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Abstract

This report describes algorithms, applications, and use of

a general block-oriented sparse equation solver for a memory-

hierarchical, functionally concurrent vector processor, the CRAY-l.
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PREFACE

Because the body of the report considers detailed algorithmic

issues, this preface is intended to present the principal ration-

ale which motivated development of this software, and which would

justify the reader to consider its adoption.

Heretofore, sparse matrix methods have been used only for

the solution of somewhat unusually-structured matrices; however,

the specialized structure of hierarchically-organized vector pro-

cessors such as the CRAY-l suggest important new applications of

this methodology.

For example, the solution of a small full matrix through

Fortran will execute at an asymptotic rate one-third the maximum

processing rate of the CRAY-l, due to the difficulty of managing

the vector register cache memory through Fortran. This limitation

can be corrected at present only by using assembly language or by

unorthodox Fortran programming. Moreover, when the matrix size

increases beyond 64, vector length limitations require that, to

maintain high execution rates, the full matrix be artificially

blocked and the matrix reduced a block at a time. Thus the user

is threatened with unaccustomed programming and algorithmic detail

for what may appear to be a routine linear algebra task.

The programing difficulty increases substantially when the

matrix itself has a sparsity structure. For example, the maintenance

of high processing rates at the bandedge of a band matrix -- par-

titioned for the above reason -- is a difficult task. For this

reason, at the time of this writing, no high performance general

band solver is known to exist. Matrix structural irregularities

resulting from boundary conditions associated with solution of

partial differential equations are even more challenging. As a

result, the discipline-oriented researcher is initially inclined

to accept the above-mentioned 3:1 degradation obtainable from a

vectorized Fortran code.

By exploiting traditional sparse matrix methodology, this

partitioning and high performance blocked solution can be performed

automatically or at least under the high level control of an en-

lightened user. In this software, two levels of control of the

solution process are provided.



(a) Certain common types of matrix structures (full, banded,

block tni-diagonal) can be described by several parameters (matrix

size, bandwidth, etc.); a partitioned matrix description is

automatically formed and the normal calls to numerical factorization

and substitution codes carried out by the user.
(b) At the lowest level, two levels of block descriptors

can be provided by the user who has a matrix sparsity structure

not provided for above.

Because reduced execution time is the primary motivation for

utilization of this unfamiliar software, it is important to give the

reader/usar a means of estimating this timing. Three levels

of performance prediction are provided.

(1) If block sizes are of a constant or a known minimum size,

bounds on the execution rates can be given independently of the

matrix sparsity structure (Table 5).

(2) Tables of solution times for common matrix structures

are also given in this report.

(3) A precise timing model of the software package has been

devised using a CRAY-l timing simulator and captured in a Fortran

program. The result is that a Fortran version of the software

exists that produces, besides a numerical solution, a precise

timing estimate of this numerical solution on the CIRAY-1. This is

intended to be useful to determine, on a local scalar machine, the

speedups achievable with the CRAY-l software, given either of two

levels of problem descriptions Above.



I. INTRODUCTION

A. Sparse Equation Solvers

General sparse equation solvers are complicated software

packages which solve directly (contrast iteratively) simultan-

eous linear equations havii~g an arbitrary off-pivot sparsity

structure (1] - (2]. This structure is described either by a

linked list [3] or a bit map (4]. Such solvers have been used

for more than a decade as kernels in (1) the implicit solution

of algebraic and ordinary differential equations associated with

lumped physical systems such as electronic circuits, electrical

power systems, and 3-D mechanisms, and (2) the solution of dis-

cretized partial differential equations (PDE's) such as arise in

oil reservoir simulation.

This report examines the characteristics and applications

of such solvers implemented on a memory-hierarchical vector pro-

cessor, the CRAY-l. Because the architecture is fixed, a "bottom-

up" approach is used, wherein the performance of appropriate

numerical kernels on the CRAY-I is studied first. These kernels

are shown to have a strong preference for block matrix structure.

This single fact profoundly affects the development of the solver

and its applications, discussed in the remainder of the paper.

Because this study is directed toward a specific processor,

it is first well to summarize three general issues which implemen-

tation of such a code on any vector processor are likely to involve.

(a) Algorithmically, vectors arise from either local matrix

density (coupling of variables) or from symmetries in globally de-

coupled parts of the problem structure. The former will be consid-

ered in this report; the latter is discussed in [5].

(b) The coding of such a solver will profoundly affect its

efficiency; this coding in turn is intimately related to the data

flow of the processor, in part due to the linked list or bit process-

ing. This implies a need for coding in a low level language and a

consequent high degree of machine dependency. The CRAY-l was chosen

for this study due to its superior scalar and short vector performance.

Linked lists rather than bit maps were adopted because of the CRAY-l's
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limited bit-controllable vector operations.

(c) The performance evaluation involves construction of

a timing model so that the price paid for using a vector processor

and a general equation-solving code can be evaluated by a potential

user. In this study, the general solver will be shown to execute

faster than codes written for specific matrix structures and con-

ventionally coded in CAL (Cray Assembly Language).

