
L AD-A 93 76 HARTOM SC HOL PHILADELPHIA PA DEPT OF DECISIONSCE ES vsW
I CONSTRUCTING SUPiRVI MS iU)

NOV a0 A NOTRO. P BNM N00014-TS-C-OU

Ii~~ Ih iiI

REI N J PORT DDCUPENTA-i,0N PGE L p : I A I ;'.Lk

WTRUI SUPEVMS, techni cal1

-. - (S. PERFORMING ORG. REPORT NUUSER

., AUTOR() II., CONTRACT OR GRANT NUmBERII)

Cvb~iai/miotro, An Pete5r/Bunrn iL W1-5--06
S. P)EAFORMING ORGANIZATION N A4E AND ADDRESS St. ROFWGRAM ELEMENT. PROJECT. T ASKCU"15part~t f Dei~iAREA A WORK UNMIT 'NUMBERtS

Th'fe Art~nt Sof Dcson Sciences Task NR049-272
University of Pennsylvania,_Phila. PA 19104 _ ________

It. CONTROLLING OFIC NovarI 198

Off ice of Naval ReSearclVr

14. MONITORING AGENCY-NdAMdE IS.SCRT s go'pvr

2- - ~ nclassified
PC m E~a DoL= -.7

It.. DISTRIBUTION STAENEN7l4hl.~pQ.t)..- -

Distribution unlimited; approved for public release

17. DISTRIBUTION STATEMENT (of thle &balr.cl eml@.d In Block 20. It different h-m Repogj

Distribution unlimited

It. SUPPLEMENTARY NOTES

19. KEY WORDS (Continu.e an ewoe side,. eit ne...., and identlify by block n..br)
integration Of databases; "superview", schema transformations

mapping of queries; query evaluation;

0. ABST RACT (Coine an Toee side of nec.a.my nd identifly by block n b.,)

A method is, escri'bed Or ntegratlng two or nnre databases i~nto aC.)caiceptual At~rview , through a set of schema transforrations. Such

L&.Jtie databases while Preserving their physical ihdependence. Each transforuaticn

that is checed when the query is evaluated. A program t2at interactive 1

DD 1473 EDTINo OF I 040V SS 1S OBSOLETEU

X/w *sa *14 " ECURITY CLASSIFICATION OF THInS PACE (Whn botse XAl

a p|

20. (con't)

>aids the user in constructing the superview and
that perfons this query transformation is being developed.

!3

CONSTRUCTING SUPERVIEWS

Amihai Motro and Peter Buneman

Department of Computer and Information Science,

Moore School, University of Pennsylvania,

Philadelphia, Pa. 19104.

Abstract

-A method is described for integrating two or more

databases into a conceptual "superview", through a set of

schema transforiations. Such integration may be useful when

it is required to produce a unified view of two databases

whi!e preserving their physica1 independence. Each

transformation defines a mapping of queries against the

suverziew into the appropriate set of queries against the

underlying databases and imposes a constraint that is

checked when the query is evaluated. A program that

interactively aids the user in constructing the superview

and that performs this query transformation is being

developed. "

-t -,

4 Ln

1 Introduction

Even with the increased use of large and complex

databases, it often happens that the information required

for a specific application, or set of applications, extends

over two or more physically independent databases. The

writing of such applications is considerably simplified if

the databases appear to the program as a single integrated

database. However, the cost of performing any physical

restructuring may be prohibitive and may impose unnecessary

constraints on the structure and content of the database as

it is viewed by the original users.

We describe a method that will perform a virtual merge

of existing independent databases, that presents the user

with a larger conceptual structure that may be queried and

possibly updated without compromising the independence of

the existing databases. This process is in some sense the

inverse of constructing "user-views" or "external schemas".

Given two or more logical schemas, what larger schema has

these schemas as user views? We shall call this larger

schema a superview and the purpose of this paper is to

de scribe a set of fornal schema transformations for the

construction and manipulation of superviews.

