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SOME COMMENTS ON THE MINIMUM MEAN SQUARE

ERROR AS A CRITERION OF ESTIMATION

C. Radhakrishna Rao

Abstract. It is shown that estimators obtained by MMSE
(minimizing the mean square error) may not have optimum
properties with respect to other criteria such as PN
(probability of nearness to the true value in the sense
of Pitman) or PC (probability of concentration around
the true value). In particular, a detailed study is
made of estimators obtained by shrinking the minimum
variance unbiased estimators to reduce the MSE. It is
suggested that because of mathematical convenience and
some intuitive considerations, MMSE could be used as a
primitive postulate to derive estimators, but their accep-
tability should be judged on more intrinsic criteria such
as PN and PC.

AMS(MOS) Subject Classification: 62F10, 62F15
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1. INTRODUCTION

The concept of minimum mean square error (MMSE) as a

criterion of estimation is attributed to Gauss and figures

prominently in the discussion of problems of statistical

estimation. No doubt, the criterion is a valid one if the

problem of estimation is considered in a decision theoretic

frame work with the loss function specified as the square

of the error in an estimator. Otherwise, the criterion

is arbitrary as Gauss himself has observed in a paper pre-

sented to the Royal Society of G6ttingen in 1809:

"From the value of the integral f'x6(x)dx, i.e.,

the average value of x (defined as deviation in the

estimator from the true value of the parameter) we learn

the existence or non-existence of a constant error as

well as the value of this error; similarly, the integral

f-x2 (x)dx, i.e., the average value of x2 , seems very
-0m
suitable for defining and measuring, in a general way,

the uncertainty of a system of observations. ... If one

objects that this convention is arbitrary and does not

appear necessary, we readily agree. The question which

concerns us here has something vague about it from its

very nature, and cannot be made really precise except by

some principle which is arbitrary to a certain degree.

It is clear to begin with that the loss should not be

proportional to the error committed, for under this

PIR FORCE OFFICEOF SCIENTIFIC RISAMCH (APSC)
OTICS 4JF TRANSMTTA TO DDC

This teanoel report has been reviewed W is
approved for publlo release IAO AIR 190-12 (7b).
Distribution is unlimited.
A. D. BLOSA
reohnial Information Otfleer



hypothesis, since a positive error would be considered

as a loss, a negative error would be considered as a gain;

the magnitude of a loss ought, on the contrary, to be

evaluated by a function of the error whose value is always

positive. Among the infinite number of functions satis-

fying this condition, it seems natural to choose the sim-

plest, which is, without doubt, the square of the error,

and in this way we are led to the principle proposed above".

Karlin (1958) expresses the same opinion:

"The justification for the quadratic loss as a measure

of the discrepancy of an estimate derives from the follow-

ing two characteristics: (i) in the case where a(x) repre-

sents an unbiased estimate of h(w), MSE may be interpreted

as the variance of a(x) and, of course, fluctuations as

measured by the variance is very traditional. in the domain

of classical estimation; (ii) from a technical and mathe-

matical viewpoint square error lends itself most easily to

manipulation and computations"'.

Thus, the criterion of MMSE is used not because of its

practical relevance in a given problem but for its, simplicity

and mathematical convenience. We may, therefore, accept MMSE

as a primitive postulate providing a rule of estimation like

other methods such as maximum likelihood, minimum chi-square,

etc., and examine the properties of estimators so obtained

in terms of other criteria.
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The present study is limited to the examination of es-

timators obtained by "shrinking" unbiased estimators with a

view to decrease the MSE. We compare the shrunken estimator

with the unbiased estimator in terms of its bias (B), mean

absolute error (MAE), mean square error (MSE), mean quartic

error (MQE), and more intrinsic properties like the probabil-

ity of nearness to the true value (PN) due to Pitman (1937),

and probability of concentration in intervals round the true

value (PC).

In the discussion on a recent paper by Berkson (1980),

the author (Rao, 1980) has pointed out some anamolies that

may result in accepting MMSE as a criterion of estimation.

Examples were given of estimators which have a smaller MSE

but perform poorly in terms of more intrinsac criteria such

as PN and PC wten compared to other estimators. Such ana-

molies are expected since the quadratic loss function places

undue emphasis on large deviations which may oceur with -mall

probability, and minimizing MMSE may insure against large

errors in an estimator occurring more frequently rather than

providing greater concentration of an esti'mator in neighbor-

hoods of the true value. A more detailed sti 11 of such sit-

uations is made in the present paper.

