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1. INTRODUCTION

In an early paper, one of the authors (13] intro-
duced a quadratic differential metric over the parameter
space of a parametric family of probabiiity distributions
and proposed the geodesic distance induced by the metric
as a measure of dissimilarity between two probabiiity
distributions. This metric was derived from heuristic
considerations and it was expressed in terms of the Fisher
information matrix (Fisher [6], see Rao 116, pp. 329Y-

332] for detaiis). Such a choice of the matrix for the
quadratic differential metric was shown to have attractive
properties through the concepts of discrimination and
divergence measures between probability distributions

(191, {14, 157 and (16, p.3321). Quite recently, Atkin-

son and Mitéhell (1] obtained the geodesic distances in-
duced by the metric introduced in [13], which will be referred

to in this paper as the information metric, for a number

of parametric family of probability distributions.

In this paper, we consider a general function space
and study a métric based on the Hessian of the é¢-entropy
functional, which was also introduced in an earlier paper
by the authors [5]. A special choice of ¢ leads to the
a-order entropy of Havrda and Charvit (7], and this gives

rise to a class of metrics, which are called a-order entropy

metrics. The above mentioned information metric is a
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limiting member of this class as o+1l, which corresponas
to the Shannon entropy [18].
The geodesic distances induced by the a-order

entropy metric are obtained for the multinomial and

normal distributions. Their relation to nther distance
measures due to M&bius, Poincaré, Hellinger and Carth&odory
is examined. ‘the relationship of the information metric

to the Bergman metric will be discussed elsewhere.

We also extend the concepts of the J,K,L-divergence
measures between multinomial poputations considered in
the earlier paper (5] to more general aistributions, and
study their inter-relationships and convexity properties.

Dissimilarity measures between probability dis-
tributions play an important role in the discussion of
problems of statistical inference and in practical appli-
cations to study affinities among a given set of popu-
lations. (See for instance, Matusita [10, 111, Pitman
(12, pp. 6-23], Rao [16,p. 3521,[17]). This paper pro-

vides a unified approach for measuring dissimilarity

between probability distributions through distance ana

divergence measures having some desirable properties.

2. ¢-ORDER ENTROPY METRIC

Tnroughout this paper, F denotes a linear space of

d o




functions, p= p(x), x ¢ X, measurable with respect to a
o-finite measure u on a c-algebra of the subsets of X.
The convex subset of probability density functions in F .

is denoted by F1

F1= {peF: I p(x)du(x) =1, p(x) >0 for
X

(2.1)
- u-almost all xe X}.
Let U be an open convex subset of F and let ¢ be a C2—
function on an interval I containing
vip(x) e R: pelU, xe X} .
For pe U, we define the ¢-entropy functional
H¢(p)= fxct[p(x)]au(x) . (2.2)
The derivative of H¢ at pe U in the direction
feF is given by
dH (p:f) = = H_(p+tf) , teR
¢ at e t=0 '
and thus, by virtue of (2.2),
dH¢(p:f) = jxd"[p(x)Jf(x)du(x).
The second derivative at p ¢ U along g € F is
2
d H¢(p:f,g) = fx¢"[p(x)lf(x)g(x)uu(x) (2.3)

and, in particular, the Hessian is
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L\f H‘p(p) =d" H

¢(p:f,f)

=I ¢"[p(X)]{f(X)}2du(X). (2.4)
X

We note that A (p) <0 for every fe F and pe U, if

£ My
and only if ¢ is concave on I. This is equivalent to
the requirement that H¢ be a concave functionai on U.
We shall also consider a parametric family of
probability density functions p=p(x]|6) with xe X and
9=(61""’6n) e, a manifold in R” . We assume that

the subfamily of F1 in (2.1)
FQ={p(°|6)eF1:6€Q} (2.5)

is sufficiently smooth in 6 ¢ & and satisfies the usual

regularity properties, not explicitly stated to avoid
lengthy discussion. Accordingly, we shall write 1
n
dp =dp(8)= Ztaejp<-|e)3dej; 6eqQ, p(+]8)eFy . (2.6)
i=1

Then the Hessian in (2.4) along a direction of the

tangent space of the parameter space §{i is obtained by

replacing f by dp in (2.6). Thus

.2
--I;(d:"(p)tdplzdu(x); p=p(x|6). (2.7)
In particular, when ¢ is concave in m+5(0,w)

2 -
ds¢((-)) —-A6H¢(p) (2.8)




is a positive definite form on the tangent space, which
may be regarded as a differential metric of a Riemannian

geometry. This can also be written as

2,.._ @ ©®)
ds¢(9)- k§m=1gkmdekdem (2.9)
where
CYJNNC) PR - : )
B = Sxt ©) & (p)(aekp)«a6 p)d (x), p=p(x]8)eF,. (2.10)
m

The metric in (2.9) and the matrix [gkm] in (2.10) wiltl

be called the ¢-entropy metric and the ¢-entropy matrix

respectively. The distance between probability density
functions in FQ is defined as the geodesic distance between
their parameter values determined by the metric (2.9).

