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1.0 SUMMARY

This technical report presents the results and progress

of the first six months of research on numerical methods for

two-dimensional process modeling under Contract MDA903-80-C-0498,

DARPA Order No. 3984. A significant milestone has been passed

in this initial period, well in advance of our anticipated

schedule: An algorithm of sufficient speed to be used for

routine VLSI process modeling has been found. It is orders

of magnitude faster than methods presently being used in the

U.S. and abroad, requiring only seconds per process step on

the CDC Cyber 176 to generate full two-dimensional detail on

dopant spread. A description of the algorithm will be found

in Section 3.2 below.

1.1 TASK OBJECTIVES

The overall objective of this program is to develop fast

and accurate methods for computer modeling of the two-

dimensional spread of dopants and other defects during VLSI

circuit fabrication. Our initial goals are to demonstrate

these methods for nonlinear diffusion of a single dopant

during oxide growth, and to provide the resulting computa-

tional algorithms in a form suitable for incorporation into

a general process modeling computer code, such as Stanford'sU program SUPREM.
Three tasks have been defined for the first year's effort:

Task 1 - Analysis of Numerical Methods

Task 2 - Formulation of Test Cases

r Task 3 - Algorithm Development and Evaluation
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Their objectives are, respectively:

Task 1 - Select promising algorithms from other disciplines,

primarily fluid dynamics, where considerable

progress on numerical methods for multidimensional

problems has recently been made.

Task 2 - a) Determine realistic parameter ranges to be

used as test cases for source and drain

diffusion into a short MOSFET channel region.

b) Develop and analyze two-dimensional diffusion

problems for which dopant profiles can be

obtained to high accuracy by existing

techniques.

Task 3 - a) Evaluate each selected algorithm for speed
and accuracy.

b) Adapt the most promising algorithm(s) to

solve the combined oxidation-nonlinear

diffusion problem for a single dopant

species in two dimensions.

1.2 TECHNICAL PROBLEM

The fabrication of VLSI devices requires production of

features of submicron size and separation. Electrical char-

acteristics such as threshold and punchthrough voltages will

Hbe sensitive to dopant spread into critical areas adjacent

to the original features. Experimental control of this

spreading, without guidance from accurate computer modeling,

will be costly, tedious, and time-consuming. However, the

use of standard numerical methods to achieve an adequate

r
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modeling capability is also costly and time-consuming. One

should therefore seek advanced methods, drawn from areas

such as fluid dynamics, where considerable effort and

ingenuity have been expended in recent years to develop fast

and accurate solvers for the characterization of multidimen-

sional, time-dependent phenomena.

1.3 GENERAL METHODOLOGY

Based upon our own ongoing research in computational

nonlinear aerodynamics, we have identified several promising

approaches to the development of a fast solver for two-

dimensional diffusion problems. After a preliminary screen-

ing, a few of these have been selected for adaptation to the

problem of dopant spread during oxidation or annealing. These

algorithms will be tested for speed and accuracy on the prob-

lem of nonlinear dopant diffusion into the channel region of

a MOSFET, as well as on simpler problems for which the actual

dopant profiles can be accurately obtained by other means.

1.4 TECHNICAL RESULTS

Two algorithms have gone through preliminary screening:

high-order finite element methods, and a multidimensional

version of the method of lines, both utilizing an optimized

stiff integrator for the time integration. The finite element

methods have proved disappointing, but the method of lines

has provided an unexpectedly large gain in speed. Two-

dimensional post-annealing profiles (without oxidation) for

a 15-minute drive-in cycle on boron-implanted silicon at

1100 0C, with a peak initial boron concentration of 1020 cm- 3,

F" were obtained in ten seconds of CPU time on the Cyber 176.
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These results can be directly compared with the recently

published work of Warner and Wilson (Bell System Tech. J. 59,

1 (1980)), where similar nonlinear diffusion problems with

the same number of unknowns (a 21 x 41 grid), solved by

second-order finite element methods, took over seven minutes

on the Cray-i computer, a machine which is five to fifteen

times faster than the Cyber 176. Comparing equivalent CPU

times on the Cyber 176, one finds our method of lines

algorithm to be at least two orders of magnitude faster

than the algorithm used by Warner and Wilson. A more

detailed discussion of these results can be found in

Sections 3.2 and 3.3.

