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1.0 INTRODUCTION

A modern nuclear submarine radiates acoustic
energy as it moves underwater in the ocean. It is possible to
detect and track these submarines by using this radiated
energy. Typically, this energy is acquired by passive sonobuoys
and processed electronically to give estimates of the Doppler-
shifted frequency associated with the submarine and also an
estimated bearing.

1.1 Background - Processing Alternatives

Once the raw data from the sonobuoys has been

processed to give frequency and bearing estimates, it is passed
through a tracking algorithm which will produce estimates of
the target's state vector, i.e., position, velocity, etc.

At present there are two primary classes of
algorithms for solving this problem--batch algorithms and
sequential algorithms. The names are derived from the way each
algorithm processes data. Batch algorithms simultaneously
process several data points (i.e., a batch of data) at once to
provide tracking parameters, while sequential algorithms process
one data point at a time, giving updated state vector estimates
after each data point has been processed. Over the past several
years, Tracor has developed several batch algorithms called
' Maximum Likelihood Procedures (MLP) to track submarine targets
f for a number of specialized tracking system configurationms.

! Each of these procedures has been tested on sets of real-world
and simulated data with varying degrees of success. However,

\ in doing so several points became clear:
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(1)

(2)

(3)

(4)

The MLP is self-initializing. That is,

good initial estimates of the state vector
can be generated from the data. There is
no need to supply an accurate initial guess.

The MLP requires several different motiom
models to characterize possible submarine
maneuvers. Model selection can become a
problem in terms of time and appropriateness.

Because the MLP processes data in a batch,
extremely accurate estimates of the state
vector can be obtained when the proper
motion model has been selected. However,
serious loss of track can occur when the
model currently being used no longer
becomes valid but the selection process
has not yet selected a new model.

The algorithm possesses moderate to
substantial computer time requirements,
depending upon the complexity of the track
being attempted, and moderate storage
requirements,

To provide a means of comparison for the MLP

and also in an attempt to gain insight into the nature of
sequential algorithms, Tracor, in conjunction with Dr. Byron
Tapley of the University of Texas, designed and implemented
a sequential tracking algorithm based on the extended Kalman
filter. While testing this algorithm several things became

clear:
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(1) This algorithm has smaller core storage

and execution time requirements than the
MLP.

(2) Tracking accuracy is as good or better
than the MLP,

(3) The sequential algorithm is highly
susceptible to initialization errors,
requiring a fairly close initial state
vector estimate to maintain good track.

(4) The sequential model can be implemented
with a single stochastic motion model.
This eliminates the need for the model
selection process, and also allows some
"slack'" in estimating the tracking
parameters.

1.2 Hybrid Research Effort and Program Objectives

After testing of the MLP and sequential
algorithms revealed their complementary strengths, it was then
decided that a combination of the two approaches, or a hybrid
algorithm, should be developed to take advantage of these
strengths. It was hoped that the MLP algorithm could intialize
the tracking procedure for the sequential algorithm and also
provide reinitialization should the sequential filter lose
track. A preliminary version of the hybrid was created using
the MLP and sequential algorithms and early tests showed
potential. However, several problems remained. Among them

were:
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(L

(2)

(3)

(4)

(5)

(6)

The MLP was too cumbersome to use
efficiently as an initializer; a more
efficient batch procedure was needed.

Information transfer between the batch and
sequential portions had to be streamlined

and made more efficient.

The sequential algorithm’'s numerical
properties needed to be improved for
smaller word length computers.

The capability for handling maneuvering
sensors was needed.

The capability for tracking multiple
targets was needed.

Improvement and refinement of the switching
rules from the batch-to-sequential and
sequential-to-batch modes of operation

were needed.

1.3 Summary of Results

A hybrid algorithm incorporating the above
features has been designed and implemented. This study
provides a comparison between the hybrid algorithm and the MLP

and;, in addition, a comparison with a sequential algorithm

that contains an iterated sequential starter,
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2.0 THEORY AND EXPLANATION OF ALGORITHMS
2.1 Maximum Likelihood Procedure (MLP)
2.1.1 Motion Models

The MLP algorithm is based on the assumption that
submarines typically execute a fairly small set of maneuvers,
including:

(1) Constant Linear Velocity

(2) Constant Linear Acceleration

(3) Constant Radius and Angular Velocity Turns

(4) Constant Radius and Angular Acceleration Turns

14

Each of these maneuvers has a corresponding
motion model. They are:

(1) Constant Velocity

X(t) xo + th

Y(t) = Yo + Vyt

]

\Y

Vx(t) X

]
<

vy (t)
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(2) Constant Acceleration

X(€£) = X + V.t + .5 at?

Y(£) = Y0 + Vyt + .5 ayt2 |
Vx(t) = vx + a,t
Vy(t) = Vy + ayt

(3) Constant Speed Turn

X(£) = X, + Vysin(we)/w - VI1 - cos(wt)]/w
Y(£) = Y, + V(1 - cos(wt)]/w + Vysin(wt)/w
Vx(t) = chos(wt) - Vysin(wt)
Vy(t) = szin(wt)‘f Vycos(wt)

i (4) Constant Angular Acceleration, Constant
Radius Turn

\ X(t) = XO + {szinwt(1+.5at) - Vy[l—coswt(l+.5at)]}/w
;, Y(£) = Y, + (V,[l-coswt(l+.5at) + V sinwt(l+.5at)]}/w
%E Vx(t) = (1+at){choswt(l+.5at) - Vysinwt(l+.5at)}
' Vo(t) = (L+at) (V,sinwt(l+.5at) + V coswt (L+.5at)]
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Each of these maneuvers is characterized by a
unique set of target parameters. For example, constant velocity

motion is characterized by the following vector:

Y = [xt’ Ytl th’ Vyt’ fl H

where

Xt = X-position at time, t
Yt = Y-position at time, t
th = X-velocity at time, t
Vyt = Y-velocity at time, t
£, ,...,fn = Source frequency parameter for each

target source frequency

The approach used by MLP to track targets is
summarized in Figure 2-1. Frequency and bearing data from each
sonobuoy maintaining contact with the target are input to each
maneuver model for which there is a non-zero a priori
probability that the target could be executing that maneuver.
The Maximum Likelihood procedure is applied to estimating the
parameters associated with each model; these parameter values
and the residual data errors are compared for each of the models

and three decisions are reached.

(1) The maneuver model and parameter vector
associated with that model are selected.
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INPUT

Processor Data
Data Covariance Matrix
A Priori Target Motion Probabilities

1 L
ML Technique ML Technique ML Technique
Matched to Matched to Matched to
Maneuver Maneuver Maneuver
Model v (1) Model v(2) Model vy (N)
Select Correct Determine Select Data
Maneuver Inadequate Interval for
Model Maneuver Models Each Maneuver
(F-Test) (F-Test) Model
( RETURN )
FI1G. 2.1 PROGRAM FLOW FOR MANEUVERING TARGET TRACKING
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(2) The maneuver models which are totally
inadequate to explain che data are
determined.

(3) The reduced tracking intervals for each
of the models which could explain the data
are selected.

At the conclusion of this procedure new data
are input and the procedure is repeated. Note that the MLP
passes the data through four Maximum Likelihood parameter
estimation algorithms, each one corresponding to one of the
maneuver models described above.

2.1.2 MLP Algorithm

The mathematical structure of the Maximum
Likelihood procedure is the same regardless of the motion model
and data types used. Associated with each measurement is a
nonlinear function that generates an estimate of that data
measurement given the time of the measurement, a set of motion
parameters, and a motion model. For example, if a frequency
measurement is taken using sensor, j, at time, tj, the estimated
frequency is given by,

£(t1,X) = £,/(14V(t1) Ry (eq) /el Ry e 1,

where

v
]

motion parameter vector,

-
v(ty) velocity vector of target at time, tj,

R -
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-
Rj(ti) = range vector of the target from sensor,
j, at time, tj

Hh
]

center frequency

0
]

velocity of propagation of sound
If a bearing measurement is considered, then
£(ty,7) = tan” [¥5(c3)/X5(E1)]

where

Xj(ti) = X-coordinate of target at time, ti
relative to sensor, j
Yj(ti) = Y-coordinate of target at time, £,

relative to sensor, j

The program can also use ranée, Doppler ratio, Doppler

difference, and time difference of arrival. The appropriate
- >

motion model is used to generate Rj(t) and Vj(t) for any time,

t.

v Let E; = Zi - f(ti,§). It is desired that the

‘ f's be close to the measurement values Zj;. A reasonable measure
to consider for this closeness is the sum of squares of residuals
for a given parameter vector,

- N
S(y) = | E;%/o;?,
i=1

where oiz is the measurement error of the observation, Zj. If
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the above sum is small, the f's will be close to the Zi's.

