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SOME COMMENTS ON THE MINIMUM MEAN SQUARE

ERROR AS A CRITERION OF ESTIMATION

C. Radhakrishna Rao l

Abstract. It is shown that estimators obtained by MMSE
(minimizing the mean square error) may not have optimum
properties with respect to other criteria such as PN
(probability of nearness to the true value in the sense
of Pitman) or PC (probability of concentration around

the true value). In particular, a detailed study is

made of estimators obtained by shrinking the minimum
variance unbiased estimators to reduce the MSE. It is
suggested that because of mathematical convenience and
some intuitive considerations, MMSE could be used as a
primitive postulate to derive estimators, but their accep-
tability should be judged on more intrinsic criteria such
as PN and PC.

AMS(MOS) Subject Classification: 62F10, 62F15

Key Words and Phrases: Inverse regression, James-Stein
estimator, Minimum mean square error, Shrunken estimator.




1. INTRODUCTION

The concept of minimum mean square error (MMSE) as a

criterion of estimation is attributed to Gauss and figures

prominently in the discussion of problems of statistical
estimation. No doubt, the criterion is a valid one if the
problem of estimation is considered in a decision theoretic
frame work with the loss function specified as the square
of the error in an estimator. Otherwise, the criterion

k is arbitrary as Gauss himself has obéerved in a paper pre-

sented to the Royal Society of Gottingen in 1809:

"From the value of the integral [ xé(x)dx, i.e.,

| -0

! . the average value of x (defined as deviation in the

} estimator from the true value of the parameter) we learn

the existence or non-existence of a constant error as

well as the value of this error; similarly, the integral

fwx2¢(x)dx, i.e., the average value of x2, seems very

- 00

suitable for defining and measuring, in a general way,
the uncertainty of a system of observations. ... If one

objects that this convention is arbitrary and does not

e

appear necessary, we readily agree. The question which
concerns us here has something vague about it from its
very nature, and cannot be made really precise except by
some principle which is arbitrary to a certain degree.

It is clear to begin with that the loss should not be

proportional to the error committed, for under this a
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hypothesis, since a positive error would be considered

as a loss, a negative error would be considered as a gain;

the magnitude of a loss ought, on the contrary, to be

evaluated by a function of the error whose value is always
positive. Among the infinite number of functions satis-
fying this condition, it seems natural to choose the sim-
plest, which is, without doubt, the square of the error,

and in this way we are led to the principle proposed above".
Karlin (1958) expresses the same opinion:

"The justification for the quadratic loss as a measure
of the discrepancy of an estimate derives from the follow-
ing two characteristics: (i) in the case where a(x) repre-
sents an unbiased estimate of h(w), MSE may be interpreted
as the variance of a(x) and, of course, fluctuations as
measured by the variance is very traditional in the domain
of classical estimation; (ii) from a technical and marhe-
matical viewpoint square error lends itself most ecasily to
manipulation and computations'.

Thus, the criterion of MMSE is used not because of its
practical relevance in a given problem but for its simplicity
and mathematical convenience. We may, therefore, accept MMSE
as a primitive postulate providing a rule of estimation like
other methods such as maximum likelihood, minimum chi-square,
etc., and examine the properties of estimators so obtained

in terms of other criteria.




-

The present study is limited to the examination of es-
timators obtained by "shrinking" unbiased estimators with a
view to decrease the MSE. We compare the shrunken estimator
with the unbiased estimator in terms of its bias (B), mean
absolute error (MAE), mean square error (MSE), mean quartic
error (MQE), and more intrinsic properties like the probabil-
ity of nearness to the true value (PN) due to Pitman (1937),
and probability of concentration in intervals round the true
value (PC).

In the discussion on a recent paper by Berkson (1980),
the author (Rao, 1980) has pointed out some anamolies that
may result in accepting MMSE as a criterion of estimation.
Examples were given of estimators which have a smaller MSE
but perform poorly in terms of more intrinsic criteria such
as PN and PC w%en compared to other estimators. Such ana--
molies are expected since the quadratic loss function places
undue emphasis on large deviations which mayv occur with small
probability, and minimizing MMSE may insure against large
errors in an estimator occurring more frequently rather than
providing greater concentration of an estimator in neighbor-
hoods of the true value. A more detailed study of such sit-

uations is made in the present paper.

2. ESTIMATION OF A SINGLE PARAMETER

Let X be an unbiased estimator of a parameter © with

V(X)) = 02. It is well known that with respect to a quad-




ratic loss function, ¢ X is an admissible estimator of 06 if

0<Q51 (see Rao, 1976b for instance). The MSE of ¢ X is

E(cX - 8)2 = 02[c2+(1-c)2627 < B(X - 0)2 (2.1)

ifft 6z < (1+c)/(1-c) where § = 6/c. Thus, if we have some

knowledge of &, we can make an appropriate choice of c to
ensure the inequality in (2.1). The minimum of E(cX—B)2
is attained at ¢ = 62/(1+62), and if it is known that the

true § is near about 50, we may try the estimator

X = —2.x (2.2)

which has the property

2 2.° . 2 .3
E, = [E(X - 6)7/E(X-0)"] <1 if [6[1(260+1) . (2.3)

But the property (2.3) does not ensure that
PN = Pr.(]|X_ -8| < [X-8]) > 0.5 (2.4)

for the same range of 6. Table 1 gives the approximate

values of 6 below which PN>0.5 and E <1 for different

2
values of the shrinkage factor c = 63/(1+6§) and the asso-

ciated values of 60.




