
r A-A093 886 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE--ETC F/S 9/2
EMACS MANUAL FOR TWENEX USERS.(U)
SEP 80 R M STALLMAN NOOSIA-75-C-O643

UNCLASSIFIED AI-M-555 NL." EhEEEEEEEEll
I uuuuuuuum
maahahhhEahhi-
EIIIIIIIIIIIIu
EIIIEEEIIIEIIE
EEEEEIIEEEIII
mEhI.hhE

UNCLASS I F IED , -
SECURITY CLASSIFICATION OF THIS PAGE ("fion Dat. Enweed

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM
REPORY NuM/ER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AIM 555 / .. Es..
4. TITLE (and Subtitle) .. TYPE OP REPORT & m OJ"eeo, 0Eo

/ MAC Manual for Twenex Users,,,; Memorandum ~~
6. PERFORMING. ORG. REPORT NUMBER

7.AuTmOR(s) -. CN
7S. CONTPACT OR GRANT NUMrR(,)

ft Richard M./Staliman7 I_- 0O0~4-75-C-e643

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKArtificial Intelligence Laboratory
545 Technology Square -,-0 , J
Cambridge, Massachusetts 02139

i. CONTROLLING OFFICE NAME AN0 ADDRESS "" ' -"'
Advanced Research Projects Agency
1400 Wilson Blvd 'NUMBER OF PAGES
Arlington, Virginia 22209 209

1" MONITORING AGENCY NAME & ADORESS(d r qS OffIce) IS. SECURITY CLASS. (of Ihis reportj

Off ice of Naval Research UNCLASSIFIED___________________
OI c fNva eerhnformat ion Systems t uc s,
Arlington, Virginia 22217 - 15*. ECASSIFICATION/ DOWNGRADING

15. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited. -

17. DISTRIBUTION STATEMENT (olth. abstract Intored in Block 20, i dlletant bIom Report)

19. SUPPLEMENTARY NOTES

None

IS. KEY WORDS (Continue an roer& ideit necesary aid Identify by block number)

Reference Manual
Display Editor

20. ABSTRACT (Continue on reverse ede ci o. sem and Identill, by b'eh n"e')

-This manual documents the use and simple customization of the display
editor EMACS with the Twenex (Officially known as '"TOPS-20) operating
system. The reader is not expected to be a programmer. Even simple
customizations do not require programming skill, but the user who is not
interested in customizing can ignore the scattered customization hints.
This is primarily a reference manual, but can also be used as a primer.,

DD I 1473 "0,TiON OF I NOVS IS OBSOLETE UNCLASIFIEi; ,AN 4*fi0i UNCLASSIFIED 1.-
S/1 7 E102-AG4- 6601Y e .a t

... ~~SE C R IT C L S I I A I H. D at N nft- .rod)._ _ : -:: : r l ,. , . .

it4
,

81 119 152:A.

£

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Memo 555 5 September 1980

EMACS Manual for TWENEX Users

by

Richard M. Stallman

A reference manual

for the extensible, customizable, self-documenting

real-time display editor

This manual corresponds to EMACS version 150

This report describes work done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory's research is
provided in part by the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract N00014-75-C-0643.

I _____i

AwCe S ,ion ior 17.
-TIS GRA&I
DTI!C TI-3

Table of Contents U:nnounced
Jsiication-_

By __ _ _ _-

Distribution/

Table of Contents AvalebilitY C 7: s
I .i and/or

Dit -. l

Introduction 3

1. The Organization of the Screen 5
1.1. The Mode Line 6

2. Character Sets and Command Input Conventions 9
2.1. The 9-bit Command Character Set 9
2.2. Prefix Characters 10
2.3. Commands, Functions, and Variables 11
2.4. Notational Conventions for ASCII Characters 11

3. Basic Editing Commands 13

3.1. Inserting Text 13
3.2. Moving The Cursor 14
3.3. Erasing Text 14
3.4. Files 14
3.5. Help 15
3.6. Using Blank Lines Can Make Editing Faster 15

4. Giving Numeric Arguments to EMACS Commands 17

4.1. Autoarg Mode 18

5. Extended (Meta-X) Commands and Functions 19

5.1. Issuing Extended Commands 19
5.2. Arcane Information about M-X Commands 22

6. Moving Up And Down Levels 25

6.1. Subsystems 25
6.2. Recursive Editing Levels 26
6.3. Exiting Levels; Exiting EMACS 27
6.4. Running Subforks under EMACS 27
6.5. Reading Mail 30

7. Self-Documentation Commands 31

8. The Mark and the Region 33

8.1. Commands to Mark Textual Objects 34

_J

EMACS Manual for TWENEX Users

8.2. The Ring of Marks 34

9. Killing and Moving Text 37

9.1. Deletion and Killing 37
9.2. Un-Killing 39
9.3. Other Ways of Copying Text 41

10. Searching 43

11. Commands for English Text 45

11.1. Word Commands 45
11.2. Sentence and Paragraph Commands 47
11.3. Indentation Commands for Text 48
11.4. Text Filling 50
11.5. Case Conversion Commands 51
11.6. Dissociated Press 52

12. Commands for Fixing Typos 55

12.1. Killing Your Mistakes 55
12.2. 1 ransposition 56
12.3. Case Conversion 56

13. File Handling 57

13.1. Visiting Files 57
13.2. How to Undo Drastic Changes to a File 59
13.3. Auto Save Mode: Protection Against Disasters 59
13.4. Listing a File Directory 61
13.5. Cleaning a File Directory 61
13.6. DIRED, the Directory Editor Subsystem 62
13.7. Miscellaneous File Operations 64

14. Using Multiple Suffers 67

14.1. Creating and Selecting Buffers 67
14.2. Using Existing Buffers 68
14.3. Killing Buffers 69

15. Controlling the Display 71

16. Two Window Mode 73

16.1. Multiple Windows and Multiple Buffers 74

17. Narrowing 77

18. Commands for Manipulating Pages 79

18.1. Editing Only One Page at a Time 80

Table of Contents iii

19. Replacement Commands 83

19.1. Query Replace 83
19.2. Other Search-and-loop Functions 84
19.3. TECO Search Strings 85

20. Editing Programs 87

20.1. Major Modes 87
20.2. Indentation Commands for Code 88
20.3. Automatic Display Of Matching Parentheses 89
20.4. Manipulating Comments 90
20.5. Lisp Mode and Muddle Mode 92
20.6. Lisp Grinding 95
20.7. Editing Assembly-Language Programs 96
20.8. Major Modes for Other Languages 97

21. The TAGS Package. 99

21.1. How to Make a Tag Table for a Program 99
21.2. Flow to Tell EMACS You Want to Use TAGS 100
21.3. Jumping to a Tag 101
21.4. Other Operations on Tag Tables 101
21.5. What Constitutes a Tag 104
21.6. Adding or Removing Source Files 104
21.7. How a Tag Is Described in the Tag Table 105
21.8. Tag Tables for INFO Structured Documentation Files 106

22. Simple Customization 107

22.1. Minor Modes 107
22.2. Libraries ot Commands 108
22.3. Variables 109
22.4. The Syntax Table 111
22.5. FS Flags 113
22.6. Init Files and EVARS Files 114
22.7. Local Variables in Files 118
22.8. Keyboard Macros 119

23. The Minibuffer 123

24. Correcting Mistakes and EMACS Problems 125

24.1. Quitting and Aborting 125
24.2. Dealing with Common Forms of EMACS Lossage 126
24.3. Undoing Changes to the Buffer 128
24.4. Journal Files 129
24.5. Reporting Bugs 132

25. Word Abbreviation Input 135

25.1. Basic Usage 136

iv EMACS Manual for TWENEX Users

25.2. Advanced Usage 139
25.3. Teco Details for Extension Writers 142

26. The PICTURE Subsystem, an Editor for Text Pictures 143

27. Sorting Functions 145

Appendix I. Particular Types of Terminals 147

I.1. Ideal Keyboards 147
1.2. Keyboards with an "Edit" key 147
1.3. ASCII Keyboards 148
1.4 Upper-case-only Terminals 148
1.5. The SLOWLY Package for Slow Terminals 149

Appendix II. Use of EMACS from Printing Terminals 153

Glossary 155

Command Index 163

Catalog of Libraries 179

Index of Variables 183

EMACS Command Chart (as of 7/26/80) 189

Index 197

V\

Preface 1

Preface

This manual documents the use and simple customization of the display editor
EMACS with the Twenex (officially known as "TOPS-20") operating system. The
reader is not expected to be a programmer. Even simple CUstomizations do not
require programming skill, but the user who is not interested in customizing can
ignore the scattered customization hints.

This is primarily a reference manual, but can also be used as a primer. However, I
recommend that the newcomer first use the on-line, learn-by-doing tutorial
TEACH-EMACS. With it, you learn EMACS by using EMACS on a specially designed
file which describes commands, tells you when to try them. and then explains the
results you see. This gives a more vivid introduction than a printed manual.

On first reading, you need not make any attempt to memorize chapters I and 2,
which describe the notational conventions of the manual and the general appearance
of the EMACS display screen. It is enough to be aware of what questions are
answered in these chapters, so you can refer back when you later become interested
in the answers. After reading the Basic Editing chaplter you should practice the
commands there. The next few chapters describe fundamental techniques and
concepts that are referred to again and again. It is best to understand them
thoroughly, experimenting with them if necessary.

To find tle documentation on a particular command. took in the index if you know
what the command is. If you know vaguely what the command does, look in the
command index. The command index contains a line or two about each command,
and a cross-reference to the section of the manual that describes the command in
more detail; related commands are grouped together. rhere is also a glossary, with a
cross reference for each term.

The manual is available in three forms: the published form, the LPT form, and the
INFO form. The published form is printed by the Artificial Intelligence lab. The LPT
form is available on line for printing en unsophisticated hard copy devices such as
terminals and line printers. The INFO form is for on-line perusal with the INFO
program. All three forms are substantially the same. There are also two versions of
the text: one for use with ITS, MIT's Incompatible Timesharing System, and one for
use with Twenex. Both versions are available in all three forms.

EMACS is available for distribution for use on Tenex and Twenex systems (It does
not run on Bottoms-1O, and the conversion would not be easy). Mail us a 2400 foot
mag tape if you want it. It does not cost anything; instead, you must join the EMACS
software-sharing commune. The conditions of membership are that you must send
back any improvements you make to EMACS, including any libraries you write, and
that you must not redistribute the system except exaclly as you got it, complete. (You
can also distribute your customizations, separately.) It is pathetic to hear from sites

2 EMACS Manual tor TWENEX Users

that received incomplete copies lacking the sources, asking me years later whether
sources are available.

For information on the underlying philosophy of EMACS and the lessons learned
from its development, write to me for a copy of Al memo 519, "EMACS, the Extensible,
Customizable Self-Documenting Display Editor", or send Arpanet mail to
RMS@MIT-AI.

Yours in hacking,

/ 2 \ 1/2
< X >

\ /

Richard M. Stallman
Artificial Intelligence Lab
545 Tech Square, Rm 913
Cambridge, MA 02139
(617) 253-6765

=

Introduction 3

Introduction

You are about to read about EMACS, an advanced, self-documenting.
customizable, extensible real-time display editor.

We say that EMACS is a display editor because normally the text being edited is
visible oil the screen and is updated automatically as you type your commands. See
section 1 [Displayl, page 5.

We call it a real-time editor because the display is updated very frequently, usually
after each character or pair of characters the user types. This minimizes the amount
of intormation you must keep in your head as you edit. See section 3 [Basic], page 13.

We call EMACS advanced because it provides facilities that go beyond simple
insertion and deletion: filling of text; atomatic indentation of programs; viewing two
files at once; and dealing in terms of characters, words, lines, sentences, paragraphs,
and pages, as well as expressions and comments in several different programming
languages. It is much easier to type one command meaning "go to the end of the
paragraph" than to find the desired spot with repetition of simpler commands.

Self-documenting means that at any time you can type a special character, the
"Help" key, to find out what your options are. You can also use it to find out what any
command does, or to find all the commands that pertain to a topic. See section 7
tHelpi, page 31.

Customizable means that you can change the definitions of EMACS commands in
little ways. For example, if you use a programming language in which comments start
with (** and end with **>, you can tell the EMACS comment manipulation commands
to use those strings. Another sort of customization is rearrangement of the command
set. For example, if you prefer the four basic cursor motion commands (up, down, left
and right) on keys in a diamond pattern on the keyboard, you can have it. See
section 21.8 [Customization], page 106.

Extensible means that you can go beyond simple customization and write entirely
new commands, programs in the language TECO. EMACS is an "on-line extensible"
system, which means that it is divided into many functions that call each other, any of
which can be redefined in the middle of an editing session. Any part of EMACS can be
replaced without making a separate copy of all of EMACS. Many already written
extensions are distributed with EMACS, and some (including DIRED, PAGE, PICTURE,
SORT, TAGS, and WORDAB) are documented in this manual. Although only a
programmer can write an extension, anybody can use it afterward.

Extension requires programming in TECO, a rather obscure language. If you are
clever and bold, you might wish to learn how. See the file INFO:CONV.INFO, for
advice on learning TECO. This manual does not even try to explain how to write
TECO programs, but it does contain some notes that are useful primarily to the
extension writer.

I-- . - - nl ..

4 EMACS Manual for TWENEX Users

The Organization of the Screen 5

Chapter One

The Organization of the Screen

EMACS divides the screen into several areas, each of which contains its own sorts
of information. The biggest area, of course, is the one in which you usually see the
text you are editing. The terminal's cursor usually appears inl tile middle of the text,
showing the position of point, the location at which editing takes place. While the
cursor appears to point at a character, point should be thought of as between two
characters; it points before the character that tle cursor appears on top of. Terminals
have only one cursor, and when output is in progress it must ippear where fhe typing
is being done. This does not mean that point is moving. It is only that EMACS has no
way to show you the location of point except wh en the terminJal is idle.

(he top linez of the screen are usually available for text but are sometimes
pre-empted by an error niessage, which says that soine command you gave was
illegal or used improperly, or by typeout from a commmnd (suCh as, a listing of a file
directory). Error messages are typically one line. end with a question mark, and are
accompanied by ringing the bell. Typeout geneially has non e of those characteristics.

The error message or typeout appears there for your information, but it is not part of
the file you are editing, and it goes away if you type any command. If you want to
make it go away immediately but not do anything else, you can type a Space. (Usually
a Space inserts itself, but when there is an error message or typeout on the screen it
does nothing but get rid of that.) The terminal's cursor always appears at the end of
the error message or typeout, but this does not mean that point has moved. The
cursor moves back to the location of point alter the error message or typeout goes
away.

If you type a question mark when an error message is on the screen, you enter the
EMACS error handler. You probably don't want to do this unless you know how to
write TECO programs. Enough said.

A few lines at the bottom of the screen compose what is called the echo area.
Echoing means printing out the commands that you type. EMACS commands are
usually not echoed at all, but if you pause for more than a second in the middle of a
multi-character command then all the characters typed so far are echoed. This is
intended to prompt you for the rest of the command. The rest of the command is
echoed, too, as you type it. This behavior is designed to give confident users optimum
response, while giving hesitant users information on what they are doing.

EMACS also uses the echo area for reading and displaying the arguments for some
commands, such as see rches, and for printing brief information in response to certain
commands.

6 EMACS Manual for TWENEX Users

The line above the echo area is known as the mode bine. It is the line that usually
starts with "EMACS (something)". Its purpose is to tell what is going on in the
EMACS, and to show any reasons why commands may not be interpreted in the
standard way. The mode line is very important, and it you are surprised by how
EMACS reacts to your commands you should look there for enlightenment.

1.1. The Mode Line

The normal situation is that characters you type are interpreted as EMACS
commands. When this is so, you are at top level, and the mode line has this format:

EMACS (major minor) bfr: file --pos-- *

major is always the name of the major niode you are in. At any time, EMACS is in
one and only one of its possible major modes. The major modes available include
Fundamental mode (which EMACS starts out in), Text mode, Lisp mode, PASCAL
mode, and others. See section 20.1 [Major ModesJ. page 87, for details of how the
modes differ and how to select one. Sometimes the name of the major mode is
followed immediately with another name inside square-brackets ("[- 1"). This name
is called the suhmode. The submode indicates that you are "inside" of a command
that causes your editing commands to be changed temporarily, but does not change
what text you are editing. A submode is a kind of recursive editing level. See
seclion 6.2 [Submodes], page 26.

'minor is a list of some of the minor modes that are turned on at the moment. "Fill"
means that Auto Fill mode is on. "Save" means that Auto-saving is on. "Save(off)"
means that Autol-saving is oii in general but momentarily turned off (it was overridden
the last time a file was selected). "Atom" means th;.t Atom Word mode is on.
"Abbrev" means that Word Abbrev mode is on. "Ovwrt" means that Overwrite mode

is on. See section 22.1 [Minor Modesl, page 107, for more information. "Def" means
that a keyboard macro is being defined; although this is not exactly a minor mode, it is
still useful to be reminded about. See section 22.8 [Keyboard Macros], page 119.

fr is the name of the currently selected buffer. Each buffer has its own name and
holds a file being edited; this is how EMACS can hold several files at once. But at any
time you are editing only one of them, the selected buffer. When we speak of what
some command does to "the buffer", we are talking about the currently selected
buffer. Multiple buffers make it easy to switch around between several files, and then
it is very useful that the mode line tells you which one you are editing at any time.
However. helore y(u learn how to use multiple buffers, you will always be in the buffer
called "Main". which is the only one that exists when EMACS starts up. If the name of
the buffer is the same as the first name of the file you are visiting, then the buffer name
is left out of the mode line. See section 14 (Buffers], page 67, for how to use more
than one buffer in one EMACS.

file is the name of the file that you are editing. It is the last tile that was visited in the
buffer you are in. If "(RO)" (for "read only") appears after the filename, it means that
if you visit another file in the same buffer then changes you have made to this file will
be lost unless you have explicitly asked to save them. See section 13.1 [Visiting),
page 57. for more information. If there is no "(RO)" and you visit another file in the
same buffer, EMACS will offer to save your changes first, if there are any changes.

-11 . . r - ..-- P F! I

The Organization of the Screen 7

The star at the end of the mode line means that there are changes in the buffer that
have not been saved in the file. If the file has not been changed since it was read in or

saved, there is no star.

pos tells you whether there is additional text above the top of the screen, or below
the bottom. If your file is small and it is all on the screen, -- pos-- is omitted.
Otherwise, it is -- TOP-- if you are looking at the beginning ot the tile, -- BOT-- if you
are looking at the end of the file, or -- nn%-- where in is the percentage of the file
above the top of the screen.

Sometimes you will see -- MORE-- instead of -- nn%--. Thi.; happens when typeout

from a command is too long to fit on the s(ceen. It means that if you type a Space the
next screenful of information will be printed. If you are not interested, typing anything
but a Space will cause the rest of the output to be discarded. Typing a Rubout will
discard the output and do nothing else. Typing any other (umina-id will discard the
rest of the output and also do the command. When the olitput is discarded,
"FLUSHED" is printed after the -- MORE--.

So much for what the mode line says at top level. When the mode line doesn't start
with "EMACS", and doesn't look anything like the hreaksduvn given above, then
EMACS is not at top level, and your typing will not be undtstood in the usual way.
This is because you are inside a subsystel. such as INFO (See section 6.1
[Subsystems], page 25.), or in a recursive editing level, such as Edit Options (See
section 6.2 [Recursive Editing], page 26.). The mode line tells you what command you
are inside.

In particular, if the mode line begins with a bracket '[" or a parenthesis "(", you are
inside a recursive editing level or a minibUfter (See section 23 IMinibUffer], page 123.).

If you are accustomed to other display editors, you may be surprised that EMACS

does not always display the page number and line number of point in the mode line.
This is because the text is stored in a way that makes it difficult to compute this
information. Displaying them all the time would be too slow to be borne. When you
want to know the page and line number of point, you must ask for the information with
the M-X What Page command. See section 18 [Pagesj, page 79. However, once you

are adjusted to EMACS, you will rarely have any reason to be concerned with page
numbers or line numbers.

8 EMACS Manual for TWENEX Users

Character Sets and Command Input Convtiiitoiis 9

Chapter Two

Character Sets and Command Input
Conventions

In this chapter we introduce the ternirnlogq and conc-plt, used to talk about
EMAC:S commands. In particular, EMACS is iottlil a I' lii of keyboard with two
special shift keys which can type 512 different cl ; irac' .e',tead of the 128 which
ordinary ASCII keyboards can send.

2.1. The 9-bit Command Character Set

EMACS is designed ideally to be used wilh terminal3 whose keyboards have a pair
of shilt keys, labelled "Control" and "Meta", either or hoh of which can be combined
with any character that you can type. These shift keys produce Control characters
and Meta characters, which are the editing comiriands of [MACS. Ordinary
characters like "A" which are neither Control nor Meta are used for inserting text. We
name each of these characters by prefixin(; "Control " or "Meta -" (abbreviated "C-"
and "M-") to the character: thus, Meta-F or M-1 is the chaiacter which is F typed
with the Meta key held down. Control in the EMACS command character set is not
precisely the same as Control in the ASCII character set, but the general purpose is
the same.

The 128 characters, multiplied by the four possibilities of the Control and Meta keys,
make 512 characters in the EMACS command character set. So il is called the
512-character set to distinguish it from ASCII, which has only 128 characters. It is
also called the 9-bit character set because 9 bits are required to express a number
from 0 to 511. Note that the 512-character set is useit only for keyboard commands.

Characters in files being edited with EMACS are ASII characters.

Sadly, most terminals do not have ideal EMACS keyboards. In fact, the only ideal
keyboards are at MIT, so yours is certain not to be ide;jI. On nonideal keyboards, the
Control key is somewhat limited (it can only be courbined with some characters, not
with all), and the Meta key may not exist at all. We make it paossible to use EMACS on
a nonideal terminal by providing two-charactrt circumlocutions, made up of
characters that you can type, for the characlef,; that you can't type. These
circumlocutions start with a bit prefix character; see bclow. Also see the appendix for
more detailed information on what to do on your type of terminal.

It may seem an unfortunate coincidence that hoth the EMACS 9-bit character set
and the ASCII character set use the term "Control" for not exactly the same thing.

4i ,~.. -- ___________

10 EMACS Manual for TWENEX Users

This came about because the 9-bit character set was invented by generalizing ASCII.
In ASCII, only letters and a few punctuation marks can be made into Control
characters; we wanted to have a Control version ol evet y charrter. For example, we
have Control-Space, Control-digits, and Control-=. We also have Control-A and
Control-a which are two different characters however, all such pairs have the same
meaning as EMACS commands, so you can forget about this quirk of the character set
unless you begin customizing. In practice, you can forget all about the distinction
between ASCII Control and EMACS Control, except to realize that EMACS uses some
"Control" characters which are not on your keyboard.

In addition to the 9-bit command charactei set. there is one extra character called
Help. It cannot be combined with Control or Meta. Its use is to ask for documentation,
at any lime. Like the 9-bit characters, the Ilelp character has its own key on an ideal
keyboard, but must be represented by somelhing else on other keyboards. The usual
choice is Control-Underscore, code 337 (octal). What this means is that the 9-bit
character Control-Underscore cannot be used because it is translated to Help
instead. The code used ititernally for Help is,11 1 0 (octal).

We have given some command characters special names which we always
capitalize. "Return" or "<cr)" stands for the carriage return character, code 015 (all
character codes are in octal). Note that C-R means the character Control-R, never
Return. "Rubout" is the character with code 177. labeled "Delete" on some
keyboards. "Altmode" is the character with code 033, sometimes labeled "Escape".
Other command characters with special names are Tab (code 011), Backspace (code
010), Linefeed (code 012), Space (code 040), Excl ("!", code 041), Comma (code 054),
and Period (code 056). Control is represented in the numeric code for a character by
200, and Meta by 400; thus, Meta-Period is code 456 in the 9-bit character set.

2.2. Prefix Characters

A non-ideal keyboard can only send certain Control characters, and may
completely lack the ability to send Meta characters. To use these commands on such
keyboards, you need to use two-character circumlocutions starting with a bit prefix
character which turns on the Control or Meta bit in the second character. The
Altmode character turns on the Meta bit, so Altmode X can be used to type a Meta-X,
and Altmode Control-O can be used to type a C-M-O. Altmode is known as the
Metizer. Other bit prefix characters are C- - for Control, and C-Z for Control and Meta
together. Thus, C-^ < is a way of typing a Conlrol-<, and C--Z < can be used to type
C-M-<. Because C-- is awkward to type on most keyboards, we have tried to
minimize the number of commands for which you will need it.

The bit prefix characters are simply commands which run the functions -R Prefix
Control, -R Prefix Meta, and -R Prefix Control Meta.

There is another prefix character, Control-X which is used as the beginning of a
large set of two-character commands known as C-X commands. C-X is not a bit
prefix character; C-X A is not a circumlocution for any single character, and it must be
typed as ;wo characters on any terminal.

Character Sets and Command Input Conventions 11

2.3. Commands, Functions, and Variables

Most of the EMACS commands documented herein are members of this 9-bit
character set. Others are pairs of characters from that set. However, EMACS doesn't
really define commands directly. Instead, EMACS defines functions, which have long
names such as "-R Down Real Line", and then the functions are connected to
commands such as C-N through a dispatch table. When we say that C-N moves the
cursor down a line, we are glossing over a distinction which is unimportant for
ordinary use, but essential for customization: it is the function -R Down Real Line
which knows how to move down a line, and C-N moves down a line because it is
connected to that function. We usually ignore this subtlety to keep things sinple. To
give the extension-writer the information he needs, we state the name of the function
which really does the work in parentheses after mentioning the command name. For
example: "C-N (-R Down Real Line) moves the cursor down a line". In the EMACS
wall chart, the function names are used as a form of very brief documentation for the
command characters. See section 5.2 [Functions], page 22.

The "'R " which appears at the front of the function name is simply part of the
name. By convention, a certain class of functions have names which start with " R ".

While we are on the subject of customization informiation which you should not be
frightened of, it's a good time to tell you about vatiables. Often the description of a
command will say "to change this, set the variable Mumble Foo". A variable is a name
used to remember a value. EMACS contains mna;y variables which are there so that
you can change them if you want to customize. The variable's value is examined by
some command, and changing the value makes the command behave differently.
Until you are interested in customizing, you can ignore this information. When you are
ready to be interested, read the basic information on variables, and then the
information on individual variables will make sense. See seltion 22.3 [Variables],
page 109.

2.4. Notational Conventions for ASCII Characters

Control characters in files, your EMACS buffer, or TECO programs, are ordinary
ASCII characters and are represented as uparrov, or caret followed by the
corresponding non-control character: control-E is represented as tE. The special
9-bit character set applies only to typing EMACS commands.

CRLF is the traditional term for a carriage return followed by a linefeed. This
sequence of two characters is what separates lines in text being edited. Normally,
EMACS commands make this sequence appear to be a single character, but TECO
code must deal with the realities. A return or a linefeed which is not part of a CRLF is
called "stray". EMACS usually treats them as part of the line and displays them as -M
and -J. The TECO flag FS -M PRINT4 contiols how they are displayed. See
section 22.5 [FS Flags], page 113.

Other ASCII characters with special names include tab (01 1), backspace (010),
linefeed (012), altmode (033), space (040), and rubout (177). To make it clear whether

12 EMACS Manual for TWENEX Users

we are talking about a 9-bit character or an ASCII character, we capitalize names of
9-bit characters and leave names of ASCII characters in lower case. Note that the
9-bit characters Tab and Control-I are different, but the ASCII characters tab and
control-I are the same.

Most control characters when present in the EMACS buffer are displayed with a
caret; thus, -A for ASCII tA. Rubout is displayed as -?, because by stretching the
meaning of "control" it can be interpreted as ASCII control-?. A backspace is usually
displayed as -H since it is ASCII control-H, because most displays cannot do
overprinting.

Altmode is the ASCII code 033, sometimes labeled "Escape" or "Alt". Altmode is
often represented by itself in this document (remember, it is an ASCII character and
can therefore appear in files). It looks like this: 0. On some terminals, altmode looks
just like the dollar sign character. If that's so on yours, you should assume that
anything you see in the on-line documentation which looks.like a dollar sign is really
an allmode unless you are specifically told it's a dollar sign. The dollar sign character
is not parlicularly important in EMACS and we will rarely have reason to mention it.

Basic Editing Commands 13

Chapter Three

Basic Editing Commands

We now give the basics of how to enter text, make corrections, and save the text in
a tile. If this material is new to you, you might learn it more easily by running the
TEACH-EMACS program.

3.1. Inserting Text

To insert printing characters into the text you are editing, just type them. Normally
(when EMACS is at top level), they are inserted into the t,.' xt at dhe cursor (that is, at
point), which moves forward. Any characters alter the cu sor move forward too. If the
cursor is in between a FOO and a BAR, typing XX produces and displays FOOXXBAR
with the cursor before the "B". This method of insertion works for printing characters
and space, but other characters act as editing commands and do not insert
themselves. Ift you need to insert a control character, Altmode, Tab or Rubout, you
must quote it by typing the C-0 command first. "C" refers to the Control bit. See
section 2 [Characters], page 9.

To correct text you have just inserted, you can use Rubout. Rubout deletes the
character before the cursor (not the one that the cursor is on top of or under; that is
the character after the cursor). The cursor and all characters after it move
backwards. You can rub out a line boundary by typing Rubout when the cursor is at
the beginning of a line.

To end a line and start typing a new one, type Return (Customizers, note: this runs
the function -R CRLF). You can also type Return tc break an existing line into two. A
Rubout after a Return will undo it. Return really insets two characters, a carriage
return and a linefeed (a CRLF), but almost everylhing in EMACS makes them look like
just one character, which you can think of as a line-separator character.

If you add too many characters to one line, without breaking it with a Return, the line
will grow to occupy two (or more) lines on the screen, with a "!" at the extreme right
margin of all but tile last of them. The "!" says that the following screen line is not
really a distinct line in the file, but just the conthuaton of a line too long to fit the
screen.

14 EMACS Manual for TWENEX Users

3.2. Moving The Cursor

To do more than insert characters, you have to know how to move the cursor. Here
are a few ot the commands for doing that.

C-A Moves to the beginning of the line.
C-E Moves to the end of the line.
C-F Moves forward over one character.
C-B Moves backward over one character.
C-N Moves down one line, vertically If you start in the middle of one

line, you end in the middle of the next. From the last line of text, it
creates a new line.

C-P Move; tIp one line, vertically.
C-L Clears the screen and reprints everything. C-U C-L reprints just

the line that the cursor is on.
C-T Transposes two characters (the ones before and after the cursor).
M-< Moves to the top of your text.
M-> Moves to the end of your text.

3.3. Erasing Text

Rubout Delete the character before the cursor.
C-D Delete the character after the cursor.
C-K Kill to the end of the line.

You already know about the Rubout command which deletes the character before
the cursor. Another command, Control-D, deletes the character after the cursor,
causing the rest of the text on the line to shift left. If Control-D is typed at the end of a
line, that line and the next line are joined together.

To erase a larger amount of text, use the Control-K command, which kills a line at a
time. If Coftrol-K is done at the beginning or middle of a line, it kills all the text up to
the end of the line. If Control-K is done at the end of a line, it joins that line and the
next line.

See section 9.1 [Killing], page 37, for more flexible ways of killing text.

3.4. Files

The commands above are sufficient for creating text in the EMACS buffer. The
more advanced EMACS commands just make things easier. But to keep any text
permanently you must put it in a tile. Files are the objects which Twenex uses for
storing data for communication between different programs or to hold onto for a
length of time. To tell EMACS to edit text in a file, choose a filename, such as
FOO.BAR, and type C-X C-V FOO.BAR<cr>. This visits the file FOO.BAR so that its
contents appear on the screen for editing. You can make changes, and then save the
file by typing C-X C-S. This makes the changes permanent and actually changes the
file FOO.BAR. Until then, the changes are only inside your EMACS, and the file

Basic Editing Commands 15

FOOBAR is not really changed. If the file FO0.113A- do-si't exist, and y;.u want to
create it, visit it as if it did exist. When you save your text with C-X C-S the file will be
created.

Of course, there is a lot more to learn about using files. See section 13 [Files],
page 57.

3.5. Help

If you forget what a command does, you can find out with the Help character. The
Help character is typed as Control-_ Type I hep followed by C and the command you
want to know about. Help can help you in othei ways as well. See section 7 [Help],
page 31.

3.6. Using Blank Lines Can Make Editing Faster

C-O Insert one or more blank lines after the cursor.
C-X C-O Delete all but one of many coivceci iive blank lines.

One thing you should know is that it is much more efficiet to insert text at the end
of a line than in the middle. So if you wa it to stick a nrwv line before an existing one, it
is better to make a blank line there first and then type the text into it, rather than
inserting the new text at the beginning of the existing line and then insert a line
separator. It is also clearer what is going on while you are in the middle.

To make a blank line, you can type Return and then C-B. But there is a single
character for this: C-O (Customizers this is the built-in function ^R Open Line). So,
instead of typing FOO Return to insert a line containing FO, type C-O FOO.

If you want to insert many lines, you should type many C-O's at the beginning (or
you can give C-O an argument to tell it how many blank lines to make. See section 4
[Argumentsl, page 17, for how). As you then insert lines of text, you will notice that
Return behaves strangely: it "uses up" the blank lines instead of pushing them down.

If you don't use up all the blank lines, you can type C-X C-0 (the function ^R Delete
Blank Lines) to get rid of all but one. C-X C-O on a blank line deletes any other blank
lines above and below that one, leaving only one blank line. C-X C-O on a nonblank
line deletes any following blank lines, but does not affect preceding blank lines.

7-

16 EMACS Manual for TWENEX Users

!4

-i 1 _

Giving Numeric Arguments to EMACS Commands 17

Chapter Four

Giving Numeric Arguments to EMACS
Commands

Any EMACS command can be given a numeric argument. Some commands
interpret the argument as a repetition count. For example, giving an argument of ten
to the C-F command (move forward one character) moves forward ten characters,
With these commands, no argument is equivalent to an argument of one.

Some commands care only about whether there is an argunment, and not about its
value for example, the command M-Q (-R Fill Paragraph) with no arguments fills text,
but with an argument justifies the text as well.

Some commands use the value of the argument, but do something peculiar when
there is no argument. For example, the C-K (-A Kill Line) command with an argument
<n> kills <n> lines and the line separators that follow them. But C- K with no argument
is special; it kills the text up to the next line separator, or, it point is right at the end of
the line, it kills the line separator itself. Thus, two C-K commands with no arguments
can kill a nonblank line, just like C-K with an argument of one.

The fundamental way of specifying an argument is to use the C-U (-R Universal
Argument) command followed by the optional minus sign and the digits. C-U followed
by a non-digit other than a minus sign has the special meaning of "multiply by four".
It multiplies the argument for the next command by four. Two such C-U's multiply it by
sixteen. Thus, C-U C-U C-F moves forward sixteen characters. It is a good way to
move forward "fast", since it moves about 1/4 of a line on most terminals. Other
useful combinations are C-U C-N, C-U C-U C-N (move down a good fraction of a
screen), C-U C-U C-O (make "a lot" of blank lines), and C-U C-K (kill four lines).
With commands like M-Q that care whether there is an argument but not what the
value s, C-U is a good way of saying "I want an argument".

A few commands treat a plain C-U differently from an ordinary argument. A few
others may treat an argument of just a minus sign differently from an argument of -1.
These unusual cases will be described when they come up; they are always for
reasons of convenience of use.

There are other, terminal-dependent ways of specifying arguments. They have the
same effect but may be easier to type. See the appendix. If your terminal has a
numeric keypad which sends something recognizably different from the ordinary
digits, it is possible to program EMACS to allow use of the numeric keypad for
specifying arguments. The libraries V152 and VT100 provide such a feature for those
two types of terminals. See section 22.2 [Libraries], page 108.

18 EMACS Manual for FWENEX Users

4.1. Autoarg Mode

Users of ASCII keyboards may prefer to use Autoarg rnode. Auto"Irg mode means
that you don't need to type C-U to specify a n1umeric argument. Instead, you type just
the digits. Digits preceding an ordinary inserting character are themselves inserted,
but digits preceding an Altmnode or Control character serve as an argument to it and
are not inserted. Autoarg mode currently has no effect on minus signs, so negative
arguments still require C-U.

To use Autoarg mode, set the variable Autoarg Mode nonzero. See section 22.3
(Variablesi, page 109.

Autoargument digits echo at the bottom of the screen; the first nondigit causes them
to be inserted or uses them as an argument. To insert some digits and nolhing else,
you must follow them wth a Space and then rub it out. C-G cancels the digits, while
Rubout inserts them all anid then rubs out the last.

Extended (Meta-X) Commands and Functions 19

Chapter Five

Extended (Meta-X) Commands and
Functions

Not all EMACS commands are of the one or two character variety you have seen so
far. Many commands have long names composed of English words. This is for two
reasons: the long names are easier to remember and more suggestive, and there are
not enough two character combinations for evevy command to have one.

The commands with long names are known as extended commands because they
extend the ;et of two-character commands.

5.1. Issuing Extended Commands

M-X Begin an extended command. Follow by command
name and arguments.

C-M-X Begin an extended command. Follow by the command
name osily; the command will ask for any arguments.

C-X Altmode Re-execute recent extended command.

Extended commands are also called M.X commands, because they all start with the
character Meta-X (-R Extended Command). The M-X is followed by the command's
long, suggestive name, actually the name of a function to he called. Terminate the
name of the function with a Return (unless you are supplying string arguments; see
below). For example, Meta-X Auto Fill Mode<cr> invokes the function Auto Fill Mode.
This function when executed turns Auto Fill mode on or off.

We say that M-X Foo<cr> "calls the function FOO". When documenting the
individual extended commands, we will call them functions to avoid confusion
between them and the one or two character commands. We will also use "M-X" as a
title like "Mr." for functions, as in "use M-X Foo". The "extended command" is what
you type, starting with M-X, and what the command does is call a function. The name
that goes in the command is the name of the command and is also the name of the
function, and both terms will be used.

There are a great many functions in EMACS for you to call. They will be described
elsewhere in the manual, according to what they do. Here we are concerned only with
extended commands in general.

__ _ _ _ __ _ _ _ _ __ _ _ _ _

20 EMACS Manual for TWENEX Users

5.1.1. Typing The Command Name

When you type M-X, the cursor moves down to the echo area at the bottom cf the
screen. "M-X" is printed there, and when you type the command name it echoes
there. This is known as reading a line in the echo area. You can use Rubout to cancel
one character of the command name, or C-U or C-D to cancel the entire command
name. A C-G cancels the whole M-X, and so does a Rubout when tile command
name is empty. These editing characters apply any time EMACS reads a line in the
echo area, not just within M-X.

The string "M-X" which appears in the echo area is called a prompt. The prompt
always tells you what sort of argument is required and what it is going to be used for;
"M-X" means that you are inside of the M-X command and should type the name of a
function to be called. You ca.. replace the piompt "M-X" with some other string by
defining the variable Read Command Prompt.

5.1.2. Completion

You can abbreviate the name of the command, typing only the beginning of the
name, as much as is needed to identify the command unambiguously. You can also
use completion on the function name. This means that you type part of the command
name, and EMACS visibly fills in the rest, or as much as can be determined from the
, t you have typed.

You request completion by typing an Allmode (*'). For example, if you type
M-X Au,, the "Au" expands to "Auto " because all command names which start with
"Au" continue with "to ". If you ask for completion when there are several
alternatives for the next character, the bell rings and nothing else happens. Altmode
is also the way to terminate the command name and begin the string arguments, but it
only does this if the command name completes in full. In that case, an Altmode
appears after the command name in the echo area. (If the command name does not
complete in full, it is ambiguous, so it would be useless to type the arguments yet).

Space is another way to request completion, but it completes only one word.
Successive Spaces complete one word each, untij eilher there are multiple
possibilities or the end of the name is reached. If the first word of a command is Edit,
List, Kill, View or What, it is sufficient to type just the first letter and complete it with a
Space. (This does riot follow from the usual definition of completion, since the single
letter is ambiguous; it is a special feature added because these words are so
common).

Typing "?" in the middle of the command name prints a list of all the command
names which begin with what you have typed so far. You can then go on typing the
name.

Extended (Meta-X) Commands and Functions 21

5.1.3. Numeric Arguments and String Arguments

Some functions can use numeric prefix arguments. Simply give the Meta-X
command an argument and Meta-X will pass it along to the function which it calls.
The argument appears before the "M-X" in the prompt, as in "69 M-X", to remind you
that the function you call will receive a numeric argument.

Some functions require string arguments (sometimes called sulix arguments). For
those functions, the function name is terminated with a single Altmode, after which
come the arguments, separated by Altmodes. After the last argument, type a Return
to cause the function to be executed. For example, tile function Describe prints the
full documentation of a function (or a variable) whose name must be given as a string
argument. An example of using it is

Meta-X Describe#Apropos<cr>

which prints the full description of tile function named Apropos.

An alternate way of calling exlended commands is with the command C-M-X
(^R Instant Extended Command). It differs from plain M-X in that the function itself
reads any string arguments. This can be useful if the string argument is a filename or
a command name, because the function knows that and gives the argument special
treatment such as completion. However, there are compensating disadvantages. For 4
one thing, since the function has already been invoked, you can't rub out from the
arguments into the function name. For another, it is not possible to save the whole
thing, function name and arguments, for you to recall with C-X Altmode (see below).
So C-M-X saves nothing for C-X Altmode. The prompt for C-M-X is "C-M-X". You
can override it with the variable Instant Command Prompt.

5.1.4. Repeating an Extended Command

The last few extended commands you have executed are saved and you'can repeat
them. We say that the extended command is saved, rather than that the function is
saved, because the whole command, including arguments, is saved.

To re-execute a saved command, use the command C-X Altmode (-R Re-execute
Minibuffer). It retypes the last extended command and asks for confirmation. With an
argument, it repeats an earlier extended command; 2 means repeat the next to the last
command, etc. You can also use the minibuffer to edit a previous extended command
and re-execute it with changes (See section 23 [Minibufferl, page 123.).

Note: Extended commands and functions were once called "MM commands", but
this term is obsolete. If you see it in any user documentation, please report it.
Ordinary one or two character commands used to be known as "^R" commands, and
the term may still be used in the on-line documentation of some functions; please
report this also.

22 EMACS Manual for TWENEX Users

5.2. Arcane Information about M-X Commands

You can skip this section if you are not interested in customization, unless you want
to know what is goitig on behind the scenes.

5.2.1. MM

Extended commands were once called "MM" commands, because "MM" is a TECO
expression which looks up a command name to find the associated program, and runs
that program. Thus, the TECO expression

MM Apropos#Word#

means to run the Apropos command with the argument "word". You could type this
expression into a minibuffer and get the same results as you would get from Meta-X
AproposOWord<cr>. In fact, for the first year or so, EMACS had no Meta-X command,
and that's what people did. See section 23 [Minibuffer], page 123, for information on
the minibuffer.

"MM" actually tells TECO to call the subroutine in q-register "M". The first "M"
means "call", and the second "M" says what to call. This subroutine takes a string
arg.Lument which is the name of a function and looks it up. Calling a function is built
into TECO, but looking Lip the name is not; it is implemented by the program in
q-register M. That's why "MM" is called that and not "Run" or "FtQ".

5.2.2. Arguments in TECO Code

Functions can use one or two prefix arguments or numeric arguments. These are
numbers (actually, TECO expressions) which go before the "MM". Meta-X can only
give the MM command one argument. If you want to give it two, you must type it in
using the minibuffer. When TECO code passes prefix arguments, they don't have to
be numbers; they can also be strings, TECO buffer objects, etc. However, no more
about that here.

When TECO code passes a string argument, it appears, terminated by an Altmode,
after the Altmode which ends the function name. There can be any number of string
arguments. In fact, the function can decide at run time how many string arguments to
read. This makes it impossible to compile TECO codet

5.2.3. Commands and Functions

Actually, every command in EMACS simply runs a function. For example, when you
type the command C-N, it runs the function " R Down Real Line". You could just as
well do C-U 1 M-X -R Down Real Line<or) and get the same effect. C-N can be
thought of as a sort of abbreviation. We say that the command C-N has been
connected to the function ^R Down Real Line. The name is looked up once when the
command and function are connected, so that it does not have to be looked up again
each time the command is used. For historical reasons, the default argument passed
to a function which is connected to a command you typed is 1, but the default for MM

Extended (Meta-X) Commands and Func.lions 23

and for M-X is 0. This is why the C-IJ 1 was necfessary iII thfe example 'tbove. The
documentation for individual EMACS commands e;rAKlly (JIves 1hC name ol the
function which really implements the comnmand a paienti e.- s alter the command
itself.

Just as any function can be called directl, wi:l M- 1, io almost any function can be
connected to a command. You can use the tuti)ion Su Key t 1,1o this. Skt Key takes
the name of the function as a string argumer. then reads ihle. (.1haacter command
(including metizers or other prefix characters) duectly trom tlh tetiinal. ro define
C-N, you could type

M-X Set Key#'R Down Real Line<cr>

and then type C-N. If you use the functiol View Fiie oft,-,n you could connect it to the
command C-X V (not normally defined). You Cixhi fvnIl (:olnc (t II to tht- command
C-M-V, replacing that command's noinal ilfinilori .et 1< cy i-, (lod for redefining
commands in the middle of editing. An il ile or EV/i §;. ,ftl can (to it each time you
run EMACS. See section 22.6 [Init], page 114.

5.2.4. Subroutines

Elk.1ACS is composed of a large number of tunctioj1is each with a name. Some of
thes;e functions are connected to commands; some are there fa you to call with M-X;
some are called by other functions. The last itioup uste cakl!ed subroutines. They
usually have names starting with '', as in "& -Re;d I r ,e" the subroutine which
reads a line in the echo area. Althouglhi most stubroutines have such names, any
lunction can be called as a subroutine. Functions like Ftl D-own Retal line have names
starting with -R because you are not expected to call them directly, either. The
purpose of the "&" or "-R" is to get those function nanies oul of the way of command
comnletion in M-X. M-X allows the command name to be abbreviated if the
abbieviation is unique, and the commands that you ,ie nol interested in might have
names that would interfere and make some useful ahbreviation cease to be unique.
The funny characters at the front of the name prevent thi3 from happening.

5.2.5. Built-in Functions

Not all of the functions in EMACS are written in IECO. A few of the most frequently
used single-character commands have definiliois ,vtteri In machine language.
These include self-inserting characters, RUbOLIt. CU I. and others. Such functions
defined in machine language as part of TECO are callud built ,n hnctions. Whereas
the aclual definition of an ordinary function is a siring, the definition of a built-in
function is iust a number, the address of a routine in TiCO.

Built-in functions can be confusing because Ihe Help l',aties know their names,
hut M-X normally does not. Their EMACS "defi tiun," arc, neded only for the sake
of documentation and not for actually executing the imictions, .o they are put in a
special library called BARE which is loaded only while tlt Help features are working.

For example, ^R Forward Character is the name of the function which implements
the C-F command. If you try to invoke ^R Forward Chaiacter with M-X. since BARE is
not loaded, the name is not defined. Set Key and EVARS files have the same

24 EMACS Manual for TWENEX Users

difficulties. You can make the names permanently availab'3 for all these purposes by
hoIadmq IIARE with M X Load I ituary Q, ARLt<ciO. (You could kill the BARE library

, te tI';.II) it sitice Ih wt hdofiitions wurk flrie once installe(l ev(i if BARE is not
1o,,1,-.l I lowever, In VAIUS files, it is better to use the FS -n INITF command to
obtain hw; denimboii of a built-in function.

.' - - . ,-..

Moving Up And Down Levels 25

Chapter Six

Moving Up And Down Levels

Subsystems and recursive editing levels are two states in which you are temporarily
doing something other than editing the visited tile as 1,.SULal I or example, you might
be editing a message that you wish to send, or looting ; (ocumentation file with
INFO Running another fork under EMACS can als.,o e i)hought of as a sort of
"sublevel".

6.1. Subsystems

A sUbsystein is an EMACS function which is an initei active ;ogram in its own fight:
it reads commands in a language of its own, aid ti.pitys the results. You enter a
subsystem by typing an EMACS command which iivokes it. Once entered, the
subsystem runs until a specific command to exit the .nh sy.3tem is typed. An example
of an EMACS subsystem is INFO, the documentation ieading program. Others are
Backtrace and TDEBUG, used for debugging TECO programs, and BABYL, used for
reading and editing mail files.