If it is assumed that the measurement values are perturbed from
the true mean values of f(ti,;) by Gaussian random variables,
the minimization of the sum is equivalent to maximizing the
likelihood function L(Q) of the sample Z as

N N/2 N
L(Q) = EXP |- ¥ Ey%/0i2| / {(27) T oi| -
i=1 i=1

Even if the measurement errors are not Gaussianly distributed,
this procedure provides a least squares fit to the data. Thus,
the problem statement is: Given a set of measurements, Z, and
a motion model, find the motion parameter vector, ;, that
minimizes

N

Y E;%/04?
=10

Since f(ti,§) is a nonlinear function of the
vector,;, a direct solution is not, in general, possible.
However, a procedure may be used in which a linear approximation
is applied iteratively to search for a solution. If the non-
linear problem is sufficiently well behaved the iterative
technique will converge to the desired solution. In general,

) it is not possible or is too difficult to prove whether this
, technique will converge in a given problem. Hence, the
) P
i ﬁ algorithm is executed. If it converges, a solution is found;

i if not, add more data and try again.

To linearize the problem each function, £, is
expanded in a first order Taylor series about an assumed
g
parameter vector, y,, as,

H . 11
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M ->
. Ty = M df(Li,Y
£(ti,v) = £(ty,v0) + kZIGk-—gﬁ,?l

->
ti,Yo

where §; is the variation of the kEE parameter of Y. If the
vector, E,, 1is defined by the elements,

- >
EO =27, - f(ti;Yo)

1

and the matrix, X, by the elements

X. , == _____laf(t ’-\?
1] .

Y] -

ti Yo

Then, the linear approximation problem is

X§ = €o -

The vector, §, may be found in the usual way for minimizing
the weighted sum of squares of residuals (Reference 1). The

normal equations are

XTo™'xs = XTc-leo
and 8§ is found to be
§ = (XTo'X) X0 e

o °

The new motion parameter vector is given by

> > EY
Y = Yo * 6,
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and when the change in each component of the motion parameter
vector becomes small, the algorithm is deemed to have converged
and iteration stops. The covariance of the estimate ; is given
by the following equation,

P=(Xo'x)L.

One of the key features of the MLP is the method
employed to invert the symmetric, positive, semi-definite matrix,
XTo™'X. The usual inversion method is to use a Choleski
decomposition, that is, to find an upper triangular matrix, U,
such that 070 = X'o™'X. The matrix U is easily inverted and
F=1gz=T
U ‘U
would be desirable to find U directly and then the cross-product

is the required inverse for finding the change in y. It
array would not have to be formed.

Such a procedure is possible if one uses a
sequence of Givens' rotations (Reference 2) to decompose o-%x

into the product of an orthogonal matrix, Q, and an upper
triangular matrix, U. Then

becomes
UTqQTqU = 0770 7%

Since Q is orthogonal, QTQ = I and if U has an inverse, then
the above becomes

Us = Q 0-%80°

13
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This triangular system of equations is easily solved, and the
covariance matrix is

p=yu'ptyT

The Givens' notation is carried out on each row
of X; hence, it is only necessary to store U and one row of X
at a time. Figure 2.2a depicts the usual Givens' method approach.
Note that M is the number of parameters estimated and N is the
number of data points. Because this procedure is computationally
expensive, there is an alternative procedure developed by
Gentleman (Reference 3) which is used in the MLP algorithm. It
is depicted in Figure 2.2b, and does not require any square roots
and reduces the number of multiplications by one-quarter.

Thus, the revised algorithm calls for the
accumulation of D, the diagonal matrix; K, an upper unit
triangular matrix; and 5, a vector of transformed residual
errors. The array of weighted derivatives, o'%X, is replaced
by QD%ﬁ, and o'%eo is replaced by D-%QTG'%eO, which is equal to
g. Using the normal equations, this yields:

X616

]
b
Q
™

0'p%Q Qd*0 = 07p%QTo %e,

D%QTO-%E

!
g DUs

(o]
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CONSIDER TWO ROW VECTORS
0'..0 Ui Ui+1 '.QUk * o 9
0 ...0 Xy Xijgl o0 ¥y oo
Transform by
L
[§] K Cbk + Sxk
x'k = -SUk + ka
where
o', = /52 2
i " 07X
= T Al
C=10;/T"
S = xi/U'l
To Yield
i ] ] ]
0 ... 0 U i of FFEREE U K-
0...0 0 R'igqg »or Xlpeen
X X X X X X X X
X X X _ X X X
THE PROCESS X X U———>INTO0 —» X X
X X
TRANSFORMS X X X X 0 0 0 0
(New Row of X)

REQUIRING ABOUT 2NM? MULTIPLIES AND NM SQUARE ROOTS

FIG. 2.2a

- GIVENS' ROTATIONS
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CONSIDER U = D%U

D = Diagonal

R = Unit Upper
Triangular Matrix

ROTATE
0 . 0 vd oo /d Uk
0 ...0 /in e /3 Xy
Into
0... 0 ya /d U'k
0 . 0 0 /FTx'k
By
| . 2
d' =4d + Gxi
§' = ds8/4°
C = d/a"
S = Sxi/d'
X' =X T X0
r'k = Crk + Sxk

REQUIRING ABOUT 3/2 NM? MULTIPLIES

FIG. 2.2b - SQUARE ROOT FORMULATION OF GIVENS' ROTATIONS
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The reduction of the weighted residual errors to 8 is
accomplished by considering them as an augmenting column of the
matrix X. The last equation involves a unit upper triangular
matrix which makes the solution for § particularly easy.

To determine which motion model to select, the
MLP uses a statistical test, based on the residual errors
generated by each model, called an F-test. Under the normal
distribution of errors assumption, the residual sums of squares
from each model are distributed as chi-square random variables
and their ratios are distributed as F-random variables.
Strictly, the F-test may only be applied when the errors are
normally distributed, however, it has been shown to be a robust
test against other distributions as long as they are symmetric
about zero. The use of the ratio is valuable because it makes
the test independent of scale changes in the input variance of
the data.

In selecting a model it is desirable,
intuitively, to favor the constant velocity model over the
others because:

(1) It is the simplest of the four models.

(2) The other three models yield good

solutions to a constant velocity data

interval.

This is done by conducting a hypothesis test at a level, a.
The test statistics are:

17
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F,

ij (SSi/DFi)/(SSj/DFj)

1,3 =1,2,3,4; i<

where S5S; and DF; are the sum of squares of residuals and the

degrees of freedom for the ith model.

The hypothesis test is:
If Pr(f>Flj) < a
j=2,3,4; accept Model 1
otherwise
If Pr(f>Fij) < .5 for all j>i;
i =2,3,4; accept Model i

It has been found that an o of about .2 works well. This value
gives somewhat of an edge to Model 1 over Models 2, 3, and 4.
The choice between Models 2, 3, and 4 is equal because the
models are of roughly equal complexity.

An additional statistical test is performed to
determine the proper data interval for the given motion model.
Essentially, the test examines the residual stream from each
data source for a mean shift, which is assumed to indicate that
the target has undertaken some maneuver which cannot be described
by the current motion model. When this shift is detected, a new
data interval is begun and a new model is used.

18
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The above exposition is not intended to be an
exhaustive examination of the MLP algorithm. This is contained
in Reference 4. Indeed, the MLP is significantly more complex
and possesses far more detail than has been indicated here.

For example, the MLP:

(1)

(2)

(3

(4)

(5

Uses the Marquardt algorithm and several
additional rules to speed convergence to
the nonlinear solution;

Provides and uses observability measures
and accuracy measures for solutions
generated by the algorithm;

Provides for continuity constraints when
switching from one motion model to another;

Provides for the input of a priori state
vector and covariance information;

Provides an outlier accommodation scheme
which has been incorporated into the
measurement model.

Rather, the intent of this section is to give a brief overview
of the main features of the MLP and to explain certain ideas
which are used in both the MLP and hybrid algorithms.

2.2 Hybrid Algorithm
2.2.1 Introduction

The current Tracor hybrid algorithm is composed
of two distinct entities--a scaled down MLP-type algorithm and

19
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an extended Kalman filter--linked together by a set of
statistical switching rules. The underlying idea of the
algorithm is to use the batch filter to provide good initial
estimates and, when needed, reinitialization, and to use the
sequential filter to do the bulk of the tracking. The switching
rules are intended, in the batch filter, to determine as quickly
as possible when the filter has converged to a good solution and
switch to the sequential, while in the sequential portion they
are intended to determine when the sequential has lost track

and switch to the batch for reinitialization. Studies performed
at Tracor have shown that, in most cases, if a sequential filter
of the type used in the hybrid is initialized with reasonably
good starting values, it will be able to maintain even the most
difficult track. Figure 2.2.1 contains a block diagram showing

the relationship between the batch filter, the sequential
filter, and the switching rules.

