-AD=A093 878

UNCLASSIFIED

Lo

iouxk

WHARTON SCHOOL PHILADELPHIA PA DEPY OF DECISION SCIENCES r/¢ 9/2

CONSTRUCTING WVIM.(U)
V IO A MOTRO» P

uonou-n-c-om

ADAO93878

e

-

DDC FILE copy

A T O N T U T R S

i

N - T e b T e riveniNs
- REPORT DOCUKENTAT.OK PAGE Prviant aEmpilnS
FECIPIENT 3 CATALOG WuWBER

1. &t PORT NUWBLR

g e

2 GOVTY ACCELMITN NOJ 3

D-A09% 818

$ TYPE OF HEFORY & PLRIOD COVERED

4 VLT AT Subilile) hns 1
V QONSTRUCTING SUPERVIEWS 4/80-5731
/p)? 2 _
§. PERFORMING ORG. REPORT WUMBER

VU U WP O

[7,
[AGTHONe) . N
L?Amihai/Motro 2ox Peter funeman :%14-75{-ﬂ462 :

/

16. PROGRAM ELEMENT,. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Task NR049-272

3. CONTRACTY OR GRANT NUMBER/S)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

t of Decision Sciences °
‘ The'a Wharton School
University of Pennsylvania, Phila., PA 19104

11, CONTROLLING OFFICE ATEIITITINLT T e e . 12 REFORT DATE" .
7 ?~ chnitcud pept W}'J Novewber 1984 °

Offi f Naval ch 4 Ch=m My T ’
ice o va ReSea.rcHL”f,,J,/@a/)/q},, /J,J‘“”'z""""mg _i/Z,;;

1€ MONITORING AGENCY NAME [T] 18 SECURITY CLASS. (sf thts reporty
3 N 1
: ’ . L .
3 > ‘ ¢ enclassified
.{ ’ . B 15a. DE.K‘:L ASSIFJ_C__A}?ON’OO'NGRADING -
! En k7 ' :

16. DISTRIBUTION STYAFEMEN T-fel this Repori) —rre
.

Distribution unlimited; approved for pub'lic release

- - _ 1
17. DISTRIBUTION STATEMENT (of the abstract u-.\urcd in Bloek 20, 11 difierent from Report) e <7 ’,
Distribution unlimited - . i >
{ W) % \g
DLan

18, SUPPLEMENTARY NOTES

9. KEY WORDS (Continue on reverse alde Il necessary and identily by block number)

integration of databases; "superview", schema transfo i
mapping of queries; query evaluation; rmations

L)
g ABSTRACT (Centinue on reverse side 1 neceseary and identify by block manber)

A method is escribed ;for integrating two or more databases into a

EDITION OF § MOV 83 IS OBSOLETE
S/N ©102-014- 6801 | A

DD, 1473

o B A A
EEEEE——————,———————,———.—

20. (con't)

‘éaids the user in constructing the superview and
that performs this query transformation is being developed. K

-3

CONSTRUCTING SUPERVIEWS
Amihai Motro and Peter Buneman

Department of Computer and Information Science,
Moore School, University of Pennsylvania,

Philadelphia, Pa. 19104,

Abstract

-A method is descrited for integrating two or more -

dztabases into a2 conceptual "supsrview", through a set of

schema transformations. Such integration may be useful when

it is required to produce 2 unified view of two databases
while preserving their ghvsical independence. &Each

trznsformation cefines a2 mapping of queries against the

sucerview into the appropriate set of queries against the
unieriying databases and imposes a constraint that is

checked when the query is evaluated. A program that

interactively aids the user in constructing the superview

and that performs thic gquery transformation

is being
[=] l :ctn Tw;wivtz =
developed. O PR TR IS
« g9 l “E2nwn o
R - y,;
R I =3 9 |
" L S R s Nl
T2gy ANy
O A B - {
b B o RN LA ¥

o ok Moo Lo N (2] 31'
1 e S. PO] l 153 3

P » 8 9)i

- f |

i

|

1 Introduction

Even with the increased use of large and complex
databases, it often happens that the information required
for a specific application, or set of applications, extends
over two or more physically independent databases. The
writing of such applications is considerably simplified if
the databases appear to the program as a single integrated
database. However, the cost of performing any physical
restructuring may be prohibitive and may impose unnecessary
constraints on the structure and content of the database as

it is viewed by the original users.