There are a number of proposals that relate to this

kind of database merging. McLeod and Heimbigner (I) have

suggested a "federated database architecture". They note

the limitation of current approaches to database

2

aistribution and suggest an alternative in which databases

are physically distributed but externally represented by a

central logical schema, that is derived from the nchemas of

the component databases. This federal schemas is used to

specify information that may be shared by the various

components and to formalize communication among the

individual databases. Another proposal based on a

functional data model by Shipman 12], suggests that a global

schema could be built for several databases and provides a

method for defining a function in the global schema from a

set of functions defined in the component databases. To our

knowledge, no attempt has yet been made to provide any

general set of schema restructuring tools with which the

global schema may be created and from which the appropriate

na=pings of access paths nay be deduced.

The transforrations described in this paper have been

incorporated into a program that, under interactive control,

constructs the superview. It is an interesting property of

these transformations, -hat once some low level

identifications have been made, much of the higher level

merging can proceed automatically. A second component of

this program transforms queries against the the superview

into queries against the component schemas, and checks

integrity constraints that may have been introduced in the

construction of the superview. In this system, no physical

constraints are placed on the component databases. The

constraints, if they exist and are violated, will only cause

3

failure when an attempt is made to interpret a query. We

would hope that such a system might prove useful when

short-term restructuring is needed for the extraction of

specific data aggregates. For the preservation of long-term

superviews, it is probably more natural and efficient, as is

suggested by the Federated DBMS architecture, to enforce

these constraints permanently.

In order to define a set of rchema transformations, a

formal data model is clearly necessary. The model we shall

describe has close affinities to the Sematic Data Model

defined by Hammer and McLeod [3], the aggregation/

generalization hierarchies of Smith and Smith [4,51, the

functional approach suggested by Sibley and Kershberg [6]

and the functional model used by Shipman [2]. The next

section is devoted to a description of our model. Howeverp

we see little difficulty in extending the technique to these

related models.

2 The Abstract Data Model

To illustrate the problems in constructing a superview

consider an attempt to merge two (very simple) databases:

T1

NAME ADDRESS OFFICE# EMP#

4

T2

NAME ADDRESS CUSTI TELI

The arrows in this diagram indicate an attribute

relationship, for example that NAME is an attribute of Ti.

In merging these two databases we may be seeking just the

common attributes:

T3

NAME ADDRESS

or we may require that a database that represents both the

common attributes and the attributes that distinguish the

two databases:

T1 T2

CUST# TEL# NA1E ADDRESS EMP# OFFICE#

where we have introduced a new relationship (indicated by

-- [). This is a subtype relationship: T1 is a subtype of

T4, and as such inherits the attributes of T4, that is, both

5

NAME and AIJRESS are attributes of TI. The-e two

relationshipf,, attribute and subtype, are precisely those of

aggregate and generalization proposed by Smith and Smith

[4,5]. The simple, but important, point to be made is that

while the original database schemas did not include subtype

relationships, it may be necessary to introduce them in

order to produce an accurate description of the combined

data.

At the basis of the data model used here is a

functional approach, first described by Sibley and

Kershberg 16]. This approach employs the notions of data

do-mains and attribute functions: domains are sets of data

objects, functions assign the objects of one domain to

objects of another domain as their attributes. The version

of the functional data model that we describe here bears a

close relationship to functional models that have been

described in other contexts [2,7,8]. While the details may

differ, we see no real difficulty in modifying the

te=hniques described here to work against these other

mcdels. We see several advantages in the functional

approach; in particular it overcomes some of the

acknowledged limitations of the relational model and it

provides a formal framework in which both the relational

model and the network model may be subsumed. A brief

description follows, for further details see [9].

6

Assume a collection D of -'r cl s e tsch that

(1) each class S has a domain doa(S) of objects,

(2) two relations att and gen are defined on D,

(3) for every two classes S,T, such that S att T,

there is a function fST : dom(S) -> dom(T),

(4) for every two classes S,T, such that S gen T,

there is an injection iST : dom(S) -> dom(T).

The collection D of classes (with their associated domains)

incorporates two types of relationships. The att

relationship, by which one class becomes an attribute of

another class, is supported by functions. The gen

relationship, by which one class becomes a generalization of

an2ther class, is supported by one-to-one functions.