2.2.2 Aspects of Sequential Filter

Theory. The sequential filter used in the
hybrid algorithm is a variant of the extended Kalman filter.
The target's time rate of change of the acceleration vector is
modeled as a Gaussian white noise process. This equation has
the form

-

where n is Gaussian white noise with zero mean and covariance
qxx and qyy. The solution, in the mean, to this stochastic
differential equation is given by the following linear equations:
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T(t) = T(t,) + v(t,)At + ka(t,)at?
;(t) = ;(to) + ;(to)At
a(t) = a(t,)

> -

where r and v are respectively the position and velocity
vectors. The stochastic derivative of any tracking frequency
is,

I =€

where € is Gaussian white noise with zero mean and covariance
Af ¢ The solution, in the mean, to this equation is

Thus, at any time, t,, the state vector for the model is:
k

~—

[ (t10)
ry(tk)
Vx (tk)
’ X(tk) = Vy(tk)
‘f ! ax(tk)
\ ay(tk)

fo1




" Tracor Applied Sciences

where ry, ry are the x and y position coordinates; vy, Vy are
the x and y velocities; ayg, ay are the x and y accelerations;
and fox’---'fon are the different center frequencies being
monitored. The state transition matrix for this system is

1 0 at 0 At?/:2 0 0 ... 0T
0 1 0 At 0 At%/2 0 ... 0
0 0 1 0 At 0 0...0
o (ty .ty _,) = 0 0 0 1 0 At 0 ... 0

0 0 O 0 1 0 0...0
0O 0 O 0 0 1 0...0
0O 0 O 0 0 0 1. 0
0 0 O 0 0 0 0 1

! RGXG Osxn

' Onxs Inxn

)

‘, where Rsxs is a matrix containing transition parameters for

r; position, velocity, and acceleration only, O, , and 0nxs are

N ' matrices of zeroes, and I, , is the identity matrix. Note that
this corresponds to the constant acceleration motion model used

N in the MLP. However, the time periods over which the transition
matrix is applied are far shorter than the time periods over
h which the MLP maneuver models are applied. This is one of the

: 23
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major advantages of the sequential filter over the MLP. There
is no need to test for appropriateness of model.

The measurement models are the same as those
used in the MLP. Again, the primary models are Doppler-shifted
frequency and bearing, with the capability to use range, Doppler
ratio, Doppler difference, and time difference of arrival.

In order to obtain a practical propagation and
update algorithm, the extended Kalman filter uses a linearized
version of the measurement model, i.e., a first order Taylor
series expanded about the most recent state estimate. For

example, suppose a measurement of Doppler-shifted frequency,

frj» was received, then:

frj(tk,x(tk)) frj(tk-l’ X(ty _y))

ofy. i >
+ o (g, Kt ))(X(E) K (g )

3af,. 2 .
* dy (tk-x' X(tk-l)) * (Y(tk)"Y(tk-z)) + ...
afr. _’; .
* day By X(tk'l)).(ay(tk)-ay(tk—l))
3y, R A
+ % ( £ . )
14153 7%, (hemy Rt )) + (£o (B -Eo, By 1))

24
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where,
te = time of current estimate
-
£r. (ty,X(tg)) = observed Doppler-shifted value
of frequency T
tg.; = time of last estimate
af. ~
hi 2’ . . . .

" (tk-1’x(tk-1» = partial derivative of received

()

Doppler-shifted frequency frj with
respegt to (+) evaluated at
tk-l ’x(tk-l)

1 if i=j

6% = Knonecker delta = |0 if i#j

(e

Bearing measurements can also be expanded in a first order
Taylor series containing only position terms. Letting

~

dp = frj(tk’i(tk)) - frj(tk-1'§(tk-1))

we have, in vector form:

~

4 = B(X(t) - X(ep )

where,

25
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SF, . 2
H, = <—3§l(tk_l,x(tk_1»,...,

3fy . 3

Bay (tk-x'i(tk_lﬁ, 0,...,

afr.

m;(tk-l 'i(tk-x))' e ,0)

A

X(ti) K () = (et -x(t 1) vale a0 10,

foj(tk)-foj<tk_1),...o>

The error covariance matrix, P(ty), for the
parameters is given by:

Pty) = 0 (tp,ty )Pt 00Tty by ) + T(Ep,tp ).

The matrix, F<tk>tk-1)’ contains the effects on the covariance
of process noise and is found by:

% T
‘ M (e, ty ) —f 6(t,T)Q(1)$T (t,T)dr.
b Cr-1

f

This equation can be solved analytically because Q is assumed

{ to be a constant matrix of the form:
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B n
0o 0 o0 o 0 0 0 0
0o 0 o © 0 0 0 0
6 0 0 o 0 0 0 0
0 0 0 O 0 0 0 0
Q=10 0 0 0 qa, 0 0 0
6 0 o0 o 0 day 0 0
0 0 o0 O 0 0 qf°1 0
0o 0 0 0 0 0
i 0 QfonJ
Figure 2.2.2 contains a logical flow diagram of
L the sequential processor.

Implementation. There are several schemes which

may be used to implement the sequential filter, each with its
own set of advantages. The method of implementation chosen for
the hybrid algorithm is the UDUT square root form of the filter.
For this particular problem it possesses several advantages:

N (1) Helps prevent conditioning problems by
‘ insuring that the covariance matrix, P,
will be positive definite and symmetric
at all times.

(2) Helps'insulate algorithm from effects of
changes in computer word size, making it

more suitable for operation on minicomputers
than other forms of the algorithm.
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(3) Minimizes storage requirements.

(4) 1s compatible with Givens' rotation form
of MLP.

A summary of the standard Kalman Filter conditions
and equations is given in Figure 2.2.3. The following will
describe how these equations are implemented under the UDUT
decomposition.

Recall that in Section 2.1.2 the covariance is
defined as

where U is upper triangular with ones on the diagonal and D is
diagonal. This gives rise to the following definitions for the
sequential:

-1 -1 -T
Pk(") Uk (")Dk (')Uk (‘)

- -1 -T
P (#) = U  (H)D (HU " ()

Note the following from Figure 2.2.3:
D Hk(') is a 1lxn vector.
(2) Rk is a scalar.
(3) Q is constant for all t.

Substituting into the expression for the Kalman gain we get:
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System Model:

Measurement Model: |

z, = hk(X(tk)) + v, Vv, ~ N(O,R;)

State Estimate Propagation:

§k(-) = ®(tk'tk-1)§k*l(+)

Error Covariance Propagation:

_ T /tk T
Pk(') - ¢(tkytk_l)Pk_1(+)® (tk’tk-l) + tk-IQ(t,T)Q(T)Q (t;T)dt

Update estimates at time = t, based on measurement Zg.

State: X (4) = X () + Kge[Zge - he(Xpe ()]
Covariance: Pr(+) = Pp(-) - KpHp(-)Py(-)

Gain Matrix: Ky = Pk(—)HE(-)[Hk(-)Pk(-)HE(-) + Rk]'1

', where h, = measurement model used at time k (Doppler shift,

” bearing, etc.)

'n

) 3, (X(ty))

) | X(t) = X (-) ﬁ
FA

k J FIG., 2.2.3 - KALMAN FILTER EQUATIONS

i ’ 30
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T T -
Kk = Pk(-)Hk(->[ﬁk(-)Pk(-)Hk(-) + R%] :

R -1 -T -T
- Uk (')Dk (-)Uk (')Hk (=)

[Hk<-)ug‘<->ng‘(-)U@T<->H;T<-> + Rk]“
Let Vi(-) = H_ (-)Us'(-)
k k k ’

_ gyl 1 -T T -1 -1
Kk = Uk (')Dk (')Vk (') [Vk(‘)Dk (')Vk(') + Rk]

Since Vﬁ(—) is 1xn, Dk(—) is nxn, and Rk is a scalar, we have:
= v T(D (Vi) + (o = 1
a =V (- K (-) Kk (- Rk a = a scalar).

Thus,
-1 -1
_ U (DL (Ve ()

o

Ry

Substituting this expression into the state estimate update
gives:

. R Uz’ (=)D () VT () R
R (h) = X () + XK Tk (7w (k) ®

Substituting into the covariance update gives:

Pk(+) = Pk(-) - Kka(')Pk<‘)
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[]

-1 -1 —T,J\ -1 - -1 _ =T _

-1 -1 -1 -1 T
U OB OV OO G QU ()
Q

-1 -1 T
D (V. (I)V (D, ()

-1 -1 k k k k -T

U () [Dk ) - - ]Uk ) (2)

For the error covariance propagation the

decomposition gives:
_ T
P (=) = ¢(ﬁk,tk_1)Pk_1(+)¢ (Epsty ) + T(Et )

_ -1 -1 =T T
= ¢ (tk ’tk—l )Uk‘l (+)Dk_1 (+)Uk"1 (+)® (tk ’tk"l ) + r (tk’tk"l)

=1
Let § _ () = 2(¢ YU _, (), then

k-1
I T -1 T
Pk(_) - Uk (_)Dk ( )Uk ( ) Sk"‘l (+)Dk_1 (+)Sk-1 (+) + r(tk’tk"l) (3)

Given the standard Kalman Filter equations

N expressed in square root format, the procedure is to solve

‘ equation (3) for Uyx(-) and Dy (-). This is an easy and straight-
forward procedure to carry out since:

’ !