The commands understood by a subsystem are usually riot like EMACS commands,
because their purpose is something other than editing text. For example, INFO
commands are designed for moving around in a tree-structured documentation file.
In EMACS, most commands are Control or Meta characters because printing
characters insert themselves. In most subsystems, (here is no insertion of text, so
non-Control non-Meta characters can be the commands.

While you are inside a subsystem, the mode line nsWally gives the name of the
subsystem (as well as other information supplied by the .Subsystem, such as the
filename and node name in INFO). You can tell that you are inside a subsystem
because the mode line does not start with "EMACS", or with an open bracket ("[")
which would indicate a recursive editing level. See seclion 1. 1 IMode Line], page 6.

Because each subsystem implements its own commands, we cannot guarantee
anything about them. However, there are conventions for what certain commands
ought to do:

C-I aborts (exits without finishing up).
Backspace Scrolls backward, like M-V in EMACS.
Space Scrolls forwaid, like C-V in EMACS.
0 Exiis normally.
X Begins an extended com iand. like M-X in EMACS.

--

26 FMACS Manual for TWENEX Users

Ielp or ? Prints documentation onl the subsystem's commands.

Not all of these necessarily exist in every subsystem, however

6.2. Recursive Editing Levels

A recursive editing level is a state in which you are inside a command whichi has
given you some text for you to edit. The text may or may not be part of the file you are
editing. Recursive editing levels are indicated in the mode line by square brackets
("I" and "I").

For example, the command M-X Edit Options is for changing the seltings of EMACS
options by editing a list of option names and values. You use the same editing
commands as always for making changes in this list; when you are finished, the
changes take effect in your option settings. While you are editing the list of options,
the mode line says "[Edit Options]". See section 22.3 [Variables], P,ge 109.

A recursive editing level differs from a subsystem in that the commands are ordinary
EMACS commands (though a handful may have been changed slightly), whereas a
subsystem defines its own command language.

The text you edit inside a recursive editing level depends on the command which
invoked the recursive editing level. It could be a list of options and values, or a list of
tab stop settings, syntax table settings, a message to be sent, or any text that you
might wish to compose.

Sometimes in a recursive editing level you edit text of the file you are visiting, just as
at top level. Why would this be? Usually because a few commands are temporarily
changed. For example, Edit Picture in the PIC-TRE library defines commands good
for editing a picture made out of characters, then enters a recursive editing level.
When you exit, the special picture-editing commands go away. Until then, the
brackets in the mode line serve to remind you that. although the text you are editing is
your file, all is not normal. See section 26 [PICTURE], page 143.

In any case, it the mode line says "[...I" you are inside a recursive editing level, and
the way to exit (send the message, redefine the options, get rid of the picture-editing
commands, etc.) is with the command C-M-Z (-n Exit). See seclion 6.3 [Exiting],
page 27. If you change your mir,d about the command (you don't want to send the
message, or change your options, etc.) then you should use the command C-] (Abort
Recursive Edit) to get out. See section 24.1 [Aborting], page 125.

Inside recursive editing levels, the help option Help R is defined to print the full
documentation of the command which invoked the recursive editing level. Tile other
normal Help options are still available for asking about commands you want to use
while inside the recursive edit.

When the text in the mode line is surrounded by parentheses, it means that you are
inside a Minmbuffer. A minibuffer is a special case of Ihe recursive editing level. Like
any other, it can be aborted safely with C-1. See section 23 [Minibufferl, page 123.

Moving Up And Down Levels 27

6.3. Exiting Levels; Exiting EMACc

C-X C-Z Exit from EMACS to the superior fork.
C-M-Z Exit from EMACS or horn a recursive edifing level.
M-X Compile Exit from EMACS to _XEC and repeat the last Compile- class

command.

The general EMACS command to exit is C-M-Z (-R Exit). lhi; .ommand is used to
exit from a recursive editing level back to the top level of [MAC-S, and to exit from
EMACS at top level back to EXEC. If your keyboard d(,es not have a Meta key, you
must type this command by means of a bit prefix character, as C-Z C-Z or as Altinode
C-Z. Note carefully the difference belween exiting a1 recursive editing level and
aborting it: exiting allows the command which invoked the recursive editing level to
linish its job with the text as you have edited it, whereas ithorlirig cancels whatever the
command was going to do. See section 21.1 Aborling], page 125.

We cannot say in general how to exit a subsystei, since each subsystem defines its
own command language, but the convention is to use,- thk. character "Q".

You can exit from EMACS back to the superior fork. usually EXEC, at any time, even
witthin a recursive editing level, with the command C-X C-Z (-R flieturn to Superior). If
this is used while you are inside a recursiv,, editinij level, then when [MACS is
re-entered you will still be inside the recursive editing! level.

If the superior fork really is EXEC, you can use fvt- X Compile to return to EX, C and
repeat the last Compile, Load, or Debug EXEC coimand. It offers to save any buffers
which need saving, first.

Exiting EMACS does not normally save the visited file, because it is not the case that
users exit EMACS only when they are "finished editing" If you want the file saved,
you must use C-X C-S. Exiting does cause an auto save if Auto Save mode is in use.
M-X Compile does offer to save because with it you indicate specifically your desire to
use the saved file.

Exiting from EMACS runs the function & Exit EMACS, which executes the value of
the variable Exit Hook, if it is defined.

6.4. Running Subforks under EMACS

Running a sublork under EMACS is a little bit like running an EMACS subsystem in
that you give EMACS a command to start it, and give it a command when you want to
exit.

The difference is that a subsystem is implemented as a part of EMACS. It can call

program, and any program which you could run under EXEC can also be run under
EMACS. However, subforks cannot be integrated as well with the rest of EMACS.

Control of subforks is done with the TECO command FZ, which can be used for
loading an arbitrary program into a subfork of EMACS.

*1J

28 EMACS Manual for TWENEX Users

6.4.1. Inferior EXEC

An alternative to exiting EMACS is pushing to another EXEC under EMACS. You
can probably do in this EXEC whatever you would have done after exiting, and it will
not harm the EMACS. Do M-X Push to EXEC to get an inferior EXEC, and use the
POP command to return to EMACS. Repeated use of Push to EXEC gets the same
EXEC with its subfork unchanged. You can actually switch randomly between EMACS
and one other program in this way, even if the EXEC on your machine does not
support multiple forks. The variable Exec Name contains the name of the file to run,
or 0 for the ordinary EXEC.

6.4.2. Reading Mail

An important use of subforks is for reading mail with MM. See section 6.5 [Mail],
page 30.

6.4.3. Subforks in General

M- f- Start or resume a subfork.
M-, Kill a subfork.

The EFORK library, which you must load explicitly with Load Library (See
section 22.2 (Librariesi, page 108.), contains gerieral functions for running several
forks underneath EMACS. EMACS users do not need to wait for DEC to wake up and
release the multi-forking EXEC; they can use multiple forks right now.

Whun EFORK is loaded, the command M- + (^R Invoke Interior) creates or resumes
a subfork.

Creation of a subfork requires two arguments, which you must type. The first one is
the fork handle, an arbitrary name by which you will refer to the fork later. The second
one is the name of the file to run in the fork. Both arguments must be terminated with
<cr>.

If the subfork terminates, you return to EMACS. You can return to EMACS anyway
by typing C-G (the EMACS interrupt character).

To resume a subfork, use M-+ again, and specify the same handle. No distinction is

made between upper case and lower case in the handle name. If you type just <cr) for
the handle name, the most recently used subfork is resumed.

You can also create or resume an inferior EXEC with M-+. Specify EXEC as the
handle to create a new EXEC. Specify * as the handle to resume an existing EXEC.
Creating a new EXEC gets rid of any existing one.

M-X List Handles prints a list of the handles of all the existing subforks.

To kill a subfork, use M-Comma (-R Kill Inferior), which asks you to specify the
handle of the fork to be killed. You cannot kill the inferior EXEC, if there is one, but
asking to create a new one the next time you use it has much the same effect.

Moving Up And Down Levels 29

6.4.4. Ephemerons

The functions Execute Ephemeron and Display Ephemeron, in EFORK, rui a
program in an inferior fork and kill it as soon as it retur,,s (whether because it i.
finished, or because you type C-G). i)splay Epheineron pauses until yon ,ype a
character before redisplaying the screen; it is for use if the program prints soniething
you would like to read.

6.4.5. Services Obtained from an Inferior EXEC

The SYSTEM library, which you must load explicitly with Load Library (See
section 22.2 (Libraries], page 108.), contains functions which communicate with
Twenex by passing commands to an inferior EXEC which exists momentarily.

Most of the commands in SYSTEM print sr)me sort of system status information. For
example, there are

M-X -R System Load Average
Prints the one minute load average in the echo area. This function
is expected to be used by connecting it to a command character,
but the SYSTEM library does not connect it. You must connect it
yourself with Set Key or in an init or EVARS file. It can, however,
be called with M-X like any other function.

M-X Check Output Queue
Prints the contents of the output queues. This requires an
argument, which should be ALL, FAST or USER.

M-X Check Batch Queue
Prints the contents of the batch queues. This requires an
argument, which should be ALL, FAST or USER.

M-X Check Users Prints a list of the users on the system.
M-X SYSTAT Invokes SYSTAT. You may specify the argument to be passed to

SYSTAT as an argument to this command. No argument, when
using M-X, is equivalent to a null argument, which obtains the
default SYSTAT printout.

M-X Check Job Prints your job status, using the I JOB command.
M-X Check Disk Performs I DISK on a directory which you must specify with an

argument.
M-X Check Available

Prints a list of available devices or terminal lines. You must specify
LINES as an argument if you want that; otherwise, the default is to
list the available devices.

Two other commands are

M-X Connect to Directory
Changes your connected directory. Supply the directory name
(including the brackets) as an argument, and the password as a
second argument if it is needed. This command is always
available; you need not load SYSTEM.

M-X Access to Directory

Am -. "

30 EMACS Manual for TWENEX Users

Performs an ACCESS command. Supply arguments as you would
for Connect to Directory.

6.5. Reading Mail

To edit your mail file, use C-X R (Read Mail). This invokes a mail reading subsystem
or sublork. If the variable Mail Reader Library is defined, it is the name of the
subsystem to use: else if Mail Reader Program is defined, it is the name of the program
to run in a subfork; otherwise, the program MM is used.

You can send mail from within MM as well as edit your mail. But if you want to send
just one message, the easiest way is Control-X M (Send Mail). C-X M works by
invoking MM, or whatever program or library you use to read mail, at a special entry
point.

The command M-X Check Mail tells you whether you have any new mail to be read.
The MAICHK library, if loaded, checks automatically every so often.

LI

Self-Documentation Commands 31

Chapter Seven

Self-Documentation Commands

EMACS provides extensive self-documentation features which revolve around a
single character. called the Help character. At any time while using EMACS. you can
type the Help character to ask for help. The Help character is actually typed ;,s (.-_
Control-Underscore). On some terminals just figuring out how to type a

Control-Underscore is hard! Typing Underscore and adding the Control keo is what is
supposed to work, but on some terminals it does not. Somietines Control-Shift-C
works. On VT-100 terminals, Control-/ and Conlol-'? send a Control-_ character.

If you type Help while you are using a subsystem such as I,1FO, it prints a list of the
commands of that subsystem.

if you type Help in the middle of a multi-character command. it often tells you about
what sort of thing you should type next. For example, 0 you type M-X and then Help, it
will tell you about M-X and how to type the nane of [he command. If you finish the
function name and the Altmode and then type Help, it will tell you about the function
you have specified so you can know what arguments it needs If you type C-X and
then type Help, it will tell you about the C-X commands.

But normally, when it's time for you to start typing a new command, Help offers you
several options for asking about what commands there are and what they do. It
prompts with "Doc (? for help):" at the bottom of the screen, and you should type a
character to say what kind of help you want. You could type Help or "?" at this point
to find out what options are available. The ones you are most likely to need are

described here.

The most basic Help options are Help C and Help D. You can use them to ask what a

particular command does. Help C is for character commands: type the command you
want to know about after the Help and the "C" ("C" stands for Character). Thus, Help
C M-F or Help C Altmode F tells you about the M-F command. Help D is for asking
about functions (extended commands); type the name of the function and a Return.
Thus, Help D Lisp Mode<cr> tells you about M-X Lisp Mode. ielp D can also tell you
the documentation of a variable, if you give it a variable's name instead of a function's
name. "D" stands for "Describe", since Help D actually uses tire function Describe to

do the work.

A more complicated sort of question to ask is, "what are the commands for working
with files?" For this, you can type I lelp A, followed by the string "file" and a Return. It
prints a list of all the functions that have "file" anywhere in their names, including
Save All Files. 'R Save File, Append to File, etc. If some of the functions are
connected to commands, it will tell you. For example, it wo, Id say that you can invoke

L

32 EMACS Manual tor TWENEX Users

-R Save File by typing C-X C-S. "A" stands to "Apropos", since Help A actually uses
the function Apropos to do the substring matching. Help A does not list internal
functions, only those the nonprogrammer is likely to use. II you want subroutines to
be listed as well, you must call Apropos yourself.

Because Apropos looks only for functions whose names contain the string which
you speci.y, you must use ingenuity in choosing substrings. If you are looking for
commands for killing backwards and Hell) A Kill Backwards d(oesn't reveal any, don't
give up. Try just Kill, or lust Backwards, or just Back. Be persistent. Pretend you are
playing Adveiture.

If you are inside a recursive editing level. Help R prints out the complete
documentation of that recursive editing level. See section 6.2 [Recursive], page 26.
Help ? also tells you briefly what sort of recursive editing level you are in, in addition to
describing the available Help options. If you are not inside a recursive editing level,
Help R says that you are at top level.

If you aren't sure what characters you accidentally typed to produce surprising
results, you can use Help L to find out ("L" stands for "What Lossage"). If you see
commands that you don't know, you can use Help C to find eut what they did.

If a command doesn't do what you thought you knew it should do, you can ask to
see whether it has changed recently. Help N prints out the file called
EMACS:EMACS.NEWS which is an archive of announcements of changes to EMACS.

To find out about the other Help options, type Help Help. That is, when the first Help
asks ior an option, type Help to ask what is available.

Finally, you should know about the documentation files for EMACS, which are
EMACS.GLJIDE and EMACS.CHART. EMACS.GUIDE is a version :f the manual
formatted to be printed out on a terminal or line printer. EMACS.CHART has a brief
description of all the commands, known as the wall chart, because it is good to post
on the wall near your terminal. A copy of the wall chart is included in this manual just
before the index.

tJ _

The Mark and the Region 33

Chapter Eight

The Mark and the Region

In general, a command which processes an arbitrary pan of the buffer must know
where to start and where to stop. In EMACS, such commands start at point and enf at
a place called the mark. This range of text is called the region. Here are sCme
commands for setting the mark:

C-@ Set the mark where point is.
C-Space The same.
C-X C-X Interchange mark and point.
M-@ Set mark after end of next word.
C-M-@ Set mark after end of next Lisp s-expression.
C-< Set mark at beginning of buffer.
C-> Set mark at end of buffer.
M-H Put region around current paragraph.
C-M-H Put region around current Lisp defun.
C-X H Put region around entire buffer.
C-X C-P Put region around current page.

For example, if you wish to convert part of the buffer to all upper-case, you can use
the C-X C-U command, which operates on the text in the region. You can first go to
the beginning of the text to be capitalized, put the mark there, move to the end, and
then type C-X C-U. Or, you can set the mark at the end of the text, move to the
beginning, and then type C-X C-U. C-X C-U runs the function -R Uppercase Region,
whose name signifies that the region, or everything between point and the mark, is to
be capitalized.

The most common way to set the mark is with the C-@ command or the C-Space
command (-R Set/Pop Mark). They set the mark where point is. Then you can move
point away, leaving the mark behind.

It isn't actually possible to type C-Space on non-Meta keyboards. Yet on many
terminals the command appears to work anyway! This is because trying to type a
Control-Space on those terminals actually sends the character C-@, which means
the same thing as C-Space. A few keyboards just send a Space. If you have one of
them, you type C-@, or customize your EMACS.

Since terminals have only one cursor, there is no way for EMACS to show you where
the mark is located. You have to remember. The usual solution to this problem is to
set the mark and then use it soon. before you forget where it is. But you can see
where the mark is with the command C-X C-X (-R Exchange Point and Mark) which
puts the mark where point was and point where tihe mark was. Thus, the previous

- -.. ~-

34 EMACS Manual for TWENEX Users

location oi the mark is shown, but the region specified is not changed. C-X C-X is
also useful when you are satisfied with the location of point but want to move the other
end of the region; do C-X C-X to put point at that end and then you can adjust it. The
end of the region which is at point can be moved, while the end which is at the mark
stays fixed.

If you insert or delete before the mark, the mark does not stay with the characters it
was between. If the buffer contains "FOO BAR" and the mark is before the "B", then
if you delete the "F" the mark will be before the "A". This is an unfortunate result of
the simple way the mark is implemented. It is best not to delete or insert at places
above the mark until you are finished using it and don't care where it drifts to.

8.1. Commands to Mark Textual Objects

There are commands for placing the mark on the other side of a certain object such
as a word or a list, without having to move there first. M-@ (^R Mark Word) puts the
mark at the end of the next word, whife C-M-@ (-R Mark Sexp) puts it at the end of
the next s-expression. C-> (-R Mark End) puts the mark at the end of the buffer, while
C-< (^R Mark Beginning) puts it at the beginning. These characters allow you to save
a little typing, sometimes.

Other commands set both point and mark, to delimit an object in the buffer. M-H
(-R Mark Paragraph) puts point at the beginning of the paragraph it was inside of (or
before), and puts the mark at the end. M-H does all that's necessary if you wish to
indent, case-convert, or kill a whole paragraph. C-M-H (PR Mark Defun) similarly puts
point before and the mark after the current or next defun. C-X C-P (^R Mark Page)
puts point before the current page (or the next or previous, according to the
argument), and mark at the end. The mark goes after the terminating page delimiter
(to include it), while point goes after the preceding page delimiter (to exclude it).
Finally, C-X H (-R Mark Whole Buffer) makes the region the entire buffer by putting
point at the beginning and the mark at the end.

8.2. The Ring of Marks

Aside from delimiting the region, the mark is also useful for remembering a spot that
you may want to go back to. To make this feature more useful, EMACS remembers 16
previous locations of the mark. Most commands that set the mark push the old mark
onto this stack. To return to a marked location, use C-U C-@ (or C-U C-Space). This
moves point to where the mark was, and restores the mark from the stack of former
marks. So repeated use of this command moves point to all of the old marks on the
stack, one by one. Since the stack is actually a ring, enough uses of C-U C-@ bring
point back to where it was originally. Insertion and deletion can cause the saved
marks to drift, but they are still good for this purpose because they are approximately
right.

Some commands whose primary purpose is to move point a great distance take
advantage of the stack of marks to give you a way to undo the command. The best

A

The Mark and the Region 35

example is M-<, which moves to the beginning of the buffer. It sets the mark first, so
that you can use C-U C-@ or C-X C-X to go back to where you were. Searches
sometimes set the mark; it depends on how far they move. Because of this
uncertainty, searches type out "-@" if they set the mark. The normal situation is that
searches leave the mark behind if they move at least 500 characters, but you can
change that value since it is kept in the variaole Auto Push Point Option. By setting it
to 0, you can make all searches set the mark. By setting it to a very large number such
as ten million, you can prevent all searches from setting the mark. The string to be
typed out when this option does its thing is kept in the variable Auto Push Point
Notification.

36 EMACS Manual for TWENEX Users

Killing and Moving Text 37

Chapter Nine

Killing and Moving Text

Tile commonest way of moving or copying text with EMACS is to kill it, and get it
back again in one or more places. This is very safe because the last several pieces of
killed text are all remembered, and it is versatile, because the many commands for
killing syntactic units can also be used for moving those units. There are also other
ways of moving text for special purposes.

9.1. Deletion and Killing

Most commands which erase text from the buffer save it so that you can get it back
if you change your mind, or move or copy it to other parts of the buffer. These
commands are known as kill commands. The rest of the commands that erase text do
not save it; they are known as delete commands. The delete commands include C-D
and Rubout, which act on single characters, and those commands that delete only
spaces or line separators. Commands that can destroy significant amounts of
nontrivial data generally kill. The commands' names and individual descriptions use
the words "kill" and "delete" to say which they do. If you do a kill command by
mistake, you can use the Undo command to undo it (See section 24.3 [Undo],
page 128.).

C-D Delete next character.
Rubout Delete previous character.
M-\ Delete spaces and tabs around point.
C-X C-0 Delete blank lines around the current line.
M- - Join two lines by deleting the CRLF and any indentation.
C-K Kill rest of line or one or more lines.
C-W Kill region (from point t1 tle mark).
M-D Kill a word.
M-Rubout Kill a word backwards.
C-X Rubout Kill back to beginning of sentence.
M-K Kill to end of sentence.
C-M-K Kill s-expression.
C-M-Rubout Kill s-expression backwards.

38 EMACS Manual for TWENEX Users

9.1.1. Deletion

The most basic delete commands are C-D and Rubout. C-D deletes the character
after the cursor, the one the cursor is "on top of" or "underneath". The cursor
doesn't move. Rubout deletes the character before the cursor, and moves the cursor
back. Line separators act like single characters when deleted. Actually, C-D and
Rubout aren't always delete commands; if you give an argument, they kill instead.
This prevents you from losing a great deal of text by typing a large argument to a C-D
or Rubout.

The other delete commands are those which delete only formatting characters:
spaces, tabs and line separators. M-\ (-R Delete Horizontal Space) deletes all the
spaces and tab characters before and after point. C-X C-0 (-R Delete Blank Lines)
deletes all blank lines after the current line, and if the current line is blank deletes all
blank lines preceding the current line as well (leaving one blank line, the current line).
M-- (-R Delete Indentation) joins the current line and the previous line, or the current
line and the next line if given an argument. See section 11.3 [Indentation], page 48.

A function -R Delete Region used to exist, but it was too dangerous. When you
want to delete a large amount of text without saving a copy of it (perhaps because it is
very big), you can set point and mark around the text and then type

M-Altmode
MRK##

(This is a use of the minibuffer. See section 23 (Minibufferl, page 123.).

9.1.2. Killing by Lines

The simplest kill command is the C-K command (-R Kill Line). If given at the
beginning of a line, it kills all the text on the line, leaving it blank. If given on a blank
line, the blank line disappears. As a consequence, if you go to the front of a
non-blank line and type two C-K's, the line disappears completely.

More generally, C-K kills from point up to the end of the line, unless it is at the end
of a line. In that case it kills the line separator following the line, thus merging the next
line into the current one. Invisible spaces and tabs at the end of the line are ignored
when deciding which case applies, so if point appears to be at the end of the line, you
can be sure the line separator will be killed.

If C-K is given a positive argument, it kills that many lines, and the ceparators that
follow them (however, text on the current line before point is spared). With a negative
argument, it kills back to a number of line beginnings. An argument of -2 means kill
back to the second line beginning. If point is at the beginning of a line, that doesn't
count.

C-K with an argument of zero kills all the text before point on the current line.

a.l

- -!-- - - - - . - - - - - . -

Killing and Moving Text 39

9.1.3. Other Kill Commands

A kill command which is very general is C-W (-R Kill Region), which kills everything
between point and the mark. With this command, you can kill any contiguous
characters, if you first set the mark at one end ol them and go to the other end.

Other syntactic units can be killed: words, with M-Rubout and M-D (See
section 11.1 [Words], page 45.): s-expressions, with C-M-Rubout and C-M-K (See
section 20.5.1 IS-expressions], page 93.); sentences, with C-X Rubout and M-K (See
section 11.2 [Sentences], page 47.).

9.2. Un-Killing

Un-killing is getting back text which was killed. The usual way to move or copy text
is to kill it and then un-kill it one or more times.

C-Y Yank (re-insert) last killed text.
M-Y Replace re-inserted killed text with the previously killed text.
M-W Save region as last killed text without killing.
C-M-W Append next kill to last batch of killed text.

Killed text is pushed onto a ring buffer called the kill ring that remembers the last 8
blocks of text that were killed. (Why it is called a ring buffer will be explained below).
The command C-Y (-R Un-kill) reinseits the text of the most recent kill. It leaves the
cursnr at the end of the text, and puts the mark at the beginning. Thus, a single C-W
,,'does the C-Y (M-X Undo also does so). C-U C-Y leaves the cursor in front of the
text, and the mark after. This is only if the argument is specified with just a C-U,
precisely. Any other sort of argument, including C-U and digits, has an effect
described below.

If you wish to copy a block of text, you might want to use M-W (-R Copy Region),
which copies the region into the kill ring without removing it from the buffer. This is
approximately equivalent to C-W followed by C-Y, except that M-W does not mark the
buffer as "changed" and does not temporarily change the screen. Note that there is
only one kill ring, and switching buffers or files has no effect on it. After visiting a new
file, whatever was last killed in the previous file is still on top of the kill ring.

9.2.1. Appending Kills

Normally, each kill command pushes a new block onto the kill ring, However, two or
more kill commands in a row combine their text into a single entry on the ring, so that
a single C-Y command gets it all back as it was before it was killed. This means that
you don't have to kill all the text in one command; you can keep killing line after line,
or word alter word, until you have killed it all, and you can still get it all back at once.
(Thus we join television in leading peop!z to kill thoughtlessly).

Commands that kill forward from point add onto the end of the previous killed text.
Commands that kill backward from point add onto the beginning. This way, any
sequence of mixed forward and backward kill commands puts all the killed text into
one entry without rearrangement.

40 EMACS Manual for TWENEX Users

If a kill command is separated from the last kill command by other commands, it
starts a new entry on the kill ring, unless you tell it not to by saying C-M-W
(A R Append Next Kill) in front of it. The C-M-W tells the following command, if it is a

kill command, to append the text it kills to the last killed text, instead of starting a new
entry. With C-M-W, you can kill several separated pieces of text and accumulate
them to be yanked back in one place.

9.2.2. Un-killing Earlier Kills

To recover text that was killed some time ago (that is, not the most recent victim),
you need the Meta-Y (-R Un-kill Pop) command. The M-Y command should be used
only after a C-Y command or another M-Y. It takes the un-killed text and replaces it
with the text from an earlier kill.

You can think of all the last few kills as living in a ring. After a C-Y command, the
text at the front of the ring is also present in the buffer. M-Y "rotates" the ring,
bringing the previous string of text to the front, and this text replaces the other text in
the buffer as well. Enough M-Y commands can rotate any part of the ring to the front,
so you can (et at any killed text as long as it is recent enough to be still in the ring.
Eventually the ring rotates all the way around and the most recent killed text comes to
the front (and into the buffer) again. M-Y with a negative argument rotates the ring
backwards. If the region doesn't match the text at the front of the ring, M-Y is not
allowed.

In any case, when the text you are looking for is brought into the buffer, you can
stop doing M-Y's and it will stay there. It's really just a copy of what's at the front of
the ring, so editing it does not change what's in the ring. And the ring, once rotated,
stays rotated, so that doing another C-Y gets another copy of what you rotated to the
front with M-Y.

If you change your mind about un-killing, a C-W or M-X Undo gets rid of the
tin -killed text at any point, after any number of M-Y's. C-W pushes the text onto the
ring again. M-X Undo does not.

If you know how many M-Y's it would take to find the text you want, then there is an
alternative. C-Y with an argument greater than one restores the text the specified
number of entries down on the ring. Thus, C-U 2 C-Y gets the next to the last block of
killed text. It differs from C-Y M-Y in that C-U 2 C-Y does not permanently rotate the
ring.

A way of viewing the contents of the kill ring is

M-X View Q-reglster*..K<cr>

You must add one to the indices listed by this command, to get the argument to use
with C-Y to yank any particular string.

Killing and Moving Text 41

9.3. Other Ways of Copying Text

Usually we copy or move text by killing it and un-killing it, but there aro other ways
that are useful for copying one block ol text in many places, or for copying manly
scattered blocks of text into one place.

9.3.1. Accumulating Text

You can accumulate blocks of text from scattered locations either into a buffer or
into a file if you like.

To append them into a buffer, use the command C-X A <buffername><cr>
(-R Append to Buffer), which inserts a copy of the region into the specified buffer at
the location of point in that bufter. If there is no buffer with the name you specify, one
is created, empty. It you append text into a buffer which is visiting a file, the copied
text goes into the middle of the text of the file.

Point in that buffer is left at the end of the copied text, so successive uses of C-X A
accumulate the text in the specified buffer in the same order as they were copied. If
C-X A is given an argument, point in the other buffer is left before the copied text, so
successive uses of C-X A add text in reverse order.

You can retrieve the accumulated text from that buffer with M-X Insert
Buffer0<buffername><cr>. This inserts a copy of the text in that buffer into the
selected buffer. You can also select the other buffer for editing. See section 14
[Buffersi, page 67, for background information on bu(ers.

Strictly speaking, C-X A does not always append to the text already in the buffer.
But if it is used on a buffer which starts out empty, it does keep appending to the end.

To accumulate text into a file, use the command M-X Append to
File<filename><cr>. It adds the text of the region to the end of the specified file. M-X
Prepend to File adds the text to the beginning of the file instead. The file is changed
immediately on disk. If you wish to insert the text into a copy of the file in an EMACS
buffer, you must append to that buffer instead.

9.3.2. Copying Text Many Times

When you want to insert a copy of the same piece of text frequently, the kill ring
becomes impractical, since the text moves down on the ring as you edit, and will be in
an unpredictable place on the ring when you need it again. For this case, you can use
the commands C-X X (-R Put Q-register) and C-X G ('R Get Q-register) to move the
text.

C-X X<q> stores a copy of the text of the region in a place called q-register <q>.
<q> can be a letter or a number. This gives 36 places in which you can store a piece
of text. With an argument, C-X X deletes the text as well. C-X G<q> inserts in the
buffer the text from q-register <q>. Normally it leaves point before the text and places
the mark after, but with a numeric argument it puts point after the text and the mark
before.

____ i

42 EMACS Manual for TWENEX Users

The q-registers are important temporary variables in TECO programming, but you
don't have to understand them, only to know that what you save with C-X X A is what
you will get with C-X G A.

Do not use q-registers M and R in this way, if you are going to use the TECO
commands MM and MR.

Searching 43

Chapter Ten

Searching

Like other editors, EMACS has commands for searching for an occurrence of a
string. The search command is unusual in that it is incremrrital; it begins to search
before you have finished typing the search string. As you type in the search string,
EMACS shows you where it would be found. When you have typed enough characters
to identify the place you want, you can stop.

C-S Search forward.
C-R Search backward.
C-S 0 C-W Word search, ignoring whitespace.

The command to search is C-S (-R Incremental Search). C-S reads in characters
and positions the cursor at the first occurrence of the characters that you have typed.
If you type C-S and then F, the cursor moves right after the first "F". Type an "0",
and see the cutsor move to after the first "FO". After another "0", the cursor is after
the first "FOO" after the place where you started the search. At the same time, the
"FOO" has echoed at the bottom of the screen.

If you type a mistaken character, you can rub it out. After the FOO, typing a rubout
makes the "0" disappear from the bottom of the screen, leaving only "FO". The
cursor moves back to the "FO". Rubbing out the "0" and "F" moves the cursor back
to where you started the search.

When you are satisfied with the place you have reached, you can type an Altmode,
which stops searching, leaving the cursor where the search brought it. Also, any
command not specially meaningful in searches stops the searching and is then
executed. Thus, typing C-A would exit the search and then move to the beginning of
the line. Altmode is necessary only if the next command you want to type is a printing
character, Rubout, Altmode or another search command, since those are the
characters that would not exit the search.

Sometimes you search for "FOO" and find it, but not the one you expected to find.
There was a second FOO that you forgot about, before the one you were looking for.
Then type another C-S and the cursor will find the next FO0. This can be done any
number of times. If you overshoot, you can rub out the C-S's. You can also repeat
the search after exiting it, if the first thing you type after entering another search
(when the argument is still empty) is a C-S.

If your string is not found at all, the echo area says "Failing I-Search". Tile cursor
is after the place where EMACS found as much of your string as it could. Thus, if you
search for FOOT, and there is no FOOT, you might see the cursor after the FOO in

...____ . _ _ __..... __
'i

44 EMACS Manual for TWENEX Users

FOOL. At this point there are several things you can do. If your string was mistyped,
you can rub some of it out and correct it. If you like the place you have found, you can
type Altmode or some other EMACS command to "accept what the search offered".
Or you can type C-G, which throws away the characters that could not be found (the
"T" in "FOOT"), leaving those that were found (the "FOO" in "FOOT"). A second
C-G at that point undoes the search entirely.

The C-G "quit" command does special things during searches; just what, depends
on the status of the search. If the search has found what you specified and is waiting
for input. C-G cancels the entire search. The cursor moves back to where you started
the search. If C-G is typed while the search is actually searching for something or
updating the display, or after search failed to find some of your input (having searched
all the way to the end of Ihe file), then only the characters which have not been found
are discarded. Having discarded them, the search is now successful and waiting for
more input, so a second C-G will cancel the entire search. Make sure you wait for the
first C-G to (ling the bell before typing the second one; if typed too soon, the second
C-G may be confused with the first and effectively lost.

You can also type C-R at any time to start searching backwards. If a search fails
because the place you started was too late in the file, you should do this. Repeated
C-R's keep looking for more occurrences backwards. A C-S starts going forwards
again. C-R's can be rubbed out just like anything else. It you know that you want to
search backwards, you can use C-R instead of C-S to start the search, because C-R
is also a command (-R Reverse Incremental Search) to search backward. Note to all
customizers: all this command does is call the current definition of -R Incremental
Search with a negative argument.

A non-incremental search is also available. Type Altmode right after the C-S to get
it. Do

M-X Describe#eR String Search<cr>

for details. Some people who prefer non-incremental searches put that function on
Meta-S, and ̂ R Character Search (do M-X DescribeO for details) on C-S. It can do
one useful thing which incremental search cannot: search for words regardless of
where the line breaks.

Word search searches for a sequence of words without regard to how the words are
separated. More precisely, you type a string of many words, using single spaces to
separate them, and the string can be found even if there are multiple spaces or line
separators between the words. Other punctuation such as commas or periods must
match exactly. This is useful in conjunction with documents formatted by text
justifiers. If you edit while looking at the printed, formatted version, you can't tell

where the line breaks are in the source file. With word search, you can search without
having to know.

Word search is a special case of non-incremental search and is invoked with C-S
Altmode C-W. This is followed by the search string, which must always be terminated
with an Altmode. Searching does not start until the final Altmode is typed.

-rN

Commands for English Text 45

Chapter Eleven

Commands for English Text

EMACS enables you to manipulate words, sentences, or paragraphs of text. In
addition. there are commands to fill text, and convert case.

Editing files of text in a human language ought to be done using Text mode rather
than Fundamental mode. Invoke M-X Text Mode to enter Text mode. See
section 20.1 IMajor Modes], page 87. M-X Text Mode causes Tat) to rut] the function
-R Tab to Tab Stop, which allows you to set any tab stops with M-X Edit Tab Stops
(See section 11.3 [Indentation], page 48.). Features concerned with comments in
programs are turned off except when explicitly invoked. Automatic display of
parenthesis matching is turned off, which is what most people want. Finally, the
syntax table is changed so that periods are not considered part of a word, while
apnstrophes, backspaces and underlines are.

It you are editing input for the text justifier TEX, you might want to use TEX mode
instead of Text mode. See the file INFO:E-EX.INFO.

For SCRIBE input, use SCRIBE mode, which is like Text mode but recognizes
SCRIBE comments and enables display of parenthesis matching. SCRIBE mode
recognizes @BEGIN and @END lines as separating paragraphs but considers most
other @-commands as ordinary text. If you have other lines which should separate
paragraphs but do not start with @BEGIN or @END, put @; in front of them. For
example,

@;@quotation{
This is some text that should be
filled by itself, not together with
the preceding or following text.

Someday there may be special major modes for other text justifiers.

11.1. Word Commands

EMACS has commands for moving over or operating on words. By convention, they
are all Meta- characters.

M-F Move Forward over a word.
M-B Move Backward over a word.
M-D Kill up to the end of a word.

46 EMACS Manual for TWENEX Users

M-Rubout Kill back to the beginning of a word.
M-@ Mark the end of the next word.
M-T Transpose two words; drag a word forward or backward

across other words.

Notice how these commands form a group that parallels the character based
commands C-F, C-B, C-D, C-T and Rubout. M-@ is related to C-@.

The commands Meta-F ('R Forward Word) and Meta-B ('R Backward Word) move
forward and backward over words. They are thus analogous to Control-F and
Control-B. which move over single characters. Like their Control- analogues, Meta-F
and Meta-B move several words if given an argument. Meta-F with a negative
argument moves backward like Meta-B, and Meta-B with a negative argument moves
forward. Foiward motion stops right after the last letter of the word, while backward
motion stops right before the first letter.

It is easy to kill a word at a time. Meta-D ('R Forward Kill Word) kills the word after
point. To be precise, it kills everything from point to the place Meta-F would move to.
Thus, if point is in the middle of a word, only the part after point is killed. If some
punctuation comes after point and before the next word, it is killed along with the
word. If you wish to kill only the next word but not the punctuation, simply do Meta-F
to get the end, and kill the word backwards with Meta-Rubout. Meta-D takes
arguments just like Meta-F.

Meta-Rubout (^R Backward Kill Word) kills the word before point. It kills everything
from point back to where Meta-B would move to. If point is after the space in
"1-O, BAR", "FOO, " is killed. In such a situation, to avoid killing the comma and
space, do a Mela-B and a Meta-D instead of a Meta-Rubout.

Meta-T (-R Transpose Words) moves the cursor forward over a word, dragging the
word preceding or containing the cursor forward as well. A numeric argument serves
as a repeat count. A negative argument undoes the effect of a positive argument; it
drags the word behind the cursor backward over a word. An argument of zero,
instead of doing nothing, transposes the word at point with the word at mark. In any
case, the delimiter characters between the words do not move. For example,
"FOO. BAR" transposes into "BAR, FOO" rather than "BAR FOO,".
To operate on the next n words with an operation which applies between point and

mark, you can either set the mark at point and then move over the words, or you can
use the command Meta-@ (-R Mark Word) which does not move point, but sets the
mark where Meta-F would move to. It can be given arguments just like Meta-F. The
case conversion operations have alternative forms thai apply to words, since they are
particularly useful that way.

Note that if you are in Atom Word mode and in Lisp mode, all the word commands
regard an entire Lisp atom as a single word. See section 22.1 [Minor Modes],
page 107.

The word commands' understanding of syntax is completely controlled by the
syntax table. Any character can, for example, be declared to be a word delimiter. See
section 22.4 (Syntax], page 111.

Commands for English Text 47

11.2. Sentence and Paragraph Commands

The EMACS commands for manipulating sentences and paragraphs are mostly
Meta- commands, so as to resemble the word-handling commands.

M-A Move back to the beginning of the sentence.
M-E Move forward to the end of the sentence.
M-K Kill this or next sentence.
M-[Move back to previous paragraph beginning.
M-J Move forward to next paragraph end.
M-H Put point and mark around this paragraph (around the following

one, if between paragraphs).
C-X Rubout

Kill back to beginning of sentence,

11.2.1. Sentences

The commands Meta-A and Meta-E (R Backward Sentence and -R Forward
Sentence) move to the beginning and end of the current sentence, respectively. They
were chosen to resemble Control-A and Control-E, which moie to the beginning and
end of a line. but unlike those Control characters Meta-A and Meta-E if repeated

move over several sentences. EMACS considers a sentence to end wherever there is
a .", ?" or "!" followed by the end of a line or two spaces, with any number of ")"'s,

"s, '"'s, or '"'' allowed in between. Neither M-A nor M-E moves past the CRLF or

spaces which delimit the sentence.

Just as C-A and C-E have a kill command, C-K, to go with them, so M-A and M-E
have a corresponding kill command M-K (-R Kill Sentence) which kills from point to
the end of the sentence. With minus one as an argument it kills back to the beginning
of the sentence. Larger arguments serve as a repeat count.

There is a special command, C-X Rubout (-R Backward Kill Sentence) for killing
back to the beginning of a sentence, because this is useful when you change your
mind in the middle of composing text.

11.2.2. Paragraphs

There are similar commands for moving over paragraphs. Meta-[(-R Backward
Paragraph) moves to the beginning of the current or previous paragraph, while Meta-]
(-R Forward Paragraph) moves to the end of the current or next paragraph. Blank
lines and text justifier command lines separate paragraphs and are not part of any
paragraph. Also, an indented line starts a new paragraph.

In major modes for programs (as opposed to Text mode), paragraphs are
determined only by blank lines. This makes the paragraph commands continue to be
useful even though there are no paragraphs per se.

When there is a fill prefix, then paragraphs are delimited by all lines which don't
start with the fill prefix. See section 11.4 IFilling], page 50.

When you wish to operate on a paragraph, you can use the command Meta-H

.......

-, -
-

- -. - . . .

11
48 EMACS Manual for TWENEX Users

(-R Mark Paragraph) to prepare. This command puts point at the beginning and mark
at the end of the paragraph point was in. Before setting the new mark at the end, a
mark is set at the old location of point; this allows you to undo a mistaken Meta-H with
two C-U C-@'s. If point is between paragraphs (in a run of blank lines, or at a
boundary), the paragraph following point is surrounded by point and mark. Thus, for
example, Meta-H C-W kills the paragraph around or after point.

One way to make an "invisible" paragraph boundary that does not show if the file is
printe(d is to put space-backspace at the front of a line. The space makes the line
appear (to the EMACS paragraph commands) to be indented, which usually means
that it starts a paragraph.

The variable Paragraph Deliroiter should be a TECO search string (See section 19.3
[TECO search strings], page 85.) composed of various characters or character
sequences separated by tO's. A line whose beginning matches the search string is
either the beginning of a paragraph or a text justifier command line part of no
paragraph. If the line begins with period, singlequote, "-", "\" or "@", it can be a
text justifier command line; otherwise, it can be the beginning of a paragraph; but it
cannot be either one unless Paragraph Delimiter is set up to recognize it. Thus,
".tO " as the Paragraph Delimiter string means that lines starting with spaces start
paragraphs. lines starling with periods are text justifier commands, and all other
nonblank lines are nothing special.

11.3. Indentation Commands for Text

Tab Indents "appropriately" in a mode-dependent fashion.
M-Tab Inserts a tab character.
Linefeed Is the same as Return followed by Tab.
M- ^ Undoes a Linefeed. Merges two lines.
M-M Moves to the line's first nonblank character.
M-1 Indent to tab stop. In Text mode, Tab does this also.
C-M-\ Indent several lines to same column.
C-X Tab Shift block of lines rigidly right or left.

The way to request indentation is with the Tab command. Its precise effect depends
on the major mode. In Text mode, it indents to the next tab stop. You can set the tab
stops with Edit Tab Stops (see below). If you just want to insert a tab character in the
buffer, you can use M-Tab or C-Q Tab.

For English text, usually only the first line of a paragraph should be indented. So, in
Text mode, new lines created by Auto Fill mode are not indented. Text mode tells
Auto Fill mode not to indent new lines by setting the variable Space Indent Flag to
zero.

But sometimes you want to have an indented paragraph. In such cases, use M-X
Edit Indented Text, which enters a submode in which Tab and Auto Fill indent each
line under the previous line, and only blank lines delimit paragraphs. Alternatively,
you can specify a fill prefix (see below).

To undo a line-break, whether done manually or by Auto Fill, use the Meta-"
(^R Delete Indentation) command to delete the indentation at the front of the current

_ _ L7

Commands for English Text 49

line, and the line boundary as well. [hey are replaced by a 5ingle space, or by no
space if before a ")" or after a "(", or at the beginning of a line. To delete just the
indentation of a line, go to the beginning of the line and use Meta-\ (-R Delete

Horizontal Space), which deletes all spaces and tabs around the cursor.
To insert an indented line before the current line. do C-A, C-0. and then Tat). To

make an indented line after the current line. use C-E rinefeed.

To move over the indentation on a line, do Meta-M or C-M-M (-R Back to
Indentation). These commands, given anywhere on a line, position the cursor at the
first nonblank character on the line.

There are also commands for changing the indentation of several lines at once.
Control-Meta-\ (-R Indent Region) gives each line whose first character is between
point and mark the "usual" indentation (as determined by Tab). With a numeric
argument, it gives each line precisely that much indentation. C-X Tab (J? Indent
Rigidly) moves all of the lines in the region right by its argument (left, for negative
arguments).

Usually, EMACS uses both tabs and spaces to indent. If you don't want that, you
can use M-X Indent Tabs Mode to turn the use of tabs on or off. To convert all tabs in
a file to spaces, you can use M-X Untabify, whose arguIment is the number of positions
to assume between tab stops (defatill is 8). Argumnts other than 8 are useful in

processing files transl)orted from systems which use other tab slops so that they look
the way they are supposed to. M-X Tabify performs Ihe opposite transformation,
replacing spaces with tabs whenever possible, but only if there are at least three of
them so as not to obscure ends of sentences. The visual appearance of the text
should never be changed by Tabify or Untabify unless you specify an argument other
than 8.

11.3.1. Tab Stops

For typing in tables, you can use Text mode's definition of Tab, -R Tab to Tab Stop,
which may be given anywhere in a line, and indents from there to the next tab stop. If

you are not in Text mode, this function can be found on M-I anyway.

Set the tab stops using Edit Tab Stops, which displays for you a buffer whose
contents define the tab stops. Here is what it would look like for ordinary tab stops
every eight columns (truncated to fit the manual).

123456789 123456789 123456789 123456789 123456789 1234

0 10 20 30 40 50

The first line contains a colon or period at each tab stop. Colon indicates an

ordinary tab, which fills with whitespace; a period specifies that characters be copied
from the corresponding columns of the second line below it. Thus, you can tab to a
column automatically inserting dashes or periods, etc. It is your responsibility to put in
the second line the text to be copied. In the example above there are no periods, and
the second line is not used, and is left blank.

50 EMACS Manual for TWENEX Users

The third and fourth lines you see contain column numbers to help you edit. They
are only there while you are editing the tab stops; they are not really part of the tab
settings. The first two lines reside in the variable Tab Stop Definitions when they are
not being edited. If the second line is not needed, Tab Stop Definitions can be just
one line, with no CRLFs. This makes it easier to set the variable in a local modes list.
See section 22.7 [Locals], page 118.

11 .4. Text Filling

Space in Auto Fill mode, breaks lines when appropriate.
M-Q Fill paragraph.
M-G Fill region (G is for Grind, by analogy with Lisp).
M-S Center a line.
C-X = Show current cursor position.

Auto Fill mode lets you type in text that is filled (broken up into lines that fit in a
specified width) as you go. If you alter existing text and thus cause it to cease to be
properly filled, EMACS can fill it again if you ask.

Entenng Auto Fill mode is done with M-X Auto Fill. From then on, lines are broken
automatically at spaces when they get longer than the desired width. New lines are
usually indented, but in Text mode they are not. To leave Auto Fill mode, execute M-X
Auto Fill again. When Auto Fill mode is in effect, the word "Fill" appears in the mode
line.

When you finish a paragraph, you can type Space with an argument of zero. This
doesn't insert any spaces, bul it doe3 move the last word of the paragraph to a new
line if it doesn't lit in the old line. Return also moves the last word, but it may create
another blank line.

If you edit the middle of a paragraph, it may no longer be correctly filled. To re-fill a
paragraph, use the command Meta-Q (-R Fill Paragraph). It causes the paragraph
that point is inside, or the one after point if point is between paragraphs, to be
re-filled. All the line-breaks are removed, and then new ones are inserted where
necessary. M-Q can be undone with M-X Undo (See section 24.3 [Undo], page 128.).

If you are not happy with Meta-Q's idea of where paragraphs start and end (the
same as Meta-H's. See section 11.2 [Paragraphsi, page 47.), you can use Meta-G
(-R Fill Region) which re-fills everything between point and mark. Sometimes, it is ok
to fill a region of several paragraphs at once. Meta-G recognizes a blank line or an
indented line as starting a paragraph and does not fill it in with the preceding line. The
sequence space-backspace at the front of a line will prevent it from being filled into
the preceding line but is invisible when the file is printed. However, the full
sophistication of the paragraph commands in recognizing paragraph boundaries is
not available. The purpose of M-G is to allow you to override EMACS's usual criteria
for paragraph boundaries. M-G can be undone with M-X Undo.