As an example consider the classes FACULTY, STUDENT,

PERSON, SS#, NAvY, OFFICE, SCHOOL, SNAME, with the

relationships

SS# att FACULTY, OFFICE att FACULTY,

SS# att STUDENT, SCHOOL att STUDENT,

SS* att PERSON, SNAME att SCHOOL,

NAME att FACULTY, OFFICE att SCHOOL,

NAME att STUDENT, PERSON gen FACULTY,

NAME att PERSON, PERSON gen STUDENT.

Note that, each FACULTY must have exactly one NAME and be

exactly one PERSON, but while several different members of

FACULTY may have the same NAME, they each must be a

different PERSON.

7

ClaSses that do not have any attrihtteL arc called

primitive classes. Their members are primitive objects. In

the example SS#, NAME, OFFICE and S NAME are primitive

classes. FACULTY, STUDENT, PERSON and SCHOOL are

non-primitive.

Besides domains, classes also have types. Types are

derived from the relation att.

Definition 1: The type of a given class S in D is

type(s) = {T I T att S).

Clearly, primitive classes have empty types. The non-empty

types in the above example are:

type (FACULTY) = (SS# NAVX OFFICE),

type(STUDENT) = (SS* NAME SCHOOL),

type(PERSON) = (SS# NAME),

type(SCHOOL) = (S_.'ME OFFICE).

For many applications it is necessary that every member

of a domain is uniquely identifiable by a combination of its

priitive attributes. This is especially important for the

purpose of merging two different databases, so that when

their two populations are consolidated, identical objects

can be recognized as such. We must therefore identify a key

relationship between classes.

8

Definition 2: AzTuri {Ti,T2,. ,Tnj type(S)

(TI T2 ... Tn) key S if

Sf : dom(S) -> dom(Tl) x dom(T2) x ... x dom(Tn)

f(A) = (fSTl(x),fST2(x),...,fSTn(x))

is an injection.

Thus, the classes (TI T2 ... Tn) constitute a key to class

S, if a combination (xl x2 ... Xn) of objects from these

classes determines at most one object of S. Assuming every

person has a different Social Security number, the key

relationships in the above example are:

SS# key FACULTY,

SS# key STUDENT,

SS# key PERSON,

S_NAME key SCHOOL.

Keys are not necessarily primitive or simple (constituting a

single class), as the above example might suggest. A class

ROLLMENT may be introduced, which is keyed on the

combination of a non-primitive class COURSE and the

non-primitive class STUDENT. By composing keys each

non-primitive object can be identified by a combination of

primitive objects.

To become a proper database, a few more requirements

are imposed on the structure defined so far. They are

stated in the following definition.

9

r)r-! init ion 3: A cc-] ictinn D of c! wi ih I

domains, functions and injections (as in 1-4 hovc) is a

database if:

(1) the intersection of att and 9en is empty,

the union has irreflexive trar~itive closure,

(2) S att T, T gen R => S at R, f...... RS = iRT~fTS ,

S gen T, T gen R => S gen R, iRS iRTOiTS'

(3) V x,y dom (S) : (V Ttype(S) : fST(x)=fST(y)) => x=y.

The first condition guarantees that one class is not both an

attribute and a generalization of another class and that

there is no chain of related classes (by either att or gen)

that begins and ends in the same class. The inheritance of

attributes over generalizations and the transitivity of

generalizations are assured by the second condition. The

last condition states that no two objects in a domain have

the same values for all their attributes; members of each

domain are distinguishable by at least one attribute. The

uncerlying justification is that this enforces a more

ann:rate semantic specification; if it is necessary to

dcstinguish between such objects, an appropriate attribute

should be present. A consequence of the last condition is

that each class in the database can always be assigned one

key, the trivial key comprising the entire type. Also, if

S gen T, then inheritance guarantees that every attribute of

S is also an attribute of T. In particular, a key of S is

composed of attributes of T. Because the composition of

injections is an injection, the key of S is also a key of T.