H (1) S;; = 1 because @ii(tk,tk_l) =

X

ukil(-) = ukii(+) = 1; where uij is

{ an element in U™'.

P TR T e A TR BRI | AT g |~
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Once the Uil(-) and Dil(-) matrices have been determined, they
can be substituted in equation (1) to give the updated estimate
and substituted into equation (2) to give a set of equations to
be solved for U£1(+) and D£1(+) that use a method identical to
the one employed to get UEI(-) and Dil(-).

are:

(2)

3

Other considerations in implementing the filter

(1)

(2)

(3)

The linear equations generated by
equation (3) are all solvable by back
substitution.

For j<i, ukii(-) = 0; for i=j, ukii(—) =
“Eii(') = 1, allowing all the dkii(-) terms
to be found. For j>i, ukii(—) can be found
since all the dkii(-) terms required are

known.

The matrix ®(tk,tk_1) is never stored.
Whenever a multiplication is required
the special nature of ¢ is exploited.

The F(tk’tk-1) integration is implemented
in a closed form solution requiring no

numerical integration techniques.

Storage requirements are kept to a
minimum. Dﬁl is stored as vector and
UQI is stored in row symmetric form
without the diagonal elements.
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2.2.3 Aspects of the Batch Filter

Theory. The batch portion of the hybrid
algorithm is based on the assumption that, for short periods of
time, the motion of a submarine can be approximated by the
constant acceleration model of Section 2.2.2 (this model is
quadratic in t, allowing it to fit tracks which are moderately
curved). Once it has been determined that the batch algorithm i
has converged to a good solution, a switch is made to the
sequential filter. Thus, in the hybrid algorithm, the batch
filter's job is to converge, as quickly as possible, to a state

vector which will allow the sequential filter to be properly
initialized. B

The measurement models used in the batch filter
are the same as those used in the MLP and in the sequential
filter, mainly bearing and Doppler-shifted frequency. As in
the MLP, the batch filter uses data measurements to provide
state vector estimates. The measurement models are approximated 1
by first order Taylor series expansions. The design (X) matrix

is made up of the corresponding partial derivatives, and the
variation in the state vector is the quantity estimated (see
Section 2.1.1). As in the MLP, a major share of the
computational effort involved in the filter is in inverting
the Xlo'lx matrix, and, as in the MLP, this is done using a
sequence of Givens' rotations (Section 2,1.1). 1In addition to
the benefits described in Section 2.1.1, there is one further
and very substantial benefit to using this method in the hybrid
¢ algorithm. Specifically, the U~! matrix of the sequential is
" the inverse of the U matrix in the batch filter, and the D!
\ matrix of the sequential is the inverse of the batch D matrix
(Sections 2.1.1 and 2.2.1), i.e.,

34

. -




N

- Tracor Applied Sciences

-l -1

Utseq) = Y(batch)

-1 -1

Diseq) = P(batch)

Note that U and U~' are unit upper triangular and that D(seq)
-1 . . . .
and D(batch) are diagonal, thus their inverses are easily found

when switching from the batch to the sequential.

Since the batch filter contains only one motion
model, there are no tests needed to select between various
models and no tests needed to select a data interval over which
a given model is appropriate. Since the motion model can be
expressed in terms of the transition matrix used in the
sequential filter, all forward and backward mappings can be
performed with the same code used in the sequential filter.
These two features reduce substantially the computer overhead
imposed by the batch filter as compared with the overhead
imposed by the MLP. TFigure 2.2.4 contains a flowchart of the
logic flow in the batch filter.

Implementation. As discussed above, several of

the computational aspects of the batch filter are identical to
those in either the sequential filter or the MLP. Briefly,
these are:

(1) Solving the approximating linear least

squares problem using Givens' rotations
(MLP, Section 2.1.1).
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(2) Projecting the track using a constant
acceleration model (sequential, Section
2.2.1).

(3) Computing partial derivatives for a given
measurement model (MLP, Section 2.1.1).

For a given number of data points, the batch
filter generates a sequence of initial states, stopping when
the sequence converges to a particular state vector, The
sequence is said to have converged when:

Xeayi = Xesyg
(DI (il < g for j=1,2,...,n
(Hi

where,

X(j)i = the jEE component of the state vector

after the iEE iteration.

| If the sequence hasn't converged after 30 iterations (i>j), a
new point is read and the process is begun again.

| One significant computational difference between
the MLP and the batch filter is in minimizing the residual sum

) of squares once the variation in X has been found, using weighted

]; least squares. The MLP uses the Marquardt (Reference 5)

%f algorithm to speed convergence, while the batch filter uses a
one-dimensional, quadratic search procedure. The algorithm is

k { extremely fast and has several important properties:

l

x

:

!
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S (1) 1t searches in one direction only, avoiding
the complications of multi-dimensional
searches.

(2) For a quadratic function, the method

AR kA

converges quadratically to the minimum,
Since even non-quadratic functions behave
' approximately quadratic in the region of

a minimum, this assures rapid convergence
! in the final states of computation.

(3) It requires only information at the
present stage and the one immediately
previous to the present, thus reducing
substantially the amount of core and
computation required.

(4) The method requires no derivatives.

2.2.4 Switching Rules

i ‘ 2.2.4.1 Batch to Sequential. In the hybrid
algorithm the basic assumptions are that a simplified MLP
algorithm can be used to fit the data, the fit can be detected
early, and a switch can be made to a sequential filter using

) 1 the initial conditions supplied by the batch filter. Thus,
the batch-to-sequential switching must try to satisfy two

)

! .
I} constraints:
i

(1) The transition from the batch filter to
{ the sequential filter should be made as
quickly as possible.

|
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(2) The switch from batch to sequential
should not be made until a good approxi-
mation to the initial state vector has
been found.

To resolve these problems the hybrid algorithm
uses a nonlinear test of significance developed by Gallant
(Reference 6). The Gallant method is used to test the hypothesis

> > > >
Hy: Xj = Xy versus H;: Xy # Xj

where }i is the estimated state vector from the first i data
points and Xj is the estimated state vector from the first j
data points. Currently, i = j + 2*NBY, where NBY is the number
of buoys in the scenario. Gallant's test statistic for this
hypothesis is:

i " >
kzlvk o (Y- (X)) 2
T3 T T ()
k ° k=i lag
k=1 t
where
Yk = kEl:l observed measurement value
%k(ip) = predicted kEE measurement value based

on estimated state vector ip(p=i,j)

Vi = weight associated with kEE measurement

The critical value for the test is:
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| c(i) = 1. + PFa(P,i-p) |
. i-p
' where r
? p = number of elements in the state
vector

i = number of points used to estimate
state vector Xj

!

F,(p,i-p) o percentage point of F-distribution.

Lastly, the decision rule is:

(1) If T is greater than C, reject H,.

(2) TI£f T is less than C, accept H,.

| Basically, the idea is to compare the weighted
residual sum of squares for estimates. If the ratio is too

large, we reject the idea that the estimates are equal, otherwise,
we accept it. Gallant's critical point gives us a convenient and

-

consistent measure of "too large'.

Ifi=3j+2en and k = i + 2°n, where n is the
number of buoys, then a switch is made from the batch to the

e

sequential when

Tei,3) £ Cciy and Teg gy 2 Criy
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Figure 2.2.4.1 is a flowchart of the batch-to-
sequential switching logic. There are two primary reasons for
requiring the data to satisfy the switching rules two times in
succession:

(1) By chance, a certain percentage of the
time the data will give a false reading
due to the inherent random nature of the
data.

(2) During the earliest stages of estimation
estimates of the state vector may be quite
poor and may not change much over 2+n
points. Thus, based on the data, the test
may conclude that the batch filter has
converged when, in fact, it hasn't.
Usually another run through 2:n points
is enough to determine whether or not
the process has converged.

The basic idea behind this approach is to use the data itself
to determine when the batch filter has converged. At present
an alpha level of .005 is being used, however, this could
become an operator input if desired.

2.2.4.2 Sequential to Batch. The sequential filter
used in the hybrid algorithm is capable of maintaining track

under a wide range of conditions. However, studies at Tracor
have shown that there are times when it will lose track, for
example, if there is a long period of time when data is received
from only one sensor due to low signal-to-noise ratios. Thus,
the job of the sequential-~to-batch switching rules is to sense
when the sequential filter has lost track and cause a transfer

41
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back to the batch filter for reinitialization. Note, an implied
constraint is that the procedure must not be so sensitive as to
interpret normal maneuvers as losing track.