2. ESTIMATION OF A SINGLE PARAMETER

Let X be an unbiased estimator of a parameter 0 with
2

V(X) = a . It is well known that with respect to a quad-

3



ratic loss function, cX is an admissible estimator of 0 if

O<c<l (see Rao, 1976b for instance). The MSE of cX is

E(cX-0) 2 = a2 [c 2 +(I-c) 2 62 ] < E(X- 0)2 (2.1)

iff 6 2 < (I+c)/(l-c) where 6 = 6/a. Thus, if we have some

knowledge of 6, we can make an appropriate choice of c to

ensure the inequality in (2.1). The minimum of E(cX-e)
2

is attained at c = 6 2/(1+62 ), and if it is known that the

true 6 is near about 6o, we may try the estimator

62
_ 0 x (2.2)

1+62
0

which has the property
I

FEX- 2 2 2 6 2
E = [E(X ° - 0) /E(X- 8) 1 < 1 if 16H(26 +1)2. (2.3)

2 0 0

But the property (2.3) does not ensure that

PN = Pr. ( X-el < IX- 81) > 0.5 (2.4)

for the same range of 6. Table 1 gives the approximate

values of 6 below which PN>0.5 and E2 <_1 for different

values of the shrinkage factor c = 62/(1+62) and the asso-
0 0

ciated values of 60.

4
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TABLE 1

Values of 161below which E2 <1 and PN >.05

for different shrinkage factors

c 0 .1 .2 .3 .4 .5 .6 .7 .8 .9

6 0 .33 .50 .65 .82 1.00 1.22 1.53 2.00 3.00
0

E < 1 1.0 1.2 1.3 1.4 1.6 1.8 2.0 2.5 3.0 4.5

PN> 0.5 0.7 0.8 0.8 0.9 1.0 1.1 1.2 1.4 1.6 1.8

TABLE 1 shows that the range of 6 for which (2.4) holds is

much smaller than that for (2.3) to hold. It is also interest-

ing to note that the optimum choice of c corresponding to a

given 6 for reducing the MSE does not ensure that PN >0.50

even for 6 = 6 unless 6 is below 1.2 (approximately).0 0

Thus, shrinking an unbiased estimator is usefl only when the

true value of the parameter under estimation is smaller than

about 1.2 times the standard error of estimation.

2
If a , the variance of the estimator X, is unknown, but

2 2
an estimator s of a is available, we can define an empirical

version of (2.2)

Xe (Xs)2 X (2.5)
l+(X/s)

and study its performance. The MSE of Xe compared to that of

X has been extensively studied by Thompson (1968) under various

distributional assumptions on X. We shall examine other pro-

perties of (2.5) assuming that X is normally distributed and

5



a2 is known. As shown by Thompson, the conclusions are not

likely to be different when o2 is used instead of s2 in

(2.5) even for small values of f, the degrees of freedom on

which a2 is estimated.

Table 2 gives the values of

B=a -1 E(Xe- 0) , PN = Pr.(IXe-8 < IX-e1),

2 4 4
El = a-1 72 EIXe- 01, E2 = o-I[E(Xe- 0)] , 4 = [E(X -0) /3],

obtained by simulation. It is seen that the empirically shrunken

estimator Xe is better than the unbiased estimator X only when

6 < 1.4 (approximately), i.e., when the standard error of the

estimator of a parameter is more than 70% of the value of the

parameter. But a serious drawback of the estimator (2.5) may

be the large negative bias it has unless 6 i. very small or

very large.

6



TABLE 2

Values of El F2' E3'E E 4 - Ei, PN arid B for the

3 2 2
estimator X7(s +X ) for different value>: of' = ,/o.

6 B E I E2  11" F PN

0.0 -.005 .549 .702 .813 .688 1.000

0.5 -.171 .757 .764 .81,8 780 .706

1.0 -.290 .946 .893 .856 .898 .565

1.4 -.344 1.047 .993 .919 .986 .504

1.5 -.352 1.066 1.015 .938 1.006 .487

2.0 -.367 1.124 1.097 1.0:31 1 .081 .444

2.5 -. 350 1.136 1.13] 1.091 1 .120 .436

3.0 -.317 1.124 1.133 ]1.21 1.126 .437

3.5 -. 283 1.105 1.118 1 .118 1.111 .,144

4.0 -.252 ].086 .100 .102 1.096 .453

8.0 -. 130 1. 026 3 .037 1 .0 , I )2 .47()

10.0 -. 105 1.018 1.028 1 .0"(1 1 . , . ,

20.0 - 0b5 1,007 1.047 1.015 1 . 0 11

100.0 -.015 1. i) 0 3 1.01]3 .m , .4)5

3. ESTIMATION OF VARIANCE

If S2 derol es the corrected sum of squar(': c r n i.i.d

obevainsf2mN 2 92
observations from N(lj,(j2), it is well known th:i s2 12/(n-1)

9
is the minimum variance unbiased e(tjmator r)f !. But

s 2=S2/(n+l) has smaller MSE than s2  2and
2 2

all n, so that s is inadmissible ,s an e.stimator ef o with

2 2respect to the MSE criterion. flow does so ,() rnrare with s

with respect to other criteria? Table 2 giv the values of

7



the fo]lowing for di fferent degree- of' f'v .edm (n- I)

2 2)/2
B E(s -

2 2 2 2
PN Pr.(Is" - 0I < < Is 2_ 2 ).

