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1.0 INTRODUCTION

A modern nuclear submarine radiates acoustic
energy as it moves underwater in the ocean. It is possible to

detect and track these submarines by using this radiated

energy. Typically, this energy is acquired by passive sonobuoys

and processed electronically to give estimates of the Doppler-

shifted frequency associated with the submarine and also an

estimated bearing.

1.1 Background - Processing Alternatives

Once the raw data from the sonobuoys has been
processed to give frequency and bearing estimates, it is passed

through a tracking algorithm which will produce estimates of

the target's state vector, i.e., position, velocity, etc.

At present there are two primary classes of

algorithms for solving this problem--batch algorithms and

sequential algorithms. The names are derived from the way each

algorithm processes data. Batch algorithms simultaneously
process several data points (i.e., a batch of data) at once to

provide tracking parameters, while sequential algorithms process
one data point at a time, giving updated state vector estimates

after each data point has been processed. Over the past several
years, Tracor has developed several batch algorithms called

Maximum Likelihood Procedures (MLP) to track submarine targets

for a number of specialized tracking system configurations.
Each of these procedures has been tested on sets of real-world

and simulated data with varying degrees of success. However,

in doing so several points became clear:
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(1) The MLP is self-initializing. That is,

good initial estimates of the state vector
can be generated from the data. There is

no need to supply an accurate initial guess.

(2) The MLP requires several different motion

models to characterize possible submarine

maneuvers. Model selection can become a
problem in terms of time and appropriateness.

(3) Because the MLP processes data in a batch,

extremely accurate estimates of the state

vector can be obtained when the proper

motion model has been selected. However,

serious loss of track can occur when the

model currently being used no longer

becomes valid but the selection process
has not yet selected a new model.

(4) The algorithm possesses moderate to

substantial computer time requirements,

depending upon the complexity of the track

being attempted, and moderate storage
requirements.

To provide a means of comparison for the MLP
and also in an attempt to gain insight into the nature of

sequential algorithms, Tracor, in conjunction with Dr. Byron

Tapley of the University of Texas, designed and implemented

a sequential tracking algorithm based on the extended Kalman

filter. While testing this algorithm several things became

clear:

r
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(1) This algorithm has smaller core storage

and execution time requirements than the

MLP.

(2) Tracking accuracy is as good or better

than the MLP.

(3) The sequential algorithm is highly

susceptible to initialization errors,

requiring a fairly close initial state
vector estimate to maintain good track.

(4) The sequential model can be implemented

with a single stochastic motion model.

This eliminates the need for the model

selection process, and also allows some
"slack" in estimating the tracking

parameters.

1.2 Hybrid Research Effort and Program Objectives

After testing of the MLP and sequential

algorithms revealed their complementary strengths, it was then

decided that a combination of the two approaches, or a hybrid
algorithm, should be developed to take advantage of these

strengths. It was hoped that the MLP algorithm could intialize

the tracking procedure for the sequential algorithm and also

provide reinitialization should the sequential filter lose
track. A preliminary version of the hybrid was created using

the IMP and sequential algorithms and early tests showed
potential. However, several problems remained. Among them

were:

3
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(1) The MLP was too cumbersome to use

efficiently as an initializer; a more

efficient batch procedure was needed.

(2) Information transfer between the batch and

sequential portions had to be streamlined

and made more efficient.

(3) The sequential algorithm's numerical

properties needed to be improved for

smaller word length computers.

(4) The capability for handling maneuvering

sensors was needed.

(5) The capability for tracking multiple

targets was needed.

(6) Improvement and refinement of the switching
rules from the batch-to-sequential and

sequential-to-batch modes of operation

were needed.

1.3 Summary of Results

A hybrid algorithm incorporating the above
features has been designed and implemented. This study
provides a comparison between the hybrid algorithm and the MLP

and, in addition, a comparison with a sequential algorithm

that contains an iterated sequential starter.

!4
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2.0 THEORY AND EXPLANATION OF ALGORITHMS

2.1 Maximum Likelihood Procedure (MLP)

2.1.1 Motion Models

The MLP algorithm is based on the assumption that

submarines typically execute a fairly small set of maneuvers,

including:I
(1) Constant Linear Velocity

(2) Constant Linear Acceleration

(3) Constant Radius and Angular Velocity Turns

(4) Constant Radius and Angular Acceleration Turns

Each of these maneuvers has a corresponding

motion model. They are:

(1) Constant Velocity

X(t) = X0 + V t

Y(t) - Y0 + Vyt

V (t) = v
x T

Vy(t) = Vy

"', I
y [
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(2) Constant Acceleration

X(t) = X0 + Vxt + .5 axt'

Y(t) = Yo + V yt + .5 a yt2

Vx(t) =Vx + axt

V (t) = V y+ a yt

(3) Constant Speed Turn

X(t) =X 0 + Vxsin(wt)/w - V y[1 -COSOwt)]/w

Y(t) = Yo + V (1 -cos(wt)I/w + V ysin(wt)/w

V X(t) =Vxcos(wt) - V sin(wt)

V (t) =Vxsin(wt) + V ycos(wt)

(4) Constant Angular Acceleration, Constant

Radius Turn

X(t) = XO+ {V sinwt(l+.5at) - V y[l-coswt(l+.5at)]}/w

Y(t) = Yo+ fVx [l-coswt(l+.5at) + V ysinwt(l+.5at)]}/w

Vx(t) = (l+at)fVxcoswt(l+.5at) - V ysinwt(l+.5at))

V (t) = (l+at)fVxsinwt(l+.5at) + V ycoswt(l+.5at)}

6
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Each of these maneuvers is characterized by a

unique set of target parameters. For example, constant velocity

motion is characterized by the following vector:

'Y = Xt) YtP Vx t ' VY t ' fis .... fn]

where

Xt =-X-position at time, t

Y -- Y-position at time, t

V = X-velocity at time, tVxt

Vyt = Y-velocity at time, t

fl, .. , fn = Source frequency parameter for each

target source frequency

The approach used by MLP to track targets is

summarized in Figure 2-1. Frequency and bearing data from each

sonobuoy maintaining contact with the target are input to each

maneuver model for which there is a non-zero a priori

probability that the target could be executing that maneuver.
The Maximum Likelihood procedure is applied to estimating the

parameters associated with each model; these parameter values

and the residual data errors are compared for each of the models

and three decisions are reached.

(1) The maneuver model and parameter vector
associated with that model are selected.

4 7
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INPUT

Processor Data

Data Covariance Matrix

A Priori Target Motion Probabilities

ML Technique ML Technique ML Technique
Matched to Matched to Matched to
Maneuver Maneuver Maneuver

Model y(1) Model y(2) Model y(N)

Select Correct Determine Select Data
Maneuver Inadequate Interval for
Model Maneuver Models Each Maneuver
(F-Test) (F-Test) Model

RETURN

1E

FIG. 2.1 PROGRAM FLOW FOR MANEUVERING TARGET TRACKING
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(2) The maneuver models which are totally
inadequate to explain the data are

determined.

(3) The reduced tracking intervals for each
of the models which could explain the data

are selected.

At the conclusion of this procedure new data
are input and the procedure is repeated. Note that the MLP

passes the data through four Maximum Likelihood parameter
estimation algorithms, each one corresponding to one of the

maneuver models described above.

2.1.2 MLP Algorithm

The mathematical structure of the Maximum

Likelihood procedure is the same regardless of the motion model

and data types used. Associated with each measurement is a

nonlinear function that generates an estimate of that data
measurement given the time of the measurement, a set of motion

parameters, and a motion model. For example, if a frequency

measurement is taken using sensor, j, at time, ti, the estimated

frequency is given by,

f(tiX) = f0/(l+V(ti).Rj(ti)/cIRj(ti) I],

where

X = motion parameter vector,

V(ti) = velocity vector of target at time, ti,

9
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R3(ti) = range vector of the target from sensor,
j, at time, ti

fo = center frequency

c = velocity of propagation of sound

If a bearing measurement is considered, then

f(ti,') = tan- ' [Yj(t i )/x j (ti)]

where

Xj(ti) = X-coordinate of target at time, ti,

relative to sensor, j

Yj (ti) = Y-coordinate of target at time, ti,

relative to sensor, j

The program can also use range, Doppler ratio, Doppler

difference, and time difference of arrival. The appropriate
4. 4.

motion model is used to generate Rj (t) and Vj(t) for any time,

t.

Let Ei = Zi - f(ti,y). It is desired that the

f's be close to the measurement values Zi . A reasonable measure

to consider for this closeness is the sum of squares of residuals

for a given parameter vector,

N
S(y) i--E i 2 / i 2

where ai) is the measurement error of the observation, Zi . If

10
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the above sum is small, the f's will be close to the Zi's.

If it is assumed that the measurement values are perturbed from

the true mean values of f(ti,y) by Gaussian random variables,

the minimization of the sum is equivalent to maximizing the

likelihood function L(Q) of the sample Z as

L( ) =  EXP [ Ei 2 /ai ] / (2 )N/ ' Ta ]Il i .=

Even if the measurement errors are not Gaussianly distributed,

this procedure provides a least squares fit to the data. Thus,

the problem statement is: Given a set of measurements, Z, and

a motion model, find thR motion parameter vector, y, that

minimizes

N

Since f(ti, ) is a nonlinear function of the

vector,y, a direct solution is not, in general, possible.

