
AD0-A093 A16 PITTSBURGH UNIV PA INST FOR STATISTICS AND APPLICATIOINS F/G 12/1

CONCORDANT AND DISCORDANT MONOTONE CORRELATIONS AND THEIR EVALU--ETC Al
OCT Al A KIMELDORF. J H MAT. A R SAMPSON F496ZI 79-C 0161

UNCLASSIFIED0 TR-8-20 AFOSR-TR-8-1344 NL



19_)

4 CONCORDANT AND .ISCORDANT MONOTONE CORRELATIONS AND

THEIR EVALUATION BY NONLINEAR OPTIMIZATION

,eor geKimeldorf /I

0Jerrold H./May

University of Texas at Dallas

University of Pittsburgh

Universitv of !iitt;burgh

Techni cii Pport No. 80-20

Institute for Statistics and Applicationsg I Department of Mathcmatics and Statistics
University of PittsburghIPitlr.burgh, PA. 15260 <I

" The work of this outhor was supported by the National Science
Foundation under (;r. ,t MCS-80-0"152.

C> 2The work of this author jf sponsored by the Air Force Office
of Scientific Researh .A ir Force. Syst ems,,,Clmma..__u4_er
Cont ) F4962! 7-92q-C- 0161..",/, F . '" - 7 . , 7"

Reproduction i'i whol, or in part is permitted for any purpose
of the United States (?ovrnment.

Approved for public release;

distribution unlimited.



CONCORDANT AND DISCORDANT MONOTONE CORRELATIONS AND

T1EIR EVALUATION BY NONLINEAR OPTIMIZATION

by

George Kimeldorf, Jerrold 11. May, and Allan R. Sampson

University of Texas at Dallas, University of Pittsburgh,

and University of Pittsburgh

ABSTRACT

This paper presents four new statistical measures of monotone relationship

derived from the concept of monotone correlation. A nonlinear optimization

algorithm is employed to evaluate these new measures, as well as the monotone

correlation, for ordinal contingcncy tables. A computer program to implement

the algorithm is developed, and is applied to several insightful gxamtles to

provide further understand]ing of the usefulness of these measures.

T17ccesiqn For
NTIS GTRA&I
DTIC TAB.

i l i Unanneour Od .

Justificaiofl-n - ,

AIR FORCE OFFICZ Of SCIENTIFIC R28ARCH (A1601 By - ---

NOTICE OF TRANSMITTAL TO DOC Distributinn/
This technical report has been reviewed and is Availnti.lit" -
approved for public release IAW APR 190-13 (7b). ,
Distribution is unlimite4e.
A. D.. BLOSI ie
Teohnioal Information Offleor

Key Words and Phrases: Monotone correlation, concordant monotone correlation,

discordant monotone correlation, isoscaling, ordinal contingency tables,
nonlinear opt imization.



4.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

' - - - . .. . --.. . . . . .. . . . ... ' . . . . .. . . ... . .. . .. . . . . . . . . . = r~l



CONCORDANT AND DISCORDANT MONOTONE CORRELATIONS AND

T1EIR EVALUATION BY NONLINEAR OPTIMIZATION

by

George KimeldorfI, Jerrold H. May, and Allan R. Sampson2

University of Texas at Dallas, University of Pittsburgh,

and University of Pittsburgh

1. Introduction and Statistical Background

Measuring and understanding the basis for the association between two ran-

dom variables X and Y is extremely important for the intelligent application of

statistics, as well as for more insight into the underlying bivariate proba-

bilistic structures. The focus of this paper is on association between ordinal

random variables, that *,F;, r;indon variabeo; where the observed values have a

natural ordering witliout necessarily having; naLurally ascribed numerical values.

For example, the vole I may Arise ircm questionnairc responses based on the five-

point scale: strongl v dis-Agroe, dio; c, no opinion, agree, strongly agree.

In measuring association betwern two er,'innl variables using a measure based

on assigning numerical values to the possibe data values, it is natural to re-

quire that the resultart numcrical measure of association not depend on the actual

numerical values but only the ordcring,. Thi; property can be described as

monotone scale invariancru. Uhen Pearson's correlation coefficient is used by

The work of this author was supported by the National Science Foundation
under Grant MCS-80-02152.
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assigning the values 1, .... N to the scale levels, the resulting measure is not

monotone scale invariant. For the five-point scale example, assigning 1 to

strongly disagree, ... , 5 to strongly agree and then computing the Pearson cor-

relation would not provide a monotone invariant measure of association.