We shall now consider some special choices of ¢.
F‘of this purpose, we define for ae¢ R, two families {d)a}
and {wa} of smooth functions on IR,:

l,(Ot—l)_1 (x-x%) , a#1
¢, (%)= (2.11)

-X log x , a=1
and
( -1 Q
fla(a~1)]1 “(l-a+oax-x"), a# 0,1
wa(x)= 1-x+ log x , a=0 (2.12)

-X log x +x-1 , a=1

When the smooth function ¢ in (2.2) is chosen to be ¢a

of (2.11), we shall write Ha= H¢ and H=H1. In this way,

a

for pe F1
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{ -1 o
P (a=-1) [1-[ pdu(x)], a1l
| X
H (p)= < _I p logpdu(x) , a=1 (2.13)
! X
\
is the a~order entropy [71, while the l-order entropy
H= Hy, is the Shannon entropy [18]. The metric (2.9)
with ¢=6_, a#0 is denoted by dsZ(e) . In order that
the value a=0 be also included, we modify ¢a to wa as
in (2.12). 1In this way
2 t: (a)
ds(0)= ] g 'de de , ae R (2.14)

k,m=1
with

K m (2.15)

We call (2.14), the o-order entropy metric and the matrix

[gég)] in (2.15), the a-order entropy matrix. The geo-

desic pseudo distance induced by dsi(e) is denoted by Sa

and is called the o-order entropy pseudo distance.

In the special case of a=1, corresponding to the
Shannon entropy which is widely used in applied research,
we have (dropping the suffix a=1)
asXey= } g, s .de (2.16)
K,m=1 km "k m

and [gka with

Bxm = Bkm(8)= )[X p(aek log p )(Bem log p )du(x), p=p(x[8)e Fy.
(2.17)




The expression (2.16) is the information metric

{13] mentioned in the introduction while [gkm] is the

Fisher information matrix. The geodesic pseudo~distance

S induced by d sz(e) will be called the information pseudo-

distance ( a pseudo-distance satisfies alil the postulates
of distance except that it may vanish for elements which

are distinct).

3. THE J, K, L-DIVERGENCE MEASURES

3.1 Definitions and inter-relationships

We consider the convex subset U of F, the function ¢

on the interval I and the ¢-entropy functional H¢ as defined

in (2.2). For p,qeU, the J-divergence (with respect to H,)

¢

is defined to be the Jensen difference

=2 n (239 _H -
J¢(p.Q) ¢(—'2—) ¢(D) H¢(Q)
which can be written in the explicit form

r +
Jp(pra) = | {20(P51)- o(p) ~¢(q) Ydu(x), p=p(x),a=q(x)eU.

X (3.1)
We also consider other measures of divergence, special
forms of which have received numerous practical applications:

The K-divergence

K®(p,q)=fx (p-—Q)[p-ltb(p)-q—lo(q)]du(x) (3.2)
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and the L-divergence

; q)iq o(® .
Lytpa) = [ (2 6Chea 6B ducx) . (5.3)

The following theorem gives some results concern-

ing the J, K, L-divergences and their inter-relationships.
Theorem 1. The following hold:

(i) If ¢ is concave on R+,then J¢(p,q)30for pP,q eFl.
(ii) 1If F(x)5)<¢(x—1)+¢(x) is non-positive on m+,then
L¢(p,q)3})for p,qe Fl'
(iii) If w(x)=¢(x)/x is decreasing on R_, then K¢(p,q)30
for p,q € Fl'
(iv) If ¢ is decreasing and convex on mw, thenK¢(p,q)3
J¢(p.q) for p,q € Fy.
(v) If ¢ is concave and ¢y is convex on m+, then

Ky(P,a) 2 J,(P,q) 20 for p,qe Fy.

Proof. Items (i) and (iii) are trivial. As for item (ii),

we have
= - _E :
Lm(p,q) [qu(q)du(X) ; p,aeFyq,

and item (ii) follows. We now prove item (iv). From

(3.1) and (3 2), we have

Ky(p,@) - 3,(p,q) = f 6(p,q)du(x)
where X

G(x,y) =L00)+ Z4(y)-2 0L (x+y)/2) 5 x,y € R .

This may be written as

G(x,v) __ ¥ X X+
23] - w0 g v v




e — e

yX Xy X+y
> W(m + m)-‘”(“?—')

2 0(E (Y s 0.

The first inequality follows from the éonvexity of ¢

and the seconcd inequality results from the assumption
that ¢ is decreasing on m+ . This proves (iv). Item (v)
fotlows from items (i) and (iv), if we show that the
assumptions of (v) imply that ¢ is decreasing on ﬁh_.