We describe a method that will perform a virtual merge
of existing independent databases, that presents the user
wizh a larger conceptual structure that may be queried and
possibly updated without compromising the independence of
the existing datzbases. This process is in some sense the
inverse of constructing "user-views" or "external schemas”.

Giwv=n two or more logical schemas, what larger schema has

th=zs

schemas as user views? We shall call this larger
schema a superview and the purpose of this paper is to
Gescribe a set of formal schema transformations for the

construction and manipulation of superviews.

There are a number of proposals that relate to this
kind of database merging. McLeod and Eeimbigner [l] have

suggested a "federated database architecture®. They note

the limitation of current approaches to database

aistribution and suggest an alternative in which databases
are physically distributed but externally represented by a
central logical schema, that is derived from the schemas of
the component databases. This federal schemas is used to
specify information that may be shared by the various
components and to formalize communication among the
individual databases. Another proposal based on a
functional data model by Shipman [2], suggests that a global
schema could be built for several databases and provides a
method for defining a function in the global schema from a
set of functions defined in the component databases. To our
knowledge, no attempt has yet been made to provide any
gen=ral set of schema restructuring tools with which the
glotal schema may be created and from which the appropriate

rz-pings of access paths wmay be deduced.

The transformaticns described in this paper have been
incorporated into a program that, under interactive control,
cocnstructs the superview. It is an interesting property of

th=se transfcrnmations, that once scme low level

mn

identifications have been made, much of the higher level
merging can proceed autcmatically. A second component of
this program transforms queries against the the superview
into gueries against the component schemas, and checks
integrity constraints that may have been introduced in the
construction of the superview. 1In this system, no physical
constraints are placed on the component databases. The

constraints, if they exist and are violated, will only cause

failure when an attempt is made to interpret a query. We
would hope that such a system might prove useful when
short-term restructuring is needed for the extraction of
specific data aggregates. For the preservation of long-term
superviews, it is probably more natural and efficient, as is
suggested by the Federated DBMS architecture, to enforce

these constraints permanently.

In order to define a set of schema transformations, a
formal data model is clearly necessary. The model we shall
describe has close affinities to the Sematic Data Model
defined by Bammer and McLeod [3), the aggregation/
generalization hierarchies of Smith and 3mith [4,5], the
functional approach suggested by Sibley and Kershberg [6]
and the functional model used by Shipman [2]. The next
section is devoted to a description of our model. However,
we see little difficulty in extending the technique to these

related models.

2 The abstract Data Model

To illustrate the problems in constructing a superview

cornsider an attiempt to merge two (very simple) databases:

Tl

NAME ADDRESS OFFICE# EMP#

O%
NAME ADDRESS CUST# TEL$

The arrows in this diagram indicate an attribute
relationship, for example that NAME is an attribute of TIl.
In merging these two databases we may be seeking just the

common attributes:

T3

NAME ADDRESS

or we may require that a database that represents both the

common attributes and the attributes that distingquish the

two databases:

Tl T2

CUST# TEL# NAME ADDRESS EMP# OFFICE#

where we have introduced a new relationship (indicated by

————{>). This is a subtype relationship: Tl is a subtype of

T4, and as such inherits the attributes of T4, that is, both

NAME and ADDRESS are attributes of Tl. These two
relationships, attribute and subtype, are preciscly those of
aggregate and generalization proposed by Smith and Smith
{[4,5]. The rnimple, but important, point to be made is that
while the original database schemas did not include subtype
relationships, it may be necessary to introduce them in

order to produce an accurate description of the combined

data.

At the basis of the data model used here is a
furctional approach, first described by Sibley and
Kershberg [6]. This approach employs the notions of data
domzins and attribute functions: domains are sets of data
obiects, functions assign the objects of one domain to
objects of another domain as their attributes. The version
of the functional data model that we describe here bears a
close relationship to functional models that have been
described in other contexts [2,7,8]. While the details may
differ, we sce no real éifficulty in modifying the
tectnigques éascribed here to work against these other
rciels., We see several advantages in the functional
agproach; in particular it overcomes some of the
acrnowledged limitations of the relational model and it
provides a2 formal framework in which both the relational
model and the network model may be subsumed. A brief

description follows, for further details see [9].

