FIGURE 3 GRAPHICAL SOLUTION OF EQUATION (68) FOR THE COLLISION GENERATION NUMBER nA 5.771, 8 29.347
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7. CHARACTERISTIC RESULTS. The prediction of actual
breakdown fields from formulas such as (48) and (49) requires
knowledge of various material parameters such as the effective
mass, dielectric constants, ionization potentials, etc.
Unfortunately many or most of these have not been measured for
explosive materials. Lack of an adequate experimental data
base precludes accurate predictions of breakdown strength in
explosives. Some general characteristics of breakdown may,
however, be given. These include:

1. It occurs very rapidly. Experimental breakdowns

are observed to occur in less than 10-8 sec, with some instances
as long as 10-6 awx.

2. It is the breakdown of an equilibrium condition and
therefore occurs at an essentially constant temperature. Breakdown
may thus occur at low or room temperatures.

3. In the type of breakdown we have considered, dielectric
strength will be independent of sample geometry.

Other modes of breakdown also exist. In unpublished work
recently completed at NSWC J. Forbes measured breakdown fields
in a number of explosives. In the experimental setup employed,
the explosive sample was sandwiched between two electrodes.
Breakdown theory as developed in the previous section would not
be applicable as we would expect substantial carrier injection
from the electrodes 1 6 . This would lead to lower measured critical
fields than might be expected in an "electrodeless" geometry.

8. CRITICAL ELECTRON DENSITY. When the density of electrons
is large enough, the single electron-phonon interaction picture is
no longer realistic and the effect of electron-electron collisions
must be included in any calculation.

The critical density for the validity of the one-electron
approximation Is obtained by considering the net rate of energy
transfer to the lattice. As the rates of absorption and emission
of a lattice phonon are given by nq and (l+nq) respectively,

it will take, on the average 2 nq+l collisions to transfer a single
quantum of enei:gy hw. The transfer rate may then be approximated
by

dU 1 hf__
-2 (n +1 tI -E-) (71)

It-LATTICE q

16 *Fowler, R., and Nordheim, L., "Electron Emission in Intense
Electric Fields," Proc. Roy. Soc., A119, 173 (1928).
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The rate of energy loss due to collision with other electrons is
given by 1 7 Bohm and Pines as

au•_ - 4irne4
d* 

(72)ELECTRON

The critical electron density for a consideration of electron-
electron effects is obtained when (71) and (72) are of equal
magnitude. This gives the condition

nCRTIA - hw 1
nCRITICAL " ý4e 4 (2nq + 1) T( "(

In polar materials, substitution of some representative values

gives n CRITICAL = 1017(cm)-3 typical values for non-polar crystals

gives nCRITICAL = 1014 15 (cmV 3 .

Published values 1 8 for conductivities in explosive materials
give values of a in the range of 10-10 - 10-8 (0-M)-l. Associated
number densities are obtained from

emn (74)

Taking the effective mass equal to the electron mass and using

a value of T of 1014 we obtain n<nCRITICAL and use of the

single electron approximation is therfore justified.

Recently G. Hammond (NSWC) has undertaken some conductivity
measurements of explosives in the microwave regime. Preliminary
results indicate substantially enhanced conductivities at these I
frequencies. We shall therefore briefly outline the modifications
to the single electron treatment given above which enable treatment
of the many body electron distribution.

1 7 Pines, D., "A Collective Description of Electron Interactions,"

Phys. Rev. 92,626 (1953).
1 8Federoff and Sheffield, Ed. Encyclopedia of Explosives D1221

(1972).
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9. EFFECTS OF THE ELECTRON DISTRIBUTION. When the many
electron system is described by a distribuition function f defined
in such a way that 2 fd 3 qd3p describes the number of electrons

42qdnp

in volume element dVa with wave vector k=K, the current density
may no longer be given by Equation (4) but is now defined by

J vfd3k . (75)

In general, only the asymmetrical component of f will give rise to
a current. Equations such as (6) and (12) representing probabil-
ities for electronic transitions must be augmented by factors such
as f(k)(l-f(k')) which represent the probability f(k) that the
initial state 1k> is occupied and the final state (k'> is unoccupied.
Following this prescription, the current density J and the energy
transfer rate B may be computed and a breakdown field Fc derived
as in section (5) which, however, accounts for the effects of
the electron distribution. It has been implicitly assumed here
that the electrons and phonons are thermally equilibriated.

