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1. INTRODUCTION

In an early paper, one of the authors [13] intro-

duced a quadratic differential metric over the parameter

space of a parametric family of probability distributions

and proposed the geodesic distance induced by the metric

as a measure of dissimilarity between two probability

distributions. This metric was derived from heuristic

considerations and it was expressed in terms of the Fisher

information matrix (Pisher [6), see Rao L16, pp. 329-

3321 for details). Such a choice of the matrix for the

quadratic differential metric was shown to have attractive

properties through the concepts of discrimination and

divergence measures between probability distributions

([9], [14, 15] and L16, p.332]). Quite recently, Atkin-

son and Mitchell [1] obtained the geodesic distances in-

duced by the metric introduced in [13], which will be referred

to in this paper as the information metric, for a number

of parametric family of probability distributions.

In this paper, we consider a general function space

and study a metric based on the Hessian of the *-entropy

functional, which was also introduced in an earlier paper

by the authors [5]. A special choice of 0 leads to the

a-order entropy of Havrda and Charvft [71, and this gives

rise to a class of metrics, which are called a-order entropy

metrics. The above mentioned information metric is a

I- 1.4
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limiting member of this-class as a-1, which corresponds

to the Shannon entropy [18).

The geodesic distances induced by the a-order

entropy metric are obtained for the multinomial and

normal distributions. Their relation to -ther distance

measures' due to M6bius, Poincarg, Hellinger and Carthgodory

is examined. The relationship of the information metric

to the Bergman metric will be discussed elsewhere.

We also extend the concepts of the J,K,L-divergence

measures between multinomial populations considered in

the earlier paper [51 to more general aistributions, and

study their inter-relationships and convexity properties.

Dissimilarity measures between probability dis-

tributions play an important role in the discussion of

problems of statistical inference and in practical appli-

cations to study affinities among a given set of popu-

lations. (See for instance, Matusita [10, 11], Pitman

[12, pp. 6-23], Rao [16,p. 352],[171). This paper pro-

vides a unified approach for measuring dissimilarity

between probability distributions through distance ana

divergence measures having some desirable properties.

2. 0-ORDER ENTROPY METRIC

Throughout this paper, F denotes a linear space of
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functions, p=p(x), xc X, measurable with respect to a

a-finite measure u on a a-algebra of the subsets of X.

The convex subset of probability density functions in F

is denoted by F1

F1= {p E F: X p(x)du(x) = 1, p(x) >0 for
(2.1)

-1 -almost all xC X)

Let U be an open convex subset of F and let 4 be a C -

function on an interval I containing

up(x) EIR: p cU, xe X)

For pe U, we define the 4-entropy functional

H4,(p)= fIX P(x) ]clj(x) .

The derivative of H at p E U in the direction

f F F is given by

dH (p:f) = ±-H (p+tf) ,t c I
dt 4) t=O

and thus, by virtue of (2.2),

dH (p:f)= I [ptx)]f(x)dp(x).

The second derivative at p E U along g c F is

d 2H (P:fg)= I "[p(x)3f(x)g(x)ci(x) (2.3)

and, in particular, the Hessian is

__.I
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Af H (p) =d 2 H (P:f f)

I 2[P(X)]{f(x)}2du(x) (2.4)

We note that A fH (p) <0 for every f E F and pc U, if

and only if * is concave on I. This is equivalent to

the requirement that H be a concave functional on U.

We shall also consider a parametric family of

probability density functions p-p(xjO) with x, X and

e=(61,..,on) E 2 , a manifold in n We assume that

the subfamily of F1 in (2.1)

F = {p(- 1) E F1 : 0 E 2 } (2.5)

is sufficiently smooth in 0 Q2 and satisfies the usual

regularity properties, not expticitly stated to avoid

lengthy discussion. Accordingly, we shall write

n
dp=dp(0)= 113ep(-16)dO0; 6 S1, p(.10) CF (2.6)

Then the Hessian in (2.4) along a direction of the

tangent space of the parameter space S2 is obtained by

replacing f by dp in (2.6). Thus

A H (p )  d 2{H (p)1(0)

--- t X¢"(p)[dp 2 dpx); p=p(xlO). (2.7)

In particular, when $ is concave in R+-(0, )

ds2(8) -A H-(p) (2.8)
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is a positive definite form on the tangent space, which

may be regarded as a differential metric of a Riemannian

geometry. This can also be written as

n
ds 2(6) gW'de dO 29

k,m=1 km k m

where

g( ( - "(p)(00k p)(e p)d (x), p=p(x}8)eF . (Z.10)

km rkm" , n 
"

The metric in (2.9) and the matrix [gk] in (2.10) will

be called the O-entropy metric and the O-entropy matrix

respectively. The distance between probability density

functions in F is defined as the geodesic distance between

their parameter values determined by the metric (2.9).