TABLE 1

Values of |§{below which E, <1 and PN > .05

2 -

for different shrinkage factors

c 0 .1 .2 .3 .4 .5 .6 .7 .8 .9

; § 0 .33 .50 .65 .82 1.00 1.22 1.53 2.00 3.00

\ TABLE 1 shows that the range of § for which (2.4) holds is

much smaller than that for (2.3) to hold. It is also interest-

ing to note that the optimum choice of ¢ corresponding to a
given 60 for reducing the MSE does not ensure that PN>0.5
even for § = 60 unless 50 is below 1.2 (approximately).

Thus, shrinking an unbiased estimator is useful only when the

true value‘of the parameter under estimation is smaller than

about 1.2 times the standard error of estimation.

If 02, the variance of the estimator X, is unknown, but

. 2 2 ., . . ..
an estimator s” of ¢~ is available, we can define an empirical

version of (2.2)

2
x, = ‘X8 g (2.5)
€ 1+(X/s) i

and study its performance. The MSE of Xe compared to that of

| X has been extensively studied by Thompson (1968) under various

distributional assumptions on X. We shall examine other pro-

perties of (2.5) assuming that X is normally distributed and




02 is known. As shown by Thompson, the conclusions are not
likely to be different when 02 is used instead of 52 in
(2.5) even for small values of f, the degrees of freedom on

which 02 is estimated.

Table 2 gives the values of

B=o! E(X_-86) , PN = Pr-(lXe-SlilX-Bl),

3 i

_ -1 =1 2.° _ -1 _ayd
E, =0 ]2 E|Xe-6[, E,=0 "[E(X_,-6)"1, E,=0 "[E(X -6)7/3],

obtained by simulation. It is seen that the empirically shrunken

estimator Xe is better than the unbiased estimator X only when
§ < 1.4 (approximately), i.e., when the standard error of the
estimator of a parameter is more than 70% of the value of the
parameter. But a serious drawback of the estimator (2.5) may

be the large negative hias it has unless § i: very small or

very large.
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TABLE 2

Values of El’ RZ‘ E E F =57Ei, PN and B for the
3
/

; 2,2 . .
estimator X/(s +X7) for different valucs ot & = d/g,

8 B E, F, I, [ 3 PN
l
0.0 -.005 .549 .702 813 | .688 1.000
0.5 -.171 .757 .764 818 ! 780 .706
1.0 ~.290 .946 .893 856 ' .898 .565
1.4 -.344 1.047 .993 919 1 986 .504
1.5 -.352 | 1.066  1.015 938 - 1.006 487
2.0 -.367 1.124 1.097 1.031 | 1.084 . 444
2.5 ~.350 | 1.136  1.131 1.001 | 1.120 .426
3.0 ~.317 1.124 1.133 1.121 1.126 .437
3.5 -.283 1.105 1.118 118 1114 144
4.0 ~.252 1.086 1.100 1.102 1.006 . 453
8.0 -.13 1.0926 1.037 1,035 1 1.093 L4760
10.0 ~.105 1.018 1.028 1.026 1 1.094 A%
20.0 ~.6b5 1.007 1.017 1.015 101 L A00
100.0 -.015 1.003 1.013 .01 T oonn LAU5

3. ESTIMATION GF¥ VARTANCE

If 52 deroies the corrected sum of squarec< ¢f n 1.1i.d
()
observations from N(u,oz), it is well known that s“:Sz/(n~l)

)
is the minimum variance unbiased ostimator of 7.  But

2=
2

2 . . c s . 2 .
all n, so that s~ is inadmissible as an cstimator of ¢7 with

2

s Sz/(n+1) has smaller MSE than 52 uniformly for all o7 and

respect to the MSE criterion. How does s% compare with s2

<

with respect to other criteria? Table 3 gives the values of
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the following tor different degrees of freedom (n-1):

2
B _ 2y

i

E(s

[

PN

2
Pr(ls® - 0% < | < |s2- 0%,

| A

!

9
PC =Pr(-loga < 10g52 log o7 <loga),

PC2 =Pr(-loga < log sg - log 02 <loga),
2 2 3
E, = [E(s] - %) /E(s” - o®) 1.