However, a procedure may be used in which a linear approximation

is applied iteratively to search for a solution. If the non-

linear problem is sufficiently well behaved the iterative

technique will converge to the desired solution. In general,

it is not possible or is too difficult to prove whether this

technique will converge in a given problem. Hence, the

algorithm is executed. If it converges, a solution is found;

if not, add more data and try again.

To linearize the problem each function, f, is

expanded in a first order Taylor series about an assumed

parameter vector, Yo, as,
N

'I
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f(tiy) f= t ) + I Sk ,)fi,)=f(ti,Yo) + k°k Yk t Y
k~l ti, Yo

where is the variation of the kt h parameter of . If the

vector, E0 , is defined by the elements,

4. 4

E0 = Zi - f(ti'Yo)

and the matrix, X, by the elements

Xi j a f(t,;)

tilYo

Then, the linear approximation problem is

X6 = Co

The vector, 6, may be found in the usual way for minimizing

the weighted sum of squares of residuals (Reference 1). The

normal equations are

xTC- X6 = xT -l o

and 8 is found to be

6 = (xT -7X)c- XToC- E 0

The new motion parameter vector is given by

Y YO o+ 6,

12
'I



Tam Applied Sciences

and when the change in each component of the motion parameter

vector becomes small, the algorithm is deemed to have converged

and iteration stops. The covariance of the estimate y is given

by the following equation,

T -1 -1P = (X a- X)

One of the key features of the MLP is the method

employed to invert the symmetric, positive, semi-definite matrix,

XJa IX. The usual inversion method is to use a Choleski

decomposition, that is, to find an upper triangular matrix, U,

such that UTU = xT-I X. The matrix U is easily inverted and

U-1u-T is the required inverse for finding the change in 7. It

would be desirable to find U directly and then the cross-product

array would not have to be formed.

Such a procedure is possible if one uses a

sequence of Givens' rotations (Reference 2) to decompose - X

into the product of an orthogonal matrix, Q, and an upper

triangular matrix, U. Then

XT-I X6 =xT a o

becomes

UTQTQU = 0TQT 1

Since Q is orthogonal, QTQ = I and if U has an inverse, then

the above becomes

Us = QTa .

413
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This triangular system of equations is easily solved, and the

covariance matrix is

P = U-1 D-U-T

The Givens' notation is carried out on each row

of X; hence, it is only necessary to store U and one row of X

at a time. Figure 2.2a depicts the usual Givens' method approach.

Note that M is the number of parameters estimated and N is the

number of data points. Because this procedure is computationally

expensive, there is an alternative procedure developed by

Gentleman (Reference 3) which is used in the MLP algorithm. It

is depicted in Figure 2.2b, and does not require any square roots

and reduces the number of multiplications by one-quarter.

Thus, the revised algorithm calls for the

accumulation of D, the diagonal matrix; I, an upper unit

triangular matrix; and 6, a vector of transformed residual

errors. The array of weighted derivatives, a- X, is replaced

by QD2̂U, and is replaced by D Q OO which is equal to

e. Using the normal equations, this yields:

X Ta-IX6 = xTa - I
o

"TDkQTQD'u = TTDkQT CY -k E

DU65 = DQ T Y -3

6 = e O

14
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CONSIDER TWO ROW VECTORS

o ... o 71 Ui+1 ... Uk ...

0 ... 0 xi xi+l ... xk

Transform by

, k C k + Sxk

x k = -SUk + Cxk

where

'. =u +2 . 2

C = Ui/U'

S = xi/U'

To Yield

0 .. 0 U' U' ... U'• "i i l " " k*'"

0 ... 0 0 X. xk "

x x x x x x x x
x xx xx x

THE PROCESS X X U- -INT0---- X X U'
x xTRANSFORMS x x x x 0 0 0 0

(New Row of X)

REQUIRING ABOUT 2NM 2 MULTIPLIES AND NM SQUARE ROOTS

FIG. 2.2a GIVENS' ROTATIONS
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CONSIDER U = D U

D - Diagonal

R - Unit Upper
Triangular Matrix

ROTATE

0 ... 0€ ... U

o ...O /xix k

Into

0 . . . 0 ,v u' . . . , U 1'k
0 .. 0 0 ... ¢i~ x' k

By
d'= d + 6x?

6' = d6/d'

C = d/d'

S = 6xild'

," 'k = xk, - xuk
k =Crk+ Sxk

REQUIRING ABOUT 3/2 NM2 MULTIPLIES

FIG. 2.2b - SQUARE ROOT FORMULATION OF GIVENS' ROTATIONS
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The reduction of the weighted residual errors to e is
accomplished by considering them as an augmenting column of the

matrix X. The last equation involves a unit upper triangular

matrix which makes the solution for 3 particularly easy.

To determine which motion model to select, the

MLP uses a statistical test, based on the residual errors

generated by each model, called an F-test. Under the normal

distribution of errors assumption, the residual sums of squares

from each model are distributed as chi-square random variables

and their ratios are distributed as F-random variables.

Strictly, the F-test may only be applied when the errors are

normally distributed, however, it has been shown to be a robust

test against other distributions as long as they are symmetric

about zero. The use of the ratio is valuable because it makes

the test independent of scale changes in the input variance of

the data.

In selecting a model it is desirable,

intuitively, to favor the constant velocity model over the

others because:

(1) It is the simplest of the four models.

(2) The other three models yield good

solutions to a constant velocity data

interval.

This is done by conducting a hypothesis test at a level, a.

The test statistics are:

"1 17
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F. = (SS./DFi)/(SS /DF.)

i,j = 1,2,3,4; i<j

where SSi and DFi are the sum of squares of residuals and the

degrees of freedom for the itch model.

The hypothesis test is:

If Pr(f>Flj) < a

j = 2,3,4; accept Model 1

otherwise

If Pr(f>Fij) < .5 for all j>i;

i = 2,3,4; accept Model i

It has been found that an a of about .2 works well. This value
gives somewhat of an edge to Model 1 over Models 2, 3, and 4.

The choice between Models 2, 3, and 4 is equal because the
models are of roughly equal complexity.

An additional statistical test is performed to
determine the proper data interval for the given motion model.

Essentially, the test examines the residual stream from each
ft data source for a mean shift, which is assumed to indicate that

the target has undertaken some maneuver which cannot be described

by the current motion model. When this shift is detected, a new
data interval is begun and a new model is used.

r
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The above exposition is not intended to be an
exhaustive examination of the MLP algorithm. This is contained

in Reference 4. Indeed, the MLP is significantly more complex
and possesses far more detail than has been indicated here.

For example, the MLP:

(1) Uses the Marquardt algorithm and several

additional rules to speed convergence to

the nonlinear solution;

(2) Provides and uses observability measures

and accuracy measures for solutions
generated by the algorithm;

(3) Provides for continuity constraints when

switching from one motion model to another;

(4) Provides for the input of a priori state

vector and covariance information;

(5) Provides an outlier accommodation scheme
which has been incorporated into the
measurement model.

Rather, the intent of this section is to give a brief overview

of the main features of the MLP and to explain certain ideas

which are used in both the MLP and hybrid algorithms.

2.2 Hybrid Algorithm

2.2.1 Introduction

The current Tracor hybrid algorithm is composed
of two distinct entities--a scaled down MLP-type algorithm and

19'II
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an extended Kalman filter--linked together by a set of
statistical switching rules. The underlying idea of the

algorithm is to use the batch filter to provide good initial
estimates and, when needed, reinitialization, and to use the

sequential filter to do the bulk of the tracking. The switching

rules are intended, in the batch filter, to determine as quickly

as possible when the filter has converged to a good solution and

switch to the sequential, while in the sequential portion they

are intended to determine when the sequential has lost track

and switch to the batch for reinitialization. Studies performed

at Tracor have shown that, in most cases, if a sequential filter

of the type used in the hybrid is initialized with reasonably

good starting values, it will be able to maintain even the most

difficult track. Figure 2.2.1 contains a block diagram showing

the relationship between the batch filter, the sequential

filter, and the switching rules.

2.2.2 Aspects of Sequential Filter

Theory. The sequential filter used in the

hybrid algorithm is a variant of the extended Kalman filter.
The target's time rate of change of the acceleration vector is

modeled as a Gaussian white noise process. This equation has
the form

n

where n is Gaussian white noise with zero mean and covariance

qxx and qyy. The solution, in the mean, to this stochastic
differential equation is given by the following linear equations:

20
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SWITCH

EXTENDED

KALMAN

FILTER

Y NO
SWITCH

CRITERIA

tFIGURE 2.2.1 - HYBRID ALGORITHM MACRO STRUCTURE
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r(t) = r(t 0 ) + V(to)t + a(t).t 2

v(t) = v(to) + a(t0)At

a(t) = a(t 0 )

where r and v are respectively the position and velocity
vectors. The stochastic derivative of any tracking frequency

is,

df

where E is Gaussian white noise with zero mean and covariance
qff. The solution, in the mean, to this equation is

f = fo.