We shall now consider some special choices of 4.

For this purpose, we define for aE VP, two families {a }

and {Ia } of smooth functions on R.:

({-(lrI(x -xa) .a1

!-x log x a = I

and
I l)-( 1-a+atx-x, ) , a 0,I1

Wa(x) = -x+logx , a= 0 (2.12)

-x logx+x-l , a= I

When the smooth function 0 in (2.z) is chosen to be 4

of (2.11), we shall write H,=H aand H= H. In this way,

for p c F1
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(a-)-1[1-f padj(x)] , a i

1 t )p logpd j(x) 1 (2.13)
X

is the a-order entropy [7], while the 1-order entropy

H= H1, is the Shannon entropy [18J. The metric (Z.9)

with 4=&a' a 0 is denoted by dsa () . in order that

the value a= 0 be also included, we modify Ca to ia as

in (2.12). In this way
n

s'&( 0 ) = 9 (a)do dom a E IR (2..4)dg
a k~plkm ik m'(.4k ,rP=I

with

(a)_(11)=m a IXp(9 lo a) ogp kjx p=p(xlO)E F:
)(- 6op)a lopd() F0

gkm - k m (2.15)

We call (2.14), the a-order entropy metric and the matrix

[g(a)] in (2.15), the a-order entropy matrix. The geo-
gkm

desic pseudo distance induced by ds 2 (6) is denoted by Sa a

and is called the a-order entropy pseudo distance.

In the special case of a=1 , corresponding to the

Shannon entropy wnich is widely used in applied research,

we have (dropping the suffix a= 1)

2n

ds2(e) n g I doede (2.16)
k,m=l

and [g~m) with

gkm(6) = [ p( logp)0 6 log p)dl(x), p=p(x 6)c FQ.
X 6 k 0m (2.17)
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The expression (2.16) is the information metric

[13] mentioned in the introduction while [gkm ] is the

Fisher information matrix. The geodesic pseudo-distance

S induced by d s2 () will be called the information pseudo-

distance (a pseudo-distance satisfies all the postulates

of distance except that it may vanish for elements which

are distinct).

3. THE J, K, L-DIVERGENCE MEASURES

3.1 Definitions and inter-relationships

We consider the convex subset U of F, the function €

on the interval T and the C-entropy functional H 0 as defined

in (2.2). For p,qcU, the J-divergence (with respect to He)

is defined to be the Jensen difference

J (p,q)= 2 If (p+q) - H (p) - H (q)

which can be written in the explicit form

rJ (P'q) = JX{20(Pq)- O(p) - (q)}dp(x), p=p(x),q=q(x)eU.(.1

We also consider other measures of divergence, special

forms of which have received numerous practical applications:

The K-divergence

K (p,q) =I (p-q)[p-lo(p)-q-4)(q)]dP(x) (3.2)
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and the L-divergence

L4)(p, q) = {p 0(aq)+q O(R))ldU(x) .(13

The following theorem gives some results concern-

ing the J, K, L-divergences and their inter-relationships.

Theorem 1. The following hold:

Mi If 4) is concave on ]R+, then J 0 (p,q)>O for p,q E F1.

(ii) If F(x) E x V)x 1 )+4)(x) is non-positive on IR+, then

L 0 (p,q)>O0 for p,q e F 1.

(iii) If p(x) = )(x)/x is decreasing on [R+, then K4 (p, q)>O0

for p,q c F.

(iv) If V), is decreasing and convex on fT14, then K (p,q)>

J4) (p~q) for p,q c F1.'

(v) If 4) is concave and iq is convex on 1R+, then

K4)(p, q) > J 4 ) (p,q) > 0 for p,q cF 1.

Proof. Items Mi and (iii) are trivial. AS for item (ii),

we have

L (p, q)= qFEdjx ; p, qE F1,

and item (ii) follows. We now prove item (iv). From

(3.1) and (3 2), we have

K4)(p,q) - J4)(p,q) f G(p,q)dii(x)

where x

G(x,y) !EX4)(x)+2 )(y)-2 4[(x+y)/2J ; X,yEc IR~
X y+

Tnis may be written as

Aim
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>2(xy -P ) >_ 0

The first inequality follows from the convexity of iP

and the seconc inequality results from the assumption

that ip is decreasing on TR+ . This proves (iv). Item (v)

follows from items (i) and (iv), if we show that the

assumptions of (v) imply that W is decreasing on IR+

Inaeed , from 4(x) = (x)/x we have

'(x) =-1 x - x

and thus

v"(x)- F 21p'(x)-O1"(x)]
x

Therefore,

21p'(x) =-x 1"(x)+ 1"(x) <0 , xE 1R+

This concludes the proof.