It is seen that PN, the probability that S? is closer to 02

than S% is less than 0.5 uniformly for all 02 and for all n

although E, is uniformliy less than unity for all ﬁz and for

2

all n. Similarly, log 82 has a greater concentration probn-

‘s . . . 2 2
bility in any symmetrical interval around log 57 than log s,

. 2 N .
uniformly for all ¢ and all n. Thus shrinking the unlineeod

R 2 . . .
estimator s~ has resulted in a smalicy MSE but has rot broo-ht

.
2

the estimator closcr o the true value of <7 in any sene: |

. . 2 . . .
The unbiased estimator s” seems to have hetter intrinsic pro-

perties than s%.

t)

It mav be noted that the optimum shrinkage of 7 depends
on the loss function chosen. If instead of the MSE, we choose
2 2.4

3

the MQE = FE(cs”-57)" as the loss, then fthe optimum ¢ is a

sclution »t the cuhic equation

6 ...t . .. 2 3 2 2 |2 2
(L4—=) (1o 5 ) (T +==5 ) =3 (=) (I+o=) 743 (T+-=)c-1=0. (2.1)

The estimator so obtained is denoted by sf.







On the other hand, the optimum ¢ which minimizes the

2
MAE = Elcsz-o”l is the one which minimizes the function |
n-1 n-1 %
(c-1) + 2 6 (=) - 2 ¢ G, (35 (3.2) i
where
1 a2 _ty2 12{--1
= — t.
Gk(a) 2k/2r(5) J e t d
2 o

The estimator so obtained may be denoted by s2

1
2 2t 2 9,1 1/1
Table 4 gives the values of E;= [E(]si—o | Y/E(]|s“-0”] )1 ,
B,=E (s2-0%), PN=Pr. (|s2-0%] < [s®-0® ) and PC -PC, where
= 2 2
PC = Pr.(-loga <log s~ -1log 0" <loga)
. 2 2
PCi= Pr.(-loga < log sy - log ¢ <loga)
for i = 1 and 4. It is seen that s2 performs hetter than s?
2
and s2 in terms of PN and PC. Among the estimators s;, sg and

2 2

s4,s1 appears to be better than sg and 52

2 The results are

not unexpected since the distribution of 52 is skew on the
right and minimization of an expression of the type |

m
E(c s2—-02) pulls the estimator away from ozin the region
around and below the modal value of sz

It is not clear why in statistical literature much
emphasis is laid on the estimation of 02 and not on o although
in practice the latter should be the parameter of direct

interest. Unfortunately, none of the properties such as

10




Fy
TABLE 4
Values of mw. mw_ @ZM and ﬁn'.ﬂﬁw for i=1, 4 for different degrees of freedom
o2 | s2 ]
PC - PC PC - PC
pr| Bt By PN |y o o asols acn | B By PNy | 015 a2 a=2.5 a=3
w 1 .78 .577 .24 .04 .QW!: .10 JMH .32 . 764 .20 .11 .18 .22 fwmm
2 .85 .404 .29 .04 .07 .09 .10 .46 .619 .23 .14 .21 .24 .25
3 .89 311 .31 .04 .07 .08 .08 .55 .521 .25 .14 .20 .22 .22
4 .91 .232 .33 .04 .06 .07 LG7 .61 .450 .27 .14 .19 .20 .18
5 .93 .212 .35 .04 .05 .0€ .05 .66 . 396 .28 .13 .17 .17 .14 ,
6 M .94  .183 .36 .03 .05 .05 .04 .70 . 354 .29 .13 .16 .14 .12 .
7 .94 .161 .37 .03 .04 .04 03 .73 .320 .30 .13 .15 .12 .00 -
8 .96 .144 .38 M .03 .04 .03 .0z .75 .292 .31 .12 .13 .10 .07
9 “ .96  .130 .38 .03 .04 .03 .02 77 . 268 .32 11 .12 .09 .06
0 n .96 .118 .39 .03 .04 .02 .07 .79 . 248 .33 .11 .11 .07 .05 v
20 .98 .063 .42 .02 .03 .00 .00 .88 .142 .37 .07 .04 .01 .00
40 h.@@ .032 .44 .01 .00 .ob .00 .93 077 .40 .03 .00 .00 .00 W
i
!

, 2
*The optimum shrinkage factor is 1--B where © = Bias/o o]

11

R Ty PP T R D P AT



unbiasedness and MMSE are preserved under transformations
of estimators and parameters. For instance, the minimum

variance unbiased estimator of ¢ is

-1
r» (%) '5
s+ = (221 2 s = ts (3.3) !
r(3) |
2 |
which is different from s while the MMSE of ¢ is
-3 p(.rl)
_ ¢h-1 2
st = (5) a1 S (3.4)
r(&-)

which is different from $p- Now

E(s*-0)2=oz(tz—l)>202(1--11:—)=E(s—-0)2 (3.5)

so that 8 has a smaller MSE than s* as an estimation of o.