2 2
PC =Pr.(-log a < log s - log a < loga),

2 2PC2 =Pr.(-log a < logs 2 - log log a )

2 2 22'
E = [E(s

2 _ a 2 ) /E(s - )

2 2
It is seen that PN, the probability that s2 is closer to a

2. 2
than s , is less than 0.5 uniformly for all 2 and For all n

2
although E2 is uniformly less than unity for all 2 and for

22

all n. Similarly, log s2 has a greater concentration proba-
9 2

bility in any symmetrical interval around log , than log 2

2

uniformly for all a and all n. Thus sh-'inkjng the ur' i

2
estimator s has result d in a smal11(-. MSF ,., h n- not Vr,

the estimator closcr ., the tiru-, va l,.e o F ,2 j -nv se)n".

2
The unbiased estimator . seems to have better intrinsic pro-

2perties than s' .

It may be noted that the optimlim shrinkage of s depends

on the loss function chosen. If instead of the MSE, we choose
2 2 4

the MQE = E(cs - a.s the oIs then ho ( ptimum c s

solution .-)f the cubic equat.ion

612 )_3_,(1 2 29+ ))' ( -- +3( --- )c- -=O-  (3.1)

The estimator so obtained is denoted by s,2

-. ,



TABIE 3

Values of E2 13, PN, PC an4 PC2

for different degrees of freedom (DF)

D.F. E B* PN PC (first row) and PC 2 (second row)

(n-I) a=1 .5 a=2.0 a=2.5 a=3

1 .577 .677 .221 .193 .322 .413 .480
.123 .206 .267 .315

2 .707 .500 .264 .290 .471 .588 .667
.213 .349 .442 .53.1

3 .774 .400 .290 .360 .571 .695 .772
.285 .457 .566 .643

4 .816 .333 .308 .416 .61-1 .768 .838
.3.45 .540 . 358 .734

5 .845 .286 .323 .463 .701 .821 .883
.395 .602 .727 .801

6 .866 .250 .334 .503 .747 .859 .913
.... 651 G ' 8,r,) . 8.4l9

7 .882 .222 .3,1( .539 .7R.! 5
. ,179 P7 .''22 .885

8 .894 .200 .352 .570 .115 .911 .951
.51 . 7,17 .9 55 .911

9 .904 .182 .359 .590 .840 .928 .963
.515 .78C, .882 .932

10 .912 .167 .365 .624 .862 .942 .972
.571 .808 ,903 .9,17

20 .953 .091 .400 .793 .962 .992 .998
.762 .9,!5 .987 .996

40 .976 .048 .428 .926 .990 .999+ .999+
.912 .9911 .999+ .999+

9
*The shrinkage factor is (1-B) where B = Bia;/o

91



On the other hand, the optimum c which minimizes the

MAE = Elcs2 -a2 is the one which minimizes the function

(c-l) + 2 Gnl( ) - 2 c Gn 1(Z) (3.2)

where
a k

Gk(a) 2 a e-t/2t dt.
/ 2 r(k) o

2 0

2
The estimator so obtained may be denoted by s.

[_E~s _2 s 11/i
Table 4 gives the values of E. =E(Js- 2  )/E( - 1

Iis2 2 2 2 22
B=E (s -a ), PN=Pr.(Is2- a 2< Js -o ) and PC -PC. where

1 1 i -

PC = Pr.(-loga <log s 2 - log o2< loga )
2 2

PC. = Pr.(-loga < log s. log a < log a

2 2for i = 1 and 4. It is seen that s performs better than s

2 2 2and s in terms of PN and PC. Among the estimators s,S s2 and
2 2 2 2s4, s appears to be better than s2 and s24 The results are

not unexpected since the distribution of s is skew on the

right and minimization of an expression of the type
E~ 2 o2 m 2

E(c s - a 2 pulls the estimator away from a in the region

2
around and below the modal value of s

It is not clear why in statistical literature much

emphasis is laid on the estimation of a2 and not on a although

in practice the latter should be the parameter of direct

interest. Unfortunately, none of the properties such as

10
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unbiasedness and MMSE are preserved under transformations

of estimators and parameters. For instance, the minimum

variance unbiased estimator of a is

= S = ts (3.3

which is different from s while the MMSE of 0 is

=F n(.) (3.4)

2 2

which is different from s2  Now

E(s* - T)2 = (2 2 2 ) > 2a2 (1 E(s - G)2 (3.5)

so that s has a smaller MSE than s* as an estimation of a.