When the function q is replaced by q of (2.11) the

resulting divergences J K and L will be called the

"a-order J, K and L divergences" and they will be denoted

by J , K and L respectively. As in the case of the

a

a-order entropy Ha, the index a=1 will be dropped from

these divergences and, thus, J=J,' K=K1 and L=L lbr

p,q EF, the explicit expressions of J' K and L are as

follows:
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aa-p.)1 I [pa+qa-21-a(p+q)a] cii(x) , a1(.

fXX

J a(p,q) -- (3.4)

(p-q (logp-logq)d(x)x) =1,.X

We note that for a= 1,

K j q-=(p-q)( fog p-q (log q~plg x l) p, a =F1,

which is the familiar Jeffreys-Kullback-Leibler divergence.

In this connection, we also mention the a-order Hellinger

psuedo distance

M (pq)=2a, r a/2 a/2 2 (3.7)

The special case of (3.7) when a=(pgM(p,q)=M 1(p,q),

has been extensively stuied by Matusita [10,11] and

N recently discussed by Pitman [12, pp. 6-23] from the point

of view of statistical inference.

The following corollary is a consequence of Theorem 1-

Corollary 1. Let a> 0. Then, for p,qe F1 :

Mi J a(p,q) >0 ;

(ii) K a(p, q)>0 ;
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(iii) La(p,q)>O

(iv) K a(p,q)> J (p,q)> 0, provided 0< a <2;

(v) K(p,q)=4Lp,q)>J(p,q)

Proof. We consider 4a of (2.11) and define
a

F a(x)-x4a(x )+Pa(x) , Wa (x)=x- a (X) ; X E +

Sin.ce the cases with a= 1 are limiting cases of a 1 as

a-1, we may assume that a 1, a> O. In this case

( X ) = (X-1)-(x-x a)' I (X) = (a-1)- (-a-,

F (x) = (a-1)- x -a(1-x )(x '-l-1).
a

Since

a"(x)= - axa-2<0, F (x) < 0 , I (x)=-xa-2< 0,

items (i)-(iii) follow from items (i)-(iii) of Theorem 1.

Also, since t(x)=(2-a)xa-3 item (iv) follows from

item (v) of Theorem i. Finally, (v) follows from (iv) and

(3.5)-(3.6).

it is worth pointing out that the divergence measures

(3.1)-(3.3) based on the general 0 and (3.4)-(3.7) based

on the a-order entropy can be used to generate a metric

in the parameter space defining the probability distri-

butions by considering two continguous distributions. This

is easily done by considering the Hessian along the

tangent space of F., namely when p=p(-16) and q-p. The
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prec~.se results are as follows:

Mi d 2{1J (p,p )O) q (p)dp(O) 2 d(x)

!ds 2 (0Q)

which is the (-entropy metric defined in (2.9).

iiii) d {L 0(p, p) )(0) = -2(") JXP1[lop(e)J dlj(x)

2

where ds z(a) is the information metric as in (2.16), so

that when (()Jthis metric is essentially the infor-

mat ion metric.

Further when (p=( as in (2.11), we have

(iv) a2fi(,P 0 2)

(v) d 2{K (p,p)}j(e) =2 d s4(0)
2 2t

(vi) a 2{L a(p,p)1(e)= ad s 2(0),

(vii) d 2{M2(p,pJ ) a8i=2 ds 2 (eM

where d S2(0) is the ca-order entropy metric. The relations
ax

S(i)-(vii) reflect the local properties of the J, K, L,

M-divergence measures. We shall now counsider their global

properties in terms of their convexity as functions on

F Ix F1.
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3.2 The J-divergence

We compute the Hessian of J at (p,q)cUxU along

(f,g)cFxF;

A fg)J (P,q)d6J¢ [(P,q):(f,g),(f,g)].

iy virtue of (2.4), we deduce that

2A(f g)J(p,q)=- if{a(p,q)f2+ b(p,q)fg+a(q,p)g }clp(x) (3.8)

where

b(p,q) F- ¢[(p+qj) (3.9)

and

a(p,q) =- 0"(p)+b(p,q) . (3.10)