Indeed , from Y(x) = ¢(x)/x we have
1 '
w'(X)=-§EW(X)-¢ (x)]

and thus

YD) == 21290 (x)-6"(x) ]
Therefore,

29" (x) = -xy"(x)+¢"(x) <0 , xe B

This conctudes the proof.
When the function ¢ is replaced by ¢a of (2.11) the

, K and L will be called the
Py ¢a ¢a
"a-order J, K and L divergences" and they will be denoted

resulting divergences J

by Ja’ Ka and La respectively. As in the case of the
a-order entropy Ha’ the index o=1 will be dropped from
these divergences and, thus, J=J1, K=K1 and L=L1. Por
D,qe€ Fl, the explicit expressions of Ju, Ku and LGL are as

follows:
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[ -1 0, a ol-a o
{a-1) J [p +q -2 (p+q)  lap(x) ,a#l
Ja(p,q)=( X (3.4)
Jx[plog p+qlogq-(p+q)log{(p+q)/2Hdu(x) ,a=1,
(a-l)—lj (p-q)(pa'l—q“’l)du(X) ,ya#l
Kypoa)=y % (3.5)
Jx(p—q)(lng—logq)du(x) ,oa=1,
(a—l)—lff (pl-aqa+q1—apa)du(x)—2] ,a#l
La(P,Q)=< ¢ X (3'6)
JX[q log(p~ta)+p tog(q Yp) du(x) .a=1.

We note that for a=1,

K(p,q)=L(p,q)=jx(.p-q)(1og p-logq)du(x) ; p,qe Fy,

which is the familiar Jeffreys-Kullback-Leibler divergence.

In this connection, we also mention the a-order Hellinger

psuedo distance

- f
M (p,q)=2]a] 1[J (p*2_q%/2)24,(x) 11/2 (3.7)
X

The special case of (3.7) when a= 1,M(p,q)=M1(p.q),
has been extensively studied by Matusita [10,11] and
recently discussed by Pitman [12, pp. 6-23] from the point
of view of statistical inference. b

The following corolliary is a consequence of Theorem 1:

Coroliary 1. JLet a>0. Then, for p,qe F1:

(i) J,(p,q)>0 ;
(i1) X (p,9)>0;
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(ii1) L (p,q)>0;

(iv) Ka(p,q)i Ja(p,q)_?_o, provided U< a<2;

(v) K(p,q)=L{p,q)>J(p,q) .

Proof. .We consider ¢a of (2.11) and define

+

Fa(x)sx¢a(x"1)+¢a(x) , wa(x)=x-l¢a(x) P xe B

Since the cases with a=1 are limiting cases of ao# 1 as

a+1l, we may assume that a# 1, a>0. In this case

; 8, (%) = (=D Hx=x®), v, (0 = (-7,
| F(x) = (a-1) " Txl " (1-x%) (x*71-1).
F
; Since
¢a”(x)= - axa_zio, Fd(x) f.o ] wa'(X)-“' "'xa_2< 0’

items (i)-(iii) follow from items (i)-(iii) of Theorem 1.
Also, since wa”(x)=(2—a)xu—3, item (iv) follows from
item (v) of Theorem 1, Finally, (v) follows from (iv) and

(3.5)-(3.6).

1t is worth pointing out that the divergence measures
1 (3.1)-(3.3) based on the general ¢ and (3.4)-(3.7) based
on the a-order entropy can be used to generate a metric ;
in the parameter space defining the probability distri-

butions by considering two continguous distributions. This

is easily done by considering the Hessian along the

tangent space of FQ, namely when p=p(+|6) and g+p. The
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precise results are as follows:
. 2 1 " 2
(1) a™{3,(p,p)}(B)= -3 f $"(p)(dp(6) 17dn(x)
X
= 1 2
=z ds¢(8)
which is the ¢~entropy metric defined in (2.9).
¢ - .
(i1) a®(K,(p,p)}(8) = -2 (P74 (p))'Tdp(8) 17 ducx),
X
ces 2 -1 2
(iii) 4 {L¢(p.p)}(9) = -2 ¢"(1L) pr [ap(6) 1~ du(x)

= —2¢"(1)ds2(0)

‘ where dSz(e) is the information metric as in (2.16), so

that when ¢"(1)<0, this metric is essentially the infor-

: . mation metric.
t

Further when ¢ = ¢a as in (2.11), we have

. 2 _a 2
(iv)  a®{5 (p,p)}(8)=7ds (),

2, _ 4
(v) d {Ka(p,p)}(e)—z ds_(8),

(vi) dtha(p,p)}(e)': adszxe),

2
. 2., 2 _a 2
(vii) a"{M (p,p)}(8) =% ds (8),

where dﬁi(e) is the o-order entropy metric. The relations

(i)-(vii) reflect the local properties of the J, K, L,
Ll

M-divergence measures. We shall now consider their global

properties in terms of their convexity as functions on
le Fl.




T, -

3.2 The J-divergence

We compute the Hessian of J¢ at (p,q)e¢UxU along
(f,g)eFxF;

Z
A(f,g)Jd,(p.q)—d J¢[(D.Q).(f,g),(f,g)].
By virtue ot (2.4), we deduce that
X 2 2
4 J.(p,q)=-| {a(p,q)f™+ b(p,q)fg+alq,p)g” tdu(x)
(f,g)"¢ X

where

b(p,q) = - é—¢"[é(p+q)]

and

a(p,q) = ¢"(p)+b(p,q) .