We shall compare the relative performances of s and s* as
S2 2

estimators of 3 and c,f s and (s*) as estimators of o

Table 5 gives the values of the following for different

degrees of freedom:

E2 = rE(s-a) 2/E(s*-2) 21 ,

PN =Pr.(Is*-a s-a1),

PN 2 =Pr.(j( s*) 2_a2< Is 2_ 2 

22
PC =Pr.(-loga < logs 2 - log o2< loga),

PC2 = Pr.(-loga < log(s*) 2
- logo 2 < loga).

12



It is seen that although E2 <1 uniformly for all a and DF

so that s has a smaller MSE than s* as an estimator of a,

PN is uniformly above 0.5 so that s* is nearer to a more
1

often than s. What is more interesting is that PN2 is also

22
uniformly above 0.5 indicating that (s*) is nearer to c2

2 2
more often than s Further, log(s*) has greater concentra-

2 2 2
tion around log a than logs around logo if the DF is not

small and the interval chosen is not short. It appears that

the biased estimator (s*) 2 of a2 has better properties in

2
terms of PN and PC than s , although highly inadmissible with

respect to MSE.

4. DIRECT OR INVERSE REGRESSION

Consider a pair of random variables (0, Y) such that

2
Y 0+E, E()=0, cov((),)=0, V(E)=(J (4.1)

0

In practice 0 stands for the true value of a quantity (such

as the cholesterol level of a blood sample) and Y is a measure-

ment of 0 subject to error. Only Y is observable and not 0,

in which case the problem is one of estimating or predicting

B given Y.

From (4.1), the regression of Y on a is 0 itself so that

the inverse regression estimate of 0 is Y which is also an un-

biased estimator of 0. On the other hand, if the mean (V)

and variance (o) of the unconditional distribution of 0 is

known, then the regression of 0 on Y is

13
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02
= j + 2 2 (Y- 1) (4.2)

o o

which provides a direct regression estimate of 0. In practice,

the estimation procedure (4.2) can be implemented by estimating
2 a2

11, o and a from past data on Y (cholesterol determinations)

on a large number of individuals (see Rao, 1973, p. 337),

and updating the estimates as more data accumulate. The es-

timator 6 can be identified as the Bayes estimator using a

quadratic loss function and a relevant prior distribution

for 0.

Suppose that an individual's blood sample has been referred

to a clinic for the determination of cholesterol and the clinic

reports the measurement as Y. What should we record as the es-

timate of blood cholesterol for the individual, the unbiased

estimator Y or the Bayes estimator 6 of (4.2) using a relevant

estimated prior distribution? There has been considerable con-

troversy on this subject, in a slightly different context, in

the calibration problem (see Berkson, 1969; Halperin, 1970;

Krutchkoff, 1967, 1969, 1971 and Williams, 1969). We shall

examine this problem in the set up of (4.1) assuming that the
2

parameters p, a2 of the prior distribution and the variance

02 of the error of measurement are known. Now0

2 2
2~ 00 <2 2 (3

E(O-6)2 2 - -- <a E(Y-e) (4.3)
0 +o

15



and the strict inequality holds if a t0, so that the mean0

square error of prediction is smaller for 0. Does this

mean that 0 is closer to 0 than Y in some sense? To examine

this question we have to consider the distributions of Y and

0 for given e.

The MSE's and Y and 8 for given 0 are

2 2
E[(Y-0) el = a (4.4)

E0 222(22)/21+2 (4.5)
1066) ] = 6 6o/° +

where (e-i)/a0=X and S=ae/a. From (4.4) and (4.5),

E[(0-6) 2  6] < E[(Y-6) 21e3 (4.6)

2 2)/2

iff X < (1+262)/6 . Then the effic4r:c'v of 0 compared to

Y with respect to MSE depends on the magnitude of the devia-

tion of the true value of 0 from the apriori mean. If the

deviation is large, 0 is less efficient than Y.

The estimator Y is unbiased while the bias in 6 is:

2 2 2
E(e08)j = -Ao oG/(Oo+ae) (4.7)

so that large values of 0 are under-estimated and small values

are over-estimated.