We therefore conclude that J is convex (concave) on

UxU if and only if a(p,q) (0 (a(D,)>0) and

d(p,q)E= a(p,q)a(q,p)-[bkp,q)1 ]>0 k 3.11)

From (3.9)-(3.11), we find that

atp,q)=- 2V(p)O"[ j p+q)3{ -2 ,[ p q)

'pT 57 - 1[~~)

and

d(p, q)= - 2 " (P) " (q) j ](p+q)]{}, I Pf + ,,q)2€,[(~)}

Since the expression in the last curly bracket is the Jensen-

difference (or the J-divergence) of (0,,)-1 we conclude

(see also F5]):

:Ad
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Theorem 2. ,J (p,q) is convex tconcave) on UxU (with

respect to FxFnzUU ) if and only if 0 is concave (convex)

and (W")-i is convex (concave) on I.

As a corollary of this theorem we obtain the

following result on Ja (p,q) of (3.4):

Corollary 2. J (p,q) is never concave on FIx F1 . It is

convex on F IxF 1 if and only if ac [1,2].

Proof. The case of a= 0 is degenerate for Jo(p,q)-O. We

therefore assume that a O. Also, since the case al is

a limiting case of a-1, we may also assume that all. From
a-2

(2.11) we deduce that O "(x)=-ax for x El+, while for

f (x) 1 x)] we have

-1 --(
fa (x) = a (a-1)(2-a)x -  x 5 1+

The result follows at once.

For the proof of the following corollary we refer

the reader to [ 51:

Corollary 3. Assume that U is an open convex subset of F,

such that

(Jfp(x) lR: pEU, xcX}=l-=(O,1).

Let fa(x)= a(x) + Ca l-x),x I where a is given by

(2.11). Then Jf (pq) is never concave on UxU. It is

convex on UxU if and only if ae [1,2 or ac (3,11/3].
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When ¢ is of class C4 on the interval I, the

condition of Theorem 2 may be summarized as one

single condition, namely that the matrix

M((x) = [ (x) ( W(x)J

M O W VF (( 3 ( x ) C tk4 ) (x )

be negative (or positive) definite for all xt I. This

means that (2) x)<O (or € (2) (x)0) and A (x)caet{M (x)}

> 0, for all xc I. This condition may serve to single

out 1 (x) and ¢2 (x) of (2.11) and therefore, the entropies

HI(p) and H2 (p) of (2.13). Indeed, the following hold:

Theorem 3. The general solution of

A (x)=det{M (x)}EO , (2)(x)>0 ; xE + (c. 1)

is one of the following two forms:

O(x=-- [(cx+b)log(cx+b)-cx]+dx+e

where c,b,d and e are constants with c>0 and b>0, or

O(x)=ax2 +kx+r

where a, k and r are constants with a>0. In particular

q(x)=- ¢1 (x)=xlogx is the only solution of (3.12)

subject to the conditions:

€ ( 1 = 0 , M( ) 1 = 1 , ( 2 ) ( 1 ) = , 0( 3 ) t i = 1
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Similarly, kx)=- ,(X)=x -x is the only solution of

(3.12) subject to the conditions:

) ((2))=2.

Proof. When (2)(x)-a=const., the second form is oh-

(d) (2) -
tained. When ( (x)lconst., we let f(x)=( )x)] -

Then

f;2) (x) [¢-x) A (x)

and so f(2 (x)=O, which means (1/0(2))(2)=O. The

result follows now at once.

J.3 The K-divergence

As for the Hessian K at (p,q)E F x F along

(f,g) E F x F we have by virtue of (3.2)

A(f g)K (pq)= - f fa(pq)f2+2b(p'q)fg+a(qp)g2}d J(x) (3.13)

where, for x,yF FR+,

a(x.y)=(p(x)-y tx) , p(x)-O(x)/x ,( .

and

b(x,y)=- flp'(x)+w'(y)].

It therefore follows that K (p,q) is convex on F x F

if and only if atx,y)<O and

d(x,y)=a(x,y)a(y,x)-rb(x,y)]2 >0 ; x,y R+ . (3.15)

".r _I . . .ri , . . . -,.
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However, from (3.14) it is seen that akx,y) <0 whenever

* is concave and V is convex on 1+ , a situation identical

with that of Theorem l(v). We clearly have:

Theorem 4. K (p,q) is convex on FIx FI kwith respect to
FxF) if * is concave, ip is convex on IR+ and (3.15) holds.

As a corollary we obtain the following result on

K (p,q) of (3.5), the proof of which is to be found in

[5]:

Corollary 4. K (p,q) is convex on FI xF for all acE [1,2].