Giving an argument to M-G or M-Q causes the text to be justified instead of filled.
This means that extra spaces are inserted between the words so as to make the right
margin come out exactly even. I do not recommend doing this. If someone else has

Commands for English Text 51

uglified some text by justifying it, you can unjustify it (remove the spaces) with M-G or
M-Q without an argument.

The command Meta-S (-R Center Line) centers a line within the current line width.
With an argument, it centers several lines individually and moves past them.

The maximum line width for filling is in the variable Fill Column. Both M-Q and Auto
Fill make sure that no line exceeds this width. The easiest way to set the variable is to
use the command C-X F (-R Set Fill Column) which places the margin at the column
point is on, or wherever you specify with a numeric argument. The fill column is
initially column 70.

To fill a paragraph in which each line starts with a special marker (which might be a
few spaces, giving an indented paragraph), use the fill prefix feature. Move point to a
spot right after the special marker and give the command C-X Period (^R Set Fill
Prefix). Then, filling the paragraph will remove the marker from each line beforehand,
and put the marker back in on each line afterward. Auto Fill when there is a fill prefix
inserts the fill prefix at the front of each new line. Also, any line which does not start
with the fill prefix is considered to start a paragraph. To turn off the fill prefix, do C-X
Period with point at the front of a line. The fill prefix is kept in the variable Fill Prefix.

The command C-X = (What Cursor Position) can be used to find out the column that
the cursor is in, and other miscellaneous intormation about point which is quick to
compute. It prints a line in the echo area that looks like this:

X=5 Y=7 CH=101 .=3874(35% of 11014) 1l=<3051,4640>

In this line, the X value is the column the cursor is in (zero at the left), the Y value is the
screen line that the cursor is in (zero at the top), the CH value is the octal value of the
character after point (101 is "A"), the "point" value is the number of characters in the
buffer before point, and the values in parentheses are the percentage of the buffer
before point and the total size of the buffer.

The H values are the virtual buffer boundaries, indicate which part of the buffer is
still visible when narrowing has been done. If you have not done narrowing, the H
values are omitted. For more information about the virtual buffer boundaries, See
section 17 [Narrowing), page 77.

1 1.5. Case Conversion Commands

EMACS has commands for converting either a single word or any arbitrary range of
text to upper case or to lower case.

M-L Convert following word to f-wer case.
M-U Convert following word to upper case.
M-C Capitalize the following word.
C-X C-L Convert region to lower case.
C-X C-U Convert region to upper case.

The word conversion commands are the most useful Meta-L (-R Lowercase Word)
converts the wor-i after point to lower case, moving past it. Thus, successive Meta-L's
convert successive words. Meta-U (-R Uppercase Word) converts to all capitals

1

52 EMACS Manual for TWENEX Users

instead, while Meta-C (^R Uppercase Initial) puts the first letter of the word into upper
case and the rest into lower case. All these commands convert several words at once
it given an argument. They are especially convenient for converting a large amount of
text from all upper case to mixed case, because you can move through the text using
M-L, M-U or M-C on each word as appropriate.

When given a negative argument, the word case conversion commands apply to the
appropriate number of words before point, but do not move point. This is convenient
when you have just typed a word in the wrong case. You can give the case
conversion command and continue typing.

If a word case conversion command is given in the middle of a word, it applies only
to the part of the word which follows the cursor, treating it as a whole word.

The other case conversion commands are C-X C-U (^R Uppercase Region) and
C-X C-L (^R Lowercase Region), which convert everything between point and mark to
the specified case. Point and mark do not move. These commands ask for
confirmation if the region contains more than Region Query Size characters; they also
save the original contents of the region so you can undo them (See section 24.3
[Undo], page 128.).

11 .6. Dissociated Press

M-X Dissociated Press is a command for scrambling a file of text either word by
word or character by character. Starting from a bufferfull of straight English, it
produces extremely amusing output. Dissociated Press prints its output on the
terminal. It does not change the contents of the buffer.

Dissociated Press operates by jumping at random from one point in the buffer to
another. In order to produce plausible output rather than gibberish, it insists on a
certain amount of overlap between the end of one run of consecutive words or
characters and the start of the next. That is, if it has just printed out "president" and
then decides to jump to a different point in the file, it might spot the "ent" in
"pentagon" and continue from there, producing "presidentagon". Long sample texts
produce the best results.

A negative argument to M-X Dissociated Press tells it to operate character by
character, and specifies the number of overlap characters. A positive argument tells it
to operate word by word and specifies the number of overlap words. In this mode,
whole words are treated as the elements to be permuted, rather than characters. No
argument is equivalent to an argument of two. For your againformation, the output is
only printed on the terminal. rhe file you start with is 20ot changed.

Dissociated Press produces nearly the same results as a Markhov chain based on a
frequency table constructed from the sample text. It is, however, an independent,
ignorigimal invention. Dissociated Press techniquitously copies several consecutive
characters from the sample between random choices, whereas a Markhov chain
would choose randomly for each word or character. This makes for more plausible
sounding results.

It is a mustatement that too much use of Dissociated Press can be a developediment

Commands for English Text 53

to your real work. Sometimes to the point of outragedy. And keep dissociwords out of
your documentation, if you want it to be well userenced and properbose. Have fun.
Your buggestions are welcome.

II

A ,_I_

54 EMACS Manual for TWENEX Users

Commands for Fixing Typos 55

Chapter Twelve

Commands for Fixing Typos

In this section we describe the commands that are especially useful for the times
when you catch a mistake in your text just after you have made it, or change your mind
while composing text on line.

Rubout Delete last character.
M-Rubout Kill last word.
C-X Rubout Kill to beginning of sentence.
C-T Transposes two characters.
C-X C-T Transposes two lines.
C-X T Transposes two arbitrary regions.
M-Minus M-L Convert last word to lower case.
M-Minus M-U Convert last word to all upper case.
M-Minus M-C Convert last word to lower case with capital initial.
M-' Fix up onitted shift key on digit.

12.1. Killing Your Mistakes

The Rubout command is the most important correction command. When used
among printing (self-inserting) characters, it can be thought of as canceling the last
character typed.

When your mistake is longer than a couple of characters, it might be more
convenient to use M-Rubout or C-X Rubout. M-Rubout kills back to the start of the
last word, and C-X Rubout kills back to the start of the last sentence. C-X Rubout is
particularly useful when you are thinking of what to write as you type it, in case you
change your mind about phrasing. M-Rubout and C-X Rubout save the killed text for
C-Y and M-Y to retrieve (See section 9.2 [Un-killing], page 39.).

M-Rubout is often useful even when you have typed only a few characters wrong, if
you know you are confused in your typing and aren't sure exactly what you typed. At
such a time, you cannot correct with RIobout except by looking at the screen to see
what you did. It requires less thought to kill the whole word and start over again,
especially it the system is heavily loaded.

- - , - _. ..-

56 EMACS Manual for TWENEX Users

1 2.2. Transposition

The common error of tansposing two characters can be fixed, when they are
a(djacent, with the C- I command. Normally, C I ti asposes the two characters on
either side of the cursor. When given at the end ot a line, tathet than transposing the
last character of the line with the line separalor, which would be useless, C-T
transposes the last two characters on the line. So, if you catch your transposition
error right away, you can fix it with just a C--T. I you don't catch it so fast, you must
move the cursor back to between the two transposed characters. If you transposed a
space with the last character of the word belore it. the word motion commands are a
good way of getting there. Otherwise, a reverse search (C-R) is often the best way.
See section 10 [Search]. page 43.

To transpose two lines, use the C-X C-T command (-R Transpose Lines). M-T
transposes words and C-M-T transposes s-expressions.

A more general transpose command is C-X T (-R Transpose Regions). This
transposes two arbitrary blocks of text. which need not even be next to each other. To
use it, set the mark at one end of one block, then at the other end of the block; then go
to the other block and sot the mark at one end, and put point at the other. In other
words, point and the last three marks should be at the four locations which are the
endIs of the two block;. It does not matter which of the four locations point is at, or
which order the others were marked. C-X F transposes the two blocks of text thus
identified, and relocates point and the three marks without changing their order.

12.3. Case Conversion

A very common error is to type words in the wrong case. Because of this, the word
case-conversion commands M-L, M-U and M-C have a special teature when used
with a negative argument: they do not move the cursor. As soon as you see you have
mistyped the last word, you can simply case-convert it and go on typing. See
section 11 .5 [Case], page 51.

Another common error is to type a special character and miss the shift key,
producing a digit instead. There is a special command for fixing this: M-' (-R Upcase
Digit). which fixes the last digit before point in this way (but only if that digit appears
on the current line or the previous line. Otherwise, to minimize random effects of
accidental use, M- does nothing). Once again, the cursor does not move, so you can
iise M-' when you notice the error and immediately continue typing. Because M-'
needs to know the arrangement of your keyboard, the first time you use it you must
supply the information by typing the row of digits 1, 2, ... , 9, 0 but holding down the
shift key. This tells M-' the correspondence between digits and special characters,
which is remembered for the duration of the EMACS. This command is called M-'
because its main use is to replace "7" with a single-quote.

File Handling 57

Chapter Thirteen

File Handling

The basic unit of stored data is the file. Each program, each paper, lives usually in
its own file. To edit a program or paper, [he editor must be told the name of the file
that contains it. This is called visiting the file. To make your changes to the file
permanent on disk, you must save the file. EMACS also has lacilities for deleting files
conveniently, and for listing your file directory. Special text in a file can specify the
modes to be used when editing the file.

13.1. Visiting Files

C-X C-V Visit a file.
C-X C-R Visit a file for reading only.
C-X C-Q Change regular visiting to read only, or vice versa.
C-X C-S Save the visited file.
Meta-- Tell EMACS to forget that the buffer has been changed.

Visiting a file means copying its contents into EMACS where you can edit them.
EMACS remembers the name of the file you visited. Unless you use the multiple buffer
or window features of EMACS, you can only be visiting one file at a time. The name of
the file you are visiting in the currently selected buffer is visible in the mode line when
you are at top level.

The changes you make with EMACS to the text of the file you are visiting are made
not in the file itself, but in a copy inside EMACS. The file itself is not changed. The

changed text is not permanent until you save it in a file. The first time you change the
text, a star appears at the end of the mode line; this indicates that the text contains
fresh changes which will be lost unless you save them. You can do that at any time
with C-X C-S. If you change one file and then try to visit another in the same buffer,
EMACS offers to save the first file (if it is not saved, the changes are lost). In addition,
for those who are afraid of system crashes, Auto Save mode saves the file at regular
intervals automatically while you edit. See section 13.3 [Auto Save], page 59. Journal
files are another way of protecting against crashes. See section 24.4 [Journals],
page 129.

To visit a file, use the command C-X C-V (-R Visit File). Follow the command with
the name of the file you wish to visit, terminated by a Return. If you can see a filename
in the mode line, then that name is the default, and any component of the filename
which you don't specify is taken from it. If EMACS thinks you can't see the defaults,

58 EMACS Manual for TWENEX Users

they are included in the prompt. You can abort the command by typing C-G, or edit
tire filename with the standard 1 wenex editig and recognition commands (Rubout,
C-W, C-U. C-F and Altmode). If you do type a Return to hiish the command, the new
file's text appears on the screen, and its name shows up in the mode line.

When you wish to save the file and make your changes permanent, type C-X C-S
(-R Save File). After the save is finished, C-X C-S prints "Written: <filenames>" in the
echo area at the bottom of the screen. It there are no changes to save (no star at the
end of the mode line), the file is not saved; it would be redundant to save a duplicate of
the previous version.

However, you need not do the saves yourselt f iyou alter one file and then visit
another, EMACS offers to save the old one. If you answer Y, the old file is saved; if you
answer N. all the changes you have made to it since the last save are lost. You should
not type ahead after a file visiting command, because your type-ahead might answer
an unexpected question in a way that you would regret. If you are sure you only want
to look at a file, and not change it, you can use the C-X C-R command to visit it,
instead of C-X C-V. If a file was visited with C-X C-.R, EMACS does not offer to save it
when you visit the next file. It assumes the changes were inadvertent. However, you
can still save the tile with C-X C-S. The command C-X G-Q ('11 Do Not Write File) can
be used to switch between these two policies on saving. With no argument, it says
that the file should not be saved it another is visited. With an argument, it says that the
file should be saved.

If EMACS is about to save a file automatically an(l discovers that the text is now a lot
shorter than it used to be, it tells you so and asks for confirmation (Y or N). It you
aren't sure what to answer (because you are surprised that it has shrunk), type C-G to
aborl everything, and take a look at your buffer.

Sometimes you will change a buffer by accident. Even if you undo the change
(perhaps, rub out the character you inserted). EMACS still knows that "the buffer has
been changed". You can fell EMACS to forget about that with the Meta-- (-R Buffer
Not Modlihed) command. This command simply clears the "modified" flag which says
that the buffer contains changes which need to be saved. It is up to you not to use it
unwisely. If we take "-"to mean "not", then Meta-- is "not" metalied.

If there are still people using EDIT or SOS on your machine, you may have to visit
files with line numbers in them. The fiuMction Strip SOS Line Numbers removes all line
numbers from the current buffer. It also removes all null (t@) characters. An explicit
argument inhibits removal of nulls unless the tile actually has line numbers.

What if you want to create a fife? Just visit it. EMACS prints "(New File)" but
otherwise acts unworried. If you make any changes and save them, the file is created.
If you visit a nonexistent file unintentionally (because you typed the wrong file name),

visit the file you meant. If you didn't "change" the nonexistent file (you never inserted
anything in it), it is not created.

It EMACS is about to save a file and sees that the date of the latest version on disk
does not match what EMACS last read or wrote, EMACS notifies you of this fact, and
asks what to do, bc,.ause this probably means that something is wrong. For example,
someone else may have been editing the same file. If this is so, there is a good
chance that your work or his work will be lost if you don't take the proper steps. You

File Handling 59

should first find out exactly what is going on. The C-X C-D command to list the
directory will help. If you determine that someone else has modified the file, save your
file under different names (or at least making a new version) and then SRCCOM the
two files to merge the two sets of changes. Also get in touch with the other person so
that he doesn't continue editing.

13.2. How to Undo Drastic Changes to a File

If you have made extensive changes to a file and then change your mind about
them. you can get rid of them by reading in the previous version of the file. To do this,
use M-X Revert File. If you have been using Auto Save mode, it reads in tile last
version of the visited file or the last auto save file, whichever is more recent.

In Auto Save mode, saving under special Auto Save filenames, then you can ask to
revert to the last "real" save, ignoring subsequent auto saves, with C-U M-X Revert
File If you are using the style of auto saving which saves under the real filenames,
this is not possible.

M X Revert File does not change point, so that if the file was only edited slightly, you
will he at appi oximately the same piece of text aflter the Reverl a!; before. If you have
made drastic changes, the same value of point in the old file may address a totally
diffeient piece of text.

Because M-X Revert File can be a disaster if done by mistake, it asks for
confirmation (Y or N) before doing its work. A pre-comma argument can be used to
inhibit the request for confirmation when you call the function Revert File from a TECO
program, as in 1,M(M.M RevertFile*).

13.3. Auto Save Mode: Protection Against Disasters

In Auto Save mode, EMACS saves your fie from time to time (based on counting
your commands) without being asked. Your file is also saved if you stop typing for
more than a few minutes when there are changes in the buffer. This prevents you
from losing more than a limited amount of work in a disaster. (Another method of
protection is the journal file. See section 24.4 (Journals], page 129.).

You can turn auto saving on or off in an individual buffer with M-X Auto Save. In
addition, you can have auto saving by defaullt in all buffers by setting the option Auto
Save Default. The frequency of saving, and the number of saved versions to keep, can
both be specified.

Each time you visit a file, no matter how, auto saving will be on for that file if Auto
Save Default is nonzero. However, by giving a nonzero argument to the file-visiting
command, you can turn off auto saving for that file only, without changing the default.
For example, you might use C-U C-X C-V to do this. Once you have visited a file, you
can turn auto saving on or off with M-X Auto Save. Like other minor mode commands,
M-X Auto Save turns the mode on with a positive argument, off with a zero or negative
argument; with no argument, it toggles. If you start typing a new file into a bufferK

60 EMACS Manual for TWENEX Users

without visiting anything, Auto Save mode is initially off, but you can turn it on with
M -X Auto Save.

When an auto save happens, "(Auto Save)" is printed in the echo area (On a
printing terminal, the bell is rung instead). An error in the process of auto saving
prints "(Auto Save Error!)".

Let us suppose that it is timne for an automatic save to be done: where should the
file be saved?

Two workable methods have been developed: save the file under the names you
have visited, or save it under some special "Auto Save file name". Each solution has
its good and bad points. The first one is excellent some of the time, but intolerable the
rest of the time. The second is usually acceptable. Auto saving tinder the visited tile's
actual names means that You need do nothing special to gobble the auto save file
when you need it; and it means that there is no need to worry about interference
between two users sharing a directory, as long as they aren't editing the same file at
once. However, this method can sometimes have problems:

If you visit a file with G-X C-fl, then you have said you don't want to store
under those names.

If you have visited a fixed version, auto saves can't go under that name,
because they would clobber the original file.

If you haven't visited a file, there aren't any names to use.

In all these cases, the filenames for auto saving are taken from the variable Auto Save
Filenarrnes. It none of those cases apply then it is possible to store auto saves under
the visited name. T his will be donm3, provided that you turn onl the feature by setting
the variable Auto Save Visited File to a nonzero value.

When you want to save your tile "for real", use C-X C-S, as always. C-U C-X C-S is
a way to request an "auto" save explicitly. When you are auto saving under the visited
filenamnes, there is not much difference between an auto save and a "real" save,
except that an auto save will eventually be deleted au tomiatic ally by EMACS a few auto
saves later, while a "real" save will be left around forever (at least, Auto Save won't
delete it).

When it is time to recover from a system crash by reloading the auto save file, if auto
saving was using the visited file names You have nothing special to do. If auto saving
was using special Auto Save filenames, read in the last auto save file and then use
C- X C -W (Write File) to write i0 out in its real location. If you want to use anl auto save
file to throw away changes that you don't like, you can use M-X Revert File, which
knows how to find the most recent save, permanent or not, under whatever filenames.
See section 13,2 [Revert), page 59.

For your protection. if a file has shrunk by more than 30% since the last save, auto
saving does not save. Instead it prints a message that the file has shrunk. You can
save explicitly if you wish; after that, auto saving will resume.

Although auto saving generates large numbers of files, it does not clog directories,
because it cleans up after itself. Only the last Auto Save Max auto save files are kept;
as further saves are done, old auto saves are deleted (and expunged). However, files
which were not made by auto saving (or by explicitly requested auto-saves with C-U

File Handling 61

C-X C-S) are never deleted in this way. The variable Auto Save Max is initially 2.
Changing the value may not take effect in a given bulfer until you turn auto saving off
and on in that buffer.

The number of characters of input between auto saves is controlled by the vari-able
Auto Save Interval. It is initially 500. Changing this takes effecl immediately.

Auto Save Filenames is usually set up by the default init file to <your
directory>_RSV... If you use auto saving in multipl, buffers a lot, you might want to
have a Butter Creation Hook which sets Auto Save Filenames locnlly to a filename
based on the buffer name. so that different buffers don't interfere with each other.

13.4. Listing a File Directory

To look at a part of a file directory, use the C-X C-D command (-R Directory
Display). With rio argument, it shows you the file you are visiting, and relaled files with
the same lirst name. C-U C-X C-D reads a filename from the terminal and shows you
the files related to that filename. The filename may contain wildcards.

To see the whole directory in a brief format, use the function% I ist F iles, which takes
the direclory name as a string argmnenl. The function View Directory prints a verbose
listing of a whole directory. These two commands; take a filename as argument, which
can include wild cards.

The variable Auto Directory Display can be set to make many file operations display
the directory automatically. The variable is normally O making it positive causes write
operations such as Write File to display the directory, and making it negative causes
read operations such as Insert File or visiting to display it as well. I he display is done
using the default directory listing function which is kept in the variable Directory
Lister. Normally this is the function & Subset Directory that displays only the files
related to the current default file.

13.5. Cleaning a File Directory

The normal course of editing constantly creates new versions of files. If you don't
eventually delete the old versions, the directory will fill up and further editing will be
impossible. EMACS has commands that make it easy to delete the Old versions.

For complete flexibility to delete precisely the files you want to delete, you can use
the DIRED package. See section 13.6 IDIRED], page 62, for more details.

M-X Reap File and M-X Clean Dir are more convenient ways to do the usual thing:
keep only the two (or other number) most recent versions.

M-X Reap File <file><cr> counts the number of versions of <file). If there are more
than two, you are told the names of the recent ones (to be kept) and the names of the
older ones (to be deleted), and asked whether to do the deletion (answer Y or N).

Reap File makes a special offer to delete individual files whose extension indicates
that they are likely to be temporary. rhe list of temporary names is contained in a

62 EMACS Manual for TWENEX Users

TECO search string in the variable Temp File FN2 List. See section 19.3 [TECO
search strings], page 85.

If you give M-X Reap File a null filename argument, or no argument, then it applies
to the file you are visiting.

M-X Clean Directory#<dirname> <cr> cleans a whole directory of old versions.
Each file in the directory is processed a la M-X Reap File. M-X Clean Dir with a null
argument, or no argument, cleans the directory containing tile file you are visiting.

M-X Reap File and M-X Clean Dir call be given a numeric argumnent which specifies
how many versions to keep. For example, C-LI 4 M-X Reap File would keep the four
most recent versions. I-he default when there is no argument is the value of the
variable File Versions Kept, which is initially 2.

To expunge [he files deleted by Reap File or Clean Directory. use M-X Expunge
Directoy, which expunges the connected directory. If you wish to expunge some
other directory, connect to it first with

M-X Connect to Directory<directoy><password><cr>

You don't have to specify the password if you can connect without one.

13.6. DIRED, the Directory Editor Subsystem

DIRED makes it easy to delete many of the files in a single directory at once. It
presents a copy of a listing of the directory, which you can move around in, marking
liles for deletion. Wheim you are satisfied, you can tell DIRED to go ahead and delete
the marked files.

Invoke DIRED wilh M-X DIRFD to edit the current default directory, or M--X
DIPL'-)O<dir><cr> to edit directory <ir). You are then given a list(I of the directory
which you can move around in with all the normal EMACS motion commands. Som
EMACS commands are made illegal and others do special things, but it's still a
recursive editing level which you can exit normally with C-M-Z and abort with C-1.

You can mark a file for deletion by moving to the line describing the lile and typing
D, C-D. K, or C-K. The deletion mark is visible as a D at the beginning of the line.
Point is moved to the beginning of the next line, so that several D's delete several files.
Alternatively. if you give D an argument it marks that many consecutive files. Given a
negative argument. it marks the preceding file (or several files) and puts point at the
first (in tie buffer) line marked. Most of the DIRED commands (D, U, E, Space) repeat
this way with numeric arguments.

If you wish to remove a deletion mark, use the U (for Undelete) command, which is
invoke.d like D: it removes tle deletion mark from the current line (or next few lines, if
given an argument). [he Rubout command removes the deletion mark from the
previous line, moving up to that line. Thus., a Rubout after a D precisely cancels the
D.

For extra convenience, Space is made a command similar to C-N. Moving down a
line is done so often in DIRED that it deserves to be easy to type. Rubout is often
useful simply for moving up.

File Handling 63

If you are not sure whether you want to delete a file, you can examine it by typing
E. This enters a recursive editing mode on the file, which you can exit with C-M-Z.
The file is not really visited at that time, and you are not allowed to change it. When
you exit the recursive editing level, you return to DIRED. The V command is like E but
uses View File to look at the file.

When you have marked the files you wish to mark, you can exit DIRED with C-M-Z.
If any files were marked for deletion, DIRED lists them in a concise format, several per
line. Then DIRED asks for confirmation of the list. You can type "YF-" (Just "Y"
won't do) to go ahead and delete them, "N" to return to editing the dir3ctory so you
can change the marks, or "X" to give up and delete nothing, No Return character is
needed. No other inputs are accepted at this point.

13.6.1. Other DIRED Commands

N finds the next "hog": the next file which has at least three versions (or, more than
File Versions Kept).

C calls up SRCCOM as an inferior with the current file in its command line. When
you return to EMACS, the cursor moves down a line to the next file.

S sorts the files into a different order. It reads another character to say which order:
F for filename (the default), S for size, R for read date, or W for write date.

R does the same sorting as S, but uses the reverse order (small files, older files or
end of alphabet first).

H helps you clean up. It marks "old" versions of the current file, and versions with
"temporary" second file names, for deletion. You can then use the D and U
commands to add and remove marks before deleting the files. The variables File
Versions Kept and Temp File FN2 List control which files H picks for deletion. With an
argument (C-U H), it does the whole directory instead of just the current file.

? displays a list of the DIRED commands.

13.6.2. Invoking DIRED

There are some other ways to invoke DIRED. The Emacs command C-X D
(-R Dired) puts you in DIRED on the directory containing the file you are currently
editing. With a numeric argument of 1 (C-U 1 C-X D), only the current file is displayed
instead of the whole directory. In combination with the H command this can be useful
for cleaning up excess versions of a file after a heavy editing session. With a numeric
argument of 4 (C-U C-X D), it asks you for the directory name. Type a directory name'
and/or a file name. If you explicitly specify a file name only versions of that file are
displayed, otherwise the whole directory is displayed.

64 EMACS Manual for TWENEX Users

13.6.3. Editing the DIRED Buffer Yourself

It is unwise to try to edit the text of the directory listing yourself, without using the
special DIRED commands, unless you know what you are doing, since you can
confuse DIRED that way. To make it less likely that you will do so accidentally, the
sell-inserting characters are all made illegal inside DIRED. However, deleting whole
lines at a time is certainly safe. This does not delete the tiles described by those lines;
instead, it makes DIRED forget that they are there and thus makes sure they will not be
deleted. Thus. M-X Keep LinesO is useful if you wish to delete only files with a FOO in
their names. See section 19 (Replacement], page 83.

For more complicated things, you can use the minibuffer. When you call the
mimibuffer from within DIRED, you get a perfectly normal one. The special DIRED
commands are not present while you are editing in the minibuffer. To mark a file for
deletion, replace the space at the beginning of its line with a "D". To remove a mark,
replace the "D" with a space.

13.7. Miscellaneous File Operations

EMACS has extended commands for performing many other operations on files.
Invoking these commands with C-M-X instead of M-X will allow you to use filename
completion on the filename arguments these commands require.

M-X View File# (ile) <cr> allows you to scan or read a file by sequential screenfuls
without visiting the file. It enters a subsystem in which you type a Space to see the
next screenful or a Backspace to see the previous screenful. Typing anything else
exits the command. View File does not visit the file; it does not alter the contents of
any buffer. The advantage of View File is that the whole file does not need to be
loaded before you can begin reading it. The inability to do anything but page forward
or backward is a consequence.

M-X Write File# <file> <cr> writes the contents of the buffer into the file <file>, and
then visits that file. It can be thought of as a way of "changing the name" of the file
you are visiting. Unlike C-X C-S, Write File saves even if the buffer has not been
changed. C-X C-W is another way of getting at this command.

M-X Insert File# (tile> <cr) inserts the contents of (file) into the buffer at point,
leaving point unchanged before the contents and mark after them. The current
defaults are used for (file), and are updated.

M-X Write Region# (file) <cr> writes the region (the text between point and mark) to
the specified file. It does not set the visited filenames. The buffer is not changed.

M-X Append to Fileo (tile> <cr> appends the region to (file). The text is added to
the end of <file>.

M-X Prepend to File# (file) <cr> adds the text to the beginning of (file> instead of
the end.

M-X Set Visited Filename<file)<cr) changes the name of the file being visited
without reading or writing the data in the buffer. M-X Write File is equivalent to this
command followed by a C-X C-S.

File Handling 65

M-X Delete File#<file><cr> deletes the file.

M-X Copy File#<old file>*(new file><cr> copies the file.

M-X Rename File#<old name>*(new name>(cr> renames the file.

The default filenames for all of these operations are TECO default filenamnes. Most
of these operations also leave the TECO default names set to the file they operated on.
The TECO default is not always the same as the file you are visiting. When you visit a
file, they start out the same; the commands mentioned above change the TECO
default, but do not change the visited filenames. Each buffer has its own TECO
default filenames.

The operation of visiting a file is available as a function under the name M-X Visit
File#<file>#. In this form, it uses the TECO default as its defaults, though it still sets
both the TECO default and the visited filenames.

IIdd

66 EMACS Manual tor TWENEX Users

Using Multiple Buffers 67

Chapter Fourteen

Using Multiple Buffers

When we speak of "the buffer", which contains the text you are editing, we have
given the impression that there is only one,. In fact, there may be many of them, each
with its own body of text. At any time only one buffer can be selecled and available for
editing. but it isn't hard to switch to a different one. Each buffer individually
remembers which file it is visiting, what modes are in effect, and whether there are any
changes that need saving.

C-X B Select or create a buffer.
C-X C-F Visit a file in a new buffer.
C-X C-B List the existing buffers.
C-X K Kill a buffer.

Each buffer in EMACS has a single name, which normally doesn't change. A
buffer's name can be any length. The name of the currently selected buffer, and the
name of the file visited in it, are visible in the mode line when you are at top level. A
newly started EMACS has only one buffer, named "Main".

As well as the visited file and the major mode, a buffer can, if ordered to, remember
many other things locally, which means, independently of all other buffers. See
section 22.3 [Variables], page 109.

14.1. Creating and Selecting Buffers

To create a new buffer, you need only think of a name for it (say, "FOO") and then
do C-X B FOO<cr>, which is the command C-X B (Select 3uffer) followed by the
name. This makes a new, empty buffer and selects it for editing. The new buffer is not
visiting any file, so if you try to save it you will be asked for the filenames to use. Each
buffer has its own major mode; the new buffer's major mode is taken from the value of
the variable Default Major Mode, or from the major mode of the previously selected
buffer if that variable is the null string. Normally this is Fundamental mode.

To return to buffer FOO later after having switched to another, the same command
C-X B FOO<cr> is used, since C-X B can tell whether a buffer named FOO exists
already or not. It does not matter whether you use upper case or lower case in typing
the name of a buffer. C-X B Main<cr> reselects the buffer Main that EMACS started
out with. Just C-X B<cr) reselects the previous buffer. Repeated C-X B<cr>'s

alternate between the last two buffers selected.

K 4

68 EMACS Manual for TWENEX Users

You can also read a file into its own newly created buffer, all with one command:
C-X C-F (Find File), followed by the filename. The first name of the file becomes the
buffer name. C-F stands for "Find", because if the specified file already resides in a
buffer in your EMACS, that buffer will be reselected. So you need not remember
whether you have brought the file in already or not. A buffer created by C-X C-F can
be reselected later with C-X B or C-X C-F, whichever you find more convenient.
Nonexistent files can be created with C-X C-F just as they can be with C-X C-V.

Sometimes EMACS needs to visit a file as part of some other operation. By default,
it visits the file in whatever buffer was selected. If you like to use C-X C-F and multiple
hillers, you can tell EMACS to use multiple buflers for implicit visiting by setting the
variable TAGS Find File to a nonzero value. I-his causes automatic visiting to be done
)y means of C-X C-F instead of C-X C-V. Automatic visiting is done by the TAGS
package (See section 21 [TAGS], page 99.) and by invoking EMACS with a filename

@EMACS <filename><cr>

If the bulfer with the same name that C-X C-F wants to use already exists but with
the wrong coiitents (often a different file with a similar name), then you are asked what
to do. You can type Return meaning go ahead and reuse that buffer for this new file,
or you can type another bulfer name to use instead. If C-X C-F does find the file
already in a buffer, then it checks to see whether the version on disk is the same as the
last version read or wrilten from that buffer, for safety. If they are different, you are
warned that someone else may be editing the file, and left with the version which was
already in the EMACS. To get the new version from disk instead, use M-X Revert File.

14.2. Using Existing Buffers

io get a list of all the buffers that exist, do C-X C-B (List Buffers). Each buffer's
name, major mode, and visited lilenames are printed. A star at the beginning of a line
indicates a bufler which contains changes that have not been saved. The number that
appears before a buffer's name in a C-X C-B listing is that buffer's buffer number.
You can select a buffer by giving its number as a numeric argument to C-X B, which
then does not need to read a string from the terminal.

If several buffers have stars, you should save some of them with M-X Save All Files.
This finds all the buffers that need saving and asks about each one individually.
Saving the buffers this way is much easier and more efficient than selecting each one
and typing C-X C-S.

A quick way of glancing at another buffer, faster than selecting it, is to use M-X View
Buffer#<buffername)<cr. This displays the contents of the other buffer and lets you
move forward and back a screen at a time with Space and Backspace. See section 15
[Display], page 71.

M-X Rename Buffer#<new name><cr> changes the name of the currently selected
buffer. If <new name> is the null string, the first filename of the visited file is used as
the new name of the buffer.

rhe commands C-X A (-R Append to Buffer) and M-X Insert Buffer can be used to
copy text from one buffer to another. See section 9.3 [Copying], page 41.

Using Multiple Buffers 69

14.3. Killing Buffers

Afler you use an EMACS for a while, it may fill up with buffers which you no longer
need. Eventually you can reach a point where trying to create any more results in an
"URK" error. So whenever it is convenient you should do M-X Kill Some Buffers,
which asks about each buffer individually. You can say Y or N to kill it or not. Or you
can say Control-R to take a look at it first. This does not actually select the buffer, as
the mode line shows. but gives you a recursive editing level in which you can move
around and look at things. When you have seen enough to make up your mind, exit
the recursive editing level with a C-M-Z and you will be asked the question again. If
you say to kill a buffer that needs saving, you will be asked whether it should be saved.

You can kill the buffer FOO by doing C-X K FOO<cr>. You can kill the selected
buffer, a common thing to do if you use C-X C-F, by doing C-X K<cr). If you kill the
selected buffer, in any way, EMACS asks you which buffer to select instead. Saying
just <cr> at that point tells EMACS to choose one reasonably. C-X K runs the function
Kill Buffer.

Ii

70 EMACS Manual for TWENEX Users

Controlling the Display 71

Chapter Fifteen

Controlling the Display

Since only part of a large file fits on the screen, EMACS tries to show the part that is
likely to be interesting. The display control commands allow you to ask to see a

different part of the file.

C-L Clear and redisplay screen, putting point at a specified vertical
position.

C-V Scroll forwards (a screen or a few lines).
M-V Scroll backwards.
M-R Move point to the text at a given vertical position.
C-M-R Shift the function point is in onto the screen.

The terminal screen is rarely large enough to display all of your file. If the whole
buffer doesn't fit on the screen, EMACS shows a contiguous portion of it, containing
point. It continues to show approximately the same portion untit point moves outside
of it; then EMACS chooses a new portion centered around the new point. This is
EMACS's guess as to what you are most interested in seeing. But if the guess is
wrong, you can use the display control commands to see a different portion. The
finite area of screen through which you can see part of the buffer is called the window,
and the choice of where in the buffer to start displaying is also called the window.

The basic display control command is C-L (-R New Window). In its simplest form,
with no argument, it clears the screen and tells EMACS to display a portion of the

buffer centered around where point is currently located (actually, point is placed 35%
of the way down from the top; this percentage is controlled by the flag FS %
CENTER+, whose value is the percent of the screen down from the top. See
section 22.5 [FS Flags], page 113.).

C-L with a positive argument chooses a new window so as to put point that many
lines from the top. An argument of zero puts point on the very top line. Point does not
move with respect to the text; rather, the text and point move rigidly on the screen.

C-L with a negative argument puts point that many lines from the bottom of the
window. For example, C-U -1 C-L puts point on the bottom line, and C-U -5 C-L puts

it five lines from the bottom. C-L with an argument does not clear the screen, so that it
can move the text on the screen withoul sending it again if the terminal allows that.

C-U C-L is different from C-L with any other sort of argument. It causes just the line

containing point to be redisplayed.

The scrolling commands C-V and M-V let you move the whole display up or down a
few lines. C-V (-R Next Screen) with an argument shows you that many more lines at

72 EMACS Manual for TWENEX Users

the bottom of the screen, moving the text and point up together as C-L might. C-V
with a negative argument shows you more lines at the top of the screen, as does
Meta-V (-R Previous Screen) with a positive argument,

To read the buffer a screenful at a time, use the C-V command with no argument. It
takes the last two lines at the bottom of the screen and puts them at the top, followed
by nearly a whole screenful of lines not visible before. Point is put at the top of the
screen. Thus, each C-V shows the "next screenful", except for two lines of overlap to
provide continuity. The variable Next Screen Context Lines. if defined, controls how
many lines from the bottom of the screen move to the top; the default if the variable is
not defined is 2. To move backward, use M-V without in argument, which moves a
whole screenful backwards (again with overlap).

Scanning by screenfuls through the buffer for some distance is most conveniently
done with the M-X View Buffer command. This command enters a simple subsystem
in which Space moves a screenful forward and Backspace moves a screenful
backward. The Return character exits, leaving point centered in whatever part of the
buffer was visible. Any other character exits and returns point to its former location,
and is then executed as a command (unless it is a Rubout, Rubout exits but is not
executed). View Buffer can be used to view another buffer by giving the buffer's name
as a string argument. In this case. exiling with Return moves point permanently in the
other buffer, but does not select it. See section 14 [Buffers], page 67.

You can also scan by screenfuls through a file which you have not visited with the
M-X View File command. See section 13.7 [Advanced File Commands], page 64.

To scroll the buffer so that the current function or paragraph is positioned
conveniently on the screen, use the C-M-R command (^R Reposition Window). This
command tries to get as much as possible of the current function or paragraph onto
the screen, preferring the beginning to the end, but not moving point off the screen. A
"function" in Lisp mode is a defun; otherwise it is defined to be a set of consecutive
unindented lines, or a set of consecutive indented lines.

C-L in all its forms changes the position of point on the screen, carrying the text
with it. Another command moves point the same way but leaves the text fixed. It is
called Meta-R (-R Move to Screen Edge). With no argument, it puts point at the
center of the screen. An argument is used to specify the line to put it on, counting
from the top if the argument is positive, or from the bottom if it is negative. Thus,
Meta-R with an argument of 0 puts the cursor on the top line of the screen. Meta-R
never causes any text to move on the screen; it causes point to move with respect to
the screen and the text.

I

Two Window Mode 73

Chapter Sixteen

Two Window Mode

EMACS allows you to split the screen into two windows and use them to display
parts of two files, or two parts of the same file.

C-X 2 Start showing two windows.
C-X 3 Show two windows but stay "in" the top one.
C-X 1 Show only one window again.
C-X 0 Switch to the Other window
C-X 4 Find buffer, file or tag in other window.
C-X ^ Make this window bigger.
C-M-V Scroll the other window.

The command C-X 2 (-R Two Windows) enters two-window mode. A line of dashes
appears across the middle of the screen, dividing the text display area into two halves.
Window one, containing the same text as previously occupied the whole screen, fills
the top half, while window two fills the bottom halt. The cursor moves to window two.
If this is your first entry to two-window mode, window two will contain a new buffer
named W2. Otherwise, it will contain the same text it held the last time you looked at
it. The mode line will now describe the buffer and file in window two. In two window
mode, the mode line always applies to the window you are in.

You can now edit in window two as you wish, while window one remains visible.
When you are finished editing or looking at the text in window two, C-X 1 (^R One
Window) returns to one-window mode. Window one expands to fill the whole screen,and window two disappears until the next C-X 2.

While you are in two window mode you can use C-X 0 (-R Other Window) to switch
between the windows. After doing C-X 2, the cursor is in window two. Doing C-X 0
moves the cursor back to window one, to exactly where it was before the C-X 2. The
difference between this and doing C-X 1 is that C-X 0 leaves window two visible on
the screen. A second C-X 0 moves the cursor back into window two, to where it was
before the first C-X 0. And so on...

Often you will be editing one window while using the other just for reference. Then,
the command C-M-V (-R Scroll Other Window) is very useful. It scrolls the other
window without switching to it and switching back. It scrolls the same way C-V does:
with no argument, a whole screen up; with an argument, that many lines up (or down,
for a negative argument). With just a minus sign (no digits) as an argument, C-M-V
scrolls a whole screenful backwards (what M-V does).

When you are finished using two windows, the C-X 1 command makes window two

74 EMACS Manual for TWENEX Users

vanish. It doesn't matter which window the cursor is in when you do the C-X 1; either
way window two vanishes and window one remains. To make window one vanish and
window two remain, give C-X 1 an argument.

The C-X 3 (-R View Two Windows) command is like C-X 2 but leaves the cursor in
window one. That is, it makes window two appear at the bottom of the screen but
leaves the cursor where it was. C-X 2 is equivalent to C-X 3 C-X 0. C-X 3 is
equivalent to C-X 2 C-X 0, but C-X 3 is much faster.

M-X Compare Windows compares the text in the two windows. See section 22.2
ILibraries), page 108. Starting from the pointer in each window, it moves both
pointers to tile first mi;inatch. The variable Collapse in Comparison, if it exists, should
be a string containing all the "insignificant" characters; any string of insignificant
characteis matches any other string of those characters. If the variable does not
exist, the iiisignicant characters are return, linefeed, space and tab.

If you quit in the middle of Compare Windows, point is advanced in both windows as
far as the matching has proceded. As a result, calling Compare Windows again
resumes the comparison.

Normally, the screen is divided evenly between the two windows. You can also
redistribute the lines between the windows with the C-X - (-1 Grow Window)
command. It makes the currently selected window get one line bigger, or as many
lines as is specified. With a negative argument, it makes the selected window smaller.
The allocation of space to the windows is always remembered and changes only when
you give a C-X - command.

After leaving two-window mode, you can still use C-X 0, but the effect is slightly
different. Window two does not appear, but whatever was being shown in it appears,
ini window one (the whole screen). Whatever buffer used to be in window one is stuck,
mnvisi)ly, into window two. Another C-X 0 reverses the effect of the first. For
example, if window one shows buffer D and window two shows buffer W2 (the usual
case), and only window one is visible, then after a C-X 0 window one shows buffer W2
and window two shows buffer B.

16.1. Multiple Windows and Multiple Buffers

You can view one buffer in both windows. Give C-X 2 an argument as in C-U C-X 2
to go into window two viewing the same buffer as window one. Although the same
buffer appears in both windows, they have different values of point, so you can move
around in window two while window one continues to show the same text. Then,
having found in window two the place you wish to refer to, you can go back to window
one with C-X 0 to make your changes. Finally you can do C-X 1 to make window two
leave the screen. If you are already in two window mode, C-U C-X 0 switches
windows carrying the buffer from the old window to the new one so that both are
viewing the same buffer.

Buffers can be selected independently in each window. The C-X B command
selects a new buffer in whichever window the cursor is in. The other window's buffer
does not change. When you do C-X 2 and window two appears it shows whatever
buffer used to be visible in it when it was on the screen last.

S LA

Two Window Mode 75

If you have the same buffer in both windows, you must beware of trying to visit a
different file in one of the windows with C-X C-V, because if you bring a new file into
this buffer, it will replace the old file in both windows. To view different files in the two
windows again, you must switch buffers in one of the windows first (with C-X B or C-X
C-F, perhaps).

A convenient "combination" command for viewing something in the other window is
C-X 4 (-R Visit in Other Window). With this command you can ask to see any
specified buffer, file or tag in the other window. Follow the C-X 4 with either B and a
buffer name, F or C-F and a file name, or T or "." and a tag name (See section 21
[TAGS], page 99.). This switches to the other window and finds there what you
specified. If you were previously in one-window mode, two-window mode is entered.
C-X 4 B is similar to to C-X 2 C-X B. C-X 4 F is similar to C-X 2 C-X C-F. C-X 4 T is
similar to C-X 2 M-Period. The difference is one of efficiency, and also that C-X 4
works equally well if you are already using two windows.

76 EMACS Manual for TWENEX Users

Narrowing 77

Chapter Seventeen

Narrowing

Narrowing means focusing in on some portion of the buffer, making the rest
temporarily invisible and inaccessible.

C-X N Narrow down to between point and mark.
C-X W Widen to view the entire buffer.
C-X P Narrow down to the page point is in.

When you have narrowed down to a part of the buffer, that part appears to be all
there is. You can't see the rest, you can't move into it (motion commands won't go
outside the visible part), you can't change it in any way. However, it is not gone, and if
you save the file all the invisible text will be saved. In addition to sometimes making it
easier to concentrate on a single subroutine or paragraph by eliminating clutter,
narrowing can be used to restrict the range of operation of a replace command.

The primary narrowing command is C-X N (-R Set Bounds Region). It sets the
virtual butter boundaries at point and the mark, so that only what was between them
remains visible. Point moves to the top of the now-visible range, and the mark is left at

the end, so that the region marked is unchanged.

The way to undo narrowing is to widen with C-X W (-R Set Bounds Full). This
makes all text in the buffer accessible again.

Another way to narrow is to narrow to just one page, with C-X P (-R Set Bounds
Page). See section 18 [Pages], page 79.

You can get information on what part of the buffer you are narrowed down to using
the C-X = command. See section 11.4 [Filling], page 50.

Note that the virtual buffer boundaries are a powerful TECO mechanism used
internally in EMACS in many ways. While only the commands described here set them
so as you can see, many others set them temporarily using the TECO commands
FS VBO and FS VZ+, and restore them before finishing.

I

_ _ -] .

78 EMAGS Manual for TWENEX Users

"7 " --- " 1-- m- 1 1 -.. . . -. 19 ,- .- .' ' ' ' l

Commands for Manipulating Pages 79

Chapter Eighteen

Commands for Manipulating Pages

Files are often thought of as divided into pa.les by the ASCII character formfeed
(rL). For example, if a file is printed on a line printer, each page of the file, in this
sense, will start on a new page of paper. EMACS has commands for moving over and
operating on pages.

C-M-L Insert formfeed.
C-X C-P Put point and mark around this page (or ancther page).
C-X [Move point to previous page boundary.
C-X] Move point to next page boundary.
C-X P Narrow down to just this (or next) page.
C-X L Count the lines in this page.
M-X What Page

Print current page and line number.

Most editors make the division of a file into pages extremely important. For
example, they may be unable to show more than one page of the file at any time.
EMACS treats a formfeed character just like any olher character. It can be inserted
with C-Q C-L (or, C-M-L), and deleted with Rbout. Thus, you are free to paginate
your file, or not. However, since pages are often meaningful divisions of the file,
commands are provided to move over them and operate on them. If you happen to
like seeing only one page of the file at a time, you can use the PAGE library. See
section 18.1 [PAGE], page 80.

The C-X [(-R Previous Page) command moves point to the previous page delimiter
(actually, to right after it). If point starts out right after a page delimiter, it skips that
one and stops at the previous one. A numeric argument serves as a repeat count.
The C-X] (-R Next Page) command moves forward past the next page delimiter.

The command M-X What Page prints the page and line number of the cursor in the
echo area. There is a separate command to print this information because it is likely
to be slow and should not slow down anything else (The design of TECO is such that it
is not possible to know the absolute number of the page you are in, except by
scanning through the whole ile counting pages).

The C-X C-P command (-R Mark Page) pL ts point at the beginning of the current
page and the mark at the end. The page terminator at the end is included (the mark
follows it). That at the front is excluded (point follows it). This command can be
followed by a C-W to kill a page which is to be moved elsewhere.

A numeric argument to C-X C-P is used to specify which page to go to, relative to

80 EMACS Manual for TWENEX Users

the current one. Zero means the current page. One means the next page, and -1
means the previous one.

The command C-X P (-R Set Bounds Page) narrows down to just one page.
Everything before and after becomes temporarily invisible and inaccessible (See
section 17 [Narrowing], page 77.). Use C-X W to undo this. Both page terminators,
the preceding one and the following one, are excluded from the visible region. Like
C-X C-P, the C-X P command normally selects the current page, but allows you to
specify which page explicitly relative to the current one with a numeric argument.
Ilowever, when you are already narrowed down to one page, C-X P moves you to the
next page (otherwise, it would be a useless no-op). One effect of this quirk is that
several C-X P's in a row get first the current page and then successive pages.

Just what delimits pages is controlled by the variable Page Delimiter, which should
contain a TECO search string (See section 19.3 [TECO search strings], page 85.)
which will match a page separator. Normally, it is a string containing just TL. For an
INFO file, it might usefully be changed to t-tLtO"_ , which means that either a t-tL or
just a t- (whatever separates INFO nodes) should be a page separator. In any case,
page separators are recognized as such only at the beginning of a line. The
paragraph commands consider each page boundary a paragraph boundary as well.