1.5 IMPORTANT FINDINGS AND CONCLUSIONS

The speed of the method of lines algorithm is already

sufficient to render its use for routine process design

practical for a process engineer with access to the latest

IBM or CDC computers. Since these machines can currently

be rented economically on a time-sharing basis, it appears

that we now have in hand the core of a new two-dimensional

process simulator. Our immediate priorities should therefore

be to complete the testing and characterization of this

algorithm, and to extend its use to diffusion during

oxidizing process cycles, where the oxide-silicon boundary

moves nonuniformly.

1.6 SPECIAL COMMENTS

To facilitate the transfer of this algorithm into a

complete, two-dimensional process simulator, an early meeting

r
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with researchers at Stanford responsible for simulator

development has been tentatively scheduled for March, 1981.

By this date, good measures of the overall performance of

the method of lines algorithm will have been obtained.

1.7 IMPLICATIONS FOR FURTHER RESEARCH

The work of testing potentially fast algorithms for

multidimensional VLSI problems has barely begun. There

remain at least two strong motivations to continue research

on new methods: to find methods which can be applied

economically to derive VLSI device electrical characteristics

from two-dimensional dopant profiles, and to extend the

treatment of device structure formation to the level of

the actual defect processes, involving multispecies migration

and chemical reaction. This will ultimately provide a better

bridge from the physics of solid-state defect dynamics to

the engineering observables than the current, semi-empirical

models. Such a tool can be used to recalibrate these models

for new situations, and to determine at what scale new

effects will appear and become important to device performance.

1.8 ORGANIZATION OF THE REPORT

The basic formulation of the equations describing one-

dimensional nonlinear diffusion, with segregation at a moving

oxide-silicon boundary, is given in Section 2.1. This is

followed by a presentation of the two numerical procedures

examined to date (Section 2.2) and a summary of results for

one-dimensional test cases (Section 2.3).
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In Section 3, the generalization of these problems to

two dimensions is considered. For the reasons stated in

Section 3.2, two-dimensional numerical tests have only been

carried out on the method of lines algorithm. Alternative

approaches to the treatment of the nonuniformly moving oxide-

silicon boundary are described in Section 3.1. Results for

a nonmoving, olanar boundary are presented in Section 3.3.

Plans for future work are outlined in Section 4.

6r
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2.0 ONE-DIMENSIONAL REDISTRIBUTION PROBLEMS

Initial computations were carried out on one-dimensional

redistribution problems to keep computer costs low, to learn

the limitations of the various numerical procedures, and to

determine the number of grid points required to obtain

satisfactory resolution.

2.1 MATHEMATICAL FORMULATION

The redisiibution of impurities in silicon-on-sapphire

(SOS)-type structures during thermal oxidation was treated

by Maldonado and Murphy as a nonlinear diffusion equation

with a moving boundary. This equation can be transformed to

one having a fixed boundary by introducing the change of

variables

(x- mU(t))LI/L(t) (la)

=.t (ib)

where m is the ratio of the thickness of silicon consumed,

given by L(O)- L(t), to the oxide thickness, U(t). LI repre-

sents a characteristic length at t= 0, which is given by

LI = L(0) -mU(0) and denotes the right boundary. In these

new variables the governing equation for the impurity

rconcentration, N( ,T), is given by

•N(&,T) [L a, JDN(,T)I aN(E,T)

+ (LI - ) m'U(T) 3N( ,T) (2a)I L(T) D

7
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with boundary conditions

= L(T) (k-m) U(T)N(O,T) (2b)3L I  D(N(O,T))

aN (L-T, T )
0 (2c)

and initial condition

N(E,0) = N O (C) . (2d)

k is the segregation coefficient, and NO ( ) is usually selected as
a Gaussian, modeling the type of doping profile which results

from ion implantation. The nonlinear diffusion function is
1

N 2 + 2n?
D(N) = DoN+in ]i1 (2e)(N 2 + 4n. in

in

process temperature and Do is the intrinsic diffusivity.