B. Block Equation Solvers

1. Kernels of Sparse Solvers.

The proposed general sparse equation solver operates on linked

list descriptions of the matrix structure. Because vector operations

utilizing linked lists (termed "gathering" and"scattering") commonly

proceed at 1/5 to 1/10 the speed of linearly-indexed array computa-

tion, it is important for efficient vector operation that the list

not point to a single non-zero element. Assuming significant local

matrix coupling, the list should point to either

(a) a dense segment of a row or column, or, more generally,

(b) a dense block

of the matrix. With sufficient numeric computation resulting from

this density, the index list processing can be overlapped or at least

overwhelmed by the numeric computation.

Consider the factorization of a matrix A into upper and lower

triangular forms U and L respectively. The numeric kernel is commonly

of the form

Di  D i - BC. (i)

where Di . Bi , and C i are submatrices from the overall sparse systems

matrix. The accumulation of the column segments of (a) will be termed

a line-vector operation of the form

Ai:j,k A :j, k -u L (2)
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where AI:j, k and L i:j, are dense column segments of the matrix

A and the triangular factor L, extending from row i to row j, and

uk is an element of U (Figure l(a)). A block-vector operation

can be written (Figure l(b)).

A.. Ak  - L. . Uk  (3)
A i:j,p:q A :j,p:q L :j,k:Z k:k,p:q(3

with similar subscript notation to indicate initial and final row

and column indices.

An approximate timing model for the line-vector accumulation

loop on the CRAY-l has been found by simulation to be

MFLOPS = 53.3 ( 1 /) (4)1 + 31.3/T

where 9 is the average length of a dense column segment encountered

during the accumulation. This model, valid when all vectors are

longer than 14, achieves a maximum rate of 35.8 for Z = 64, the maxi-

mum vector length on the CRAY-I.

The mathematical model for the vector block accumulation of (3)

is given in Figure 2 as a function of block dimensions. The asymptotic

rate of this kernel is 151 MFLOPS for q = 64 (the vector length) and

p and q large.

The ratio of asymptotic execution rates (151/35.8 = 4.2) can be

traced directly to the memory bandwidth required to implement the

line-vector accumulation of (2), where an element of Ai:j,k and

Lk:j,Z must be loaded and Ai:j, k stored for each and multiply. With

a single memory path transferring one word in 12.5 nsec, the low

asymptotic rate of 2(80 x 106 )/3 = 53.3 MFLOPS of (4) follows.

2. Block Solver Characteristics

The above preference for block processing is unfortunate in the

sense that such blocking is not unique and little is known of "optimal"

methods of blocking a general sparse matrix. The equation formulation

and the "fill" production [6] produce considerable overlapping of

block structures, often masking the original problem structure. An

example blocked structure is shown in Figure 3. Thus, a block solver

must either be given the block structure or await the development of
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blocking algorithms. This report considers only the development
of the solver, in part because general blocking methods will un-

doubtedly be dependent on characteristics of the solver.

A general block-oriented equation solver for a vector processor,
although conceptually derived from previous single-element process-

ing codes, portends to have several new important applications.

(a) Common matrix structures are naturally blocked by local

coupling and variables of nodes. The speed of vector processors

encourage such coupling, especially to speed up the convergence of

global iterative methods. For example, block relaxation methods are

being considered to replace single-variable relaxation 17).
(b) A memory-hierarchical processor with a limited vector

length requires the partitioning of large dense systems to reduce

data flow between hierarchies -- the source of difficulties in the

line-vector accumulation above. Although specialized partitioned

codes can be developed for each general class of dense matrix (full,

band, profile, block tridiagonal), the coding in a low level language

for vector processors is sufficiently complicated that, at this writ-

ing, only partitioned full matrix codes have been developed for the

CRAY-l [8].

If one observes that partitioning is a symbolic rather than

numeric process, it is reasonable to propose a solver which requires

the user to construct only a set of block descriptors from the matrix

structure. These descriptors would then guide the numeric solution.

The descriptors must be adequate to describe common block structures

and typical numeric storage schemes, but limited in number so that

they do not seriously interfere with the numeric kernels, on which

the processing speed of the solver depends.

II ALGORITHM ORGANIZATION

A. Introduction

The algorithm can be divided into two conceptual and organiza-

tional levels: (1) the global level, where general blocking rules

are established and a general block-oriented solution algorithm is

presented, and (2) the local level where sub-block structure forces

tradeoffs between generality and speed.



-7-

B. Global Blocking

It is proposed that the blocking be performed on the LU map

of the matrix since it is the structure of L and U rather than the

structure of A which is important at each stage of the solution

process. Further, it is proposed that the blocking be based on

the size of diagonal blocks. In the general sparse case, these

blocks are determined by scanning the matrix diagonal (in one dir-

ection) for the largest full, square blocks. This yields a unique

diagonal blocking. Row and column strips are defined throughout

the matrix based on these diagonal block partitions. off-diagonal

blocks are then defined only within the intersection of row and

column strips. Figure 3 shows an example of this blocking.