The C-X L command (-R Count Lines Page) is good for deciding where to break a
page in two. It first prints (in the echo area) the total number of lines in the current
page, and then divides it up into those preceding the current line and those following,
as in

Page has 96 lines (72+25)

Notice that the sum is off by one; this is correct if point is not at the front of a line.

18.1. Editing Only One Page at a Time

The PAGE library is meant to allow the handling of pages as discrete, often
independent units, letting you see only one page at a time, and providing commands
to move between pages, split pages and join pages. It contrives to show the number
of the page you are looking at in the mode line. You can also ask to see a directory of
the pages in the file, or to insert it into the file. This is an extension of and
replacement for the facility provided by the C-X P command in standard EMACS. It is
an optional library because we do not think it is necessarily an improvement.

The commands in the PAGE library supplant and redefine commands in standard
[MACS. Therefore, you cannot use them unless you give the command M-X Load
[ibrary PAGE<cr> explicitly. See section 22.2 [Libraries], page 108.

C-X] Move to next page.
C-X [Move to previous page.
C-X C-P Move to page by absolute number.
C-X P Split this page at point.
C-X J Join this page to the next or previous one.
C-X W See the whole file again.

Commands for Manipulating Pages 81

The most fundamental thing to do with PAGE is to go to a specific page. This can
be done by givilng the page number as an argument to C-X C-P (-R Goto Page). If you
give a number too big, the last page in the file is selected.

For convenience, C-X C-P with no argument when you are looking at the whole file
selects the Dage containing point. When you are looking at only one page, C-X C-P
with no argument goes to the next page and with a negative argument goes to the
previous page.

However, the main commands for moving forward or backward by pages are C-X [
and C-X I (-R Goto Previous Page and -R Goto Next Page). These take a numeric
argument (either sign) and move that many pages.

When you want to go back to viewing the whole file instead of just one page, you
can use the C-X W (-R Widen Bounds) command. These are the same characters
that you would use in standard EMACS, but they run a different function that knows to
remove the page number from the mode line.

The C-S (-R Incremental Search) and C-R (^R Reverse Search) are redefined to
widen bounds first and narrow them again afterwards. So you can search through the
whole file, but afterward see only the page in which the search ended. In fact, PAGE
goes through some trouble to work with whatever search functions you prefer to use,
and find them wherever you put them.

To split an existing page, you could insert a tL, but unless you do this while seeing
the whole file, PAGE might get confused for a while. A way that is less tricky is to use
C-X P (-R Insert Pagemnark) which inserts the page mark, and narrows down to the
second of the two pages formed from the old page. To get rid of a page mark without
worry, use C-X J (-R Join Next Page). It gets rid of the page mark after the current
page; or, with a negative argument, gets rid of the page mark before this page.

A page mark is defined as <CRLF>tL. il you set the variable PAGE Flush CRLF to 1,
a page mark is <CRLF>)L<CRLF>, which has the effect of making the CRLF at the
beginning of each page invisible. This may be desirable for EMACS library source
files. You can also specify some other string in place of tL by setting the variable
Page Delimiter. If Page Delimiter specifies multiple alternatives, the first alternative is
the one PAGE will insert, but all will be recognized.

To see a list of all the pages in the file, each one represented by its first nonempty
line, use M-X View Page Directory. It prints out the first non-blank line on each page,
preceded by its page number. M-X Insert Page Directory inserts the same directory
into the buffer at point. If you give it an argument, it tries to make the whole thing into
a comment by putting the Comment Start string at the front of each line and the
Comment End string at the end.

If the variable Page Setup Hook exists, PAGE will execute its value as the function
for placing PAGE's functions on keys.

82 EMACS Manual for TWENEX Users

~~1

A ___ ____ii

Replacement Commands 83

Chapter Nineteen

Replacement Commands

Global search-and-replace operations are not used as often in EMACS as they are
in other editors, but they are still provided. In addition to the simple Replace operation
which is like that found in most editors, there is a Query Replace operation which asks
you, for each occurrence of the pattern, whether to replace it.

19.1. Query Replace

To replace every instance of FOO with BAR, you can do

M-X Replace#FOO4BAR<cr>

Replacement is lone only after point, so if you want to cover the whole buffer you
must go to the beginning first. Replacement continues to the end of the buffer, but
you can restrict it by narrowing. See section 17 [Narrowing], page 77.

Unless the variable Case Replace is zero, an attempt is made to preserve case; give
both FOO and BAR in lower case, and if a particular FOO is found with a capital irilial
or all capitalized, the BAR which replaces it will be likewise.

If you give Replace (or Query Replace) an argument, then it insists that the
occurrences of FOO be delimited by break characters (or an end of the buffer). So
you can find only the word FOO, and not FOO when it is part of FOOBAR.

The string FOO to be replaced is actually a TECO search string, a type of pattern, in
which the characters tB, tN, tO, tQ, tX, and t] are special. See section 19.3 [TECO
search strings], page 85.

If you are afraid that there may be some FOO's that should not be changed, EMACS
can still help you. Use M-X Query Replace§FOOOBAR<cr>. This displays each FOO
and waits for you to say whether to replace it with a BAR. The things you can type
when you are shown a FOO are:

Space to replace the FOO (preserving case, just like plain Replace,
unless Case Replace is zero).

Rubout to skip to the next FOO without replacing this one.
Comma to replace this FOO and display the result. You are then

asked for another input character, except that since the
replacement has already been made, Rubout and Space are
equivalent.

Altmode to exit without doing any more replacements.

84 EMACS Manual for TWENEX Users

Period to replace this FOO and then exit.
to replace all remaining FOO's without asking (Replace
actually works by calling Query Replace and pretending that
a ! was typed in).
to go back to the previous FOO (or, where it was), in case you
have made a mistake. This works by jumping to the mark
(Query Replace sets the mark each time it finds a FO0).

C-R to enter a recursive editing level, in case the FOG needs to be
edited rather than just replaced with a BAR. When you are
done, exit the recursive editing level with C-M-Z.

C-W to delete the FOG, and then start editing the buffer. When
you are finished editing whatever is to replace the FOO, exit
the recursive editing level with C-M-Z.

If you type any other character, the Query Replace is exited, and the character
executed as a command. To restart the Query Replace, use C-X Altmode which is a
command to re-execute the previous minibuffer command or extended command.
See section 5 [M-XJ, page 19.

19.1.1. Running Query Replace with the Minibuffer

Meta-% gives you a minibuffer pre-initialized with "MM Query Replace+". This is
the easiest way to invoke Query Replace. It also allows you to get Returns and
Altmodes into the arguments.

With the minibuffer, Query Replace can be given a precomma argument, which says
that the second string argument is actually a TECO program to be executed to
perform the replacement, rather than simply a string to replace with.

When you invoke Query Replace from the minibuffer, the character C-] becomes
special (because it is special in TECO programs). In order to get a C-] into the search
string or the replacement string, you must use two of them. You can also use a C-] to
quote an Altmode. In the minibuffer, Return has no syntactic significance, so there is
no need for a way to quote it. However, in order to insert any control characters into
the arguments, you need to quote them again with C-0. So, to get C-Q C-X into the
search string so as to search for a C-X, you have to type C-Q C-Q C-Q C-X.

19.2. Other Search-and-loop Functions

Here are some other functions related to replacement. Their arguments are TECO
search strings (See section 19.3 [TECO search strings], page 85.). They all operate
from point to the end of the buffer (or where narrowing stops them).

M-X Occur#FCO<cr>
which finds all occurrences of FOG after point. It prints each line
containing one. With an argument, it prints that many lines before
and after each occurrence.

M-X How Many$FOO<cr>
types the number of occurrences of FOO after point.

Replacement Commands 85

M-X Keep Lines#FOO<cr>
kills all lines after point that don't contain FOO.

M-X Flush LinesOFOO<cr>
kills all lines after point that contain FOO.

19.3. TECO Search Strings

The first string argument to Replace and Query Replace is actually a TECO search
string. This means that the characters C-X, C-B, C-N, C-0, and C-0 have special
meanings. C-X matches any character. C-B matches any "delimiter" character
(anything which the word commands consider not part of a word, according to the
syntax table. See section 22.4 [Syntax], page 111.). C-N negates what follows, so
that C-N A matches anything but A, and C-N C-B matches any non-delimiter. C-0
means "or", so that XYXY C-0 ZZZ matches either XYXY or ZZZ. C-0 can be used
more than once in a pattern. C-0 quotes the following character, in case you want to
search for one of the special control characters. However, you can't quote an
Altmode or a Return in this way because its specialness is at an earlier stage of
processing.

Some variables are supposed to have TECO search strings as their values. For
example, Page Delimiter is supposed to be a search string to match anything which
should start a page. This is so that you can use C-0 to match several alternatives. In
the values of such variables, C-B, C-N, C-0, C-Q, C-X and C-1 are special, but
Altmode is not. C-B through C-X are quoted with a C-Q, and C-] is quoted with
another C-].

The function Apropos and all similar functions actually take TECO search strings as
arguments, so you can search for more than one substring at a time. This is useful
because doing Apropos on wordt0para is not really slower than searching for just
"word" or just "para".

86 EMACS Manual for TWENEX Users

Editing Programs 87

Chapter Twenty

Editing Programs

Special features for editing programs include automatic indentation, comment
alignment, parenthesis matching, and the ability to move over and kill balanced
expressions. Many of these features are parameterized so that they can work for any
programming language.

For each language there is a special miljor mode which customizes EMACS slightly
to be better suited to editing programs written in that language. These modes
sometimes offer special facilities as well.

See section 11.1 [Words], page 45. Moving over words is useful for editing
programs as well as text.

See section 11.2 [Paragraphs], page 47. Most programming language major modes
define paragraphs to be separated only by blank lines and page boundaries. This
makes the paragraph commands useful for editing programs.

See section 21 [Tags], page 99. The TAGS package can remember all the labels or
functions in a multi-file program and find any one of them quickly.

20.1. Major Modes

When EMACS starts up, it is in what is called Fundamental mode, which means that
the single and double character commands are defined so as to be convenient in
general. More precisely, in Fundamental mode every EMACS option is set in its
default state. For editing any specific type of text, such as Lisp code or English text,
you can tell EMACS to change the meanings of a few commands to become more
specifically adapted to the task. This is done by switching from Fundamental mode to
one of the other major modes. Most commands remain unchanged; the ones which
usually change are Tab, Rubout, and Linefeed. In addition, the commands which
handle comments use the mode to determine how comments are to be delimited.

Selecting a new major mode is done with an M-X command. Each major mode is
the name of the function to select that mode. Thus, you can enter Lisp mode by
executing M-X Lisp (short for M-X Lisp Mode). The major modes are mutually
exclusive; you can be in only one major mode at a time. When at top level, EMACS
always says in the mode line which major mode you are in. Often EMACS enters the
correct major mode for a file simply based on the file's extension, and you do not have
to worry about selecting a mode.

88 EMACS Manual for TWENEX Users

You can specify which major mode should be used for editing a certain file by
putting -*-<mode name>-*- somewhere in the first nonblank line of the file. For
example, this file has -*-Text-*-.

Many major modes redefine the syntactical properties of characters appearing in
the bulfer. See section 22.4 ISyntax], page 111.

Most programming language major modes specify that only blank lines separate
paragraphs. This is so that the paragraph commands do not become useless. They
also cause Auto Fill mode to use the definition of lab to indent the new lines it
creates. This is because most lines are usually indented.

Major modes are standardly defined for the languages Lisp, Muddle, MIDAS, FAIL,
MACRO-10. Macsyma, BCPL, BLISS, PASCAL, FORTRAN, SAIL, TECO, and PL1.

There is also Text mode, designed for editing English text, or input to text justifier
programs. See section 11 [Text], page 45.

20.2. Indentation Commands for Code

Tab Indents current line.
Linefeed Eqtiivak.nt to Return followed by Tab.
M-_ Joins two lines, leaving one space between if appropriate.
M-\ Deletes all spaces and tabs around point.
M-M Moves to the first nonblank character on the line.

Most programming languages have some indentation convention. For Lisp code,
lines are indented according to their nesting in parentheses. For assembler code,
almost all lines start with a single tab, but some have one or more spaces as well.
Indenting TECO code is an art rather than a science, but it is often useful to indent a
line under the previous one.

The way to request indentation is with the Tab command. Each major mode defines
this command to perform the sort of indentation appropriate for the particular
language. In Lisp mode. Tab aligns the line according to its depth in parentheses. No
matter where in the line you are when you type Tab, it aligns the line as a whole. In
MIDAS mode, Tab inserts a tab, that being the standard indentation for assembly
code. In TECO mode, Tab realigns the current line to match a previous line. PLi
mode (See the file INFO:EPL1 .INFO.) knows in great detail about the keywords of the
language so as to indent lines according to the nesting structure.

The command Linefeed (^R Indent New Line) does a Return and then does a Tab on
the next line. Thus, Linefeed at the end of the line makes a following blank line and
supplies it with the usual amount of indentation, just as Return would make an empty
line. Linefeed in the middle of a line breaks the line and supplies the usual indentation
in front of the new line.

The inverse of Linefeed is Meta-- or C-M-^ (^R Delete Indentation). This command
deletes the indentation at the front of the current line, and the line boundary as well.
They are replaced by a single space, or by no space if before a ")" or after a "(", or at
the beginning of a line. -o delete just the indentation of a line, go to the beginning of

Editing Programs 89

the line and use Meta-\ (-R Delete Horizontal Space), which deletes all spaces and
tabs around the cursor.

To insert an indented line before the current one, do C-A, C-0, and then Tab. To
make an indented line after the current one, use C-E Linefeed.

To move over the indentation on a line, do Meta-M or C-M-M ("P Back to
Indentation). These commands, given anywhere on a line, position the cursor at the
fitst nonblank character on the line.

20.3. Automatic Display Of Matching Parentheses

The purpose of the EMACS parenthesis-matching feature is to show automatically
how parentheses balance in text being typed in. When this feature is enabled, after a
close parenthesis or other close bracket character is inserted the cursor automatically
moves for an instant to the open which balances the newly inserted character. The
cursor stays at the open pareflthef;is for a second before returning home, if you don't
type auly mOre c1nn0Comnds durilng that time. It you type mote commands before the
sk!Conid is up, MACS won't wait the whole second.

It is worth emphasizing that the location of point, the place where your type- in will
be insertedI, is not affected by the parenthesis match rIng feature. It stays alter the
close parenthesis, where it would normally he. Only the cursor on the screen moves
away and back. You can type ahead freely as if the matching feature were iot there.
In fact. if you type fast enough, you won't see the cursor move. You must pause after
typing a close parenthesis to see the open parenthesis.

The variable Display Matching Paren controls parenthesis display. If it is zero, the
feature is disabled. If the variable is nonzero, then its absolute value is the number of
seconds for the cursor to stay at the open parenthesis before coming back to its real
location. The sign of the variable is also significant: if it is negative, then the open
parenthesis is shown only if it is already on the screen. If the variable is positive, then
EMACS will actually recenter tile window to show the text around the open
parenthesis. The default setting of the variable is -1.

An additional parameter is whether EMACS should warn you by ringing the bell if
you type an unmatched close parenthesis. The default is to warn you if you are editing
a language in which parentheses are essential, like Lisp, but not to do so for
languages in which parentheses are riot so crucial. This is controlled by the variable
Permit Unmatched Paren. When it is 1, you are never warned (they are always
"permitted"). When it is -1, you are warned only in Lisp mode and similar modes (this
is the default). Note that these modes operate by locally setting the variable to 1 if it
was -1. When it is 0, you are warned regardless of the major mode. Unmatched
parens are always "permitted" in that EMACS will never refuse to insert them.

While this feature was intended primarily for Lisp, it can be used just as well for any
other language, and it is not dependent on what major mode you are in. It is expected
that you wouldn't want it in Text mode, so Text mode sets the variable Display
Matching Paren locally to zero. If you do want the feature in Text mode, you can
create a Text Mode Hook variable which sets the variable back to -1. See the file

.Blow

AO-A093 886 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE--ETC FG 9/2

EMACS MANUAL FOR TWENEX USERS.(U)
SEP 80 R M STALLMAN NOOO S 75-C-O143

UNCLASSIFIED AI-M-555 ML.huuuuuuuuInI
Immuuuuuuuum
E~lllhEllEEE-
EIIIIIIIIIIIIu
IIIEIIIIIIIII
IEEEIIIIIIEEEE
mlllEEEElllllE

90 EMACS Manual for TWENEX Users

INFO:CONV.INFO. node [looks, for more mo on [ext Mode Hook. The way to control
which characters trigger this feature is with the syntax table. Any character whose
Lisp syntax is ")" will cause the matching character with syntax "(" to be shown. Most
major modes automatically set up the syntax table (See section 22.4 [Syntax],
page 111.).

The syntax table also controls what is lone with the case of "mismatched" parens,
as in "[). The third slot in a close parenthesis character's syntax table entry should
be file proper matching open parenthesis character, if you want this feature turned on.
II that slot contains a space instead, then any open parenthesis character is
consiclered a legitimate match. If a close parenthesis is mismatched, it is inserted as
always, but it insgs the bell.

The implementation of this feature uses the TECO flag FS -R PAREN,. See
section 22.5 [FS Flagsi, page 113.

20.4. Manipulating Comments

The comment commands insert, kill and align comments. There are also commands
for moving through existing code and inserting comments.

C-; Insert or align comment.
M-; The same.
C-M-; Kill comment.
Return Move past comment terninator and onto new line.
C-.X Set comment colimn.
M-N Move to Next line and insert comment.
M-P Move to Previous line and insert comment.
M-J Continue a comment on a new line.
M-Lineteed The same.

The command that creates a comment is Control-; or Meta-; (-R Indent for
Comment). It moves to the end of the line, indents to the comment column, and
inserts whatever string EMACS believes comments are supposed to start with
(normally ";"). If the line goes past the comment column, then the indentation is done
to a suitable boundary (usually, a multiple of 8).

Control-: can also be used to align an existing comment. If a line already contains
the string that starts comments, then C-; lust moves point after it and indents it to the
right place (where a comment would have been created if there had been none).

Even when an existing comment is properly aligned, C-; is still useful for moving
directly to the start of the comment.

Some languages require an explicit comment terminator, which is not simply the
end of the line. Although the language may then allow comments in thme middle of the
line, the EMACS comment commands assume that a comment is the last thing on the
line. When there is a comment terminator, C-; inserts the terminator as well as the
starter, and leaves point between them, so that you are ready to insert the text of the
comment. When you are done, the Return command given immediately before the
comment terminator acts as if it were at the end of the line already: it moves down to

Editing Programs 91

or creates a following blank line. It does not break the existing line before the
comment terminator as you would expect.

C-M-; (-R Kill Comment) kills the comment on the current line, if there is one. The
indentation before the start of the comment is killed as well. If there does not appear
to be a comment in the line, nothing is done. Since killed text can be reinserted with
C- Y, this command is useful for moving a cormert from one line to another.

20.4.1. Multiple Lines of Comments

If you wish to align a large number of comments, you can give Control-; an
argument and it indents what comments exist on that many lines, creating none. Point
is left after the last line processed (unlike the no-argjument case).

When adding comments to a long stretch of existing code, the commands M-N
(-R Down Comment Line) and M-P (^R Up Comment Line) may be useful. They are
like C-N and C-P except that they do a C-: automatically on each line as you move to
it, and delete any empty comment from tho line as you leave it. Thus, you can use
M-N to move down through the code, puttill ted into the comments when you want
to, and allowing the comments that you den't lill imi to be removed because they
remained empty.

If you are typing a comment and find that you wish to continue it oni another line,
you can use the command Meta-J or Meta Lineleed (-R Indent New Comment Line),
which terminates the comment you are typing, creates or gobbles a new blank line,
and begins a new comment indented under the old one. When Auto Fill mode is on,
going past the fill column while typing a comment causes the comment to be
continued in just this fashion. Note that if the next line is not blank, a blank line is
created, instead Of putting the next line of the comment on the next line of code. To
do that, use M-N.

20.4.2. Double and Triple Semicolons in Lisp

In Lisp code there are conventions for comments which start with more than one
semicolon. Comments which start with two semicolons are indented as if they were
lines of code, instead of at the comment column. Comments which start with three
semicolons are supposed to start at the left margin. EMACS understands these
conventions by indenting a doublo-senicolon comment using Tab, and by not
changing the indentation of a triple-semicolon comment at all. (Actually, this rule
applies whenever the comment starter is a single character and is duplicated). Note
that the ATSIGN program considers a four-semicolon comment a subtitle in Lisp
code.

20.4.3. Options Controlling Comments

The comment column is stored in the variable Comment Column. You can set it to a
number explicitly. Alternatively, the command C-X ; (-R Set Comment Column) sets
the comment colunmn to the column point is at. C-U C-X ; sets the comment column to
match the last comment before point in the buffer, and then does a Meta-; to align the
current line's comment under the previous one.

92 EMACS Manual for TWENEX Users

Many major modes supply default local values for the comment column. In addition,
C-X ; automatically makes the variable Comment Column local. Otherwise, if you
change the variable itself, it changes globally (for all buffers) unless it has been made
local in the selected one. See section 22.7 [Locals], page 118.

The string recognized as the start of a comment is stored in the variable Comment
Start. while the string used to start a new comment is kept in Comment Begin (if that is
zero, Comment Start is used for new comments). This makes it possible for you to
have any ";" recognized as starting a comment but have new comments begin with

The string used to end a comment is kept in the variable Comment End. In many
languages iio commenl end is needed as the comment extends to the end of the line.
Then, this variable is a null string.

If Comment Multi Line is nonzero, then Meta-Lineleed within a comment does not
close the old comment and start a new comment on the new line. Instead it allows the
original comment to extend through the new line. This is legitimate if the language
has explicit comment terminators. Then it's a matter of taste.

20.5. Lisp Mode and Muddle Mode

Lisp's simple syntax makes it much easier tor an editor to understand; as a result,
EMACS can do more for Lisp, and with less work, than for any other language.

Lisp programs should be edited in Lisp mode. In this mode, Tab is defined to indent
the current line according to the conventions of Lisp progralnming style. It does not
nialter whui e in the fine Tab is used; the effect on the line is the same. The function
which (doe; the work is called -l Indent for Lisp. L.inefeed, as usual, does a Return
and a Iab, so it moves to the next line and indents it.

As in most modes where indentation is likely to vary from line to line, Rubout is
redefined to treat a tab as if it were the equivalent number of space (-R Backward
Delete Hacking Tabs). Ihis makes it possible to rub out indentation one position at a
time without worrying whether it is made up of spaces or tabs. Control-Rubout does
the ordinary type of rubbing out which rubs out a whole tab at once.

Paragraphs are defined to start only with blank lines so that the paragraph
commands can be t:seful. Auto Fill indents the new lines which it creates. Comments
start with ";". If Atorn Word mode is in effect, them in Lisp mode the word-motion
commands regard each Lisp atom as one word.

Lisp mode is exactly right only for the MacL isp dialect of Lisp. For Interlisp, there is
Interlisp mode. which is only slightly dliffereit. Mainly, it has a different syntax table
which enables all the lisp commands to work as documented on lnterlisp code. The
only noteworthy difference is that comments begin with "(*" and end with ")".

The LEDIT library allows EMACS and Lisp to communicate, telling Lisp the new
delinitons of functions which you edit in EMAGS. See the file INFO:LEDIT.INFO. For
Interlisp, use the INTER library. See the file INrO:INTERINFO.

The language Muddle is a variant form of Lisp which shares the concept of using

Editing Programs 93

parentheses (of various sorts) as the main syntactical construct. It can be edited
using Muddle mode, which is almost the same as Lisp mode and provides the same
features, differing only in the syntax table used.

20.5.1. Moving Over and Killing Lists and S-expressions

C-M-F Move Forward over s-expression.
C-M-B Move Backward.
C-M-K Kill s-expression forward.
C-M-Rubout Kill s-expression backward.
C-M-U Move Up and backward in list structure.
C-M-(The same.
C-M-) Move up and forward in list structure.
C-M-D Move Down and forward in list structure.
C-.M-N Move forward over a list.
C-M-P Move backward over a list.
C-M-T Transpose s-expressions.
C-M-@ Put mark after s-expression.
M-(Put parentheses around next s-expression(s).
M-) Move past next close parenthesis and reindent.

By convention, EMACS commands that deal with balanced parentheses are usually
Control-Meta- characters. They tend to be analogous in function to their
Control- and Meta- equivalents. These commands are usually thought of as
pertaining to Lisp, but can be useful with any language in which some sort of
parentheses exist (including English).

To move forward over an s-expression, use C-M-F (-R Forward Sexp). If the first
significant character after point is an "(", C-M-F moves past the matching ")". If the
tirst character is a ")", C-M-F just moves past it. If the character begins an atom,
C-M-F moves to the end of the atom. C-M-F with an argument repeats that operation
the specified number of times; with a negative argument, it moves backward instead.

The command C-M-B (^R Backward Sexp) moves backward over an s-expression;
it is like C-M-F with the argument negated. If there are .".-like characters in front of
the s-expression moved over, they are moved over as well. Thus, with point after

'FOO ", C-M-B leaves point before the ""', not before the "F".

These two commands (and most of the commands in this section) do not know how
to deal with the presence of comments. Although that would be easy to fix for forward
motion, for backward motion the syntax of L.isp makes it nearly impossible. Comments
by themselves wouldn't be so bad, but handling comments and "I" both is impossible
to do locally. In a line

((FOO ; BAR

are the inside a symbol delimited by "l"'s? I do not think it would be advisable to make
C-M-F handle comments without making C-M-B handle them as well.

For this reason, two other commands which move over lists instead of
s-expressions are often useful. They are C-M-N (-R Forward List) and C-M-P
(-R Backward List). They act like C-M-F and C-M-B except that they don't stop on
atoms; after moving over an atom, they move over the next expression, stopping after

94 EMACS Manual for TWENEX Users

moving over a list. With this command, you can avoid stopping after all of the words in
a comment.

Killing an s-expression at a time can be (tone with C-M-K and C-M-Rubout
(,R Forward Kill Sexp and ^R Backward Kill Sexp). C-M-K kills the characters that
C-M-F would move over, and C-M-Rubout kills what C-M--B would move over.

C-M-F an]d C-M-B stay at the same level in parentheses, when that's possible. To
move up one (or n) levels, use C-M-(or C.-M-) (-R Backward Up List and -R Forward
Up List). C-M-(moves backwi-ids up past one containing "(". C-M-) moves forwards
up past one containing ")". Given a positive argument, these commands move up the
specified number of levels of parentheses. C-M-U is another name for C-M-(, which
is easier to type, especially on non-Meta keyboards. If you use that name, it is useful
to know that a negative argument makes the command move up forwards, like C-M-).

To move down in list structure, use C-M-D (-R Down List). It is nearly the same as
searching for a "(".

A somewhat random-sounding command which is nevertheless easy to use is
C-M-T (^R Transpose Sexps). which moves the cursor forwaro over one
s-expression, dragging the previous s-expression along. An argument serves as a
repeat count, and a negative argument drags backwards (thus canceling out the
eltect of C-M-T with a positive argument). An argument of zero, rather than doing
nothing, transposes the s-expressions at the point and the mark.

To make the region be the next s-expression in the buffer, use or C-M-@ (-R Mark
Sexp) which sets mark at the same place that C-M-F would move to. C-M-@ takes
aiguments like C-M-F. In particular, a negative argument is useful for putting the
mark at the beginning of the previous s-expression.

The commands M-(("-R Insert ()") and M-) ("-R Move Over)") are designed for a
style of editing which keeps parentheses balanced at all times. M-(inserts a pair of
parentheses. either together as in "()", or, if given an argument, around the next
several s-expressions, and leaves point after the open parenthesis. Instead of typing
"(FOO)". you can type M-(FOO, which has the same effect except for leaving the
cursor before the close parenthesis. Then you type M.-), which moves past the close
parenthesis, deleting any indentation preceding it (in this example there is none), and
indenting with Linefeed after it.

The library LSPUTL contains two other list commands. Find Pat searches for lists
whirch contain several strings. -R Extract Sublist replaces a list with one of its sublists.
See section 22.2 [Libraries], page 108.

<level>M-X Find Pat4,<mainstring> 4<string1> <string2> searches for a list which
contains "mainstring> at a depth of <level> lists down, and contains <stringi> and
<siring2) at any level. There can be any number of such additional strings to search
for; there can be zero.

^A Extract Sublist is meant to be connected to a character. Given an argument of
<level>, it replaces the list <level> levels up from point with the list starting after point
(that is, with a sublist).

The list commands' understanding of syntax is completely controlled by the syntax
table. Any character can, for example, be declared to act like an open parenthesis.
See section 22.4 [Syntax], page 111.

Editing Programs 95

20.5.2. Commands for Manipulating Defuns

C-M-[, C-M-A Move to beginning of defun.
C-M-], C-M-E Move to end of defun.
C-M-H Put region around wHole defun.

In EMACS, a list at the top level in the buffer is called a defun, regardless of what
function is actually called, because such lists usually call defun. There are EMACS
commands to move to the beginning or end of the currentl delun: C-M-I (11 Beginning
of Defun) moves to the beginning, and C-M- I (-R End of Defun) moves to the end. If
you wish to operate on the current defun, use C-M-H (-R Mark Defun) which puts
point at the beginning and mark at the end of the current or next defun. Alternate
names for these two commands are C-M-A for C-M I and C-M-E for C-M-]. The
alternate names are easier to type on many non-Meta keyboards.

20.6. Lisp Grinding

The best way to keel) Lisp code properly indented ("ground") is to use EMACS to
re-indent it when it is changed. EMACS has commands to indent propelly either a
single line, a specified number of lines, or all of the lines inside a single s-expression.

Tab In Lisp mode, reindents line according to parenthesis depth.
Linefeed Equivalent to Return followed by Tab.
M- Join two lines, leaving one space between them if

appropriate.
C-M-Q Reindent all the lines within one list.
C-M-G Grind a list, moving code between lines.

The basic indentation function is -R Indent for Lisp, which gives the current line the
correct indentation as determined from the previous lines' indentation and
parenthesis structure. This function is normally found on C-M-Tab, but when in Lisp
mode it is placed on Tab as well (Use Meta-Tab to insert a tab). When given at the
beginning of a line, it leaves point after the indentation: when given inside the text on
the ine, point remains fixed with respect to the characters at ound it.

When entering a large amount of new code, it becomes useful that Linefeed
(1^1 Indent New Line) is equivalent to a Return followed by a Tab. In Lisp mode, a
Linefeed creates or moves down onto a blank line, and then give it the appropriate
indentation.

To join two lines together, use the Meta- ^ or Control-Meta- ^ command (-R Delete
Indentation), which is approximately the opposite of Linefeed. It deletes any spaces
and tabs at the front of the current line, and then deletes the line separator before the
line. A single space is then inserted, if EMAGS thinks that one is needed there.
Spaces are not needed before a close parenthesis, or after an open parenthesis.

If you are dissatisfied about where Tab wants to place the second and later lines of
an s-expression, you can override it. If you alter the indentation of one of the lines
yourself, then Tab will indent successive lines of the same list to be underneath it.
This is the right thing for functions which Tab indents unaesthetically. Of course, it is

A -......... .- - , -- -.. i .

96 EMACS Manual for TWENEX Users

the wrong thing for PROG tags (if you like to un-indent them), but it's impossible to be
right for both.

When you wish to re-indent code which has been altered or moved to a different
level in the list structure, you have several commands available. You can re-indent a
specific number of lines by giving the ordinary indent command (Tab, in Lisp mode) an
argument. This indents as many lines as you say and moves to the line following them.
Thus, if you underestimate, you can repeat the process later.

You can re-indent the contents of a single s-expression by positioning point before
the beginning of it and typing Control-Meta-Q (-R Indent Sexp). The line the
s-expression starts on is not re-indented; thus, only the relative indentation with in the
s-expression, and not its position. is changed. To correct the position as well, type a
Tab before the C-M-0.

Another way to specify the range to be re-indented is with point and mark. The
command C-M-\ (-R Indent Region) applies Tab to every line whose first character is
betweeni point and mark. In Lisp mode, this does a Lisp indent.

A more powerhl grind command which can move text between lines is C-M-G
(-R Format Code). You might or might not like it. It knows in different ways about Lisp
code and Macsyma code.

20.7. Editing Assembly-Language Programs

MIDAS mode is designed for editing programs written in MIDAS or other PDP-10 or
PDP-11 assemblers. (MACRO mode and FAIL mode also exist but differ only in the
syntax table). In MIDAS mode, comments start with ";", and '" and ">" have the
syntax of parentheses. In addition, there are five special commands which
understand the syntax of instructions and labels. These commands are:

C-M-N Go to Next label.
C-M-P Go to Previous label.
C-M-A Go to Accumulator field of instruction.
C-M-E Go to Effective Address field.
C-M-D Kill next word and its Delimiting character.
M-[Move up to previous paragraph boundary.
M-] Move down to next paragraph boundary.

Any line which is not indented and is not just a comment is taken to contain a label.
The label is everything up to the first whitespace (or the end of the line). C-M-N
(-R Go to Next Label) and C-M-P (-R Go to Previous Label) both position the cursor
right at the end of a label; C-M-N moves forward or down and C-M-P moves
backward or up. At the beginning of a line containing a label, C-M-N moves past it.
Past the label on the same line, C-M-P moves back to the end of it. If you kill a couple
of indented lines and want to insert them right after a label, these commands put you
at just the right place.

C-M-A (-R Go to AC Field) and C-M-E (^R Go to Address Field) move to the
beginning of the accumulator (AC) or effective address fields of a PDP-10 instruction.
They always stay on the same line, moving either forward or backward as appropriate.

Editing Programs 97

If the instruction contains no AC field, C-M-A positions to the start of the address
field. If the instruction is just an opcorle with no AC field or address field, a space is
inserted after the opcode and the cursor left after the space. In PDP -I I programs,
C-M-A moves to the first operand and C-M-F miiovus to the second operand,

Once you've gone to the beginning of the AC field you can often use C-M-D (^R Kill
Terminated Word) to kill the AC name and the comma which terminates it. You can
also use it at the beginning of a line. to kill a label ;Ind its colon, or after a line's
indentation to kill the opcode and the following space. this is very convenient for
moving a label from one line to another. In general, C-M-D is equivalent to M-D C-D,
except that all the characters are saved on the kill rinq,, togetlter. C-D, a "deletion"
command, doesn't save on the kill ring if not given an argument.

The M-f and M-] commands are not, strictly speaking, redefined by MIDAS mode,
since they always go up or down to a paragraph boundary. However, in MIDAS mode
the criterion for a paragraph boundary is changed by setting the variable Paragraph
Delimiter (See section 11.2 [Paragraphs], page 47.) so that only blank lines (and
pages) delimit paragraphs. So, M-[moves up to the previous blank line and M-1
moves to the next one.

20.8. Major Modes for Other Languages

MACSYMA mode redefines the syntax of words and s-expressions in an attempt to
make it easier to move over MACSYMA syntactic units. In addition, the C-M-G
"grind" command is told to grind text as MACSYMA instead of as Lisp. Also, the
syntax of MACSYMA comments is understood.

TECO mode is good for editing EMACS library source files. It connects Tab to
-R Indent Nested (see its self-documentation). Comments start with "!* " and end
with "!". In addition, the PURIFY library, which contains many things useful for
processing library sources (including the commands to compile them), is loaded. M-'
and M-" are connected to functions ^R Forward TECO Conditional and -R Backward
TECO .onditional which move forward and backward over balanced TECO
conditionals. In TECO mode on a terminal with a Meta key, it may be useful to set the
TECO flag FS CTLMTA, which causes Control-Meta commands to insert Control
characters. See section 22.5 [FS Flags], page 113.

PL1 mode is for editing PL1 code, and causes Tab to indent an amount based on
the previous statement type. The body of the implementation of PL I mode is in the
library PLl, which is loaded automatically when necessary. See the file
INFO:EPL1 .INFO.

PASCAL mode is similar to PL1 mode, for PASCAL. It is in the library called
PASCAL. See the file INFO:EPASC.INFO.

FORTRAN mode is implemented by the FORTRAN library. See the file

INFO:EFORTRAN.INFO.

There are also modes for BLISS, BCPL, COBOL, and SAIL, but no documentation
for them except that in the libraries themselves. Any volunteers to write some?
Meanwhile, you can look at the documentation in the libraries. See section 22.2
[Libraries], page 108.

.--- ----- ..-.- ---.. -_--"-_'.- - ,-- >'.'-.-. *_.,

98 EMACS Manual for TWENEX Users

The TAGS Package. 99

Chapter Twenty-One

The TAGS Package.

The TAGS package remembers the locations of the function definitions in a file and
enables you to go directly to the definition of any function without searching thewhole file.

The functions of several files that make up one program can all be remembered
together if you wish; then the TAGS package will automatically select the appropriate
file as well.

21.1. How to Make a Tag Table for a Program

To use the [AGS package, you must create a tag table for the source file or files in
your package. Normally, the tag table does not reside in any of those files, but in a
separate tag table file which conlains the names of the text files which it describes.
I ag table files are generated by the TAGS program. 1 me same program can be used
to uprlate the tag table if it becomes very far out of date (slight inaccuracies do not
matter). Tag tables for INFO files work differently; the INFO file contains its own tag
table, which describes only that file. See section 21.8 [INFO], page 106, for how to
deal with them.

To make a tags table file for some source file or group of source files, you need to
run the TAGS program which should reside somewhere on SYS: or, if not there,
<EMACS>. When you run it, it will ask you for an output file. This is the file that will
contain the tags of the source files. Usually you would specify something like
FOO.TAGS if the source file is FOOBAR, so that they will be grouped together in
directory listings. For example:

@TAGS , Runs the TAGS program
Output tags flle:FOO.TAGS ; Specify output file
Type filenames, end with blank line

After you specify the output file, TAGS asks you for Ihe input files. You can give a
number of files separated by commas, with wildcards allowed. Once you have done
this, TAGS scans each input file and writes the data into the output file. For example:

..... . .. lfi II..... .. ilI ,
1

_..... _ _._ _'_ _ I

100 EMACS Manual for TWENEX Users

Type filenames, end with blank line

*FOO.fMAC

FOO.MAC.1 - 784. functions found.

FOO.TAGS.1 - 784. functions in 1. files.

Once each file is scanned, a message is typed indicating the number of "functions"
(labels, procedures, routines etc.) that were actually found. Once it is through
processing your input files, you can type another line full of input file names. If there
are no more, type just a Return. The eirpty line of input tells TAGS to finish up and
close the output file, which is now a usable tag table file.

The following languages are recognized by the TAGS program according to the

extension of the input filename specified:

Language Presumed extension
BLISS BLI
BLISS11 B11
FAIL FAI
FORTRAN FOR
H316 H16
INTERLISP ILSP

MACLISP LSP
MACN 11 Mil
MACRO MAC
MIDAS MID
PALtIX P11
SAIL. SAI
PASCAL PAS
TECO EMACS

If the extension you give is not recognizable, TAGS asks you to specify the complete
language name as above.

Once a tag table file exists, you must updated it if you add new tags to the source
files, or change them grossly. You can do this by invoking TAGS with the tab table
filename as an argument:

@TAGS FOO.TAGS

TAGS finds the names and languages of the source files by reading the old tag table.

21.2. How to Tell EMACS You Want to Use TAGS

Before you can use the TAGS package, you must tell EMACS the name of the tags
table file you want to use. This is done with the command

M-X Visit Tag Table# <filenames> <cr>

The extension of "TAGS" need not be mentioned.

EMACS can only know about one tag table file at a time, so doing a second M-X
Visit Tag Table causes the first one to be forgotten (or written back if you have added
definitions to it).

tI

The TAGS Package. 101

Giving M-X Visit Tag Table a nonzero numeric argument, as in

1 M-X Visit Tag Table# <filenames> <cr>

has the additional effect of setting the variable Tags Find File nonzero, which causes
the TAGS package to use Find File rather than Visit File when it needs to switch files.
This causes all the files to remain resident in the EMACS, in different buffer s. In the
default mode, visiting a tag in a dilferent file read it in on top of the old file, in the same
buffer (but it offers to write out changes if there are any). Warning: you can easily run
out of address space by making too many buffers, this way.

Visit Tag Table is essentially equivalent to selecting the buffer *TAGS* and visiting
the tag table file in that buffer, then returning to the previously selected buffer.
Afterwards, M-X List Buffers will show the buffer *TAGS* visiting that file. The only
difference is that Visit Tag Table causes the TAGS library to be loaded.

21.3. Jumping to a Tag

To jump to the definition of a function, use the command Meta-Period <tag name>
<cr>. You will oo straight to the lefinition of the tag. If the definition is in a different
file then TAGS iisits that file. If it is in the same file, TAGS leaves the mark behind and
prints "^@" in the echo area.

If Meta-Period is used before M-X Visit Tag Table has been done, it asks for the
name of a tag table file. After you type this name and a <cr>, you type the name of the
tag as usual.

You do not need to type the complete name of the function: any substring will do.
But this implies that sometimes you won't get the function you intended. When that
happens, C-U Meta-Period will find the "next" function matching what you typed
(next, in the order of listing in the tag table). Thus, if you wanted to find the definition
of X-SET-TYPE-I and you said just TYPE-i. you might find X-READ-TYPE-1 instead.
You could then type C-U Meta-Period's until you reached X-SET-TYPE-1.

If you want to make sure you reach a precise function the first time, you should just
include a character of context before and after its name. Thus, in a Lisp program, put
a space before and after the function name. In a MIDAS program, put a linefeed
before it and a colon after.

21.4. Other Operations on Tag Tables

21.4.1. Adding a New Function to a Tag Table

When you define a new function, its location doesn't go in the tag table
automatically. That's because EMACS can't tell that you have defined a function
unless you tell it by invoking the function ^R Add Tag. Since the operation of adding a
tag to a tag table has proved not to be very necessary, this function no longer placed
on any character, by default. You can invoke with M-X or connect it to a character if
you like. For this section, let's assume you have placed it on C-X Period.

L~ILXZI~.

102 EMACS Manual for TWENEX Users

When you type the command C-X Period, the pointer should be on the line that

introduces the function definition, after the lunction name and the punctuation that
ends it. Thus, in a Lisp prograrn, you might type "(DEFUN FOG " (note the space after
FOO) and then type the C-X Period. In a MIDAS program, you might give the C-X
Period after typing "FOO:". In a TECO program in EMACS format, you might type C-X
Period after "!Set New Foo:".

-R Add Tag modifies only the copy of the tag table loaded into EMACS. To modify
the tag table tile itself, you must cause it to be saved. Do this by selecting the buffer
TAGS and saving it with C-X C-S, or with M-X Save All Files.

Although local modifications to a file do not degrade the efficiency of the TAGS
package or re(luire that the tag table be ulpdated with TAGS, moving a function a great
distance make it much slower to find that function. In this case, you can "add" the
function to the tag table with C-X Period to give the table its new location. Or you can
just run TAGS again to update everything, as is usually done..

21.4.2. How to Process All the Files in a Tag Table

The TAGS package contains a function M-X Next File which visits, one by one, all
the files described by the selected tag table. This is useful when there is something to
be done to all of the tiles in the package. To start off the sequence, do C-U 1 M-X
Next File. which visits the first file. When you are finished operating on one file, do
M-X Next File (no argument) to see the next. When all the files have been processed,
M-X Next File* gives an error.

The files of the package are visited in the order that they are mentioned in the tag
table, and the current place in the sequence is remembered by the pointer in the
butler *TAGS* which holds the tag table. Thus. if you visit a fag in a different file in
the middle ot a M-X Next File sequence, you will screw it up unless you return to the
proper file again by visiting a tag (or go into the bufter *TAGS* and reset the pointer).
However. visiting any other files directly. not using TAGS, does not interfere with the
sequence, and the next M-X Next File will go just where it would have gone.

Next File is also useful as a subroutine in functions that wish to perform an
automatic transformation (such as a Query Replace) on each file. Such functions
should call Next File with a precomma argument as in 1,M(M.M Next File4) or
1.1M(M.M Next File#). The precomma argument tells Next File to return 0 instead of
giving an error when there are no more files to process. Normally, it returns -1.

Here is an example of TECO code to do a Query Replace on all of the files listed in
the visited tag table:

1M(M.M Next File*)
< M(M.M Query Replace4)FOO*BAR#

1IM(M.M Next File#);>

Tags Search and Tags Query Replace (see below) both work using Next File.

The TAGS Package. 103

21.4.3. Multi-File Searches and Ruplacements

The TAGS package contains a function Tags Search which will search through all
of the files listed in the visited tag table in the order they are listed. Do

M-X Tags Search#<string><cr>

to find every occurrence of <string>. <string> is at TECO search string in whicli special
TECO search characters such as tO, tX, tN, TB, and TO are allowc-d. See
section 19 3 ITECO Search Strings], page 85.

When M-X Tags Search reaches the end of the buffer, it visits the next file
automatically, typing its name in the echo area. As soon as M-X Tags Search finds
one occur-ence, it returns. But it defines the command Control-Period to resume the
search from wherever point is.

M -X Tags Query Replace does a Query Replace over all the files in a tag table. Like
M-X Tags Search, it sets Control-. up to be a command to continue the Query
Replace, in case you wish to exit, do some editing, and then resume scanning.

With Tags Find File set nonzero, Tags Search or Tags Query Replace could easily
require more buflers than EMACS has room for. To prevent such a problem, they do
not always put each file in a separate buffer. If lags Search or Tags Query Replace
wants to search a file which is already visited in some buffer, it uses the copy in that
buffer, Rut if the file is not present, and Tags Find File is 1, then instead of visiting it in
its own buffer, they visit it in a buffer named *Tags Search*. So at most one new
bufter is created. If Tags Find File is 2. a "ew buffer is created for each file.

The library MFI-1EPL enables you to use Next File to repeat a sequence of many
Query Replace commands over a set of files, performing all the replacements on one
file at a time.

21.4.4. Miscellaneous Applications of Tags

M-X List Tags<file><cr> lists all the tags in the specified file. Actually, all the files
in the tag table whose names contain the string <file> are listed.

M-X Tags Apropos0<pat0<cr) lists all known tags whose names contain <pat>.

M-X Tags File List inserts in the buffer a list of the files known in the visited tag
table.

M-X Tags Rescan runs TAGS over the visited tag table and revisits it. This is the
most convenient way to update the tag table.

M-X View Arglisl0<tagq<cr> lets you look briefly at the line on which a tag is
defined, and at the lines of comments which precede the definition. This is a good
way to find out what arguments a function needs. The file is always loaded into a
separate buffer, when this command is used.

M- X What Tag? fells you which function's definition you are in. It looks through the
tag table for the tag which most nearly precedes point.

I,

-Il I II -- "I 'J -'. ,= r "

104 EMACS Manual for TWENEX Users

21.5. What Constitutes a Tag

In MacLisp code, a function definition must start with an "(" at the beginning of a
line, followed immediately with an atom which slarts with "DEF" (and does not start
with "DEFP"), or which slarts with "MACRO", or which starts with "ENDF". The next
atom oni the line is the name of the tag. If there is no second atom on the line, there is
no tag.

In MIDAS code, a tag is any symbol that occurs at the beginning of a line and is
terminated with a colon or an equal sign. MIDAS mode is good for MACRO-10 also.

FAIL code is like MIDAS code, except that one or two I's or "- -s are allowed before
a lag, and spaces are allowed between the tag name and the colon or equal sign, and
_ is recognized as equivalent to =.

PALX code is like MIDAS code, except that spaces are allowed between a tag and
the following colon or equals, and local tags such as "10$V are ignored.

In 1 ECO code, a tag starts with an "!" and ends with a ":!". There may be any
number of tags on a line, but the first one must start at the beginning of a line.

In BLISS and BLISS1 1 code, a tag starts with "GLOBAL" followed by "ROUTINE" or
"FLINCTION", or just a "ROUTINE" or "FUNCTION", and ends with "=". The
"FUtNCTION" identifier is only relevant in BLISS-10.

In FORi1AN code, a tag starts with "SUBROUTINE", "FUNCTION", or
"PRi'OGRAM" and ends with the end of the line.

In INTERLISP code. a tag starts with (DEFINEQ and ends where the function ends.
Ne:sll fu.nlctions are handled properly.