10

These consequences are s<ummarized in the following

statement:

(1) Every class is guaranteed a key,

(2) Classes related by generalization have the same key.

We have been using a graphic representation of a

database schema. Each database class is represented by a

node. If T att S, there is a directed arc from node S to

node T: S-> T. If T gen S, there is a directed arrow

from node S to node T: S - T (an edge is either an arc or

an arrow). However, if T gen R and S att T, then S att R is

suppressed in the graphic representation. Similarly, if

S 2 n T and T gen R, then S gn R is suppressed (these are

the inheritance and transitivity discussed above. For

conciseness, these relationships will also be suppressed in

all future specifications of databases). Graphs that

represent databases do not have cycles or parallel edges.

The graphic representation of the above example is:

SCHOOL

OFFICE SS4 NAME S NAME

11

_ u m! I I i I !

3 Restructuring Primitivez

In this section we describe a small set of

restructuring transformations that merge or modify database

schemas. With each operator there is an associated set of

constraints that must be satisfied by the objects that

populate the component schemas. In the current

implementation these constraints are checked only upon

interrogation. We begin by introducing three primitives

(meet, ip4n and fold) that manipulate the generalization

hierarchy.

3.1 Meet. The meet operator produces a common

generalization of two classes, if such a generalization may

be found. The existence of a generalization is determined

by the properties of their keys. The example that

introduces Section 2 shows how -meet is applied to an

employee (T1) and a customer (T2) to produce person (T4).

This operation is based on the existence of a common key

(NME). Formally, assime that S and T are non-primitive

classes not related by gen. Assume there exists

Ki type(S)A type(T) that maintains K key S and K key T. The

transformation meet S and T is performed by adding a new

class, the meet of S and T, denoted by SAT, and the

relationships SAT gen S, SAT gen T and Ri att SAT

(i=l,n). The type of SAT is therefore given by

type(SAT) = type(S) Atype(T). The graphic representation of

meet is

12

T

SAT

RIRin RI Rn

P1 P 1 Q i P1 01 Qr'

In this figure the common attributes (i.e.

type(S) A type(T)) are represented by Rl,...,Rn. The

attributes that distinguish S and T are represented by

P1,...,Pl and QI,...,Qm, respectively. The new class is

populated with the union of the domains of S and T:

6o.(SAT) = dom(S) V do(T). The injections from dom(S) and

dom(T) into dom(SAT) are defined as identities. The

functions from dom(SAT) into the domains of Rl,...,Rn are

defined to preserve inheritance. The latter functions

require a consistency constraint: objects in dom(S) or

dora(T) that have the sa-e key, must agree over their other

shared attributes. Formally, denote by fl,...,fn and

gl,...,gn the attribute functions from S and T,

respectively, into Rl,...,Rn. Let K = {Rl,...,Rk}. Define

functions f and g as follows:

f : dom (S) -> dom(Rl) x ... x dom(Rk)

f(x) = (fl(x),...,fk(x))

ig : dom(T) -> dom(Rl) x ... x dom(Rk)

g(x) = (gl(x),...,gk(x))

13

Then V y(f (don(S)) on A g(d (7)

fi(f-1 (y)) = gi(g - (y)), Pk+],...,n.

3.2 Join. meet generates a class whose type is the

intersection of both types and whose domain is the union of

both domains. Another class that may be created under the

same circumstances is the dual class whose type is the union

of both types and whose domain is the intersection of both

domains. As an example, consider again the classes

FACULTY = (SS# NAME OFFICE) and STUDENT = (SS# NAME SCHOOL).

The meet of FACULTY and STUDENT is the class PERSON =

(SS. NAME). Its domain includes all those which are either

FACULTY or STUDENT. PERSON generalizes both FACULTY and

S-DET. The join of STUDENT and FACULTY is the class

ASSISTANT = (SS# NAME SCHOOL OFFICE). Its domain includes

all those which are both FACULTY and STUDENT. ASSISTANT is

generalized by both FACULTY and STUDENT. Formally, assume S

and T maintain the sa-e conditions as before. The

transformation join S and T is performed by adding a new

class, the join of S a-n T, denoted by SVT, and the

relationships SVT gn 5, SVT gen T, Ri att SvT (i=l,...,n),

Pi att SvT (i=l,...,l) and Qi att SVT (i1,...,m). The type

of 3vT is therefore given by type(SVT) = type(S) Utype(T).