We therefore conclude that J, is convex (concave) on

)
UxU if and only if a(p,q) €0 (a(p,)>0) and

d(p,q) = a(p,q)a(q,p)—[b(p,q)lzzo .
From (3.9)-(3.11), we find that

- " T 1 1
a(p;Q)— - 2d’ (p)d) r%(p+q)3{¢vl(a - 2 ¢H[é(p+q)7 }

and

1

13 ]

(3.8)

(3.9)

(3.10)

13.11)

= - " 1" " 1 — 1
d(p.a)= - 24"(p)o™ ()" 13(p+a) Wgmppy * 77qy = 25 TECPe 1!

Since the expression in the last curly bracket is the Jensen-

difference (or the J-divergence) of (¢")"1 we conclude

(see also [5]):
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Theorem 2. J¢(p,q) is convex (concave) on UxU (with

respect to FxFo>UxU ) if and only if ¢ is concave (convex)

and (¢)"1 is convex (concave) on I.
As a coroliary of this theorem we obtain the

following result on Ja(p,q) of (3.4):

Corollary 2. Ja(p,q) 1S never concave on FIXFl. It is

convex on F1><F1 if and only 1f ae [1,2].

Proof. The case of a=0 is degenerate for Jo(p,q)EO. We

therefore assume that a#0. Also, since the case o=l is

a limiting case ot a-»1, we may also assume that a¥1l. From

(2.11) we deduce that ¢a"(x)=—axa—2 for x ¢ R,, while for

= T -1
%x(x) =[¢a (x)] we have

11 — -1 -0.
£, (x)=a "(a-1)(2-0)x » Xe R, .

The result follows at once.
For the proof of the following corollary we refer

the reader to [ 51]:

Corollary 3. Assume that U is an open convex subset of F, 1

such that
\J{p(x)e R: peU, xeX}=I=(0,1).

Let fa(x)=¢a(x)4-¢a(1—x),x ¢ I where ¢a is given by

(2.11). Then Jf (p,q) is never concave on UxU. It 1s
o

convex on UxXU if and only if ae¢ [1,2] or ae (3,11/3].
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when ¢ is ot class C4 on the interval I, the

condition of Theorem 2 may be summarized as one

single condition, namely that the matrix

M¢(X) =

2o (x) ¢ x) |

be negative (or positive) definite for all xe¢ I. ‘lhis

means that ¢'2)(x)<0 (or 6(2)(x)>0) ana a (x)zaet M (x))

¢
> 0, tor all xe¢I. This condition may serve to single
out ¢1(x) and ¢2(x) of (2.11) and therefore, the entropies

Hl(p) and Hz(p) of (2.13). 1Indeed, the following hola:
Theorem 3. The genera!l solution of

A¢(x)=det{M¢(x)}EO, ¢(2)(x)>0 ; Xe R (s.12)

+ »
is one of the following two forms:

1
Z
c

p(x)= [(cx+b)log(cx+b)-cx J+dx+e
where c,b,d and e are constants with ¢>0 ana b>0, or

¢(x)=ax2+kx+r

where a, k and r are constants with a>0. 1In particular
¢(x)=-—¢1(x)=x log x is the only solution of (3.12)

subject to the conditions:

o(1)=0, 6 (1)=1, ¢'2)(1y=1, ¢¢3)(1)=-1.

i
1
i
i
!
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Similarliy, ¢(x)=-¢.(x)=xz—x 1s the only solution of
A

(3.12) subject to the conditions:
0(1)=0, ¢ (1)=1, ¢'®)(1)=2.

Proof. When ¢(2)(X)§a=const., the second form is ob-
tained. When ¢(z)(x)7const., we let f(x)=[¢(2)(x)]—1

Then

‘2)(7()— - —-z—s-(-—)——a' A (X)
x)1

and so f(z)(x)=0, which means (1/¢‘2))(2)=0. The

result follows now at once,

3.3 The K-divergence ;

As for the Hessian K¢ at (p,q)ele F1 along {

(f,g) e F x F we have by virtue of (3.2)

Ber )k (Pi@)=- | {a(p,@)f?+2b(p,a)1E + a(a,P)E” Au(x)  (3.13)
X

where, for x,ye¢ R,

a(x,y)=0"(x)-yyp"(x) , w(x)=¢(x)/x , (5.14)

and

bix,y)=-[p'(x)+yp'(y)].

It therefore follows that K¢(p,q) is convex on FIXF1

if and only if a(x,y)<0 and

d(x,v)zalx,y)aly,x)-(b(x,y)12>0 ;x,y¢ R, . (3.15)
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However, from (3.14) it is seen that a(x,y) <N whenever

¢ 1s concave and ¥ is convex on R a situation identical

+ ’
with that ot Theorem 1(v). We clearly have:

Theorem 4. K¢(p,q) 1S convex on FIXFI_\with respect to
FxF) if ¢ 1s concave, y is convex on m+ and (3.15) nolas.

As a corollary we obtain the following result on

Ka(p,q) of (3.5), the proof of which 1s to be tound in
{51

Corollary 4. na(p,q) is convex on leFl for all ae [1,2].