In INFO code, (e.g. files that are used for the INFO documentation subsystem), a tag
starts with "Node:" and ends at the first ",".

In SAIL code, a tag starts with one of the following: "SIMPLE", "RECURSIVE",
"POINTER". "BOOLEAN", "INTEGER", "REAL", "STRING", "INTERNAL" and is
followed by "PROCEDURE" and ends with the first

In PASCAL code. a tag starts with either "PROCEDURE" or "FUNCTION" and ends
with the first " .

21.6. Adding or Removing Source Files

A tag table file is a sequence of entries, one per file. Each entry looks like

<filenames>
<count>.<language>

<data lines>

<filenames> are the fully defaulted names of the file, <language> is one of the
languages that TAGS knows how to process, and <data lines> are the actual tag
information (described below). The CRLF after each t_ must be present. You can

omit both the last t_ and its CRLF together, however.

The TAGS Package. 105

A tags table file is for the most part an ordinary ASCII tlo, anid any chdngQ, you
make in it, including changes to the source ilu namies, will do what tney appar o
do.

The one exception is that each entry contairn.3 a count, in decinial, of the number of
characters in it, including the t_ and CRIF. If you edit the cortents of ar di d.,,ual
source file's entry, and change its length, then the tMg tahle is no good for use in
editing until you run TAGS over it. TAGS ignores the specified count an,.d a'ways
writes the correct count. If you are sure that the length is uLchar yt,'d. or 11 you ulange
the count manually, then running TAGS is not necessary, but YOU do so at your own
risk. If you screw things up, use TAGS to fix the file.

Thus, if you are changing a source file's name, you should simply change the name
where it is present in the tag table, and run TAGS over it if necessary.

To add a new source file. simply insert a durnmy entry containing the filename, the
language, a count which can be zero because TAGS will recompute it, and a t-. hen
use TAGS to update the tag table. I lie dumMy will turn into a real entry.

You can delete a source file from a tag tableI by deleting its entire entry. ',ince the
counts of the remaining entries are still valid, you need not rut TAGS over the tile
again You can also change the order of the entries wlthout doing any harm. The
order of the entries matters if there are tags which appear in mote than one source
file.

You can edit everything else in the tag table too, it you want to. You might want to
change a language name once in a while, but I doubt you will frequently want to add
or remove lags, especially since that would all be undone by the next use of TAGS!

21.7. How a Tag Is Described in the Tag Table

A tag table file consists of one or more subunits in succession. Each subunit lists
the tags of one source file. Each subunit has the overall formal described in the
previous section. containing zero or more lines describing tags. Here we give the
format of each of those lines.

Starting with the third line of the tag table entry, each line describes a tag. It starts
with a copy of the beinning of the line that the tag is defined on, up through the tag
name and its terminating punctuation. Then there is a rubout, followed by the
character position in decimal of the place in the line where copying stopped. For
example, if a line in a MIDAS program starts with "FOO:" and the colon is at position
602 in the file, then the line describing it in the tag table would be

FOO: <rubout>603

One line can describe several tags, if they are defined on the same line; in fact, in
that case, they must be on the same line in the tag table, since it must contain
everything before the tag name on its definition line. For example,

tFoo:l IBar:!

in a file of TECO code followed by character number 500 of the file would turn into a-'Mga

106 EMACS Manual for TWENEX Users

IFoo:I IBar:I<rubout>600

EMACS will be able to use that line to find either FOO or BAR. TAGS knows how to
create such things only for TECO tiles, at the moment They aren't necessary in Lisp
or MACSYMA files. In MIDAS files, TAGS simply ignores all but the first tag on a line.

21.8. Tag Tables for INFO Structured Documentation Files

INFO files are divided up into nodes, which the INFO program must search for. Tag
tables for these files are designed to make the INFO program run faster. Unlike a
normal tag table, 'the tag table for an INFO file resides in that file and describes only
tha tile. This is so that INFO, when visiting a file, can automatically use its tag table if
it has one. INFO uses the tag tables of INFO files itself, without going through the
normal TAGS package, which has no knowledge ot INFO file tag tables. Thus, INFO
tile tig tables and normal ones resemble each other only in their appearance and
purpose. In use, they are unrelated.

fo create a tag table in an INFO tile, ,you must first put in a skeleton. This skeleton
must be very close to the end of the file (at most 8 lines may follow it, or INFO will not
notice it), and it must start on the line following a T- or T_"L which ends a node. Its
format is as follows:

t-tL

Tag Table:

End Tag Table

No nodes may follow the tag table. or ITAGS will not put them in it. ITAGS is one
pass and after writing the tag table into the file it copies the rest of the input file with
no processing.

ro turn the skeleton into the real thing, or to update the tag table, run the ITAGS
program.

@ITAGS <info file name>

Once the tag table is constructed, INFO will automatically make use of it. A tag in an
INFO tile is lust a node; whatever follows "Node:" on a line whose predecessor
contains a "t-" is taken to be a tag. The character which terminates the node name,
which may be a comma, tab, or CRLF, is not included in the tag table. Instead, the
rubout comes right after the tag name. This is to make it easy for INFO to demand an
exact match on node names, rather than the substring match which the TAGS
package normally uses.

Tag tables in INFO files must be kept close to up to date. INFO will not find the node
if its start has moved more than 1000 characters before the position listed in the tag
table. For best results, you should update an INFO file's tag table every time you
modify more than a few characters of it.

Aimi

Simple Customization 107

Chapter Twenty-Two

Simple Customization

In this chapter we describe the many simple ways of customizing EMACS without
knowing how to write TECO programs.

22.1. Minor Modes

Minor modes are options which you can use or not. For example, Auto Fill mode
breaks lines between words as you type. All the minor modes are independent of each
other and of the selected major mode. Most minor modes say in the mode line when
they are on.

Each minor mode is the name of the function that can be Used to tLrn it on or off.
With no argument, the function turns the mode on if it was off and off if it was on. This
is known as toggling. A positive argument always turns the muode on, and an explicit
zero argument or a negative argument always turns it off. All the minor mode
functions are suitable for connecting to single or double character commands if you
want to enter and exit a minor mode frequently.

Auto Fill mode allows you to type text endlessly without worrying about the width of
your screen. Line separators are be inserted where needed to prevent lines from
becoming too long. See section 11.4 [Filling], page 50.

Auto Save mode protects you against system crashes by periodically saving the file
you are visiting. Whenever you visit a file, auto saving is enabled if Auto Save Default
is nonzero; in addition, M-X Auto Save allows you to turn auto saving on or off in a
given buffer at any time. See section 13.3 [Auto Save], page 59.

Atom Word mode causes the word-moving commands, in Lisp mode, to move over

Lisp atoms instead of words. Some people like this, and others don't. In any case, the
s-expression motion commands can be used to move over atoms. If you like to use
segmented atom names like FOOBAR-READ-IN-NLXT-INPUT-SOURCE-TO- READ,
then you might prefer not to use Atom Word mode, so that you canl use M-F to move
over just part of the atom, or C-M-F to move over the whole atom.

Overwrite mode causes ordinary pm inliu(characters to replace existing text instead

of shoving it over. It is good for editing pictures. for example, if the point is in front of
the B in FOOBAR, then in Overwrite mode typing a G changes it to FOOGAR, instead
of making it FOOGBAR as usual. Also, Rubout is changed to turn the previous
character into a space instead of deleting it.

108 EMACS Manual for TWENEX Users

Word Abbrev mode allows you to define abbreviations that automatically expand as
you type them. For example, "warn" might expand to "word abbrev mode". The
abbreviations may depend on the major (e.g. Lisp, Text, ...) mode you are currently in.
"o use this, you must load the WORDAB library. See section 25 [Wordab], page 135.

Indent Tabs mode controls whether indentation commands use tabs and spaces or

lust spaces to indent with. Usually they use both, but you might want to use only
spaces in a tile to be processed by a program or system which doesn't ignore tabs, or
for a file to be shipped to a system like Multics on which tab stops are not every 8
characters.

Most minor modes are actually controlled by variables. The mode is on if the
variable is nonzero. Setting the minor mode with a command works by changing the
variable. This means that you can turn the modes on or off with Edit Options, or make
their values local to a buffer. See section 22.3 [Variables], page 109.

You could also put a minor mode in the local modes list of a file, but that is usually
bad practice. This is because usually the preference for a minor mode is usually a
matter of individual style rather than a property of the file per se. To make this more
concrete, it is a property of a tile that it be Idled to a certain column, but use of Auto
Fill mode to accomplish that is a matter of taste. So it would be good practice for the
file to specify the value of Fill Column, but bad practice for the file to specify the value
of Auto Fill Mode.

If you find yourself constantly tempted to turn on Auto Fill mode in local modes lists,
what you probably really want is to have Auto Fill mode on whenever you are in Text
mode. This can be accomplished with the following code in an EVARS file:

Text Mode Hook: IM..LAuto Fill Mode*

Suffice it to explain that this is TECO code to be executed whenever Text mode is
entered, which makes the variable Auto Fill Mode local to the buffer with local value 1.

22.2. Libraries of Commands

All EMACS functions, including the ones described in this document, reside in
libraries. A function is not accessible unless the library that contains it is loaded.
Every EMACS starts out with two libraries loaded: the EMACS library, and the
IWENEX library. These contain all of the functions described in this document,
except those explicitly stated to be elsewhere. Other libraries are provided with
EMACS, and can be loaded automatically or on request to make their functions
available. See section [Catalogue], page 179, for a list of them.

To load a library, say M-X Load Library# libname><cr>. The library is found, either
on your own directory or whichever one you specify, or on the EMACS directory, and
loaded in. All the functions in the library are then available for use. Whenever you use
M-X. the function name you specify is looked up in each of the libraries which you
have loaded, more recently loaded libraries first. The first definition found is the one
that is used.

For example, if you load the PICTURE library, you can then use M-X Edit Picture to
run the Edit Picture function which exists in that library.

Simple Customization 109

In addition to making functions accessible to M-X, tile library may connect some of
them to command characters. This is done by the library's & Setup fuction (See the
tile INFO:CONV.INFO, node Lib.). If you give Load Library an argument, the setup is
not done.

You can also load a library temporarily, just long enough to use one of the functions
in it. This avoids taking up space permanently with the library. Do this with the
function Run Library, as in M-X Run#<lihnarne>0<lunction name><cr>. the library
<libname> is loaded in, and <function name> executed. Ihen the library is removed
from the EMACS job. You can load it in again later.

M-X List Loaded Libraries types the names and brief descriptions of all the libraries
loaded, last loaded first. The last one is always the EMACS library.

You can get a brief description of all the functions in a library with M-X List
Library4<libname><cr>, whether the library is loaded or riot. This is a good way to
begin to find Out what is in a library that has no INFO documentation. Continue by
loading the library and using Help D to inquire further about whichever functions
looked interesting.

The function Kill Libraries can be used to discard libraries loaded with Load Library.
(Libraries used with Run Library are discarded automatically). However, of all the
libraries presently loaded, only the most recently loaded one can be discarded. Kill
Libraries offers to kill each loaded library, most recently loaded first. It keeps killing
libraries until you say to keep one library. Then it returns, because the remaining
libraries cannot be deleted if that library is kept.

Libraries are loaded automatically in the course of executing certain functions. You
will not normally notice this. For example, the TAGS library is automatically loaded in
whenever you use M-. or Visit Tag Table for the first time. This process is known as
autoloading. It is used to make the functions in the TAGS library available without the
user's having to know to load the library himself, while not taking up space in
EMACSes of people who aren't using them. It works by simply calling Load Library on
the library known to be needed. Another kind of autoloading loads a library
temporarily, the way Run Library does. This is done when you use the DIRED
function, for example, since the DIRED library is not needed after the DIRED function
returns. (This does not use Run Library; it uses MA, which is what Run Library uses).

You can make your own libraries, which you and other people can then use, if you
know how to write TECO code. See the file INFO:CONV.INFO, node Lib, for more
details.

22.3. Variables

A variable is a name which is associated with a value, either a number or a string.
EMACS uses many variables internally, and has others whose purpose is to be set by
the user for customization. (They may also be set automatically by major modes.)
One example of such a variable is the Fill Column variable, which specifies the
position of the right margin (in characters from the left margin) to be used by the fill
and justify commands.

110 EMACS Manual for 1 WENEX Users

The easiest way for the beginner to set a named variable is to use thp function Edit
Options. This shows yo, a list of selected variables which you are likuly to want to
change, together with their values, and lets you edit them with the normal editing
commands in a recursive editing level. Don't make any changes in the names, though!
Just change the values. Digits with maybe a minus sign stand for a numeric value of
the variable, while string values are enclosed in doublequotes. Each option is
followed by a comment which says what the option is for. Type the Help character for
more information on the format used.

When you are finished, exit Edit Options using C-M-Z and the changes will take
effect. If you decide iint to make the changes, C-] gets out without redefining the
options. See section 6.2 IRecursive Editinig Levelsj, page 26.

If you give Edit Options a string argument, it shows you only Ihe options whose
names include the string. For example, M-X Edit Options§Fill<cr> shows only the
options that have "Fill" in their names. This is much more convenient, if you know
what you plan to do.

However, Edit Options can be used only to set a variable which already exists, and is
marked as an option. Some commands may refer to variables which do not exist in
the initial environment. Such commands always use a default value if the variable
does not exist. In these cases you must create the variable yourself if you wish to use
it to alter the behavior of the command. You can use M-X Set Variable for this. You
can set the variable to a numeric value by doing

C-U <number> M-X Set Variable#<varname><cr>

or to a string by doing

M-X Set Variable#<varname>+<string><cr>

In fact, yoti can use Set Variable to set any variable, whether it exists already or not.
For existinlg variables, it does not matter whether you use upper case or lower case
letters, awid you are allowed to abbreviate the name as long as the abbreviation is
unique. i the variable might not exist yet, you must type the name in full. While either
upper case or lower case will still work, you are encouraged to capitalize each word of
the name for aesthetic reasons since EMACS stores the name as you give it.

To examine the value of a single variable, do

M-X View Variable#<varname><cr>

If you want to set a variable a particular way each time you use EMACS, you can use
an init file or an EVARS file. This is one of the main ways of customizing EMACS for
yourself. An init file is a file of TECO code to be executed when you start EMACS up.
They are very general, but writing one is a black art. You might be able to get an
expert to do it for you, or modify a copy of someone else's. See the file
INFO.CONV.INFO, node Init, for details. An EVARS file is a much simpler thing which
you can do yourself. See section 22.6 IEVARS files], page 114.

Values of variables can be specified by the file being edited. For example, if a
certain file ought to have a 50 column width, it can specify a value of 50 for the
variable Fill Column. Then Fill Column will have the value 50 whenever this file is
edited, by anyone. Editing other files is not affected. See section 22.7 [Locals],
page 118, for how to do this.

Simple Customization 111

You can get a list of all variables, not just those you are likely to want to edit, by
doing M-X List Variables. Giving List Variables a string argument show only "he

variables whose names or values contain that string (like the function Apropos). M-X
Describe can be given a variable's name instead of a function's name; it prints the
variable's value and its documentation, if it has any.

You can also set a variable with the TECO command

<value> M.V <varnamne>#

or

:I*<string># M.V <varname>#

This is useful in init files.

Any variable can be made local to a specific buffer with the 1-EGO command

ML<variable name>*. Thus, it you want the comment column 1(1 be column 50 in one
huller, whereas you usually like 40, then in the one buffer do M.LComment Column*

using the minibutfer. Then, you can do 50UComment Column* in that huffer and
other bufters will not be affected. This is how local modes lists in files work.

Most local variables are killed (made no longer local) if you change major modes.

They are therefore called Mode locals. There are also permanent locals which are not
killed by changing modes; use 2,M.L to creale one. Permanent locals are used by

things like Auto Save mode to keep internal information about the buffer, whereas

mode locals are used for customizations intended only for one buffer. See the file
INFO:CONV.INFO, node Variables, for information on how local variables work, and

additional related features.

22.4. The Syntax Table

All the EMACS commands which parse words or balance parentheses are

controlled by the syntax table. Each ASCII character has a word syntax and a Lisp
syntax. By changing the word syntax, you can control whether a character is

considered a word delimiter or part of a word. By changing the Lisp syntax, you can
control which characters are parentheses, which ones are parts of symbols, which

ones are prefix operators, and which ones are just ignored when parsing
s-expressions.

The syntax table is actually a string which is 128*5 characters long. Each group of

5 consecutive characters of the syntax table describe one ASCII character's syntax;
but only the first three of each group are used. To edit the syntax table, use M-X Edit
Syntax Table. But before we describe this command, let's talk about the syntax of the
syntax table itself.

The first character in each group of five sets the word syntax. This can be either
"A" or a space. "A" signifies an alphabetic character, whereas a space signifies a
separator character.

The second character in each group is the Lisp syntax. It has many possible values:

A an alphabetic character

112 EMACS Mai joe t fur 1WI NEX Users

space a whitespace or nonsignificant character
an open parenthesis
a close parenthesis
a cominent starter

rM a comment ender
a string quote

/ a character quote
a prefix character

Thus. several chara(cters can each be given the syntax of parentheses. The
automatic display of matching feature uses the syntax table to decide when to go into
operation as well as how to balance the parentheses.

The syntax of "prefix character" means that the character becomes part of
whatever object follows it, or can also be in the middle of a symbol, but does not
constitute anything by itself if surrounded by whitespace.

A character quote character causes itself and the next character to be treated as
alphabetic.

A string quote is one which matches in pairs. All characters inside a pair of string
quotes are treated as alphabetic except for the character quote, which retains its
significance, and can be used to force a sting quote or character quote into a string.

A comment starter is taken to start a comment, which ends at the next comment
etnder, Siilupressing the normal syntax of all characters between. Not all the
commnands which might be expected to know about comments do know about them;
some bviois uses are not well defined Also, the syntax table entry is not what
controls the commands which deal specifically with comments. They use the
variables Comment Start, Comment Begin, Comment End, etc. Only the indentation
commands use the syntax table for this.

The third character in each group contr ols automatic parenthesis matching display.
It is defined only for characters which have the Lisp syntax of close parentheses, and
for them it should contain the appropriate matching open parenthesis character (or a
space). If a close parenthesis character is matched by the wrong kind of open
parenthesis character, the bell will ring. If the third syntax table character of a close
parenthesis is a space, any open parenthesis is allowed to match it.

The fourth and fifth characters in each group should always be spaces, for now.
They are not used, The reason they exist is so that word-wise indexing can be used
on the PDP-10 to access the syntax of a character given in an accumulator.

Edit Syntax Table displays the syntax table broken up into labelled five-character
groups. You can see easily what the syntax of any character is. You are not editing
the table immediately, however. Instead. you are asked for the character whose
syntax you wish to edit. After typing it, you are positioned at that character's
five-character group. Overwrite mode is on. so you can simply type the desired

syntax entries, which replace the old ones. You can also do arbitrary editing, but be
careful not to change the position of anything in the buffer. When you exit the
recursive editing level, you are asked for another character to position to. An Altmode
at this point exits and makes the changes. A C-1 at any time aborts the operation.

Many major modes alter the syntax table. Each such major mode creates its own

Simple Customization 113

syntax table once and reselects the same string whenever the mode is selected, in any
buffer. Thus, all buffers in Text mode at any time use the same syntax table. This is
important because if you ever change the syntax table of one buffer that is in Text
mode, you change them all. It is possible to give one buffer a local copy with a TECO
program:

MM Make Local Q-Register#..D#W :G..DU..D

The syntax tables belonging to the major modes are not preinitialized in EMACS; they
are created when the major mode is invoked for the first time, by copying the default
one and making specific changes Thus, any other changes you have made in the
default (Fundamental mode) syntax table at the beginning propagate into all modes'
syntax tables unless those modes specifically override them.

After a major mode has created its own syntax table, that table is stored in the
variable <modename> ..D. This makes a different variable for each major mode, since
the mode name is part of the variable name. Further use of the major mode gets the
syntax table from that variable. If you create the variable yourself before the first use
of the major mode, the value you put there will be used.

TECO programs and init files can most easily change the syntax table with the
function & Alter ..D (look at its documentation). The syntax table is kept in the
q-register named ..D, which explains that name.

22.5. FS Flags

FS flags are variables defined and implemented by TECO below the level fl EMACS.
Some of them are options which control the behavior of parts of TECO such as the
display processor. Some of them control the execution of TECO programs; you are
not likely to want to change these. Others simply report information from inside
TECO. The list of FS flags is fixed when TECO is assembled and each one exists for a
specific purpose.

FS flags are used mostly by the TECO programmer, but some of them are of interest
to the EMACS user doing minor customization. For example, FS ECHO LINESO is the
number of lines in the echo area. By setting this flag you can make tle echo area
bigger or smaller.

To get the value of an FS flag, use the TECO command FS followed by the name of
the flag, terminated by an Altmode. Spaces in the name of the flag are completely
ignored, and case does not matter. Thus, FS Echo LinesO= executed in the minibuffer
prints the number of lines in the echo area, assuming it is a number. The easiest way
to examine a flag's value with EMACS commands is

C-M-X View Variable<cr> (FS Echo Linesf)<cr>

This works regardless of the type of value stored in the FS flag.

To set the flag, give the FS command a numeric argument (which must be a string
pointer, if the intended value is a string). For example, in the minibuffer or an init file,
do

2FS Echo Lines#

114 EMACS Manual for TWENEX Users

Be warned that FS always returns a value, so put a CRLF after it to discard the value if
necessary.

It is possible to make an FS flag's value local to a buffer. See the file
INFO:CONV.INFO, node Vars.

The documentation of individual FS flags can be found through Help T. Help T FS
Echo Lines<cr> prints the description of FS ECHO LINESO. Spaces are not significant
in Help T either. A list of just the names of all FS flags is printed by the function List
TECO FS Flags, found in the library PURIFY.

22.6. Init Files and EVARS Files

EMACS is designed to be customizable; each user can rearrange things to suit his
taste. Simple customizations are primarily of two types: moving functions from one
character to another, and setting variables which functions refer to so as to direct
their actions. Beyond this, extensions can involve redefining existing functions, or
writing entirely new functions and creating sharable libraries of them.

The most general way to customize is to write an init file, a TECO program which is
executed whenever you start EMACS. The init lile is found by looking for a particular
filename, <your directory>EMACS.INIT. This method is general because the program
can do anything. It can ask you questions and do things, rather than just setting up
commands for later. However, TECO code is arcane, and only a few people learn how
to write it. If you need an init file and don't feel up to learning to write TECO code, ask
a local expe.rt to do it for you. See the file INFO:CONV.INFO, for more about init files.

However simple customizations can be done in a simple way with an EVARS file.
Such a file serves the same sort of purpose as an init file, but instead of TECO code, it
contains just a list of variables and values. Each line of the EVARS file names one
variable or one command character and says how to redefine it. Empty lines, and
lines starting with spaces, are ignored. They can be used as comments. Your EVARS
file is found by its filename, as an init file is, but it should be called EMACS.VARS
instead of EMACS.INIT. You can have both an init file and an EVARS file if you want,
as long as your init file calls the default init file, since that is what processes the
EVARS file.

To set a variable, include in the EVARS file a line containing the name of the
variable, a colon, and the value. If you want a string as a value, give the string; if you
want a number as a value, give the digits with an optional minus sign. (If you happen
to want a value which is a string of all digits, you are out of luck.) Do not put spaces
around the colon for visual effect. Space before the colon is part of the variable name,
and space alter the colon is part ol the value of the variable. Examples:

Comment Column:70
Comment Start:;

MM Foo:FTFOO

The last line defines a variable named MM Foo, which has the effect of defining a
function named Foo with the specified value as its definition.

To redefine a command character is a little more complicated. Instead of the name

_ . --A -

Simple Customization 115

of a variable, give a tR (control-R) followed by the character. Since the general
Control and Meta character cannot be part of a file, all Control and Meta characters
are represented in a funny way: after the fir put the residue of the character after
removing the Control and Meta, and before the 1R put periods, one for Control, two for
Meta, and three for Control-Meta. Thus, C-D is represented by ".tRD" and C-M-; is

represented by "...IR;". Lower case characters such as C-a are usually defined as
'execute the definition of the upper case equivalent". Therelore, by redeliiiing the

C--A command you also change C-a: but if you redefine C-a. by saying ". tRa" instead
of ".rtA", you will not change C-A. So be careful about case.

Instead of the value of a variable, for command character redetinition you 1,1ust give
a TECO expression that returns the desired definition. This is to make it easy to use

any function whose name you know, because M.MFOOO is an expression that returns
the definition of the function FOO. Example:

.tRK: M.M^R Kill Line

woul give C-K the definition that it normally has Remember that in names of
hnctions the "-R" is actually a -". and an R, not a control H. Fhe space before the
M.M does not hurt in this case because it is ignored by TECO (-,xpiession execution.

Some norn-printing characters are a little tricky to redefine. For example, you must
know that Return, Linelaed, Tab, Backspace and Altmode are niot the same in TECO's

command character set as C-M, C-J. C-I, C-fl and C-[. even though in ASCII Ihey are
synonymous, By saying .tRJ you will redefine C-J; by saying tR followed by a
Linefeed (which you must insert in the EVARS file by typing C-0 Linefeed) you can
redefine Linefeed. Normally, C-J is defined as "execute the definition of Linefeed", so

you are better off redefining Linefeed.

You can also redefine a subcomiand of a prefix character such as C-X. For this,
you have to know where the character's dispatch table is stored. For C-X, the
location of the dispatch is called ".X": you won't have any other prefix characters
unless you define them yourself. See the file INFO:CONV.INFO, node Prefix. Knowing
the location, you specify the subcommand by writing :location(T-character). This
looks silly, but it is a 1 EGO expression with the right meaning. For example, redefining
C-X C-S, the location is ".X" and the character is tS, so we say

:.X(t^tS): M.M-R Save File#

This gives C-X C-S the definition that it normally has. The subcommand character (tS
in this case) can represent itself in tile EVARS tile with no need for dots, because
subcommand characters are just ASCII, with no Meta allowed.

To simply load a library you can write a definition for "*". Such a definition is

ignored except that the value you specify is executed as a TECO expression. Thus, an
arbitrary TECO expression can be snuck into an EVARS file. To load the library FOO,
use the expression MM Load ,FOO .

: MM Load LibraryFOO

Once the library is loaded, you can connect the functions in it to commands as
described above.

Please refrain from giving newcomers to EMACS a copy of your own init file before
they understand what it does. Everyone prefers his own customizations, and there is

11t3 EMACS Manual for TWENEX Users

always a tendency to proselytize, but by the same token your protege's tastes may be
different from yours. If you offer him your customizations at the time when he is ready
to understand what difference they make and decide for himself what he prefers, then
you will help him get what he wants. Tell him about each individual change you made,
and let him judge them one by one. There is no reason for him to choose all or
nothing.

22.6.1. EVARS File Examples

I-ere are some examples of how to do various useful things in an EVARS file.

This causes new buffers to be created in Lisp mode:

Default Major Mode:LISP

This causes new buffers to have Auto Fill mode turned on:

Buffer Creation Hook: IM.L Auto Fill Mode#

This causes all Text mode buffers to have Auto Fill mode turned on:

Text Mode Hook: IM.L Auto Fill Mode#

This causes C-M-G to be undefined by copying the definition of C-I (which is

undefined):

... tRG: Q.tRI

This redefines C-S to be a single character search command, and M-S to be a
iion i-incremental string search:

.tRS: M.M R Character Search
* .tRS: M.M -R String Search#

This redefines C-X V to run View File:

:.X(t"V): M.M View File#

This makes M-M a prefix character and defines M-M W to mark a word and M-M P
to mark a paragraph. It stores the dispatch vector for the prefix character in
q-register .Y.

..tRM: MM Make Prefix CharacterO.Y,

:.Y(t"W): M.M -R Mark Word#

:.Y(t"P): M.M -R Mark Paragraph#

This loads the library LUNAR and defines C-Q to run a useful function in that library:

*: MM Load Library#LUNAR#

.tRQ: M.M -R Various Quantlties#

This causes Auto Save moOe to save under the visited filenames:

Auto Save Visited File:1

This causes TAGS to bring new files into separate buffers:

TAGS Find File:1

This stops the message "EMACS version nnn. Type ... for Help" from being printed.

Simple Customization 117

Inhibit Help Message:1

This redefines the list syntax of "%" to be ";"for "comment starter", and that of ";"

to be "A" for "alphabetic":

: lmm& Alter ..D%;;AO

22.6.2. init File Examples

Here are the ways to do exactly the same things in an init file. Don't put more than
one of these TECO expressions on a line, or the first may leave behind a value which
will affect the operation of the second!

This causes new buIfors to be created in Lisp mode:

:I*Default Major Mode#LISP#

This causes new buffers to have Auto Fill mode turned on:

:1* IM.L Auto Fill Modet]# # M.VBuffer Creation Hook#

It is different because the variable does not already exist. Note the t used for getting
the Altinode into the value.

This causes all Text mode buffers to have Auto Fill mode turned on:

;I* 1M.L Auto Fill Modet]O * M.VToxt Mode look*

This causes C-M-G to be undefined by copying the definition oi C-1 (which is
undefined):

Q.tRl U.. .tRG

This redefines C-S to be a single character search command, and M-S to be a
non-incremental string search:

M.M -R Character Search* U.tRS
M.M -R String Search# U..tRS

This redefines C-X V to run View File:

M.M View FileO U:.X(t"V)

This makes M-M a prefix character and defines M-M W to mark a word and M-M P
to mark a paragraph. It stores the dispatch vector for the prefix character in
q-register .Y.

MM Make Prefix Charactor4.Y4U..tRM
M.M ^R Mark Word# U:.N(t"W)
M.M ^R Mark Paragraph U:.Y(t"P)

This loads the library LUNAR and defines C-Q to run a useful function in that library:

MM Load Library#LUNAR#
M.M ^R Various Quantities# U.tRQ

This causes Auto Save mode to save under the visited filenames:

118 EMACS Manual for TWENEX Users

IU*Auto Save Visited File#

Compare this and the next example with the first two, oi which string values are used.

This causes TAGS to bring new files into separate buffers:

1M.VTAGS Find File*

This stops the message "EMACS version nnn. Type ... for Help" from being printed.

1M.Vlnhibit Help Messages

This redefines the list syntax of "%" to be ":" for "comment starter", and that of ";"

to be "A" for "alphabetic":

lmm& Alter ..D%70;;A*

22.7. Local Variables in Files

By putting a local modes list in a file you can cause certain major or minor modes to
be set, or certain character commands to be defined, whenever you are visiting it. For
example, EMACS can select Lisp mode for that file, or it can turn on Auto Fill mode,
set up a special Commenit Column, or put a special command on the character
C M-Comma. Local modes can specify the major mode, and the values of any set of
named variables and command characters. Local modes apply only while the buffer
containing the file is selected; they do not extend to other files loaded into other
buffers.

The simplest kind of local mode specification sets only the major mode. You put the
mode's name in between a pair of "-*-"s, anywhere on the first nonblank line of the
file. For example, the first line of this file contains -*-Text-*-, implying that this file
should be edited in Text mode. The -*- can appear on the first nonblank line after the
edil history, if somebody insists on putting in an edit history.

Often EMACS is able to determine the best major mode for a file by looking at the
files extension. If this works, you don't need to worry about specifying the major
mode. If the extension of the file does not inform EMACS correctly, then you need an
explicit local modes specification. The functions which implement this are called &
<extension> Mode, in the TWENEX library.

To specify more that just the major mode, you must use a local modes list, which
goes in the last page of the file (it is best to put it on a separate page). The local
mode; list starts with a line containing the string "Local Modes:", and ends with a line
containing the string "End:". In between come the variable names and values, just as
in an EVARS file. See section 22.6 [EVARS files], page 114.

The line which starts the local modes list does not have to say just "Local Modes:".
It there is other text before "Local Modes:", that text is called the plefix, and if there is
other text after, that is called the suffix. If these are present, each entry in the local
modes list should have the prefix before it and the suffix after it. This includes the
"End:" line. The prefix arid suffix are included to disguise the local modes list as a
comment so that the compiler or text formatter will not be perplexed by it. If you do

Simple Customization 119

not need to disguise the local modes list as a comment in this way, do not bother with
a prefix or a suffix.

Aside from the "Local Modes:" and the "End:", and the prefix and suffix if any, a

local modes list looks like an EVARS file. However, comments lines are not allowed,
and you cannot redefine C-X subcominands due to fundamental limitations of the data
structure used to remember local variables. Sorry. See section 22.6 IEVARS files],
page 114. for more information.

The major mode can be set by specifying a value for the variable "Mode" (don't try

setting the major mode this way except in a local modes list!). It should be the first
thing in the local modes list, if it appears at all. A function M-X Foo can be defined
locally by putting in a local setting for a variable named "MM Foo". See section 5.2
IFunctions], page 22.

Here is an example of a local modes list:

Local Modes: ***

Mode:Mumble *..
Comment Column:O **,
Comment Start:;;; **

Comment End:*** *s*
;;;..tR/: m.m^R My Funny Meta-Slash# ***

End: ***

Note that the prefix is ";;; " and the suffix is " ***". Note also that comments in the

file begin with ";;; " and end with "***". Presumably the fife contains code in the

language Mumble, in which comments must start and end that way. The prefix and

suffix are used in the local modes list to make the list appear as comments when the
file is read by the Mumble compiler.

The last page of the file must be no more than 10000 characters long or the local
modes list will not be recognized. This is because EMACS finds the local modes list by
scanning back only 10000 characters from the end of the file for the last formfeed, and
then looking forward for the "Local Modes:" string. This accomplishes these goals: a
stray "Local Modes:" not in the last page is not noticed; and visiting a long file that is
all one page and has no local mode list need not take the time to search the whole file.

22.8. Keyboard Macros

C-X (Start defining a keyboard macro.
C-X) End the definition of a keyboard macro.
C-X E Execute the most recent keyboard macro.
C-X 0 Ask for confirmation when the keyboard macro is executed.
C-U C-X Q Allow the user to edit for a while, each time the keyboard

macro is executed.
M-X Name Kbd Macro

Make the most recent keyboard macro into the permanent
definition of a command.

A keyboard macro is a command defined by the user to abbreviate a sequence of

p

120 EMACS Manual for TWENEX Users

other commands It you discover that you are about to type C-N C-D forty times, you
can define a keyboard macro to do C-N C-D and call it with a repeat count of forty.

Keyboard macros differ from ordinary EMACS commands, in that they are written in
the EMACS command language rather than in TECO. This makes it easier for the
novice to write them, and makes them more convenient as temporary hacks.
However. the EMACS command language is not powerful enough as a programming
language to be useful for writing anything intelligent or general. For such things,
TECO must be used.

EMACS functions were formerly known as macros (which is part of the explanation
of the name EMACS), because they were macros within the context of TECO as an
editor. We decided to change the terminology because, when thinking of EMACS, we
consider TECO a programi.:;ng language rather than an editor. The only "macros" in
EMACS now are keyboard macros.

You define a keyboard macro while executing the commands which are the
definition. Put differently, as you are defining a keyboard macro, the definition is
being executed for the first time. This way, you can see what the effects of your
comniands are, so that you don't have to figure them out in your head. When you are
fiishedl. Ihe keyboard macro is defined and also has been, in effect, executed once.
You can then do the whole thing over again by invoking the macro.

22.8.1. Basic Use

To s.tart defining a keyboard macro, type the C-X t command (-R Start Kbd Macro).
From then on. your commands continue to be executed, but also become part of the
definition of the macro. "Def" appears in the mode line to renind you of what is going
on. When you are finished, the C-X) command (-R End Kbd Macro) terminates the
definition (without becoming part of it!). The macro thus defined can be invoked again
with the C-X E command (-R Execute Kbd Macro), which may be given a repeat count
as a numeric argument to execute the macro many times. C-X) can also be given a
repeat count as an argument, in which case it repeats the macro that many times right
after defining it, but defining the macro counts as the first repetition (since it is
executed as you define it). So, giving C-X) an argument of 2 executes the macro
immrnediately one additional time. An argument of zero to C-X E or C-X) means repeat
the macro indefinitely (until it gets an error).

If you wish to save a keyboard macro for longer than until you define the next one,
you must give it a name. If you do M-X Name Kbd Macro#FOO<cr>, the last keyboard
macro defined (the one which C-X E would invoke) is turned into a function and given
the name FOO. M-X FOO will from then on invoke that particular macro. Name Kbd
Macro also reads a character from the keyboard and redefines that character
command to invoke the macro. You can use a bit prefix character in specifying the
command; you can also type a C-X command to be redefined. When you have
finished typing the command characters, Name Kbd Macro asks you whether it should
go ahead and redefine the character.

To examinee the definition of a keyboard macro, use the function View Kbd Macro.
Either supply the name of the function which runs the macro, as a string argument, or
type the command which invokes the macro, on the terminal when View Kbd Macro
asks for it.

Simple Customization 121

22.8.2. Executing Macros with Variations

If you want to be allowed to do arbitrary editing at a certain point each time around
the macro (different each time, and not remembered as part of the macro), you can
use the C-U C-X 0 command (-R Kbd Macro Query). When you are defining the
macro, this lets you do some editing, which (oes not become part of the macro. When
you are done, exit with C-M-Z to return to defining the macro. When you execute the
macro, at that same point, you will again be allowed to do some editing. When you
exit this time with C-M-Z, the execution of the macro will resume. If you abort the
recursive editing level with C-I, you will abort the macro definition or execution.

You can get the effect of Query Replace, where the macro asks you each time
around whether to make a change, by using the command C-X 0 with no argument in
your keyboard macro. When you are defining the macro, the C-X 0 does nothing, but
when the macro is invoked the C-X 0 reads a character from the terminal to decide
whether to continue. The special answers are Space, Rubout, Altmode, C-L, C-R. A
Space means to continue. A Rubout means to skip the remainder of this repetition of
the macro, starting again from the beginning in the next repetition. An Altmode ends
all repetitions of the macro, but only the innermost macro (in case it was called from
another macro). C-L clears the screen and asks you again for a character to say what
to do. C- R enters a recursive editing level; when you exit, you are asked again (if you
type a Space, the macro will continue from wherever you left things when you exited
the C-R). Anything else exits all levels of keyboard macros and is reread as a
command.

I _ .I'

122 EMACS Manual for TWENEX Users

f ie Minibuffer 123

Chapter Twenty-Three

The Minibuffer

The minibuffer is a facility by means of which EMACS commands can read input
from the terminal, allowing you to use EMACS commands to edit tile input while you
are typing it. Usually it is used to read a TEGO program to be executed.

M-Altmode Invokes an empty minibuffer.
M_-% Invokes a milnibuller initialized with a Query Replace.
C-X Altmode Re-execute a recent minibulfer command.
C-X Add more lines to the minibuffer.
C-\ Meta-prefix for use in the minibuffer.
C-Z C-Y Rotate ring of recent minibuffer commands.

The primary use of the minibuffer is for editing and executing simple TECO
programs such as

4M Query Replace*FOO
*BAR

(which could not be done with M-X because Returns are part of the arguments).

You can always tell when you are in a rninibuffer, because the mode line contains
something in parentheses, such as "(Minibuffer)" or "(Query Replace)". There is also
a line of dashes across the screen a few lines from the top. Strictly speaking, the
minibuffer is actually the region of screen above the line of dashes, for that is where
you edit the input that the minibufter is asking you for. Editing has been limited to a
few lines so that most of the screen can continue to show the file you are visiting.

If you want to type in a TECO command, use the minibuffer with the command
Meta-Altmode, (-R Execute Minibuffer). An empty minibulfer will appear, into which
you should type the TEGO command string. Exit with Altmode Altmode, and
remember that neither of the two Altmodes is inserted into your TECO command
although the first one may appear to be. When the TECO command is executed, "the
buffer" will be the text you were editing before you invoked the minibuffer.

Often, a minibmiffer starts out with some text in it. This means that you are supposed
to add to that text, or, sometimes, to delete some of it so as to choose among several
alternatives. For example, Meta-% (-R Query Replace.,) provides you with a minibuffer
initially containing the string "MM Query Replaceo". The cursor comes at the end.
You are then supposed to add in the arguments to the Query Replace.

In a minibuffer, you can edit your input until you are satisfied with it. Then you tell
EMACS you are finished by typing two Altmodes. An Altmode not followed by another

124 EMACS Manual for TWENEX Users

Altmode is simply inserled in the buffui. This is because it is common to want to put
Altmodes into the minibuffer, which usually contains a string of TECO commands. For
example, in Meta-% (^R Query Replace) each argument must be ended by an
Altmode. However, when you type two Altmodes in a r,,r, neither one remains in the
butter. The two Altmodes do nothing to the text in the minibuffer, they just exit.

Since Altmode is sell inserting, typing Meta characteis can be a problem. You can
do it by using C-\ instead of Altmode as the Meta-prefix. If you type a Control-Meta
character on your keyboard, the corresponding ASCII control character is inserted in
the miibuffer. This is because the Lisp commands are rarely useful when editing
TECO code, but insertion of control characters is frequent. It you really want to use a
Control Mela EMACS comnniand. you must use C-Z to type it. You cannot use C-\
C-A to type C-M-A, because C-\ (unlike Altmode) ignores the Control bit of the
following character, so you must use C-Z C-A. IThe motivation for this quirk of C-\ is
that C-\ C-B (to obtain M-B) is easier to type than C-\ B, especially if it is typed
several times in a row.

You can cancel your input in a minibuffer and start all over again by typing C-G.
That kills all the text in the minibuffer. A C-G typed when the minibuffer is already
empty exits from the miiibuffer. Usually, this aborts whatever command was using the
ininibutfer, so it will return without doing anything more. For example. if you type two
C-Gs at Meta-%'s minibufter, you will return to top level and no Query Replace will be
done. Typing a single C-G at a preinitiailzed minibuffer to empty the buffer is not very
useful. since you would have to retype all the initial text.

The last five distinct minibuffer commands or M-X commands you have issued are
remembered in a ring buffer in q-register .M. The C-X Altmode command
(11 He-exectute Minibuffer) re-executes the last command in the ring. With an
argiunient <n>, it re-executes the <n'th previous cornmand. 1he command is printed
oul (only the first 40 characters or so) and you are asked to confirm with "Y" or "N".

You can also get your previous minibufter and M-X commands back into the
minibuffer to be edited and re-executed with changes. Giving M-Altmode and
argument, as in C-U M-Altmode, causes the minibuffer to be loaded up with the last
command in the ring, as if you had typed it in again from scratch. You can then edit it,
execute it by typing two Altmodes, or cancel it with C-G. To get an earlier command
string instead of the most recent one. use the command C-Z C-Y once you are in the
minibutffer. This command "rotates" the ring of saved commands much as M-Y
rotates the ring of killed text. Each C-Z C-Y reveals an earlier command string, until
tMe ring has rotated all thIe way around aind the most recent one reappears. C-Z C-Y
is actually a way of saying C-M-Y, but in the minibuffer that's the only way to type it,
since Altmode inserts itself and Control-Meta characters insert control characters.

If you exit from Meta-Altmode with a C-G, nothing is executed and the previous
minibuffered command string is still remembered as the last one.

While in a minibuffer, if you decide you want the minibutfer to use more lines on the
screen, you can use C-X ^ (-R Grow Window) to get more. It gets one more line, or as
many lines as its argument says.

-IF-

Correcting Mistakes and EMACS Problems 125

Chapter Twenty-Four

Correcting Mistakes and EMACS
Problems

If you type an EMACS command you did not intend, the results are often mysterious.
"his chapter tells what you can do to cancel your mistake or recover from a
mysterious situation. EMACS bugs and system crashes are also considered.

24.1. Quitting and Aborting

C-G Quit. Cancel running or partially typed command.
C-1 Abort recursive editing level and cancel the command which

invoked it.
M-X Top Level

Abort all recursive editing levels and subsystems which are
currently executing.

There are three ways of cancelling commands which are not finished executing:
quitting with C-G, and abot iny with C-1 or M-X Top Level. Quitting is cancelling a
pattially typed command or one which is already running. Aborting is cancelling a
command which has entered a recursive editing level.

Quitting with C-G is used for getting rid of a partially typed command, or a numeric
argument that you don't want. It also stops a running command in the middle in a
relatively safe way, so you can use it if you accidentally give a command which takes a
long time. In particular, it is safe to quit out of killing; either your text will all still be
there, or it will all be in the kill ring (or maybe both). Quitting an incremental search
does special things documented under searching; in general, it may take two
successive C-G's to get out of a search. C-G can interrupt EMACS at any time, so it is
not an ordinary command.

Aborting with C-] (Abort Recursive Edit) is used to get out of a recursive editing
level and cancel the command which invoked it. Quitting with C-G cannot be used for
this, because it is used to cancel a partially typed command within the recursive
editing level. Both operations are useful. F or example, if you are editing a message to
be sent, C-G can be used to cancel the commands you uso to edit the message, and
C-1 cancels sending the message. C-1 either telIs you how to resume the aborted
command or queries for confirmation before aborting.

When you are in a position to use M-X, you can use M-X Top Level. This is

126 EMACS Manual for TWENEX Users

equivalent to "enough" C-1 commands to get you out of all the levels of subsystems
and recursive edits that you are in. C-I gets you out one level at a time, but M-X Top
Level goes out all levels at once. Both C-] and M-X Top Level are like all other
commands, and unlike C-G, in that they are effective only when EMACS is listening.

24.2. Dealing with Common Forms of EMACS Lossage

This section (Iescribes various conditions which can cause EMACS not to work, or
cause it to display strange things, and how you can correct them.

24.2.1. Error Message

When EMACS prints an error message, it occupies the top line ol the screen, ends
with a "?". andl is acc panied by the ringing of the bell. Space causes the error
message to disappear and be replaced by the first line of text again. Any other
c)mmand is executed normally as if there had been no error message (the error
message disappears during the redisplay after the command). However, "?" enters
the eiror handler, which can be used to inspect the function call stack. Type Help
inside the error handler to get its documentation. Most users will not be interested in
doing this.

24.2.2. Subsystems and Recursive Editing Levels

Subsystems and recursive editing levels are important and useful aspects of
EMACS, but they can seem like malfunctions to the user who does not understand
them.

If the mode line starts with a bracket '[" or a parenthesis "(", or does not start with
the word "EMACS", then you have entered a subsystem (See section 6.1
f, uhsystemsj, page 25.) or a recursive editing level (See section 6.2 IRecursive
Editing Levels], page 26.).

In such a situation, first try typing C-. This will get out of any recursive editing level
and most subsystems. The usual mode line and text display will reappear. If C-1 does
not seem to have worked, type the Help character. Instead of printing "Doc (Type ?
lor Help)" in the echo area, it will print a list of the subsystem's commands. One of
these should be a command to exit or abort.

If the above techniques fail, try restarting (see section 24.2.7).

24.2.3. Garbage on the Screen

If the data on the screen looks wrong, it could be due to line noise oil input or
output, a bug in the terminal, a bug in EMACS redisplay, or a bug in an EMACS
command. To find out whether there is really anything wrong with your text, the first
thing to do is type C-L. This is a command to clear the screen and redisplay it. Oftn
this will display data which is more pleasing. Think of it as getting an opinion from
another doctor.

Correcting Mistakes and EMACS Problems 127

24.2.4. Garbage Displayed Persistently

If EMACS persistently displays ga;hage on tht screen, or if it outputs the right things
but scattered around all the wrong places oil tile screen, it may be that EMACS has
the wrong idea of your terminal type. 1 he tirst thing to to i tihs case is to exit from
EMACS and restart it. Each time EMACS is re,.tarted it ask, the system wh:tt terminal
type you are using. Whenever you detach and move to a lei mi.i ml of a diffurtent type
you shoult restart EMACS as a matter of cour.se. It you stopued(IMACS with the exit
command, or by interrupting it when it was awailing a command, then this is sure to be
safe.

The system itself may not know what type of terminal you have. You .should try
telling the system with the TERMINAL TYPE command in EXEC. If your terminal is
compatible with one of the standard types but has a different size screen, you must tell
the system the size with the TERMINAL LENGTH and TERMINAL WIDTH commands,
because EMACS uses whatever size the system says it knows.

However, the system may not even have a type code defined for your terminal. In
this case, as long as EMACS knows about your type of terminal, you can do M-X Set
Terminal TypeO<type)<cr> where <type> stands tor the EMACS name of your type of
terminal. Get a list of all types known hy doing M X List Library0TRMTYP<cr>.
[MACS will Qill get the size of the screen hom the systeom. so you are not relieved of
responsibility for uting the TERMINAL WID III and ILR[IINAL tII'JG I I commands.
Also, if you restart [MACS (as oppomsed to conlililg it), youti will have to specify the
tem;nal type again, since EMACS will have asked the systmi again.