Assume a collection D of named classes cuch that
(1) each class S has a domain dom(S) of objects,
(2) two relations att and gen are defined on D,
(3) for every two classes S,T, such that S att T,
there is a function fST : dom(S) -> dom(T),
(4) for every two classes 5,T, such that S gen T,

there is an injection isT : dom(S) -> dom(T).

The collection D of classes (with their associated domains)
incorporates two types of relationships. The att
relationship, by which one class becomes an attribute of
another class, is supported by functions. The gen
relationship, by which one class becomes a generalization of

angther class, is supported by one-to-one functions.

As an exanple consider the classes FACULTY, STUDENT,

PEREON, SS#, NAME, CFriCE, SCEOOL, S NAME, with the

relationships
SS$# att FACULTY, OFFICE att FACULTY,
§S%# att STUDENT, SCHOOL att STUDENT,
$S§ att PERSON, S_NAME att SCHOOL,
NAME att FACULTY, OFFICE att SCHOOL,
NAME att STUDZIXT, PERSON gen FACULTY,
NAME ztt PERSON, PERSON gen STUDENT,

Note that, each FACULTY must have exactly one NAME and be
exactly one PERSON, but while several different members of
FACULTY may have the same NAME, they each must be a

different PERSON.

Classes that do not have any attributec are called
primitive classes. Their members are primitive objects. In
the example SS#, NAME, OFFICE and S _NAME are primitive
classes. FACULTY, STUDENT, PERSON and SCHOOL are

non-primitive.

Besides domains, classes also have types. Types are

derived from the relation att.

———

Pefinition 1: The type of a given class S in D is

type(s) = {T | T att s}.

Clearly, primitive classes have empty types. The non-empty

types in the above example are:

type (FACULTY) (SS# NAME OFFICE),

type (STUDENT) (SS NAME SCHOOL),

type (PERSON) {SS% NAME),

type (SCHOOL) (5 XaME QOrriCE).

For many applications it is necessary that every member
of 2 domain is uniquely identifizble by a combination of its

rizitive attributes. This is especially important for the

pu-oose of merging two different databases, so that when

[

heir two pcpulations are consolidated, identical objects
car. be recogrnized as such. We must therefore identify a key

relationship between classes.

pif._ili_t,i_(l,“_?;i hosume {Tl,TZ,. .. ,Tn} <€ type (S).
(TY T2 ... Tn) key 5 if
{f : dom({S) -> dom(Tl) x dom(T2) ¥ ... x dom(Tn)
£02) = (fgpq (0) s Egpo(X) s en s fgppy (X))

is an injection.

Thus, the classes (Tl T2 ... Tn) constitute a key to class
S, if a combination (x1 x2 ... Xn) of objects from these
classes determines at most one object of S. Assuming every
person has a different Social Security number, the key
relationships in the above example are:

SS$# key FACULTY,

SS§ key STUDENT,

SS§# key PERSON,

S_NAME key SCHOOL.
Feys are not necessarily primitive or simple (constituting a
single class), as the azbove example might suggest. A class
EINROLLMENT may b2 intrséuced, which is keyed on the
combination of a non-priritive class COURSE and the
ncn-primitive class STUDENT. By composing keys each

rrca-primitive object can b

1]

identified by a combination of

primitive objects.

To become a propsr database, a few more requirements
are imposed on the structure defined so far. They are

stated in the following definition.

‘r}r»_f_i_r._jgj‘or)_ _3:_ h collection D of clomnes with relations,
domains, functions and injectione (a5 in 1-4 abnove) is a
database if:

(1) the intersection of att and gen is empty,

the union has irreflexive trarzitive closure,

)

(2) S att T, T gen R => S at* =, f

at: s+ g = igpPfrg,

S gen T, T gen R => S gen R, iRS = igp@irg,

(3) ¥V x,y¢dom(S): (V¥ Tetype(S): fST(x)=fST(Y)) => x=y.
The first condition gquarantees that one class is not both an
attribute and a generalization of another class and that
there is no chaiﬁ of related classes (by either att or gen)
that begins and ends in the same class. The inheritance of
attributes over generalizations and the transitivity of
gensralizations are assured by the second condition. The
last condition states that no two objects in a domain have

the same values for all their attributes; members of each

M
uy

cm2in are distinguishable by at least one attribute. The

underlying justificatiorn is that this enforces a more

fv

corrate semantic specification; if it is necessary to

[e])
.]
tn
(N3
(]
3
(19}
c
[
1]
o3
o
[{]
r
%
({]
Y]
3
7]

uch objects, an appropriate attribute
should be present. A consegquence of the last condition is
thzt each clzss in the database can always be assigned one
ker, the trivial key comprising the entire type. Also, if

S gen T, then inheritance guarantees that every attribute of
S is also an attribute of T. 1In particular, a key of S is
composed of attributes of T. Because the composition of

injections is an injection, the key of S is also a key of T.