One monotone invariant scale measure is the sup correlation P' introduced

by Gebelein (1941), developed further by Sarmanov (1958a,b), Rgnyi (1959), and

Lancaster (1969), and defined by 1'(X,Y) = sup fp(f(X), g(Y)), where the supremum

is taken over all Bore]-mcasurab1e functions f,g such that 0 < Var f(X) < - and

0 < Var g(Y) < -, where p is the Pearson correlation coefficient. For random

variables (X,Y) jointly taking values on a finite rectangular lattice, there

are computational methods for compit ing 0' using eigenvalue routines (see Sarmanov

and Lancaster). For continouou random vairiables X,Y, the sup correlation is

computable only in special -,-cs wllorc the joint p.d.f. admits a certain type

of bivariate orthogcni] e-pnIos IDc e 1. L.a s..,r)

An important denr'ndeCC conccrpt bi'tweeti two raindom variables is that of

complete dependen'ie, lntrodiued 1v 1 incor !(q- (1963). A random variable Y is

said to be completely dcpodont on a reiodom varialie N if there exists a func-

tion g such that

(1.1) Prob[Y = g(')i = I.

If Y is completely depCnd'-nt on X rid vic versa, then X and Y are said to be

mutually completely heped n t in tl,s -,'' Y and Y are perfectly predictable

rfrom each other. Obh+erve tll:at if X .nd Y are mutually complete dependent then

P'(X,Y) = 1.

Kimeldorf and Sa)Son (t_07'0 pr,vif!ed ;,, example of random variables X and

I"[ Y which were ritually , omlplot-ol v rd-.1idi and yet were "almost" stochastically

Independent. To circtimvent this Oi -f li1lt, Vimeldorf and Sampson defined Y to



be monotone increasin_ (docrein,)_ dpendeint on X if (1.1) holds for a mono-

tone increasing (decrealing) function g. Furthermore, motivated by trying to

measure the degree of monotone dependence, they defined the monotone correlation

between random variahle Xv and Y by

(1.2) P*(X,Y) = sup (f(,'), g (Y)),

where the supremum is taken over aLl. monotone functions f,g, for which

0 < Var f(X) < - and 0 < Var g(Y) ... The monotone correlation is a monotone

scale invariant measure of association and the maximizing functions (assuming

they exist) for (1.2) are the "best" monotone scalings for cross linear predict-

ability of X and Y. (honotonn scin I are order-preserving assignments of

numerical values to ord ion I li ,.) Kimeldorf and Sampson evalated the monotone

correlation in only the ti,,- :-i' i1 -;itnfi OT: (i) X and Y bivariate normal,

in which case o* wd, Cil : ;,iY i,.lep.,ndent, in which case p* = 0.

The purposc, o t hi '. t v:ofold: k)ne is to derive new measures

associated %.,; th (' w, r ot, no i i-, liI ion ,nd 'o study their applicability. A

second is to provi'yry a..,hbr e and computer program to evaluate

the monotone correli.t ion ;_iirc i\,'d me; sures for the case when X and Y

assume a finite number o' v11,':. lhi ajipronch is to find an equivalent non-

linear program and thon ,m-]'I- - :1'; : I mo -irar ion of the optimization algorithm of

May (1979) to compute t,',w;yL:ijn v;ol ito, ;nJ the points at which they occur.

In Section 2, we introdw,-c lIhe , nncor'< if concordancy, discordancy, and iso-

scaling fer mearluring m:onotoro orciation. The equivalent nonlinear programs

are given in Section 3. 'he .peccitfr algorithm and the computer program, which

we call MONCOR, are described in 2crtion 4. A number of interesting applications

The authors .,re in the , -e: of examining procedures for data from cer-

tain continuous distribut [c,.

"*: ' .. - ... .. . - 7_ ? ,. li _ : " . . . . . . . 1 1 [I II ii i . . .." .. . ... . . . .. .. . . . . . . .



4.

and examples are considered in Section 5. In Section 6, we discuss how these

methods might be used for scale reduction.