Thus, at any time, tk, the state vector for the model is:

rx(tk)

ry(tk)

vx(tk)

X(tk) = vy(tk)

ax(tk)

ay(tk)

fol

fon

Lon

22
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where rx, ry are the x and y position coordinates; vx, Vy are

the x and y velocities; ax, ay are the x and y accelerations;

and fol.... fon are the different center frequencies being

monitored. The state transition matrix for this system is

1 0 At 0 At 2 /2 0 0 .. 0

0 1 0 At 0 At 2 /2 0 ... 0

00 1 0 At 0 0 0

D(tktk _1) 0 0 0 1 0 At 0... 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 ... 1

RFx6 0 6xn

"OnX 6 Inxn]

where R x6 is a matrix containing transition parameters for

position, velocity, and acceleration only, 0 and Onx are

matrices of zeroes, and Inxn is the identity matrix. Note that

this corresponds to the constant acceleration motion model used

in the MLP. However, the time periods over which the transition

matrix is applied are far shorter than the time periods over

which the MLP maneuver models are applied. This is one of the
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major advantages of the sequential filter over the MLP. There

is no need to test for appropriateness of model.

The measurement models are the same as those

used in the MLP. Again, the primary models are Doppler-shifted

frequency and bearing, with the capability to use range, Doppler

ratio, Doppler difference, and time difference of arrival.

In order to obtain a practical propagation and

update algorithm, the extended Kalman filter uses a linearized

version of the measurement model, i.e., a first order Taylor

series expanded about the most recent state estimate. For

example, suppose a measurement of Doppler-shifted frequency,

frj, was received, then:

frj kk (tk X(tk-1))

+; (tk_, X(tk_1)).(X(tk)X(k.- 1 ))

;fry (tkil x(tki)). (Y(tk)Ytkl) +

+ fri ( t a(+ a (tkil X(tk.l)) • (ay(tk)-ay( tk))

n a

+ i=to i  k-'X(tk-))(foi(tk)-foi(tk-))
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where,

tk = time of current estimate

frj(tkX(tk)) = observed Doppler-shifted value
of frequency rj

tk i = time of last estimate

afrj
-.- (tk1 ,X(tk1)) = partial derivative of received

Doppler-shifted frequency frj with

respeqt to (.) evaluated at
tk i ,X(tk_1)

1f if i=jKnonecker delta = 0 if i~j

Bearing measurements can also be expanded in a first order

Taylor series containing only position terms. Letting

dk = frj(tk,'(tk)) - fr k

we have, in vector form:

dk = Hk(X(tk) - X(tk_ ))

where,
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Hk ax xk-

afr. ( ^

af...°

X(t k ) - X ( t k _ 1 ) -- x(t k ) - x ( t k 1 ) , .... a(t k ) - a ( t k _ 1 , 0 , . .
AA

fojt(tk) _-foj(tk-t ... )

The error covariance matrix, P(tk), for the

parameters is given by:

P(tk) - (tktk-2)P(tk_ ),T(tk,tki) + r(tk,tk-1).

The matrix, r(tk,tk i) , contains the effects on the covariance
of process noise and is found by:

r(tk,tki) = jtk ,(t,T)Q()OT (t,r)dT.

k-i

This equation can be solved analytically because Q is assumed

to be a constant matrix of the form:

26
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0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Q 0 0 0 0 qaX  0 0 0

0 0 0 0 0 qay 0 0

0 0 0 0 0 0 qfol 0

o 0 0 0 0 0 0 qfon

Figure 2.2.2 contains a logical flow diagram of

the sequential processor.

Implementation. There are several schemes which

may be used to implement the sequential filter, each with its

own set of advantages. The method of implementation chosen for

the hybrid algorithm is the UDUT square root form of the filter.

For this particular problem it possesses several advantages:

(1) Helps prevent conditioning problems by

insuring that the covariance matrix, P,

will be positive definite and symmetric

at all times.

(2) Helps insulate algorithm from effects of

changes in computer word size, making it

more suitable for operation on minicomputers

than other forms of the algorithm.
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AA

Xkl(+) tk Xk-l(+) Zk tk.4'

Predict x Compute Predict
Peat Measurement Covarianceat tk I Residual

Xk (-) Dk Pk (-)

Compute Kalman Gains
and update x and
covariance based on JK K+I

measurement information

Xk(+) k (+ )

Xi(-) = Estimated state vector at time ti before measurement

Xi(+ ) = Estimated state vector at time ti after measurement

ti = Time ti

Pi (-) = Estimated covariance matrix at time ti before measurement

Pi (+ ) = Estimated covariance matrix at time ti after measurement

Zi = Measurement (Doppler shifted frequency, bearing, etc.)

at time t

Di --Measurement residual at time ti

r

FIG. 2.2.2 - LOGIC DIAGRAM - KALMAN FILTER
2
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I
(3) Minimizes storage requirements.

(4) Is compatible with Givens' rotation form

of MLP.

A summary of the standard Kalman Filter conditions

and equations is given in Figure 2.2.3. The following will

describe how these equations are implemented under the UDUT

decomposition.

Recall that in Section 2.1.2 the covariance is

defined as

P = U- ID-Iu-T

where U is upper triangular with ones on the diagonal and D is

diagonal. This gives rise to the following definitions for the

sequential:

P k ( -)  = k ( - ) D k i ( - ) U  (- )

Pk(+) -- Uk (+)Dk I (+)UkT(+

Note the following from Figure 2.2.3:

(1) Hk(-) is a lxn vector.

(2) Rk is a scalar.

(3) Q is constant for all t.

Substituting into the expression for the Kalman gain we get:
2

[ 29
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System Model:

Xk = 0(tkltk l)Xk I + w(t) w(t) - N(O,Q)

Measurement Model:

Zk = hk(X(tk)) + Vk Vk N(O,Rk)

State Estimate Propagation:

Xk(- ) = 0(tkAtk-l)Xk-l(+)

Error Covariance Propagation:

Pk ( - ) = 0(tk,tk-l)Pk l (+)0 T (tktk-I) + f tk 'D(tT)Q(T)? T (tT)dt

k-i

Update estimates at time = tk based on measurement Zk.
A

State: Xk(+) = Xk(-) + Kk[Zk - Nk(Xk(-))]

Covariance: Pk(+) = Pk(-) - KkHk(-)Pk(-)

Gain Matrix: ~Kk = Pk(-)HT(-)tHk(-)Pk(-)HT(-) + Rk ]I

where hk = measurement model used at time k (Doppler shift,

bearing, etc.)

k ahk(X(tk))
HaX(tk) X(tk) = Xk(-)

FIG. 2.2.3 - KALMAN FILTER EQUATIONS
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Kk = Pk(-)H'(-) [Hk)Pk(-)Hk(-) + R

= (- (-; -q(-

[Hk(-)U -) k _ - ) k-_ + R k]-

Let = k'Le k(- ) = Hk(-)Uk
( )

Kk = Uk1( - )Dk I(-)V k r (-)LV()Dk (-)Vk(-) + R

Since Vk(-) is lxn, Dk(-) is nxn, and Rk is a scalar, we have:

a VkT(-)D k(-)Vk1 (-) + Rk  ( = a scalar).

Thus,

K Uk (-)D (-)Vk(-)
Kk =

Substituting this expression into the state estimate update

gives:

Xk(+) = Xk(-) + (Zk-Hk(Xk-)) (I)

Substituting into the covariance update gives:

Sk (+ ) =Pk(-)  KkHk(-)Pk(-)

r
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Uk-1 (+)Dk- (+)U-T(-) u (-)D- (_)UkT(_)

Uk' (-)Dk' (-)Vk(-)Hk(-)Uk' ( - )Dk' ( - ) U T ( -
)

a

-F.-_Dk - ) V T
-Uk I(4D k - k k UkT (2)

For the error covariance propagation the

decomposition gives:

Pk(- ) = t(tk,tk-i)Pk, (+)DT (tk tk I) + r(tk tki)

=- D (t k t k I )Uk~1 (+)Dkl (+)u T (+)T (t ,t + (tt
(k" ,k.I) k-i k-i k-i k' k-i l*(kk-1

-i

Let S k-(+) = D(tk,t k-)Uk11(+), then

P - 1 ( - ) D -) = S (+)D T(+)S (+) r(tt) (3)

k Uk ()k Uk( k-i k-i()k-i() (k'k1

Given the standard Kalman Filter equations

expressed in square root format, the procedure is to solve

equation (3) for Uk(-) and Dk(-). This is an easy and straight-

forward procedure to carry out since:

(1) Sii = I because Dii(tk,tk_1)

.kii(-) = 2kii(+) 1 1; where pij is

an element in U- 1

r
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(2) The linear equations generated by

equation (3) are all solvable by back

substitution.