This nonmoving boundary value problem (2) is much easier

to solve numerically than the original one proposed by
1

Maldonado and Murphy. In fact, the numerical results to be

presented will indicate that good accuracy is achievable

using relatively coarse grids when discretizing equation (2).

k
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2.2 NUMERICAL PROCEDURES

2.2.1 B-splines

The Galerkin method using piecewise polynomial B-splines

(see deBoor 2 consists of approximating the concentration by

n
N9s (E~,r Q(-r)B ( (3)

where the B.i (C) are known polynomials of order k which vanish

outside of specified intervals. If N is replaced by Ns in

equation (2) and the resulting expression is multiplied by

B q(C) and integrated over 0,1,11, the Galerkin formulation

takes the form

f S ~ B (U ds L'j( _ __

0 0D

+ L(T ) J(L I--&-~ BN q - LF (K-M)iU(T)Ns(0, -) B q(0)

(4a)

L ILIf N (CO)B (&)d N0 (E)B (&)d& (4b)
0 q j 0  q

q=

9
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where one integration by parts was applied. Equation (4) may

be written in matrix form as the following system of nonlinear

initial value ordinary differential equations:

A d = F(a,T) (5)

T

where a = (al(T), a 2(T), "--, an(T))T,

A = i( i ))Bj()d and the initial value (O) is obtained

from solving equation (4b).

The following numerical characteristics are well known

for such problems as (4) and (5):

(1) The matrix A has half bandwidth k-l.

(2) All integrals in equation (4) may be evaluated

accurately using kth order Gaussian quadratures

between the knots of the B-splines if the separation

is sufficiently small.

(3) Equation (5) is stiff (see Gear 3 ) and, consequently,

stiffly stable integration procedures must be used.

This typically requires the evaluation of the

Jacobian, aF/aa, which also has half bandwidth

equal to k-l.

(4) kth order B-splines lead to numerical approxima-

tions, Ns , which are kth order accurate in the

spatial discretization parameter.

The time integration of (5) is carried out using a

robust integrator with automatic variable step-and-order

11' 10
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changes from first to fifth order. Thus, the user need only

specify an error tolerance, and the integrator automatically

guarantees that the time-integration steps satisfy this

criterion. Spatial errors are reduced by increasing the

number n of B-splines or increasing their order, k. The

motivation for considering such a method is that by employing

high order B-splines (large values of k) we might be able to

reduce the number n required to provide acceptable accuracy

and as a by-product reduce computer time. This must be

balanced against any increase in computation caused by the

increase in bandwidth of the matrices A and DF/aa.

2.2.2 Method of Lines

We will describe this method by using a uniform mesh

= LI/n on the interval [0,L 1 ], although a nonuniform mesh

has been applied, occasionally. The partial differential

equation (2a) is discretized in the spatial variable using

centered differences; i.e., for q = 1,2,-.-,n-1,

dN(E ,T) [E1I [Dg+h(Ng+1 -Ng - Dq~h(Nq- Nq 1 )l
dT (T) (AE) 2

* N -N
+ (L I - r) ) N+INq-I (6a)

where = qA&, Nq = N( qT), Nq± = INq+l+Nq), and

Dq± = D(Nq+ ). The boundary conditions are discretized

using one-sided differences in (2a), and combining this

with (2b) and (2c) yields

i
'-I
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dN (C0'T) 2 L 1 D (NI - N0o L(T) (k - m)U()N 0

dT T (-) (AE) 2  L~

ad+ m (k -m) 6(T) N 0 /D 0  
(6b)

and

d(n') -2 I (Nn NnDl) (6c)
dN (C ,) [(N -N

dT T) D n- (AE) 2

Equation (6) may be written in the form

dN

d- = g 0 (N0 'N 1
' T) 

(7b)

dNn
d = g(Nn-l'Nn ' T ) (7c)

with initial conditions given by

N q(0) = N o(E q) (7d)

Equation (7) is solved efficiently using a stiff

integrator called GEARB developed by Hindmarsh. 4 Note that

the Jacobian, ag/aN, is tridiagonal, so that it may be

r
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inverted easily. This integrator is also variable-order and

variable-step-size and employs the implicit backward differ-

entiation formulas, which are now quite common for treating

stiff ordinary differential equations. Excellent error

control is the strong point for this technique.

2.3 NUMERICAL RESULTS

2.3.1 B-splines

For our test case we use an example described by Prince

and Schwettmann. This involves the redistribution of a high

dose 80 keV boron implant in (111) silicon. The redistribution

is done by bringing the silicon into contact with an oxidizing

(steam) ambient at 1100 0C. This is a highly nonlinear case

and contains a highly peaked Gaussian as an initial condition,

which is difficult to approximate by an equation of the form

(3) when n is relatively small. To alleviate this problem we

employ a logarithmic transformation of the form

N(&,T) = eu(C ' T)

In Table 1 below, a list is given of some solution values at

the SiO 2-Si interface at time T= 0.75 hour for various order

k and number of uniform subintervals k on a silicon slab of

length 2 pm. Here n = I + k - 1. CPU denotes the running

time on the IBM 3033 in minutes and 3.169(18) signifies the

number 3.169 x 1016.