2. Concordancy, Discordancy, and Isoscaling

The concept of monotone correlation can be refined by measuring separately

the strength of the relationship between X and Y in a positive direction and

the strength of the relationship in a negative direction, that is, to measure

separately the extent of concordancy and of discordancy between X and Y. These

concepts are related to so-called measures of disagreement and measures of dis-
. . 1

sociation. If in (1.2), f and g are both restricted to be increasing (or

equivalently both decreasing), the resulting measure is called the concordant

monotone correlation (CMC). When f is restricted to be increasing and g

decreasing (or equivalently f decreasing and g increasing), we find it conven-

ient to examine -sup P(f(X), g(Y)), which 4n turn can be expressed as -sup p(f(X),

-g(Y)), where both f and g are increas!i g. This leads naturally to defining

the discordant monotone correlation (DMC) by inf p(f(X), g(Y)), where f and g

are both restricted to be increasing.

The DMC and CMC have natural interpretations as measures of negative and

positive association, respectively, for ordinal random variables. They also can

be interpreted as providing bounds for tbe correlation between any arbitrary'I monotone scalings; specifically, for arbitrary increasing f and g,

(2.1) DMC < p(f(X), g(Y)) < CMC.

Suppose it is desired to impose numeric monotone scalings for a pair of new

tests; if the CMC and DMC are close, then by (2.1) it makes little difference

which monotone scales are used. Also if CMC = DMC = 0, then X and Y are inde-

1The terms increasing and decreasing are used non-strictly.
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pendent random variables; however, it is possible for DMC < CMC = 0 and X and

Y not to be independent. Further note that if X and Y are increasing monotone

dependent then CMC = 1; and if X and Y are decreasing monotone dependent, then

DMC -1.

Sometimes the situation occurs when X and Y should have the same scaling.

For example, X is a psychological test score pretreatment and Y is the score

post-treatment on the same test. This leads to another extension of monotone

correlation, which we refer to as isoscaling. If in (1.2) we restrict f - g,

the resulting measure is called the isoconcordant monotone correlation (ICMC).

Analogous to the DMC definition, the isodiscordant monotone correlation

(IDMC) is given by inf p(f(X), g(Y)), where f = g. Obviously isoscaling is

not practically appropriate when X nd Y have essentially different ranges of

values.

If X and Y are exchngeible or-L1taw ranr,,m varialies it might be conjec-

tured due to all the symm0 ti-ip ",e :el ',I Tr IC = CMC (and IDMC = DMC).

However, as is shown in Section 5, :his; is surprisingly not the case.

The actual functions that mn xi.ize the correlations (assuming they exist)

are of importance in developing inunetoTr scoles. We refer to such functions

generically as monotone variables with their specific interpretation depending

on which monotone correlation mensure i,-. used in their derivation.

3. Program Formulation

The preceding extensions of the monotone correlation are applicable to all

suitable pairs of random variables, continuous or discrete. We now focus on the

case where X and Y jointly take on a finite number of values (ait hi), 1 1,

I, j-l, ...1 , J and Prob(X a, Yb) = P,,. Then
g • •
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I J I J
Z E f ~a)P - ( Z pi.f(ai))( E p. g(b ))

i__l i ijl i=l l
(3.1) CMC " max I J  J

E f 2 (a )p pi f(ai) 2 1(Z (b )p.j E =. ))b2)

subject to f and g being increasing functions for which the denominator in (3.1)
J I

is non-zero and where pi. =  ElPiJ and p. = = PiJ. Denote the values f(ai)
jl ilby xis i = 1, ..., I and g(b.) by yj, j = 1, ..., J, so that (3.1) can be reform-

~ulated as

x'Py - (x'Pe)(y'P'e)

(3.2) CMC = max l~ .I% ullCXC =2(pi. (x'Pe) 2- Cy.2  (y'P'e)2 )

subject to: xI < ... <x I  Pi nul, J*

y < ... 
< yj

Sx~ce, y ce
I% u , 21U

where x = (x1i .... xl)", y =(Yl ... , yJ)', P =  pij and e = (1, ... , 1)'

Thus to compute the CMC all that is required is the matrix P of probabilities.

For instance, the values al, ... , a5 could be the five-point scale strongly dis-

agree, ..., strongly agree. The resultant monotone variable x would then pro-

vide a numeric scale assigning x to strongly disagree, ... x 5 to strongly

agree.

Analogous formulations of (3.2) can be given for ICMC, DMC, and IDMC. Again

the ICMC and IDMC are not defined when I 0 J.

When reporting the monotone variables, we standardize them without loss of

generality so that in (3.2), for example, x, = Yl = 0 and xI = yJ = 1.