3.4 7The L-divergence

The Hessian of L¢ at (p,q)ele F1 along (f,g)e FxF

is, in view of (3.3),

Acg %\p,q)=-j (a(p,q)f2+zb(p,q)fg+a(q,p)g2}du(X) (s5.16)
,g) X
where
1 p q2 q
= = v(Eyy A gn 3.17
atp, )= g o"(n) pa¢ ) ( )
and

r b(p,q)= - ¢"(B) - L 43,
< q < P
q p
In this case, the discriminant

alx,y)=a(x,y)aly,x)~[b(x,y)1°

is identicalily zero on m+x R+ . This leads to the fol-

lowing result (see atso [ 51):
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Theorem 5. L¢(p,q) 1s convex (concave) on F1><F1 (with
respect to Fxt) if and only if the function F'('x)Excb(x'l)

+¢(x) is concave (convex) on R+.

Proof. sSince d(x,y)z0 on B+x R, , L¢(p,q) is convex on
FlXFl if and only if

2 3
a(x,y)=¥L; {§3 B (HONP IO (x,7)e RXR,.

b

Putting t=y/x, this condition becomes

t_3¢”(t—1

)+¢"(t)§0 ; te B+.
This means that F"(t)< Oand the result follows.

In particular, for La(p,q) of (3.6) we have:

Corollary 5. La(p,q) is convex and (concave) on FLXF1

for all aiO (or ail a<0).

Proof. The case a=0 1s degenerate for then Ko(p,q)EO.
Also, by continuity we may assume that o#l. From (2.11)

anda Fa(x)5x¢a(x'1)+¢a(x), we deduce that

a—2+x—a—1

F;(x)=—a(x ) ; Xe€ R+

and the result follows.

4. GEOUESIC DISTANCES

We return to the o-order entropy metric in (2.14)-




gt
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(2.15). 1he empnasis of the subsequent analysis will be
in finaing the a-order entropy pseudo-distance Sa for
known muitiparametric families of probability distri-
butions PQ. when o=1, such an analysis was carried out by
Rao [13] and more recently Ly Atkinson and mitchell [1],
where the distance S is explicitly evaluated for certain
multiparametric families FQ. We shull not repeat the
examples of [1,13] for their extensions to the case of
0#1 is not particularly difficult. An exception will
be made for families of normal distributions, where it
seems that the present analysis is slightly more general
ana, perhaps, simpler than that found in [1,13].

Being the geodesic pseudo-distance induced by dsi(e)
of (2.,14)-(2.15), Sa may be evaluatea with the aid of
the Euler-Lagrange equations which invoive the Christoffel

symbols based on the o-order entropy matrix [g(a)(e)] of
km

km 'k '

(4.15). In general, such an undertaking may prove diffi-
cult as far as an explicit closed expression for Sy is
sought.
4.1 Multinomial Distributions

Consider a multinomial discrete distribution
p(x|8)=p(x|61,...,9n) where the sample space X is the
set of integers X=Xn={1,2,...,n} and p(k|6)=ek for ke X .
In this case, gﬁﬁ) of (2.10) is

gf(:)(e)=fx rp(k10)1%72 8, duc)=6, 8272 ; k,m=1,... ,n

n
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we may use the iadentification
=n( = . =
pk~p\x|0) GK 7 k=l1,...,n.
We shall assume first that
— n .
I)‘kr)l.)"')I)[])€ R+ ]
and then make the restriction of p eQn, where
n_ 2 |
un:{pe R, : ) P =1, 0<P <1, k=1,... ,n} i
k=1 ?
with these considerations the metric of (2.14) may E
1
I
be expressed as }
i
2, % 4y Z n |
ds (p)= ] P, (dP )" , Pc R, .
k=1
The fundamental tensor of the metric g(a)=6 pa—2 is ;
km km
of rank n and, therefore, Sa is indeed a aistance. ‘the

evaluation of this geodesic distance is immediate, and, |

fM‘mqeRE,wehme
n .
2|d|—l{ 2 [pa/2_qa/2]d}1/2 , a#O
kel k k

S (p,q)= n
@ ) [Log P -log qkllz}l/2 , a=0

k=1

which is (modulo a factor ofV2) the a-order Hellinger

distance Ma(p,q) as in (3.7). The same results hold

with the restriction of p,q ¢ Qn.