3.4 The L-divergence

'The nessian of b at (p,q)c FIx F along (f,g)e FxF

is, in view of (3.3),

A(fg) 1 kp,q)= - f {a(pq)f 2+b(pq)fg+a(qP)g 2d)(x) (.16)

where

.1 ,, fP)4  2akp,q)= o , (.)+ -q "tp (j.17)

and

qZ q p

In this case, the aiscriminant

a(x,y)=a(x,y)a(y,x)-[b(x,y) 2

is Identically zero on IR+ x 1R+ This leads to the fol-

lowing result (see also [ 5]):



18

Theorem 5. L (p,q) is convex (concave) on F wxF1 (with

respect to Fx×) if and only if the function F(x)-x*(x - )

+ (x) is concave (convex) on IR+.

Proof. 6ince d(x,y)-O on +× It+ , L (p,q) is convex on

F1 xF 1 if and only if

2 3a(x,y)__LS {x (-+"tY)2 (x,y)E IR × t+

x 
y

Putting t=y/x, this condition becomes

-3 ,(-1
t P"(t )+d"(t)<O ; t e JR+

This means that F"(t)< Oana the result follows.

in particular, for L ap,q) of (3.6) we have:

Corollary 5. L a(p,q) is convex and (concave) on F xF1

for all a>0 (or all a<O).

Proof. The case a=O is degenerate for then K0 (p,q)=O.

Also, by continuity we may assume that a~l. FIom (2.11)

ana Fa (X)Exa (x- 1)+a (x), we deduce that

F,,(x)= -a(x a-2 +X- a -1 )  X f I
a a

and the result follows.

4. GEOuESIC DISTANCES

We return to the a-order entropy metric in (z.14)-
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(2.ln). 'rhe emphasis of the subsequent analysis will be

in finding the a-order entropy pseudo-distance S fora

known multiparametric families of probability distri-

butions I. when a=l, such an analysis was carried out by

Rao [13] and more recently Ly Atkinson and Mitchell [1],

where the distance S is explicitly evaluated for certain

multiparametric families F Q. We shall not repeat the

examples of [1,13] for their extensions to the case of

acl is not particularly difficult. An exception will

be made for families of normal distributions, where it

seems that the present analysis is slightly more general

ana, perhaps, simpler than that found in [1,13].

Being the geodesic pseudo-distance induced by ds2 ()
a

of (2.14)-(2.15), S may be evaluatea with the aid of

the Euler-Lagrange equations which involve the Christoffel

symbols based on the a-order entropy matrix [g (a))] ofgkm

l) In general, such an undertaking may prove diffi-

cult as far as an explicit closed expression for Sa is

sought.

4.1 Muitinomial Distributions

Consider a multinomial discrete distribution

p(xIO)=p(x1O 1 ,... ,0n) where the sample space X is the

set of integers X=X n={1,2,...,n} and p(kle)=ek for ke Xn
(a) o z1)i

In this case, gmof (.1) is

(a)( I [p(klO)]'-2 adk)=6kmea-2
gV km km k

n

fA
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we may use the iaentification

pk-p(\KI )=OX k=i,... ,n.

We shall assume first that

n n

and then make the restriction of p 50n' where

nn
n{PE IR : P1, 0 <Pk<l , k=1,... n

With these considerations the metric of (2.14) may

be expressed as

n
ds2(p)= Y Pod-z kd P c IR n

k=1

The fundamental tensor of the metric g(a)6 pa-2 iskm kink

of rank n and, therefore, S is indeed a aistance. The

evaluation of this geodesic aistance is immediate, and,

n
for p,qE V, we have

k=1k 
k

Sa(p,q)= n ]2 112
{ [logP K-log qk] , a=O
k=1

which is (moculo a factor of¢/2) the a-order Hellinger

distance M (p,q) as in (3.7). The same results hold

with the restriction of p,q c Qn"

4.2 Normal Distributions

We first consider a two-parameter family of normal
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distributions p(.Ij,a,)-N(,o 2 ) with mean v and

variance a(_c <ji<v;a>O). Here, for reasons of con-

vergence we must assume that a>U. Fixing a>, it

will be found convenient to introduce new variables

x and y (-o<x< ; y>O) via

y=o , x={A(a)}-v '; A(a) =(ct -a- )2+ 2 ot-l, a > 0. (4.1)