We shall compare the relative performances of s and s* as
2

s

) [ 4
estimators of o and of s and (s*)z as estimators of o
Table 5 gives the values of the following for different

degrees of freedom:

E, = [E(s-0)2/E(s*-0)21%

2
PN, =Pr.(|s*-o]| < |s-0]),

2 2

; PN, =Pr.(|( s*)%-0%] < |s®-o®]),

PC =Pr.(-loga ilogsz— 10g02i10ga), ;

PC2= Pr.(-loga < 1og(s*)2 - log 02 <loga),

12




It is seen that although Ezf_l uniformly for all ¢ and DF

so that s has a smaller MSE than s* as an estimator of o,

PN1 is uniformly above 0.5 so that s* is nearer to o more

often than s. What is more interesting is that PN2 is also

2

uniformly above 0.5 indicating that (s*)2 is nearer to o

more often than sz Further, log(s*)2 has greater concentra-

tion around log<? than 10gs2 around logozif the DF is not

small and the interval chosen is not short. It appears that

the biased estimator (s*)2 of 02 has better properties in

terms of PN and PC than 82, although highly inadmissible with

respect to MSE.

4. DIRECT OR INVERSE REGRESSION
Consider a pair of random variables (6, Y) such that

)
Y = 6+¢, E(e)=0, cov(8,e)=0, V(e)=O;.

(4.1)

In practice 6 stands for the true value of a quantity (such
as the cholesterol level of a blood sample)

ment of 6 subject to error. Only Y is observable and not 9,

in which case the problem is one of estimating or predicting

® given Y.

From (4.1), the regression of Y on 8 is 6 itself so that

the inverse regression estimate of ¢ is Y which is also an un-

biased estimator of 8. On the other hand, if the mean (yp)

and variance (og) of the unconditional distribution of 8 is

known, then the regression of 6 on Y is

13

and Y is a measure-

i

et
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) o2
6 = p + (Y-u) (4.2) '
2, 2 4
o.,+0
0 "o

which provides a direct regression estimate of 6. In practice,

the estimation procedure (4.2) can be implemented by estimating
M, og and oi from past data on Y (cholesterol determinations)
on a large number of individuals (see Rao, 1973, p. 337),

and updating the estimates as more data accumulate. The es-
timator & can be identified as the Bayes estimator using a
quadratic loss function and a relevant prior distribution

for ©.

Suppose that an individual's blood sample has been referred
to a clinic for the determination of cholesterol and the clinic
reports the measurement as Y. What should we record as the es-
timate of blood cholesterol for the individual, the unbiased

estimator Y or the Bayes estimator g of (4.2) using a relevant

estimated prior distribution? There has been considerable con-

troversy on this subject, in a slightly different context, in
the calibration problem (see Berkson, 1969; Halperin, 1970; 1
Krutchkoff, 1967, 1969, 1971 and Williams, 1969). We shall

examine this problem in the set up of (4.1) assuming that the

parameters 1y, 02 of the prior distribution and the variance

)
og of the error of measurement are known. Now
02 02
E(8-0)% = 2 <o? = E(v-0)? (4.3)
-0
ce+oo q

15




and the strict inequality holds if oof(L so that the mean
square error of prediction is smaller for 6. Does this

mean that 5 is qloser to 8 than Y in somc sense? To examine
this question we have to consider the distributions of Y and

8 for given 6.

The MSE's and Y and 5 for given 6 are
E((Y-0)7]01 = o (4.4)
E[(8-0)?|0] = 0267(674x%) /(1462 (4.5)

where (6—u)/08=x and 6=oe/oo. From (4.4) and (4.5),
A .2 2
E[(6-08)7|81 < E[(Y-8)7|8] (4.6)

iff A2 < (1+26%)/6%. Then the efficirncy of § compared to
Y with respect to MSE depends on the magnitude of the devia-
tion of the true value of 6 from the apriori mean. If the
deviation is large, 6 is less efficient than V.

The estimator Y is unbiased whilc the bias in § is

A 2 2 2
E[(06-8)]08] = ~Xo 07 /(0 +0q) (4.7)

so that large values of 6 are under-estimated and small values

are over-estimated.

Table 6 gives for different combinations of & and X the

values of

=1
il

(E{(8-0)2 (0} /E(¥-0)217,

Pr.(|6-0] < |v-08]),

e
2
]
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where the region- for which (i) E2 <l, PN>0.5, (ii) E 1,

2<
PN<O.5 and (iii) En >1, PN<O0.5 are marked. It is seen that
) performs better than Y when the error of measurement is
large and the true value is near the mean of the apriori dis-
tribution. But if precise estimation of large deviations from
the apriori mean is more important (as it should be in a pro-
blem like the estimation of blood cholesterol), Y should be
preferred to 8.

TABLE 6

Values of E2 (first entry) and PN (second entry)
for different combinations of X and §

O L TR} A s W W AT U TS LB DS R AT e e

AYIE 1.0 1.5 2.0 2.5 3.0
0.5 | .283 .447 .632 .825 1.020 1.217
.835 679 .535 .411 . 308 .226
1.0 | .559 .707 .901 1.118 1.346 1.581
.742 .528 375 I .275 .209 .160
1.5 | .729 .832 .979 1.154 1.346 1.548
.673 .460 .353 .294 .248 .207
2.0 | .825 . 894 1.000 1.131 1.281 1.442
.615 .435 .371 .329 .290 .253 :
2.5 [ .879 .928 1.005 1.104 1.219 1.346 :
.569 .433 .391 .356 .322 .290 ;
\ 3.0 | .912 .949 1.006 1.082 1.171 1.273
.535 .439 .407 .376 .346 .318
5.0 | .966 .980 1.004 1.035 1.075 1.121
; .487 .461 .442 .422 .403 .384
10.0 | .991 .995 1.001 1.010 1.020 1.033
.490 .480 .470 .461 .451 .441
15.0 | .996 .997 1.000 1.004 1.009 1.015
.493 .487 .480 474 .467 .460
17
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5. SIMULTANEOUS ESTIMATION OF TWO PARAMETERS