10

These consequences are summarized in the following
statement:
(1) Every class is guaranteed a key,

(2) Classes related by generalization have the same key.

We have been using a graphic representation of a
database schema. Each database class is represented by a
node. If T att S, there is a directed arc from node S to
node T: S—> T. If T gen S, there is a directed arrow
from node S to node T: S —D T (an edge is either an arc or
an arrow). However, if T gen R and S5 att T, then S att R is
suppressed in the graphic representation. Similarly, if
S gen T and T gen R, then S gen R is suppressed (these are
the inheritance and transitivity discussed above. For
conciseness, these relationships will also be suppressed in
2ll future specifications of databases). Graphs that
represent databases do rot have cycles or parallel edges.

The graphic representation of the above example is:

FACULTY STURENT

OFFICE sS4 NAME S_NAME

11

3_Restructuring Primitives

In this section we describe a small set of
restructuring transformations that merge or modify database
schemas. With each operator there is an associated set of
constraints that must be satisfied by the objects that
populate the component schemas. 1In the current
implementation these constraints are checked only upon
interrogation. We begin by introducing three primitives

(meet, join and fold) that manipulate the generalization

hierarchy.

3.1 Meet. The meet operator produces a common
generalization of two classes, if such a generalization may
be found. The existence of a generalization is determined
by the properties of their keys. The example that
introduces Section 2 shows how meet is applied to an
exployee (Tl) ané a customer (7T2) to produce person (T4).
This operation is baﬁed cn the existence of a common key
(N¥Z). Formally, assume thet S and T are non-primitive
cizsses not related by gsn. Assume there exists

K € type(S) N type (T) that maintains K key S and K key T. The
transformation meet S 2and T is performed by adding a new
class, the meet ©of S and T, denoted by SAT, and the
relationships SAT gen S, SAT gen T and Ri att SaT .
(i=1,....,n). The type of SAT is therefore given by

type (SAT) = type(S) Ntype(T). The graphic representation of

meet is

12

In this figure the common attributes (i.e.

type (S) n type(T)) are represented by Rl,...,Rn. The

attributes that distinguish S and T are represented by

Pl,...,P1 and Q1,...,0m, respectively. The new class is
populated with the union of the domains of S and T:

Gox (SAMT) = dom(S)V dom(T). The injections from dom(S; and
dem(T) into dom(SaT) zre defined as identities. The
functions from &om(SaT) into the domains of Rl,...,Rn are
cefined to preszer-wve inheritance. The latter functions

reguire a consistency ¢

0

nstraint: objects in dom(S) or

r

éocn(T) that have the same key, must agree over their other
grzred attribuies. Formelly, denste by fl,...,fn and
¢l,...,gn the attribute functions from S and T,
resoactively, into Rl,...,Rn. Let K = {Rl,...,Rk}. Define
functions £ and g as follows:
f : dom{(S) -> dom(Rl) x ... x dom(RK)
{f(x) = (f1(x),....fk{(x))
{g : dom(T) ~> dom(Rl) x ... x dom(Rk)

g(x) = (gl(x),...,gk(x))

13

Then ¥ y¢f (Com(3)) N g(doﬁ(?)):

£ictd (v)) = gitg L (y)), i kel.....n.