In the high density case, the assumption of an electron-phonon
system in thermal equilibrium may no longer be valid. With a
sufficý.ent density of conduction electrons the electrons may
exchange energy among themselves at a much greater rate than with
the lattice. The phonons and electrons must then be treated as a
two-fluid system with the phonons at temperature T and electrons
at temperature Te. The applied field imparts momentum to the
electrons shifting them away from the 0-field equilibrium momentum
to some new p. This particular problem has been treated extensively
by Frohlich and Paranjape 3 (1956) and we shall outline their
calculation here. The equilibrium condition is given by the
vanishing of the Boltzmann equation

(tf)LATTICE + (7t)FIELD + (-)ELECTRON =0 (76)
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Interelectronic collisions conserve both energy and momentum sothat we have

I P • =0 and L (2 ()
P a e p 2m a = (77)

Equation (55) then gives the two conditions

a t F (78)

P 
0 t 

(79)
P L F

The distribution function is assumed to be of the formJf(p) 
= ae-(P - Po) 2/2mkTe 

(80)
The two Equations (78) and (79) are then sufficient, in principle,to determine the two unknowns po and Te. Calculation of po enablescomputation of a mean conduction density

~~~nep•

n 
(81)

The rate of energy transfer to the lattice will be given by

B(T eT) = 2 2(m2 * d 3p 
(82)e 2mtBt

where the summation in Equation (79) has been converted to anintegral and (f) LATTICEs obtained formally by considering theprobabiliies of transitions into or out of rtates of momentum p.
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af fp) ae

If- =[ f(p)P(p,p + q) - f(p + q)pe(p + q,p)
L q (83)

+ f(p)pe(p,p - q) - f(p + q)Pa (p - q,p)

It is found that Equation (82) has a maximum at some Te. Setting
J.F equal to B(T,Te MAX) then defines a critical breakdown field.

10. APPLICATION TO EXPLOSIVES. The application of electrical
breakdown theory to an explosive medium follows closely breakdown
theroy in inerts. Since electrical breakdown is perceived as
the destruction of steady state-equilibrium condition, the most
important consideration is the nature of the electron-phonon
coupling. Important parameters are the temperature T the phonon
spectrum and the various optical constants. These considerations
apply equally well to explosives in metastable equilibrium with
their environment as of inerts. It is only in a consideration of
thermal breakdown that the exothermic kinetics of explosive
materials must be accounted for.

III. THERMAL BREAKDOWN

1. THERMAL BREAKDOWN IN INERTS. In thermal breakdown it is
assumed that the properties of the lattice may be fully described
by the macroscopic temperature dependent conductivity. As an
electric field is appl.ed, energy will be deposited through Joule
heating. This deposited energy will raise the temperature of
the lattice-which results in an increase in the conductivity
function. The increased conductivity gives rise to an increased
current which implies a higher rate of joule heating and so on.
If the lattice is unable to dissipate this energy at a rate great
enough to overcome the joule heating, temperatures will rise
uncontrollably and thermal breakdown will be said to occur.
The critical field is then defined by the greatest field for which
a steady state solution of the heat transfer equation (Equation
(84)) is possible. Formally, the theory of thermal breakdown
in inerts consists of finding solutions to the equation

cvPDT. V" (KVT) + a(F,T)F 2 (t) . (84)

iii
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cv is the specific heat per unit mass, p is the density, K is
the thermal conductivity. aF 2 represents the rate of energy
deposited through Joule heating. Equation (84) says that the
input energy is partly stored as internal energy tending to