Until this point, the CMC, etc., have been defined as population quantities.

For data from finite discrete distributions, the joint probabilities can be

estimated from the data viewed in ordinal contingency table form. Then the CMC

can be evaluated based upon the estimated probabilities. In this situation, the

- -q'----... ~ ~ ~ -' - - - - - -
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CMC can either be viewed as an estimate of the "true" CMC or be viewed as a

measure of monotone association for the ordinal contingency table.

4. Optimization Approach and MONCOR Description

The nonlinear programming problem (3.2) involves the optimization of a non-

linear fractional form subject to linear constraints. Note that if it were not

for the monotone constraints, (3.2) would be an eigenvalue problem. The objec-

tive function in (3.2) is not pseudoconcave. To see this, consider the simple

case of evaluating the ICMC = max(x'Px - (x'Pe) 2)/Gxi 2p. - (x'Pe)2) for a sym-

metric probability matrix P. While both numerator and denominator are continu-

ously differentiable on the feasible region, and (Ex2p" 2 is a

positive convex function of x, (x'Px - x'Pe)2 would have to be nonnegative and

concave for pseudoconcavity (see Avriel (1976)). This latter condition does not

hold in general for symmetric P. Hence, in general, the CMC, and ICMC, DMC and

IDMC, will involve the optimization of a function with local optima. Although

much work is presently being done in the area of global optimization (see, for

example, Dixon and Szego (1975), (1978)), we follow the standard procedure of

using various starting points, computing the optima, and then choosing the best

result based upon the different starting points.

Note that since correlation is unique in x and y only up to location and

scale change, we could express (3.2) as

(4.1) Maximize x'Py

subject to EiPl. 0, Ey p.j 0 Ex i Pi. 1 , y pj = x 1 x2 < < xi

ii

and y. 1 : 2Y
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The formulation of (4.1), because of its nonlinear constraints, is not a desir-

able formulation since complexity in the objective function is much easier to

deal with than complexity in the constraints. The constraints x # c e and y 0 c e

in (3.2) are not computationally implementable in continuous variables. However,

without loss of generality, we eliminate those constraints by fixing x1 and yl

at zero and xI and yj at one.

Specifically, the computation of the CMC (DMC) involves optimizing a non-

concave (nonconvex) function in I + J - 4 independent variables subject to

monotonicity constraints. (The ICMC and IDMC involve I - 2 independent vari-

ables.) Since P is envisioned to be not much larger than 10 x 10, a modified

Newton method was considered desirable because it should converge in a small

number of iterations. QRMNEW (see May), an optimization method not requiring

analytical derivatives, was employed because of its ease of adaptation and compu-

tational use.

QRM TE is a hybrid local variations-modified Newton method, using orthogonal

(QR) matrix factorization to derive a representation for the locally feasible

region. It has been proven globally convergent to a point satisfying both first

and second order necessary optimality conditions, so that any solution generated

si it least a local optimum. Superlinear and order 2 convergence rates can be

-qtblished under somewhat stronger conditions. Denote by {(x,y) k} the iterative

sequence of points generated by the algorithm. In general, because of the lack

of pseudoconcavity (pseudoconvexity) for the CMC and ICMC (DMC and IDMC), an

iterate (x,y)k will usually be in a region not locally concave (convex). The

algorithm does have a rather sophisticated method for dealing with the indefinite

projected matrix of second derivatives implied by the lack of local concavity (con-

vexity).
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While a complete mathematical description of QRMNEW is given by May, a

general iteration is illustrated in Figure 4.1, to show the underlying logic.

Given the current point x and a stepsize s > 0, the constraints, if any, that

are satisfied exactly at x are used to generate, via orthogonal matrix factori-

zation, a set of n coordinate directions. If u constraints are active, u direc-

tions lie in the manifold determined by those constraints, and the remaining

n-u directions are determined by computing a generalized inverse and are

orthogonal to that manifold. (If no constraints are active, the standard Car-

tesian coordinate system is used.) The objective function is then evaluated at

2 points along each of these coordinate axes. For example, in Figure 4.1, two

constraints are active in R 3 . Three directions are generated: dl, which lies

in the manifold, so that movement away from x in either +d I or -dI is feasible,

d2 , where going along +d 2 leads to infeasibility, and d3 , which is analogous to

d2 • The function is evaluated at points 1 through 6, yielding second order

approximations to first and second partial directional derivatives along dl, d2,

and d . Assume a maximum is being sought, e.g., computing the CMC or ICMC, and

that the first derivatives along dI, d2 , and d3 are, respectively, positive,

positive, and negative. Then the objective function cannot be increased by move-

ment along d3, so that it is dropped from consideration. The function is then

evaluated at point 7, which is needed to approximate the second mixed partial

directional. derivative with respect to d and d2 . A Newtin-type search direc-
1 2'

tion is computed and searched, and the algorithm moves to the best of the points

found by the Newton search procedure and points 1 through 7.