4,2 Normal Distributions

We first consider a two-parameter family of normal
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distributions p(-lu,c)EN(u,oz) with mean u and
variance cz(—m < u<w;g>0). Here, for reasons of con-
vergence we must assume that o>U. Fixing a>0, it
will be found convenient to introduce new variables

X and y (-w=<x<o ; y>0) via

y=o0 , x={A(a)}"éu 5 ACa) E(a%-a—%)z+2a"1, a>0- (4.1)

We may consider the complex parameter
z=x+iyet=U={ze¢ € : Imz>0} (4.2)

with U being the upper haif-plane. 1in this way

p(-|u,0) 1s replaced by p (- IZ)EN(u,oz) with z¢ U as
in (4.2)-(4.3). Now, a routine calculation, omitted
here, shows that the metric (2.14)-(2.15) admits the

form
as2(z)=Bla)y (" |4z |? (4.3)

wher e 1o
2

B(awyza 3/2(2m) 2 ACay , o>0. (4.4)
The metric in (4.3) constitutes a Kihler metric on
the upper haif-plane U and when a=1, 1t reduces to the

familiar Poincaré metrié¢. The Gaussian curvature of (4.3)

is

Ka(Z)=-—(a+1) {ZB(G)}_lya-l ; y=Imz> |, a>0,
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ana, is always negative. In particular, Kl(Z)E—Z-l.
In this case, Sa i1s indeed a daistance on U and SES1
is the familiar hyperbolic distance of U.
we now treat this distance Sam>0):
1. The case of a=1: 1In this case, by (4.1)-(4.4),
dsz(z)=2y-2|dz|2. (4.5)

Elementary arguments based on the invariance properties
of this metric of Poincaré tead to the following geodesic

distance (or "Poincaré distance'"):

S(z,0)=v% 10g 1oL 2 Lel, (4.6)

where

S(z,0)= |25k

; z,0 eU. 4.7)
y 2t

It should be noted that &8=6(z,z) is also a distance on

U and is called the "Mdbius distance" (see also [3,4]

for further generalizations of these aistances). Also,
the geodesics of (4.5) (see for example, (4.186)) are

given by the "semi-circles"

©

z=a+rel ; >0, O<o«<w, (4.8)

where a 1s a real fixed constant.
Expressed in terms of the original parameters y
and o, the distance in (4.6), by virtue of (4.1) and

(4.7 ), may be written as
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1+8(u,,075u5,0,)
1°71°%2°%2

S(uy,0y5H,,0,) = V2 log 5= - (4.9)
1’71720 -2 1 6(u1,01,u2,02)

where

'(ul—u2)2+2(ol—oz)2"]é

d(ul,cl;uz,oz) = 5 9 (4. 10)
_(Ul-uz) +2(01+02) _’

is the MObius distance (4.7) in terms of y and o. This
is the required distance between N(ul,c%) and N(uz,oz).
It agrees with a rather more involved expression obtained
by Atkinson and Mitchell [1]. The expression in [1] can

be obtained from (4. 9) by using (4.1), (4.8) and (4.10)

note that always

0 < 6(u1,01; ¥,,05) < 1.

On the other hand, the Poincaré distance S(,,9;30,.9,)

clearly satisfies
S(ul,Gl; u2,02) > 2 /§.G(u1,ol;u2,02).

The Hellinger pseudo-distance (3.7) between

N(ul,cf) and N(pz,og) is, in this case, a proper

distance with the following form:

2

3 ;
[20 e '(“1_“2)2/4(°¥+°2) |

2
MCu,, 0q 1y, 0,) = 2|1 - J
1’71722 2 2

(4.11)
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2. The case of a# 1l In this case, the geodesic distance

Sa of the metric (4.3) is not easily explicated as in

the former case. We shatl first find all the geodesics
of this metric. This may be, of course,done with the aia
of the Christoffel symbols of tre metric (4.3). We shall,
however, proceed directly, f-or reasons of economy and

clarity. Writing
B=(a+1l)/2 ; B>1/2, (4.12)

finaing the geodesics of (4.3) amounts to solving the

following extremal problem of calculus of variations

(the factor B(a)>0 1s irrelevant here!):

b —
minl v BArcyZax , yoo,

i

a
where the minimum is taken over all Cz-paths y=1t(x),
joining the points (a,f(a)) and (b,f(b)). A routine

calculation based on the Lagrangian of y"B/{+(y')2 shows

that the Euler-pLangrange equations of this problem {
admit the simple form h
" 2
yy"'=-Bl1l+(y')" 1. \4.13)

In order to solve (4.13) we proceed with standard

methods, letting




e
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to obtain
2
-fd(logy )=2dl log(1+p“) ]

‘This shows that

vBor 1yt . rs0

?

with r>0 being a constant. Consequently,

B
x=t{—-2—L2—B—); dy+a ; r>y">0, (4.14)

(r -y
where a 1s an arbitrary constant of integration. We

may use the substitution y=r1/esin‘l/6

0, 0<6<m and upon
introducing the one parameter family of functions
0
F (G)E-Yj sin'tdt ; vye R, 0<0<m, (4.15)
Y
m/2
the solution (4.14) may be written in the parametric

form:

x=atr1/BF1/B\e) , y=rl/8sin1/89 ;>0 , O<6<m, (4.16)

When g=1, or, by (4.12), when o=1, (4.16) reduces to
(4.8) Equation (4.16) gives all the geodesics of the
probiem. We also note that the goedesics in (4.16) include
the lines x=const, as a limiting case, corresponding to
I+,