Let X, ~ N(el,cz), X ~ N(ez,cz) and - fs2 ~ o2 X2(f) be

2
independent random variables, and consider the following

i §]
estimators of 1,62

X, +X X, -X
_ 1772 1772
t) = =52+ c - (5.1)
X, +X X, -X
_ M1 2™ "1
t, =+ ¢ —5 (5.2)

as alternatives to the unbiased estimators Xl and X2. Then

2

2.2
2 _ 2] l+e”™ | (1-c)7s .
E(t;-6,)" =0 [: 5 7 :],1-.1,2. (5.3)

and the expected compound quadratic loss (ECQL) is

2 2.2

2 _ 2 2, (1-c)78”
E g (t;-8,0" = o [i+c i J (5.4)
where § = (61—92)/0. The expression (5.4) attains the mini-

mum when ¢ = 62/(2+62). Since 62 is not known, we may con-

sider the empirical versions of (5.1) and (5.2)

2 2 .
(o) _ X, +X, . (X1‘X2) /s X, -%,
1 - 2 2 2 2
2+(X,-X,)%/s
2, 2 .
O X X, . (X1'X2) /s Xy-X,
2 N 2 2, 2 2
2+(X1-X,)%/s

18




We shall compare tge) and t;e) with X1 and X2’ assuming

that is known, with respect to the following criteria:

B, = o"l(tge)-el), B, = 0—1(t;e)—62),

1
PN = 9 E:r’( Itie)"ell < lxl“ell) +Pr. ( ,t;e)"ezl b lxz‘ezl)

E=(E +E, +E,)/3,

where

t=
[

-1 1 (e) 1 (e)
o /—n/—2(§E|tl —91|+2E|t2 -8, 1),

=3
I

g =0 [%E(tge)'el)Z%E(tée)'ez)ﬂ%'

5]
[

1., (e) 4.1.,.(e) il
4 =0 [EE(H -6 +gE(L, “82)]'

Table 7 gives the values of El’ Ez, E4, E, PN and Bl’ Bz
based on a simulation study using 1000 samples, for various
values of § = (81—82)/0 . It is seen that simultaneous
estimation of 81,62 by tge) and tée) has some advantage
over X1 and Xz when 6 <2 (approximately), i.e., when the

parameters under estimation do not differ by more than twice

the standard error of the estimator of a single parameter.

6. ESTIMATION OF SEVERAL PARAMETERS

Let X, ~ N(8.,0%), i=1,...,p and fs° ~ 0% y2(f) be
independent random variables, where (81,...,9p) = g8' is a
19

- L R e e BN AL L ke Nl




TABLE 7
Values of El’ EZ’ E4, E, Bl’ 82 and PN for
tie) and t;e) for different values of § = (91—82)/0

§ B1 82 PN E1 Ez E4 E
0 -.027 .005 702 .854 .864 .872 .863
.5 .052 ~-.132 .674 .871 .871 .878 .873
1.0 .121 -.164 .635 . 894 . 887 . 883 .888
1.5 .216 -.145 .567 .962 .956 .954 .957
2.0 . 257 -.259 .517 1.013 .998 .976 .996
2.5 .269 -.277 .485 1.041 1.029 1.000 1.023
{ 3.0 .199 -.243 .475 1.046 1.045 1.041 1.044
3.5 .279 -.234 .455 1.081 1.064 1.037 1.061
4.0 .229 -.251 .442 1.087 1.083 1.080 1.083
5.0 .188 -.132 .454 1.037 1.034 1.023 1.031
6.0 .207 -.181 .465 1.027 1.029 1.025 1.027
7.0 . 197 -.118 .468 1.042 1.040 1.049 1.044
8.0 .085 -.102 .491 1.022 1.018 1.010 1.917
9.0 070 ~.;108 .490 1.015 1.024 1.029 1.023
10.0 . 097 ~-.105 .485 1.006 1.009 1.025 1.013

fixed vector parameter. James and Stein (1961) have found the
remarkable result that when p>3 there exist statistics

Ti='ri(x1,...,xp,sz). i=1,....,p (6.1)

such that
EFZ(Ti-ei)ZJ < E[Z(Xi~ei)23 (6.2)
uniformly for all 6,, which implies that X'= (xl,...,xp) as an
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estimator of 8 is inadmissible with respect to the CQL
(compound quadratic loss) function. The result (6.2)
gives the impression that we stand to gain by answering
several problems, possibly unrelated, simultaneously.
It is well known that there do not exist statistics ti

alternative to Xi such that
E(t.-0.)° < B(X.-0.)2, i=1 p (6.3)
i Vi i Vi ' rrr e :

uniformly for all ei, so that the overall reduction in the
ECQL possibly takes place by an increase in the MSE for

some parameters and decrease to a larger extent for the
others. To examine this phenomenon in some detail, we
shall consider a number of alternative joint estimators of
61,...,6p of the type suggested by James and Stein and study
the performance of individual estimators.