The graphic representation of join is

14

P1 .. I1 ol! I P l Q

The domain of SVT is dom(SvT) = dom(S)fldom(T). The

injections from dom(SVT) into dom(S) and dom(T) are defined

as identities. The functions from dom(SVT) into the domains

of Rl,...,Rn, Pl,...,Pl and Q1,...,Qm are defined to

preserve inheritance. Again, the same consistency

ccnstraint is required.

3.3 Fold. meet and join add a generalization, fold removes

a subtype. With fold a subtype class STUDENT may be folded

into the more general class PERSON, with the distinguishing

STUDENT attributes carried over to PERSON (adding special

Mcndefined" values for non-STUDENTs). Formally, assume S

an T are two non-pri.mitive classes such that T g S. The

transformation fold S into T is performed by removing the

class S and replacing it with T in all relationships.

15 I

Functions and injections that had dom(S) as their domain are

modified to have dom(T) as their new domain, using the

previous injection from dom(S), into do 1 (T) (and an

"undefined" value for objects in dom(T) but not in the image

of this injection). Using the same injection, functions and

injections that had dom(S) as their range are modified to

have dom(T) as their new range.

meet is the principal operator. With meet the

similarity between two semantically related classes, which

are not identical, may be expressed. If the type of one

class contains the type of the other class, meet produces a

situation suitable for folding. After fold is applied, one

class becomes a generalization of the other. Consider the

previous class STUDENT and GRADSTUDENT =

(SS# NAME SCHOOL DEGREE). The result of meet is a new class

STUDENT' = (SS# NME SCHOOL) whose domain is the union of

both domains. STUDENT is then folded into STUDENT'. In the

end STUDENT' and GRAD STUDENT are connected via a

generalization. If the two classes happen to have identical

ty es, then after the aplication of meet, fold may be

appIied twice. In the end the two classes are combined into

one class whose domain is the union of both domains. In the

last two situations, the same results may be achieved by

performing a join, followed by one or two folds.

meet, join and fold are operators that manipulate the

generalization hierarchy of the databases. The next two

16

primitives (aqgregate and telescope) allow nodifications to

the attribute hierarchy.

3.4 Aggregate. The attribute hierarchy may be extended by

aggregating a subset of the attributes of a given class into

a separate class, which then becomes an attribute of the

original class. Formally, assume S is a non-primitive

class, type(S) = (TI ... Tm Tm+l ... Tn). The transformation

aggregate (Ti ... Tm) into T of S is performed by adding a

new class T and the relationship T att S. Also every

relationship Ti att S is replaced with Ti att T.

Graphically,

S

Ti - . T-,I. nT .Tm m+l---

The domain of T is populated with new objects, that are all

the possible tuples of objects from the aggregated domains:

dcm(T) = dom(Ti) x ... x dom(Tn). The function that

supports the relationship between S and T is defined by

f S(X) = (fSTl(X),...,fSTm(x)). The functions

from dom(T) onto dom(Ti) (i1,...,m) are simple projections.

3.5 Telescope. While aggregate extends the attribute

hierarchy, telescope performs the inverse: it removes a

class by assigning its attributes directly to its ancestor.

17

Formally, assume T is a non-primitive class,

type(T) = (TI ... Tn), which is an attribute of only one

class S. The transformation telescope T into S is performed

by removing the class T and the relationship T att S, and

replacing the relationships Ti att T with Ti att S.

Graphically,

S S.

T

Ti.- Tn T

The functions that support the new attribute relationships

are simple compositions:

ISTi(x) = fTTi(fST(x)) (i=l,...,n).

With aggregate ane telescope, a class may be relocated

on the schema. Consider the classes PATIENT =

(SSE NAME AGE FAMILY) and FAMILY = (ADDRESS SIZE DOCTOR).