Observe that the CPU time is approximately linear in 9

but quadratic in k. Also, since the solution ranges over

r
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Table 1. Solution Using B-splines

k CPU u N

2 50 0.089 42.60 3.169(18)

3 20 0.080 42.70 3.503(18)

3 30 0.117 42.58 3.106(18)

3 50 0.191 42.57 3.076(18)

4 10 0.061 43.17 5.604(18)

4 25 0.222 42.61 3.201(18)

4 50 0.400 42.57 3.076(18)

5 50 0.682 42.57 3.076(18)

6 25 0.578 42.58 3.106(18)

6 50 1.081 42.57 3.076(18)

many orders of magnitude, a certain minimum number of subintervals

is required to accurately monitor the redistribution. In this

example the third order method (k= 3) employing 30 subintervals

is about optimal when both accuracy and computer time are

considered. This means that in two dimensions a grid of

"t' 30 x 60 points using a third order method should suffice when

the lateral dimension is twice the depth (a typical applica-

tion in MOSFET process design).

2.3.2 Method of Lines

The logarithm transformation needed for high-order

B-splines was not required here, since the initial data (7d)

is used directly as initial conditions for the ordinary

differential equations. In Table 2 we again list some

1
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Table 2. Solution By Method of Lines

n+l CPU N

205 0.347 6.039(18)

45 0.107 6.040(18)

21 0.068 6.152(18)

interface values at time T = 0.75 hour for various numbers

of grid points n+l. However, this time we use the SUPREM

default values for the parameters in the code, which explains

the differences between the surface concentration values in

the two tables.

SUPREM gave a value of N = 5.49(18) using 0.076 minute

of CPU time. Observe that acceptable accuracy can be achieved

with only 21 grid points, which translates to a grid of

21x 41 in two dimensions.

1
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3.0 TWO-DIMENSIONAL REDISTRIBUTION PROBLEMS

As we have learned by studying one-dimensional problems,

the moving boundary problem can be greatly simplified by

mapping it into a fixed region. In two dimensions, two

different types of mappings into a rectangle are considered:

(1) translation-stretching, and (2) conformal mapping.

3.1 FORMULATION

3. 1. 1 Translation-Stretching

In Figure 1 below is a model for the field oxidation

step in the fabrication of an MOS device in physical

coordinates.

SC80-11378

X

ION REGION I REGION I - SHADED REGION IS DOMAIN
W2 < y < b3) (b < y -< b2 )1(0 < y < b11 FOR BOUNDARY VALUE PROBLEM

IN xy COORDINATE SYSTEM

M I

II Iu

Figure 1. Definition of Symbols for Three-Region Model
of Field Oxidation
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In two dimensions the moving boundary is characterized

by the function mU(y,t). The above region is mapped into a

rectangle by the transformation

- tx-mU(yt)L
Lyt) LI (8a)

LWy,t) I

S = (8b)

t=t (8c)

where L(y,t) = L0 -mU(y,t), LI = L0 -mU(y,O) = L- mUoi, and

U(y,O) = U0 i U01 I = U01 11 = constant. Under this transforma-

tion the standard two-dimensional nonlinear diffusion equation

can be written as

L + = L - [D(N) N + D(N) -

2mU [
L (LI - ) IN -

m(LI1- 0) MU a N

+ m L 2 IUTL -(UTn L + 2mU )D(N)I B

for 0 < L , 0 < r < b 3  (9a)

with boundary conditions

17
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IN(E,O,T) 0 0 < E < (9b)
anI

aN(,b 3 p = 0 0 < < L (9c)

an

n = 0 0 < b b3 (9d)

L LD(N) a i['M aN -[

L j-- + LID(N) I [%D(N)

= (U+ 1) (k-m)U N(0, n, ) 0 < n <b 3 . (9e)

The nonlinear diffusion coefficient is selected as that

used by Warner and Wilson:
7

D(y) = D20 + I2+ Y

where y = N/ 2n in.