The hybrid contains two tests to determine when
the sequential filter has lost track. The first is a gross
test, and failure to pass it will cause an immediate switch
to the batch filter. Essentially, it consists of a comparison
of the residuals obtained before and after the filtering. If
the residual after correction is larger than the residual before
correction, the filter is assumed to be diverging and a switch
is made to the batch. This is a fairly insensitive test;
however, it is fast, easy to do, and provides "worst case"
protection.

The second test has proved to be quite
successful in determining loss of track. It is based on two
aspects of the Kalman Filter:

(1) 1If state vector estimate ik-x is unbiased,
then state vector estimate %k is unbiased
(Reference 7), i.e., E[ik] = E[ik].

(2) The errors associated with the measurement
model are assumed to be normally distributed
with zero mean.

Define the iEE measurement residual to be

Yy - '}i(ii)
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where
Y; = it—:-l'—l observed measurement value
Yl(ﬁi) = iEE predicted measurement Yalue based

>
on estimated state vector Xi

The residuals are the differences between what was observed at
the iEE data point and what the filter predicted, at that point,
| and may be thought of as the observed errors if ik is near ik.
Under aspect (2) above, the residuals should be digtributed as
normal random variables with zero mean if, again, ik is near ﬁk.
Specifically, if the residuals are plotted over time and exhibit
no trends, such as ramping or dramatic mean shifts, then ik is
probably near ik; at least the data does not violate this
assumption.

Thus, the problem of sequential-to-batch
switching may be viewed as a problem in determining whether or
‘ not a trend exists in the measurement residuals. To do this
the hybrid fits a regression line of the form,

v y=b, +b,t (t = time)

to the residuals from each sensor for each data type. The

lines are tested for significance using an F-test (currently

o equals .005) and, if any one of them tests as significant for
four consecutive data points a switch is made to the batch filter.

Note that a separate line is computed for each
data type from each sensor. This is done to prevent information
; from one or two sensors, which may be sensitive to the filter

| “
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losing track, from being buried or obscured by the information
from several other sensors which are insensitive to the filter
losing track due to scenario geometry, poor signal-to-noise
ratios, etc. There are several reasons for requiring the line
to test significantly for more than one data point:

(1) Early in the data stream it is very
possible that the residuals will cause
a significant fit to occur when, in
fact, track has not been lost, ;

(2) The sequential filter will typically
wander off, at different times, for
one or two points. This allows it
time to regain track on its own. H

(3) One or two outliers at any point in the
data stream could cause an indication .
of significance when, in fact, there is
none.

(4) It prevents sharp or rapid maneuvers
from being interpreted as lost track.

- -

To allow the hybrid to be altered to fit
various environmental conditions, it would be quite easy to
allow the F-test significance level and the number of required
significant points to be operator inputs. Then, for example,

P

if the environment was noisy with low data rate the alpha level
could be reduced and the number of significance points could
also be reduced, causing the sequential to be more sensitive

to any loss of track.

|
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2.3 - Iterated Sequential Algorithm

2.3.1 Aspects of Iterated Sequential Algorithm

The iterated sequential algorithm, in form,
is very similar to the hybrid algorithm. That is, both
algorithms are comprised of three primary elements--an
initializer, a sequential Kalman Filter, and a set of switching
rules for moving from the initializer to the tracker and back
again. The only difference in the two procedures is in the
initializer. The hybrid uses a batch algorithm to initialize,
while the iterated sequential uses the same filter to initialize
that it does to track, relying on iteration to produce
convergence. There were several reasons for implementing this
algorithm:

(1) There is a reduction of core requirements.
Instruction requirements are reduced
because the same subroutines used in the
straight sequential filter are used in
the initializer. Data requirements are
reduced because fewer save arrays are
needed to make the transition between
initializer to tracker.

(2) There is faster execution time. The
iterated sequential starter uses fewer
operations to achieve an estimate than
does the batch, however, iterating about
an answer could negate this to some
degree.
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(3) One possible weakness of the hybrid is
attempted initialization during a track
too difficult to follow with the constant
acceleration model. By its sequential

structure the iterated starter should be
able to avoid this problem.

(4) This algorithm has simpler program
organization. In the hybrid, provisions
must be made to accommodate two distinctly
different algorithms and transfers between
them. In the iterated sequential, the
same operations are performed in both

portions of the algorithm, simplifying
considerably storage management and i
control transfer between the initializer
and tracker.

Figure 2.2.1 can equally well represent the
iterated sequential algorithm as the batch; simply replace
"BATCH" with "ITERATED SEQUENTIAL'". The extended Kalman Filter
i used for tracking is identical to that used in the hybrid (see
Section 2.2.2) and the switching rules (Section 2.2.4) are also
the same.

Figure 2.3.1 contains a logical flowchart of the
iterated sequential starter. The basic idea is to use
accumulated data points to project initial state vector and

covariance estimates forward, using the sequential filter,
and then test for convergence. Convergence occurs when

Xyon: = Kpans
i il g for j =1,2,3,....n

. i
;
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where,

X(j)i = the jEE component of the state vector

after the iﬂ iteration

If the convergence does not occur on the it-:-E iteration, the
state vector is projected back to time, t,, using the constant
acceleration model (Sections 2.1 and 2.2.2) as implemented in
the sequential filter. When convergence does occur, a switch
test is made. If the decision is made to switch, the straight
sequential filter is entered; if not, the state is projected
back (as above), a new data point is read, and the cycle begins
anew.
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3.0 TEST RESULTS (COMPARISONS)
3.1 Introduction

This section presents the results of several
tests designed to measure the relative tracking abilities of
each of the three algorithms examined in this report. The
tests consisted of four different scenarios, each replicated
twenty-five times as a series of Monte Carlo runs. The
algorithms then processed each scenario and the results were
analyzed according to four criteria. These requirements are:

(1) Average distance error, §, throughout
the track, defined as,

5 ftf §(t)dt
te-ty
ty
where,
§(t) = Tg(t) - Tp(t)

;E(t) = estimated position vector at time, t

-+
rp(t) = true position vector at time, t

This is a measure of the average closeness
of the true and estimated trajectories for
the time interval (ti,tf). The two
trajectories are considered close when

3 < &%

]
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For some specified level of §* (currently
500 meters).

(2) Percent holding time, T, throughout the
track, defined as,

where, for a given time interval (ti,.tg),

(T4,

J.rfj) c (ty,tf)

(1i5,7£5) a (tig.tg) = ¢ for j # k

f-
T = J 8(8)dt % for § = 1,2,...,n.
J . T£3°Tiy —

ij J

(3) Predictive ability. Assuming the target
stays on the same trajectory, a given
algorithm will be said to have good
predictive ability if

S(tgHdt) < &%,
(4) Average CPU time used to process one
scenario. This gives a measure of the

relative speeds of the three algorithms.

Note, again, that these measures are computed over twenty-five
Monte Carlo samples and are intended as a measure of the average

51
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or expected tracking abilities of the algorithms.

3.2 Scenario Descriptions

In testing the MLP, hybrid, and iterated
sequential algorithms the intent was to produce several
scenarios, covering a range of tracking difficulties, to test
the capabilities of the three algorithms. The intent was not,
at this time, to evaluate each algorithm at the extreme edge of
its performance range.

The basic layout for each of the four scenarios
generated was the same. It consisted of three DIFAR buoys
arranged in the shape of an equilateral triangle with 2,000
meter sides; no buoy drift was assumed. All maneuvers were
assumed to take place within, or near, the buoy field and a sea
state of two was assumed. Figure 3.2e summarizes the environ-
mental conditions and inputs common to all four scenarios.

The first scenario run (Figure 3.2a) was a
simple straight line course through the center of the buoy
field. The intent of this scenario was to determine whether or
not the three algorithms could track straight line motion with
N high efficiency.

The second scenario considered (Figure 3.2b) was
! a 180 degree turn in the middle of the buoy field. This was
felt to be a scenario of moderate difficulty and was intended
' to compare the ability of each algorithm to respond to an
\ extremely sharp turn. Note that the maneuver time for this
turn is about 300 seconds. This not only includes the time
required to make the turn itself, but also the time needed to

! 52




r— |

- Tracor Applied Sciences

regain the required operating velocity (in this case 7 meters/
second) .

Scenario 3 (Figure 3.2c) was considered to be
of high difficulty and consisted of a 360 degree turn performed
inside the buoy field. This was intended to test the ability
of each algorithm to follow a severe maneuver for a prolonged
length of time. Again, the maneuver time indicated in the
figure included not only the time required to make the circle,
but also the time required to regain an operating velocity of
7 meters/second.

The final scenario (Figure 3.2d) was also
considered to be of severe difficulty and was intended to
measure the ability of each algorithm to follow a sequence of
fairly rapid turns and also to compare the ability of each
algorithm to follow maneuvers outside, but near, the buoy field.