By telescoping FAMILY into PATIENT and then aggregating

A=Z-=SS and SIZE into FAMILY, the attribute DOCTOR is

relocated from FAMILY to PATIENT. Relocation can take place

in both directions.

aggregate may be used to bring a schema to a normal

form, in which the non-key attributes of each class are

fully dependent on the key. If a class exists with some

attributes which are dependent on a subset of its key, these

18

attributez, together with the subkey, are aggregated into an

interim class. For example, consider the class

ORDER = (PART# PARTNAME SUPPLIER# SUPPLIER NAME QUANTITY).

The key of ORDER is both PART# and SUPPLIER#, but only

QUANTITY depends on both; PARTNAME depends only on PART#

and SUPPLIERNAME depends only on SUPPLIER#. Therefore this

class is not in normal form. Using aggregate twice, the

following schema may be obtained: PART = (PART# PART-NAME),

SUPPLIER = (SUPPLIER# SUPPLIERNAME) and ORDER =

(PART SUPPLIER QUANTITY). The new schema Is in normal form.

As a third example, consider the classes ACCOUNT =

(ACCI NAME BALANCE) and TRANSACTION = (TRANS# ACC# AMOUNT).

Consider the following four operations. First ACC# is

aggregated into an interim class ACCOUNT' which becomes an

attribute of TRACNSACTION. Having a common key ACC#, ACCOUNT

and ACCOUNT' are then generalized by ACCOUNT". Finally

ACCOUNT and ACCOUNT' are each folded into ACCOUNT" (which

is then renamed ACCOUNT). The final result is a retraction

02 RANSACTIOT from ACC# to ACCOUNT: ACCOUNT is left

unchanged, but TRANSAZTION is modified to TRANSACTION =

(TRANS# ACCOUNT AMOUNT), which is more semantically

accurate, since each TP.NSACTION has its own ACCOUNT, rather

than an ACC#. Like normalization, retraction may be applied

wherever possible to obtain a "better" representation of the

schema. (Note that if ACC# were a key of both ACCOUNT and

TRANSACTION, a meet of these two classes would have been

more appropriate, since there is evidence that these classes

1.9

I

are semantically "comparable").

All the previous operators merely transformed existing

structures to "equivalent" structures. The last t.o

operators (add and delete) are different in that they allow

current structures to be extended or reduced.

3.6 Add. In general, the addition of a new class and the

specification of its attribute relationships to existing

classes is actually an augmentation of the current database

by another database and therefore may not be considered as a

restructuring operation. In many cases, however, a given

class has an attribute which is implied, but not specified.

For example, a class CAR in a database of a Ford car dealer

may not include the attribute MAKE. Adding this attribute

(with a single value "FORD" for all cars) does not qualify

as iugmentation by another database, but will prove

important when databases of different car dealers have to be

merged. Formally, assume S is a non-primitive class. Let P

be a new primitive class with a single object domain. The

transformation add P(x% to S is performed by adding the

class P and the relationship P att S, with a constant

function from dcm(S) onto dom(P).

Whenever identical structures from two databases are

combined, loss of information may result. Consider two

library databases, both with the class BOOK =

(BOOK# TITLE AUTHOR). The combined class contains the

unified collection of books. However, the information on

20

where each book is shelved is lost. With the help of add,

this implied knowledge can be added to each class BOOK

before they are combined. The combined class BOOK =

(BOOK# TITLE AUTHOR LIBRARY) includes the source library for

each book. Note that the class LIBRARY must now be included

as part of the key of BOOK. Hence add may require that the

new attribute is added to the key.

3.7 Delete. To remove portions of the database which are

not relevant to the application the delete primitive may be

used. In other words, the delete operator enables

user-views. Assume S is a non-primitive class and T att S.

The transformation delete T from S is performed by removing

the relationship T att S. If T is no longer an attribute of

any other class, it too is removed together with all its

out-going relationships. Each of its attributes is in turn

examined, to see if it is still an attribute of any other

class, and so on. If T is part of the key of S, then its

deletion has serious semantic implications: in the domain of

the new class S obje=ts that were previously differentiated

only by their key value, are now identified. For example,

the deletion of COURSE# from ENROLLMENT =

(COURSEI SS# GRADE) generates (SS# GRADE), a class whose

meaning is unclear.