An expression for Sa(z,c), z,;¢ U, may now be given

by using (4.3) and (4.16). We have

1
=-1
B .
T
5,(2,8)=/B(a) 35— F) %71 _2(91)] (4.17)
B
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where, after choosing, without 1oss, the (+) sign
in (4.16),
z=x+iy , x=a+r1/BF1/8g61) s y=r1/bsin1/861,
(4.18)
= i = 'L/B" __-L/B . l/B
g=&+in , E=a+r kl/b(ez) , N=r sin by

Using (4.1), (4.4), (4.12) and (4.15) one deduces
immediately that (4.17)reduces to (4.6) when a=1, In
general the gquantities 61,92 and r are determined by

the given z=x+iy, =£+ine¢ U via (4.18). However, except
for special values of o>0 where integrals of type (4.15)

can be further explicated, finding a closed form formula

A i

for Sa\z,c) in terms of 2z and ¢ may prove difficult,
One may use an alternative expression for Sa(z,;)
whicn, sometimes, 1s simpler than that of (4.18 ). It

1 is based on the recursive formula

¥-1

' -2
F === - , .
Y_zke) V=1 [FY(B) cosf sin 8],

valid for all real y and easily derived from (4.15).
Using this formula, together with (4.12) and (4.18),

(4.17) becomes

a+1)§_n&(1-a)(1_r—2na+l)é

h /B
R EE T

(4.23)

Letting r-» in (4.19 ), corresponds to the geodesic

x=const., and, accordingly

R — A ——
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2%
2vB(«) A(l-u) _3(1l-a)
= = -n- . U, Rez= .
§,(2) EE [y n |;2,zeU,Rez=Rel
This, of course, agrees with (4.6) as a+l1 and Rez=ReC.
. R . i Z
The a-order distance ba(ul,ol,uz,oz) between N(ul,ol)
and N(uz,cg) can be derived from (4.13) by using (4.1),
(4.4) and (4.18). 1In particular,
S (u,0. ;u,o0. )___2/B(ai 0%\1—0)*05(1—(1)
o 1 2 1 2
[1-af
which agrees with (4.9) as a-=L ana H=Hy =i,
‘the a-order Héllinger distance betweén N(ul,oi)
and N(u2,02) is now
1-a 1-aa 1-q
. V2 g 2 2 2
Ma(ul’gl’“2’02)‘_:372f(2“) {(01 " -0, )
1-a
: X ol d 3 . %
,fd(‘l“Z) E,(uy,0q5u,.090}
where
2 % n 2 2
120,041 2 2
. - 172 —a(uy-u, ) /4( 0 +0,)
Ea(ul,ol,pz,oz)—l-l~§ 2J e F17M2 1727,
oy +o
1 72
When a=1, this formuia reduces to (4.11).
4.3 Products of Normal Distributions
The previous methods can be extended to proaucts
of normal aistributions
n 2
p(x]u)= T N(xk:uk,ok), (4.20)
k=1

e
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-

- oh Z
where x=(x1,... xn)eX= R ana 9=(u1,01,...,un,on)e R<"

DR A LA

. 2 Do

; . with means My and variances ok(-w<uk<m,ok>(L k=1,...,n).

. As in (4.1)-(4.2), we find it convenient to introduce
new variables. Accordingly, we replace x=(x1,...,xn) by

t=(t1,...,tn)ex= R" and write for the parameters

SRl i S

;
yk=0k.xk={A(a)}'%uk ;Ata)s(ai-a“*)2+2a‘1 » a>0 (4.21) ?
i
; and i
- _ _ o o v- =
z_(zl"" ,zn) . Zk_xk-o-iyk., ( <xk< ,yk>0),k 1,...,n. (4.22)

Plainly, we view the distribution in (a.20) as p(t|z)

with t in the sample space X and ZEUn, n copies ot the 5

upper half-plane U.

As in (4.3) the metric (2.14)-(2.15) admits here

IS

the form

2 1 1-a
ds, (2)=By(a){ T yy ™)

n
- 2
I v22|dz, | (4.23
j=13 T g=1'k Tk

where

B (a)=a”(M*2)/2(pydnlt-a)p oy G0 . (a.24)

When n=1, (4.23)-{4.24) reduce, of course, to (4.4)-
(4.5). The case of o=l 1s, as before, rather involved
and since we cannot expect a closed form formula for the
geoaesic distance Sa' we shail only deal with the case

of a=1. In this case, by (4.21)-(4.24),

. n
ds‘(z)-zk{ vy |dz, |2 (4.25)
=]

3
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which is, as in (4.5), the Poincaré metric on uh.
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In order to find the geodesic distance 8 we exploit

the fact that the metric (4.2Y) is (globally) invariant

under biholomorphic mappings. Accordingly, we use the

mapping

which maps u? biholomorphicaliy onto the polydisk
Dn={w=(w1,...,wn)e c“:|wk|<1, k=1,...,n}. With this

mapping the metric in (4.25) becomes
2 - 2 -2 2
ds“(w)=8 ] (1-{w, |%) lde, |
k=1

which is the Poincaré metric on the polydisk p". we
first find the geodesic distance S(w,T) of this metrie

when w;reDn. In order to do so we assume that T =0=(0, ..