Table 6 gives for different combinations of 6 and X the

values of

E~ ~ 2 E(O O
E2 = [E{(0-0)2lo}/E~y-o)2] ,

PN = Pr.(10-Ol < lY-ol),

16



where the region- for which (i) E2 <1, PN >0.5, (ii) E2 <1,

PN <0.5 and (iii) E >1, PN <0.5 are marked. It is seen that
n

O performs better than Y when the error of measurement is

large and the true value is near the mean of the apriori dis-

tribution. But if precise estimation of large deviations from

the apriori mean is more important (as it should be in a pro-

blem like the estimation of blood cholesterol), Y should be

preferred to 0.

TABLE 6

Values of E2 (first entry) and PN (second entry)

for different combinations of X and 5

A 0.5 1.0 1.5 2.0 2.5 3.0

0.5 .283 .447 .632 .825 1.020 1.217
.835 .679 .535 .411 .308 .226[--

1.0 .559 .707 .901 1.118 1.346 1.581
.742 .528 .375 .275 .209 .160

1.5 .729 .832 .979 1.154 1.346 1.548
.673 .460 .353 .294 .248 .207

2.0 .825 .894 1.000 1.131 1.281 1.442
.615 .435 .37] .329 .290 .253

2.5 .879 .928 1.005 1.104 1.219 1.346
.569 .433 .391 .356 .322 .290

3.0 .912 .949 1.006 1.082 1.171 1.273
.535 .439 .407 .376 .316 .318

5.0 .966 .980 1.004 1.035 1.075 1.121
.487 .461 .442 .422 .403 .384

10.0 .991 .995 1.001 1.010 1.020 1.033
.490 .480 .470 .461 .451 .441

15.0 .996 .997 1.000 1.004 1.009 1.015
.493 .487 .480 .474 .467 .460
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5. SIMULTANEOUS ESTIMATION OF TWO PARAMETERS

Let X 1  N(0I, 2), K2  N(62 ,o 
2 ) andfs2  2 X 2(f) be

independent random variables, and consider the following

estimators of l, 02

t 1 2 + c 2 (5.1)

X+2 X2-

tx2 2 + c 2 (5.2)

as alternatives to the unbiased estimators X1 and X Then

1~ii2 0 2[1+C2  (1-c) 2 6 2 ]j 2 (53

E(t.a 2)= a 2[ i= 1,2. (5.3)

and the expected compound quadratic loss (ECQI,) is
2 2 2  + ,2 + ( 1 -c )2 2 (

E (t i- 0i ) =Y 2 ~ (5.4)
1 "

where 6 = (e1-02)/a. The expression (5.4) attains the mini-

mum when c = 6 2/(2+6 2). Since 62 is not known, wp may con-

sider the empirical versions of (5.1) and (5.2)

t (e) XI+X 2 + (X-X2)2/s 2 XI-X2
1 2 2+(X 1 -X2 ) 2 /s2

t(e) X 1+X2  (X1 -X2 )2/s
2  X 2 -X1

2 - 2 2+(XI-X 2 ) 2/s
2  2

18



We shall compare t(e ) and t(e) with X and X2 , assuming2 2

that is known, with respect to the following criteria:

B1  l(t (e) 0-e), B2  -(t(e)_ ,

PN = . r,( it (e) 01 < IX1 -61 I) +Pr. ( t(e)2

E = (E1 + E2 + E4)/3 ,

where

= 1 1 20121),

= alL1(t(e)_e) 2 1 E(t(e)e0) 2].E2 -1 1. Z 1 '2

E4 C- I1 -E] (e)_ ) 4 +1E (e)=e ... )41E 92
4 6 l - 1 6t2 2 ,

Table 7 gives the values of E1 , E2, E4 , E, PN and B1, B 2

based on a simulation study using 1000 samples, for variou5,

values of 6 = (61 -a2 )/a . It is seen that simultaneous

estimation of 01,02 by t(e) and t (e) has some advantage

over X1 and X2 when 6<2 (approximately), i.e., when the

parameters under estimation do not differ by more than twice

the standard error of the estimator of a single parameter.