With the blocks constrained to lie within such strips, it is

possible to specify the block solution algorithm. In Figure 4, the

factorization steps are given for a blocked matrix of the form

A 1 1  A 1 2  A Alnb X1B1

A21 A22 X = 2

L b1n bn JLn b- Ln b

where the A i are square dense blocks and the sparsity of the

A. . (i 3 j) is as yet unconstrained.

C. Local Blocking

Define diagonal-based column and row strips (DBCS and DBRS,

respectively) as those portions of column and row strips extending

from each diagonal to the southern and eastern boundaries of the

matrix, respectively. These strips contain all of the A..j and A..i
blocks of Figure 4; it is their sparsities which are now of concern

in the general sparse case.

An examination of the substitution step shows that any nonzero

position in either blocks A. . or A kiwill result in propagation or

"1raining" of nonzero positions to the eastern or southern boundary

(respectively) of that block. This property is observed in the L
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Figure 4. Algorithm and timing for factorization
portion of sparse solver code.
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and U map of Figure 3. This effect (a) fixes the contour along

at least one of the sides of each block, and (b) requires the

maximum length of any block along its DBCS or DBRS to be at its

eastern or southern boundary, respectively (Figure 5).

Beyond this restriction, an arbitrary substructure of L and

U is possible. To accommodate this generality in a solver requires

block contour descriptors and, more importantly, slows the multi-

plication kernel of Figure 4. A compromise adopted for this study

was to assume each sub-block extends across its DBRS or DBCS as

shown in Figure 5; however, any number of blocks may lie within an

intersection of a row and column strip. This assumption is valid

for common types of block structures or when blocking dense matrices.

However, when special equation ordering is used to avoid fill [9],

nonzeros may have to be added to extend blocks across the DBRS and

DBCS; these are shown as darkened areas in Figure 3.

With the above considerations in mind, the following are pro-

posed as descriptors of DBRS blocks.

(bl) the row position of the (1,1) block position;

(b2) the number of columns in the block; the number of rows is

fixed by the diagonal block size;

(b3) the column strip number containing the block; this descriptor

can be determined in a preprocessor step; it initiates the scan to

locate Aik in the multiplication step;

(b4) the address of the (1,I) block position in the packed ma-

trix numeric array; this permits an arbitrary numeric block storage;

(b5) the address increment in the numeric array between the (i,j)

and the (i,j+l) block position; this eliminates the need for contig-

uously-stored block columns.

These descriptors can completely describe the sparsity of the DBRS,

under the above assumptions. A similar set of descriptors is used

for the blocks in the DBCS with the terms "row" and "column" inter-

changed, except (b5) which remains the column address increment to

represent the column storage of all blocks.

These descriptors are stored in a list in the processing order

of the blocks. From the multiplication step of Figure 4, this order

begins at the first DBCS, then the first DBRS, then the second DBCS,
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,- "N.row strip

6.

64 SR

:s64

original1 non- non-zero positions k61, 64 + 64

Figure 5. Local blocking assumptions Figure 6. Simplified blocking of
full matrix

11 A12  1 1 2 3

[A T A A A 111 22 23 1ii

L A43 4

(a) Matrix block structure (b) Stortce 1.
all blocks are Lx 4

A I 3 A,4 0 12 A?23  A ,,.T A ,

diagonal stripe super dia63nal stripe suL di4: ona! ;tripQ

Cc) Storage II

Block Storage Symbolic Numeri C.
descriptors descrilctorL.

bl b2 b3 b)4b j

AI1 1 4 1 8 1h
111I 1 4 1 1 4

A 211 5 It 2 12 14
21 I 5 4 2 129 4

A 12I 5 4 2 64 14
1II5 4 2 65 4

(d) Descriptors

Figure 7. Block tridiagonal matrix and two storage descriptions.
Circled numbers refer to numeric array addresses.
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etc., always beginning at the diagonal block. This is often

termed Crout processing order.

O Numeric Storage Considerations

Whereas the symbolic pointers (bl-b3) are related to the order

of block processing, the numeric pointers (b4-b5) are intended to

allow an arbitrary block numeric storage. The result is that com-

mon compressed storage schemes can be accommodated; also, these

pointers permit certain efficiencies to be taken in the blocking.

(a) Reducing the number of blocks. The restriction q , 64 in

the numeric kernel of Figure 2 requires that row strips not exceed

64 in width. This is a universal restriction. Other of the pre-

viously mentioned global blocking restrictions were imposed to

maintain the integrity of the numeric processing with arbitrary

placement of blocks in the numeric storage. However, certain common

storage schemes allow violation of these rules in the interest of

efficiency. For example, a full matrix stored in column-ordered

form in a numeric array could be partitioned as in Figure 6, with

no column strip extending above the diagonal block. A single block

multiply such as S*T, if directed to be accumulated into P, would,

in fact, be accumulated into blocks P-Q-R. One only has to insure

that descriptor (b5) -- the address increment between columns of a

block -- is the pseudo-row dimension of the numeric array represent-

ing the entire matrix. Of course, this freedom to violate a global

blocking rule involves the risk of improper accumulation across sev-

eral blocks or indeed into void areas of a sparse matrix. For ex-

ample, no check is made whether the user has accounted for all the

block fill in a sparse matrix in setting up the block descriptor list.