24.2.5. URK Error (Address Space Exhausted)

If attempting to visit a file or load a library causes an '!RK" error, it means you have
filled tip the address space; there is no room inside EMACS for any more files or
libraries. In this situation you can run M-X Make Space. This command compacts the
data inside EMACS to free up some space. It also offers to discard data that may be
occupying a lot of space, such as the kill ring (See section 9.1 [Killing], page 37.), the
undo memory (See section 24.3 [Undo], page 128.), and buffers created by TAGS and
INFO. Another way of freeing space is to kill buffers with M-X Kill Some Buffers (See
section 14 [Buffers], page 67.) or unload libraries with M-X Kill Libraries (See
section 22.2 11.ibraries], page 108.).

Visiting a file causes an URK error if the file does not fit in the available virtual

memory space, together with the other buffers and the libraries loaded. A big enough
file causes an IJRK error all by ilself. For editing such large files, use the command
Split File (in the SPLIT library) to break it into subliles. These will be fairly large files
slill, but not too large to edit. Afler e(hlintl one or more of the subfiles, use the
command Unsplil File (also in SPLI f) to put them back together again.

M-X Split File lakes the name of the file It split as an argument. The file is split into
subliles with the same first name a,; the original file, but with extensions "1 ", "2", etc.,
for as many subliles as are needed depending on the size of the original file. These
numeric extensions should not be confused with version numbers: a subfile FOO.1
would be created with version 1, and after editing you might get up to Fo.1.3. This

128 EMACS Manual for TWENEX Users

has nothing to do with the third subtile, FOO.3, which would have its own version
number (perhaps FOO.3.2).

M-X Unsplit File takes the name of the file to merge into as an argument. It finds the
subfiles the same way Split File makes them, by taking successive numbers as
extensions. When a nonexisten extension is reached, Unsplit File assumes that
means it ;.as already processed all the subfiles and that it is finished.

24.2.6. All Type-in Echoes and Nothing Else Happens

If you find that EMACS is not responding to your commands except for echoing
them all at the bottom of the screen, including the Return character, and that Rubout
Cuses erased character,; to be retyped instead ot erased, then you have managed to
exit fioma [MACS back to TECO. Often this follows an "Error in error handler"
message which indicates that a condition arose in which the error handler could not
function. You can get back into EMACS by lyping :M.L00, or by restarting (see
below). It you ever want to exit back to TECO, you can do M-X Top Level with an
argument greater than zero. Before using :M..L44, get rid of any other characters you
have typed by mistake by typing a C-G.

24.2.7. EMACS Hung and Not Responding

Sometimes EMACS gets hung and C-G does not work. The more drastic procedure
of restarting EMACS may work at such times. C-G can fail to work because it only
takes effect between the TECO commands which make up an EMACS program, never
in the middle of one (only a few TECO commands allow quitting at any lime), so as to
prevent TECO's internal data structures from becoming inconsistent. If EMACS is
hung inside a TECO command, C-G is not noticed, but restarting can still be tried.

To restart EMACS, type Control-C twice to stop EMACS, then START to restart it,
While reslarting [ECO in this way is usually safe (especially at times when TECO is
doing I/0). there are certain times at which it will cause the TECO data structures to
he inconsistent, so do not try it unless other measures have failed.

Your ultimate safeguard against a wedged EMACS is to save your work frequently.

24.3. Undoing Changes to the Buffer

If you mistakenly issue commands that make a great change to the buffer, you can
often undo the change without having to know precisely how it came about. This is
,Ioine by using M-X Undo. Type M-X Urido<cr> and the change is undone. It does not
matter if you have moved the cursor since you made the change; it is undone where it
was originally done.

The first thing Undo does is tell you what kind of change it plans to undo (kill, fill,
undo, case-convert, etc). Then it asks whether to go ahead. If you say "Y", the
change is actually undone.

Not all changes to the buffer can be undone: deletion (as opposed to killing) can't

Correcting Mistakes and EMACS Problems 129

be, and changes in indentation can't be, nor ,an many torms of insertion (but they
art,n't as important since they don't destro, inlormation) Also, a Replace String or
Qtlen y Replace can't he undone., which is a ;hame. the reason is that aclnialy they
iw ke many small changes, and Undo only knows how to remember one contiguous
change. Perhaps someday I will be able to fix this.

As a result, when you say Undo. it may undo sometiting ofter than the latest change
if the latest change was not undoable. I his rmight seem to pile one disaster on
another, hut it doesn't. because you can a/waiy:. Undo the Undo if it didn't help. But
you can avoid even having to do that. if yOU 1otk at what type of change Undo says it
will undo.

If you want to undo a considerable amount of editing, nct ju.t the last change, the
Undo command cant help you, but M-X Rev,rt File (See section 13.2 IfRevert],
page 59) might be able to. If you have been writin(g a journal file (See section 24.4
lJourn Halsj. page 129.), you can replay the journal after deleting the part that you don't
want.

24.4. Journal Files

A journal file is a record of all the commands you type during an editing session. If
you lose editing because of a system crash, an EMACS bug, or a mistake on your part,
and you have inade a journal file, you can replay the journal or part of it to recover
what you lost. Journal files offe, an alternative to auto saving, using less time and disk
space if Ihere is no crash, but requiring more time when you recover from a crash.
See ;ection 13.3 [Auto Save], page 59.

24.4.1. Writing Journal Files

In order to make a journal file, you must load the JOURNAL library and then execute
M-X Start Journal File* <filename>(cr>. Immediately, most of the current status of
EMACS is recorded in the journal file, and all subsequent commands are recorded as
they are typed. This happens invisibly and silently. The journal file is made fully up to
date on the disk after every 50th character, so the last 50 characters of type in is the
most you can lose.

The default filenames for the journal file are EMACS.JOURNAL. There is rarely a
reason to use any other name, because you only need one journal file unless you are
running two EMACSes at the same time.

24.4.2. Replaying Journal Files

To replay the journal file, get a fresh EMACS, load JOURNAL, and do M-X Replay
Journal File4<filenane><cr>. 1 lie filename can usually be omitted since normally you
will have used the defaults when creating the journal.

Afler a delay while the files, buffers and libraries are loaded as they were when the

journal file was written, EMACS will begin replaying the commands in the journal

130 EMACS Manual for TWENEX Users

belore your very eyes. Unlike keyboard macros, which execute invisibly until they are
IInIshod, journal files display as they are executed. Iis allows you to see how far the
it)lay has (lone. You cin sto) tie proces.s; at any time l)y typiii C-G. Aside from

that. you should not lype anylhing on the keyboard while the ieplay is guing on.

It the need for a replay is the result of a system crash or EMACS crash, then you
probably want to replay the whole file. This is what happens naturally. If you are
replaying because you made a great mistake, you probably want to stop the replay

belore the mistake. This is when it becomes useful to type C-G to stop the replay.
Alternatively, you can edit the journal file, and delete everything from the point of the
mistake to the end, before you replay it.

Once the replay is complete, save all your files immediately. Don't tempt fate!

If you quit with C-G in the middle of a command while writing a journal file, there is
no way to record in the journal file how much of the command has already been
completed. So, when the journal is replayed, EMACS has to ask you to fill in for it.
The command which was interrupted will be replayed to completion; then, you are
given a recursive editing level in which to restore the file to the desired state. This
happens only if the C-G originally interrupted an executing command. C-G typed to
(liscardl an argument or partial command while EMACS is wailing for input can be and
is ieplayed correctly without asking you for help.

24.4.3. Journal File Format

To edit a journal file, you must know the format. It is designed to be mostly
transparent.

The primary problem which the journal file format has to solve is how to represent
9-bit command characters in a file which can contain only 7-bit ASCII characters.
(We could have filled the journal file with 9-bit characters, but then you would not be
able to print it out or edit it). The solution we have used is to represent each command
by two characters in the file.

So, a Control character is represented by a caret ("''.) followed by the basic
character, as in 'E" for Control-E. This was chosen to be mnemonically significant.
A ieta character is represented by "+" followed by the basic character, so that
Letal is represented by "+[". A Control-Meta character is represented by ""

followed by the basic character, as in "*X" for C-M-X.

A command which is not Control or Meta is represented as a space followed by the
command itself, except that Return is represented by a CRLF rather than a space and
a carriage return. This prevents the jouirnal file from being one huge line, and makes
insertion of text very recognizable: the text inserted appears in the journal file
altm nating with spaces.

The Hlelp character, which is not covered by the scheme as described so far, is
represented by ".??".

An asynchronous quit, which is a problem for replaying, is represented by a single
character, a tG, while a synchronous quit, which can be replayed reliably, is
represented by ":tG". EMACS considers a quit synchronous, and uses ":tG" to
record it, if EMACS wa waiting for terminal input when the C-G was typed.

Correctilly Mistakes and EMACS Problems 131

Your commands themselves are not the only in fornatior, in tie journal file. EMACS
records other information which is necessary in reptayig the jourial properly. The
colon character ":" indicates a block of such anfor auhora Usually the extent of the
block is easily recognizable because its Cont(3l its do i ot resemble the representations
of Colinn'ds described above. A larqe block of mlmIiinau:, starting with a colon
app, uafs at the hr r iifillg of every lournal 1f00.

Colons are also used to record the precise effecis of certain commands such as
C-V whose actors depend on how the text was displayed oin the screen. Since the
effects of such cominmandS are not completely deteimined by the text, replaying the
command could produce different results, especially if done on a terminal with a
different screen size. The extra information recorded in the journal makes it possible
to replay these commands with fidelity.

A semicolon in the journal file begins a comment, placed there for the benefit of a
human looking Lit the journal. The comment ends at the beginning of tile following
line.

24.4.4. Warnings

Propei replaying of a journal file requires that all the suirounding circumstances be
unchanged.

In particular, replaying begins by visitinq all t!he files that were visited when the
writing of the joun nat file began: not the lilesl versions' of the.se tiles, but the versions
which were the Lilest at lhe earlier time. If those versio s, which may no longer be the
latest, have beeii deleted, then replaying is impossible.

It your init file has been changed, tile commands when replayed may not do what
they did before.

These are the only things that can interfere with replaying, as long as you start
writinq the journal file immediately after starting EMACS. But as an editing session
becumes longer and files are saved, the journal file contains increasing amounts of
waste in the form of commands whose effects are already safe in the newer versions
of the edited files. Replaying the journal will replay all these commands wastefully to
generate files identical to those already saved, before coming to the last part of the
session which provides the reason for replaying. Therefore it becomes very desirable
to start a new journal file. However, many more precautions must be taken to insure
proper replaying of a journal file which is starled after EMACS has been used for a
while. These precautions are described here. If you cannot follow them, you must
make . journal checkpoint (see below).

If any buffer conlaine text which is not saved in a file at the time the journal file is
startd, it is impossible to feplay the joturnal corectly Thi,; problem cannot possibly
be overcome. [o avoid it, M-X Start Jouinal File otters to save all buffers before
actually starling the journal.

Another problem comes from the kill ring and the other ways in which EMACS
remembers information from previous commands. If any such information which
originated before starting the journal file is used after starting it, the journal file cannot
be replayed. For example, suppose you till a paragraph, start a journal file, and then

132 EMACS Manual for TWENEX Users

do M-X Undo? When the journal is replayed, it will start by doing M-X Undo, but it
won't know what to undo. It is up to you not to do anything that would cause such a
problem. It should not be hard. It would be possible to eliminate this problem by
clearing out all such data structures when a journal file is started, if users would prefer
that.

A more difficult problem comes from customization If you change an option or
redefine a command, then start a journal file, the journal file will have no record of the
change. It will not replay correctly unless you remember to make the same change
beforehand. Customizations made in an init file do not cause a problem because the
init file has also been run when the journal file is replayed. Customizations made
directly by the user while tile journal file is being written are also no problem because
replayinig will make the same changes at the right times. However, a customization
made while a journal file is being written will be a problem if a new journal file is
started.

24.4.5. Journal Checkpoints

The only cure for the problems of starting a journal in mid-session is to record the
complete state of EMACS at the time the journal is begun. This is not done normally
because it is slow; however, you can do this if you wish by giving M-X Start Journal
File a numeric argument. This writes the complete state of EMACS into the file
ESAVE EXE. To replay the journal, run ESAVE, the saved checkpoint, instead of
EMACS: then load JOURNAL and do M-X Replay Journal File as described above. Be
sure to delete the checkpoint if you are finished with it, since it tends to be large.
Delete them also when you log out; it may be possible to have a command file which
deletes them automatically when you log out. Checkpoint files more than a day old
may be deleted by olhers without notice; but don't leave it up to them.

24.5. Reporting Bugs

Sometimes you will encounter a bug in EMACS. To get it fixed, you must report it. It
is your duty to do so; but you must know when to do so and how if it is to be
constructive.

24.5.1. When Is There a Bug

If EMACS executes an illegal instruction, or dies with an operating system error
message that indicates a problem in the program (as opposed to "disk full"), then it is
certainly a bug.

If EMACS updates the display in a way that does not correspond to what is in the
buffer, then it is certainly a bug. If a command seems to do the wrong thing but the
problem is gone if you type C-L, then it is a case of incorrect display updating.

Taking forever to complete a command can be a bug, but you must make certain
that it was really EMACS's fault, Some commands simply take a long time. Quit or
restart EMACS and type Help L to see whether the keyboard or line noise garbled the

Correcting Mistakes and EMACS Problems 133

input: if the input was such that you Anow it should have been processed quickly,
report a bug. I you don't know, try to find someone who (oes know.

It a command you are familiar with causes an EMACS error message in a case
where its usuatl definition ought to be reasorvable, it is probably a bug.

If a commind does the wrong thing, that is a bug. But be sure you know for certain
what it ought to have done. If you aren't familiar with the command, or don't know for
certain tlow the command is supposed to work, then it might actually be working right.
Bather than lumping to conclusions, show the problem to someone who knows for
certain.

Finally, a command's intended definition may not be best for editing with. This is a
very Important sort of problem, but it is also a matter of judgement. Also, it is easy to
come to such a conclusion out of ignorance of some of the existing features. It is
probahly ';t not to complain about such a problem until you have checked the
docuPmentation ill the usual ways (INFO and Help). feel confident that you understand
it, and know fur certain that what you want is not available If you feel confused about
the docuinieitation instead, then you don't have grounds for an opinion about whether
the command's definition is optimal. Make sure you read it through and check the
index or tle menus for all references to subjects you don't fully understand. If you
have (lone this diligently and are still confused, or if you finally understand but think
you could Ive said it belter, then you have a constructive complaint to make about
tie documuotation. It is just as important to report ro(m'ienaliun bugs as program
bugs.

24.5.2. How to Report a Bug

When you decide that there is a bug, it is important to report it and to report it in a
way which is useful. What is most useful is an exact description of what commands
you type, starting with a fresh EMACS just loaded, until the problem happens.

The most important principle in reporting a bug is to report facts, not hypotheses or
conditions. It is always easier to report the facts, but people seem to prefer to strain to
think Lip explarntions and report them instead. If the explanations are based on
guesses about how EMACS is implemented, they will be useless; we will have to try to
figure out what the facts must have been to lead to such speculations. Sometimes this
is impossible. But in any case, it is unnecessary work for us.

For example, suppose that you type C-X C-V <GILORP>BAZ.UGH<cr>, visiting a file
which (you know) happens to be rather large, and EMACS prints out "I feel pretty
today". The best way to report the bug is with a sentence like the preceding one,
because it gives all the facts and nothing but the facts.

Do not assume that the problem is due to the size of the file and say "When I visit a
large file, EMACS prints out 'l feel pretty today'". This is what we mean by "guessing
explanations". Ihe problem is just as likely to be due to the fact that there is a "Z" in
the filename. If this is so, then when we (lot your report, we would try out the problem
with some "big file", probably with no "Z" in its name, and not find anything wrong.
There is no way in the world that we could guess that we should try visiting a file with a
"Z" in its name.

134 EMACS Manual for TWENEX Users

Alternatively, the problem might be due to the tact that the file starts with exactly 25
spaces. For this reason, you should make sure that you dor't change the file until we
have looked at it. Suppose the problem only occurs when you have typed the C-X
C-A command previously? This is why we ask you to give the exact sequence of
characters you typed since loading the EMACS.

You should not even say "visit the file ..." instead of "C-X C-V" unless you know
that it makes no ditference which visiting command is used. Similarly, rather than
saying "if I have three characters on the line", say "after I type <cr> A B C <cr> C-P",
it that is the way you entered the text. A journal file containing the commands you
typed to reproduce the bug is a very good form of report.

Send the bug report to BUG-EMACS@MIT-AI if you are on the Arpanet, or to the
author (see the preface for the address).

If you are not in Fundamental mode when the problem occurs, you should say what
mode you are in.

Be sure to say what version of EMACS and TECO are running. If you don't know,
type Meta-Altmode Q*EMACS Versiono= FS Version,= ,4 and EMACS will print them
out. (This is a use of the minibuffer. See section 23 [Minibuffer], page 123.)

If the bug occurred in a customized EMACS, or with several optional libraries

loaded, it is helpful to try to reproduce the bug in a more standard EMACS with fewer
libraries loaded. It is best if yoU can make the problem happen in a completely
standard EMACS with no optional libraries. If the problem does trot occur in a
standard EMACS. it is vi y important to report that fact, because otherwise we will try
to debug it in a standard [MACS, nrot find the problem, and give up. It the problem
(toes (let)tlnd on an inil file, then you should iriake sure it is not a bLug in the init file by
complaining to the person who wrote the file, first. He should check over his code,
and verity the definitions of the TECO commands he is using by looking in
INFO.TECORD.INFO. Then il he verities that the bug is in EMACS lie should report it.
We canrn)t be responsible for maintaining users' init files; we might not even be able
to tell what they are supposed to do.

It you can tell us a way to cause the problem without reading in any files, please do
so. This makes it much easier to debug. If you do need files, make sure you arrange
for us to see their exact contents. For example, it can otten matter whether there are
spaces at the ends of lines, or a line separator after the last line in the buffer (nothing
ought to care whether the last line is terminated, but tell that to the bugs). If you are
reporting the bug from a non-Arpanet site, keep the files small, since we may have to
type them in, unless you send them on mag tape.

If EMACS gets an operating system error message, such as for an illegal instruction,
then you can probably recover by restaiting it. But Lefore doing so, you should make
a dump file. Use the SAVE command to do this; however, this does not record the
contents of the accumulators ro do that, use the EXEC commands EXAMINE 0,
EXAMINE 1, etc., through EXAMINE 17. Include the numbers printed by these
commands as part of your bug report. Ii you restart or continue the EMACS before
saving this information, the trail will be covered and it will probably be too late to find
out what happened.

A dump is also useful if EMACS gets into a wedged state in which commands that
usually work do strange things.

Word Abbreviation Input 135

Chapter Twenty-Five

Word Abbreviation Input

Word Abbrev mode allows the EMACS user to abbreviate text with a single "word",
with EMACS expanding the abbreviation automatically as soon as you have finished
the abbreviation, with control over capitalization of the expanded string.

Abbrevs are also useful for correcting commonly misspelled or mistyped words
("thier" could expand to "their"), and for uppercasing words like "EMACS" (abbrev
"emacs" could expand to "EMACS").

To use this mode, just do M-X Word Abbrev Mode<cr>. (Another M-X Word Abbrev
Mode<cr> will turn the mode off; it togg'es.)

For example, in writing this documentation I could have defined "warn" to be an
abbreviation for "word abbrev mode". After typing just the letters "wam", I see just
that, "wan", but if I then finish the word by typing space or period or any other
punctuation, the "wam" is replaced by (and redisplays as) "word abbrev mode". If I
capitalize the abbrev, "Warn", the expansion is capitalized: "Word abbrev mode". If I
capitalize the whole abbrev, WAM", each word in the expansion is capitalized: "Word
Abbrev Mode". In this particular example, though, I would define "warn" to expand to
"Word Abbrev mode" since it is always to be capitalized that way.

Thus, typing "I am in warn now" produces "I am in Word Abbrev mode now".

Word Abbrev mode does not interfere with the use of major modes, such as Text,
Lisp, TECO, PLI, or minor modes, such as Auto Fill. Those modes (or the user) may
redefine what functions are connected to characters; this does not hamper Word
Abbrev mode.

There are two kinds of word abbreviations: mode and global. A mode word abbrev
applies only in one major mode (for instance only in Text mode), while a global word
abbrev applies regardless of major mode. If some abbrev is defined both as a mode
word abbrev for the current mode and as a global word abbrev, the mode word abbrev
expansion takes precedence.

For instance, you might want an abbrev "foo" for "find outer otter" in Text mode, an
abbrev "foo" for "FINAGLE-OPPOSING-OPINIONS" in Lisp, and an abbrev "foo" for
"meta-syntactic variable" in any other mode (the global word abbrev).

Word abbrevs can be defined one at a time (adding them as you think of them), or
many at a time (from a definition list). You can save them in a file and read them back
later. If you turn off Word Abbrev mode, abbrevs stop expanding automatically, but
their definitions are not lost.A

136 EMACS Manual for TWENEX Users

Word abbrevs can be killed, either singly or by editing the current definition list.

25.1. Basic Usage

C-X C-A Define a mode abbrev for some text before point.
C-X + Define a global abbrev for some text before point.
C-X C-H Define expansion for mode abbrev before point.
C-X - Define expansion for global abbiev before point.
C-M-Space Expand abbrev wiltout inserting anything.
M-1 Mark a prefix to be glued to an abbrev following.
C-X U Unexpand the last abbrev, or undo a C-X U.

M-X List Word Abbrevs<cr>
Shows definitions of all abbrevs.

M-X Edit Word Abbrevs<cr>
Lets you edit the definition list directly.

M-X Read Word Abbrev File <filename><cr>
Defines word abbrevs from a definition file.

M-X Write Word Abbrev File 0filename><cr>
Makes a definition file from current abbrev definitions.

Readable Word Abbrev Files
Option variable to control abbrev file format.

This section describes the most common use of Word Abbrev mode. If you don't
read any more than this, you can still use Word Abbrev mode quite effectively.

Note that each of the above commands will also work when Word Abbrev mode is
turned off, unlike the automatic expanders (such as Space or Period), allowing you to
manually define and expand abbrevs. (If you want to do this. you might also see the
M-X Expand Word Abbrevs in Region command's self-documentation.)

25.1.1. Adding Word Abbrevs

C-X C-A (-R Add Mode Word Abbrev) defines a mode abbrev for the word before
point (this does not include any punctuation between that word and point, though). It
prints the word before point in the echo area and asks you for that word's
abbreviation. Type the abbrev (which you may edit with Rubout and C-U) followed by
a Return. 1he abbrev must be a "word" it must cotain only letters and digits; the
case of the letters is irrelevant. If you'd rather define a global abbrev, use C-X + (-R
Add Global Word Abbrev), which works similarly.

You can redefine an abbrev with C-X C-A or C-X +. If the abbrev already has a
definition. it tells you what that was, and asks for confirmation.

To define an abbrev for more than ore word of text, give C-X C..A or C-X + a
numeric argument an argument greater than 0 means the expansion is that many
words before point; an argument of 0 means to use the region (between point and
mark). (By using the region specification you can make an abbrev for any text, not just
a sequence of words.) The message in the echo area provides you with confirmation
of just what the expansion will be; you might see:

Word Abbreviation Input 137

Text Abbrev for "this is the expansion":

Sometimes you may think you already had an abbrev for some text, use it, and see
that it didn't expand. In this case, the C-X C-H (^R Inverse Add Mode Word Abbrev)
or G-X - (-R Inverse Add Global Word Abbrev) commands are helpful: they ask you to
type in an expans on rather than an abbrev. In addition to defiring the abbiev, they
also expand it. If you give them a nuneric argument, n, they use the nth word before
poin(as the abbrev.

You can kill abbrevs (cause them to no longer expand) by giving a negative numeric
argument to C-X C-A or C-X +. For instance, to kill the global abbrev "foo" type C-U
- C-X + foo<cr>.

25.1.2. Controlling Abbrev Expansion

When an abbrev expands, the capitalization of the expansion is determined by the

capitalization of the abbrev: If the abbrev is all lowercase, the expansion is as defined.
I the abbrev's first letter is uppercase, the expansion's first letter is too. If the abbrev
is all uppercase, there are two possibilities: if the expansion is a single word, it is
all-uppercased; otherwise, each of its words has its first letter uppercased (such as
for use in a title).

Abbrevs normally expand when you type some punctuation character; the abbrev
expands and the punctuation character is inserted. There are other ways of
expandingq abbrevs: C-M-Space (^R Abbyev Expand Only) causes the abbrev just
before point to be expanded without inserting any other character. C-M-Space will
expand abbrevs even if Word Abbrev mode is currently off; this can be useful if the
system is slow, and you just want to manually expand a few abbrevs. M-' (-R Word
Abbrev Prefix Mark) allows you to "glue" an abbrev onto any prefix: suppose you
have the abbrev "comm" for "committee", and wish to insert "intercommittee "; type
"inter", Iv-' (you will now see "inter-"), and then "comm "; "inter-comm " becomes
"intercommittee ". M-X Expand Word Abbrevs in Region checks each word in the
region and offers to expand each word abbrev found; for more details see its

self-documentation. (It is similar to the M-X Query Replace command.)

25.1.3. Unexpanding Abbrevs

C-X U (^R Unexpand Last Word) "unexpands" the last abbrev's expansion,
replacing the last expansion with the abbrev that caused it. If any auto-filling was
done because of the expansion (you had Auto Fill mode on), Ihat too is undone. If you
type another C X U, the first one is "undone" and the abbrev is expanded again. Only
the last expansion can be undone. Sometimes you, may find that C X U unexpands an
abbrev later than the one you're looking at. In this case, do another C-X U and go
back and manually correct the earlier expansion.

If you know beforehand that a word will expand, and want to prevent it, you can
simply "quote" Ihe punctuation character with C-Q. For example, typing "comm", a
C-Q, and then "." gives "comm." without expanding.

wo

138 EMACS Manual for TWENEX Users

25.1.4. Listing Abbrevs

M-X List Word Abbrevs<cr) shows all currently defined abbrevs. An abbrev "foo"
that expands to "this is an abbrev" in Text mode and has been expanded 3 times, is
listed as:

foo: (Text) 3 "this is an abbrev"

An abbrev "gfoo" which expands to "this is a global abbrev" in all modes,
expanded 1 1 times, is listed as:

gloo: 11 "this is a global abbrev"

Note that any use of the double-quote character (") inside an expansion is doubled,
to distinguish the use of " from the "s that surround the whole expansion. Thus if the
global abbrev 'helpc' expands to 'the "Help" character', it is listed as:

helpc: 3 "the ."Ilelp." character"

25.1.5. Editing the Definition List

M-X Edit Word Abbrevs places you in a recursive editing level, editing the current
word abbrev definition list. The abbrevs appear in the same format used by M-X List
Word Abbrevs. When you exit (via C-M-Z), the current word abbrevs are redefined
from the edited definition list: any abbrevs that have been deleted from the list are
killed, new ones added to the list are defined, and old ones changed are modified. In
effect. after exiting the Edit Word Abbrev editing level, all previously-defined word
abbrevs are killed, and :he edited list is used to define new abbrevs. Typing C-] (Abort
Recursive Edit) aborts Edit Word Abbrevs, without killing or redefining any abbrevs.

25.1.6. Saving Abbrev Definitions

M-X Write Word Abbrev File0<filenameKcr> writes an "abbrev defiition file"
which contains the definitions of all the abbrevs in your EMACS now. M-X Read Word
Abbrev File0<filename'><cr> reads in such a file and defines the abbrevs. (Other
abbrevs already defined are not affected unless the file redefines them.) If you don't
supply a filename. the last file you used in either of these commands is used again,
originally defaulting to WORDAB.DEFNS. With these two commands, you can save
the abbrevs you defined in one EMACS and restore them in another EMACS another
day. It you want abbrevs to be automatically saved when you exit EMACS (with C-X
C-Z (-R Return to Superior)), set the option variable Save Word Abbrevs to 1. (They
are saved only if the definitions have changed.)

The format of the definition file is designed for fast loading, not ease of human
readability. (But if you have to, you can figure it out enough to read or even edit it.) If
you want M-X Write Word Abbrev File to write a human-readable version instead, set
the option Readable Word Abbrev Files to 1. (M-X Read Word Abbrev File will be able
to read this format, but not as fast.)

If you have an EVARS file, you might want to put the following lines into it in order to
turn on Word Abbrev mode, have your abbrev definition file automatically read when
EMACS starts up, and enable automatic exit-saving:

Word Abbreviation Input 139

I: 1 MM Word Abbrev Mode#

•: MM Read Word Abbrev File0WORDAB.DEFNS#
Save Word Abbrevs:1

Or if you have an init file, use the following Teco code:

1 MM Word Abbrev ModeO

MM Reed Word Abbrev File#WORDAB.DEFNS#
luOSave Word AbbrevsO

25.2. Advanced Usage

The use of Word Abbrev mode as discussed in the previous section suffices for
most users. However, some users who use Word Abbrev mode a lot or have highly
tailored environments may desire more flexibility or need more power to handle
extreme situations than the basic commands provide.

25.2.1. Alternatives and Customizations

M-X Make Word Abbrev O<abbrev> 0 <expansion> <mode><cr>

M-X Kill Ail Word Abbrevs(cr>
M-X Make These Characters Expand*<characters)<cr)
M-X Attach Word Abbrev Keyboard Macro
-R Kill Mode Word Abbrev

-R Kill Global Word Abbrev
Only Global Abbrevs

Set this option if you only use globals.
Additional Abbrev Expanders

Variable for adding a few more expanders.
WORDAB Ins Chars

Variable for replacing entire set of expanders.

The basic commands for defining a new mode abbrev, C-X C-A (-R Add Mode
Word Abbrev) and C-X C-H (-R Inverse Add Mode Word Abbrev), work only in the
current mode. A more general command is M-X Make Word Abbrev which takes three
string arguments: the first is the abbrev, the second is the expansion, and the third is
the mode (such as "Text"). This command can also define global abbrevs, by
providing "*" as the mode name.

M-X Kill All Word Abbrevs<cr> is a very quick way of killing every abbrev currently
defined. After this command, no abbrev will expand. (A slower but more careful way
is with M-X Edit Word Abbrevs.)

The functions -R Kill Mode Word Abbrev and ^R Kill Global Word Abbrev exist, but
are not connected to any commands by default. If you find having to specify negative
arguments to C-X C-A (^R Add Mode Word Abbrev) and C-X + (-R Add Global Word

f 140 EMACS Manual for TWENEX Users

Abbrev) inconvenient, you should connect these functions to characters. (See
section 5.2 [Set Key], page 22. Or See section 22.6 [Init], page 114.)

If you prefer to use only global abbrevs then you should set the option variable Only
Global Abbrevs to 1. You can do this after or before turning on Word Abbrev mode; it
makes no difference. This causes the global abbrev definers which would otherwise
be on C-X + (-R Add Global Word Abbrev) and C-X - (^R Inverse Add Global Word
Abbrev) to be on the easier to type characters C-X C-A and C-X C-H. In addition, the
checking done whenever you type an expander character (a punctuation character) is
about three times faster for the no-expansion case, which is what happens most of the
time.

Normally, the following characters cause expansion (followed by whatever they
would normally do were Word Abbrev mode off; such as, insert themselves): !-@#;
$%^&,- =+I0\I:'{,(.>'/? and Space, Return, and Tab. You can, however, specify
additional characters to cause expansion (digits. for instance, or greek letters on
keyboards with Top-keys). M-X Make These Characters Expand0<characters>(cr>
adds the characters in the string argument to the list of expanders. Alternatively, you
can set the variable Additional Abbrev Expanders to contain the string of characters.
(This is particularly useful in an init or EVARS file.) If you wish to completely replace
the set of characters that cause expansion, set the variable WORDAB Ins Chars in
your init file. See section 22.6 [init], page 114, for details on setting variables in init
and EVARS files.

25.2.2. Manipulating Definition Lists

One reason you might want to manipulate the definition lists is to provide more
structure to the definition environment than just the mode vs. global structure
provided normally, such as to group together in a file those abbrevs pertaining to one
topic.

M-X Insert Word Abbrevs<cr) inserts into the buffer a list of the current word abbrev
definitions, in the format that M-X List Word Abbrevs uses. M-X Insert Word
Abbrevs0<string><cr> inserts some of the abbrevs' delinitions; See section 25.2.3
[Many Abbrevs], page 140, for details.

M-X Define Word Abbrevs<cr> defines a set of word abbrevs from a definition list in
the buffer. There should be nothing else besides the definition list in the buffer; or, if
there is, you must narrow the buffer to just the definition list. See section 17
[Narrowing], page 77.

25.2.3. Dealing with Many Abbrevs

Some users build up a very large number of abbrevs. This causes a couple of
problems: First, defining all those abbrevs when EMACS starts up can become too
slow; this problem is discussed in the next section. Second, the commands that deal
with the entire definition list become unwieldy.

M-X List Word Abbrevs#<string><cr> shows you the definitions of just the abbrev
definitions containing <string> (in the abbrev, in the mode, or in the expansion). The

Word Abbreviation Input 141

argument is actually a -TECO search string (See section 19 3 IJECO searc h strings),
paoe 85.). If you want to see the abbrevs which -ontain either <(tring 1> or <string2,,
separate the strings with a 10; to see abbrev definitions co(taining either "defn" or
'wab", do M-X List Word Abbrevs~defnTOwab<cr>.

You can provide M-X List Word Abbrevs with an argument to control whether the
liltering string applies to just the abbrev (C-U 1), just the expansion (C-U 2), just the
mode (C-U 4), or any combination (the sum). C-U 3 M-X List Word Abbrevsolisp~cr>
%.dill jmtch "lisp" against abbrevs and expansions, but not modes.

M-X Insert Word AbbrevsO<string><cr> works similarly. but inserts the ist into the
bulfer instead of typing it out.

25.2.4. Dumped EMACS Environments
M-X Write Word Abbrev File# <filename><cr)

Writes a file of all abbrev definitions, before dumping.

M-X Read Word Ahbrev File 0filename><cr>
Reads file of abbrev definitions at init-time.

M-X Write Incremental Word Abbrev File*(filename>(cr>
Writes a file of abbrev definitions changed since dumping.

M-X Read Incremental Word Abbrev File 0filename><cr>
Reads file of changed abbrev definitions at startup-time.

Some users with highly customized EMACS environments (their init files take a long
time to run) "dump out" their environments, in effect creating another EMACS-like
program (the "dump") which starts up much faster. (For instance, 1.7 cpu seconds
instead of 70.5 cpu seconds. See the tile INFO:CONV.INFO, for more details about
dumping environments.) Since the dumped environment contains word abbrev
definitions, a dumped environment with hundreds of abbrevs can start just as quickly
as if it had none. (But reading all these abbrevs with M-X Read Word Abbrev File in
the init file originally took a long time.) For these users it is important, at dump-startup
time, to read in only those abbrevs which were changed or defined since the
environment was clumped out. A file which contains only these new abbrev's
definitions is called an incremental word abbrev file. (It also can specify that certain
abbrevs are to be killed if they were defined when the environment was dumped out,
but subsequently killed.)

The startup for the dump should use the Read Incremental Word Abbrev File
function instead of Read Word Abbrev File. It takes the filename as a string argument,
which defaults to INCABS..O. The command M-X Write Incremental Word Abbrev
File<filename<cr> writes such a file, writing out those abbrevs more recent than the
dump (ones read by Read Incremental Word Abbrev File and ones defined in the
current editing session).

Setting Save Word Abbrevs to -1 will cause an incremental abbrev file to be
automatically written, if necessary, when EMACS is exited.

When you want to dump out a new EMACS, first create a new, complete word
abbrev definition file using M-X Write Word Abbrev File. This file now has all abbrevs
in it, and you can thus delete any incremental definition files you have. Then start up

_Wlf
_1K

Iii

142 EMACS Manual for TWENEX Users

the new EMACS from scratch, using the init file, and dump it. (The init file in general
should call Read Word Abbrev File and then also call Read Incremental Word Abbrev
File, just in case there are both kinds of files around. The startup calls only Read
Incremental Word Abbrev File.) Note that these functions will return without error if
their files don't exist, as a convenience.

25.3. Teco Details for Extension Writers

This section documents some details that users programming extensions may need
to know, in order to interact properly with Word Abbrev mode operation or to build
upon it.

The variable WORDAB Setup Hook, if non-0, is executed when the WORDAB library
is loaded and sets itself up. (M-X Word Abbrev Mode<cr> in the default EMACS
environment auto-loads the WORDAB library.) If there is no hook, the normal key
connections (C-X C-A, C-X U, etc.) are made; if there is a hook, it must do the
connections.

The variable Word Abbrevs Modified is non-0 when abbrev definitions have
changed. This is used to signal the abbrev-saving mechanism.

The abbrev definers, such as C-X C-A (^R Add Mode Word Abbrev), check to see if
the volatile TECO mark, fs^RMarko, is set; if it is, then the region between point and
fs^RMark* is used as the expansion. The intention is to provide a mechanism for
simple but safe expansion marking. See section 22.5 [FS Flags], page 113.

Finally, the general way that Word Abbrev mode works is this: at certain times, when
characters are likely to have been reconnected, a Word Abbrev mode subroutine
looks at each of the expander characters to see if they are running an expander or
have been reconnected. If they don't have expanders, they are connected to an
expander function (which first checks for expansion and then calls the "old" function,
what the character was connected to before). The problem is that it is not really
possible to efficiently catch all the times that characters of interest are reconnected.
So, as a good guess, Word Abbrev mode looks at these characters when the & Set
Mode Line function is called, This happens when major or minor modes change,
when buffer switching happens, and when Set Key is used. These are the standard
times that connections are changed. However, the extension writer must be careful
about reconnecting expander characters. If an extension might do this, it should do
tfsMode Change4 to cause expansions to be redefined.

Lj -- -

Fhe PICTURE Subsystem, an Editor for Text Pictures 143

Chapter Twenty-Six

The PICTURE Subsystem, an Editor for
Text Pictures

If you want to create a picture made out of text characters (for example, a picture of
the division of a register into fields, as a comment in a program), the PICTURE
package can make it easier.

Do M-X Load Lib4PICTURE<cr>, and then M. X Edit Picture is available. Do M-X
Edit Picture with point and mark surrounding the picture to be edited. Edit Picture
enters a recursive editing level (which you exit with C-M-Z, as usual) in which certain
commands are redefined to make picture editing more convenient.

While you are inside Edit Picture. all the lines of the picture are padded out to the
margin with spaces. This makes two-dimensional motion very convenient; C-B and
C-F move horizontally, and C-N and C-P move vertically without the inaccuracy of a
ragged right margin. When you exit from Edit Picture, spaces at the ends of lines are
remove(l. Nothing stops you from moving outside the bounds of the picture, but if you
make any changes there slightly random things may happen.

Edit Picture makes alteration of the picture convenient by redefining the way
printing characters and Rubout work. Printing characters are defined to replace
(overwrite) rather than inserting themselves. Rubout is defined to undo a printing
character: it replaces the previous character with a space, and moves back to it.

Return is defined to move to the beginning of the next line. This makes it usable for
moving to the next apparently blank (but actually filled with nothing but spaces) line,
just as you use Return normally with lines that are really empty. C-O creates new
blank lines after point, but they are created full of spaces.

Tab is redefined to indent (by moving over spaces, not inserting them) to under the
first non-space on the previous line. Linefeed is as usual equivalent to Return
followed by Tab.

Four movement-control commands exist to aid in drawing vertical or horizontal
lines: If you give the command M-X tp Picture Movement, each character you type
thereafter will cause the cursor to move up instead of to the right. Thus if you want to
draw a line of dashes up to some point, you can give the command Up Picture
Movement. type enough (lashes to make the line, and then give the command Right

Picture Movement to put things back to normal. Similarly, there are functions to cause
downward and leftward movement: Down Picture Movement and Left Picture
Movement. These commands remain in effect only until you exit the Edit Picture
function, (One final note: you can use these cursor movement commands outside of

.7-

144 EMACS Manual for TWENEX Users

Edit Picture too, even when not in Overwrite mode. You have to be somewhat careful
though.)

Possible future extensions include alteration of the kill and tin-kill commands to
replace instead of deleting and inserting, and to' handle rectangles if two corners are
specified using point and the mark.

Sorting Functions 145

Chapter Twenty-Seven

Sorting Functions

The SORT library contains functions called Sort Lines, Sort Paragraphs and Sori
Pages. to sort the region alphabeticaty line by line, paragraph by paragraph or page
by page. For example, Sort Lines rearranges the lines in the region so that they are in
alphabetical order.

Paragraphs are defined in the same way as for the paragraph-motion functions (See
sectio3 11.2 tParagraphs], page 47.) and pages are defined as for the page motion
commands (See section 18 [Pagesj, page 79.). All of these functions can be undone
by the Undo command (See section 24.3 [Undo], page 128.). They take no arguments.

You can rearrange pages to any way you like using the functions Make Page
Permutation Table and Permute Pages From Table. Make Page Permutation Table
starts you editing a table containing the first line of each page. This table is kept in a
buffer named *Permutation Tabte*. You specy the new ordering for the pages by
rearranging the first lines into the desired order. You can also omit or duplicate pages
by omitting or duplicating the lines.

When you are finished rearranging the lines, use Permute Pages From Table to
rearrange the entire original file the same way. Reselect the original buffer first. The
permuted version is constructed in a tuffer named *Permuted File*. The original
buffer is not changed. You can use Insert Buffer to copy the data into the original
buffer.

X 7j

146 EMACS Manual for TWENEX Users

Particula, Types of Terminals 147

Appendix I

Particular Types of Terminals

1.1. Ideal Keyboards

An ideal EMACS keyboard can be recognized because it has a Control key and a
Meta key on each side, with another key labelled Top above them.

On an ideal keyboard, to type any character in the 9-bit character set, hold down
Control or Meta as appropriate while typing the key for the rest of the character. To
type C-M-K, type K while holding down Control and Meta.

The "bit prefix" characters that you must use on other terminals are also available
on terminals with Meta keys, in case you find them more convenient or get into habits
on those other terminals.

To type numeric arguments on these keyboards, type the digits or minus sign while
holding down either Control or Meta.

1.2. Keyboards with an "Edit" key

Keyboards with Edit keys probably belong to Datamedia or Teleray terminals. The
Edit and Control keys are a pair of shift keys. Use the Control key to type Control
characters and the Edit key to type Meta characters. Thus, the 9-bit EMACS
character C-M-Q is typed by striking the "Q" key while holding down "Edit" and
"Control".

While the Edit key is a true independent bit which can be combined with anything
else you can type, the Control key really means "ASCII control". Thus, the only
Control characters you can type are those which exist in ASCII. This includes C-A,
C-B, C-D through C-Z, C-I, C-@, C-\, and C--. C-C can be typed on the terminal but
it is intercepted by the operating system and therefore unavailable as EMACS
command. C-(is not available because its spot in ASCII is pre-empted by Altmode.
The corresponding Control-Meta commands are also hard to type. If you can't type
C-; directly, then you also can't type C-M-; directly.

Though you can't type C-; directly, you can use the bit prefix character C-- and type
C- ;. Similarly, while you can't type C-M-;, you can use the Control-Meta prefix C-Z
and type C-Z ;. Because C-- is itself awkward, we have designed the EMACS
command set so that the hard-to-type Control (non-Meta) characters are rarely
needed.

148 EMACS Manual for TWENEX Users

To type numeric arguments, it is best to type the digits or minus sign while holding
down the Edit key.

1.3. ASCII Keyboards

An ASCII keyboard allows you to type in one keystroke only the command
characters wilh equivalents in ASCII. No Meta characters are possible, and not all
Control characters are possible either. The Control characters which you can type
directly are C-A, C-B, C-D through C-Z, C-i, C-@, C-\, and C--. C-C can be typed
on the terminal but it is intercepted by the operating system and therefore unavailable
as EMACS command. C-[is not available because its spot in ASCII is pre-empted by
Altmode.

Those characters which you can't type directly can be typed as two character
sequences using the bit prefix characters Altmode, C-Z and C--. Altmode turns on
the Meta bit of the character that follows it. Thus, M-A can be typed as Altmode A,
and C-M-A as Altmode C-A. Altmode can be used to get almost all of the characters
that can't be typed directly. C-Z can be used to type any Control-Meta character,
including a few that Altmode can't be used for because Ihe corresponding non-Meta
character isn't on the keyboard. Thus, while you can't type C-M-; as Altmode
Control-;, since there is no Control-; in ASCII, you can type C-M-; as C-Z ;. The
Control (non-Meta) characters which can't be typed directly require the use of C-", as
in C-- < to get the effect ol C-<. Because C-" by itself is hard to type, the EMACS
command set is arranged so that most of these non-ASCII Control characters are not
very important. Usually they have synonyms which are easier to type. In fact, in this
manual only the easier-to-type forms are usually mentioned.

On ASCII keyboards, you can type a numeric argument by typing an Altmode
followed by the minus sign and/or digits. Then comes the command for which the
argument is intended. For example, type Altmode 5 C-N to move down five lines. If
the command is a Meta command, it must have an Altmode of its own, as in Altmode 5
Altmode F to move forward five words.

Note to customizers: this effect requires redefining the Meta-digit commands, since
the Altmode and the first digit amount to a Meta-digit character. The new definition is
-R Autcarg, and the redefinition is done by the default init file.

II you use numeric arguments very often, and you dislike having to start one with an
Altmode, you might enjoy using Autoarg mode, in which you can specify a numeric
argument by just typing the digits. See section 4 [Arguments], page 17, for details.

1.4. Upper-case-only Terminals

On terminals lacking the ability to display or enter lower case characters, a special
input and output case-flagging convention has been defined for editing files which
contain lower case characters.

The customary escape convention is that a slash prefixes any upper case letter; all

Particular Types of Terminals 149

unprefixed letters are lower case (but see below for the "lower case punctuation
characters"). This convention is chosen because lower case is usually more frequent
in files containiny any lower case at all. Llpper case letters are displayed with a slash
("/") in fronl. Typing a slash followed by a letter is a gJood way to insert an upper case
letter. Typing a letter without a slash inserts a lower cise letter. For the most part, the
buffei will appear as if the slashes had simpl been inserted (type /A and it i-Iserts an
upper case A, which displays as /A), but cursor- motion commands will reveal that the
slash and the A are really just one character. Anoth-r way to insert an upper-case
letter is to quote it with C-Q.

Note that this escape convention applies only to display of the buffer and insertion
in the buffer. It does not apply to arguments of commands (it is hardly ever useful for
them. since case is ignored in command names and most commands' arguments).
Case conversion is performed when you type commands into the minibuffe-, but not
when the comnands are actually executed.

The ASCII character set includes several punctuation characters whose codes fall
in the lower case range and which cannot be typed or displayed on terminals that
cannot handle lower case letters. These are the curly braces ("{" and "}"), the
vertical bar ("I"), the tilde ("~") and the accent grave (...) Their upper case
equivalents are, respectively, the square brackets ("I" and "]), the backslash ("\"),
the caret ("-), and the atsign ("@"). For these punctuation characters, EMACS uses
the opposite convention ol that used for letters: the ordinary, upper case punctuations
display as and are entered as themselves, while the lower case forms are prefixed by
slashes. This is because the "lower case" punctuations are much less frequently
used. So, to insert an accent grave, type /@".

When the slash escape convention is in effect, a slash is displayed and entered as
two slashes.

This slash-escape convention is not normally in effect. To turn it on, the TECO
command -1$ (minus one dollar sign, not Altmode!) must be executed. The easiest
way to do this is to use the minibuffer: Altmode Altmode -1$ Altmode Altmode. To
turn off the escape convention (for editing a file of all upper case), the command is 0$
(zero dollar sign), or Altmode Altmode 0$ Altmode Altmode. If you use such a bad
terminal frequently, you can define yourself an EMACS extension, a command to turn
slash-escape on and off.

The lower case editing feature is actually more flexible than described here. Refer
to the TECO commands F$ and FS CASEO, using M-X TECDOC, for full details. See
section 22.5 IFS Flags], page 113.

1.5. The SLOWLY Package for Slow Terminals

The SLOWLY library is intended as an aid for people using display terminals at slow
speeds. It provides means of limiting redisplay to smaller parts of the screen, and for
turning off redisplay for a time while you edit.