3.3 Generation of Data for DIFAR Simulation

In order to carry out simulations of the three
target tracking algorithms examined in this report, an algorithm
for generating realistic data, as it would appear from a general

) processor for DIFAR buoys, was developed. It was desired that
‘ the generated data {(f;,8;,t;)} have a statistical distribution
closely approximating real data.

j 3.3.1 General Appruach

The general processor modeled (see Figure 3.3.2.1)
consists of a filter band with bins of width Af, followed by a
square law detector [( )? and a 1/Af averager] and a finite
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time perfect integrator (ALI). A MAX-OR picks the strongest
signal in frequency from the omni signal channel and computes
bearing from the X and Y channels. The following describes
the statistics of the outputs of various components in such a
processor. The distribution of the envelope of a Gaussian
process: (1) at the output of a narrowband filter is Rayleigh
distributed, (2) at the output of a narrowband filter and
square law detector is exponential, and (3) at the output of

a narrowband filter, square law detector, post detection
integrator is CHI-Squared distributed. One could randomly
generate errors from these distributions to add to the correct
data; however, with signal present, the X and Y signals are
not independent.

3.3.2 Analysis
3.3.2.1 Generation of Frequency Data. It is

assumed that the input to the processor may be written as the
sum of a narrowband Gaussian signal and Gaussian noise,

W(t) = S(t) + n(t)
where

s(t) ~ N(0,0g%)

n(t) ~ N(O,0.%).

At the output of a narrowband filter, the signal
term may be represented as the sum of two orthogonal signals,
each multiplied by an independent Gaussian random variable.
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where

S(t) = S coswgt + S,sinwgt

S1 ~ N(0,0g%)

¢

SZ N(orcsz)

wo = center frequency of filter

Similarly for the noise term,

where

n(t) = n,coswgt + n,sinwgt

n, ~ N(0,0.%)
n, ~ N(O,cnz).

In the processor, W(t) is squared and time

averaged over 1/Af seconds, where Af is the filter bandwidth in
Hertz,
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1/Af
W(E)? = AF j

2 nmna2 2 L im2 2 Mt
[S,°cos®wot + §,°sin“wot + n, “sin‘ust
2 vl 2 2
+ n,*cos’a t + ZSlnlcos wot + ZSznzcos wot

+ Zslszcoswotsinwot + 2n1n2cosmotsinmot

+ 28, n,coswytsinugt + 2S,n, coswgtsinugt]de.

It is assumed that S,, S,, n,, and n, are slowly varying
compared to cos?wyt, sinwgt, and coswytsinwgt. These may then
be pulled outside the integral sign. The terms with coswytsinwgt
factors integrate to zero.

W(t)? = af[(s,? + n, 2 + 28,n,) l/Afcoszm t dt
1 2 1''1 0 Q
1/af
+ (Sz2 + nlz + 2Sznz)[0 sinzmot dt].

Integration yields

W(E)? = a£((S,? + n,? + 25,n,) (%t + E%; sinZugt)

1/af

+ (8,2 +n,% +25,n,) (st - E%; sin2u,t)]

Since the process is narrowband, Af << wg
W(t)? = %(5,% + n,® + 25 n,)

+ %(5,2 + n,? + 25,n,).
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Using the transformations

S, = cSN1
S, = csNz
n, = an3
n, = ank

where N,, N,, N;, N, ~ N(0,1), the expression becomes

Cal g_2
W(E)? = (N, % + N,2) + —J=(N, + N,?) + ogo, (N,N, + N,N,).

Since the quantity of interest is the power

relative to the noise power ¢,?, the equation is divided through

n
by o,%. Letting

the signal-to-noise ratio, the relative power is

2
00 = HEX = 50w, + N,7) + 5QNP + D) VEQLN, +NN,).
n

Since the signal may be smeared over several
frequency bins, it is necessary to weight the signal-to-noise

ratio by vy, the fraction of the integration time that the
target spends in bin i. The expression for 00 becomes

005 = %yjp(N,? + N,?) + ((N, 2 + N ?) /yjp(N,N; + N,N,).
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It is seen that the average power relative to
noise power out of the narrowband filter of an omnidirectional
hydrophone can be simulated by knowing the signal-~to-noise
ratio and generating four independent samples from a standard
normal distribution. The bin with the largest value for 00 is
chosen by the MAX-OR processor and the center frequency of that
bin is used as the frequency data point.

3.3.2.1 Generation of Bearing Data. To arrive at

an estimate of bearing, the voltage from the omniphone is
multiplied and time averaged with the voltage from the X phone
and the voltage from the Y phone. The bearing estimate B is
then

B = tan'1(8§)
where QY and OX are the averages mentioned above.

The equations used in the simulation for OX
shall be derived. The derivation of OY is similar. The input
to the ommniphone is

W(t) = S(t) + n(r)
as before, The input to the X phone is

V(t) = S(t)cos(8) + ny (t)
where 6§ is the true target bearing and

O'nz

nx(t) ~ N(O: T .
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It can be shown that n(t) and ny,(t) are
independent processes. In terms of orthogonal components,

W(t) = S,cosuyt + S,sinwgt + n;coswyt + n,sinwgt ;
V(t) = S,coswgtcosd + §,sinwgytcosd + nxlcosmot + nxzsinmot

where
S, ~ N(0,08%)
S, ~ N(0,0g%)
n, ~ N(O,cnz)
n, ~ N(O,cnz)
nx, -~ N(0,739)
r Ng. ~ N(O,g%i .
] W(t) and V(t) are multipled and time averaged. It is assumed
that S,, S,, n;, n,, nx, and nx, are slowly varying. The

3 terms with coswgtsinwyt factors integrate to zero. The
expression is then

1
W(t) v(t) = jgf[coszwot(slzcose + g, ¥ Sx”x1 + n,S,cos8)

+ sin’uwot(S,%cosd + n,ny  + S,ng, * n,S,cos6)] dt.

© o~
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Integration yields

W(t) v(t) = %(szcose + N1Nx, + Sx{‘xl + n,S,cos8)
+ %(Szzcose + n,Nx, + Sznx2 + n,S,cos8).

Using the transformations and the following

transformations,
nx, = ;% N,
nx, = ;% N
where N., N, ~ N(0,1) yields

2

2
os Sy}
W(e) V(£) = ==, ® + N,*)coss + ;~3E(N3N5 + N, Ng)

og0n

a80n
(N,N, + N,N,) +
Z

+ (N,N, + N,N,)cos6
2

Again, the quantity of interest is the average
power relative to the noise power cnz so the equation is divided
through by Onz' Letting
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OX = _HSEL_¥$51 = %(le + N,?)cost + EJ7E(N3N5+ NN 1

9

Vol2
+ LREEON N, + NN + /RN N, + NN, )coss

Once again, p must be weighted by Y;, the fraction
of time spent in frequency bin i. The expression for OX is now

L R + 1 +
OX]'_ = —Z—-(Nl N2 )COS@ m(NSNS N“Ns)
Y;P/2 YY;P
+ (N,N, + N,N,) + 5 (N,N, + N,N,)cos®
Similarly,
Ys;P
i . 1
OYi = —2—(N1 zZ + sz)SILn@ + -2_/2<N3N7 + N:.Ns)
Y;0/2 ATC

+ —5—(N,N, + N,N,) + —5—(N,N, + N,N,)sine ,
where N,, N, ~ N(0,1).

3.3.3 Summary

The MAX-OR processor chooses the frequency bin
on the basis of max{OOj} where j ranges over the number of bins.
The bearing estimate is computed using the values of OX and OY
for that bin. The output of the processor depicted in Figure
3.3.2.1 may be modeled with the proper statistics by generating
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eight samples of a standard normal distribution and using the
above equations. The algorithm model of this processor is
depicted in Figure 3.3.3.

3.3.4 Signal-to-Noise Ratios and Variances

The data used in the simulation was generated
by an algorithm designed to generate data with statistical
properties closely resembling those of the output of a general
processor for DIFAR buoys. In order to generate data by this
scheme, knowledge of the signal-to-noise ratio at the input to
the comb filter bank is required. The signal-to-noise ratio
was computed at each time point from

[S/N]; =S - N - 20 log,, Ri
where

[S/N]; is the signal-to-noise ratio in dB
at time ti

S is the source level in dB
N is the noise level in dB

R; is the range in yards at tj.