KMONCOR is an interactive package designed to analyze probability matrices, P,

of dimension less than or equal to 20 x 20. The user may input a single starting

point for an optimization run, or allow the program to generate its own multiple

starting points. In both cases, the constraint set corresponding to the

-. ---
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Figure 4.1

An Iteration of QRMNEW

Constraint #2

i.7

41

N onstraint #1

correlation measure requested is generated internally, and QRM4NE is used to com-

pute an optimum. Additionally, two different strategies are employed in

seeking an optimal solution. Numerical experience indicates that optimum values

sometimes lie at monotone extreme points, i.e., points where all the x and y

entries are either zero or one. This appears to be especially the case when

computing the DMC or IDMC for a matrix with highly positive CMC, and vice-versa.



In fact, for certain cases, the optima for all four monotone correlation measures

might be achieved only at such points. Additionally, because non-optimal mono-

tone extreme points can be local optima (satisfying the Karush-Kuhn-Tucker

second order necessary optimality conditions (see Kuhn and Tucker (1951))), QRMEW

starting from a random point might well be trapped by these local optima. Note

that for an I x J matrix, there are only (I - 1)(J - 1) monotone extreme points

to consider for the CMC and DMC ((n - 1) for ICMC and IDMC, assuming I = J = n).

Hence, in order to avoid stopping at a local optima when the global optima is a

monotone extreme point, MONCOR evaluates the correlation of all monotone extreme

points. Moreover, MONCOR generates ten random monotone points, with coordinates

selected on (0,1), using the DEC random number generator (see Payne, Rabung, and

Bogyo (1969)), and calls QRUMNEW to compute an optimum starting from each of them.

The user may select to see only the final output, or an iteration-by-iteration

output of the monotone correlations and monotone variables.

5. Appli cations

By means of the algorithm and the MONCOR program, we now compute the CMC,

etc., for several insightful examples. Let (X,Y) be a discrete bivariate random

vector taking values in a 6 x 6 lattice: [a., ... , a x {b, ,  .9 b6}. Further6 1 , 6 . Fute

suppose Prob(X =a = 1/6, for all i, and Prob (Y = b.) 1/6, for all J; i.e.,a~i)

X and Y have uniform marginals. If X and Y are monotone increasing dependent

then P = (1/6)1, where P = {Prob(X = i, Y = j)}, and I is the 6 x 6 identity matrix;
'I, b uIV

if X and Y are monotone decreasing dependent then P = (1/6)1*, where I* - {6(i +

j - 7)), and v(x) is 1 if x = 0, and is 0, otherwise. Now consider a one-para-

meter family of distributions indexed by 8, i.e., for a given 0, Prob(X -i,

Y = j) is the (i,j)th element of p,, where
'U

(5.1) Pe ( )(l/6)I + 6 )(/6)1*,
rV 2 % 2
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where -1 < f. < 1. Note that X and Y still have uniform marginal distributions

for all 0. For 0 = 1(-l), P0 corresponds to the most monotone increasing (de-

creasing) dependent case; and intermediate values of 0 describe varying degrees

of mixtures of the two dependent extremes. In Figure 5.1, we graph the values

of the CMC, ICMC, DMC and IDMC as functions of 0 for P given by (5.1). (More-
0

over, because the support of X and Y is two disjunct pieces in the sense of

Lancaster, it follows that the sup correlation p' is 1 for all 0 in (5.1).)

Figure 5.1

CMC, DMC, ICMC, IDMC vs. e

P given by (5.1)

1.0

0.4

-0.3

'I 0.
-1.0 V 1 1. 10

V0.1

-10

-1.0
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From Figure 5.1, it can be observed that the CMC, DMC, ICMC, and IDMC are

all linear functions of 0. Moreover, the IDMC = 8. The CMC and ICMC coincide,

and the CMC at 0 is equal to the negative of the DMC evaluated at -8.