To use SLOWLY, do M-X Load Library#SLOWLY<cr), and if your terminal is a
display operating at 1200 baud or less (or if its speed is unknown) SLOWLY will set up
the commands described here.

sof

r

150 EMACS Manual for TWENEX Users

Comments, bugs, and suggestions to RWK@MIT-MC

1.5.1. Brief Description

SLOWLY provides an alternate version of the incremental searching commands on
C-S and C-R, ^R Edit Quietly on C-X Q, a way to shrink the screen at either the top or
the bottom on M-O, and more flexibility in where minibuffers get displayed. If
SLOWLY is loaded, it redefines these commands only if the terminal speed is 1200
baud or less.

1.5.2. SLOWLY Commands

The commands provided are:

M-O (-R Set Screen Size)
This function reduces the amount of the screen used for
displaying your text, down to a few lines at the top or the bottom. If
called without an argument, it will use the same size as last time
(or 3 if it hasn't been called before). If given a positive argument,
that is taken to be the number of lines to use at the top of the
screen. If given a negative argument, it is taken to be the number

of lines at the bottom of the screen. If given an argument of 0, it
returns to the use of the entire screen. The section of the screen
that is in use is (defauitly) delimited by a line of 6 dashes. This
command sets the variable Short Display Size.

C-S (-R Slow Display I-Search)
This function is just like the usual incremental search, except if the
search would run off the screen and cause a redisplay, it narrows
the screen to use only a few lines at the top or bottom of the
screen to do the redisplay in. When the search is exited, use of
the full screen resumes. The size of the window used for the
search is the value of the variable Slow Search Lines. If it is
positive, it is the number of lines at top of screen; if negative, it is
the number of lines at bottom of screen. The default is 1. The
variable Slow Search Separator contains the string used to show
the end of the search window. By default it is six dashes. See
section 10 [Search), page 43.

C-R (-R Slow Reverse Display I-Search)
This searches in backwards in the style of ^R Slow Display
I-Search.

C-X 0 (-R Edit Quietly)
This function enters a recursive editing level with redisplay
inhibited. This means that your commands are carried out but the
screen does not change. C-L with no argument redisplays. So
you can update the screen when you want to. Two C-Ls in a row
clear the screen and redisplay. C-L with an argument repositions
the window, as usual (See section 15 [C-L], page 71.). To exit and
resume continuous redisplay, use C-M-Z.

Particular Types of Terminals 151

1.5.3. Minibuffers

SLOWLY provides control over how minibuffers display on your screen. The
variable Minibuffer Size specifies how many lines it takes up. If this is made negative,
the minibuffer will appear at the bottom of the screen instead of the top. Thus one
node of operation which some people like is to use -R Set Screen Size to set up to not
use the bottom 3 lines of the screen, and set Minibuffer Size to -3. This will
permanently reserve 3 lines at the bottom of the screen for the minibuffer. See
section 23 [Minibutler], page 123..

The variable Minibuffer Separator holds the string used to separate the minibuffer

area from the rest of the screen. By default, this is six dashes.

SLOWLY instalis its minibuffer by defining the variable MM & Minibuffer.

1.5.4. SLOWLY Options

The simplest way to run SLOWLY is to siMply load it, and use the default key
assignments. etc. SLOWLY sets up those key assigrmerts only if your terminal is no
faster than 1200 baud.

II you want SLOWLY to not set up these things unless your terminal is running at
300 baud or slower (ugh!), set the variable SLOWLY Maximum Speed to the highest
speed at which SLOWLY is desired. Put the following in your EMACS init file:

300 M.VSLOWLY Maximum Speed#

If you don't like the command assignments set up by SLOWLY, you can override
them by defining the variable SLOWLY Setup Hook before loading SLOWLY. The
value should be TECO commands to define the command assignments you wish.

SLOWLY normally uses lines of six dashes to separate areas of the screen. You can
tell it to use something else instead. Minibuffers use the value of Minibuffer Separator,
searches use the value of Slow Search Separator. If one of these is unspecified (the
variable does not exist), the value of Default Separator is used. The separator for
small screen mode is always the value of Default Separator. If the value specified is
the null string, a blank line is used. If the value specified is zero, nothing (not even a

blank line) is used. This is useful for searches, since you aren't going to be doing any
editing in the search window.

Even though SLOWLY does not redefine the commands on a fast terminal, you
might wish to load it only on slow terminals to save address space the rest of the time.
This can be done in an init file with

fsospeed#-1200:"g m(m.mLoad Library#)SLOWLY+'

4.-

152 EMACS Manual for TWENEX Users

! I ________________

Use of EMACS from Printing Terminals 153

Appendix 11

LJse of EMACS from Printing Terminals

While EMACS was designed to be used from a display ierminal, you can use it
effectively from a printing terminal. You cannot, however, learn EMACS using one.

All EMACS commands have the same editing effect from a printing terminal as they
do from a display. All that is different is how they try to show what they have done.
EMACS attempts to make the same commands that you would use on a display
terminal act like an interactive line-editor. It does not do as good a job as editors
designed originally for that purpose, but it succeeds well enough to keep you informed
of what your commands are accomplishing, provided you know what they are
supposed to do and know how they would look on a display.

I he usual buffer display convention for EMACS on a printing terminal is that the part
of the current line before the cursor is printed out, with the cursor following (at the
right position in the line). What (ollows the cursor on the line is not immediately
visible, but normally you will have a printout of the original contents of the line a little
ways back up the paper. For example, if the current line contains the word
"FOOBAR", and the cursor is after the "FOG", just "FOG" would appear on the
paper, with the cursor following it. Typing the C-F command to move over the "B"
would cause "B" to be printed, so that you would now see "FOOB" with the cursor
following it. All forward-motion commands that move reasonably short distances print
out what they move over.

Backward motion is handled in a complicated way. As you move back, the terminal
backspaces to the correct place. When you stop moving back and do something else,
a linefeed is printed first thing so that the printing done to reflect subsequent
commands does not overwrite the text you moved back over and become garbled by
it. The Rubout command acts like backward motion, but also prints a slash over the
character rubbed out. Other backwards deletion commands act like backward
motion; they do not print slashes (it would be an improvement if they did).

One command is different on a printing terminal: C-L, which normally means "clear
the screen and redisplay". With no argument, it retypes the entire current line. An
argument tells it to retype the specified number of lines around the current line.

Unfortunately, EMACS cannot perfectly attain its r" *al of making the text printed on
the current line reflect the current line in the buffer, and keeping the horizontal
position of the cursor correct. One reason is that it is necessary for complicated
commands to echo, but echoing them screws up the "display". The only solution is to
type a C-L whenever you have trouble following things in your mind. The need to
keep a mental model of the text being edited is, of course, the fundamental defect of
all printing terminal editors.

,j. - - .--

1154 EMACS Manual for TWENEX Users

Note: it is possible to make a specific command print on a printing terminal in
whatever way is desired, if that is worth while. For example, Linefeed knows explicitly
how to display itself, since the general TECO redisplay mechanism isn't able to handle
it. Suggestions for how individual commands can display themselves are welcome, as
long as they are algorithmic rather than simply of the form "please do the right thing".

Glosry 1

Glossary 155

Glossary

Aborting Aborting a recursive editing level (q.v.) r-3ans canceling the
command which invoked the recursive editing. For example, if you
abort editing a message to be sent, the message is not sent.
Aborting is done with the command C-1. See section 24.1
[Aborting], page 125.

Altmode Allmode is a character, labelled Escape on some keyboards. It is
the bit prefix character (q.v.) used to ente- Meta-characters when
the keyboard does not have a Meta (qv.) key. See section 2
[Cliaracte.s], page 9. Also, it delimits string arguments to
extended commands. See section 5 [Extended Commands],
page 19.

Balance Parentheses
EMACS can balance parentheses manually or automatically. You
can ask to move from one parenthesis to the matching one. See
section 20.5.1 [Lists], page 93. When you insert a close
parenthesis, EMACS can show the matching open. See
section 20.3 IMatchingi, page 89.

Bit Prefix Character
A bit prefix character is a command which combines with the next
character typed to make one character. They are used for
effectively typing commands which the keyboard being used is not
able to send. For example, to use a Meta-character when there is
no Meta key on the keyboard, the bit prefix character Altmode
(q.v.) is needed. See section 2 [Characters], page 9.

Buffer The buffer is the basic editing unit; one buffer corresponds to one
piece of text being edited. You can have several buffers, but at
any time you are editing only one, the "selected' buffer, though
two can be visible when you are using two windows. See
section 14 [Buffers], page 67.

C- C is an abbreviation for Control, in the name of a character. See
section 2 [Characters], page 9.

C-M- C-M- is an abbreviation for Control-Meta, in the name of a
character. See section 2 [Characters], page 9.

Command A command is a character or sequence of characters which, when
typed by the user, fully specifies one action to be performed by
EMACS. For example, "X" and "Control-F" and "Meta-X Text
Mode<cr>" are commands. See section 2 [Characters], page 9.
Sometimes the first character of a multi-character command is
also considered a command: M-X Text Mode<cr> is a command
(an extended command), and M-X is also a command (a command

156 EMACS Manual for TWENEX Users

to read a function name and invoke the function). See section 5
[Extended Commands], page 19.

Completion Completion is what EMACS does when it automatically fills out the
beginning of an extended command name into the full name, or as
much of it as can be deduced for certain. Completion occurs
when Altniode, Space or Return is typed. See section 5 [Extended
Commands], page 19.

Connected A character command in EMACS works by calling a function which
it is "connected" to. Customization often involves connecting a
character to a different function. See "Dispatch table". See
section 2 ICharactes], page 9.

Continuation Line When a line of text is longer than the width of the screen, it is
displayed on more than one line of screen. We say that the line is
continued, and that all screen lines used but the first are called
continuation lines. See section 3 [Basic Editing], page 13.

Control Control is the name of a hit which each command character does
or does not contain. A character's name includes the word
Control if the Control bit is part of that character. Ideally, this
means that the character is typed using the Control key: Control-A
is typed by typing "A" while holding down Control. On most
keyboards the Control key works in only some cases: the rest of
the time, a bit prefix character (q.v.) must be used. See section 2
[Characters], page 9.

Control-Character A Control character is a character which includes the Control bit.

ControI-X Command
A ControI-X command is a two-character command whose first

fcharacter is the prefix character Control-X. See section 2
[Characters], page 9.

<cr> <cr> stands for the carriage return character, in contexts where
the word "Return" might be confusing. See section 2
[Characters], page 9.

CRLF CRLF stands for the sequence of two characters, carriage return
followed by linefeed, which is used to separate lines in files and in
text being edited in EMACS. See section 2 [Characters], page 9.

Cursor The cursor is the object on the screen which in(icates the position
called point (q.v.) at which insertion and deletion takes place. The
cursor is part of the terminal, and often blinks or underlines the
character where it is located. See section 1 [Screen], page 5.

Customization Customization is making minor changes in the way EMACS works,
It is often clone by setting variables (See section 22.3 [Variables],
page 109.) or by reconnecting commands (See section 5.2
[Functions], page 22.).

DEFUN A DEFUN is a list at the top level of list structure in a Lisp program.
It is so named because most such lists are calls to the Lisp
function DEFUN. See section 20.5.2 [DEFUNs], page 95.

Delete This is the label used on some keyboards for the Rubout
character.

Glossary 157

Deletion Deletion means erasing text without saving it. EMACS ileletes text
only when it is expected not to he worth saving (all whitespace or
only one character). The alternative is killing (qv). See
section 9.1 [Killing], page 37.

Dispatch Table The dispatch table is what records the connections (q.v) from
command characters to functions. Think of ,., telephone
switchboard connecting incoming lines (commands) to telephones
(functions). A standard EMACS has one set of connections; a
customized EMACS may have different connectir-is. See
section 5.2 [Functions], page 22.

Echo Area The echo area is the bottom three lines of the screen, used for
echoing the arguments to commands, for asking questions, and
printing brief messages. See section 1 [Screen], page 5

Ecnoing Echoing is acknowledging the receipt of commands by disp!aying
them (in the echo area). Most programs other than EMACS echo
all their commands. EMACS never echoes single-character
commands; longer commands echo only if you pause while typing
them.

Escape Escape is the label used on some keyboards for the Altmode
character.

Exiting Exiting EMACS means returning to EMACS's superior, normally
EXEC. See section 6.3 [Exiting], page 27. [xiting a recursive
editing level (q.v.) means allowing the command which invoked the
recursive editing to complete normally. For example, if you are
editing a message to be sent, and you exit, the message is sent.

Extended Command
An extended command is a command which consists of the
character Meta-X followed by the command name (really, the
name of a function (q.v.)). An extended command requires several
characters of input, but its name is made up of English words, so it
is easy to remember. See section 5 [Extended Commands],
page 19.

Extension Extension means making changes to EMACS which go beyond the
bounds of mere customization. If customization is moving the
furniture around in a room, extension is building new furniture.
See the file INFO:CONV.INFO.

Filling Filling text means moving text from line to line so that all the lines
are approximately the same length. See section 11.4 [Filling],
page 50.

Function A function is a named subroutine of EMACS. When you type a
command, EMACS executes a function which corresponds to the
command, and the tunction does the work. Character commands
are connected to functions through the dispatch table (q.v.).
Extended commands contain the name of the function to be
called; this allows you to call any function. See section 5
[Extended Commands], page 19.

Global The global value of a variable or of a command character
definition applies to all bulfers and all files (except those which

158 EMACS Manual for I WENEX Users

have their own local values of the variable or definition). See
section 22.3 [Variables], page 109.

Grinding Grinding means relormatting a program so that it is indented
according to its structure. See section 20.6 [Grinding], page 95.

Help You can type the Help character at any time to ask what options
you have, or to ask what any command does. See section 7
[Help], page 31.

Home Directory Your home directory is the one on which your mail and your init
files are stored. Twenex does not distinguish this from the working
directory (connected directory).

INFO INFO is the subsystem for perusing tree-structured documentation
files. The documentation in INFO includes a version of the EMACS
manual.

ITS ITS is the Incompatible Timesharing System written at the MIT
Artificial Intelligence Lab. EMACS was first developed on this
system. Just what it is incompatible with has changed from year to
year.

Kill Ring The kill ring is where killed i-xt is saved. It holds the last nine or so
blocks ol killed text. It is called a ring because you can bring any
of the saved blocks to the front by rotating the ring. See
section 9.2 [Un-Killing], page 39,

Killing Killing means erasing text and saving it inside EMACS to be
recovered later if desired. Most EMACS commands to erase text
do killing, as opposed to deletion (q.v.). See section 9.1 [Killing],
page 37.

List A list is, approximately, a text string beginning with an open
parenthesis and ending with the matching close parenthesis. See
section 20.5.1 [Lists], page 93. Actually there are a few
complications to the syntax, which is controlled by the syntax table
(See section 22.4 1Syntax], page 111.).

Local A local value of a variable or of a command character definition
applies to only one buffer or ile. See section 22.7 [Locals],
page 118.

Local Modes List A local modes list appears in a file to specify local values for
variables or command character definitions, to be in effect while
visiting that file.

M- M- in the name of a character is -in abbreviation for Meta.

M-X M-X is the character which bec;ins an extended command (4v.).
Extended commands have come to be known also as "M-X
commands", and an individual extended command is often
referred to as "M-X such-anc such". See section 5 [M-X],
page 19.

Major Mode The major modes are a mutually exclusive set of options which
configure EMACS for editing a certain sort of text. Ideally, each
programming language has its own major mode. See section 20.1
[Major Modes], page 87.

Glossary 159

Mark The mark points, invisiblv, to a position in the text. Many
commands operate on the text between point and the mark
(known as the region, q.v). 'See section 8 IMark], page 33.

Meta Meta refers to the Meta key A character's name includes the word
Meta it the Meta key must be he!d (]own in order to type the
character. If there is no Meta key, then the Altmode rharacter is
used as a prefix instead. See section 2 ICharactersj, page 9.

Meta Character A Meta character is one whose cliaracter code includes the Meta
bit. These characters can be typed only liv means of v Meta key or
by means of the nietizer command (q.v.)

Metizer The metizer is another term for the bit prefix character for the Meta
bit; namely, Altrvode (q.v.).

Minibuffer The minibuffer is a facility for editing and then executing a TECO
programn. See section 22 [Minibuffer], page 123.

Minor mode A minor mode is an optional feature of EMACS which can be
switched on or ofi independently of all other features. Each minor
mode is both the name of an option (q.v.) and the name of an
extended command to set the option. See section 22.1 [Minor
Modes]. page 107.

MM-command This is an obsolete synonym for "extended command".

Mode line The mode line is a lioe jlust above the echo area (q.v.), used for
status information. See secion 1 1 I Mode Line], page 6.

Narrowing Narrowing means limiling editing to only a part of the text in the
buffer. Text outside that part is inaccessible to the user until the
boundaries are widened again, but it is still there, and saving the
file saves it all. See section 17 [Narrowing], page 77.

Node The node is the unit of structure of INFO (q.v.) files. When
referring to documentation contained only in INFO files, we
sometimes refer to a node of a specific name, in a specific file, as
in "See the file INFO:CONV.INFO, node Hooks".

Numeric Argument
A numeric argument is a number specified before a command to
change the effect of the command. Often the numeric argument
serves as a repeat count. See section 4 [Numeric Arguments],
page 17.

Option An option is a variable which exists to be set by the user to change
the behavior of EMACS commands. This is an important method
of customization. See section 22.3 [Variables], page 109.

Parse We say that EMACS parses words or expressions in the text being
edited. Really, all it knows how to do is find the other end of a
word or expression. See section 22.4 ISyntax], page 111.

Point Point is the place in the buffer at which insertion and deletion
occur. Point is considered to be between two characters, not at
one character. The terminal's cursor (q.v.) indicates the location
of point. See section 3 [Basic], page 13.

Prefix Character A prefix character is a command whose sole function is to

4.

160 EMACS Manual for TWENEX Users

introduce a set of multi-character commands. Control-X (q.v .) is a
prefix character. The bit prefix characters (q.v.) are other
examples.

Prompt A prompt is text printed in the echo area to ask the user for input.
Printing a prompt is called "prompting". EMACS can prompt
when a command requires an argument, or when only part of a
command has been typed. However, the prompt will not appear
UnIess you pause in your typing. See section 5 [Extended
Commands], page 19.

Q-Registers Q-registers are internal TECO variables which can be used by
EMACS or by the user to store text or numbers.

Quitting Quitting means interrupting a command which is partially typed in
or already executing. It is done with Control-G. See section 24.1
[Quitting], page 125.

Quoting Quoting means depriving a character of its usual special
significance. It is usually done with Control-Q. What constitutes
special significance depends on the context and on convention.
For example, an "ordinary" character as an EMACS commaiid
inserts itself; so you can insert any other character, such as
Rubout, by quoting it as in Control-Q Rubout. Not all contexts
allow quoting. See section 3 [Basic Editing], page 13.

Recursive Editing Level
A recursive editing IeVet is a state in which part of the execution of
a command involves asking the user to edit some text. This text
may or may not be the same as the text to which the command was
applied. The mode line indicates recursive editing levels with
square brackets ("[" and "I") See section 6.2 IRecursive Editing
Level], page 26.

Redisplay Redisplay is the process of correcting the image on the screen to
correspond to changes that have been made in the text being
edited. See section I [Screen], page 5.

Region The region is the text between point (q.v.) and the mark (q.v.). The
terminal's cursor indicates the location of point, but the mark is
invisible. Many commands operate on the text of the region. See
section , [Mark], page 33.

Return Return is the carriage return character, used as input to EMACS.
Return is used as a command in itself to insert a line separator. It
also terminates arguments for most commands. See section 2
[Characters], page 9.

Rubout Rubout is a character, sometimes labelled "Delete". It is used as a
command to delete one character of text. It also deletes one
character when an EMACS command is reading an argument.

S-expression An s-expression is the basic syntactic unit of Lisp: either a list, or
a symbol containing no parentheses (actually, there are a few
exceptions to the rule, based on the syntax of Lisp). See
section 20.5.1 [Lists], page 93.

Selecting Selecting a buffer (qv.) means making editing commands apply to

Glossary 161

that buffer as opposed to any other. At all times one buffer is
selcted and editing takes place in that buffer. See section 14
[Buffers], page 67.

Self-documentation
Self-documentation is the feature of EMACS which can tell jou
what any command does, or give you a iist of all commands
related to a topic you specify. You ask for self-documentation
with the Help character. See section 7 (Help], page 31.

String Argument A string argument is an argument which follows the command
name in an extended command. In "M-X Apropos4word<cr>",
"Word" is a string argument to the Apropcs command. See
section 5 [Extended Commands], page 19.

Subsystem A subsystem of EMACS is an EMACS command which, itself,
reads commands and displays the results. Examples are INFO,
which is for perusing documentation: DIRED, which is for editing
directories; BABYL, which is for reading and editing mail. The
word "subsystem" implies that it offers many independent
commands which can be used freely. If an EMACS function asks
specific questions, we do not call it a subsystem.

Usually the subsystem continues in operation until a specific
command to exit (usually "0") is typed. The commands for a
subsystem do not usually resemble ordinary EMACS commands,
since editing text is not their purpose. The Help character should
elicit the subsystem's documentation. See section 6.1
[Subsystemsl, page 25.

Syntax Table The syntax table tells EMACS which characters are part of a word,
which characters balance each other like parentheses, etc. See
section 22.4 [Syntax], page 111.

Tailoring This is a synonym for customization (q.v.).

TECO Search String
A TECO search string is a sort of pattern used by the TECO search
command, and also by various EMACS commands which use the
TECO search command. See section 19.3 ITECO search strings),
page 85.

Top Level Top level is the normal state of EMACS, in which you are editing
the text of the file you have visited. You are at top level whenever
you are not in a recursive editing level or a subsystem (q.v.).

Twenex Twenex is the operating system which DEC likes to call
"TOPS-20". However, a person should not be forced to call a
system "tops" unless he really thinks so. Come now, DEC, don't
you think people will praise your products voluntarily? The name
"Twenex" is also more appropriate because Twenex was
developed from the Tenex system, and has no relationship to
"TOPS-10". What's more, it's very euphonious.

Typeout Typeout is a message, printed by an EMACS command, which
overwrites the area normally used for displaying the text being
edited, but which does not become part of the text. Typeout is
used for messages which might be too long to fit in the echo area
(q.v.). See section 1 [Screen], page 5.

7
162 EMACS Manual for TWENEX Users

Undo Undo is a command which midoes the effect on the buffer of a
previous command. Only some commands are undoable and only
the most recent undoable command can be undone. See
section 24.3 [Undo], page 128.

Un-killing Un-killing means reinserting text previously killed. It can be used
to undo a mistaken kill, or for copying or moving text. See
section 9.2 [Un-killing], page 39.

User Name Your user name is the name you use to log in. It identifies you as
opposed to all the other users. It may be the same as your home
directory's name.

Variable A variable is a name with which EMACS associates a value, which
can be a number or a string. See section 22.3 [Variablesl,
page 109. Some variables ("options") are intended to be used or
set by the user; others are for purely internal purposes.

Virtual Boundaries
The virtual boundaries delimit the accessible part of the buffer,
when narrowing (q.v.) is in effect. See section 17 [Narrowing),
page 77.

Visiting Visiting a tile means loading its contents into a buffer (q.v.) where
they can be edited. See section 13.1 [Visiting], page 57.

Wall Chart The wall chart is a very brief EMACS reference sheet giving one
line of information about each short command. A copy of the wall
chart appears in this manual.

Whitespace Whitespace is any run of consecutive formatting characters
(space, tab, carriage return, linefeed, and backspace).

Widening Widening is the operation which undoes narrowing (q.v.). See
section 17 [Narrowing], page 77.

Window A window is a region of the screen in which text being edited is
displayed. EMAGS can divide the screen into two windows. See
section 16 [Windows], page 73. "The window" also means the
position in the buffer which is at the top of the screen. See
section 15 [Display], page 71.

Working Directory This is another term for the directory you are connected to, a term
which is used on other systems besides Twenex.

R The string "-R" is the beginning of many function names. See
section 5.2 [Functions], page 22.

-R Mode -R mode is the real time editing mode of TECO. EMACS always
operates in this mode.

Command Index 1e-63,

Command Index

This index contains brief descriptions with cross references for all commands,
grouped by topic. Within each topic, they are in alphabetica.1 order. Our version of
alphabetical order places non-control non-meta characters first, then control
characters, then meta characters, then cont:ol-meta characters. Control-X and
Meta-X commands come last.

Prefix Characters

Altmode (-R Prefix Meta)
Altmode is a bit prefix character which turns on the Meta bit in the
next character. Thus. Altmode F is equivalent to the single
character Meta-F. which is useful if your keyboard has no Meta
key. See section 2 [Characters], page 9.

Control-' (,R Prefix Control)
Control- is a bit prefix character which turns on the Control bit in
the following character. Thus, Control-" < is equivalent to the
single character Control-<. See section 2 [Characters], page 9.

Control-Z (-R Prefix Control-Meta)
Control-Z is a bit prefix character which turns on the Control bit
and the Meta bit in the following character. Thus, Control-Z ; is
equivalent to the single character Control-Meta-;. See section 2
[Characters], page 9.

Control-Q (^R Quoted Insert)
Control-Q inserts the following character. This is a way of
inserting control characters. See section 3 [Basic Editing],
page 13.

Control-U (-R Universal Argument)
Control-U is a prefix for numeric arguments which works the same
on all terminals. See section 4 [Arguments], page 17.

Control-X
Control-X is a prefix character which begins a two-character
command. Each combination of Control-X and another character
is a "Control-X command". Individual Control-X commands
appear in this index according to their uses.

Meta-X (-R Extended Command)
Meta-X is a prefix character which introduces an extended
command name. See section 5 [Meta-X], page 19.

Control-Meta-X (-R Instant Extended Command)

164 EMACS Manual for TWENEX Users

Control-Meta-X is another way of invoking an extended command.
Instead ol putting the arguments in the same line as the command
name, the command reads the arguments itself. See section 5
1 Mtta-X1, page 19.

control -digits, Meta -igils, Contol Mela -digits
T hese all specify a numuiic argument lor the next command. See
section 4 [Arguments), page 17.

ControI-Minus, Meta-Minus, Control-Meta-Minus
These all begin a negative numeric argument for the next
command. See section 4 [Arguments], page 17.

Simple Cursor Motion

Control-A (-R Beginning of Line, built-in function)
Control-A moves to the beginning of the line. See section 3 [Basic
Editing], page 13.

Control-B (-R Backward Character, built-in function)
Control-B moves backward one character. See section 3 [Basic
Editing], page 13.

Control-E (-R End of Line, built-in function)
Control-E moves to the end of the line. See section 3 [Basic
Editing], page 13.

Control-F (-R Forward Character, built-in function)
Control-F moves forward one character. See section 3 [Basic
Editing], page 13.

Control-H (-R Backward Character, built-in function)
Control-H moves backward one character. See section 3 [Basic
Editing], page 13.

Control-N ('R Down Real Line)
Control-N moves vertically straight down. See section 3 [Basic
Editing], page 13.

Control-P (^R Up Real Line)
Control-P moves vertically straight up. See section 3 [Basic
Editing], page 13.

Control-R (^R Reverse Search)
Control-R is like Control-S but searches backward. See
section 10 [Search], page 43.

Control-S (-R Incremental Search)
Control-S searches for a string, terminated by Altmode. It
searches as you type. See section 10 [Search], page 43.

Meta-< (^R Goto Beginning)
Meta-< moves to the beginning of the buffer. See section 3 [Basic

Editing], page 13.

Meta-> (-R Goto End)
Meta-> moves to the end of the buffer. See section 3 [Basic
Editing], page 13.

Command Index 165

Control-X Control-N (-R Set Goal Column)
Control-X Control-N sets a horizontal goal for the Control-N and
Control-P commands. When there is a goal, those commands try
to move to the goal column instead of straight up or down.

Lines

Return (-R CRLF)
Return inserts a line separator, or advances onto a following blank
line. See section 3 [Basic Editing], page 13.

Control-O (-P Open Line, built-in function)
Control-O inserts a line separator, but point stays before it. See
section 3 [Basic Editing], page 13.

Control-X Control-O (-R Delete Blank Lines)
Control-X Control-C deletes all but one of the blank lines around
point. If the current line is no: blank, all blank lines following it are
deleted. See section 3 [Basic Editing], page 13.

Control-X Control-T (-R Transpose Lines)
Control-X Control-T transposes the contents of two lines. See
section 12 [Fixing Typos], page 55.

Killing and Un-killing

Rubout (-R Backward Delete Character, built-in function)
Rubout deletes the previous character. See section 3 [Basic
Editing], page 13.

Control-Rubout (-R Backward Delete Hacking Tabs, built-in function)
Control-Rubout deletes the previous character, but converts a tab
character into several spaces. See section 20.5 [Lisp], page 92.

Control-D (-R Delete Character, built-in function)
Control-D deletes the next character. See section 3 [Basic
Editing[, page 13.

Control-K (-R Kill Line)
Control-K kills to the end of the line, or, at the end of a line, kills
the line separator. See section 9.1 [Killing], page 37.

Control-W (-R Kill Region)
Control-W 'tdlls the region, the text betwen point and the mark.
See section 9.1 [Killing], page 37. See section 8 [Region],
page 33.

Control-Y (^R Un-kill)
Control-Y reinserts the last saved block of killed text. See
section 9.2 [Un-Killing], page 39.

Meta-W ('R Copy Region)
Meta-W saves the region as if it were killed without removing it
from the buffer. See section 9.2 [Un-Killing], page 39.

____1

166 EMACS Manual for TWENEX Users

Meta-Y (-R Un-kill Pop)
Meta-Y rolls the kill ring to reinsert saved killed text older than the
most recent kill. See section 9.2 [Un-Killing], page 39.

Control-Meta-W (-R Append Next Kill)
Control-Meta-W causes an immediately following kill command to
append its text to the last saved block of killed text. See
section 9.2 [Un-Killing], page 39.

Control-X T (-R Transpose Regions)
Contiol-X T transposes two arbitrary regions defined by point and
the last three marks. See section 12 [Fixing Typos], page 55.

M-X Overwrite Mode
M-X Overwrite Mode turns Overwrite mode on or off. In Overwrite
mode, printing characters overwrite existing text instead of
pushing it to the right. See section 22.1 [Minor Modes], page 107.

Scrolling and Display Control

Control-L (-R New Window)
Control-L clears the screen and centers point in it. With an
argument, it can put point on a specific line of the screen. See
section 15 [Display], page 71.

Control-V ('R Next Screen)
Control-V scrolls the text upward by a screenful or several lines.
See section 15 [Display], page 71.

Meta-R (^R Move to Screen Edge)
Meta-R moves point to beginning of the text on a specified line of
the screen. See section 15 [Display], page 71.

Meta-V (-R Previous Screen)
Meta-V scrolls downward by a screenful or several lines. See
section 15 [Display], page 71.

Control-Meta-R (-R Reposition Window)
Control-Meta-R tries to center on the screen the function or
paragraph you are looking at. See section 15 [Display], page 71.

Control-Meta-V (-R Scroll Other Window)
Control-Meta-V scrolls the other window up or down. when you
are in two window mode. See section 16 [Windows], page 73.

M-X View Buffer
M-X View Buffer skips through a buffer by screenfuls. See
section 15 [Display], page 71.

M-X View File
M-X View File lets you move through a file sequentially by
screenfuls forward and back. See section 13.7 (View File],
page 64.

jo_

Command Index 167

The Mark and the Region

Control-< (-R Mark Beginning)
Control-< sets the mark at the beginning of the buffer. See
section 8 [Mark], page 33.

Control-> (-R Mark End)
Control-> sets the mark at the end of the buffer. See section 8
[Mark], page 33.

Control-@ (^R Set/Pop Mark)
Control-@ sets the mark or moves to the location of the mark.
See section 8 [Mark], page 33.

Meta-@ (-R Mark Word)
Meta-@ puts the mark at the end of the next word. See
section 11.1 [Words], page 45.

Meta-H (-R Mark Paragraph)
Meta-H puts point at the beginning of the paragraph and the mark
at the end. See section 11.2 ISentcnces], page 47.

Control-Meta-@ ('R Mark Sexp)
Control-Meta--@ puts the mark at the end of the next
s-expression. See section 20.5.1 [Lists], page 93.

Control-Meta-H (-R Mark DEFUN)
Control-Meta-H puts point at the beginning of the current DEFUN
and the mark at the end. See section 20.5.2 [DEFUNs], page 95.

Control-X H (-R Mark Whole Buffer)
Control-X H puts point at the beginning of the buffer and the mark
at the end. See section 8 [Mark], page 33.

Control-X Control-P (-R Mark Page)
Control-X Control-P puts point at the beginning of the current
page and the mark at the end. See section 18 [Pages], page 79.

Control-X Control-X (-R Exchange Point and Mark)
Control-X Control-X sets point where the mark was and the mark
where point was. See section 8 [Mark], page 33.

Whitespace and Indentation

Tab (-R Indent According to Mode)
Tab either adjusts the indentation of the current line or inserts
some indentation, in a way that depends on the major mode. See
section 20.2 [Indenting Programs], page 88. See section 11.3
[Indenting Text], page 48.

Linefeed (-R Indent New Line)
Linefeed is equivalent to Return followed by Tab. It moves to a
new line and indents that line. If done in the middle of a line, it
breaks the line and indents the new second line. See section 11.3
[Indenting Text], page 48.

168 EMACS Manual for TWENEX Users

Meta-Tab (-R Tab to Tab Stop)
Meta-Tab indents to the next EMACS-defined tab stop. See
section 11.3 [Indenting Text], page 48.

Meta-M (-R Back to Indentation)
Meta-M positions the cursor on the current line after any
indentation. See section 11.3 [Indenting Text], page 48.

Meta-\ (-R Delete Horizontal Space)
Meta-\ deletes all spaces and tab characters around point. See
section 11.3 [Indenting Text], page 48.

Meta- (-R Delete Indentation)
Meta-- joins two lines, replacing the indentation of the second line
with zero or one space, according to the context. See section 11.3
[Indenting Text], page 48.

Control-Meta-O (-R Split Line)
Control-Meta-0 breaks a line, preserving the horizontal position
of the second half by indenting it to its old starting position. See
section 11.3 [Indenting Texti, page 48.

Control-Meta-\ (-R Indent Region)
Control-Meta-\ indents each line in the region, either by applying
Tab to each line, or by giving each the same specified amount of
indentation. See section 11.3 [Indenting Text], page 48.

Control-X Tab (^R Indent Rigidly)
Control-X Tab shifts all the lines in the region right or left the same
number of columns. See section 11.3 [Indenting Text], roage 48.

M-X Edit Indented Text
M-X Edit Indented Text enters a recursive editing level designed
for editing text in which each line is indented. See section 11.4
[Filling], page 50.

M-X Edit Tab Stops
M-X Edit Tab Stops lets you edit the tab stops used by -R Tab to
Tab Stop. See section 11.3 lIndenting Text], page 48.

M-X Edit Tabular Text
M-X Edit Tabular Text enters a recursive editing level designed for
editing text arranged in a table. See section 11.4 (Filling], page 50.

M-X Indent Tabs Mode
M-X Indent Tabs Mode turns Indent Tabs mode on or off. When
Indent Tabs mode is on, the indentation commands use tab
characters for indentation whenever possible. Otherwise they use
only spaces. 6eq section 22.1 [Minor Modes], page 107.

M-X Tabify
M-X Tabify converts spaces alter point to tabs when that can be
done without changing the appearance. See section 11.3
[Indenting Text], page 48.

M-X Untabity
M-X Untabify converts all tabs after point to spaces. A numeric
argument says how far apart the tab stops are, which is good for
converting files brought from systems with tab stops at intervals
other than 8. See section 11.3 [Indenting Text], page 48.

i

Command Index 169

Words, Sentences and Paragraphs

Control-X Rubout (^R Backward Kill Sentence)
Control-X Rubout kills back to the beginning of the sentence. See
section 11.2 [Sentences] page 47.

Meta-A (-R Backward Sentence)
Meta-A moves to the beginning of the sentence. See section 11.2
[Sentences], page 47.

Meta-B (-R Backward Word)
Meta-B moves backward one word. See section 11.1 [Words],
page 45.

Meta-D (-R Kill Word)
Meta-D kills one word forward. See section 11.1 [Words],
page 45.

Meta--E (-R Forward Sentence)
Meta-E moves to the end of the sentence. See section 11.2
[Sentences], page 47.

Meta-F (-R Forward Word)
Meta-F moves forward one word. See section 11.1 [Words],
page 45.

Meta-H (-R Mark Paragraph)
Meta-H puts point at the front of the current paragraph and the
mark at the end. See section 11.2 [Sentences]. page 47.

Meta-K (-R Kill Sentence)
Meta-K kills to the end of the sentence. See section 11.2
[Sentences], page 47.

Meta-T (-R Transpose Words)
Meta-T transposes two consecutive words. See section 11.1
[Words], page 45.

Meta-[(^R Backward Paragraph)
Meta-[moves to the beginning of the paragraph. See section 11.2
[Sentences], page 47.

Meta-] (-R Forward Paragraph)
Meta-] moves to the end of the paragraph. See section 11.2
[Sentences], page 47.

Meta-Rubout (-R Backward Kill Word)
Meta-Rubout kills the previous word. See section 11.1 [Words],
page 45.

M-X Atom Word Mode
M-X Atom Word Mode turns Atom Word mode on or off. In Atom
Word mode, the word commands consider an entire Lisp atom as
one word. See section 22.1 [Minor Modes], page 107.

M-X Edit Syntax Table
M-X Edit Syntax Table allows you to edit the syntax table for word
and list delimiters. See section 22.4 [Syntax Table], page 111.

170 EMACS Manual for TWENEX Users

Filling Text

Meta-G (-R Fill Region)
Meta-G fills the region, treating it (usually) as one paragraph. See
section 11.4 iFilling], page 50.

Meta-Q (-R Fill Paragraph)
Meta-Q fillsthe current or next paragraph. See section 11.4
[Filling], page 50.

Meta-S (^R Center Line)
Meta-S centers the current line. See section 11.4 [Filling],
page 50.

Control-X. (^R Set Fill Prefix)
Control-X . specifies the fill prefix, which is used for filling
indented text. See section 11.4 [Filling], page 50.

Control-X F (-R Set Fill Column)
ControI-X F sets the variable Fill Column which controls the
margin for filling and centering. See section 11.4 [Filling],
page 50.

M-X Auto Fill Mode
M-X Auto Fill Mode turns Auto Fill mode on or off. In Auto Fill
mode, long lines are broken between words automatically. See
section 11.4 [Filling], page 50.

Exiting

Control-] (Abort Recursive Edit)
Control-) aborts a recursive editing level; that is to say, exits it
without allowing the command which invoked it to finish. See
section 24.1 lQuitting], page 125.

Control-Meta-Z (-R Exit, built-in function)
Control-Meta-Z exits from a recursive editing level and allows the
command which invoked the recursive editing level to finish. At
top level, it exits from EMACS to its superior fork. See section 6.3
[Exiting], page 27.

Control-X Control-Z (-R Return to Superior)
Control-X Control-Z returns from EMACS to its superior fork, even
if EMIACS is currentiy inside a recursive editing level. In that case,
re-entering EMACS will find it still within the recursive editing
level. See section 6.3 [Exiting], page 27.

M-X Compile
M-X Compile exits from EMACS and repeats the most recent
COMPILE-class command in the EXEC. See section 20
[Programs], page 87.

M-X Top Level
M-X Top Levelreturns to the top level EMACS command loop or to
TECO. See sectio: 24.1 [Quitting], page 125.

7, '

Command Index 171

Pages

Control-X L (-R Count Lines Page)
Control-X L prints the number of lines on the current page, and
how many come before point and how many come after. See
section 18 [Pages], page 79.

Control-X P (-R Set Bounds Page)
Control-X P narrows the virtual boundaries to the current page.
See section 17 [Narrowing], page 77.

Control-X [(-P Previous Page)
Control-X [moves backward to the previous page boundary. See
section 18 [Pages], page 79.

Control-X I (-R Next Page)
Control-X I moves forward to the next page boundary. See
section 18 [Pages], page 79.

Control-X Control-P (-R Mark Page)
Control-X Control-P puts point at the beginning and the mark at
the end of the current page. See section 18 [Pages], page 79.

M-X View Page Directory (in PAGE)
M-X View Page Directory prints a directory of the pages of the file.
See section 18.1 [PAGE], page 80.

M-X What Page
M-X What Page prints the current page and line number in the file.
See section 18 [Pages], page 79.

Lisp

Meta-((-R Make 0)
Meta-(places a pair of parentheses around the next several
s-expressions. See section 20.5.1 [Lists], page 93.

Meta-) (-R Move Over))
Meta-) moves past the next close parenthesis and adjusts the
indentation of the following line. See section 20.5.1 [Lists],
page 93.

Control-Meta-Tab (-R Indent for Lisp)
Control-Meta-Tab adjusts the indentation of the current line for
proper Lisp style. See section 20.2 [Indenting], page 88.

Control-Meta-((-R Backward Up List)
Control-Meta-(moves backward up one level of list structure. See
section 20.5.1 [Lists], page 93.

Control-Meta-) (-R Up List)
Control-Meta-) moves forward up one level of list structure. See
section 20.5.1 [Lists], page 93.

Control-Meta-@ (^R Mark Sexp)

172 EMACS Manual for TWENEX Users

Control-Meta-@ puts the mark at the end of the next
s-expression. See section 8 [Mark], page 33.

Control-Mela-A (-R Beginning of DEFUN)
Control Meta-A inoves to the beginning of the current DEFUN.
See section 20.5.2 ID.FLJNsl, page 95.

Control-Meta-B (^R Backward Sexp)
Control-Meta-B moves backward over one s-expression. See
section 20.5.1 [Listsi, page 93.

Control-Meta-D (-R Down List)
ControI-Meta-D moves forward and down a level in list structure.
See section 20.5.1 (Listsl, page 93.

Control-Meta-E (^R fnd of DEFUN)
Control-Meta-E moves to the end of the current DEFUN. See
section 20.5.2 [DEFUNs], page 95.

Control-Meta-F (^R Forward Sexp)
Control-Meta-F moves forward over one s-expression. See
section 20.5.1 [Lists], page 93.

Comtrol-Meta-G (-R Format Code)
Control-Meta-G grinds the s-expression after point. See
section 20.6 [Grinding], page 95.

Control-Meta-H ('R Mark DEFUN)
Control-Meta-H puts point before and the mark after the current
or next DEFUN. See section 20.5.2 [DEFUNs], page .95.

Control-Meta-K (-R Kill Sexp)
Control-Meta-K kills the following s-expression. See
section 20.5.1 [Lists], page 93.

Control-Meta-N ('R Next List)
Ccntrol-Meta-N moves forward over one list, ignoring atoms
before the first open parenthesis. See section 20.5.1 [Lists],
page 93.

Control-Meta-P (^R Previous List)
Control-Meta-P moves backward over one list, ignoring atoms
reached before the first close parenthesis. See section 20.5.1
[Lists], page 93.

Control-Meta-Q (-R Indent Sexp)
Control-Meta-Q adjusts the indentation of each of the lines in the
following s-expression, but not the Current line. See section 20.2

findt-iling], page 88.

. , M,,d. T J'1P T;insnose Sexps)
,filrc(I M#-ta-T transposes two consecutive s-expressions. See

,#. ,(.1f) I IL isI,)J. page 93.

, ot , -,, baju ward up one level of list structure.

...) page 9

Command Index 173

Files

Meta-. (-R Find Tag)
Meta-. moves to the definition of a specific function, switching files
if necessary. See section 21 [TAGS], page 99.

Meta-- (-R Buffer Not Modified)
Meta- clears the flag which says that the buffer contains
changes that have not been saved. See section 13.1 [Visiting],
page 57.

ControI-X Control-F (Find File)
Control-X Control-F visits a file in its own buffer. See section s4
[Buffers], page 67.

Control-X Control-Q (-R Do Not Write File)
Control-X Control-Q tells EMACS not to offer to save this file. See
section 13.1 [Visiting], page 57.

Control-X Control-R (-R Read File)
Controi-X Control-R visits a file and tells EMACS not to offer to
save it. See section 13.1 [Visiting], page 57.

Controi-X Control-S (-R Save File)
Control-X Control-S saves the visited file. See section 13.1
[Visiting], page 57.

Control- X Control-V (^R Visit File)
Control-X Control-V visits a file. See section 13.1 [Visiting),
page 57.

Control-X Control-W (Write File)
ControI-X Control-W saves the file, asking for names to save it
under. See section 13.7 [Advanced File Commands], page 64.

M-X Append to File
M-X Append to File appends the contents of the region to the end
of a specified file. See section 13.7 [Advanced File Commands],
page 64.

M-X Auto Save Mode
M-X Auto Save Mode turns Auto Save mode on or off. See
section 13.3 [Auto Save], page 59.

M-X Copy File
M-X Copy File copies a file to a new name. See section 13.7
[Advanced File Commands], page 64.

M-X Delete File
M-X Delete File deletes a file. See section 13.7 [Advanced File
Commands], page 64.

M-X Insert File
M-X Insert File inserts the contents of a file into the buffer (within
the existing text). See section 13.7 [Advanced File Commands],
page 64.

M-X Prepend to File

-'--

174 EMACS Manual for TWENEX Users

M-X Prepend to File appends the contents of the region to the
start of a specified file See section 13.7 [Advanced File
Commandsl, page 64.

M.-X Rename File
M-X Rename File changes the name of a file. See section 13.7
[Advanced File Commands], page 64.

M-X Revert File
M-X Revert File undoes changes to a file by reading in the
previous version. See section 13.2 [Revert File], page 59.

M-X Save All Files

M-X Save All Files offers to write back buffers which may need it.
See section 14 [Buffers], page 67.

M-X Set Visited Filename
M-X Set Visited Filename changes the visited filename, without
writing a file. See section 13.7 [Advanced File Commands],

page 64.

M-X Write Region
M-X Write Region writes the contents of the region into a file. See
section 13.7 [Advanced File Commands], page 64.

File Directories

Control-X D (-R DIRED)
Control-X D invokes the directory editor DIRED, useful for deleting
many files. See section 13.6 [DIRED], page 62.

Control-X Control-D (-R Directory Display)
Control-X Control-D displays a subset of a directory. See
section 13.4 [Directories], page 61.

M-X Clean Directory
M-X Clean Directory deletes all but the most recent versions of
every file in a directory. See section 13.5 [Cleaning Directories],
page 61.

M-X List Files
M-X List Files prints a very brief listing of a directory, listing only
the filenames, several files per line. See section 13.4 [Directories],
page 61.

M-X Reap File
M-X Reap File deletes all but the most recent versions of a file.
See section 13.5 [Cleaning Directories], page 61.

M-X View Directory
M-X View Directory prints a file directory. See section 13.4
[Directories], page 61.

Command Index 175

Buffers

Control-X A (-R Append to Buffer)
Control-X A adds the text of region into another buffer. See
section 9.3 [Copying], page 41.

ControI-X B (Select Buffer)
Control-X B is the command for switching to another buffer. See
section 14 [Buffers], page 67.

Control-X K (Kill Buffer)
ControI-X K kills a buffer. See section 14 [Buffers], page 67,

M-X Insert Buffer
M-X Insert Buffer inserts the contents of another buffer into the
existing text of this buffer. See section 14 [Buffers], page 67.

M-X Kill Some Buffers
M-X Kill Some Buffers offers to kill each buffer. See section 14
[Buffers], page 67.

M-X Rename Buffer
M-X Rename Buffer changes the name of the current buffer. See
section 14 [Buffers], page 67.

Comments

Meta-Linefeed (-R Indent New Comment Line)
Meta-Linefeed moves to a new line and indents it. If point had
been within a comment on the old line, a new comment is started
on the new line and indented under the old one. See section 20.4
[Comments], page 90.

Meta-; (-R Indent for Comment)
Meta-; inserts a properly indented comment at the end of the
current line, or adjusts the indentation of an existing comment.
See section 20.4 [Comments], page 90.

Meta-N (-R Down Comment Line)
Meta-N moves down a line and starts a comment. See
section 20.4 [Comments], page 90.

Meta-P (-R Up Comment Line)
Meta-P moves down a line and starts a comment. See
section 20.4 [Comments], page 90.