(b) Compressed format. In Figure 7 (b)-(c), several standard

formats of block tridiagonal matrices are given. Storage I is similar

to that of banded matrices, where the diagonals of the matrix are

stored as rows of a two dimensional compressed array. This storage is

achieved simply by reducing descriptor (b5) for all blocks to one

less than the row dimension of the entire matrix array; a rectangular

block contour then is skewed into a parallelogram as shown. Figure

7(d) shows that the numeric descriptors are different for the two

storage schemes, but the symbolic pointers remain the same.
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E. Solution of Band Equations

The numerical values of band matrices are normally stored in

compressed form: each matrix diagonal is mapped into either a row or

column of the compressed form. It can be shown that the former case

(only) is compatible with the blocking scheme which has been proposed.

The mapping compresses a band matrix of size n bdx n bdand half band-

width n hb inoa storage of size n hbx n .d An example is shown in

Figure 9 ka) -(b) .

The new problem introduced by the partitioning of a general

band matrix occurs at the bandedge in the column and row strips.

To process these partitions, an upper triangular block model is

provided to reduce the bandedge of the column strip. A lower triang-

ular block model serves the same purpose in a row strip. An addi-

tional descriptor b6 identifies such blocks in the list: b6 = 0

identifies an above-defined rectangular block; b6 = I identifies a

bandedge block. Further descriptors are avoided by requiring that

each block start precisely at the bandedge, with the first position

in a triangular block on the first column/row of the column/row

strip. A partial block, which occurs primarily at the top and

bottom of the band edge, is then routinely described by b2, pre-

viously defined as the block length (Figure 8).

A band matrix is illustrated in Figures 9(a) and 9(b), the

latter representing the compressed numerical storage. The six block

descriptors of selected blocks of the matrix are given in Table 1.

Among the noteworthy points raised by this example are the following.

(a) Blocks A ii extend from the ith diagonal to the band

edge, regardless of the matrix size. This is similar to

the full matrix case of Figure 6.

(b) Blocks illustrated by A (a) A(a) adA(a) are reduced in
41' A5 2,'n 63

in size to extend to just short of the band edge, thus

accomumodating the triangular models of Figure 8.

(c) Blocks such as A (b) oelptwo row strips. However, the
41ovra

contiguous numerical storage of adjacent blocks assures
that accumulation of products such as AbA into A

A4 1 A1 2  42
will result in proper accumulations into adjacent blocks

as well.
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Full block Partial block

First column
of DBCS

DBCS b - - -- b
bandedace

str-p_
", width

First row
o f D B R S s t r ip

DBRS strip
bandedge - - - width

b 2

Figure 8. Models of bandedge partitions

Block Symbolic Numeric Bandedge
Descriptors Descriptors Descriptors

A bl b2 b3 b4 b5 b6

A1 1  1 64 1 201 409 0

A(a) 193 8 4 393 409 0
41

A(b) 201 64 4 401 409 141

A14 201 64 4 82001 409 1

Table 1. Selected block descriptors for compressed band matrix

for nhb = 200 (n 8 in Fig. 9) with array row dimen-

sion 410.

him"_
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01 1 1  2 2 i A33 J/ 4  55  A66
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(b) V

Figure 9.Partitioned band matrix and storage
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III. TIMING MODELS AND PERFORMANCE EVALUATION

A. Introduction

Figure 4 depicts the major loops of the factorization program

and yields, with Table 3, the corresponding timings of the overhead

and kernel computations. These were developed using a timing simu-

lator [10].

From these timings, it is possible to develop expressions for

the solution time and the execution rate for any particular matrix

structure.

B. Example: Block Tridiagonal Matrices

Vectorization of the solution of a single tridiagonal system

on the CRAY-I involves use of unconventional algorithms and, to

achieve high execution rates, rather intricate assembly coding.

Even so, the highest effective execution rate appears to be in the

range of 20 MFLOPS [13]. In contrast, the solution of a coupled

(or blocked) tridiagonal system can be vectorized simply by exploit-

ing the density inherent in the coupling blocks.

For example, consider the solution of a block tridiagonal matrix

with the general solver. The timing is determined from Figure 4 to

be, for nb nxn blocks,

T F = 345 + (nb - 1) (620 + Tf + T s + T m ) + Tf

where Tf, Ts, and Tm are defined in Table 3. For a large number of

blocks, the execution rate becomes simply (Table 4)

MFLOPS (arithmetic operations) 80(28n 3 
- 9n 2 + 5n)

T x 106 6(620 + T + T + T m
TF X 0f S m

C. Example: Band Matrices

Table 2 gives the comparative performance of the sparse solver

and a highly-tuned unsymmetric band solver [14] [15] based on the

original work of Jordan [8], developed for a half bandwidth nhb " 64.