As a test case to characterize the moving boundary

function U(n,r), define

U = - (a/2) + [(%2 /4 + 8T] (10a)

SII I ( T ) = 3U (T) (10b)

r
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where a and are oxide growth parameters in the standard

Deal-Grove model. To interpolate smoothly between these

limits, take

U(flT) = U (T) ; 0 < n b I  (10c)

(O__i I - U I )  (UII 1 - UI ) _(_-bl)__

U(n,T) = U + (n-bl) I sin 2

b I 1 n < b2  (10d)

UJ(n,T) = UIII(T) ; b 2  q b3 .(10e)

Although many other selections are possible, this one has

the advantage that U is a continuous function with continuous
first derivative, and that equation (9a) is greatly simplified

in the regions 0 < n < bI and b2 < n < b3 where UD = 0.

3.1.2 Conformal Mapping

The introduction of mixed derivative terms (92/a&an)

into the diffusion equation and the presence of both &- and

n-derivatives in the boundary condition at the oxide-silicon
interface are consequences of the lack of orthogonality

between lines of constant E and lines of constant n in the

translation-stretching transformation. The impact of these

complications on the efficiency of the numerical procedure

is not small; taken together, they have been found to nearly

triple the CPU time required to obtain a solution.

r
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A simple approach to overcome these difficulties is to

employ a conformal map whose level lines closely approximate

the desired shape of the silicon region. The construction

of appropriate conformal maps for the area beneath a bird's

beak oxide layer was studied during FY 1980 under Rockwell

IR&D funding; the application of one such mapping to this

problem is summarized below.

One can find in standard texts on complex functions 6 the

transformation

z =cosh- 2-k-1 coh'( l) 2 IC>0h(I2kl- 1 k h'[ (k 1) 2k- - -\ kosh - - l-- x j I s T > 0 , (11)

which for k > 1 maps the upper half C-plane onto a strip with

a step in it:

n(k- l)/k < y < for x < 0 , and 0 < y < i for x > 0

Since the exponential transformation C = ew maps a uniform

strip of width 7 (0 <Im w < iT) onto the upper half C-plane,

the indicated substitution of ew for in (11) yields a

conformal map from a uniform strip to a stepped strip. The

exact correspondence is illustrated in Figure 2. A level

line Imw = E0 > 0 provides a natural model for the oxide-

silicon boundary, the region above 0 corresponding to the

silicon layer.

The basic advantage of employing conformal maps is that

the structure of neither the differential operator nor its

associated boundary conditions is changed thereby. The

diffusion equation

20
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F 7ri E F ' 7ri E '

(n k t o -- L A', _t t

A Bs C D- C,

wPLANE z-PLANE

Figure 2. Conformal Map from Strip to Stepped Strip:
w = D+i&, z = x+iy

aD+ a N (12)

a(ax) ay ay at

is transformed into

!dw 2a (D ) + a (D aN) =a-aN + aN E aN an (13)
dz a an an 3T T7 anI at

where the time dependence of E and n arise from motion of

the oxide-silicon boundary. Using (11), the functions

a&/aT, an/aT, and dw/dz are expressible directly in terms of

, n, and T, so that computations of dopant diffusion during

oxidation can be carried out on a constant (i,n) grid without

reference to physical coordinates. A single transformation

of the dopant profiles to physical coordinates can be

performed after the process cycle is complete.

21
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The boundary conditions at the top and bottom of the

silicon layer are straightforward to derive, and involve only

the normal derivative aN/aC. However, the conditions at the

lateral edges of the computational domain require some care.

If lines Ini = constant are chosen to bound this domain,

then the physical boundaries in x and y will be somewhat

curved, and will change position as the oxide-silicon boundary

moves. Fortunately, the effect of conditions at these

boundaries on the dopant profiles in the region of interest

can be made small by expanding the computational domain

laterally. More accurate procedures are available, but are

not needed in the present context.

The basic question to be answered with regard to the

use of conformal maps for this problem is how large a

computational burden is imposed by the necessity to evaluate

the functions aC/aT, @n/aT, and dw/dz at each time step.

This must be compared against the approximate tripling of

CPU time experienced with the translation-stretching

transformation for the nonuniformly moving boundary problem.