(3) For j<i, Pkii(-) = 0; for i=j, Pkii(-) =

Ikii (-) = 1, allowing all the dkii(-) terms

to be found. For j>i, IUki i (-) can be found

since all the dkii(-) terms required are

known.

Once the Uk '(-) and Dk(-) matrices have been determined, they

can be substituted in equation (1) to give the updated estimate

and substituted into equation (2) to give a set of equations to

be solved for Uk (+) and D (+) that use a method identical to

the one employed to get Uk-'(-) and Dk

Other considerations in implementing the filter

are:

(1) The matrix D(tk,tk_) is never stored.

Whenever a multiplication is required

the special nature of (D is exploited.

(2) The r(tk,tk-l) integration is implemented

in a closed form solution requiring no

numerical integration techniques.

(3) Storage requirements are kept to a

minimum. Dk  is stored as vector and

Uk I is stored in row symmetric form

without the diagonal elements.
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2.2.3 Aspects of the Batch Filter

Theory. The batch portion of the hybrid

algorithm is based on the assumption that, for short periods of

time, the motion of a submarine can be approximated by the

constant acceleration model of Section 2.2.2 (this model is

quadratic in t, allowing it to fit tracks which are moderately

curved). Once it has been determined that the batch algorithm

has converged to a good solution, a switch is made to the

sequential filter. Thus, in the hybrid algorithm, the batch

filter's job is to converge, as quickly as possible, to a state

vector which will allow the sequential filter to be properly

initialized.

The measurement models used in the batch filter

are the same as those used in the MLP and in the sequential
filter, mainly bearing and Doppler-shifted frequency. As in

the MLP, the batch filter uses data measurements to provide

state vector estimates. The measurement models are approximated

by first order Taylor series expansions. The design (X) matrix
is made up of the corresponding partial derivatives, and the

variation in the state vector is the quantity estimated (see

Section 2.1.1). As in the MLP, a major share of the

computational effort involved in the filter is in inverting
1 1X

the X -X matrix, and, as in the MLP, this is done using a

sequence of Givens' rotations (Section 2.1.1). In addition to

the benefits described in Section 2.1.1, there is one further

and very substantial benefit to using this method in the hybrid

algorithm. Specifically, the U-1 matrix of the sequential is

the inverse of the U matrix in the batch filter, and the D
I

matrix of the sequential is the inverse of the batch D matrix

(Sections 2.1.1 and 2.2.1), i.e.,
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-1 -1-

U (seq) U(batch)

D(seq) D(batch)

Note that U and U-1 are unit upper triangular and that D(seq)

and D-' are diagonal, thus their inverses are easily found(batch)
when switching from the batch to the sequential.

Since the batch filter contains only one motion

model, there are no tests needed to select between various

models and no tests needed to select a data interval over which

a given model is appropriate. Since the motion model can be

expressed in terms of the transition matrix used in the

sequential filter, all forward and backward mappings can be

performed with the same code used in the sequential filter.

These two features reduce substantially the computer overhead

imposed by the batch filter as compared with the overhead

imposed by the MLP. Figure 2.2.4 contains a flowchart of the

logic flow in the batch filter.

Implementation. As discussed above, several of

the computational aspects of the batch filter are identical to

J those in either the sequential filter or the MLP. Briefly,

these are:

(1) Solving the approximating linear least

squares problem using Givens' rotations
~I

(MLP, Section 2.1.1).

I
' 3
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YES
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U & D MATRICES
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SOLVE FOR DIRECTION, SWITCH TO

S, OF STATESEQUENTI
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FIG. 2.2.4 - FLOWCHART - HYBRID BATCH INITIALIZER
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(2) Projecting the track using a constant

acceleration model (sequential, Section

2.2.1).

(3) Computing partial derivatives for a given

measurement model (MLP, Section 2.1.1).

For a given number of data points, the batch

filter generates a sequence of initial states, stopping when

the sequence converges to a particular state vector. The

sequence is said to have converged when:

X(j)i - X(j)i-i < E for j = 1,2,...,n
X(j)i

where,

S(j)i he jh component of the state vector

after the ith iteration.

If the sequence hasn't converged after 30 iterations (i>j), a
new point is read and the process is begun again.

One significant computational difference between

the MLP and the batch filter is in minimizing the residual sum

of squares once the variation in X has been found, using weighted

least squares. The MLP uses the Marquardt (Reference 5)
algorithm to speed convergence, while the batch filter uses a

one-dimensional, quadratic search procedure. The algorithm is
extremely fast and has several important properties:
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(I) It searches in one direction only, avoiding

the complications of multi-dimensional

searches.

(2) For a quadratic function, the method

converges quadratically to the minimum.

Since even non-quadratic functions behave

approximately quadratic in the region of

a minimum, this assures rapid convergence

in the final states of computation.

(3) It requires only information at the

present stage and the one immediately
previous to the present, thus reducing

substantially the amount of core and

computation required.

(4) The method requires no derivatives.

2.2.4 Switching Rules

2.2.4.1 Batch to Sequential. In the hybrid

algorithm the basic assumptions are that a simplified MLP

algorithm can be used to fit the data, the fit can be detected

early, and a switch can be made to a sequential filter using

the initial conditions supplied by the batch filter. Thus,

the batch-to-sequential switching must try to satisfy two

constraints:

(I) The transition from the batch filter to
the sequential filter should be made as

quickly as possible.

3
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(2) The switch from batch to sequential

should not be made until a good approxi-

mation to the initial state vector has

been found.

To resolve these problems the hybrid algorithm

uses a nonlinear test of significance developed by Gallant

(Reference 6). The Gallant method is used to test the hypothesis

-~ 4. 4. 4.

H0 : Xi = Xj versus HI: Xi # Xj

4.
where Xi is the estimated state vector from the first i data

points and Xj is the estimated state vector from the first j

data points. Currently, i = j + 2*NBY, where NBY is the number

of buoys in the scenario. Gallant's test statistic for this

hypothesis is:

i
kTI Vk " (Yk-k (Xij))'

(ij) i
kI - (Yk-kk("i)) 2

where

Yk = O h observed measurement value

Yk(Xp) = predicted k h measurement value based

on estimated state vector Xp(p=i,j)

Vk = weight associated with kth measurement

The critical value for the test is:
r
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I

C(i) = 1. + pFa(p,i-p)
i-p

twhere

p = number of elements in the state

vector

i = number of points used to estimate
state vector Xi

Fa(p,i-p) = a percentage point of F-distribution.

Lastly, the decision rule is:

(1) If T is greater than C, reject H0 .

(2) If T is less than C, accept H0 .

Basically, the idea is to compare the weighted
residual sum of squares for estimates. If the ratio is too

large, we reject the idea that the estimates are equal, otherwise,
we accept it. Gallant's critical point gives us a convenient and

Iconsistent measure of "too large".

I If i = j + 2.n and k = i + 2"n, where n is the
number of buoys, then a switch is made from the batch to the

sequential when

I T(ij) < C(i) and T(k,i) < C(k)
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Figure 2.2.4.1 is a flowchart of the batch-to-

sequential switching logic. There are two primary reasons for

requiring the data to satisfy the switching rules two times in

succession:

(1) By chance, a certain percentage of the

time the data will give a false reading

due to the inherent random nature of the

data.

(2) During the earliest stages of estimation
estimates of the state vector may be quite

poor and may not change much over 2-n

points. Thus, based on the data, the test

may conclude that the batch filter has

converged when, in fact, it hasn't.

Usually another run through 2.n points
is enough to determine whether or not

the process has converged.

The basic idea behind this approach is to use the data itself

to determine when the batch filter has converged. At present

an alpha level of .005 is being used, however, this could

become an operator input if desired.

2.2.4.2 Sequential to Batch. The sequential filter

used in the hybrid algorithm is capable of maintaining track

under a wide range of conditions. However, studies at Tracor
have shown that there are times when it will lose track, for

example, if there is a long period of time when data is received

from only one sensor due to low signal-to-noise ratios. Thus,

the job of the sequential-to-batch switching rules is to sense

when the sequential filter has lost track and cause a transfer

41]
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back to the batch filter for reinitialization. Note, an implied

constraint is that the procedure must not be so sensitive as to

interpret normal maneuvers as losing track.

The hybrid contains two tests to determine when

the sequential filter has lost track. The first is a gross

test, and failure to pass it will cause an immediate switch

to the batch filter. Essentially, it consists of a comparison

of the residuals obtained before and after the filtering. If

the residual after correction is larger than the residual before
correction, the filter is assumed to be diverging and a switch

is made to the batch. This is a fairly insensitive test;

however, it is fast, easy to do, and provides "worst case"

protection.

The second test has proved to be quite
successful in determining loss of track. It is based on two

aspects of the Kalman Filter:

(1) If state vector estimate Xk_ is unbiased,

then state vector estimate k is unbiased

(Reference 7), i.e., E[k ] = E[Xkl.

(2) The errors associated with the measurement

model are assumed to be normally distributed

with zero mean.

, .th
Define the i- measurement residual to be

Yi -Yi(i)

43



f
TracrAppled Sciences

where

Yi = ith observed measurement value

Yi(Xi) = ih predicted measurement value based
on estimated state vector Xi

The residuals are the differences between what was observed at
the ith data point and what the filter predictedat that point,
and may be thought of as the observed errors if Xk is near Xk.