(Neither code involves pivoting.) The significance of these results

can be summarized as follows.
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Half Factorization Solution
Bandwidth NB Sparse Overhead NB Sparse Overhead

2 3.8/14 1.1,/48 51% 6.2/8.1 1.5/34 35%

4 9.6/19 4.3/42 31% 11/8.1 4.2/21 32%

8 23/28 14/46 11% 20/8.1 11/15 20%

16 52/45 34/68 3.1% 36/8.1 24/12 11%

32 88/210 62/296 .6% 65/18 42/28 4.7%

64 117/1260 91/1622 .1% 93/49 56/81 1.4%

Table 2. [Execution rates (MFLOPS)]/[time(kiloclocks)]
of narrow band (NB)-and sparse solvers. Sixty
four equations were solved for except for half
bandwidths of 32 and 64, where 128 and 256
equations were solved, respectively.
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Square Factor- Substi- Multipli-
block size ization tution cation

Kernel Kernel Kernel
Mf/Tf Ms/T s Mm/Tm

1 1.1/.073 .5/.15 2.7/.l1
2 2.5/.20 3.0/.39 7.6/.16
3 6.9/.28 5.7/.63 17/.32
4 8.5/.42 12/.76 26/.40
6 18/.69 21/1.5 43/.78
8 23/1.1 30/2.6 60/1.4

12 45/2.0 46/5.8 84/3.3
16 60/3.5 58/11 98/6.7
32 94/18 89/58 124/42
64 123/112 117/358 141/298

Table 3 [Execution rate (MFLOPS)]/
[execution time (kiloclocks)]
of three numeric kernels. All
matrices are assumed square.

Block MFLOPS
size

1 .33 .35
2 1.9 .55
3 5.0 .66
4 10. .72(1.07)
6 21. .83
8 32. .90(1.3)

12 54. .95
16 69. .97
32 102. .995
64 126. .999

Table 4. Estimated performance of
general block sparse solver
on the CRAY-I for a large
system of block tridiagonal
equations.

Block size MFLOPS range

1 .33 - 1.05
2 1.9 - 3.7
3 5.0 - 11.
4 10. - 18.
6 21. - 35.
8 32. - 53.

12 54. - 80.
16 69. - 96.
32 102. - 123.
64 126. - 141.

Table 5. Bounds on execution rates
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(1) The block sizes are equal to the half bandwidth for

nhb - 64. The resultant short vectors in the kernel

processing inhibit performance more than the non-

kernel overhead estimated in the table (see next sec-

tion).

(2) For nhb = 64 the execution rate of the sparse solver

is e 25% less than that of the narrow band code.

This can be traced to relatively inefficient substi-

tution codes included in the partitioned banded fact-

orization and to the shortened vector lengths involved

in the processing of the bandedge block models.

(3) For large bandwidths greater than 64, the asymptotic

speed is determined by the multiplication of 64 x 64

dense matrices, 3hown in Table 3 to be in the range of

141 MFLOPS.

An additional timing comparison was made between the sparse band

solver and a sparse block tridiagonal solver. The latter can be

used to solve a band matrix at a cost of additional arithmetic

operations and storage, but with longer vectors. With block sizes $
equal to the matrix half bandwidth, the tridiagonal computation

time was found to be approximately 36% larger than the solution

time using the bandedge model of Figure 8, for nhb = 64.

D. Other Timing Considerations

1. Efficiency

An interesting aspect of the general solver is that signifi-

cant effort can be justified in development of the numeric kernels. In

[11], for example, it is shown that 50% speedup can be achieved in

these kernels for small matrices (without penalty for large matrices)

by avoiding vector chaining--through which the CRAY-l normally achieves

concurrency--and utilizing the vector registers instead as a dual

cache memory which seeks to keep the floating point pipelines con-

tinuously busy. One can then view the speedup of these unconven-

tional assembly language kernels as an asset which compensates for

the overhead of list processing, the price for generality.
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Define the efficiency ,I as the fraction of solution time to

process the numeric kernels. Let all other time--subroutine link-

age to load and unload backing (B and T) registers, list processing,

instruction fetches, etc.-- be reviewed as overhead. The efficiencies

associated with the factorization of the block tridiagonal matrices

are given in Table 4.

An "adjusted efficiency" can then be obtained by multiplying

the efficiencies of Table 4 by the kernel speedups. The product

is the speedup of the general code over a code written for a block

tridiagonal matrix with conventional assembly language kernels.

These speedups are shown in parentheses in Table 4, for block sizes

of four and eight, and range from 1.07 to 1.3. *
From recent comparisons of Fortran and conventional assembly

language codes [121, it is clear that speed comparisons of special-

ized Fortran-coded solvers and the general solver would result in an

even greater advantage for the general solver. Thus, a user faced

with programming a Fortran solver for a specific block structure

woul be well advised to consider use of this general solver requir-

ing only a block descriptor input.

2. Bounds on Execution Rate

An interesting result of detailed timing study of the kernels

in Table 3 is that, from an observation of the execution rate of the

three kernels, it is possible to produce sparsity structures that

yield the minimum and maximum execution rates for a particular block

size. These rates therefore bound the execution rates for all sparse

matrices which have a constant block size, or, depending on the bound

being lower or upper, all sparse matrices having a known minimum or

maximum block size, respectively.

From Table 3, the multiplication kernel consistently has a higher

rate than either the factorization or substitution kernels, due to the

absence of division and the larger number of computations per operand!

result--thus reducing data flow. A symmetric structure with a large
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number of off-diagonal blocks exercises this high speed kernel most

often and should thus achieve the highest execution rate. By

adding the multiplication loop overhead time to the multiplication

kernels time of Table 3, the upper bound of execution rates of Table

5 is obtained.

The lowest rates result from the blocked tridiagonal matrix,

among all structurally symmetric matrices, since only one high-speed

multiplication is involved for every slower factorization and sub-

stitution step. Therefore, the execution rates from Table 3 become

the lower bounds shown in Table 5.