Control-Meta-; (-R Kill Comment)
Control-Meta-; kills any comment on the current line. See
section 20.4 [Comments], page 90.

Control-X; (-R Set Comment Column)
Control-X ; sets the column at which comments are indented, from
an argument, the current column, or the previous comment. See
section 20.4 [Comments], page 90.

176 EMACS Manual for TWENEX Users

Case Conversion

Meta-C (-R Uppercase Initial)
Meta-C makes the next word lower case with a capital initial. It
moves over the word. See section 11.5 [Case], page 51.

Meta-L (-R Lowercase Word)
Meta-L moves over a word converting it to lower case. See
section 11.5 [Case], page 51.

Meta-U (-R Uppercase Word)
Meta-U moves over a word converting it to upper case. See
section 11.5 [Case], page 51.

Control-X Control-L (^R Lowercase Region)
Control-X Control-L converts the text of the region to lower case.
See section 11.5 [Case], page 51.

Control-X Control-U (-R Uppercase Region)
Control-X Control-U converts the text of the region to upper case.
See section 11.5 [Case], page 51.

Windows

Control-Meta-V (^R Scroll Other Window)
Control-Meta-V scrolls the other window up or down. See
section 15 [Display], page 71.

Control-X 1 (^R One Window)

Control-X 1 returns to one-window mode. See section 16
[Windows], page 73.

Control-X 2 (-R Two Windows)
Control-X 2 splits the screen into two windows. See section 16
[Windows], page 73.

Control-X 3 (-R View Two Windows)
Control-X 3 splits the screen into two windows but stays in window
one. See section 16 [Windows], page 73.

Control-X 4 (-R Visit in Other Window)
Control-X 4 displays two windows ano selects a buffer or visits a
file in the other window. See section 16 [Windows], page 73.

Control-X 0 (-R Other Window)
Control-X 0 switches from one window to the other. See
section 16 [Windows], page 73.

Control-X- (^R Grow Window)
Control-X - changes the allocation of screen space to the two
windows. See section 16 [Windows], page 73.

Command Index 177

Narrowing

Control-X N (^R Set Bounds Region)
Control-X N narrows the virtual boundaries to the region. See
section 17 [Narrowing], page 77.

Control-X P (^R Set Bounds Page)
Control-X P narrows the virtual boundaries to the curren' page.
See section 18 [Pages], page 79.

Control-X W (-R Set Bounds Full)
Control-X W widens the virtual boundaries back to the entire
buffer. See section 17 [Narrowing], page 77.

Status Information

Control-X = (What Cursor Position)
Control-X = prints information on the screen position and
character position of the cursor, the size of the file, and the
character after the cursor. See section 11.4 [Filling], page 50.

Control-X L (-R Count Lines Page)
Control-X L prints the number of lines in the current page, and
how many come before or after point. See section 18 [Pages],
page 79.

M-X List Loaded Libraries
M-X List Loaded Libraries lists the names of all loaded libraries.
See section 22.2 [Libraries], page 108.

M-X List Variables
M-X List Variables lists the names and values of all variables, or of
those whose names contain a specified string. See section 22.3
[Variables], page 109.

Keyboard Macros

Control-X ((^R Start Kbd Macro)
Control-X (begins defining a keyboard macro. See section 22.8
[KBDMAC], page 119.

Control-X) (-R End Kbd Macro)
Control-X) terminates the definition of a keyboard macro. See
section 22.8 [KBDMAC], page 119.

Control-X E (-R Call Last Kbd Macro)
Control-X E executes the most recently defined keyboard macro.
See section 22.8 [KBDMACJ, page 119.

Control-X Q (-R Kbd Macro Query)
Control-X 0 in a keyboard macro can ask the user whether to
continue or allow him to do some editing before continuing with
the keyboard macro. See section 22.8 [KBDMAC], page 119.

178 EMACS Manual for TWENEX Users

M-X Name Kbd Macro
M-X Name Kbd Macro gives a permanent name to the last
keyboard macro defined. See section 22.8 [KaDMAC], page 119.

M-X View Kbd Macro
M-X View Kbd Macro prints the definition of a keyboard macro.
See section 22.8 (KBDMAC], page 119.

Mail

Control-X M (Send Mail)
Comtrol-X M allows you to edit and send a message using your
favorite mail-reading program. The default is MM. See section 6.5
[Mail], page 30.

Control-X R (Read Mail)
Contro(-X R runs your choice of mail-reading program to read and
edit your mail. The default is MM. See section 6.5 [Mail], page 30.

M-X Check Mail
M-X Check Mail tells you whether you have any new mail to be
read. See section 6.5 [Mail], page ,30.

Minibuffer

Control-% (-R Replace String)
Control-% invokes a minibuffer containing a call to Replace String.
You fill in the arguments. See section 19 [Replace], page 83.

Meta-Altmode (^R Execute Minibuffer)
Meta-Altmode invokes an empty minibuffer which you can fill in
with a TECO program to be executed. See section 23 [Minibuffer],
page 123.

Meta-% (^R Query Replace)
Meta-% invokes a minibuffer containing a call to Query Replace.
You fill in the arguments. See section 19 [Replace], page 83.

Control-X Altmode (-R Re-execute Minibuffer)
Control-X Altmode re-executes a TECO program previously
executed in the minibuffer. It can also re-execute an extended
command. See section 23 [Minibuffer], page 123.

izz

Catalog of Libraries 179

Catalog of Libraries

Libraries Used Explicitly

These are libraries which you must load with M-X Load Librnry§<libname)<cr', to
use. If no cross-reference is given, the only documentation for the library is the

self-documentation contained in it. Use M-X List Library*<libname><cr> to print a
brief description of each function in the library For more detailed information, load
the library and use M-X Describe on individual functions.

ABSTR contains commands for making documentation files: wall charts,
and abstracts of libraries. See the file INFO:CONV.INFO.

AUTO-SAVE-MODE
is an alternate implementation of Auto Save mode. It has some
features which the standard version lacks, and lacks some which
the standard version has.

BABYL is a subsystem for reading, sending and editing mail. See the file
INFO:BABYL.INFO.

BABYLV is a library for converting between different Babyl file formats.

BBNLIB contains a few commands that people at BBN like.

BCPL implements BCPL mode.

BLISS implements BLISS mode.

CACHE implements a cache for speeding up EMACS subroutine calls.

CHESS implements commands for editing pictures of chessboards.

COLUMNS implements commands for converting single-column text into
double-column text and vice versa.

DELIM implements commands for moving over balanced groupings of
various kinds of parentheses. There are a pair of commands for
square brackets, a pair for angle brackets, etc.

DM redefines commands to be convenient on Datamedia 2500
terminals.

DM3025 redefines commands to be convenient on Datamedia 3025
terminals.

DOCOND is a macro processor and conditionalizer for text files, useful ior
maintaining multiple versions of documents with one source.

EAKMACS EAK's personal library, useful as an example.

EFORK implements commands for running other programs in separate
forks inferior to EMACS.

180 EMACS Manual for TWENEX Users

FIXLIB functions for examining and patching EMACS functions.

FORTRAN implements FORTRAN mode. See the file INFO:EFORTRAN,INFO.

HAZ1510 redefines commands to be convenient on Hazeltine 1510
terminals.

INFO peruses tree-structured documentation files.

INTER is the EMACS side of the EMACS-to-lnterlisp interface. See the
file INFO:INTER.INFO.

IVORY is EAK and ECC's alternate generator for EMACS libraries, which
uses a slightly nonstandard input format. The libraries
AUTO-SAVE-MODE, BABYL, BABYLM, BABYLV, CACHE,
EAKMACS, FIXLIB, IVORY, LONG-FILENAMES, MKDUMP,
OUTLINE-MODE, PLI, TEACH-Ci00, TMACS and WORDAB are
generated with IVORY.

JOURNAL implements journal files. See section 24.4 [Journals], page 129.

LEDIT is the EMACS side of the EMACS-to-MacLisp interface. See the
file INFO:LEDIT.INFO.

LONG-FILENAMES
provides help in handling files which have long names (on
Twenex). It implements a different type of filename completion
than the standard GTJFN system call.

LSPUTL contains a couple of useful functions for searching and
manipulating Lisp code.

LUNAR is Moon's personal library, which contains some useful
commands.

MACCNV does part of the work of converting MACRO-10 code to MIDAS
code.

MAICHK checks for arrival of mail. If this library is loaded, EMACS will
check frequently and automatically for new mail and notify you
when any arrives.

MAZLIB is a game for solving mazes. It's fun to play.

MKDUMP aids in dumping your own customized environment.

MODLIN implements a fancier mode line display.

MQREPL works with TAGS to perform several Query Replaces on each of
the files in a tag table.

NVT100 defines the arrow keys and numeric keypad of the VT-100 terminal
to perform editing functions.

NVT52 defines the arrow keys and numeric keypad of the VT-52 terminal
to perform editing functions.

OUTLINE imp!' ments Outline Mode, for editing outlines.

OUTLINE-MODE implements a different flavor of Outline Mode.

PAGE defines commands for viewing only one page of the file at a time.
See section 18.1 [PAGE], page 80.

Catalog of Libraries 181

PASCAL implements PASCAL mode. See the file INFO:EPASC.INFO.

PHRASE has commands for moving over and killing phrases of text.

PICTURE contains Edit Picture, the command for editing text pictures. See
section 26 [PICTURE], page 143.

PL1 implements PL1 mode. See the file INFO:EPL1 .INFO.

PURIFY generates libraries from EMACS source files, and contains other
functions useful for editing the source files. See the file
INFO:CONV.INFO.

RENUM renumbers figures, equations, theorems or chapters.

SAIL implements SAIL mode.

SCRL N contains alternative definitions of C-N and C-P which move by
screen lines instead of by real lines.

SEND-MAIL sends mail to another user.

SLOWLY redefines commands and options to suit slow terminals.

SORT implements the sorting commands.

SPLIT contains the commands Split File and lJnsplit File for breaking up
large files into subfiles small enough to be edited. See
section 24.2 [Split], page 126.

SYSTEM implements various commands useful for communicating with the
operating system.

TDEBUG is a debugger for TECO programs. It displays the buffer in one
window and the program in the other, while stepping by lines or
setting breakpoints. See the file INFO:TDEBUG.INFO.

TEACH-C100 has commands to define the programmable function keys of the
Concept- 100 terminal.

TIME causes the current time of day to be displayed in the mode line.

TMACS contains miscellaneous useful functions

TVLIB customizes EMACS to resemble TVEDIT.

VT100 defines the arrow keys and numeric keypad of the VT-100 terminal
to move the cursor and supply numeric arguments.

VT52 defines the numeric keypad of the VT-52 terminal to supply
numeric arguments.

Automatically Loaded Libraries

These are libraries which the user need not know about to use.
AUX implements several commands described in the manual as part of

the standard EMACS. Loaded automatically when needed.

BABYLM contains the part of Babyl that implements mail sending.

182 EMACS Manual for TWENEX Users

BARE contains the definitions of all built-in functions. These definitions
are not needed for executing the built-in functions, only so that
Help can describe them properly. Loaded automatically by
documentation commands when needed. See section 5.2 [BAREJ,
page 22.

DIRED implements the commands for editing and listing directories.
Loaded automatically when needed. See section 13.6 [DIRED],
page 62.

EINIT is used in building and dumping EMACS. See the file

INFO:CONV.INFO.

EMACS is the main body of standard EMACS. Always loaded.

GRIND implements C-M-G. Loaded automatically when needed. See
section 20.6 [Grinding], page 95.

KBDMAC implements keyboard macros. Loaded automatically when
needed. See section 22.8 [Keyboard Macros], page 119.

MMAIL interfaces between EMACS and a superior MM fork. Loaded
automatically if needed.

TAGS implements the TAGS package. See section 21 [TAGS], page 99.

TEX implements TEX mode. See the file INFO:ETEX.INFO.

TRMTYP implements the Set Terminal Type command. Loaded
automatically when needed.

TWENEX holds commands for the Twenex version of EMACS only. Always
loaded.

WORDAB implements Word Abbrev mode, loaded automatically when
needed. See section 25 [WORDABI, page 135.

.Ij

Index of Variables 183

Index of Variables

An option is a variable whose value Edit Options offers for editing. A hook variable
is a variable which is normally not defined, but which you can define if you wish for
customnization. Most hook variables require TECO programs as their values.

The default value o! the variable is given in parentheses after its name. If no value is
given, the default value is zero. If the word "nonexistent" appears, then the variable
does not exist unless you create it.

Abort Resumption Message
This is the message to be printed by C-] to tell you how to resume
the aborted command. If this variable is zero, there is no way to
resume, so C-] asks for confirmation. See section 24.1 [Quitting],
page 125.

Additional Abbrev Expanders (nonexistent)
If this variable exists when Word Abbrev mode is turned on, it is a
string of characters which should terminate and expand an
abbrev, in addition to the punctuation characters which normally
do so. See also WORDAB Ins Chars.

Atom Word Mode The minor mode Atom Word mode is on if this variable is nonzero.
See section 22.1 [Minor Modes], page 107.

Auto Directory Display
If this is nonzero, certain file operations automatically display the
file directory. See section 13.4 [Directories], page 61.

Auto Fill Mode The minor mode Auto Fill mode is on if this variable is nonzero.
See section 11.4 [Filling], page 50.

Auto Push Point Notification
The value of this variable is the string printed in the echo area by
some commands to notify you that the mark has been set to the
old location of point. See section 10 [Search], page 43.

Auto Push Point Option (500)
Searches set the mark if they move at least this many characters.
See section 10 [Search], page 43.

Auto Save Default The minor mode Auto Save mode is on by default for newly visited
files if this variable is nonzero. See section 13.3 [Auto Save],
page 59.

Auto Save Filenames ((working directory>--RSV..)
These are the filenames used for auto saving if the visited
filenames are not used. See section 13.3 [Auto Save], page 59.

Auto Save Interval (500f).

184 EMACS Manual for TWENEX Users

This is the number of characters between auto saves. See
section 13.3 [Auto Save], page 59.

Auto Save Max (2) This is the maximum number of auto saves to keep. See
section 13.3 [Auto Save], page 59.

Auto Save Visited File
If this is nonzero, auto saving saves as the visited filenames. It this
is zero, auto saving saves as the names which are the value of
Auto Save Filenames (q.v.). See section 13.3 [Auto Save],
page 59.

Autoarg Mode When Autoarg Mode is nonzero, numeric arguments can be
specified just by typing the digits. See section 4 [Arguments],
page 17.

Buffer Creation Hook (nonexistent)
If this variable exists, its value should be a TECO program to be
executed whenever a newly created buffer is selected for the first
time. See section 14 [Buffers], page 67.

Buffer Deselection Hook (nonexistent)
1f this variable exists, its value should be a TECO program to be
executed whenever a buffer is about to be deselected. The
difference between this and Buffer Selection Hook is that, while
both are execute(! (if they exist) when you switch buffers, this is
executed before the switch, and Buffer Selection Hook is executed
after the switch. See section 14 [Buffers], page 67.

Buffer Selection Hook (nonexistent)
If this variable exists, its value should be a TECO program to be
executed whenever a buffer is selected. See section 14 [Buffers],
page 67.

Case Replace (1) When Case Replace is nonzero, Replace String and Query
Replace attempt to preserve case when they replace. See
section 19 [Replace], page 83.

Collapse in Comparison (nonexistent)
If this variable exists and is not zero, it should be a string of
characters for M-X Window SRCCOM to regard as insignificant.
See section 16 [Windows], page 73.

Comment Begin This is the string used to start new comments. If it is zero, the
value of Comment Start is used. See section 20.4 [Comments],
page 90.

Comment Column This is the column at which comments are aligned. See
section 20.4 [Comments], page 90.

Comment End This is the string which is used to end comments. It is often empty
for languages in which comments end at the end of the line. See
section 20.4 [Comments], page 90.

Comment Multi Line (nonexistent)
If this variable exists and is nonzero, then when Auto Fill mode
breaks a comment line, it does not insert a new comment starter

* on tile new line. This is for use with languages that have explicit
comment terminators, if you want single multi-line comments

Index of Variables 185

instead of single-line comments on consecutive lines. See
section 20.4 [Comments], page 90.

Comment Rounding (/8+1*8)
This is the TECO program used to decide what column to start a
comment in when the text of the line goes past the comment
column. The argument to the program is the column at which text
ends. See section 20.4 [Comments], page 90.

Comment Start This is the string used for recognizing existing comments, and for
starting new ones if Comment Begin is zero. If Comment Start is
zero, semicolon is used. See section 20.4 [Comments], page 90.

Default Major Mode (Fundamental)
This is the major mode in which new buffers are created. If it is the
null string, new buffers are created in the same mode as the
previously selected buffer. See section 14 [Buffers], page 67.

Directory Lister (& Subset Directory Listing)
This is the TECO program used for listing a directory for C-X C-D
and the Auto Directory Display option. The default value is the
definition of the function & Subset Directory Listing. See
section 13.4 [Directories], page 61.

Display Matching Paren (-1)
This variable controls automatic display of the matching open
parenthesis when a close parenthesis is inserted. See
section 20.3 [Matching], page 89.

EMACS Version This variable's value is thre EMACS version number.

EXEC Name (nonexistent)
If this variable exists, its value, if nonzero, is the filename of the
program to be used by M-X Push to EXEC to serve as the EXEC.
See section 6.4 [Subforks], page 27.

Exit Hook (nonexistent)
If this variable exists, its value should be a TECO program to be
executed whenever EMACS is exited. The subroutine & Exit
EMACS is responsible for executing it. See section 6.3 [Exiting],
page 27.

Fill Column (70) The value of Fill Column is the width used for filling text. See
section 11.4 [Filling], page 50.

Fill Extra Space List (.?!)
The characters in this string are the ones which ought to be
followed by two spaces when text is filled, See section 11.4
[Filling], page 50.

Fill Prefix The value of this variable is the prefix expected on every line of
text before filling and placed at the front of every line after filling. It
is usually empty, for filling nonindented text. See section 11.4
lFilling], page 50.

Find File Inhibit Write
If this variable is noniero, then C -X - vi, its Ith,, ,r, I (,11i

(C-X C R) tashioi Noirnally. C X (I ,, , h,.

Were 1)('i119 use*d 7" , lo~r 1 1!i~ 4-

rI AD-A093 886 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAt INTE--ETC F/A 9/2
I EMACS MANUAL FOR TWENEX USERS(U)

SEP 80 R M STALLMAN NOC0lA 75-C-OSAX3

UNCLASSIFIED A1-M55 NL

186 EMACS Manual for TWENEX Users

Indent Tabs Mode (-1)
If Indent Tabs Mode is nonzero, then tab characters are used by
the indent commands. Otherwise, only spaces are used. See
section 113 [Indenting Text], page 48.

Inhibit Write If Inhibit Write is nonzero, then there will be no offer to save the
visited file if another file is visited in the same buffer. C-X C-R sets
this variable nonzero. See section 13.1 [Visiting], page 57.

<libname> Setup Hook (nonexistent)
If this variable exists, its value should be a TECO program to be
executed when the library <libname) is loaded. The library's &
Setup function is responsible for doing this. If the library has no &
Setup function, it will not handle a setup hook either. See
section 22.2 (Libraries], page 108.

Mail Reader Library (nonexistent)
If this variable exists, it is the name of the library to be used by M-X
Read Mail for reading mail and by M-X Send Mail for sending mail.
The former calls the function "<entry>" in the library, and the latter
calls the function "& Mail Message".. See section 6.5 [Mail],
page 30.

Mail Reader Program (nonexistent)
If this variable exists (and Mail Reader Library does not), it is the
name of the the program to be used for reading and sending mail.
See section 6.5 [Mail], page 30.

<mode) ..D (nonexistent)
This variable is used by the major mode <mode> to record the
syntax table for that mode. It is created by the first use of the
mode, and if you supply your value, that value will be accepted
instead. For example, Text mode uses Text ..D. Not all major
modes have their own syntax tables. See section 22.4 [Syntax],
page 111.

<mode> Mode Hook (nonexistent)
If this variable exists, its value should be a TECO program to be
executed when the major mode <mode> is entered. For example,
Text Mode Hook is executed when Text mode is entered. See
section 20.1 [Major Modes], page 87.

Next Screen Context Lines (nonexistent)
If this variable exists, its value specifies the number of lines of
overlap between one screenful and the next, when scrolling by
screens witii C-V and M-V. See section 15 [Display], page 71.

Only Global Abbrevs (nonexistent)
If this variable exists and its value is nonzero, then Word Abbrev
Mode assumes that you are not using any mode-specific abbrevs.
See section 25.2.1 [Customizing WORDAB], page 139.

Overwrite Mode If this is nonzero, the minor mode Overwrite mode is in effect. See
section 22.1 [Minor Modes], page 107.

Page Delimiter (tL)
This is the TECO search string used to recognize page
boundaries. See section 18 [Pages], page 79.

Index of Variables 187

PAGE Flush CRLF If this variabie exists and is nonzero, the PAGE library expects
every page to start with a blank line, which is not considered part
of the contents of the page. See section 18.1 [PAGE], page 80.

Paragraph Delimiter (.tOtItO tO')
This is the TECO search string used to recognize beginnings of
paragraphs. See section 11.2 [Sentences], page 47.

Permit Unmatched Paren (-1)
Controls whether the bell is run if you insert an unmatched close
parenthesis. See section 20.3 [Matching], page 89.

Read Line Delay This is the amount of time, in 30'ths of a second, which EMACS
should wait after starting to read a line of input, before it prompts
and starts echoing the input.

Region Query Size (5000)
Many commands which act on the region require confirmation if
the region contains more than this many characters. See
section 8 [Mark], page 33.

Return from Superior Hook (nonexistent)
If this variabie exists, its value should be a TECO program to be
executed whenever EMACS is resumed after being exited. See
section 6.3 [Exiting], page 27.

Set Mode Line Hook
This is a hook which is executed every time the mode line is
recomputed. It can insert text in the buffer to put it in the mode
line after the minor modes. See section 1.1 [Mode Line], page 6.

SLOWLY Maximum Speed (nonexistent)
If this variable is defined, it is the maximum output speed for which
SLOWLY, if loaded, should define its commands.

Space Indent Flag If this flag is nonzero, then Auto Fill indents the new lines which it
creates, by performing a Tab. Most major modes for programming
languages set this nonzero. See section 11.4 [Filling], page 50.

Tab Stop Definitions (a string)
The value of Tab Stop Definitions is a string defining the tab stops
to be used by the command M-I (-R Tab to Tab Stop). See
section 11.3 [Indenting Text], page 48.

Tags Find File (nonexistent)
If this variable exists and is not zero, TAGS uses C-X C-F to switch
files. Otherwise, TAGS uses C-X C-V. See section 21 [TAGS],
page 99. Some other things may decide to use multiple buffers if
this variable is nonzero. See section 14 [Buffers], page 67.

Tags Search Verbose (nonexistent)
If this variable exists and is zero, Tags Search does not print out
the name of each file that it begins to earch. If the variable is
nonexistent, that is equivalent to a value of 1. See section 21.4.3
[Tags Search], page 103.

Temp File FN2 List (MEMOtOXGPtO ...) This is a TECO search string which
recognizes the filenames which indicate that the file is probably
temporary. See section 13.5 [Clean Directory], page 61.

P 188 EMACS Manual for TWENEX Users

Visit File Hook (nonexistent)
If this variable exists, its value should be a TECO program to be
executed whenever a file is visited. See section 13.1 [Visiting],
page 57.

WORDAB Ins Chars (nonexistent)
It this variable exists when Word Abbrev Mode is turned on, it
should be a string containing precisely those characters which
should terminate and expand an abbrev. This variable overrides
Additional Abbrev Expanders (q.v.). See section 25.2.1
[Customizing WORDAB], page 139.

EMACS Command Chart (as of 7/26/80) 189

Non-Control Non-Meta Characters:

Backspace -R Backward Character
Tab ^R Indent According to Mode
Linefeed ^R Indent New Line

Return ^R CRLF
Aitmode -R Prefix Meta
Rubout ^R Backward Delete Character

Control Characters:

Altmode -R Exit
Space ^R Set/Pop Mark

-R Replace String
.. ^R Negative Argument

0 thru 9 -R Argument Digit
; -R Indent for Comment
< -R Mark Beginning
- What Cursor Position
> -R Mark End
@ -R Set/Pop Mark
A R Beginning of Line
B ^R Backward Character

C -R Exit to Exec
D -R Delete Character
E ^R End of Line
F -R Forward Character

G -R Quit

H ^R Backward Character

I -R Indent According to Mode

J -R Indent New Line
K -R Kill Line

L -R New Window
N -R Down Real Line

0 . R Open Line

P -R Up Real Line
Q -R Quoted Insert
R ^R Reverse Search

S . R Incremental Search
T -R Iranspose Characters

U -R Universal Argument
V ^R Next Screen

W ^R Kill Region

X is a prefix character. See below.

y,. ',R Un-kill
Z -R Prefix Control-Meta

-R Prefix Meta
;] * Abort Recursive Edit

- .. -R Prefix Control
Rubout -R Backward Delete Hacking Tabs

- ~ - -- ~--- - ---- --- ---

190 EMACS Manual for TWENEX Users

A)

EMACS Command Chart (as of 7/26/80) 191

Meta Characters:

Linefeed -R Indent New Comment Line
Return -R Back to Indentation

Altmode -R Execute Minibuffer
^R Change Font Word
% -R Query Replace
* -R Upcase Digit
(^RMake ()

-R Move Over)

-R Negative Argument

-R Find Tag
I ^R Describe
0 thru 9 ^R Argument Digit

-R Indent for Comment
< ^R Goto Beginning
S^-R Count Lines Region
> -R Goto End

? -R Describe
@ -R Mark Word
A -R Backward Sentence
B ^R Backward Word

C -R Uppercase Initial
D ^R Kill Word
E ^R Forward Sentence
F -R Forward Word
G -R Fill Region
H -R Mark Paragraph

I ^R Tab to Tab Stop
J -R Indent New Comment Line
K -R Kill Sentence
L -R Lowercase Word
M -R Back to Indentation
N -R Down Comment Line

P -R Up Comment Line
Q ^R Fill Paragraph

R -R Move to Screen Edge

S ^R Center Line
T ^R Transpose Words
U -R Uppercase Word
V -R Previous Screen
W -R Copy Region

X -R Extended Command
Y -R Un-kill Pop
[-R Backward Paragraph

-R Delete Horizontal Space
] -R Forward Paragraph

^ ^R Delete Indentation

-R Underline Word

- -R Buffer Not Modified

Rubout ^'R Backward Kill Word

192
EMACS Manual for TWENEX Users

t.W

I
EMACS Command Chart (as of 7/26/80) 193

Control-Meta Characters:

Backspace -R Mark Defun
Tab ^R Indent for LISP
Linefeed ^R Indent New Comment Line
Return ^R Back to Indentation

.R Backward Up List
) ^R Forward Up List
- ^R Negative Argument
0 thru 9 -R Argument Digit
; 'R Kill Comment
? ^R Documentation
@ ^R Mark Sexp
A -R Beginning of DEFUN
B -R Backward Sexp
D -R Down List
E ^R End of DEFUN
F ^R Forward Sexp
G ^R Format Code
H -R Mark Defun
I -R Indent for LISP
3 -R Indent New Comment Line
K -R Kill Sexp
M -R Back to Indentation
N -R Forward List
0 -R Split Line
P -R Backward List
O -R Indent SEXP
R -R Reposition Window

T -R Transpose Sexps
U -R Backward Up List
V -R Scroll Other Window
W -R Append Next Kill
X ^R Instant Extended Command
Z -R Exit
[-R Beginning of DEFUN

-R Indent Region
] -R End of DEFUN

-R Delete Indentation
Rubout -R Backward Kill Sexp

194 EMACS Manual for TWENEX Users

EMACS Command Chart (as of 7/26/80) 195

Control-X is an escape prefix command with these subcommands:

^X ^B List Buffers
^X ^O -R Directory Display
-X -F Find File
^X Tab ^R Indent Rigidly
^X ^L -R Lowercase Region
'X ̂ N ^R Set Goal Column
_X 0 ^R Delete Blank Lines
^X P -R Mark Page
^X "Q -R Do Not Write File
-X ̂ R -R Read File
^X ^S ^R Save File
-X ̂ T -R Transpose Lines
^X ^U ^R Uppercase Region
X ^V -R Visit File
X -W Write File

_X ^X -R Exchange Point and Mark
^X -Z -R Return to Superior
^X Altmode -R Re-execute Minibuffer
^X # ^R Change Font Region
'X (-R Start Kbd Macro
^X ^R Set Fill Prefix
_X 1 -R One Window
^X 2 -R Two Windows
^X 3 ^R View Two Windows
^X 4 -R Visit in Other Window
X ; -^R Set Comment Column

_X = What Cursor Position
-X A -R Append to Buffer
^X B Select Buffer
^X D ^R Dired
^X F -R Set Fill Column
-X G -R Get Q-reg

-X H ^R Mark Whole Buffer
^X I -R Info
-X K Kill Buffer
^X L -R Count Lines Page
^X M Send Mail
^X N ^R Set Bounds Region
_X 0 -R Other Window
-X P -R Set Bounds Page
-X R Read Mail
-X T -R Transpose Regions
^X W ^R Set Bounds Full
^X X ^R Put Q-reg
-X [^R Previous Page
_X] -R Next Page

^x ^ ^R Grow Window

AX _ ^R Underline Region
^X Rubout -R Backward Kill Sentence

i~~~

X-
^R G--row

•Window

"'

196
EMACS Manual for TWENEX Users

I

U
-U

Index 197

Index

Bit prefix characters 148

13,83 Blank lines 15, 38, 47, 91,92

Buffer Creation Hook 61& (in function names) 23 Buffers 6, 67, 74, 101, 103, 118
&Alter..D 113 Bugs 132
& Exit EMACS 27 Built-in functions 23

Permutation Table (butter) 145 C- 9
"Permuted File* (buffer) 145 C-. 103
*Tags Search' (buffer) 103 C-; 90
'TAGS* (buffer) 101, 102 C-< 34

C-> 34
--MORE-- 7 C-@ 33

C-A 14,47,89
.83 C-B 14,85

C-D 14,20,37
<cr> 10 C-E 14,47,89

C-F 14
Abbrev definition files 138, 141 C-G 20, 26, 44, 57, 124, 125, 129
Abbre'i definition lists 135,138,140 C-K 14, 37, 47
Abbrevs 135 C-L 14, 71, 121, 153
Abort Recursive Edit 109, 125 C-M-(94
Aborting 125 C-M-) 94
Access to Directory 29 C-M-; 91
Accumulator 96 C-M-@ 34, 94
Additional Abbrev Expanders 140 C-M-A 95, 96
Address 96 C-M-B 93
Altmode 10, 20, 83, 84, 112, 121, 123 C-M-D 94,96
Append to File 41, 64 C-M-E 95,96
Apropos 31 C-M-F 93
Argument 136, 141 C-M-G 96,97
ASCII 9 C-M-H 34,95
Atom Word mode 6, 46, 107 C-M-K 37,94
Auto Directory Display 61 C-M-L 79
Auto Fill 92 C-M-M 49,89
Auto Fill mode 6,48, 50, 91, 107,108,118 C-M-N 93,96
Auto Push Point Notilication 34 C-M-P 93,96
Auto Push Point Option 34 C-M-Q 96
Auto Save Default 59, 107 C-M-R 72
Auto Save Filenames 60 C-M-Rubout 37,94
Auto Save Interval 61 C-M-Space 137,142
Auto Save Max 60 C-M-T 94
Auto Save mode 6, 59, 107 C-M-Tab 95
Auto Save Visited File 60 C.M.U 94
Autoarg mode 18, 148 C-M-V 73
Autoloading 109 C.M.W 39

C.M-X 21
BARE library 23 C-M-Z 27, 62, 109

198 EMACS Manual for TWENEX Users

C-M-[95 C-X P 80,81
C-M-\ 49,96 C-X Q 121,150
C-M.] 95 C-X Rubout 37, 47, 55
C-M.t 88.95 C-XT 56
C-N 14,85 C-X Tab 49
C-0 15, 17,85,89 C-X U 142
C-P 14 C-X W 77,80,81
C-0 13,48,85,137,140 C-X X 41
C-R 43, 81, 83, 121,150 C.X [79,81
C-Rubout 92 C-X] 79,81
C-S 43,81,150 C-X t 74,124
C-Space 33 C-Y 39
C-T 14,56 C-Z 10, 124
C-U 17,20,57,141 C-Z C-Y 124
C-UC-@ 34,47 C-\ 124
C-UC-Space 34 C-1 62,84,109,112,125
C-V 71 C-t 10
C-W 37,47,79,83 C-i- 31
C-X 10,85, 115, 118 Capitalization 137
C-X (120 Case conversion 51, 56, 83, 135, 148
C-X) 120 Case Replace 83C-X + 136, 139, 140, 142 Centering 51
C-X - 136,140, 142 Character Search 44
C-X. 51 Character set 9
C-X 1 73 Check Available 29
C-X 2 73 Check Batch Queue 29
C-X 3 74 Check Disk 29
C-X4 75 Check Job 29
C-X; 91 Check Mai 30
C-X - 51 Check Output Queue 29
C-X A 41 Check Users 29
C-X Altmode 21, 84, 124 Clean Directory 62
C-X B 67 Clear screen 71
C-X C-A 136, 139,142 Collapse in Comparison 74
C-X C-B 68 Comma 83
C-X C-D 61 Command completion 20, 23
C-X C-F 67 Commands 19
C-X C-H 136,142 Comment Begin 92
C-X C-L 52 Comment Column 91,119
C-X C-0 15,38 Comment End 92
C-X C-P 34, 79, 80 Comment Start 92, 119
C-X C-0 58 Comments 45, 81, 87,90, 92,93, 96,112
C-X C-S 14, 58,60,68 Compare Windows 74
C-XC-T 56 Compile 27
C-X C-U 33, 52 Confirmation 52, 58, 59, 63,124, 136
C-X C-V 14,57 Connect to Directory 29, 62
C-XC-W 60 Connected 11, 22
C-X C-X 33 Continuation line 13
C-XC-Z 27, 138 Control 9, 130
C-XO 63 Control characters, inserting 13
C-XE 120 Control-Meta 93
C-X F 51,107 Copy File 64
C-X G 41 Crashes 59
C-X H 34 Create File 58
C-XJ 81 CRLF 13
C-XK 69 Cursor 5
C-XL 80 Customization 22, 114,118, 139
C-XN 77
C-X O 73 Default Major Mode 67

Index 1

Default Separator 151 FS Flags 23, 71, 90, 97, 113, 134, 149Deline Word Abbrevs 140 Functions 11, 19, 22
Defining abbrevs 136, 138
Defuns 34, 95 Global abbievs 135, 139, 140Delete File 64 Grinding 95
Deletion 13, 37, 55,84, 128
Describe 31, 110 Help 10, 23, 31, 130Directory 61, 63 Home Directory 114, 129
Directory Lister 61 Hooks 142DIRED 61,62, 109 How Many 84
Disasters 59
Display Ephemeron 29 Incremental abbrev definition files 141Display Matching Paren 89 Indent Tabs Mode 49,108Dissociated Press 52 Indentation 48, 88, 90, 95
Docmmentation 32 Inferiors 27Down Picture Movement 143 Init file 148Diastic Changes 59 Init files 114, 138, 139Dumped environments 141

Insert Buffer 145
Insert File 64Echo area 5, 20, 51, 79,136 Insert Page Directory 81Edit Indented Text 48 Insert Word Abbrevs 140Edit key 147, 148 Insertion 13, 64, 79

Edit Options 26, 109 Instant Command Prompt 21Edit Picture 26, 143 INTER 92Edit Syntax Table 112 Interlisp Mode 92
Edit Tab Stops 45, 49
Edit Word Abbrevs 138 Join pages 81
EFORK 28 Journal files 129Ephemerons 29 Justification 50
Error handler 5
Error message 5 Keep Lines 64, 84EVARS 23 Keyboard macros 6, 119EVARS files 108, 114, 118,138, 139 Kill All Word Abbrevs 139, 140Exec Name 27 Kill Buffer 69Execute Ephemeron 29 Kill Libraries 109, 127Exit Hook 27 Kill ring 39, 127Exiling 27 Kill Some Buffers 69, 127Exiting EMACS 138, 141 Killing 37, 39. 46, 47, 55,94, 128Expand Word Abbrevs in Region 137 Killing abbrevs 137, 138, 139, 140
Expander characters 140
Expanding abbrevs 137 Labels 96
Expunge Directory 62 LEDIT 92Extended commands 19 Left Picture Movement 143

Libraries 23, 28, 80, 108, 135, 143FAIL 96 Line Numbers 58File deletion 61, 62 Linefeed 48, 87, 88, 95File directory 61 Lines 37, 145File Versions Kept 62 Lisp 88, 107
Files 6, 14, 57, 59, 64, 75, 118 Lisp mode 92Fill Column 51, 107, 109 List Buffers 68
Fill Piefix 47, 51 List Files 61Filling 50 List Ilandles 28Find File 67, 101 List Library 109Find Pat 94 List Loaded Libraries 109Flush Lines 84 List rags t03FLUSIlED 7 List Variables ItoForks 27 List Word Abbrevs 138, 140
Formatting 48, 95 Lists 34, 93, tiiFormfeed 79 Load Library 23, 108

200 EMACS Manual for TWENEX Users

Loading 108
Mail 30Local modes lists 108 Mail Reader Library 30Local variables 67, 110, 111, 118 Mail Reader Program 30LSPUTL 94
MaJor 110des 6. 67, 87, 92, 112, 118, 135
Make lage Pei ulation Table 145M- 97
Make Space 127

M-% 84,123 Make These Characters Expand 140Make Word Abbrev 139M-' 56, 97,137, 142 Mark 33, 39,46, 47,64, 79.94, 95,101M-) 94
Markhov Chain 52M- 9 2Matching

89
M. 28

Meta 9, 45, 130,147, 148
Metizer 10, 124, 148M-- M-C 56
MIDAS 88,96

M-- ML 56
M-- M-U 56MIDAS mode 96
10-. lot Minibufter 21, 26,64, 71,84, 123, 134M- lot

Minibuffer Separator 151M-, 90
Minor modes 6, 49,107, 135

M-< 14
MM 22, 41M-@ 34. 46
MM (Mail reader) 30M-A 47
Mode abbrevs 135,139, 140M-A 4 3 Mode line 6,26,67,80,87, 107, 123M-Allmode 123 More line 6M-8 46
Motion 46, 47, 79, 93, 95M-0 37,46
Moving text 39M.D 48
MOREPL 103

M.E 47
Muddle mode 92M-F 46

M-G 50
Name Kbd Macro 120M.H 4 0Narrowing

51, 77, 80, 83
M-J 91

Next File 102
M-K 37, 47 Numeric argument 136, 141M-L 51

Numeric arguments 17, 21, 22, 38, 40, 46, 49, 50,
M-Linefeed 91

52, 59, 61, 71, 73, 74, 83, 91, 96, 107,M-M 49 89
110, 124,147, 148

M-N 91
Occur 84M-0 150
Only Global Abbrevs 140

M-P 91
Options 109

M-Q 50 Overwrite mode 6, 107M-R 72
M-Rubout 37,46,66

PAGE 80
M-S 51

Page Delimiter 48, 80M-T 46
PAGE Flush CRLF 81M-U 51
Pages 34, 48, 79, 80, 145M-V 71
Paragraph Delimiter 48,97M-W 39
Paragraphs 34,47, 50, 92,96, 145

M-X 1, 232 Parentheses 45, 89M-Y 40
Permit Unmatched Paren 89

M-1 47,96
Permute Pages From Table 145

M-\ 38,48,88 Pictures 143
M-) 47,90 Prefix characters 10, 115, 118Mt 48,88,96

Prepend to File 41, 64
M- 58

Pieventing abbrev expansion 137M.L m Printing terminal 153Macro10 go
Prompting 5,20Macroma go 9PURIFY

library 97

Macsyma m9 Push to EEC 27

-acsma-----9

Index 201

Q-registers 41 SRCCOM 58
Query Replace 83. 121, 123 Start Journal File 129
Quit 129 String arguments 21, 22,61, 110
Quitting 44, 125 String Search 44
Quoting 13, 140 Strip SOS Line Numbers 58

Submode 6

Read Command Prompt 20 Subroutines 23
Read Incremental Word Abbrev File 141 Syntax table 45, 46. 89, 92, 94, 111
Read Mail 30 SYSTAT 29
Read Word Abbrev File 138, 141
Readable Word Abbrev Files 138 Tab 45, 48,87, 88, 92,95
Reap File 61 Tab Stop Definitions 49
Recursive Editing Level 26, 62, 69, 112, 125, 130, Tabify 49

138 TAGS 68,75,109
Redefining abbrevs 136 Tags Apropos 103
Redefining commands 114,118 Tags File List 103
Region 33, 39,47, 52, 64, 77, 79,95,96. 136,145 TAGS Find File 68, 101, 103
Region Query Size 52 Tags Query Replace 103
Rename Buffer 68 Tags Rescan 103
Rename File 64 Tags Search 103
Replace String 83 TECO 20, 22, 23, 27, 41, 48, 51,65, 71,85,88,89,
Replacement 83, 84 109, 111, 113. 114, 120, 128,149
Replay Juurnal File 129 TECO default filenames 65
Restarting 128 TECO mode 97
Return 10, 13, 57 TECO search string 103
Revert File 59, 60 TECO search strings 61, 83,85
Right Picture Movement 143 Temp File FN2 List 61
Rubout 10, 13, 14, 20, 37, 55,83,87, 92, 107, 121 Terminal type 127
Run Library 109 Text mode 45,89

Text Mode Hook 89
S-expressions 93, 111 Toggling 107
SAIL characters 147 Top Level 125,128
Save All Files 68 Transposition 46, 56, 94
Save Word Abbrevs 138, 141 Two window mode 73
Saving 57, 59 Typeout 5
Saving abbrevs 138 Typos 55, 56
Screen 5, 71
Scrolling 71, 73 Undo 39, 52, 59,127, 128
Searching 43, 81,83 Unexpanding abbrevs 137
Select Buffer 67 Unsplit File 127
Sentences 47, 55 Unlabify 49
Set Key 23, 139 Up Picture Movement 143
Set Terminal Type 127 URK 69, 127
Set Variable 110 User Name 114
Set Visited Filename 64
Short Display Size 150 Variables 11, 109, 114
Slow Search Lines 150 View Arglist 103
Slow Search Separator 151 View Buffer 72
SLOWLY Maximum Speed 151 View Directory 61
Sort Lines 145 View File 64
Sort Pages 145 View Kbd Macro 120
Sort Paragraphs 145 View Page Directory 81
Sorting 145 Visit File 65
SOS 58 Visit Tag Table 100
Space 10,20,50,83,121 Visiting 14,57,59,67,68,75
Space Indent Flag 48
SPLIT 127 W2 73
Split File 127 What Cursor Position 51
Split pages 81 What Page 79

202 EMACS Manual for TWENEX Users

What Tag? 103 tR Execute Minibuffer 123Windows 73 IR Exit 27, 109

Word Abbrev Hook 142 tR Extract Sublist 94
Wodabbrev mode 6, 107, 135,136,140 R Fill Paragraph 50Word Search 44 tR Fill Region 50

WORDAB M5 tR Format Code 96WORDAB Ins Chars 140 IR Forward Character 14
WORDAB Setup Hook 142 tR Forward List 93
WORDAB.DEFNS 138 tR Forward Paragraph 47, 96
Words 34, 45, 51, 55, 56, 111 rR Forward Sentence 47
Write File 60, 64 IR Forward Sexp 93
Write Incremental Word Abbrev File 141 IR Forward TECO Conditional 97
Write Word Abbrev File 138,141 tR Forward Up List 94

tR Forward Word 46t 83 tRGetQ-reg 41
tR (in function names) 11 tR Go to AC Field 96
tR Abbrev Expand Only 137 tR Go to Address Field 96
tR Add Global Word Abbrev 136,139,140 tR Go to Next Label 96
tR Add Mode Word Abbrev 136, 139 tR Go to Previous Label 96
tR Add Tag 101 tR Goo Beginning 14
tR Append Next Kill 39 IR Goto End 14
tR Append to Butter 41 IR Goto Next Page 81
tR Back to Indentation 49 tR Goto Page 80
tR Backward Character 14 ?R Goto Previous Page 81
tR Backward Delete Character 13, 37, 55, 92 tR Grow Window 74,124
iR Backward Delete Hacking Tabs 92 tR Incremental Search 43, 81
tR Backward Kill Sentence 37, 47, 55 rR Indent for Comment 90
tR Backward Kill Sexp 37, 94 tR Indent for Lisp 92,95
iR Backward Kill Word 37, 46, 55 rR Indent Nested 97
tR Backward List 93 tR Indent New Comment Line 91
Rt Backward Paragraph 47, 96 rR Indent New Line 48, 87, 88, 95

tR Backward Sentence 47 rR Indent Region 49, 96
tR Backward Sexp 93 IR Indent Rigidly 49
tR Backward TECO Conditional 97 tR Indent Sexp 96
tR Backward Up List 94 tR Insert 0 94
IR Backward Word 46 tR Insert Pagemark 81
IR Beginning of Defun 95 IR Instant Extended Command 21
iR Beginning of Line 14 lR Inverse Add Global Word Abbrev 136, 139,tR Buffer Not Modified 58 140
tR Center Line 51 tR Inverse Add Mode Word Abbrev 138, 139
tR Copy Region 39 tR Invoke Inferior 28
IR Count Lines Page 80 tR Join Next Page 81tR CRLF 13 IR Kbd Macro Query 121
tR Delete Blank Lines 15,38 IR Kill Comment 91
tR Delete Character 37 tR Kill Global Word Abbrev 139
tR Delete Horizontal Space 38, 48, 88 IR Kill Inferior 28
tR Delete Indentation 38, 48, 88, 95 tR Kill Line 37
tR Directory Display 61 tR Kill Mode Word Abbrev 139
tR DIRED 63 IR Kill Region 37
fR Do Not Write File 58 tR Kill Sentence 37,47
tR Down Comment Line 91 tR Kill Sexp 37, 94
tR Down List 94 fR Kill Terminated Word 96
fR Down Real Line 14 tR Kill Word 37, 46
tR Edit Quietly 150 IR Lowercase Region 52
tR End Kbd Macro 120 tR Lowercase Word 51, 56
tR End of Defun 95 tR Mark Beginning 34tR End of Line 14 tR Mark Defun 34, 95
1R Exchange Point and Mark 33 tR Mark End 34
tR Execute Kbd Macro 120 tR Mark Page 34,79

U

Index 203

tR Mark Paragraph 34,47
tR Mark Sexp 34,94
tR Mark Whole Buffer 34
tR Mark Word 34,46
tR Move Over) 94
tR Move to Screen Edge 72
tR New Window 14,71, 153
tR Next Page 79
tR Next Screen 71
tR One Window 73
tR Open Line 15,17
tR Other Window 73
tR Prefix Control 10
tR Prefix Control-Meta 10
tR Prefix Meta 10
tR Previous Page 79
tR Previous Screen 71
tR Put Q-reg 41
tR Query Replace 84,123
tR Quoted Insert 13
rR Re-execute Minibuffer 21, 84, 124
tR Reposition Window 72
tR Return to Superior 27
tR Reverse Search 43,81
tR Save File 14,58,68
tR Scroll Other Window 73
tR Set Bounds Full 77
tR Set Bounds Page 80
tR Set Bounds Region 7

tR Set Comment Column 91
tR Set Fill Column 51, 107
tR Set Fill Prefix 51
tR Set Screen Size 150
tR Set/Pop Mark 33
tR Slow Display I-Search 150
tR Slow Reverse Display I-search 150
tR Start Kbd Macro 120
tR System Load Average 29
iRTabtoTabStop 45,49
tR Transpose Characters 14, 56
tR Transpose Lines 56
tR Transpose Regions 56
tR transpose Sexps 94
tR Transpose Words 46
R Two Windows 73

tR Un-kill 39
tR Un-kill Pop 40
tR Universal Argument 17
tR Up Comment Line 91
tR Up Real Line 14
tR Upcase Digit 56
rR Uppercase Initial 51, 56
tR Uppercase Region 33, 52
tR Uppercase Word 51,56
tR View Two Windows 74
tR Visit File 14,57
tR Visit in Other Window 75
tfR Widen Bounds 81
?R Word Abbrev Prefix Mark 137