3.2 Join. meet generates a class whose type is the

intersection of both types and whose domain is the union of
both domains. Another class that may be created under the
same circumstances is the dual class whose type is the union
of both types and whose domain is the intersection of both
domains. As an example, consider again the classes

FACOLTY = (§§£ NAME OFFICE) and STUDENT = (§§3 NAME SCHOOL).
The meet of FACULTY and STUDENT is the class PERSON =

(552 NAME) . Its domain includes all those which are either
FACOLTY or STUDENT. PERSON generalizes both FACULTY and
STODENT. The join of STUDENT and FACULTY is the class
RSSISTANT = (SS$# NAME SCHOOL OFFICE). Its domain includes
211 those which are both FACULTY and STUDENT. ASSISTANT is
ceneralized by both FACULTY and STUDENT. Formally, assume S
and T maintain the saxze conditions as before. The
transformation join S 208 T is performed by adding a new
clzss, the join c¢f£ S zn3 T, cdenoted by SYT, and the

rslztionships SYT gen S, SVT gen T, Ri att SvT (i=1,...,n),

Pi att SvT (i=1l,...,1) and Qi att SYT (i=1l,...,m). The type

¢Z 5vT is therefore given by type(SVT) = type(S)U type(T).

The graphic representation of join is

14

The domain of SYT is dom(SyT) = dom(S)Ndom(T). The

injections from dom(SVT) into dom(S) and dom(T) are defined
as identities. The functions from dom(SYT) into the domains
of R1,...,Rn, P1,...,P1 and Ql,...,0m are @efined to
preserve inheritance. Again, the same consistency

ccnstraint is required.

3.3 Fold. meet and join 2dd a generalization. fold removes

a2 subtype. With fold 2 subtype class STUDENT may be folded
into the more general class PERSON, with the distinguishing
STUDENT attributes czarried over to PERSON (adding special
*rrndefined” vzlues fcr non-STUDENTs). Formally, assume S

anZ T are two non-prizitive classes such that T gen S. The

transformaticn £0lé S into T is performed by removing the

clzss 8 and replacing it with T in all relationships.

15

- orowiiie i

Functions and injections that had dom(S) as their domain are
modified to have dom(T) as thcir new domain, using the
previous injection from dom(S), into don(T) (and an
"undefined" value for objects in dom(T) but not in the image
of this injection). Using the same injection, functions and
injections that had dom(S) as their range are modified to

have dom(T) as their new range.

reet is the principal operator. With meet the
similarity between two semantically related classes, which
are not identical, may be expressed. If the type of one
class contains the type of the other class, meet produces a
situation suitable for folding. After fold is applied, one
class becomes a generalization of the other. Consider the
previous class STUDENT and GRAD_STUDENT =
(SS# NAME SCEOOL DEGREE). The result of meet is a new class
STUDENT” = (S5% NAME SCHOOL) whose domain is the union of
bcth domains. STUDENT is then folded into STUDENT”. In the
end STUDENT” and GRAD STUDENT are connected via a
gensralizaticn. If the two classes happen to have identical
types, then after the zzplication of meet, fold may be

oolied twice. 1In the end the two classes are combined into

L)

cre class whose domain is the union of both domains. 1In the
last two situations, the same results may be achieved by

perfcrming a2 join, followed by one or two folds.

meet, join and fold are operators that manipulate the

generalization hierarchy of the databases. The next two

16

primitives (aggregate and teleccope) allow modificetions to

the attribute hierarchy.

3.4 Aggregate. The attribute hierarchy may be extended by

aggregating a subset of the attributes of a given class into
a separate class, which then becomes an attribute of the
original class. Formally, assume S is a non-primitive
class, type(S) = (T1 ... Tm Tm+l ... Tn). The transformation
aggregate (Tl ... Tm) into T of S is performed by adding a
new class T and the relationship T att S. Also every
relationship Ti att S is replaced with Ti att T.

Graphically,

Tre domain of T is populated with new objects, that are all
tre cossible *urles of ctjects from the aggregated domains:
€cz (%) = dem(Ti) %X ... x dom(Tm). The function that
sucports the relationship retween S and T is defined by
fem(x) = (f£gp1(X),...,f57n(X)). The functions

frocm dom(T) onto dom(Ti) (i=l,...,m) are simple projections.

3.5 Telescope. While aggregate extends the attribute

hierarchy, telescope performs the inverse: it removes a

class by assigning its attributes directly to its ancestor.

17

Formally, assume T is a non-primitive class,
type(T) = (Tl ... Tn), which is an attribute of only one

class S. The transformation telescope T into S is performed

by removing the class T and the relationship T att S, and
replacing the relationships Ti att T with Ti att S.

Graphically,

()
(v) ==>
@@

The functions that support the new attribute relationships

are simple compositions:

fSTi(x) = fopi(fgp(x)) (i=1l,...,n).