6. ESTIMATION OF SEVERAL PARAMETERS
2 2

Let X i  N(ia2 ), i= 1,...,p and fs2  a2  2 M be

independent random variables, where (01, ... ,0p) = e' is a

19



TABLE 7

Values of Ell2' F 4f Bi B 2and PN for

t (e) and t (e) for different values of 6 = (0 -O2)/a

1 2 1 2

o -.027 .005 .702 .854 .864 .872 .863

.5 .052 -. 132 .674 .871 .871 .878 .873

1.0 .121 -.164 .635 .894 .887 .883 .888

1.5 .216 -.145 .567 .962 .956 .954 .957

2.0 .257 -.259 .517 1.013 .998 .976 .996

2.5 .269 -.277 .485 1.041 1.029 1.000 1.023

3.0 .199 -.243 .475 1.046 1.045 1.041 1.044

3.5 .279 -.234 .455 1.081 1.064 1.037 1.061

4.0 .229 -.251 .442 1.087 1.083 1.080 1.083

5.0 .188 -.132 .454 1.037 1.034 1.023 1.031

6.0 .207 -.181 .465 1.027 1.029 1.025 1.027

7.0 .197 -.118 .468 1.042 1.040 1.049 1.044

8.0 .085 -.102 .491 1.022 1.018 1.010 1.017

9.0 .070. -;108 .490 1.015 1.0241 1.029 1.023

10.0 .097 -.105 .485 1.006 1.009 1.025 1.013

fixed vector parameter. James and Stein (1961) have fotind the

remarkable result that when p>3 there exist statistics

T. T (Xl) ? p ,s 2) i1,...,p (6.1)

such that

EfE(T .-e J EIE(xi-e ] (6.2)

uniformly for all Oil which implies that X'= (Xf as an
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estimator of A is inadmissible with respect to the CQL

(compound quadratic loss) function. The result (6.2)

gives the impression that we stand to gain by answering

several problems, possibly unrelated, simultaneously.

It is well known that there do not exist statistics t.1

alternative to X. such that1

2 2
E(ti-Oi ) < E(Xi-O.) 2

, i= I,...,p (6.3)

uniformly for all 8i, so that the overall reduction in the

ECQL possibly takes place by an increase in the MSE for

some parameters and decrease to a larger extent for the

others. To examine this phenomenon in some detail, we

shall consider a number of alternative joint estimators of

61 ... ,6p of the type suggested by James and Stein and study

the performance of individual estimators.

Specifically, we consider the following types of

estimators of 6, ... :

T =bXi , i= l,....,p, (6.4)

T2i = a+b(Xi-a), i= 1....p (6.5)

T 3i = a+b i(X i-a), i= 1,...,p ,(6.6)

which may he represented by T1, T and T in vector
1'2 3

notation.
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Now

E[ (Ti-o i 2= P 
2 a2 + (1-b)2 EO2 (6.7)

which attains the minimum value at b = v2 /(l+v 2 ) where

2 2 2
= .i/pa If v is known, then the optimum estimator

of the type (6.4) is

T1 = (l- X (6 
l+v

and the ECQL is
2

2 2 v 2 2 2E[E(T li-i 2 ] = pa2 T > pa 2 = EF(Xi-Oi) 1. (6.9)

The MSE for an individual estimator is

E(T - = 2 2 4 + )/(l+2 )  (6.10)

where v3 = ei/a. The expression exceeds the MSE of Xi if

2 2
i > 2v 2+1 indicating the possibility that in joint estima-

tion of the T1 -type, the larger parameters are less effi-

ciently estimated than the smaller ones.

If V2 is not known, we may estimate 1/(I+ 2 ) by

2.

c s /ZX , where c is a suitable constant, and obtain an

empirical version of (6.8)

Tw(e) =(1 2 X. (6.11)

The best choice of c obtained by minimizing the ECQL of
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_i

(6.11) is f(p-2)/(f+2) if p>3, which leads to the James-

Stein estimator

T e) _ 1  (p-2) s 2 ) .(.21 f+2 X. (6.12)
1

James and Stein have shown that for p > 3

(T (e)_0)'(T (e)_6)1=p 2 _ f(p-2) 2a2 -1

1 1 f+2 E 1(2K1 +P-2)-I (6.13)

where K 1 is a Poisson variable with parameter V2/2. The
2

expression (6.13) is smaller than p o for all V. Ullah

(1974) computed the bias and MSE of individual estimators:

C-(1 ) (p-2)f v E[(2-71+P)
1 1 (6.14)

i i f+2 i I

-2 E(T(e)_ )2 -1 1 f(p-2)2 Flg)EI(2K±+9)l
li i 2(f+2) F IP-

~(1+ ?%2 )E{(2K1 +P) 1] (6.15)

where

g - [(p+2)0 2  - 2 Z e2i / F 0..

Similarly, the best estimator of the type (6.5) is

T + 1 (X_-) , i = 1.. .p (6.16)
2 l+ 2 J' ,

where T = (1+...+6 p and 2 2 (O-)/p U 2 The ECQL

for T2 as in (6.16) is

2 (2 2 } < PC 2 2< pC 2  (6.17)
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so that if 9 and n2 are known further improvement in ECQL

over X and T1 is possible. The MSE for an individual

estimator is

E(T2 i-0)
2 = a 2(n +ni)/(l+n2)

2 (2 ) 2

2 -22 2
where = (6 -6) /a The expression (6.18) exceeds a

2 2the MSE of Xi, if r > 2n +1, indicating the possibility that

in joint estimation of the type T2, the extreme parameters

are less efficiently estimated and the middle parameters more

efficiently than the corresponding unbiased estimators.