3.2 NUMERICAL PROCEDURES IN TWO SPATIAL DIMENSIONS

3.2.1 B-splines

Although the method of B-splines may be extended to

two dimensions, a number of disadvantages make this method

noncompetitive with the method of lines. The first difficulty

is large storage requirements. For example, using our

estimate of a grid of 30 x 60 with a third order B-spline in

each of the two directions, the matrices A (equation (5))

22
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and DF/3a each have half bandwidth w = 2+ 2(30+ 2) = 66.

Because of pivoting requirements, the total storage for both

matrices A and aF/Da is s = 2 x 32 x 62 x (3w+ 1) = 789,632 words.

If the smaller 20 x 40 grid with second order B-splines were

adequate, then w = 21 and s = 2 x 21 x41x (3w+ 1) = 110,208 words.

In either case the storage requirements are excessive.

Secondly, to invert these banded matrices with relatively

large bandwidth many times would require an excessive amount

of computer time. In fact, Warner and Wilson 7 have solved

the easier nonmoving boundary value problem using second

order B-splines on a 21x 41 grid and their worst cases

required 7.25 minutes on a Cray-i computer to integrate to

t = 0.25. This translates to at least 36.25 minutes on a

CDC 176 or an IBM 3033*. Finally, the cross derivative term

in equation (9a) may lead to some difficulty because the

existence of Galerkin solutions to such problems have not

completely been determined. Of course, the conformal mapping

formulation doesn't suffer from this disadvantage, but large

storage requirements still limit the B-spline applicability.

*Time comparisons between conventional mainframe computers

and the Cray-i are complicated by the pipeline architecture

of the Cray, which can be used to advantage on large vector

problems. The quoted factor of five above assumes that no

modification of the original FORTRAN code to utilize this

feature was attempted by Warner and Wilson.
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3.2.2 Method of Lines

Consider a uniform mesh in the E and n direction with

meshwidth AE and An, respectively. For interior points the

spatial derivatives in equation (9) are discretized using

the following centered difference approximations:

3N. . N . -N
Ni+l,. i-l'j (14a)

- IDN) (Ni+l,j N ij (Ni N Ni-lj)
D Di+ 'j (AE) 2  

(A&) 2

(14b)

T[D (N (Ni,j+l - Nij) (Nij - Ni,j-1 )

N )l Di,j+ j (An) 2  Di'j_ (An) 2

(14c)

[D(N)

D i, +l (N i+l,j+l- N i-l,)j+l ) - D j-i (N i+l, -i- Ni-l, -i )

4ACAn
(14d)

where Nij = N(?,njrT), Dij = D(Nij), etc.

Including the boundary conditions, especially equation (9e),
leads to very complicated difference expressions. We will

merely illustrate the basic idea using one of the second

partial derivative terms. Write the first order approximation
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[D()r - [ (N 2j- N 1.)- 9N 1 ' 1 4e
;E- A 3/2 ,j DI j (14e)

where the term N1 ,j/a& is determined from equation (9e).

In the regions where U = 0, equation (9e) is much simpler

and a discrete version can be written as

3N Nil - N il, j  (k-m)UTNljL
-- i =. (14f)3E 2AC L ID Ij

The last expression may be solved for N il,j and the result

is substituted into equation (14b) to produce a second order

approximation in the regions 0 < n < b1 and b2 < n < b3.

Similar techniques are used for the other boundary conditions

and partial derivatives.

As in the one-dimensional case, the spatial variable

differencing leads to a semidiscrete system of nonlinear

ordinary differential equations. The equations corresponding

to the interior mesh points have the form

,3 d = i'j j Ni-ij' Ni+ljp Ni,j+l i,j-l'

Ni+l,j+l, Ni_l,j+l, Ni+l,j_l, Ni_l,j_l . (15)

Similar equations may be written for the boundary points.

Unfortunately, equation (15) is stiff, and consequently,

the Jacobian, Df/DN, is needed to converge the corrector

r
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equation in the linear multistep method used to solve it.

The coefficient matrix in this Newton-like method is

P = I - AT%0 f/aN (16)

where 80 is a scalar associated with the order of the corrector

equation. Most of the computer time is used in solving the

linear system

Px = b (17)

Therefore, it is critical that efficient methods be developed

for solving equation (17). Fortunately, the matrix P need

not be exact but may be approximated by a function which

contains the "basic nature" of the problem being solved.

The consequence of using an approximate Jacobian is that

the iterative procedure may take longer to converge, but

the answer will still be correct. This is analogous to using

the secant method in place of Newton's method when solving

nonlinear equations.