With aggrecate and telescope, a class may be relocated
on the schema. Consider the classes PATIENT =
(SSZ NAME AGE FAMILY) and FAMILY = (ADDRESS SIZE DOCTOR).
By telescoping FAMILY into PATIENT and then aggregating
ATCFESS and SIZE into FAMILY, the attribute DOCTOR is
relocated from FAMILY to PATIENT. Relocation can take place

in both directions.

aggregate may be used to bring a schema to a normal
form, in which the non-key attributes of each class are
fully dependent on the key. If a class exists with some

attributes which are dependent on a subset of its key, these

18

PRE LY

attributec, together with the subkey, are aqgregated into an
interim class. For example, consider the class

ORDER = (M PART_NAME SUPPLIER# SUPPLIER_NAME QUANTITY).
The key of ORDER is both PART# and SUPPLIERE#, but only
QUANTITY depends on both; PART NAME depends only on PART#
and SUPPLIER NAME depends only on SUPPLIER#. Therefore this
class is not in normal form. Using aggregate twice, the
following schema may be obtained: PART = (PART# PART NAME),
SUPPLIER = (SUPPLIER$ SUPPLIER NAME) and ORDER =

(PART SUPPLIER QUANTITY). The new schema is in normal form.

As a third example, consider the classes ACCOUNT =
(_P&Ci NAME BALANCE) and TRANSACTION = (TRANS§ ACC# AMOUNT).
Consider the following four operations. First ACC# is
aggregated into an interim class ACCOUNT” which becomes an
attribute of TPANSACTION. BHaving a common key ACC#, ACCOUNT
and ACCOUNT” are then generalized by ACCOUNT”“. Finally
ACCOUNT and ACCOUNT” zre each folded into ACCOUNT”“ (which
is then renamed ACCOUNT). Tne final result is a retraction
oi TRANSACTIONM from ACC# to ACCOUNT: ACCOUNT is left
unchanged, but TRANSATTION is modified to TRANSACTION =
(TRANS# ACCOUNT AMOUNT), which is more semantically
accurate, since each TRANSACTION has its own ACCOUNT, rather
than an ACC%#. Like normalization, retraction may be applied
wherever possible to obtain a2 "better" representation of the
schema. (Note that if ACC# were a key of both ACCOUNT and
TRANSACTION, a meet of these two classes would have been

more appropriate, since there is evidence that these classes

19

are semantically "comparable").

All the previous operators merely transformed existing
structures to "equivalent" structures. The last two

operators (add and delete) are different in that they allow

current structures to be extended or reduced.

3.6 Add. 1In general, the addition of a new c}ass and the
specification of its attribute relationships to existing
classes is actually an augmentation of the current database
by another database and therefore may nct be considered as a
restructuring operation. 1In many cases, however, a given
class has an attribute which is implied, but not specified.
For example, a class CAR in a database of a Ford car dealer
may not include the attribute MAKE. Adding this attribute
(with a single value "FORD" for all cars) does not qualify
as augmentation by another database, but will prove
important when databasz2s of different car dealers have to be
merged. Formally, essuxze S is a non-primitive class. Let P
be a new primitive class with a single chject domain. The
transformation aédd P(x} to S is performed by adding the
class P and the relationship P a2tt S, with a constant

function from dcm(S) onto dom(P).

Whenever identical structures from two databases are
combined, loss of information may result. Consider two
library databases, both with the class BOOK =
(BOOK# TITLE AUTHOR). The combined class contains the

unified collection of books. However, the information on

20

where each book is shelved is lost. With the help of adgd,
this implied knowledge can be added to each class BOOK
before they are combined. The combined class BOOK =

(BOOK# TITLE AUTHOR LIBRARY) includes the source library for
each book. Note that the class LIBRARY must now be included
as part of the key of BOOK. Hence add may require that the

new attribute is added to the key.

3.7 Delete. To remove portions of the database which are

not relevant to the application the delete primitive may be
used. In other words, the delete operator enables
user-views. Assume S is a non-primitive class and T att S.