As in the case of Tl , we can estimate 0 and l/(I+n 
2 ) by

2 -2
X and (p-3)fs /(f+2)FE(Xi-X) ] respectively if p>4 and ob-

tain an empirical version of T2

T(e) rf(p-3) s 2

2i (f+2) 2 -

i =p(>4).

It can be shown (Efron and Morris, 1971, 1972a, Rao, 1976a)

that

22E{(T~e)_e),(T~e)_e)1 = Pa2 -f(p-3) a1(6)
- f+2 E{(2K2 +P-3)-I("0

where K is a Poisson variable with parameter n /2. The
22(

expression (6.20) is less than p a2 so that T(e )- is uniformly

better than X with respect to ECQL. Rao and Shinozaki (1978)

have shown that for individual estimators

24



E(T2 i-Oi) - - ( -O)E{(2K 2 + p-i) (6.21)

2 
2  f(p-3)202

E(T2i-O) 2(f+2) (6.22)

[ ~1 c(p-3)4dI(P-)E { 2 K+--

× c+d)E{(2 K2 + p - 3) ) (p-)2
1(2(p-3) 2,p

where

c = (p-1)/11p, d = {(p+l)(i- -)2--2(p-1)y.(- 2}/2(2 2.
i p 1

Finally, the best estimator of the type (6.6) is

(Oi-6)2

T3i = e + 2+ 2 (Xi-6), i=l,...,p (6.23)
(Oi-Y) o

and its empirical version is

(Xi-X)
2

T3e )3 2= 2 (Xi-X), i= 1....p (6.24)
(X -X)2+s

It is difficult to compute the ECQL of (e) or the MSE of

T(e)3i"

The relative performance of the estimators T e ) and

T(e) and the ranges of parametric values for which the2

individual T(e) and T (e) estimators are better than the

X-estimators are examined in Rao and Shinozaki (1978).

Table 8 contains the results of simulation studies based on

thousand samples for the estimation of four parameters

eI =aG7, 62 = (a+d)a, 3= (a+2d)a and 84 = (a+3d)a for various
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combinations of a and d, assuming a to be known, i.e., by

replacing f 2/(f+2) by a2 in the formulae (6.12) and (6.19) for

T (e and T e) The broad conclusions remain the same if the
2.

random variable s is used provided f, the degrees of freedom,

is not small.

For each combination of W/a and d, Table 8 gives the

(e)
values of E, PN and B in the first row for T 1e , in the sec-

ond row for T e2 and in the third row for Te) where for any

statistic

. 2 1 2J

E = [E(t i-i) E(X.-ei) I

PN = Pr. ( It i-O I < IX1-ai I),

B = E(t -0i).

On the basis of previous investigations by Efron and

Morris (1971, 1972a,b, 1973a,b), Rao (1975a, 1975b, 1975c, 1.977)

and Rao and Shinozaki (1978) and the present simulation

studies, the following broad conclusions emerge.

(a) There is some advantage in using T(e) and T(e) when

the range of parameter values is small, and T(e) when both

the range and values of the parameters are small compared

to the standard error of the unbiased estimators.

(b) When the range of parameters is large both T(e) and

T (e) tend to have the same properties as X. But the perfor-
2

mance of T(e) tends to be erratic.
3
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(c) When the range of parameters is moderate, T( e )

gives higher precision for the parameters with smaller

values at the expense of lower precision for higher values.

According to the PN criterion, only the smallest of the four

parameters is better estimated than the corresponding un-
_(e) an (e)exrm

biased estimator. In the case of T and T extreme

values of the parameters suffer at the expense of increased

precision for the middle values.

(d) One drawback in using estimators Tie), T~e) and1 2

T( e ) in preference to X, is the bias in these estimators.
3

The bias is of a substantial magnitude for the higher values

in the case of T(e ) and for the extreme values of the para-
1

(e) (emeters in the case of T and T(e There are situations

where bias in the estimators may have serious con-,eqiiences

such as the following.

Suppose there are four regions and periodical estimates

of a certain characteristic are needed for sharing some re-

sources in proportion to the values of the characteristic of the

(e) _(e)
four regions. If each time, estimates of the type TI , T 2
and T(e) are used, some regions stand to gain at the expense

3

of the others in the long run (Rao, 3977, 1979).