We may consider the complex parameter

z=x+iyE-U={z (r :Irmz>O} (4.2)

with U being the upper half-plane. in this way
2

p(.-pa) is replaced by p(. Iz)-N(I,a ) with zEU as

in (4.2)-(4.3). Now, a routine calculation, omitted

here, shows that the metric (2.14)-(Z.lb) admits the

form

ds2(z)=Bka)y - ( a + l ) [dzI2 (4.3)
Ot

ai

where 1-a

B(a)=a- 3/2(2T) 2 A(a) , a>O. (4.4)

The metric in (4.3) constitutes a Kahler metric on

the upper half-plane U and when a=l, it reduces to the

familiar Poincar6 metric. The Gaussian curvature of (4.3)

is

a-1 a-i,ea(z)=-(a+1) {2B(a)F y ; y=Imz>4J , a>0,

a]
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and, is always negative. In particular, K (z)EE-2-

In this case, Sa is indeed a distance on U and S-S 1

is the familiar hyperbolic distance of U.

We now treat this distance S (a>O):

1. The case of a=l: In this case, by (4.1)-(4.4),

2 -2 2ds (z)=2y jdzj 2  (4.5)

Elementary arguments based on the invariance properties

of this metric of Poincare lead to the following geodesic

distance (or "Poincar distance"):

8 (z, I~og ,z,IrU, (4.6)

where

. ( , = ;z,C EU. k4,7)
I

It shoula be noted that 6-6(z,C) is also a distance on

U and is called the "M6bius distance" (see also [6,41

for further generalizations of these distances). Also,

the geodesics of (4.5) (see for example, (4.16)) are

given by the "semi-circles"

z=a+re ; r > 0 , O<0<.T, (4.8)

where a is a real fixed constant.

Expressed in terms of the original parameters p

and a, the distance in (4.6), by virtue of (4.1) and

(4.7), may be written as

-
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S011 ,0 1 ;V 2 ,a2 ) = o g 0_(,l;'2,P2) (4.9)

where

6(["2"2,22 1 2 2 (4. 10)(l0l-la2) 2+2(a 1 +02 ) 2

is the M6bius distance (4.7) in terms of v and a. This

2 2is the required distance between N(~l,a 1 ) and N(' 2).

It agrees with a rather more involved expression obtained

by Atkinson and Mitchell [1]. The expression in [1 can

be obtained from (4. 9) by using (4.1) , (4.8) and (4.10)

note that always

0 < 6(vil, 1; 02',a2 ) < 1.

On the other hand, the Poincare distance S(V10 1;V2'52 )

clearly satisfies

S ( Il1 , (Tl ; V2 , a2 ) > 2 / -2- 6 ( II P, T I ; 12 , 2 ) .

The Hellinger pseudo-distance (3.7) between

N(jI, 2 ) and N(pa,22) is, in this case, a proper

distance with the following form:

2)1 2 _(1 )/4(a 2+a 2
M 1 1 ; 2' =2  a- 2-- e

(4.11)



z. The case of a 1 In this case, the geodesic aistance

S a of the metric (4.3) is not easily explicated as in

the former case. We shall first find all the geodesics

of this metric. This may be,of course,done with the aia

of the uhristoffel symbols of tre metric (4.3). We shall,

however, proceed directly, f',r reasons of economy and

clarity. Writing

$=(a+l)/2 ; i >1/2, (4.12)

finding the geodesics of (4.3) amounts to solving the

following extremal problem of calculus of variations

(the factor B(.x)>O is irrelevant here!):

minfby- +(y')2 dx , y>o,

-a

where the minimum is taken over all C -paths y=f(x),

joining the points ka,f(a)) and (b,f(b)). A routine

calculation based on the Lagrangian of y-I/I+(y,)2 shows

that the Euler-Langrange equations of this problem

admit the simple form

yy"= -al+ky')2 . (4.13)

In order to solve (4.13) we proceed with standard

methods, letting

dy
dy
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to obtain

-6d(iogy =2d[Iog(l+p2 )

This shows that

- -1 2
y r (.+p2) ; r>O

with r>O being a constant. Consequently,

x dy+a ; r >0, (4.14)

where a is an arbitrary constant of integration. We

may use the substitution y=rl/ sine/, 0<<ir and upon

introducing the one parameter family of functions

F () -- y sinYtdt ; y E I , 0<0<w, (4.15)
i/2

the solution (4.14) may be written in the parametric

form:

x=a+r11[ FI/ ) , y=r'/Bsin 1 /"% ;r>O , 0<0<ir. (4.16)

When 6=i, or, by (4.12), when a=1, k4.16) reduces to

(4.8) Equation (4.16) gives all the geodesics of the

problem. We also note that the goedesics in( 4.16) include

the lines x-const. as a limiting case, corresponding to

r - .