Specifically, we consider the following types of

estimators of 61, ,ep:
T1i =bX., i=1, b (6.4) |
TZi = a+b(Xi—a), i=1,...,p, (6.5)
T3i = a+bi(Xi—a), i=1,...,p, (6.6)

which may be represented by 'Tl, T2 and ’I‘,3 in vector

notation.




! 2. .2 2 2.2
ElZ(Tli—Bi) 1= pb” o7 + (1-b) ZOi (6.7)

which attains the minimum value at b = vz/(1+v2) where

vz = Zez/pcz. If v is known, then the optimum estimator

of the type (6.4) is

1
T (1- ] X (6.2) ﬂ
1 1+v2 -
and the ECQL is
2 2 V2 2 2
E[Z(T,;-0,)7) = po 1+v2_3pc = E[L(X,-6,)77. (6.9)

The MSE for an individual estimator is

2 2,4, .2 2
E(T;;-6;)" = 0 (v +v)/(1+v7)

2 (6.10)

where vy < ei/o. The expression exceeds the MSE of Xi if

v? >2v2+], indicating the possibility that in joint estima-

tion of the Tl—type, the larger parameters are less effi-

ciently estimated than the smaller ones. f
If v2 is not known, we may estimate 1/(1+v2) by

c sz/ZX?, where ¢ is a suitable constant, and obtain an

empirical version of (6.8)

(e) _ c sz
T, = (1- =) X (6.11)
X

The best choice of ¢ obtained by minimizing the ECQL of
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(6.11) is f(p-2)/(£f+2) if p >3, which leads to the James-
Stein estimator

2

(e) _ f(p-2) s

%7 = [1-7{—2—;(-2 X. (6.12)
i

James and Stein have shown that for p >3

2 2
5 f(p-2)%c 1

E[(Tge)-e)'(Tie)—e)]=po -5 E[(2K1+p-2)" ] (6.13)

where K1 is a Poisson variable with parameter v2/2. The
expression (6.13) is smaller than p)gz for all v. Ullah

(1974) computed the bias and MSE of individual estimators:

1

o1 E(Tgi)—ei)=- (p=2)f v, Er(27 +p) ] (6.14)

f+2

£(p-2)2 1

-2 (e) 2 _ -
g E(Tli —ei) -1——2—(—%"+—2'T~ El+g)E{(2K1+p—2) }

-(1+L%52)E{(2K1+p)_1}] (6.15)

where

2

2 2
g = ((p+2)ei - 2z ei] /T ei.

Similarly, the best estimator of the type (6.5) is

- [ 1 ] = .
T,y = 8+ (1 5 (%), i=1,....p (6.16)

where 6 = (6,

for T2 as in (6.16) is

+...+6)/p and n? = 1(e,-®%/p o2. The ECQL

9 [ n? o [ v2 2
po [ 2] <po 5| < po (6.17)

1+n




so that if ® and n2 are known further improvement in ECQL
over X and T1 is possible. The MSE for an individual

estimator is

2

E(Ty;~0,)% = o®(n?+n?)/(140%)? (6.18)

where n? = (61—5)2/02. The expression (6.18) exceeds 02,
the MSE of Xi’ if n? >2n2+1, indicating the possibility that

in joint estimation of the type T the extreme parameters

2!
are less efficiently estimated and the middle parameters more
efficiently than the corresponding unbiased estimators.

As in the case of Tl’ we can estimate § and 1/(1+n2) by

X and (p-3)fs®/(£+2)72(X,-X)?] respectively if p>4 and ob-

tain an empirical version of T2

2
(e) _ % f(p-3) s 4 :
Toy = X+ (1-13855 — (X,-%), (6.19)
i
i=1,...,p(>4).

It can be shown (Efron and Morris, 1971, 1972a, Rao, 19762)

that
2 2
. f(p~-3)~0c _
E{(Tée)—e) (Tge)-e)} = po?- —r—— E{(2K,+p-3)"}(6.20)

where Kz is a Poisson variable with parameter n2/2. The

expression (6.20) is less than pciiso that Tge) is uniformly
better than X with respect to ECQL. Rao and Shinozaki (1978)

have shown that for individual estimators
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1

E(T,,-0,) = :i%géﬁ)(ei—§)E{(2K2+-p—l)— } (6.21)
2 2 f(p-3)202
E(Ty;-0)" = 0 - 5rggy (6.22)

X[Ec+d)E{(2K2+p—3)‘1}— c(p'sym(p'l)E{(zxz+p-1)‘1ﬂ

(p-3)
where
c=(p-1)/p, d= ((p+1)(0;-87=2L=Dlrco.-5)%}/2¢0,-5)7.