The transformation delete T from S is performed by removing

the relationship T att S. If T is no longer an attribute of
any other class, it oo is removed together with all its
out-goiny relationships. Each of its attributes is in turn
examined, to see if it is still an attribute of any other
class, and so on. If T is part of the key of S, then its
deletion has serious serazntic Implications: in the domain of
the new class S objectis that were previously differentiated
only by their key value, are now identified. For example,

the deletion of COURZEf from ENROLLMENT =

(COURSEZ SS# GRADE) generates (SS$# GRADE), a class whose

meaning is unclear.

In general, aggregate, telescope, add and delete may be

used to iron-out structural differences between the two

candidate databases, so that better overlapping is achieved.

21

4 The Merge Technique

The merge technique consists of an initial step,

followed by a sequence of restructuring primitives,

In the initial step the user relates the two
independent databases by pairing primitive classes. Each
pair associates a primitive class in one database with a
primitive class in the other database. Each pair is then

corbined into one primitive class with a unified domain.

To be correct, the primitive classes in each pair
should model the same real world entity. Thus, two classes
describing the Social Security number may probably be
associated, but the employee number in two different
organizations may indicate two independent sequencings,
whicp do not heve any globzl meaning. The latter does not
create prcblems, unless these classes participate in keys.
Identical objects (i.e. the same employee in both

rganizations) could remzin saparate.

0

Once these initial associations have been supplied, the
twc Catabases are connected to become one. From here on the
process is that of restructuring, with the purpose of
iéentifying similar structures. We demonstrate this

technigue by means of an example.

Assume an organization with two independent databases.
One describes the assignment of employees to projects. The

other gives details on the different projects. An employee

22 ?

-41---------IIIIlIIIIIIIIIIIIIIIIIIIIIIIII

may participate in several pr
unique employee to manage it.
database is as follows
Figure 1):
EMPLOYEE att ASSIGNMENT,
PROJECT att ASSIGNMENT,
PERSON gen EMPLOYEE,
JOB att EMPLOYEE,
DEPARTMENT att EMPLOYEE,
SS$# att PERSON,

NAME att PERSON,

ojects, but each project has a

The definition of the first

(for a graphical representation see

ADDRESS att PERSON,
JOB_CODE att JOB,
JOB_DESC att JOB,
D_NAME att DEPARTMENT,
OFFICE att DEPARTMENT,
ROOM# att OFFICE,

PHONE# att OFFICE.

By making DEPARTMENT an attribute of EMPLOYEE, each EMPLOYEE

is constrained to one DEPARTMENT.

The possibility for one

EMPLOYEE to participate in several PROJECTs is expressed by

relating them through ASSIGNMENT, which is then keyed on

both. The keys are:
(EMPLOYEE PROJECT) key
SS# EMPLOYEE,

k e‘Y,
—t———

SS# key PERSON,

JOB_CODE key JOZ,

D_NAME key DEPARTMENT,

ROOM# key OFFICE.

The second datzbase is
is described by its project
total budget (see Figure 2):

P$ att PROJECT,
MANAGER att PROJECT,

et

much less detailed;

number, its manager

each project

and the

BUDGET att PROJECT.

23

The only key relationship is P§ key PROJECT. Note that
PROJECT in the first databace actually refers to project
numbers, while MANAGER in the second database contains only

Social Security numbers.

We now issue the restructuring reguests to merge these
two databases. The initial step consists of two
associations only (the result is shown in Figure 3):

(1) PROJECT and P# are combined into P#,

(2) SS# and MANAGER are combined into SS§.

Our first goal is to make PROJECT an attribuce of
ASSIGNMENT. This retraction is performed in four primitive
steps (the result is shown in Figure 4):

(1) aggregate (P#) into PROJECT” of ASSIGNMENT,

(2) meet PROJECT and PROJECT” (new class is T),

(3) fold PROJECT intec T,

(4) fold PROJECT Intec T (rerame T to PROJECT).

o)

Next we create a subtvpe of EMPLOYEE, to be called

IZN2AGER, which will r=c-lzce S5%# as an attribute of PROJECT.
To achieve this we aggrzgate the S5S% of PROJECTs into an
interim MANAGER, and assign to it the (undefined) attributes
NAMZ, ADDRESS, JOB and DEPARTMENT:

(5) aggregate (SS#) into MANAGER of PROJECT,

(6) add NAME (NIL) , ADDRESS(NIL), JOB(NIL),

DEPARTMENT (NIL) to MANAGER.