increase the temperature and partly conducted away.

Many dielectrics have been found to follow a Poole-Frenkel
conductivity19 law given by

a(F,T) = (F)e-/kt . (85)

Srepresents a work function for electron ionization from a
valence band or a trap to the conduction band. a may in general
be a function of the electric field F. 0

2. THERMAL BREAKDOWN IN REACTIVE MEDIA. With the
identification of the Poole-Frenkel conductivity function the
theory of thermal breakdown in inerts is seen to be mathematically
equivalent to the theory of thermal explosions with the joule
heating term aF2 taking the place of the usual Arrhenius kinetic
term in thermal explosion theory. If we now wish to consider
thermal dielectric breakdown in explosive materials, Equation (84)
must be augmented by an appropriate heat source term to account
for the chemical reactivity of the medium. The appropriate
equation for thermal breakdown in explosives is now given by

ST= F2a e-/kT + pQZe Ea/kT + V'(KVT) . (86)
vP-t = 0

Equation (86) can equally well be though of as representing the
influence of an applied electric field on thermal explosion
solutions. An applied electric field will influence thermal
explosion parameters, e.g. induction times to explosion, only
insofar as the termroF2 exp(-0kT) is not negligible as compared
to the Arrhenius kinetic heat generation term. Alternatively,
the concept of thermal breakdown of an explosive remains
meaningful only so long as the J.F term is not overwhelmed by
the Arrhenius term.
19 _"On_ _

1 9 Frenkel, J., "On Pre-Breakdown Phenomena in Insulators and
Electronic Semiconductors," Phys. Rev. 54, 647 (1938).
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As is well known, analytic solutions to Equation (86) may
not be written down in general because 2 0 of the highly non-
linear source terms. A variety of approximate 2 1 ,2 2 solution
schemes for various geometries have been given in the literature.
It is also possible to solve (86) in various limiting cases.
These include the steady state regime obtained by setting2 3 , 2 4
aT
ý-- = 0 and the "impulse thermal breakdown" obtained by setting
V.(KVT) = 0. We have chosen to solve Equation (86) numerically
retaining all terms except the surface loss terms, assumed to
be small for the boundary conditions chosen.

3. CRANK-NICHOLSON METHOD. Equation (86) is an example of
a parabolic partial differential equation with a non-linear source
term. The Crank-Nicholson 2 5 scheme provides a numerical algorithm
for evaluating (86) which is correct to second order in time and
stable for any values of increments Ax and At. Figure 4 represents
the space-time grid for the numerical calculation. At time t=0
the solution is given at all spatial points i. The crank-Nicholson
scheme involves writing finite difference approximations for the
differential operators at points xi,tn+½ where tn+½ represents

points halfway between the known level at n and the unknown time
level n+l.

Equation (86) is solved in a slab geometry illustrated in
Figure 5 with boundaries at x=0 and x=xf. The divergence term
then takes on the form of a second derivative, the thermal conduc-
tivity K assumed constant. The finite difference approximations
to the derivatives are given by

ST i,n+ -Tin
At , (87)at i,n+½ At

2 0 Chambre, P., "On the Solution of the Poisson-Boltzmann Equation,"
J. Chem. Phys. 20, 1795 (1952).

21ZnZinn, J., and Mader, C., "Thermal Initiation of Explosives,"

J. App. Phys. 31, 323 (1959).
2 2 Enig, J., "Approximate Solutions in the Theory of Thermal

Explosions for Semi-Infinite Explosives," Proc. Roy. Soc.
A305, 205 (1968).

2 3 Semenov, N., Chemical Kinetics and Chain Reaction, Oxford
U. Press (1935).

24Frank-Kaminetskii, Diffusion and Heat Exchange in Chemical
Kinetics (trans. N. Thon) Princeton U. Press (1955).

25Von Rosenberg, D. Methods for Numerical Solution of Partial