and evaluate S(w,0),0 ¢ D" . We write

r=(r1’--°'rn) s rk=k"k|: Oirk<1 P k=1,...,n

and note that due to the invariance of (4.27), S(w,0)

=8(r,0). In this way, we have

dr 12 n 1+4r ]2
2 n K Kk
ds“(r)=8 =2 ] | dlog

kél l—riJ k=1[ 1-rkJ

and consequently

1(4.26)

(4.27)

.,0)

Thas, as is well known, is sufficient for the determination

N

Y

bt ima b b



of the distance between any two points of Dn. Indeed,
given two points w,Tch there exists a holomorphic

i automorphism ¢ of ™ on D" so that ¢(w)=v,¢(r)=0¢Dn.
Again, by invariance, S(w,T)=S(¢(w),$(t))=S(v,0). Here,

up to a rotation

w —Tk
K=""1'{":-’" » k=1y ;n' J
l-Tw 4
K k i
It therefore follows that !
i
. n LS (w, T )14 :
{ S«o,1)=v2'[ ¥ logz-————li—li:] : w,ted” (4.28)
k=1 1'6 (wkyrk)-
where
wk -T
8w r Ty )= LK k=1,...,n. (4.29)
1.T. @
k k

Returning to the metric in (4. 25), its geodesic
distance S(z,{) between two points z,zcU" is obtained

from (4.28)-(4.29) and the mapping in (4.26). This gives

2 l+6(zk) CK) }é

n
S(z,z)=vZ{ | log s z,rel? (4.30)
k=1 1-5(zk.§k)
witn
z, -
G(Zk,ck)=~l k_kl , k=1,...,n . 14.31)
zk-gk ]

This generalizes (4.7)-(4.s). Finally, from (4.30)-(4.31)

n

the information distance Sn(u,o;v,o) between a I N(tk:uk,oi)
n k=1

distribution and a I N(tk:vk,pi) distribution is given by

k=1
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n 1+8u, ,0;v _,0, )
S,(u,0;v,p)=V2 [Z 1og2 LA g k:];" (4.31)
l_<=1 l—d(ukpok’ vk'pl()
with
2
6(uk O\ vk,pk)=' 3 ,k=1,...,n (4.32)
(uk_\)k) +2(ok+px)
and, where
u=(u1,...,un),0=(01,...,on);v=(vl,...,vn),p=(pl,...,pn).
In view of (4.31)-(4.32) and (4.9) - (4.10) we
may conclude the following desirable property of the ;
information distance: f
2 1 2 !
S (1, 0:v, 0= 87U, 0, v .0). (4.33)

k=1

5. THE CARATHﬁODURY PSEUDO-DISTANCE

The i1nformation distance S(u,0:v,p) between
N(u,oz) and N(v,pz) given as in (4.9) suggests
an introduction of a psendo-distanc¢e on a theme of
Carathéodory (see [4] for a further generalization).
We briefly discuss this possibility and refer the

reader to Burbea [2,3,4] and the book of Kobayashi 4

i

{8, pp. 49-531 for further details.
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We assume that the family of multiparametric
probability distraibutions Fszis such that  1s a complex
manifold in ¢". Thus p(-lz)erzwith z=(zl,...,zn)eQ
being an n-tuple of gomplex parameters zj=xj+iyj’ 1<j<n.
We consider the M&bius and Poincaré distances 6 and S
on the upper half-pilane U, as given in (4.6)-(4.7). Let
H({ ©:U) denote the family of holomorphic functions from

2 into U. We define
GQ(z,c)=sup{G(ftz),f(c)): feH(Q:U)) ; 2z,Ceq.

A normal family argument shows that the supremum is attained.
It is also clear that GQ satisfies all axioms of a

pseudo-distance on Q. It is calleda the Mobius pseudo-

distance of (. The Carathéodory pseudo-aistance of @

is defined by
S £2,L)=suptS(£(2),£(2)): feB( @M} ; z,zen .

Again, the supremum is attained and.by (4.6)-(4.7)
148 (=z,2)

séacﬁdﬁug————a—-.
1-8 (z,%)

soth pseudo-distances become distances on § when { is
bpiholomorphically equivalent to a bounded domain in e,

It is also clear that
S(%,8)>2/2 8,(z,¢) , 0<:8,2,2)<1; 2,Leht .

*
Let ¢: >4 be a holomorphic mapping or a complex

manifoid Q of €” 1into another complex manifo.id Q* of G"ﬁ
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Then, for z,zeQ,
8k (9(2),6(¢))<6o(2,8)

and

Sr(9(2),0(2))<8o(2,8).

In particular, Q) and SQ are biholomorphically invariants.

Also, in the case that Q is the upper half-plane U, we have

and, therefore, §_. ana Ss}constitute a natural gen-

Q
eralization of § and 5 in (4.6)-(4.7)
when Q=U" we have, contrary to (4.33).
GUn(Z,C)=max{6(zl,c1),...,s(zn,gn)}
and, therefore,

SUn(Z’C)=maX{S(ZL’C1)’ ceeS(2,8) )

= — n
where z—(zl,...,z ), g—(cl,...,cn)eU .

n
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