An expression for S az,c) , z,C EU, may now be given

by using (4.3) and (4.16). We have

1-1

S (z,28)=B1(t) F1- (8 2 )-F 1- (81) (4.17)
26-1 --
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where, after choosing, without loss, the (+) sign

in (4.16),

z=x+iy , x=a+rl/BFl/001) , y=rl/iisinl/0e 1 , (4.18)

C=&+in ,=a+r-L/BFl/(0 2 ) , n=r /Bsin L/t 2 .

Using (4.1), (4.4), (4.12) and (4.15) one deduces

immediately that (4.17)reduces to (4.6 when a=1. In

general the quantities t I,0 2 and r are aetermined by

the given z=x+iy, c=E+iIE U via (4.18). tiowever, except

for special values of a>O where integrals of type (4.15)

can be further explicated, finding a closed form formula

for S kz,C) in terms of z and may prove difficult.

One may use an alternative expression for S (z,4)

which, sometimes, is simpler than that of (4.18). It

is based on the recursive formula

F~ 2 0 ~2 [F (@) -cose siny- 0],= y-2

valid for all real y and easily derived from (4.15).

Using this formula, together with (4.12) and (4.18),

(4.17) becomes

S (z)= 2 BCot-) +y'(1 ,'a)(1-r-2ya +1 )i.n 1-a)(1-r2na+)Il)I-Oil r

(4.23)

Letting r - in (4.19), corresponds to the geodesic

x=const., and, accordingly

___ II
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S ( )-T2 _(C -3-_L)_1'(l I ;z, cU, Rez=ReC.

This, of course, agrees with (4.6) as o-1 and Rez=ReC.

The a-order distance Sa t(J1;V29;d) between N(pial)

and N(ii2,a) can be derived from (4.19) by using (4.1),

(4.4) and (4.18). In particular,

S (D'a ;P'G 1-(X I 112

which agrees with (4.9) as ct-. ana 1=pl=A2 .

The c-order Hellinger distance between N(Piac)

and N(ii2 , 2 ) is now

1-a 1-a I-a
2-r{- -2 - 2 -zae 1 i; 2, o2 )= -- /4 (2 ) { i "g

11

0 1

where

(2cs 1 f A e2+ r
E -2 1 e -a .(P)l-P2 ) /4, 1 +2).

When a=1, this formula reduces to (4.11).

4.3 Products of Normal Distributions

The previous methods can be extended to proaucts

of normal distributions

n
p(XIH) I IN(xk:v1k,Ck), (4.20)

k=1
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n Z
where x-(xi .... Xn).eX= it ana 'R ,l,.,nn

with means p and variances ak( -<Vk<o,o0; k=:l, n).

As in (4.1)-(4.2), we find it convenient to introduce

new variables. Accordingly, we replace x-(xI,...,xn) by

tf(t I .... tn )X= (R and write for the parameters

Ykfak, Xk={A(a) }-1i k ; Ata)-(a -c' )2- , >O , (4.21)

and

z=(zl,...,Zn) , Zk=XK+iYk - (-OO<Xk<aD;yk>O);k=l,...,n. (4.22)

Plainly, we view the distribution in (%.20) as p(tfz)

nwith t in the sample space X and zcU , n copies of the

upper half-plane U.

As in (4.3) the metric (2.14)-(z.15) admits here

the form

n 1-cc n-2. 2d
ds (z)=Bn(a){ 11 Y_ } .yI[

d=l k z 1(4.23)

where

B (a)=a- (n 2)/2(2r)fn(l-a)A(a) , a>U . (1.24)

When n=l, (4.23)-(4.24) reduce, of course, to (,t.4)-

(4.5). The case of a=l is, as before, rather involved
and since we cannot expect a closed form formula for the

geodesic distance Sa, we shail only deal with the case

of a-i1. In this case, by (4.21)-(4.24),

dsz(z)-2 n Yk2 1dzk1 2  (4.25)

kminI
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which is, as in (4.5), the Poincar6 metric on U

In order to find the geodesic distance S we exploit

the fact that the metric (4.2) is (globally) invariant

under biholomorpnic mappings. Accordingly, we use the

mapping

Zk-
Z EU jL<k<n k4.26)

ki FT k

which maps Un biholomorphically onto the polyisk

Dn={w=(w1 .... ,Wn)E Cn: wkI<1, k=1,...,n}. With this

mapping th- metric in (4.25) becomes

n
ds (W)=8 1 (1-Iwki 2 -2 dwkI 2  

(4.27)k=-L

which is the Poincar6 metric on the polydisk Dn. 'Ve

first find the geodesic distance S(wT) of this metric

nwhen JTED n
. In order to do so we assume thatT =0=(O,...,O)

nand evaluate S(w,0),w ED . We write

r=(ril,... ,r n )  rk= kk, O<rk<' ; k=l,...,n

and note that due to the invariance of (4.27), S(o,O)