Differential Equations, Elsevip'.. Press (1969).
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n+2 0 0 0 0 0

n+- . . 0 .

Z n-10

0 0 0

i-3 i-2 i-1 1 i+1 i+2
ji x

FIGURE 4 GRID FOR FINITE DIFFERENCE COMPUTATION IN A CRANK-NICHOLSON SCHEME

29



NSWC TR 79-331

TB T

&1

BOUNDARY CONDITION - T%- CONSTANT

FIGURE 5 COMPUTATIONAL GEOMETRY - A SEMI-INFINITE SLAB
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I •~~~X2)i~+ A )
()in+½ X2 T(88)

+ i+l,n+l 2Ti,n+l + Ti-l,n+l

i The source term is an explicit function of temperature and is
estimated by

S(Ti,n+½) = ½ [S(Ti,n) + S(Ti,n+l)] . (89)

S(T i,n+l) will be given by the approximation

S(Ti ) = S(T*) + rasý (T. - T*) (90)

'~~ k-Ti,n '~+.T)(0

where (91)

T*2Tin -' i,n-1

The algorithm for the temperatures at the unknown timelevel n+l
in terms of known values at time level n is then obtained by
substituting (87-91) into (86). We then have

2T - 2(x) 2  S (X) 2  tin+l i+,n+
i-ln+l n

( (92)

= -T + 2(AX)2  Ti, - Ti+l,n - S(Ti + S(T*)

T- T(.i

The boundary conditions are obtained letting the sample sit in
a heat bath at temperature To. We then have Tx=TXFINA=To for

all n. Equation (92) defines a set of linear equations in the
unknown timestep n+l.

31
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Solutions for all the Ti at a given timestep are obtained
simultaneously by inverting the coefficient matrix defined by
(92). In Appendix B, we display the computer program written
for this problem. As is evident from Equation (92) the coeffi-
cient matrix is in tridiagonal form. All programs were run on
the NSWC/WOL CDC 6500 computer. In Appendix C we explicitly
exhibit the tridiagonal matrix and coefficients.

4. DISCUSSION OF RESULTS OF NUMERICAL INTEGRATION. In Figure
6, we show the solutions generated for a typical set of explosive

parameters. We have taken p=l.84 gm/cm 3, K=10-3 cal Q=1000 cal/gm,
cm s

Z=10-14(sec)- , Cv=.27 Pal and E =2 e.v.(l e.v. 1 20,000 cal/gm).

We have taken ao=10-7 (a-m)-1 in line with Picatinney data and
have taken the electric field to be a constant during each
calculation. The constant chosen ranged from 0 through 106 V/cm.

The work function was chosen at 3 e.v. The general results
are typical of thermal explosion calculations. The temperature
in the sample rises relatively quickly to tne bath temperature To
or slightly above. If To is chosen below some critical temperature,
computed here as 540 0 K, the temperature stabilizes at To. When TO
is greater than the critical temperature, the temperature rises
initially to To, remains there for some characteristic induction
time and then increases very steeply - indicating thermal explosion.
There is no indication of electric field dependence in Figure 6
since it was found that for the above choice of parameters the
applied electric field has absolutely no effect on the thermal
explosion characteristics. It is then clear that the concept of
thermal breakdown of an explosive loses validity, being overwhelmed
by the chemical production of heat and subsequent thermal explosion
at a time well before joule heating alone could raise the temperature
significantly.

5. INFLUENCE OF THE CONDUCTIVITY WORK FUNCTION. The critical
parameter for possible electric field influence is the work function
•. With ý chosen as 3 o.v. the joule heating is relatively
inefficient even for much larger values of Go corresponding
to Hammond's preliminary results. Since there are no available
experimental measurements, it seems most reasonable to select *
to be somewhat larger than the activation energy Ea. The reason
for this is that 4 represents the energy to ionize an electron
into a conduction band while Ea only has to supply enough energy
to excite the molecule to the "activated complex" energy state.
It is, however, conceivable that under some circumstances 4 might
be less than E_. This might arise if the conduction mechanism