Table 5 shows that execution rates vary over a rather narrow

range (- 2:1), making these bounds quite useful when block size

characteristics are known apriori.

E. Precise Timing Simulation

Timing being the critical issue in deciding on the adoption of

the software, a more precise timing capability has been developed.

Pari-icular instances of the usefulness of this software are:

(a) for a block sparsity structure other than a banded or

tridiagonal pattern--for which timings has already been

given--and when the block sizes are widely-varying so

that Table 5 is not applicable;

(b) when it is desirable to study the influence of alternate

blocking strategies (perhaps resulting from alternate

equation formulation methods) on solution time;

(c) as a standard by which alternate codings (Fortran, special

assembly coding) or alternate algorithms can be judged.

(d) to estimate the solution time of very large systems of

equations (> 10000 equations).

For these purposes, a Fortran block level timing simulator

has been provided to run on a user's local machine, which may be

more convenient and less expensive than a CRAY-I. (This should

not be confused with the CRAY-I clock-level simulator used to de-

velop this code). When used in conjunction with a Fortran version

of the sparsity software (also provided), a complete numerical

and timing simulation of the solution can be carried out on any

processor. In Table 6, the accuracy of the simulator is demonstrated
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by comparing simulated timings of a full matrix solution with

those produced from a clock-level CRAY-i timing simulator [10].

The latter is normally accurate to within 1% of timings for a

CRAY-I with a million word (16 bank) memory.

The bandedge blocks defined in Figure 8 are timed as if they

were full blocks. Although less computation is performed in opera-

tions involving these blocks, kernels associated with the processing

execute at lower MFLOPS rates than the full block kernels.

Maximum CRAY-I Simulated Error Simu- Simu-

Block Size Time Time (%) lated lated
(kiloclocks) (kiloclocks) Overhead MFLOPS

(%)

2-fac. 39.6 39.1 -1.2 38.2 5.35

-sub. 11.9 12.4 4.2 35.3 3.20

4-fac. 15.4 14.2 -7.8 26.1 14.6

-sub. 5.28 5.29 .2 32.6 7.50

8-fac. 7.68 7.23 -5.8 13.7 28.9

-sub. 2.89 3.01 4.2 25.5 13.2

16-fac. 3.83 3.80 - .8 8.5 55.0

-sub. 1.85 1.85 0 21.7 21.4

Table 6. Simulated timings for partitioned solution
of 16x16 matrix, as function of block size.
CRAY-I time was obtained from a clock level
simulator.
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IV. PROGRAM DESCRIPTION AND USER INFORMATION

A. Introduction

The package of codes which perform the block oriented

sparse solution (BOSS) are organized as follows:

(a) BOSS/C. This is a collection of the CRAY-l assembly

codes which perform the numeric block solution from

the symbolic and numeric block descriptors.

(b) BOSS/S. This IBM standard Fortran package contains

(1) Fortran versions of the above CAL codes, (2) a

driver to illustrate use of the solver, (3) prepro-

cessor routines that automatically block full, banded,

and block tridiagonal matrices, and (4) a block-level

timing simulator to estimate CRAY-I timings and execu-

tion rates. These are intended for familiarization

and debugging on a machine other than the CRAY-I.

B. A General Driver Program

i. High Level Descriptors

In Table 7 a compact Fortran driver program is displayed to

illustrate use of all the major options of the software except BOSS/Go

By choice of NLIB, the driver will either (a) allow user definition

of the block structure (NLIB=I), or (b) produce block descriptors

for full, block tridiagonal, or banded systems (NLIB=2,3, and 4,

respectively). The user-supplied parameters for these cases are
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Cx*ia GENERAL DRIVER PR-OrRAM FOR PLOCK SPARSE SOL VER
ImF.tI-IT REAL aPiA - N.C - 7)

C)An . Iz PACLR' MATRIX) STflRAz3F; F, IS RIGHT HANII FTitE
C NEIL =S01- DIIAGONAL F:1-O1tKE
c NIRC = * rOTA;L NUMEr OF E:LOrXS
C fi'IENSIONS ARE IC(NBL).JR(NE(L).ID'(NBLt1 ),IRC(NIRC)

DIMENSION A(2000)t B(300)
DIMENSION IC(100), 11.i0(100) - It') 101) * IRE! 1000)
READ' 05.10) rJLIR

10 FORMAT (12I1n)
20 GO TO c30, 409 50. 601. NII

Can* REAL' IN BLOCK DESCRIPTORS (IRCI AND POINTERS INTO IRC
"C THAT POINT INTO BEUINNING OF EACH DE'CS (IC) ANDi EACH DBRS (JR)

30 READ (5P10) HBLP NIRC
READ (5910) (TC(J),JinIHBL)

- READ (5.10) (JR(J),J-1,NBL)
* REAL' (5P10) (IRC(J).J=19NIRC)

NEP1-NIL +lI
READ (5.10) (ID1(j),J=1,NBPI)

r!iat EXPAND' CrJVERTR FROM 4 r'RCWIPTOreS/BL.OK TO 6 DES. 'Bl.OrK
CALL FYFANLI(NRL-, NIRC. If., JR. TRC, ZrD. A)
GO TO 70

C*** GENERATE FULL MATRIX DESCRIPTOR I 1ST FROM
C NMAT (MATRIX SIZE), ND]th (ROW DIMENSION OF FIJLL MATRIX ARRAY).