Two simplifications are made in approximating the Jacobian.

The first is to ignore the cross-derivative term equation (14d)

when evaluating af/aN but not when evaluating f (equation (15)).

The rationale in doing this is that the cross-derivative term

is only present in a very small region of the computational
H domain (b2  b3 ) where U # 0, so that its absence should

not greatly affect the convergence rate. On the other hand,

if this term were present, the solution of equation (17) would

have to be done by the relatively slow banded matrix techniques

r
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instead of the much faster iterative methods. The second

simplification assumes that on the boundary E = 0 and

bI 1 n < b 2 we may write aD/aN - 0. There is no real

justification for making this boundary approximation other

than it simplifies the evaluation of the Jacobian. The

price paid for such an approximation is slower convergence.

Applying the above approximations results in a Jacobian

with only 5 nonzero diagonals. Successive overrelaxation

(SOR) methods may be employed to solve equation (17). The

storage problem is minimal, and as P changes from time step

to time step very accurate initial solutions provide fast

convergence. In contrast, banded matrix solvers must start

from scratch each time step and do not use any previous

information.

The numerical solution of (15) is performed by a
variable-order and variable-step-size stiff integrator

similar to the one-dimensional integrator with the critical

equation (17) now being solved by SOR rather than banded

matrix techniques. Our test cases show that this procedure

is superior to the B-spline approach.

3.3 NUMERICAL RESULTS IN TWO DIMENSIONS

The initial condition (ion implant) for the following

test cases is

N Nd XlO10 [ (x -R )2

exp - - + Nb 0 y a
(2T) a 

2a 0 b
pp0 x L 0

N(x,y,0) =

d X exp - 2 (y a) ] exp + Nb

I

a < y < b3, 0 ' x < L0
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where a p 0.075 Um, p = VT,0, N b 5 xl1' 4 CM-, a = b3/2,

Nd = 2 x 1015 cm- 2, and R = 0.285 um.

In order to determine the lower bounds on computer time,

we first consider a nonmoving boundary value problem studied

by Warner and Wilson.7 As noted earlier, their most difficult

case required about 36.25 minutes on a CDC 176 to integrate

from t=0 to t=0.25. Here L0= 2.5, b3 = 5, U T=U =0,

Do = 0.0589 im2/hr, and n.=9.25x 10 1 cm 3 . It should be1

noted that the Jacobian matrix for this problem is exact

since no cross derivatives are present in equation (9) and

all boundary conditions are homogeneous. Therefore, our

computer times should be a minimum for this case. The

numerical results are summarized in Table 3 for two computa-

tional grids. Here NSTEP denotes the total number of time

steps to integrate equation (15). NFE is the number of

functional evaluations required of the integrator, i.e.,

number of times f in equation (15) is evaluated. NJE is

the number of times the Jacobian, Bf/DN, is evaluated.

NII is the total number of internal iterations needed to

solve equation (17) by SOR for all time steps up to T.

NQ denotes the present order of the integrator (1 4 NQ < 5).

AT is the present step size, and CPU denotes the total CPU

time in seconds to solve the problem on a CDC 176. These

times are remarkably fast compared to those reported by

other researchers. Note that the smallest time steps occur

between 0 < T < 0.05, very few Jacobian evaluations are
needed, and the total number of internal iterations (NII)
is relatively small.

% 1The initial, as-implemented dopant profile and the

result of the quarter-hour drive-in step are shown in
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Table 3(a). i x 21 Grid

T NSTEP NFE NJE NII NQ AT CPU (sec)

0.05 32 43 7 77 4 0.0055
0.10 39 55 8 100 4 0.0085

0.15 44 63 9 115 4 0.0125

0.20 48 67 10 123 4 0.0192

0.25 50 71 10 131 4 0.0192 1.807

Table 3(b). 21 x41 Grid

T NSTEP NFE NJE NII NQ AT CPU (sec)

0.05 39 59 8 109 4 0.0040

0.10 48 70 10 131 4 0.0081

0.15 54 77 10 145 5 0.0113

0.20 58 81 10 153 5 0.0113

0.25 62 86 11 165 5 0.0200 8.217

Figures 3 and 4, respectively. The lateral spread of the boron

is quite evident, amounting to a few tenths of a micron.