Now, since EMPLOYEE and MANAGER have the same key, meet and

fold may be applied, resulting in EMPLOYEE becoming a

24

————E

D
|

generalization of MARNAGER (the final datahase is thown in
Figure 5):
(7) meet EMPLOYEE and MANAGER (new class is T),

(8) fold EMPLOYEE into T (rename T to EMPLOYEE).

A total of two initial associations and eight
restructuring primitives were needed to arrive at the final
database. Under a simple assumption, this merge technique
can be improved, so that a large part of the restructuring
may be inferred from the given databases. This assumption
states that the type of a class (i.e its set of attributes)
incorporates all the necessary characterizations. 1It
follows from this "complete semantics" assumption, that
every two classes with the same type may safely be combined
(given that consistency is maintained), or else each class
should have included a2 é&istinguishing attribute. Thus, all
meet and fold transfcrrmziions may be executed automatically,

without user initiation.

In addition, retrazcticng and nornalizations are always
semantically correct. Th=zrefore, they too may be inferred
from the databases. Ths new merge technique will use these
inferences in the following way. After the initial
associations, all inferred transformations will be applied.
Once the process stops, the user may "revive™ it with
additional restructuring requests. These, in turn, may
cause more inferred transformations to take place, and so

on. Using this technique in the previous example, out of

25

the eight trancformations only two (5 and €) rmust be
initiated from outside. This technique may still be uscd,
even if the assumption of "complete semantics"” is not always
correct. Instead of applying the inferred transformations,
they are only suggested for user approval. Thus, database
merging is seen as an interactive process with a helpful
system, in which the given schemas are "edited” to a

satisfactory structure.

References

[1] D.McLeod and D.Heimbigner; A Federated Architecture for
Database Systems; Proceedings of AFIPS National Computer

Conference, Anaheim, California, 1980.

[2] D.W.Shipman; The Functional Data Mcdel and the Data
Language DAPLEX; Proceedings of ACM-SIGMOD International
Conference on Manacexment of Data, Boston,

Massachucssetts, 1979 (tc azppear in ACM-TODS).

[3] M.Hammer and D.McLeoé; A Semantic Data Model: A
Modelling Mechanism for Data Base Applications;
Proceedings of ACM-SIGMOD International Conference on

Management of Data, Austin, Texas, 1978.

[4] J.M.Smith and D.C.P.Smith; Database Abstractions:
Aggregation; Communications of the ACM, Vol.20, No.6,
June 1977.

o

[5) J.M.Smith and D.C.P.Smith; Database Ab:tractions:
Aggregation and Generalization; ACM Transactions on

. Database Systems, Vol.2, No.2, June 1977.

: [6] E.H.Sibley and L.Kershberg; Data Architecture and Data
Model Considerations; Proceedings of AFIPS NAtional

Computer Conference, Dallas, Texas, 1979.

[7) B.C.Housel, V.E.Waddle and S.B.Yao; The Functional
Dependency Model for Logical Database Design;
Proceedings of the Fifth International Conference on

Very Large Data Bases, Rio De Janeiro, Brazil, 1979.

8] P.Buneman and R.E.Frankel; FQL - A Functional Query
Language; Proceedings of ACM-SIGMOD International
Conference on the Management of Data, Boston,

Massachussetis, 1975.

[8] A.Motro and P.Buneman; Automatically Merging Databases;
Proceedings of CCMPCON Fall 80 - Distributed Computing,

The 21st I:E

tr

Cecnzuter Society International Conference,

washingtcn, D.C., 1830,

27

ASSIGNMENT

EMPLOYEE PROJECT

DEPARTMENT

ADDRZSS NAME S5S$# JOB_CODE JOB_DESC D NAME OFFICE

Figure 1

MANAGER

Figure 2

PROJECT

DEPARTMENT

ADDRESS NAME SS# JOB_CODE JOB_DESC D NAME OFFICE

Figure 3

28

4____________‘

ASSIGNMENT

UDGET

PERSON

.0

DRESS NAME SS# JOB_CODE JOB_DESC D NAME OFFICE

DEPARTMENT

Figure 4

ASSIGNMENT

\

EMPLOYZE

PE.’RSON - JOR ‘ ‘ DEPARTMENT
J OO 3 O &b

ADDRESS NAME S5§ JOB_CODE JOB_DESC D NAME OFFICE

Figure 5

29