C AND NPBt (MAX SIE OF BLOCK - USUALLY 64)
40 READ (5.10) MMAT, NDIM. NPB
* CALL FULL(IC. JRY IRCi Iti, NE'LP NIRC. NP!'. NMATP NAIM)

GO TO 7
C**t GENERATE BLOCK TRIL'IAGONAL tESRIPTOR LIST FROM
c. HBL(* OF DIAG BLOCKS), NPR' (SIZE OF BLOCKS) AND

C NSAir NSf'. AND' NSCr THE STARTiNG ADIDRESSES IN NUMERIC
'C ARRAY OF DIAG.9 UPPER t'IAG.. ANNI LOWER LiIAG. STRIPES

50 REAL' (5,10) NBL. NP!'. NSA. NSti. N(,F
CALL TRtLLUC. JR- IRC. IDl. NBL. ND.'C. NPR'. NRA. NSqi. NSFr)
GO TO 70

CX)K* GFNERATE slANT' MATRIX 1FSCr.IPTOR I 1ST FROM
c N14W (HALF BANrIL[EETH). NKAT (MATRIX SZTZF).

TWNIM (ROW DIMENSION OF BAN! MATRIX ARRPAY),AN'
C NPB tMAX SIZE OF !'LOCt, - USUALLY 64)

*60 READ' (5.10) NEW. NMAT, Nt'IM. NPB
CALL BAND(IC. JR. TRC. ID. HNeL, NZRC. NMATt NVW, TWIN. NRB)

*70 CONTINUE
Ciii NB - # OF RIGHT HAND SIDES (RHS)t
C NDIMB - Row DIlMENSION OF RHS ARRAY B
C DIMENSION OF B IS NBZNTIIMP

NPa=
NDIMP = 300

C**i FORMULATE EQUATIONS IN SUBROUTINE FORM
SO CALL FORMIAr E- IC. JR, TRC, Tig' NBL, NF:. N401MB)

CIII TIMER' PERFORMS SIMULATED TIMINGS
CALL TTMRIT'.- IRr. IC, JR. tHjkL. Nr-)

tilt FAC PERFORMS 1!IMFR*TC FACTORIZATION
t: SOL PSREFOWM- FlIP. I BACK qliFCSTITIJTTON

90 CALL FAC(A. HNeL. IC. JR. IRE. TO)l
CALL SOL'A. NBL. Br NB. NOIM'. IC. JR. IRC. 1D8

*IIK It(NBL+U) - * OF EOUATIONS + I
TJBPI =NBL + 1
NjB!' ID(NBPI)-I
WRITF (6.100) B(J).J=(,MBEQ

100 FORMAT '5E13.5)
STOP
ENDE

Table 7. General driver program
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shown below; here A is the matrix array and B the right hand

side array.

(a) Full matrix

NMAT--the number of equations

NDIM--the row dimension of the A array, to allow

NDIM > NMAT.

NPB--the maximum number of elements per diagonal

block, usually 64 for the CRAY-I.

(b) Block tridiagonal matrix stored in three strips of

diagonal, upper diagonal, and lower diagonal blocks,

all column ordered (see Figure 7).

NBL--the number of diagonal blocks.

NPB--size of blocks.

NSA--starting address in A of the diagonal blocks

(see Figure 7).

NSB--starting address in A of the upper diagonal

blocks.

NSC--starting address in A of the lower diagonal

blocks.

(c) Band matrix, stored in compressed form so that the (1,1)

position of the matrix is located in A(NBW+I,I), the

(2,2) position in A(NBW+I,2), etc.

NBW--the half bandwidth

NMAT--the number of equations

NDIM--the row dimension of the A array, to allow

NDIM i 2NBW + 1

NPB--the maximum number of elements per diagonal

block, usually 64.

The subroutines that perform the blockings return arrays IC,JR,IRC,

and ID and variables NBL,NIRC, and NMAT, if they are not already

defined prior to the subroutine call.

The coding of the forward and back substitution favors simul-

taneous substitutions of multiple right hand sides rather than

multiple calls to subroutine SOL. Indeed, two right hand sides

can be substituted in only slightly more time than a single right

hand side. Two parameters must be defined regardless of the number

of substitutions.
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NB--the number of right hand sides

NDIMB--the row dimension of the B array, or equiv-

alently, the address increment between the

columns of B.

Computations will be performed on an even number of columns of

B, regardless of the value of NB; however, results of only NB col-

umns will be stored back to main memory. Sufficient storage should

be devoted to B so that the last even column does not contain in-

structions. Thus, a single right hand side should be dimensioned

at least twice the value of NDIMB.

2. Equation Formulation

Subroutine FORM is intended to be supplied by the user to

formulate the equations in arrays A and B. In such cases, the only

arguments required in FORM are A and B; these arrays are filled by

the user according to the structure of the numeric storage assumed

by the blocking (e.g., full, compressed banded). The FORM subrou-

tine supplied with the package was developed to check the solution

software, and automatically formulates a set of equations from the

block descriptors so that a numeric solution B(r)=r is obtained.