Finally, the best estimator of the type (6.6) is
=2
(61—6)

T,. =8+ —2—— (X.-8), i=1,....,p (6.23)
31 (8,-5)%+02 *

and its empirical version is

(o) < (xi-i)2 B
T31 =X+~——:~—2~—'—2' (X].—X), i=1,...,p . (6.24)
(Xi—X) +3 )
It is difficult to compute the ECQL of T®) or the MSE of
(e)
$8).

(e)
1
and the ranges of parametric values for which the

The relative performance of the estimators T and

(e)
Ty
individual Tge) and Tée)- estimators are better than the
X-estimators are examined in Rao and Shinozaki (1978).
Table 8 contains the results of simulation studies based on

thousand samples for the estimation of four parameters

61=a0, 92= (a+d)o, 93= (a+2d)c and e4= (a+3d)o for various




combinations of a and d, assuming o to be known, i.e., by
replacing £62/(f+2) by a2 in the formulae (6.12) and (6.19) for
Tée) and Tge). The broad coﬁclusions remain the same if the
random variable 52 is used provided f, the degrees of freedom,
is not small.

For each combination of 6/c and d, Table 8 gives the

values of E, PN and B in the first row for T(e) in the sec-

1 ’
ond row for Tée) and in the third row for T%e), where for any

é statistic

i ;
j - 2, 2.3 |
i E = [E(ti-ei) : E(Xi—ei) 1%, |
s | PN =Pr.(|ti-ei|_<_IXi—Gi|),

B =

E(ti—ei).

t On the basis of previous investigations by Efron and

Morris (1971, 1972a,b, 1973a,b), Rao (1975a, 1975b, 1975c, 1977)
and Rao and Shinozaki (1978) and the present simulation

studies, the following broad conclusions emerge.

;e) and Tée)

the range of parameter values is small, and Tie) when both

(a) There is some advantage in using T when
the range and values of the parameters are small compared

! to the standard error of the unbiased estimators.

(b) When the range of parameters is large both T(e) and

1
T;e) tend to have the same properties as X. But the perfor-

mance of Tge) tends to be erratic.




e T T —

. TABLE 8

Values of mw. PN and B for estimators of the type ew. .H.m and eu
for various combinations of 8/c and d _
2 d Eq PN Bias
o 01 8y %3 %4 57 % 83 B, ®1 ®y %4 04
1.25 Q. 1 .835 .884 .955 1.069 770 589 .479 .440 .094 -.183 -.297 -~.410
5 .927 .863 . 864 .950 .634 .766 .751 .620 .197 .079 -.,067 -.209
3 761 .614 .613 771 .692 727 .723 .692 .246 -.092 .105 .232
3
2. 1 .9219 .947 .985 .953 .793 .521 .446 ,453 .041 -,123 -.215 -.304 i
9 1.004 .912 .914 1.010 .500 .739 .721 .510 .217 .078 -.074 -.220 W
3 .814 .688 .693 .814 652 .712 .704 ,645 .028 -.015 .019 -,033 $
;
2.7 1 .950 .972 .993 1.030 .800 .478 .456 .466 -.022 -,088 -.157 -.230 1
4
2 1.015 .949 .950 1.016 .476 .696 ,662 .,480 .175 .061 -.059 -.177 w
3 .901 .793 .802 . 899 .575% .626 .612 570 . 160 .005 -.006 -.159 m ‘
1 .972 .983 .995 1.019 012 .,462 ,465 ,476 m -.013 -~-.068 -.127 -.183 P}
2 1.011 . 969 .970 1.012 182 . 646 .997 .482 .139 .048 ~.047 -.140
3 .967 . 888 . 894 . 964 521 .486 .477 .524 .224 .008 -~-.,011 -.220
7.00 .H .993 . 997 .999 1.004 .651 .464 .481 .488 -.057 -.036 ~.065 -.093
D 1.003 . 991 .992  1.603 .501 .536 .500 .492 .073 .025 -,024 -.073
.w 1.054 1.035 1.035 1.058 .465 .199 .201 .469 .229 .000 -.001 -.226 {
\
{
T - !
%
27 !




(c) When the range of parameters is moderate, Tge)
gives higher precision for the parameters with smaller
values at the expense of lower precision for higher values.
According to the PN criterion, only the smallest of the four
parameters is better estimated than the corresponding un-
biased estimator. In the case of Tée) and Tée), extreme ﬁ
values of the parameters suffer at the expense of increased

precision for the middle values.

(d) One drawback in using estimators Tge), T;e) and

Tée) in preference to X, is the bias in these estimators.
The bias is of a substantial magnitude for the higher values
in the case of T§e) and for the extreme values of the para-

meters in the case of Tée) and Tge). There are situations

where bias in the estimators may have serious consequences

such as the following.

Suppose there are four regions and periodical estimates
of a certain characteristic are needed for sharing some re-
sources in proportion to the values of the characteristic of the
four regions. If each time, estimates of the type Tge), Tée)
and Tge) are used, some regions stand to gnin at the expense
of the others in the long run (Rao, 1977, 1979).