Under aspect (2) above, the residuals should be distributed as
normal random variables with zero mean if, again, Xk is near Xk.
Specifically, if the residuals are plotted over time and exhibit

no trends, such as ramping or dramatic mean shifts, then Xk is
4.

probably near Xk; at least the data does not violate this

assumption.

Thus, the problem of sequential-to-batch

switching may be viewed as a problem in determining whether or

not a trend exists in the measurement residuals. To do this
the hybrid fits a regression line of the form,

y = b0 + bit (t = time)

to the residuals from each sensor for each data type. The
lines are tested for significance using an F-test (currently
at equals .005) and, if any one of them tests as significant for

H! four consecutive data points a switch is made to the batch filter.

Note that a separate line is computed for each

data type from each sensor. This is done to prevent information
from one or two sensors, which may be sensitive to the filter

44
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losing track, from being buried or obscured by the information

from several other sensors which are insensitive to the filter

losing track due to scenario geometry, poor signal-to-noise

ratios, etc. There are several reasons for requiring the line

to test significantly for more than one data point:

(1) Early in the data stream it is very

possible that the residuals will cause

a significant fit to occur when, in

fact, track has not been lost.

(2) The sequential filter will typically

wander off, at different times, for

one or two points. This allows it

time to regain track on its own.

(3) One or two outliers at any point in the

data stream could cause an indication
of significance when, in fact, there is

none.

(4) It prevents sharp or rapid maneuvers

from being interpreted as lost track.

To allow the hybrid to be altered to fit

various environmental conditions, it would be quite easy to

hI allow the F-test significance level and the number of required

significant points to be operator inputs. Then, for example,

if the environment was noisy with low data rate the alpha level

could be reduced and the number of significance points could

also be reduced, causing the sequential to be more sensitive

to any loss of track.

45
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2.3 Iterated Sequential Algorithm

2.3.1 Aspects of Iterated Sequential Algorithm

The iterated sequential algorithm, in form,

is very similar to the hybrid algorithm. That is, both

algorithms are comprised of three primary elements--an

initializer, a sequential Kalman Filter, and a set of switching

rules for moving from the initializer to the tracker and back

again. The only difference in the two procedures is in the

initializer. The hybrid uses a batch algorithm to initialize,

while the iterated sequential uses the same filter to initialize

that it does to track, relying on iteration to produce

convergence. There were several reasons for implementing this

algorithm:

(1) There is a reduction of core requirements.

Instruction requirements are reduced

because the same subroutines used in the

straight sequential filter are used in
the initializer. Data requirements are

reduced because fewer save arrays are

needed to make the transition between
initializer to tracker.

(2) There is faster execution time. The

iterated sequential starter uses fewer

operations to achieve an estimate than
does the batch, however, iterating a'bout

an answer could negate this to some

degree.
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(3) One possible weakness of the hybrid is

attempted initialization during a track

too difficult to follow with the constant

acceleration model. By its sequential

structure the iterated starter should be

able to avoid this problem.

(4) This algorithm has simpler program

organization. In the hybrid, provisions

must be made to accommodate two distinctly

different algorithms and transfers between

them. In the iterated sequential, the

same operations are performed in both

portions of the algorithm, simplifying

considerably storage management and

control transfer between the initializer

and tracker.

Figure 2.2.1 can equally well represent the

iterated sequential algorithm as the batch; simply replace

"BATCH" with "ITERATED SEQUENTIAL". The extended Kalman Filter

used for tracking is identical to that used in the hybrid (see

Section 2.2.2) and the switching rules (Section 2.2.4) are also

the same.

Figure 2.3.1 contains a logical flowchart of the

iterated sequential starter. The basic idea is to use

accumulated data points to project initial state vector and

covariance estimates forward, using the sequential filter,

and then test for convergence. Convergence occurs when

()i ()i-l < E for j 1,2,3,...,n

(j)i
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where,

( tihe j-h component of the state vector
after the ith iteration

If the convergence does not occur on the ith iteration, the
state vector is projected back to time, to, using the constant
acceleration model (Sections 2.1 and 2.2.2) as implemented in
the sequential filter. When convergence does occur, a switch
test is made. If the decision is made to switch, the straight
sequential filter is entered; if not, the state is projected
back (as above), a new data point is read, and the cycle begins
anew.
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3.0 TEST RESULTS (COMPARISONS)

3.1 Introduction

This section presents the results of several

tests designed to measure the relative tracking abilities of

each of the three algorithms examined in this report. The

tests consisted of four different scenarios, each replicated

twenty-five times as a series of Monte Carlo runs. The

algorithms then processed each scenario and the results were

analyzed according to four criteria. These requirements are:

(1) Average distance error, T, throughout

the track, defined as,

= ft f 6(t)dt

ti tf-ti

where,

6(t) = r E(t) - rT(t)

rE(t) - estimated position vector at time, t

rT(t) - true position vector at time, t

This is a measure of the average closeness

of the true and estimated trajectories for

the time interval (ti,tf). The two

trajectories are considered close when

<
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For some specified level of S5* (currently

500 meters).

(2) Percent holding time, -, throughout the

track, defined as,

n
Il'----i.

:-- i-• 100%~
tf-ti

where, for a given time interval (ti,tf),

(rij,rfj) C (ti,tf)

(Tijrfj) n (Tik,Tfk) = for j * k

fJ6(t)dt < S* for j = 1,2,.... ,n.
Tj Tfj-Tij -

(3) Predictive ability. Assuming the target

stays on the same trajectory, a given
algorithm will be said to have good
predictive ability if

6(tf+Lt) < 6*.

(4) Average CPU time used to process one

scenario. This gives a measure of the
relative speeds of the three algorithms.

Note, again, that these measures are computed over twenty-five
Monte Carlo samples and are intended as a measure of the average
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or expected tracking abilities of the algorithms.

3.2 Scenario Descriptions

In testing the MLP, hybrid, and iterated

sequential algorithms the intent was to produce several

scenarios, covering a range of tracking difficulties, to test

the capabilities of the three algorithms. The intent was not,

at this time, to evaluate each algorithm at the extreme edge of

its performance range.

The basic layout for each of the four scenarios

generated was the same. It consisted of three DIFAR buoys

arranged in the shape of an equilateral triangle with 2,000

meter sides; no buoy drift was assumed. All maneuvers were

assumed to take place within, or near, the buoy field and a sea

state of two was assumed. Figure 3.2e summarizes the environ-

mental conditions and inputs common to all four scenarios.

The first scenario run (Figure 3.2a) was a

simple straight line course through the center of the buoy

field. The intent of this scenario was to determine whether or

not the three algorithms could track straight line motion with

high efficiency.

The second scenario considered (Figure 3.2b) was

a 180 degree turn in the middle of the buoy field. This was

felt to be a scenario of moderate difficulty and was intended
to compare the ability of each algorithm to respond to an

extremely sharp turn. Note that the maneuver time for this

turn is about 300 seconds. This not only includes the time

required to make the turn itself, but also the time needed to
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regain the required operating velocity (in this case 7 meters/

second).

Scenario 3 (Figure 3.2c) was considered to be
of high difficulty and consisted of a 360 degree turn performed

inside the buoy field. This was intended to test the ability

of each algorithm to follow a severe maneuver for a prolonged

length of time. Again, the maneuver time indicated in the
figure included not only the time required to make the circle,

but also the time required to regain an operating velocity of
7 meters/second.

The final scenario (Figure 3.2d) was also

considered to be of severe difficulty and was intended to

measure the ability of each algorithm to follow a sequence of

fairly rapid turns and also to compare the ability of each

algorithm to follow maneuvers outside, but near, the buoy field.

3.3 Generation of Data for DIFAR Simulation

In order to carry out simulations of the three
target tracking algorithms examined in this report, an algorithm

for generating realistic data, as it would appear from a general

processor for DIFAR buoys, was developed. It was desired that

the generated data f(fi,ai,ti)} have a statistical distribution

closely approximating real data.

3.3.1 General Apprach

The general processor modeled (see Figure 3.3.2.1)

consists of a filter band with bins of width Af, followed by a

square law detector [( )2 and a i/Af averager] and a finite

53



-Tracer Applied Sciences

CaN 0 w 0
$40 4 4 0 i

04 H

Ln0 p.4

C-,
'44
0

N w4

0~04

0

NC

oo 0 4

0b 0
01. CU

0 -r0
o D w *- 4 a)

(fl~ ~ --T0*-4 U

0 0

o1 P.4 0A4,
a) -W"1 d1 Q .

0 ala
44

a) CU



Tracor Applied Sciences

q) (3

> 00
00

01 E-4w

v-41 00

"4 r-4

4 a00 '-, 0

- -4 C C 444 0.