Accurate information of this kind is essential to prediction

and control of device electrical characteristics when the

overall channel length (separation of source and drain) is

of the order of one micron.

For our next degree of difficulty we include a non-

uniformly moving boundary with a = 0.0914 and 0 = 0.576

(equation (10a)), but impose Dirichlet boundary conditions

at &= 0. This will allow us to study the effect of leaving
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out the cross-derivative term in the evaluation of the

Jacobian. However, the Jacobian of the boundary conditions

is still exact. The cross-derivative approximation equation

(14d) requires a finer grid, so we set L0 = 1.25 and b3 = 2.5

and use a 21 x 41 grid. Computatiolal results are given in

Table 4. In comparing Table 3(b) with Table 4, we note that

the big difference is the number of internal iterations,

NII, which is larger when an approximate Jacobian is employed.

The integration was carried out to a larger time to allow

for a substantial movement of the boundary.

Table 4. Diffusion Equation (9a) with Cross-Derivatives
and Dirichlet Boundary Conditions at = 0,
21 x 41 Grid

NSTEP NFE NJE NII NQ AT CPU (sec)

0.05 55 77 9 155 5 0.0026

0.10 67 90 11 187 5 0.0055

0.15 74 98 12 207 5 0.0076

0.20 80 105 13 229 5 0.0102

0.25 85 110 13 247 5 0.0126 11.259

0.30 89 116 13 268 5 0.0126

0.35 93 123 14 296 5 0.0150

0.40 96 127 14 313 5 0.0150

0.45 99 132 14 335 5 0.0150

0.50 103 140 14 371 5 0.0150 16.911

r
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For our final case, we solve equation (9) with a

nonuniformly moving boundary and the correct boundary

condition (9e). Recall that a second approximation to

the Jacobian is used with this boundary condition. The

numerical results are illustrated in Table 5. The number

of internal iterations is now as much as 65% larger than

the previous case. Also, the time steps are smaller.

Clearly, the boundary approximation to the Jacobian is a

limiting factor on computer time. In the future we will

attempt to improve this approximation. Nevertheless, the

computer time is quite reasonable for such a difficult

problem.

Table 5. Numerical Solution of Equation (9),
21 x 41 Grid

NSTEP NFE NJE NII NQ AT CPU (sec)

0.05 70 92 10 180 4 0.0022

0.10 86 112 12 232 4 0.0040

0.15 97 131 13 288 4 0.0062

0.20 105 143 13 323 4 0.0074

0.25 11 157 13 365 4 0.0074

0.30 118 178 14 428 4 0.0074

0.35 123 189 15 463 4 0.0099
0.40 128 204 15 517 4 0.0099

0.45 134 220 15 574 3 0.0084

0.50 140 231 16 612 3 0.0084 27.97

r
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4.0 FUTURE WORK

To date, numerical results in two dimensions have been

obtained only for the method of lines algorithm, and nonuni-

form motion of the oxide-silicon boundary has been handled

numerically by the translation-stretching transformation.

We are currently programming the conformal map procedure

outlined in Section 3.1.2 as a potentially faster way to

deal with moving, nonrectangular silicon boundaries typical

of the formation of bird's beak structures in the oxide layer.

In the near term, our emphasis will be on evaluation of

the method of lines algorithm against realistic test cases,

some of which can be solved to known accuracy by other

techniques (e.g., linear diffusion in an impenetrable box).

If time permits, one or two other algorithms which are

potentially very fast will be compared against the method

of lines.

By the end of the first contract year, the speed and

accuracy of the basic algorithm should be well characterized

for typical process steps. The relative merits of different

approaches to the treatment of a nonuniformly moving oxide-

silicon boundary should also be established.

The second year of the contract will be devoted, as

planned, to seeking algorithms for the solution of more

realistic, physically based models for the evolution of

VLSI device structures. Our objective is to provide the

ai device physicist with computational analysis tools which

can with tolerable speed and accuracy characterize microscopic

processes involving several defect species migrating under

r
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the influence of chemical, mechanical, and electrical driving

forces in two (and possibly three) dimensions.

This work will also provide the background for construct-

ing fast algorithms for computer modeling of complete device

electrical characteristics based on two-dimensional dopant

profiles. While the coupled system of carrier transport and

Poisson's equations is considerably more complex than the

equations describing multispecies diffusion, there is a

strong analogy with the equations governing steady-state

fluid flow which can be exploited.
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