In some situations, the individual parameters may not be
of direct interest but certain linear combinations may be
important. If c'e = ¢ 8;*...%c, 8, is a linear combination to

be estimated, should one estimate it by c'X or c'Tge) or

c'Tée) or c'Tée)? Naturally, the answer depends on the vector
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c (Rao, 1975b, 1975¢), and the optimal properties of Tge),
T;e) and Tge) with respect to a single criterion like the

CQL do not insure their efficiency in different ways they
may be used for practical purposes. If multiple uses are
intended, the best plan is to place on record X as the esti-
mator of 6 (together with an estimate of 02) leaving it to
the user to make any optimal adjustments in X depending on

particular problems under study.

Note 1. It may be of historical interest to note that esti-
mators of the type T2 have been constructed under more gen-
eral conditions, in multivariate analysis, for purposes of
genetic selection by Fairfield Smith (1936), Hazel (1943)
and Rao (1953) based on an idea suggested by Fisher. The
problem was as follows. Let (6, Xl""’im) be (m+1) vector
variables representing the unobservable genctic values 8
and repeated independent phenotypic vector mecarsurements
s+ ¥y, On an individual. The variables are related by

the model
yi = 6+ei , 1 = 1,...,m. (6.24)

The genetic worth of an individual is measured by a linear
function g'e. Suppose that we have observed p individuals

from a population, with phenotypic measurements

STPTRIT MR I PRRR 2 (6.25)

What is the best way estimating the genetic worths g'gl,...,g'gp

of these individuals for purposes of ranking and selecting a
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given proportion of the individuals with the largest genetic

values? If Ej represents the mean of the measurements (6.25)
for individual j, then g'ii is an unbiased estimator of E'gj'

However, Fisher suggested the regression of g'gj on yj as the

appropriate selection index, which involves the knowledge of

—_— - -1
cov(c,e), where ¢ =m ij. The

il

M =E(8), I' = cov(e,8), A
regression estimator of g'gj is g'f. where

éj = p+ [I-A(T+A) " Wy -p). (6.26)

By multivariate analysis of variance and covariance of the
data (6.25), we obtain dispersion matrices B and W as between
and within individuals with degrees of freedom (p-1) and
f = m(p-1) respectively, which supply estimates B/(p-1) of

(T+A) and W/mf of A. Then an empirical version of (6.26) is

Gy =y + (I-25=WB 1 (¥;-Y) (6.27)

where pi=ﬁ?§i. The details leading to tle formula (6.27) are

given in Rao (1953, pp. 237-8). When all the variables are

one dimensional, (6.27) is the same as Tég) of

that the multiplying factor (p-1)/f is replaced by (p-3)(f+2).

(6.19) except

In the 1953 paper, Rao also considered some distributional

problems for testing hypotheses concerning the rank of the T
matrix and the efficiency of the regression estimator.

It should be noted that the regression estimators (or 1
empirical Bayes estimators) g'ﬁj are appropriate in the problem 1

of selection where the total genetic worth of the selected




subset of individuals has to be maximized. In such a case,
it is well known that the best ordering of the observed
individuals is achieved by using, as the selection index,
the regression of genetic worth on phenotypic measurements
(see Cochran, 1951 and Henderson, 1963). But the regression

estimator may not be appropriate if the genetic worth of each

individual has to be assessed for other purposes which may
demand equal precision for the individual estimators.

Note 2. In his presidential address delivered to the Royal
Statistical Society, Finney (1974) suggested that the problem
of simultaneous estimation may be approached through the prin-
ciple of maximum likelihood, thus avoiding the use of the
arbitrary compound quadratic loss function. Let Xi ~ N(91’¢)’
i=1,...,p be p independent observations. IFf Bi arise as a

random sample from N(u,7), then the log likelihood is, apart

from a constant,

2 2
2(xi~ei) Z(ei—u)

L= —d e (6.28)

Finney maximizes L with respect to u and Si and obtains the
estimates

‘ 8, =%+ (1 - T—f$) (x,-%). (6.29)

It is not known whether the maximum likelihood principle
applies in situations such as (6.28) where the likelihood is

a function of holh the unknown parameters and unobserved random

variables. Finney says that an unbiased estimate of 1/(t+4¢)




is (p-3)/Z(Xi—Y)2, so that when 1t is not known, the estimator

of 6, is
i

6, = X + [1- (p=3)¢ | (x. -X) (6.30)
i <\ 2 i
5(X.-X)
i
which is the same as the expression given by Lindley (1962)
using Bayes theorem and quadratic loss function.
However, if t is unknown, the appropriate log likelihood

is proportional to

Z(Xi—ei)z z(ei-u)z

b - -
_.g.log'l' ) 51 . (6.31)

The expression (6.31) can be made arbitrarily large by choos-
ing 6, = u = X for all i and letting t » 0. Thus, the m.1.
estimator is ei = X for all i! Such anamolies do oc.ur when
unobserved random variables are included as unknowns and a
"full likelihood" function such as (6.31) is considered for

drawing inference.

I wish to thank Robert Boudreau for the simulation studies

reported in the various tables.
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