XIO0 .0

~~0

C..4

xI0

- 0(N.4 4

-r4 0

0 0)

0~4 C M

r-I r5



Tracr Appled Sciences

W W0

1.4
0 00
0

ad-lu'

0

Ln 0

00 -4

0 11 H)'

0. PP.4 C4

00 0

C-4I

0
*) C-l 0

P.4 C.,
0 0

r4 r4' 00 1-
0 W 0Pr

00 00
C>4 4 4 p

W) Q) 0 r-4I

o 0 -j4 0 CO)

0 4 0
0) 0 -,-4 1

XI0 r4- 0'0$

Z0 0. 0r r-o
C..) a'gm

H 56



Tram Applied Sciences

60 00 00

U" C'4 r4 0

*r4  
s

01
a 0C 0 )0

0)0

1.' 0 44i
0 . 0 E-4

00CD00 0

0000 .

C; CO C)

01 CO

0 -

4- >111 t V 00 0
0 4 004 % ar4J)C

0w r-I 4 ,-4 0):
04 CD 0I >b P-

00 00 r- M4

0~ 0t LiO ii *,- C)
0~r -4J r--f *v-4Li

CO C) c, ..

CO 0)0 -

o ~0)C8) 01

0%

a"q 0-I 0T 01 1M 4-j

Ca C 0

00 .i
0~E 0Ir 0) v-

A.. v-4.,- ba 1) D 0-I
a) C;' 0)r4 )r- -

0U 0 0 -A
u L) C14~

ra

0 4



TmacaApplhed Sciences

0

coo

z

0 z
000 .> Ct

0C;- 0 U

0 0)

<to 0, 0. ,

0 * 0- C 0 0
4 % O0 04 40

00

4 0 rZ4

4 0 0**

0 4 Jj .,40 P-r

.0J *P4 -4 0 w- -4J" 0 .

00 0.0 r40 0 0 m o 0

* z- 0 ~0 m0 PW >0 fm 04 I

j 58



~~O ~ ~ ~ Q 01 Q) aI*I~j
00 tvI l 1)4- I- C: 0j 0j * j

41 - W S: 09- -W
-,4 0 WO 0) u-al > , nQ

m 0 0:wr4C : 0 -
li ~ ~ 41U)9 ).04 40U

U 1-4

0 t

-v4 0.410 rZ4

(L)J 01 0
0. Ca 0 00

0 P-4

4-I1

0) _14 -I

LI -,4

0
0t

cav

Cu4

'-4

0. *-4 Ca

-r4 4 'V59



TraM Appied Sciences

time perfect integrator (ALI). A MAX-OR picks the strongest

signal in frequency from the omni signal channel and computes

bearing from the X and Y channels. The following describes

the statistics of the outputs of various components in such a

processor. The distribution of the envelope of a Gaussian

process: (1) at the output of a narrowband filter is Rayleigh

distributed, (2) at the output of a narrowband filter and

square law detector is exponential, and (3) at the output of

a narrowband filter, square law detector, post detection

integrator is CHI-Squared distributed. One could randomly

generate errors from these distributions to add to the correct

data; however, with signal present, the X and Y signals are

not independent.

3.3.2 Analysis

3.3.2.1 Generation of Frequency Data. It is
assumed that the input to the processor may be written as the

sum of a narrowband Gaussian signal and Gaussian noise,

W(t) = s(t) + n(t)

where

S(t) - N(O,as 2)

Tin(t) - N(O,an2).

At the output of a narrowband filter, the signal

term may be represented as the sum of two orthogonal signals,

each multiplied by an independent Gaussian random variable.
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S(t) - S coswot + Szsinwot

where

S1 - N(O,aS2 )

S2 - N(O,asz)

WO = center frequency of filter

Similarly for the noise term,

n(t) = n1coswot + n2 sinwot

where

N(O,a 2)

n 2  ~ N(O,a r2) .

In the processor, W(t) is squared and time

averaged over i/Af seconds, where Af is the filter bandwidth in

Hertz.
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1/Af

W(t) 2 = Af J [S 2cos 2Wo t + S2 sinzwot + nlzsinzot

+ n 2
2cos2

0 t + 2Sn I cos W0 t + 2S 2n 2cos
2 W 0 t

+ 2S S2coswotsinwot + 2nn 2coswotsinwot

+ 2S1I T 2cos 0 tsinwot + 2S2 Tilcoswotsinwot]dt.

It is assumed that SI, S, n 1 , and n2 are slowly varying

compared to cos 2wot, sin 2zwot, and coswotsinwot. These may then

be pulled outside the integral sign. The terms with coswotsinwot

factors integrate to zero.

i/Af
= f[S + p 2

2 + 2S1n )J cos2 co3t dt

+ (S 2
2 + 2+2S2n2)J sinzwot dt].

Integration yields

S + + 2S~n1) ( t + i sin2wot)SW(t)z Af[(Sl 2  2 + 2SI 1 +2o

+ (S 2 + p2 + 2S2 2) ( t - sin2w t) /Af

20

Since the process is narrowband, Af << wo

W(t) 2  (S2 + ) 22 + 2Sind

+ (S22 + ,1 +

62
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Using the transformations

S, = asNI

S 2 = SN2

ni= anN 3

n2 = ariN I

where NJ, N2, N3 , N4 - N(0,1), the expression becomes

W(t)z = (NI2 + N2
2) + -(N 2 + N4 2) + aSan(NIN 3 + N2N").

Since the quantity of interest is the power

relative to the noise power a.2 , the equation is divided through

by a 2 Letting

P= S

the signal-to-noise ratio, the relative power is

0- 2 p(N1
2 + N22) + (N3

2 + N4
2) + v[(N1 N3 + N2N").

an

Since the signal may be smeared over several
frequency bins, it is necessary to weight the signal-to-noise

ratio by yi, the fraction of the integration time that the

target spends in bin i. The expression for 00 becomes

00i yp(N,2 + N 2
2) + (N 3 2 + N4 

2) yip(NIN 3 + N2N4).
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It is seen that the average power relative to

noise power out of the narrowband filter of an omnidirectional

hydrophone can be simulated by knowing the signal-to-noise

ratio and generating four independent samples from a standard

normal distribution. The bin with the largest value for 00 is

chosen by the MAX-OR processor and the center frequency of that

bin is used as the frequency data point.

3.3.2.1 Generation of Bearing Data. To arrive at

an estimate of bearing, the voltage from the omniphone is

multiplied and time averaged with the voltage from the X phone

and the voltage from the Y phone. The bearing estimate B is

then

B=tan
-'(O)

where OY and OX are the averages mentioned above.

The equations used in the simulation for OX

shall be derived. The derivation of OY is similar. The input

to the omniphone is

W(t) = S(t) + n(t)

as before. The input to the X phone is

V(t) = S(t)cos(e) + nx(t)

where e is the true target bearing and
2

nx(t) N(O,
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It can be shown that n(t) and nx(t) are

independent processes. In terms of orthogonal components,

W(t) = SIcosw 0 t + S 2 sinwot + n1coswot + nzsinwot

V(t) = S coswotcose + S2 sinw otcose + nx coswot + nx sinwot

where

S1 - N(O,aS2)

S - N(O,a5
2 )

r - I(O'a n 2)

T 2 - N(O,an 2)

Ix, - N(0, an2 )

nx2 - N(0, a).

W(t) and V(t) are multipled and time averaged. It is assumed

that S1, S2, l, )2, 1 nx, and nx, are slowly varying. The

terms with coswotsinwot factors integrate to zero. The

expression is then

1

W(t) V(t) J of[cos2iot(S1 2cose + ~x + S + n1S cose)

+ inWsin0 t(S2 2cosa + f 2 X + 2 S2nxZ + 2S2cose)] dt.

6

r
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Integration yields

W(t) V(t) = (Si 2cose + ninx, + S1 xT + nSlcose)

+n Sco+)

+ (S 2
2 cose + l2'X 2 + S2IX2 + 2S2 Cosa).

Using the transformations and the following

transformations,

- N5

TIi 2 - N 62.

where N,, N6 - N(0,1) yields

2 2
W~t) ~t) 2 S(N 2 + N2

2 )cose + -- (N3 Ns + NN 6 )

+ Gsal(NN +N N6) + aSan(NlN 3 + N2N,)cos6
2 /T.5 2 2

Again, the quantity of interest is the average
power relative to the noise power a.2 so the equation is divided

through by an T Letting

I 2PI as

CTr
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OX = W(t) V(t) = .(N1 2 + N2 2)cose + -i--(N3N5+ N'4N 6)
2r

+ N + N N ) + A(N N + N N )cose
2(1 N 6 2 1 3 2'.

Once again, p must be weighted by Yi, the fraction

of time spent in frequency bin i. The expression for OX is now

Yip
Oxi - (N z + N2Z)cose + (N3 NS + NN 6)

+ - (NINS + N2N6) + --.-(NiN 3 + N 2N)cos.
2 2

Similarly,

Yip z)2_i
OYi = -(N I

2 + N2 2)sin + (N3N7 + N Ne)

22

+ (N1 N, + N2N8 ) + -- (NN 3 + N2 N'.)sine

where N, N8 ~ N(0,1).

3.3.3 Summary

The MAX-OR processor chooses the frequency bin

on the basis of max{OOj} where j ranges over the number of bins.