3. A Fortran Simulator

Subroutine TIMER produces simulated timings for both the factor-

ization and substitution steps. This includes estimates of the frac-

tion of time devoted to overhead, i.e., time not included in numeric

kernels. An example output is shown in Figure 10 (c).

Fortran versions of subroutines FAC and SQL are also contained

in BOSS/S; these general subroutines have the same calling arguments

as the CRAY-l assembly-coded version. This allows development of

the blocking descriptors and the user-supplied equation formulation

subprogram (FORM) on a machine other than the CRAY-I.

C. Generation of Block Descriptors

For a general block structure, the user must supply (1) an

array IRC of block descriptors, (2) arrays IC and JR that point to

the beginning of column and row strips (respectively) in IRC, and

(3) array ID, which denotes the first row number of the diagonal blocks.
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These are summarized in Table 8.

An abbreviated descriptor list without b3 and b6 can be

supplied when only full blocks are anticipated and when the user

is well acquainted with the general requirement the blocks must

be contained within row or column strips. The subroutine EXPAND

will then add b3 and b6 (=0) to the list, assuming that additional

storage has been allocated to IRC.

An example structurally unsymmetric matrix example is illus-

trated in Figure 10. Each block is column ordered and all blocks

are stored in the numbered ordering shown. The corresponding input

data file is given in Table 10(b). The Fortran simulator produces

the timing estimate of Table 10(c,. The execution rates are shown to

be less than 7% the maximum execution rate of the machine; the

overhead attributable to nonkernel processing--i.e., the price of

generality--is approximately 30% of the total. Thus, most of the

relatively low performance is due to the overwhelming number of

3x3 and similarly-sized blocks.
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Descriptors for blocks in Ith diagonal column and row strips

IC(I): Address in IRC of first descriptor for Ith

diagonal block.

JR(I): address in IRC of first descriptor for first

block to right of Ith diagonal block.

ID(I): Row (column) number of first element of Ith

diagonal block; ID(NBL+l) must be applied equal

to the number of equations +1.

For block in column strip (II = 6*(I-l))

bl. IRC(II+I): row # of (1,1) position of block.

b2. IRC(II 2): # of rows in block.

b3. IRC(II+3): # of row strip containing block.

b4. IRC(II+4): location in numeric array A of (1,i)

position of block.

b5. IRC(II+5): address increment in numeric array A

between (1,1), and (1,2) positions of

block.

b6. IRC(II+6): = 0 for full block; = 1 for bandedge block.

For block in row strip: (II = 6*(1-1))

bl. IRC(II+l): column # of (1,1) position of block.

b2. IRC(II+2): # of columns in block.

b3. IRC(II+3): # of column strip containing block.

b4. IRC(II+4): location in numeric array A of (1,1)

position of block.

b5. IRC(II+5): address increment in numeric array A

between (1,1) and (1,2) positions of block.

b6. IRC(ll+6): = 0 for full block; = 1 for bandedge block.

Table 8. User-defined blocking arrays
for NLIB = 1.
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5 10 . 15 .20 . 25

-_______-------- 1 4 . . . . r------- _ -. _ .. .. . --8 __- .

14-- - - -1

______.... 22 2

15

1 21 41 53 73 -5
1.3 3.3 49 -65 R1 .99

1 3 t 3 4 2 10 2 19 4 16 4

13o 3 2S 7

319 4 37 4 3 49
13 3 58 3 22 4 67 4 13 3 79 3
19 6 38 3 7 2 1 06 2 16 7 110 7
16 7 124 2 9 4 I1 4 16 3 154 3
22 4 166 4 16 1R2 4 ? 4 1Q4 4
13 3 2"10 3 19 7 219 7 19 7 240
16 10 261 10

t 4 7 9 13 1IA A,.

(b) Input data (4 descriptors/block)

TIME SUB. L 1 1i. P ri.
K I LO0C_ L' , S 0 V P:H D 1 1 U P., H 0

' . 4 4Q 2. t 2 .1 ', 0,

(c) Simulator output
Figure 10. Solution of a block sparse matrix.
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V. Conclusions

This report illustrates the specialized algorithm and coding

effort associated with achieving optimal performance from a memory-

hierarchial vector processor such as the CRAY-I. Indeed, for sparse

matrices without a pronounced blocked structure, it is still often

possible to achieve high performance by utilization of other matrix

characteristics [16]; however, a vastly different vectorization

process is necessary resulting in a package that solves general sim-

ultaneous sparse systems. Combining these solvers then produces a

polyalgorithm which is of even more general application.

For large systems one can argue that provisions for pivoting and

I/0 partitioning should be included in a general package, and that

"handles" should be provided for interfacing with iterative methods

for use in partial elimination methods.

In summary, the development of a "general" high performance

solver on a complicated scientific architecture is a demanding task.

In this context, the block-oriented solver of this report can be

viewed as a demonstration code that efficiently solves a broad class

of sparse problems, but is necessarily more restricted than familiar

scalar general sparse solvers intended for smaller oroblems. Other

general sparsity software is being studied for other classes of spar-

sity structures [17]
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