The signal co-noise ratio is input into the
data generation algorithm. This ratio is used in the scheme
to generate the average power in each filter bin over the
integration time. At the end of the data generation algorithm,
when a frequency bin has been chosen to estimate the signal
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m=1 m indexes filter bins
] i indexes time points
i=1
Compute p = signal-to-noise
P ratio
Compute
Ymi

h

Generate Nl’ N2, N3, N&’ N5

Ng, N,, Ng ~ N(O,1)

- 2 2
oomi = % Ymi p(Nl + N2 )

, + % (N32 + N42) +\/ymi o (Ny Ng + N,N,)
)

f X . =y .-%(le + sz) cos 8

B 1 Y P
{ + ~——(N, Nc + N N)+35‘\| mi (N, Nz + N, Ng)
, V2 375 4 76 —— 1°5 2 76

> A+kvai p (Nl N3 + N2 N4) cos @

@

! FIGURE 3.3.3 - FLOW CHART OF PROCESSOR
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frequency, an estimate of the signal-to-noise ratio is made
using only the average power in the selected bin of the comb
filter and the knowledge of the average noise power.

[S/N]; = 10 log,, ((5‘@ (&)ﬁw

Letting oomax- represent S+N in the selected bin and remembering
that all power values are relative to the noise power, the
expression becomes

00 - 1.
max{
S/N ; =10 log1°< 1 )

where 00, .~ 1is measured in power units (not dB). This method

i
of estimating the signal-to-noise ratio was chosen to make the
simulation as realistic as possible.

The MLP, hybrid, and iterated sequential

‘ algorithms require that the covariance matrix of the data be
supplied. Since the data points are independent, the covariance
matrix is diagonal and all that needs to be found is an
\ estimation of the variance of the population from which each

data point is obtained. It is clear that the population and ﬂ
‘, the associated variances are functions of the signal-to-noise
f} ratio. Estimates of the variances as a function of signal-to-
l} noise ratio were found by generating 1,000 samples for Af = .1 Hz
, at constant [S/N] for several different [S/N] ratios. Since the
*’ value of the frequency is only resolvable to one bhin width, the

. . f? .
frequency variance was given a lower bound of %:r, the variance

N of a variate with density function constant over the interval
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Af and zero everywhere else., These numbers are correct when
# Af = .1 Hz. For other values of Af the transformation

opg = (10) (QE) (oy4)
is used where o,, is the standard deviation of the frequency
data for a particular signal-to-noise ratio when Af = .1 Hz.

The bearing variances do not depend on Af.

3.4 Test Results and Analysis

3.4.1 Introduction

This section presents the results of applying
the hybrid, MLP, and sequential tracking algorithms to the
four scenarios described in Section 3-2. To help understand
the effectiveness of the algorithms, several plots and charts
have been prepared for each scenario. Figures 3.4.1 through
3.4.4 contain the average estimated trajectory for each scenario,
which are found by averaging over all Monte Carlo runs the
position vectors for each time point that a state estimate is
generated.

Figures 3.4.5 through 3.4.8 present graphs of
the average distance error, over all Monte Carlo runs, for a
given scenario. It is computed by finding the difference
between the estimated and true trajectories for each Monte
Carlo run and then averaging them. The dotted lines represent
the one-sigma deviation limits about each average. Note, the
tighter these bands are around the average, the smaller the
trajectory error variation about the average trajectory error,

indicating that the algorithm has converged to the true
trajectory.
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Figure 3.4.9 gives the average distance error
over the entire scenario (§) for all three algorithms. The
number to the left of the slash gives the actual average
distance error; the number to the right of the slash gives the
average distance error as a fraction of the hybrid algorithm's
distance error. Lastly, Figure 3.4.10 gives the average
execution time for one Monte Carlo run, computed by the
formula:

(Total CPU Time)/25.

Again, the number to the left of the slash is the average
execution for that algorithm and the number to the right of
the slash is that time expressed as a fraction of the average
execution time for the hybrid.

3.4.2 Scenario One

Figures 3.4.la-c and 3.4.5a-c contain the
average estimated track and average error plots for scenario

| one. This scenario was a simple straight line trajectory
through the center of the buoy field and all algorithms followed
it well with the following exceptions:

L‘ (1) The MLP displays a slight offset bias.
)V This will be evident in all attempts
i ‘ of the MLP to track straight line data.

(2) The iterated sequential algorithm appears
to begin tracking before the start of the
true track. This is caused by the
inability of the initializer to provide

RX's

accurate state vector estimates with a
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small number of data points, resulting
in severe underestimation of position
coordinates early in the scenario.

This problem will be evident in all ;
subsequent scenarios. |

From the error plots it can be seen that the
hybrid has a smaller average distance error than either the
MLP or the sequential, and it also has somewhat tighter sigma
lines. The error plots for the sequential indicate large
average distance errors until about 200 seconds, reflecting
the algorithm's inability to provide good position estimates ﬂ
early in the scenario. Note that the sequential and hybrid

algorithms begin generating estimates approximately 50 seconds
into the scenario; the MLP cannot begin generating estimates
until almost 100 seconds of the scenario have passed.

From Figure 3.4.9, the average distance error
for the iterated sequential is about 5.5 times that of the
hybrid and the average error for the MLP is about 1.8 times
that of the hybrid. Lastly, from Figure 3.4.10, a sequential
run took about 2.8 times as long as a hybrid run and an MLP
run took almost four times as long. Thus, for Scenario 1, the
hybrid had smaller average tracking error, small tracking error
variance, and substantially faster execution time. All three
methods were within 500 meters of the target throughout the
entire scenario,

3.4.3 Scenario Two

Figures 3.4.2a-c contain the average estimated
track plots and Figures 3.4.6a-c contain the average distance
error plots for Scenario 2. The hybrid approximated the true

101
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trajectory very closely, while the MLP again exhibited some bias
and also had some difficulty with the beginning of the turn.

The sequential again had estimation problems in the early going
and then underestimated the turn somewhat. The turn under-
estimation occurred primarily because initialization took place
shortly before entering the turn (on the average) and usually
introduced some lag in the state vector. This then caused the
sequential to be somewhat behind throughout the turn.

Note that the sigma limits for the hybrid
algorithm are much tighter than for the other two algorithms.
The troughs in the plot indicate, roughly, those places where
the batch portion of the algorithm had completed reinitializa-
tion of the trajectory. For the MLP, the large spike occurring
at approximately 300 seconds indicates that the turn has begun
and that the MLP has lost the trajectory somewhat. For the
sequential algorithm, there are fairly substantial errors
occurring at the start and near the end of the scenario. Both
sets of these errors are due to the inability of the sequential
starter to consistently provide accurate estimates of the state
vector using a small number of data points.

3.4.4 Scenario Three

) Figures 3.4.3a-c and 3.4.7a-c present the
average estimated track and average distance error plots for
! Scenario 3. Again, the hybrid estimates the track quite well
with a stable error plot and fairly tight sigma limits. The
MLP exhibits problems in two areas, recognizing that the turn
has begun and switching to the appropriate model, and, about
halfway through the turn, realizing that some model adjustment
is needed. Figure 3.4.9 shows that the average error for the




Tracor Applied Sciences

MLP is about 2.3 times that of the hybrid. The sequential
again exhibits difficulties for about the first 200 seconds
of the scenario, causing it to lag somewhat throughout the
maneuver. Figure 3.4.10 shows substantially faster execution
time and, again, all algorithms estimated positions within
500 meters of the actual ones throughout the entire scenario.

3.4.5 Scenario Four

The average estimated track and average distance
error plots for Scenario 4 are contained in Figures 3.4.4a-c
and 3.4.8a-c. All three algorithms estimate this trajectory
fairly well, with the hybrid giving just a bit lower average
error than the MLP. It is interesting to note that during the
maneuver the sigma limits for the hybrid were somewhat larger
than for the MLP, but after the maneuver was completed they
were substantially smaller. All three algorithms required
more execution time for this scenario than for any other,
however, the sequential still took about 1.8 times and the
MLP about 3.4 times as long to run as the hybrid.

- -
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4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

The main purpose of this study was to refine
the hybrid algorithm by improving its numerical procedures,
program organization, and switching rules, and then compare
its performance to that of Tracor's MLP algorithm and to that
of an algorithm which uses an iterated sequential filter to
initialize. The ideas underlying the development of all three
algorithms were described in Sections 1.0 and 2.0; Section 3.0
presented the results of a series of tests designed to test
the capabilities of each algorithm.

Based on the results contained in Section 3.4,
it is clear that the hybrid is superior to both the MLP and the
iterated sequential in terms of tracking accuracy and execution

time. In every scenario examined the hybrid had not only the
lowest average execution time (often by a factor of three or
four), but also the lowest average distance error. In addition,
the hybrid usually had tighter sigma-bounds about the distance
error than either of the other two.