=S(r,O). In this way, we have

2 n 1dr+rk

ds (r)=8 1 - = 2*1 dlog =2Ekl 1l-r ki k-rk

ant consequently

S(W O)= z log 2 i+w i]

This, as is well known, is sufficient for the determination
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of the distance between any two points of Dn indeed,

given two points 3, TcDn there exists a holomorphic
ofJn n n.

automorphism ¢ of n on D so that *(w)=v,O(T)=OeD

Again, by invariance, S(w,T)=S(4(w),4(T))=S(V,O). Here,

up to a rotation

wk -Tk
S-To , k=,. ,n.

K k

It therefore follows that

rn. 1+6 b3dTk1
S(W , T)='f" log1 (k# k ; w,tED , (4.28)[=I 1-6 (W k', 0

where

03W -T
6k -K , k=±,... ,n. (4.29)

k 
k

Returning to the metric in 4.25), its geodesic

distance S(z, ) between two points z,CeU n is obtained

from (4.28)-(4.29) and the mapping in (4.26). This gives

n 2 + (z k)k
S (z, C)Az{I log 2  .30)

k=l 1-6(z k , ck
)

with

6(Z 'Y.,k=1Z k -4I k k=l,....,n t4.31)

Zk.. k

This generalizes k4.7)-t4.5). Finally, from (4.30)-(4.31)
n 2

the information distance Sn (jj,a;v,p) between a TI N(tk:hik,Oa)n nk~
n 2 k1l

distribution and a H N(tk:vk,p'P  distribution is given by
k=l

L ... ... .. , ..... t.
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[n 2 l+lk, cfk; VKPkfU ).1
S n(I,a; v, p)=/ 2 log 9%k.1

[k= 1 P' k Pak VkP PK~j

with

~k, k; vkPk)= ZC 72'~ ~1,~.,. n(.2
k- k

and, where

In view of (4. 31j-(4. 32) and (4.9) - (4.10.) we

may conclude the following desirable property of the

information distance:

n2

k=I

5. THE CARAThEODORY PSEUDO-DIbTANCE

'rhe information distance S(Ii,a:v,p) between

N(pj,a 2) and N(v,p 2) given as in (4.9) suggests

an introduction of a pseiudo-distande on a theme of

Carathe'odory (see [4J for a further generalization).

We briefly discuss this possibility and refer the

reader to Burbea [2,3,41 and the book of Kobayashi

[8, pp. 49-531 for further details.
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We assume that the family of multiparametric

probability distributions F Stis such that 0? is a complex

manifold in a n. Thus p(.tz)EF%I with z=(z 1,..'' nz )-ES1

being an n-tuple of complex parameters zj x.i+ iy. 1.:j <n.

We consider the M6bius and Poincar4 distances 6 and S

on the upper half-plane U, as given in (4.6)-(4.7). Let

H(P6:U) denote the family of holomorphic functions from

P? into U. We define

6 0(Z' 4)=Sup {6(f(z) f(C,)) :fEt( :U)~ ' ZEsl.

A normal family argument shows that the supremum is attained.

It is also clear that 6. satisfies all axioms of a

pseudo-distance on 0?. It is callea the M~biUS pseudo-

distance of P4. The Carathe'odory pseuclo-aistance of 02

is defined by

Again, the supremun is attained and by (zt.6)-(4.7)

1+6 QZ
6 z,4)VS log i-_6

b~oth pseudo-distances become distances on S2 when S1 is

biholomorphically equivalent to a bounded domain inC

It is also clear that

Let *:fQ+& be a holomorphic mapping or a complex

n it aohr* mmanifold S of C noaohrcomplex manifold Q* of C
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Then, for z,iEsl,

and

In particular, In and S 1are binolomorphically invariants.

Also, in the case that 02 is the upper half-plane U, we have

and, therefore, 6 ana osttt a natural gen-
contiut

eralization of 6 and t; in (4.6)-(4.7)

when Q=nwe have, contrary to (4.33).

and, therefore,

8 U n(z, )=maxf S(z1, 1). S(zn Cn)

where z=(z,,...,z n), ?=z, )EUn
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