did not arise irom a valence to conduction band transition.
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One possibility which suggests itself is a conduction due to
the ionization of trapped impurities 2 6 . The trapping level could
lie relatively close to the conduction band and would thus require
a smaller work function. In Figures 7 and 8, we have graphed
solutions indicating the possibility of radically altering the
thermal explosion parameters by applying a strong, step function
electric field. The parameters are the same as in Figure 6.
The possible tuning of explosion parameters through controlled
doping of the explosive sample also suggests itself.

6. THERMAL BREAKDOWN CHARACTERISTICS. The characteristics
of thermal breakdown of dielectrics have been seen to be indis-
tinguishable from thermal explosion characteristics. These include

a. relatively long induction times until explosion
b. dependence on geometry
c. high temperature phenomenon

Unlike electrical breakdown which occurs at a constant
temperature, thermal breakdown tracks the build up of temperature
during the breakdown process.

IV. SUMMARY AND CONCLUSIONS

We have analyzed the application of dielectric breakdown
theory to explosive dielectrics. In a lower temerature regime,
because the explosive is in metastable equilibrium with its
environment, breakdown theory could be modeled after that in
inerts. We have predicted electric breakdown fields on the ord':r
of 1 MV/cm.

In a higher temperature regime, thermal breakdown theory
had to be modified to account for the exothermic kinetics of
a reacting medium. It was concluded that the distinction between
thermal breakdown and thermal explosion disappears for low enough
values of the conductivity work function. At still smaller
values of 0 a possible radical effect of applied electric field
on thermal explosion parameters exists.

A resolution of these questions and more accurate predictions
of breakdown strengths requires a substantial expansion of our
data base on explosive materials. In particular, the absorption
spectra of explosive molecules through the infrared is of fundamental
importance and should be mapped out. The various material constants
such as the effective mass or the high and low frequency dielectric
constants could be determined e.g. by Raman or Brillouin scattering
experiments. Knowledge of absorption spectra would also be
prerequisite to an experimental program designed to measure molecular

26Frohlich, H., "On the Theory of Breakdown in Solid Dielectronics,"
Proc. Roy. Soc. A188, 521 (1949).
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energy elaxation through the newly developed techniques of
picosect-nd spectroscopy 7. More measurements of the conductivities
of explosive dielectrics are needed. These measurements should
be made at various temperatures to test the Poole-Frenkel model
and determine activation energies for conduction. Ionization
energies for explosive molecules should be measured. To separate
out space charge and electron tunneling effects, measurements
of electrical breakdown should be made with electrodes at some
distance from the explosive surface in an evacuated chamber.
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APPENDIX A

CALCULATION OF THE INTERACTION CONSTANT

To determine the constant C, we consider the interaction energy
of two point charges. Classically this energy is given by

E e2 (A-1)

where r 1,2 represents the interparticle distance. The dielectric

function c represents the total response of the lattice to the
perturbing radiation. This dielectric response is given by

(0
C -2 2 (A-2)

(0 -w
0

e. represents the high frequency background response due to higher
energy electronic resonances. If the polarization due to lattice
displacement (i.e., phonon coupling) is ignored the interaction
energy would be