The bearing estimate is computed using the values of OX and OY
for that bin. The output of the processor depicted in Figure

3.3.2.1 may be modeled with the proper statistics by generating
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eight samples of a standard normal distribution and using the

above equations. The algorithm model of this processor is

depicted in Figure 3.3.3.

3.3.4 Signal-to-Noise Ratios and Variances

The data used in the simulation was generated

by an algorithm designed to generate data with statistical

properties closely resembling those of the output of a general

processor for DIFAR buoys. In order to generate data by this

scheme, knowledge of the signal-to-noise ratio at the input to

the comb filter bank is required. The signal-to-noise ratio

was computed at each time point from

[S/Nji = S - N - 20 log 10 Ri

where

(SIN]i is the signal-to-noise ratio in dB

at time ti

S is the source level in dB

N is the noise level in dB

Ri is the range in yards at ti .

The signal co-noise ratio is input into the

data generation algorithm. This ratio is used in the scheme

to generate the average power in each filter bin over the

integration time. At the end of the data generation algorithm,

when a frequency bin has been chosen to estimate the signal

68
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frequency, an estimate of the signal-to-noise ratio is made

using only the average power in the selected bin of the comb
filter and the knowledge of the average noise power.

[S/N] i = 10 log10 (

Letting 00maxi represent S+N in the selected bin and remembering

that all power values are relative to the noise power, the

expression becomes

00 maxi-1.
S/N i = 10 log10 ( 1 .

where 00maxi is measured in power units (not dB). This method

of estimating the signal-to-noise ratio was chosen to make the

simulation as realistic as possible.

The MLP, hybrid, and iterated sequential

algorithms require that the covariance matrix of the data be

supplied. Since the data points are independent, the covariance

matrix is diagonal and all that needs to be found is an

estimation of the variance of the population from which each

data point is obtained. It is clear that the population and
the associated variances are functions of the signal-to-noise

ratio. Estimates of the variances as a function of signal-to-

noise ratio were found by generating 1,000 samples for Af = .1 Hz
at constant ES/N] for several different (S/N] ratios. Since the

value of the frequency is only resolvable to one bin width, the

frequency variance was given a lower bound of 1"-, the variance

of a variate with density function constant over the interval
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Af and zero everywhere else. These numbers are correct when

Af = .1 Hz. For other values of Af the transformation

aAf = (10) (Af) (a1 o)

is used where al, is the standard deviation of the frequency

data for a particular signal-to-noise ratio when Af = .1 Hz.

The bearing variances do not depend on Af.

3.4 Test Results and Analysis

3.4.1 Introduction

This section presents the results of applying

the hybrid, MLP, and sequential tracking algorithms to the

four scenarios described in Section 3-2. To help understand

the effectiveness of the algorithms, several plots and charts

have been prepared for each scenario. Figures 3.4.1 through

3.4.4 contain the average estimated trajectory for each scenario,

which are found by averaging over all Monte Carlo runs the

position vectors for each time point that a state estimate is

generated.

Figures 3.4.5 through 3.4.8 present graphs of

the average distance error, over all Monte Carlo runs, for a

given scenario. It is computed by finding the difference

between the estimated and true trajectories for each Monte

Carlo run and then averaging them. The dotted lines represent

the one-sigma deviation limits about each average. Note, the

tighter these bands are around the average, the smaller the

trajectory error variation about the average trajectory error,

indicating that the algorithm has converged to the true

rtrajectory.
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Figure 3.4.9 gives the average distance error

over the entire scenario (S) for all three algorithms. The

number to the left of the slash gives the actual average

distance error; the number to the right of the slash gives the

average distance error as a fraction of the hybrid algorithm's

distance error. Lastly, Figure 3.4.10 gives the average

execution time for one Monte Carlo run, computed by the

formula:

(Total CPU Time)/25.

Again, the number to the left of the slash is the average

execution for that algorithm and the number to the right of

the slash is that time expressed as a fraction of the average

execution time for the hybrid.

3.4.2 Scenario One

Figures 3.4.la-c and 3.4.5a-c contain the

average estimated track and average error plots for scenario

one. This scenario was a simple straight line trajectory

through the center of the buoy field and all algorithms followed

it well with the following exceptions:

(1) The MLP displays a slight offset bias.

This will be evident in all attempts

of the MLP to track straight line data.

(2) The iterated sequential algorithm appears

to begin tracking before the start of the

true track. This is caused by the

inability of the initializer to provide

r accurate state vector estimates with a
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small number of data points, resulting
in severe underestimation of position

coordinates early in the scenario.

This problem will be evident in all

subsequent scenarios.

From the error plots it can be seen that the

hybrid has a smaller average distance error than either the

MLP or the sequential, and it also has somewhat tighter sigma

lines. The error plots for the sequential indicate large

average distance errors until about 200 seconds, reflecting

the algorithm's inability to provide good position estimates

early in the scenario. Note that the sequential and hybrid

algorithms begin generating estimates approximately 50 seconds

into the scenario; the MLP cannot begin generating estimates

until almost 100 seconds of the scenario have passed.

From Figure 3.4.9, the average distance error

for the iterated sequential is about 5.5 times that of the

hybrid and the average error for the MLP is about 1.8 times

that of the hybrid. Lastly, from Figure 3.4.10, a sequential

run took about 2.8 times as long as a hybrid run and an MLP

run took almost four times as long. Thus, for Scenario 1, the

hybrid had smaller average tracking error, small tracking error

variance, and substantially faster execution time. All three

methods were within 500 meters of the target throughout the

entire scenario.

3.4.3 Scenario Two

Figures 3.4.2a-c contain the average estimated

track plots and Figures 3.4.6a-c contain the average distance

error plots for Scenario 2. The hybrid approximated the true

101
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trajectory very closely, while the MLP again exhibited some bias

and also had some difficulty with the beginning of the turn.

The sequential again had estimation problems in the early going

and then underestimated the turn somewhat. The turn under-

estimation occurred primarily because initialization took place

shortly before entering the turn (on the average) and usually

introduced some lag in the state vector. This then caused the
sequential to be somewhat behind throughout the turn.

Note that the sigma limits for the hybrid

algorithm are much tighter than for the other two algorithms.

The troughs in the plot indicate, roughly, those places where

the batch portion of the algorithm had completed reinitializa-

tion of the trajectory. For the MLP, the large spike occurring

at approximately 300 seconds indicates that the turn has begun

and that the MLP has lost the trajectory somewhat. For the

sequential algorithm, there are fairly substantial errors
occurring at the start and near the end of the scenario. Both

sets of these errors are due to the inability of the sequential

starter to consistently provide accurate estimates of the state

vector using a small number of data points.

3.4.4 Scenario Three

Figures 3.4.3a-c and 3.4.7a-c present the

average estimated track and average distance error plots for

Scenario 3. Again, the hybrid estimates the track quite well

with a stable error plot and fairly tight sigma limits. The

MLP exhibits problems in two areas, recognizing that the turn

has begun and switching to the appropriate model, and, about

halfway through the turn, realizing that some model adjustment

is needed. Figure 3.4.9 shows that the average error for the
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iMLP is about 2.3 times that of the hybrid. The sequential

again exhibits difficulties for about the first 200 seconds

of the scenario, causing it to lag somewhat throughout the

maneuver. Figure 3.4.10 shows substantially faster execution

time and, again, all algorithms estimated positions within

500 meters of the actual ones throughout the entire scenario.

3.4.5 Scenario Four

The average estimated track and average distance

error plots for Scenario 4 are contained in Figures 3.4.4a-c

and 3.4.8a-c. All three algorithms estimate this trajectory

fairly well, with the hybrid giving just a bit lower average

error than the MLP. It is interesting to note that during the

maneuver the sigma limits for the hybrid were somewhat larger

than for the MLP, but after the maneuver was completed they

were substantially smaller. All three algorithms required

more execution time for this scenario than for any other,

however, the sequential still took about 1.8 times and the

MLP about 3.4 times as long to run as the hybrid.

10N!
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4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

The main purpose of this study was to refine

the hybrid algorithm by improving its numerical procedures,
program organization, and switching rules, and then compare

its performance to that of Tracor's MLP algorithm and to that
of an algorithm which uses an iterated sequential filter to

initialize. The ideas underlying the development of all three

algorithms were described in Sections 1.0 and 2.0; Section 3.0

presented the results of a series of tests designed to test

the capabilities of each algorithm.

Based on the results contained in Section 3.4,

it is clear that the hybrid is superior to both the MLP and the
iterated sequential in terms of tracking accuracy and execution

time. In every scenario examined the hybrid had not only the

lowest average execution time (often by a factor of three or

four), but also the lowest average distance error. In addition,

the hybrid usually had tighter sigma-bounds about the distance

error than either of the other two.