In some situations, the individual parameters may not be

of direct interest but certain linear combinations may be

important. If c'e = c10 1 +...+c 4 84 is a linear combination to
. 'T(e)

be estimated, should one estimate it by c'X or c Te or

c'T(e) or c'T(e)? Naturally, the answer depends on the vector
2
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c (Rao, 1975b, 1975c), and the optimal properties of Te)

T (e) and T(e) with respect to a single criterion like the2 3
CQL do not insure their efficiency in different ways they

may be used for practical purposes. If multiple uses are

intended, the best plan is to place on record X as the esti-

mator of 0 (together with an estimate of 2) leaving it to

the user to make any optimal adjustments in X depending on

particular problems under study.

Note 1. It may be of historical interest to note that esti-

mators of the type T2 have been constructed under more gen-

eral conditions, in multivariate analysis, for purposes of

genetic selection by Fairfield Smith (1936), Hazel (1943)

and Rao (1953) based on an idea suggested by Fisher. The

problem was as follows. Let (8, Xl,....,y ) be (m+l) vector

variables representing the unobservable genotic values 0

and repeated independent phenotypic vector mea:-ui'(,mcntS

y ...... Kon an individual. The variables arc related by

the model

i + = 1, .m (6.24)

The genetic worth of an individual is measured by a linear

function g'O. Suppose that we have observed p individuals

from a population, with phenotypic measurements

(YIj,...,Xmj), j = l,...,p. (6.25)

What is the best way estimating the genetic worths p'.... g' p

of these individuals for purposes of ranking and selecting a

29
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given proportion of the individuals with the largest genetic

values? If yj represents the mean of the measurements (6.25)

for individual j, then g'-y is an unbiased estimator of g'6.

However, Fisher suggested the regression of g'O. on y. as the

appropriate selection index, which involves the knowledge of

= E(O), r = cov(e,O), A = cov(CE), where - = m Y .. The

regression estimator of g'O. is g'6. where

0. = i+ [I- A(F+A) -(y.j-). (6.26)

By multivariate analysis of variance and covariance of the

data (6.25), we obtain dispersion matrices B and W as between

and within individuals with degrees of freedom (p-l) and

f = m(p-l) respectively, which supply estimates B/(p-1) of

(r+A) and W/mf of A. Then an empirical version of (6.26) is

.=y+ Ip-1 W - I(-

-[-- mf W B I (V ) (6.27)

where py=zy. The details leading to tl-n formula (6.27) are

given in Rao (1953, pp. 237-8). When all the variables are

one dimensional, (6.27) is the same as T() of (6.19) except

that the multiplying factor (p-l)/f is replaced by (p-3)(f+2).

In the 1953 paper, Rao also considered some distributional

problems for testing hypotheses concerning the rank of the r

matrix and the efficiency of the regression estimator.

It should be noted that the regression estimators (or

empirical Bayes estimators) ' are appropriate in the problem

of selection where the total genetic worth of the selected

30
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subset of individuals has to be maximized. In such a case,

it is well known that the best ordering of the observed

individuals is achieved by using, as the selection index,

the regression of genetic worth on phenotypic measurements

(see Cochran, 1951 and Henderson, 1963). But the regression

estimator may not be appropriate if the genetic worth of each

individual has to be assessed for other purposps which may

demand equal precision for the individual estimators.

Note 2. In his presidential address delivered to the Royal

Statistical Society, Finney (1974) suggested that the problem

of simultaneous estimation may be approached through the prin-

ciple of maximum likelihood, thus avoiding the use of the

arbitrary compound quadratic loss function. Let Xi - N(.io) ,

i = 1,... ,p be p independent observations. If 8. arise as a1

random sample from N(WlT), then the log likelihood is, apart

from a constant,
Z(X i- ai)2 F(e i-j) 2

L = 2 2 (6.28)

Finney maximizes L with respect to ii and 6. and obtains the

estimates

= + (1 - 4 (Xi-x)" (6.29)

It is not known whether the maximum likelihood principle

applies in situations such as (6.28) where the likelihood is

a function of both the unknown parameters and unobserved random

variables. Finney says that an unbiased estimate of 1/(T+ )
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is (p-3)/E(Xi-X)2 , so that when T is not known, the estimator

of e. is
1

.= 1- (p-3)¢
X + (X i)- ) Xi -X) (6.30)

which is the same as the expression given by Lindley (1962)

using Bayes theorem and quadratic loss function.

However, if T is unknown, the appropriate log likelihood

is proportional to

E(Xi-Oi )2 2(i-1)2

- plog- Z( ¢- - 2 (6.31)
2f 2 2 T

The expression (6.31) can be made arbitrarily large by choos-

ing e. = i = X for all i and letting T - 0. Thus, the m.l.

estimator is e. X for all i! Such anamolies do oc.ur when1

unobserved random variables are included as unknowns and a

"full likelihood" function such as (6.31) is considered for

drawing inference.

I wish to thank Robert Boudreau for the simulation studies

reported in the various tables.
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