In general, aggregate, telescope, add and delete may be

used to iron-out structural differences between the two

candidate databases, so that better overlapping is achieved.

21

4 The Merge Technique

The merge technique consists of an initial step,

followed by a sequence of restructuring primitives.

In the initial step the user relates the two

independent databases by pairing primitive classes. Each

pair associates a primitive class in one database with a

primitive class in the other database. Each pair is then

conmbined into one primitive class with a unified domain.

To be correct, the primitive classes in each pair

should model the same real world entity. Thus, two classes

describing the Social Security number may probably be

associated, but the employee number in two different

organizations may indicate two independent sequencings,

which do not have any global meaning. The latter does not

create problems, unless these classes participate in keys.

identical objects (i.e. the same employee in both

organizations) could remain separate.

Once these initial associations have been supplied, the

two databases are connected to become one. From here on the

process is that of restructuring, with the purpose of

identifying similar structures. We demonstrate this

technique by means of an example.

Assume an organization with two independent databases.

One describes the assignment of employees to projects. The

other gives details on the different projects. An employee

22

may participate in several projects, but each project has a

unique employee to manage it. The definition of the first

database is as follows (for a graphical representation see

Figure 1):

EMPLOYEE att ASSIGNMENT, ADDRESS att PERSON,

PROJECT att ASSIGNMENT, JOBCODE att JOB,

PERSON gen EMPLOYEE, JOBDESC att JOB,

JOB att EMPLOYEE, DNAME att DEPARTMENT,

DEPARTMENT att EMPLOYEE, OFFICE att DEPARTMENT,

SS# att PERSON, ROOM# att OFFICE,

NAME att PERSON, PHONE# att OFFICE.

By making DEPARTMENT an attribute of EMPLOYEE, each EMPLOYEE

is constrained to one DEPART'MENT. The possibility for one

E PLOYEE to participate in several PROJECTs is expressed by

relating them through ASSIGNMENT, which is then keyed on

both. The keys are:

(EMPLOYEE PROJECC) key ASSIGNMENT,

SS# key EMPLOYEE,

SS# key PERSON,

JOBCODE key JOB,

DNAME key DEPART!,'N T,0

ROOM# key OFFICE.

The second database is much less detailed; each project

is described by its project number, its manager and the

total budget (see Figure 2):

P# att PROJECT, BUDGET att PROJECT.

MANAGER att PROJECT,

23

*1! I I

The only key relationship is P4 key PPOTECT. Note that

PROJECT in the first database actually refers to project

numbers, while MANAGER in the second database contains only

Social Security numbers.

We now issue the restructuring requests to merge these

two databases. The initial step consists of two

associations only (the result is shown in Figure 3):

(1) PROJECT and P# are combined into P1,

(2) SS# and MANAGER are combined into SS#.

Our first goal is to make PROJECT an attribuce of

ASSIGNMENT. This retraction is performed in four primitive

steps (the result is shown in Figure 4):

(1) aggregate (P#) into PROJECT' of ASSIGNMENT,

(2) meet PROJECT and PROJECT' (new class is T),

(3) fold PROJECT' into T,

(4) fold PROJECT into T (renane T to PROJECT).

Next we create a subtve of EMPLOYEE, to be called

Rwh _ch will r=ace SS# as an attribute of PROJECT.

To achieve this we aggregate the SS# of PROJECTs into an

interim MANAGER, and assign to it the (undefined) attributes

N.zA.ME, ADDRESS, JOB and DEPARTMENT:

(5) aggregate (SS#) into MANAGER of PROJECT,

(6) add NAME(NIL), ADDRESS(NIL), JOB(NIL),

DEPARTMENT(NIL) to MANAGER.