Comparisons between the iterated sequential and
the MLP are somewhat more difficult to make. For all scenarios

examined, the iterated sequential executed considerably faster

than the MLP. Also, once the sequential had enough points to
provide correct initialization, examination of the distance

error plots indicates no significant differences between the

two algorithms in their distance errors and distance error
variances. Thus, it is only early in a given initialization or
reinitialization phase that the iterated sequential does not

r perform as well as the MLP.
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Part of the reason that the sequential algorithm

has difficulty initializing and reinitializing is that when the

extended Kalman Filter measurement equations are solved, there

are no provisions for optimizing the resultant state vector.

All optimization comes strictly as a result of iteratively

obtaining an initial guess, filtering to obtain a state estimate,

and then mapping the state vector back in time. Work has begun

on the software required to optimize the state vector in terms

of the actual measurement equation, not the linearized approxi-

mation obtained when applying the Kalman gain equation. If

this procedure works as expected, both the execution time and

the average distance errors for the sequential will be reduced.

At present the sequential and MLP algorithms may be considered

roughly equal in performance. With the optimized initializer,

the sequential will be clearly superior to the MLP.

4.2 Recommendations

The recommendations arising from this study fall

into two natural groups, those dealing with the improvement or

modification of one of the algorithms and those dealing with

analysis of the capabilities and robustness of each algorithm.

Recommendations for algorithm improvement or modification

include:

(1) Dealing with Outliers. At present,

neither the hyb-.id nor the sequential

*1 has an effective method for dealing

with bad data points or a bad data

stream from one particular sensor.

There are several schemes for dealing

with outliers (such as the procedure

Nused in the MLP) and they should be
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investigated for use in the hybrid and

sequential algorithms.

(2) Optimize Sequential Initializer. As

noted in Section 4.1, software is being

developed which will allow the sequential

starter to optimize a given state vector

estimate with respect to the true measure-

ment models and not some linear approxi-

mation. This should be completed and the

new optimal initializer installed.

(3) Add Higher Order Terms. For the hybrid

algorithm, the optimization procedure

used in the batch initializer was

equivalent, in result, to using higher

order terms in the measurement model

approximations. However, in the

sequential portion of the algorithm

these optimization procedures were not

implemented in order to minimize

execution time. By using higher order

terms in the measurement models employed

by the sequential filter, it may be

possible to increase tracking accuracy

without significantly raising scenario

execution time.

Recommendations for determining and comparing

the robustness of each algorithm include:

r1
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I
(1) Tests on Real Data. Using the non-

gaussian, simulated data of this study,

all three tracking algorithms did well.

However, the true test of any algorithm's

capabilities is its performance on actual
sea data. Once the modifications proposed

above have been completed, all three
algorithms should be tested on real data

taken from several scenarios.

(2) Effects of Data Quality and Data Rate.
During testing of the hybrid, scenarios

with different data rates and qualities

were produced and tested. Indications

were that data rate was more a factor
in determining good tracking accuracy

than was data quality. Using analysis
of variance/response surface techniques,

it may be possible to determine the
relative importance of data rate, data

quality, and buoy number and to identify
certain optimal conditions.

(3) Effect of Buoy Drift. All scenarios
analyzed in this study assumed constant

buoy positions throughout the scenario.

Of course, in actual practice this is
not the case and the best algorithm is

that one which is most efficient in the

face of buoy position uncertainty. The

necessary software is in place in the

hybrid and sequential to generate buoy

position estimates, however, there
r
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would be a certain amount of programming

involved in generating the simulated

measurements.

(4) Examine Other Data Types. For this study

the only data types used for each scenario

were frequency and bearing. However,

there are other data measurements which

can be used for tracking, such as range,

time difference of arrival, Doppler ratio,

and Doppler difference.

r
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5.0 MULTIPLE TARGET PROBLEM

The second major purpose of this study was to

outline a procedure for attacking the multiple target estimation

problem. There are two facets to the problem:

(1) Having the ability to track one particular

target in the midst of others.

(2) Having the ability to identify and track

several different targets concurrently.

These may be considered to be the surveillance and tracking

aspects of the multiple target problem. It is hoped that a

single algorithm can be developed to handle both tracking and

surveillance.

At present there are several theoretical papers

(References 8-15) dealing with various aspects of the problem.

The majority of them, however, do not consider in depth the

problem of initial sorting and classification, concentrating

instead on schemes for placing an observation in the correct

track, given that a certain number of tracks exist. There are

several related approaches which basically develop the theory

needed to set up probability "gates" around the predicted

measurement for a given track. These gates are equiprobability

contours chosen such that the likelihood of any estimate within

the gate being correct is above a certain threshold. Other

methods rely on a posteriori probability analyses of the likeli-

hood of a given measurement belonging to a certain track, with

appropriate decision rules for placing the observation with a

particular track. Many papers contain algorithms for multiple

target tracking which require either prohibitive amounts of

r
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computer core or prohibitive amounts of computer time,

necessitating the use of some approximating, suboptimal

procedure. Currently, no paper has yet been found which

applies a given method to a real-world problem. All examples

given are fairly simple simulations.

It is proposed to approach this problem by

using a combination of the above methodologies and a statistical

technique called cluster analysis. Cluster analysis is

essentially the branch of statistics which deals with methods

for grouping large numbers of objects into smaller, mutually

exclusive subgroups containing members as much alike as possible.
Many clustering methods are extremely effective when applied to

the appropriate data set. Clustering procedures may all be

thought of as containing three basic elements:

(1) A measure of similarity (or dissimilarity)

to apply to members of the population.

Examples include Euclidean distance,
weighted Euclidean distance, and the

value of some scoring function.

(2) Some optimizing or cluster defining
criterion. Examples include:

(a) Minimizing the variance of each

cluster about its centroid.

(b) Minimizing the maximum distance

between any two cluster points for

all possible clusters.

*r
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(c) Minimizing the average distance

between all cluster points over
all possible clusters.

(3) An algorithm or method for finding the
optimum based on (1) and (2) above. In

general these algorithms fall into two

classes:

(a) Divisive or agglomerative partitioning

procedures, such as sorting, switching,

joining, splitting, or adding.

(b) Application of some standard

mathematical formulation, such as

integer programming, dynamic
programming, or graph coloring.

Figure 5.1 presents a logical flowchart of the

proposed multiple target algorithm. The algorithm would contain

a clustering procedure which would perform two functions:

(1) Initially break a set of data points
into clusters corresponding to a set

of trajectories.

(2) Process each data point after initializa-

tion to determine which cluster (trajectory)
it should be associated with.

Once a point had been associated with a given cluster, a new

state vector estimate would be generated using either the hybrid
ri or iterated sequential algorithm. Note that the speed of the

' i • 1ii
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particular tracking algorithm becomes crucial at this time,

particularly as the number of targets increases. The resulting

state vector would then be analyzed for appropriateness using

another clustering algorithm, some type of a posteriori

probability analysis, or one of the "gating" procedures

discussed in the literature. If an observation passes this

test it becomes permanently associated with the current cluster

and a new observation is obtained. If an observation fails the

appropriateness test, it is placed in the next most likely

cluster (that cluster having the next highest value of the

optimizing criteria) and a new state vector estimate is derived

based on the trajectory associated with members of this cluster.

If post-estimation tests rule an observation out of all its

most likely clusters, a new cluster is formed with the given

observation as its sole member. This cluster will be considered

the beginning of a new trajectory. Note that the state vector

estimation algorithm is being used in an interactive manner.
It is hoped that by having both pre-estimation and post-

estimation evaluations of each observation the number of

misclassifications can be kept to a minimum.

Because of the difficulty of the problem it is

felt that all data processing procedures should be made general

enough to handle N targets, but that, initially, all efforts

should concentrate on being able to handle one to three targets

in terms of tracking or surveillance. When this stage is
reached, an analysis of algorithm performance and a study of

the additional effort needed to handle N targets should be made.

At this stage, then, identifiable tasks in a

multi-target project include:

1
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(1) Generation of simulated multi-target

data.

(2) Selection and testing of an appropriate

clustering algorithm.

(3) Selection and testing of an appropriate

post-estimation evaluation procedure.

(4) Development of software to support

and implement the multiple target

algorithm.

(5) Modification of hybrid and/or iterated

sequential tracking algorithm to

interface with multi-target program.

This would involve some storage

alterations and possible some new

subroutines to handle efficiently the

data structures that the multi-target

program will require.

Certain parts of the above schedule have already

been addressed, either in this project or other Tracor projects:

(1) For this project the capability to

generate simulated frequency and bearing

data for one target was developed. It

is felt that two targets can be simulated

by generating two sets of data and merging

the results. A small amount of programming

will be required to develop the software

required for the merge.
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(2) Tracor is now in the process of

acquiring two general purpose clustering

routines, CLUSTAR and CLUSTID (Reference 15),

which, according to its authors, will allow

the examination of about "75 percent of the

published uses of cluster analysis".

Additionally, Tracor is in the process of

obtaining an algorithm developed by

R. F. Ling (References 16, 17) which is

specifically designed to produce long,

string-like clusters very similar to the

graphs of time, frequency, and bearing

coordinates of a moving target. Ling

used it very successfully to cluster

the 60 brightest stars in the sky into

their respective constellations using

celestial coordinates.

(3) A literature search is continuing for

additional papers specifically addressing

the multi-target problem.

r
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