e2
E = 4___,2_ (A-3)I 4f 1r,2 C0 ,

The net energy due to electron-phonon interaction can therefore

be represented by
e 3. 1 (A-4)

AE 411r C

1#2

A-1



.4. .

NSWC TR 79-331

We may also write down the interaction energy shift due to electron
phonon interactions from the quantum mechanical perturbation formula

AE = I I<nlHe-ph(rl) + H eph(r 2 ),0>I 2

E (n)E (0) . (A-5)

He-ph is given by Equation (19) and involves a sum over one-

phonon creation and annihilation operators. The matrix element
is given explicitly by

<niH(r)IO> _ Ce4 i *<qleq-ra _ e- q-a (A-6)
int IN q q q q q

Applying the selection rules

<n'a qln> = /n+1 6 n+l,n (A-7)

<n'a q+In>= /n 6n-l,n (A-8)

we have
(r) 0> 4llieC eq'r

< intl" q (A-9)

The denominator of (A-5), E(n)-E(0), represents a single phonon
quantum. It has been found that polar optical phonons display
little dispersion. The denominator may then be removed from the
sum as approximately constant and equal to hw, with w the pclar
optical frequency.

Applying (A-9) in (A-6) and neglecting the self energy term we

have for AE

.4 4.4.

-2 (rlle) 2 C2  e _q" r- r_ )

I e
AE (A-10)

V q q

A-

• A-2
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The summation term is recognizable as a Fourier decomposition of
1

We then have

-E= 2 C24ne 1 (A-11)h r, 2(A-

Equating (A-10) and (A-1l) we the have

C 1 4 (7) I I " (A-12)

eJ

A-3
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APPENDIX B

COMPUTER PROGRAM FOR THERMAL BALANCE EQUATION

UTILIZING A CRANK-NICHOLSON SCHEME
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DIMEN~SION, U(100)9*
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C DARAMETER SrT- XL='SLA3 THilZ-KVE3SI4AX= N'JJ__VR Jf 'CLLS ATC LEVEL NvTC:T41EAvAL ZON~JCTIVITYR'Q=IEýI TYZ=ZR0UENCY£FACTOýR,ý=-ICAT OF D VTO IOýi ,Sar:S~IFI: JEATtr1:4'rIVATION,

C E'E~3(E~) ,:~~q ~ I)J3I34A:)~JuTIVT~-ir~i~cFIELD.

ILASTPImAX-1

NT=53

JT:.OO2

xl(=X/Iv.Axts,,

E 2=3.
SI GMA1#7-* 1
DrLTA=.I1

CINITIAL COW~)ITT~jNSf :ýOTH- "ý%ARE: A L4 ~E~ H
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130=555.
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C BOUNJAIY CONDI1TIONS
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--&3 G i 14* (C*A?).3 . E*) -TE TA 0 Tf' 1 q

F3 (I )=0.

0S T) IQ
11 ONTI'4Ur

F(~~~ I ):(J)F(I

SIT CFiCETS0;: TRI)IA5,)%4L IAPIX

17 0QV T I N'LU

I\JVEIT TRIiIAGI,'AL 4TRlX9SOLVpNG O F

93 40 zI~

50 ZIT I N-J"
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CHECK CONVERGENCE
)0 60 J1=191AXJF(A8S(U2(z );USCIJ)&LE.)ELTA)GO TO 60D3 5t1 111191 AX

58 CONTINJJV
GO TO 15

60 C3NT1YUE

20 =ORMAT(/;V:*tlgty
4 t* JT=**F]22.b* ILA-'SED Tlv:r*,Fl?*S)22 FORvAT(l JEI1.3)

CRE-,7 Jl) PO 'JEXT TIM¶E STED Z04DiTATL0AN
DO 70 I=19111AX

30 CONTINUE
80 CONTINdUE

STOD

of. B-3
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APPENDIX C

THE TRIDIAGONAL MATRIX AND THOMAS ALGORITHM

Equation (71) is of the form

aiui-1 + biui + ciui+1 = di (C-1)

where the u. represent the unknown temperatures at the spatial1

points i at time level n+1. The coefficients are equal to

Ai = 1 , (C-2)

bi = -2 - 2 (Ax) (as (Ax) 21 Ke~t a-T *2
<----+()T* 7* (C-3)

d = T + (2 - 2 X)IT -T
.i-l.n Tct i,n i+l,n (C-4)

- ½{S(T i,n) + S(T*) - T* (i)T*)

The tridiagonal matrix equation for each n then takes the form

1 c1 0 1 u1

2 b2 C2 0 2 2  (2-5)

3 3 3

3  a 1 -1 biml- 1 u d
L max-i ,,ax i max-1 i-i

max

iC-1

c-I
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This matrix is inverted in Appendix B using the Thomas algorithm.This involves computing ai and yi such that

0 1 =bl 
(C-6)

Ba = bC - a-i1l
a1 b - (C-7)

Y =,(C - 8 )

d- a ~- 
(c-9)

We then have for the unknown u.

U i max .1 =Yi ma- I 
( 0

ui = i - ii+lui 
(C-11)

It should be remembered that u a is known from the boundaryconditions. 1max

C-2
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