Comparisons between the iterated sequential and
the MLP are somewhat more difficult to make, For all scenarios
examined, the iterated sequential executed considerably faster
than the MLP. Also, once the sequential had enough points to
provide correct initialization, examination of the distance
error plots indicates no significant differences between the
two algorithms in their distance errors and distance error

variances. Thus, it is only early in a given initialization or

reinitialization phase that the iterated sequential does not
perform as well as the MLP.
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Part of the reason that the sequential algorithm
has difficulty initializing and reinitializing is that when the
extended Kalman Filter measurement equations are solved, there
are no provisions for optimizing the resultant state vector.
All optimization comes strictly as a result of iteratively
obtaining an initial guess, filtering to obtain a state estimate,
and then mapping the state vector back in time. Work has begun
on the software required to optimize the state vector in terms
of the actual measurement equation, not the linearized approxi-
mation obtained when applying the Kalman gain equation. 1If
this procedure works as expected, both the execution time and
the average distance errors for the sequential will be reduced.
At present the sequential and MLP algorithms may be considered
roughly equal in performance. With the optimized initializer,
the sequential will be clearly superior to the MLP,.

4.2 Recommendations

The recommendations arising from this study fall
into two natural groups, those dealing with the improvement or
modification of one of the algorithms and those dealing with

analysis of the capabilities and robustness of each algorithm.
Recommendations for algorithm improvement or modification

include:

(1) Dealing with Outliers. At present,

” neither the hybrid nor the sequential
Q has an effective method for dealing
M with bad data points or a bad data

\ stream from one particular sensor,
There are several schemes for dealing
with outliers (such as the procedure
used in the MLP) and they should be

LY

-
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(2)

(3

investigated for use in the hybrid and
sequential algorithms,.

Optimize Sequential Initializer. As

noted in Section 4.1, software is being

developed which will allow the sequential

starter to optimize a given state vector

estimate with respect to the true measure-

ment models and not some linear approxi-

mation, This should be completed and the

new optimal initializer installed.

Add Higher Order Terms. For the hybrid
algorithm, the optimization procedure

used in the batch initializer was
equivalent, in result, to using higher
order terms in the measurement model
approximations. However, in the
sequential portion of the algorithm
these optimization procedures were not
implemented in order to minimize
execution time. By using higher order
terms in the measurement models employed
by the sequential filter, it may be
possible to increase tracking accuracy
without significantly raising scenario
execution time.

Recommendations for determining and comparing
the robustness of each algorithm include:
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! (1) Tests on Real Data. Using the non-

o gaussian, simulated data of this study,
all three tracking algorithms did well.
However, the true test of any algorithm's
capabilities is its performance on actual
sea data. Once the modifications proposed
above have been completed, all three
algorithms should be tested on real data
taken from several scenarios.

(2) Effects of Data Quality and Data Rate.
During testing of the hybrid, scenarios
with different data rates and qualities
were produced and tested. Indications
were that data rate was more a factor

in determining good tracking accuracy
than was data quality. Using analysis
of variance/response surface techniques, ‘
it may be possible to determine the

relative importance of data rate, data
quality, and buoy number and to identify
certain optimal conditions,

A (3) Effect of Buoy Drift. All scenarios
| analyzed in this study assumed constant
buoy positions throughout the scenario.

Of course, in actual practice this is
‘ not the case and the best algorithm is
H that one which is most efficient in the

; face of buoy position uncertainty. The
. necessary software is in place in the
hybrid and sequential to generate buoy
position estimates, however, there

- ¥
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(4)

would be a certain amount of programming
involved in generating the simulated
measurements.

Examine Other Data Types. For this study
the only data types used for each scenario
were frequency and bearing. However,
there are other data measurements which
can be used for tracking, such as range,
time difference of arrival, Doppler ratio,
and Doppler difference.
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5.0 MULTIPLE TARGET PROBLEM

The second major purpose of this study was to
outline a procedure for attacking the multiple target estimation
problem. There are two facets to the problem:

(1) Having the ability to track one particular
target in the midst of others.

(2) Having the ability to identify and track
several different targets concurrently.

These may be considered to be the surveillance and tracking
aspects of the multiple target problem. It is hoped that a
single algorithm can be developed to handle both tracking and
surveillance.

At present there are several theoretical papers
(References 8-15) dealing with various aspects of the problem.
The majority of them, however, do not consider in depth the
problem of initial sorting and classification, concentrating
instead on schemes for placing an observation in the correct
track, given that a certain number of tracks exist. There are
several related approaches which basically develop the theory
needed to set up probability ''gates' around the predicted
measurement for a given track. These gates are equiprobability
contours chosen such that the likelihood of any estimate within
the gate being correct is above a certain threshold. Other
methods rely on a posteriori probability analyses of the likeli-
hood of a given measurement belonging to a certain track, with
aopropriate decision rules for placing the observation with a
particular track. Many papers contain algorithms for multiple
target tracking which require either prohibitive amounts of
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computer core or prohibitive amounts of computer time,
necessitating the use of some approximating, suboptimal
procedure. Currently, no paper has yet been found which

applies a given method to a real-world problem. All examples

given are fairly simple simulations.

It is proposed to approach this problem by
using a combination of the above methodologies and a statistical
technique called cluster analysis. Cluster analysis is
essentially the branch of statistics which deals with methods
for grouping large numbers of objects into smaller, mutually
exclusive subgroups containing members as much alike as possible.
Many clustering methods are extremely effective when applied to
the appropriate data set. Clustering procedures may all be
thought of as containing three basic elements:

(1) A measure of similarity (or dissimilarity)
to apply to members of the population,
Examples include Euclidean distance,
weighted Euclidean distance, and the
value of some scoring function.

(2) Some optimizing or cluster defining
criterion. Examples include:

(a) Minimizing the variance of each
cluster about its centroid.

(b) Minimizing the maximum distance

between any two cluster points for
all possible clusters.
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(3)

(¢) Minimizing the average distance
between all cluster points over
all possible clusters.

An algorithm or method for finding the
optimum based on (1) and (2) above. 1In
general these algorithms fall into two
classes:

(a) Divisive or agglomerative partitioning
procedures, such as sorting, switching,
joining, splitting, or adding.

(b) Application of some standard
mathematical formulation, such as
integer programming, dynamic
programming, or graph coloring.

Figure 5.1 presents a logical flowchart of the
proposed multiple target algorithm. The algorithm would contain
a clustering procedure which would perform two functions:

(1)

(2)

Initially break a set of data points
into clusters corresponding to a set
of trajectories.

Process each data point after initializa-
tion to determine which cluster (trajectory)
it should be associated with.

Once a point had been associated with a given cluster, a new

state vector estimate would be generated using either the hybrid
or iterated sequential algorithm. Note that the speed of the
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particular tracking algorithm becomes crucial at this time,
particularly as the number of targets increases. The resulting
state vector would then be analyzed for appropriateness using
another clustering algorithm, some type of a posteriori
probability analysis, or one of the ''gating' procedures
discussed in the literature. If an observation passes this
test it becomes permanently associated with the current cluster
and a new observation is obtained. If an observation fails the
appropriateness test, it is placed in the next most likely
cluster (that cluster having the next highest value of the
optimizing criteria) and a new state vector estimate is derived
based on the trajectory associated with members of this cluster.
If post-estimation tests rule an observation out of all its
most likely clusters, a new cluster is formed with the given
observation as its sole member. This cluster will be considered
the beginning of a new trajectory. Note that the state vector
estimation algorithm is being used in an interactive manner.

It is hoped that by having both pre-estimation and post-
estimation evaluations of each observation the number of
misclassifications can be kept to a minimum.

Because of the difficulty of the problem it is
felt that all data processing procedures should be made general
enough to handle N targets, but that, initially, all efforts
should concentrate on being able to handle one to three targets
in terms of tracking or surveillance. When this stage is
reached, an analysis of algorithm performance and a study of
the additional effort needed to handle N targets should be made.

At this stage, then, identifiable tasks in a
multi-target project include:
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(1) Generation of simulated multi-target
data.

(2) Selection and testing of an appropriate
clustering algorithm.

(3) Selection and testing of an appropriate
post-estimation evaluation procedure. |

(4) Development of software to support
and implement the multiple target
algorithm.

(5) Modification of hybrid and/or iterated
sequential tracking algorithm to
interface with multi-target program.
This would involve some storage
alterations and possible some new
subroutines to handle efficiently the
data structures that the multi-target
program will require,.

Certain parts of the above schedule have already
been addressed, either in this project or other Tracor projects:

(1) For this project the capability to
generate simulated frequency and bearing
data for one target was developed. It
is felt that two targets can be simulated
by generating two sets of data and merging
the results. A small amount of programming
will be required to develop the software
required for the merge.
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(2) Tracor is now in the process of

acquiring two general purpose clustering j§
routines, CLUSTAR and CLUSTID (Reference 15), ‘
which, according to its authors, will allow :
the examination of about "75 percent of the i
published uses of cluster analysis".
Additionally, Tracor is in the process of
obtaining an algorithm developed by

R. F. Ling (References 16, 17) which is
specifically designed to produce long,
string-like clusters very similar to the
graphs of time, frequency, and bearing
coordinates of a moving target. Ling
used it very successfully to cluster

the 60 brightest stars in the sky into
their respective constellations using

celestial coordinates.

(3) A literature search is continuing for
additional papers specifically addressing

the multi-target problem.
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