Now, since EMPLOYEE and MANAGER have the same key, meet and

fold may be applied, resulting in EMPLOYEE becoming a

24

generalization of MANAGER (the final database is Lhown in

Figure 5) :

(7) meet EMPLOYEE and MANAGER (new class is T),

(8) fold EMPLOYEE into T (rename T to EMPLOYEE).

A total of two initial associations and eight

restructuring primitives were needed to arrive at the final

database. Under a simple assumption, this merge technique

can be improved, so that a large part of the restructuring

may be inferred from the given databases. This assumption

states that the type of a class (i.e its set of attributes)

incorporates all the necessary characterizations. It

follows from this "complete semantics" assumption, that

every two classes with the same type may safely be combined

(given that consistency is maintained), or else each class

should have included a distinguishing attribute. Thus, all

meet and fold transfcr=tions -may be executed automatically,

without user initiation.

In addition, retracticon and normalizations are always

semantically correct. Therefore, they too may be inferred

from the databases. The new merge technique will use these

inferences in the following way. After the initial

associations, all inferred transformations will be applied.

Once the process stops, the user may "revive" it with

additional restructuring requests. These, in turn, may

cause more inferred transformations to take place, and so

on. Using this technique in the previous example, out of

25

the eight transformations only two (5 and 6) munt be

initiated from outside. This technique may still be used,

even if the assumption of "complete semantics" is not always

correct. Instead of applying the inferred transformations,

they are only suggested for user approval. Thus, database

merging is seen as an interactive process with a helpful

system, in which the given schemas are "edited" to a

satisfactory structure.

References

[1] D.McLeod and D.Heimbigner; A Federated Architecture for

Database Systems; Proceedings of AFIPS National Computer

Conference, Anaheim, California, 1980.

[2] D.W.Shipman; The Functional Data Model and the Data

Language DAPLEX; Proceedings of ACM-SIGMOD International

Conference on Management of Data, Boston,

Massachussetts, 1979 (to appear in AC-TODS).

[3] M.Hammer and D.McLeod; A Semantic Data Model: A

Modelling Mechanism for Data Base Applications;

Proceedings of ACM-SIGMOD International Conference on

Management of Data, Austin, Texas, 1978.

[4] J.M.Smith and D.C.P.Smith; Database Abstractions:

Aggregation; Communications of the ACM, Vol.20, No.6,

June 1977.

26

[5] J.M.Smith and D.C.P.Smith; Database Atstractionn:

Aggregation and Generalization; ACM Transactions on

Database Systems, Vol.2, No.2, June 1977.

[6] E.H.Sibley and L.Kershberg; Data Architecture and Data

Model Considerations; Proceedings of AFIPS NAtional

Computer Conference, Dallas, Texas, 1979.

[7] B.C.Housel, V.E.Waddle and S.B.Yao; The Functional

Dependency Model for Logical Database Design;

Proceedings of the Fifth International Conference on

Very Large Data Bases, Rio De Janeiro, Brazil, 1979.

[8] P.Buneman and R.E.Frankel; FQL - A Functional Query

Language; Proceedings of ACM-SIGMOD International

Conference on the Management of Data, Boston,

Massachussetts, 1979.

[9] A.Motro and P.Buneman; Automatically Merging Databases;

Proceedings of CCYPCON Fall 80 - Distributed Computing,

The 21st EE Computer Society International Conference,

Washington, D.C., 19B0.

27

ASS! GWr-El-T

PERSO JOBDEPARTMENT

ADDRESS N E SS# JOBCODE JOBDESC DNAME OFFICE

Figure I.

MAl-':NAGER B GET

Figure 2

AS S IGNKE N PROJECT

EMPLOYEEP#BDE

PERSO JOBDEPARTMENT

ADDRESS NAME SS# JOBCODE JOBDESC D-NAME OFFICE

Figure 3

28

ASSIGNM~ENT

PERSN JODEPARTMENT

AD SS NAME SS# JOB -CODE JOB DESC D NAME OFFICE

Figure 4

ASSIGNMENT.

MAAEPt BUDGET

EMPLOYEE

PERSN JoDEPARTMENT

ADDRESS NAME S JOB-CODE JOBDESC D - E OFFICE

Figure 5

29