Now consider (X,Y) defined on a 3 x 3 lattice with

F0 1/4 0]

(5.2) P 1/4 0 1/4

L 1/4 j

so that, for example, Prob(X = al, Y = b2) = 1/4. Note that P is a symmetric

probability matrix, so that X and Y are exchangeable random variables. It fol-

lows in this case by direct computation or by use of MONCOR, that the ICMC is

0, and the monotone variables for X and Y are (0, .5, 1)'. However, the ClC is

1/3, and the monotone variables for X and Y, respectively, are either (0, 1, 1)'

and (0, 0, 1)' or (0, 0, 1)' and (0, 1, 1)'. Thus (5.2) provides an example of

exchangeable random variables where ICMC 0 CMC.

We now consider applying these monotone measures to an actual data example,

taken from Bishop, Holland, and Fienberg (1975, p. 100), which in turn was

adapted from Glass and Hall (1954, p. 183). These data are given in Table 5.1.

Because the same categories are used to measure father's and son's occu-
'II

pational status, it is appropriate to use isoscaling. The ICMC, IDMC and the

associated monotone variables were computed by the MONCOR program based on

the empirical probability matrix specified by Table 5.1. The values of the

ICMC and TDMC as well as the monotone variables are presented in Table 5.2.

.= J .'. A i
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Table 5.1

British Mobility Data

(3,500 Father-Son Data Values

Son's Occupational Status
1

SI S2 S3 S4 S5

Sl 50 45 8 18 8

S2 28 174 84 154 55

Father's Occupational S3 ii 78 110 223 96

Status
S4 14 150 185 714 447

S5 3 42 72 320 411

Table 5.2

ICMC, IDMC and Monmotone Variables for

ritish Mobility Data

Measure Value of Mleasure Monotone Variable Values

ICMC .496 0. .627 .842 .923 1.0

IDMC .242 0. 0. 0. 0. 1.0

The analogous version of (2.1) for isoscaling, namely IDMC < p[f(X), g(Y)]

< ICMC, shows that regardless of the assignment of numerical values to the five

ordinal categories, the resultant correlation is between .242 and .496.

'Status Sl is professional, and high administrative; status S2 is manager-ial, executive, and higher grade supervisory; status S3 is lower grade super-

visory; status S4 is skilled manual; and status S5 is semi-skilled and unskilled
manual.
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6. Sca ing

One important use of monotone variable theory is the ability to develop

me ningfu: .n;ca~ei for ordh i Lr ai,l s. ' r e , I h, . ose Ll , ftive-point

scale iesponse to some question is elicited pre- and post- some experimental

intervention. Through the use of the ICMC, we can provide a numerical scale for

tHis five point response; this numerical scale has the property that among all

po.:ib.e such ordinal scalings, the post-response for this scaling is most

linearly predictable from the pre-response. In Table 5.2 the row correspond-

ing to TCMC provides this scaling for the occupational status variable based

on the British mobility data. Specifically, the numerical values for S1, S2,

S3, 0',, an(' S5 are 0., .627, .842, .923, and 1.0, respectively.

Often, number of distinct values for the numerically scaled variables

.i'1 ,- 1 v r '-:- fIhn tl, number of values for the original ordinal vari-

a 1or. hT' , ., ,r.a .-ler o, ,ptimiz hg f,g in (1.2) are not one-to-

illiwrt,-afe thV ph-nomevirm, wN consider the following example.

*-- t t-, w,''r: ,d whsre ec'!h yitry s a r ndomly generated number

, 1) ,, :,,,ri ,-,'.., 1n: --;.r ate lN of the other entries. In order to

-, .2 i-Y , ,ait, iai ,1,n drn d ,s'tribution, the constant 2 was added

to each dia1na1 and the entire matrix scaled so as to add to one. The resultant

natrly g,n iN Table 6.1.

The C'C 'or the im;,trix _In Table 6.1 is 0.443, and the monotone variables for

al. .... a1, and b,% ... , b1 0 , are, respectively, (.000, .461, .461, .461, .872,

.872, .872, .872, .873, 1.000)' and (.000, .537, .541, .541, .842, .842, .842, .842,

.842, 1.Oof'. Mote that while the original variables each had 10 separate values,

there are only five distinct monotonely scaled values for X and five for Y. While

thi cc- r ,,p1 tion )henomenurn is bais -l upon empirical. observation, it is clear

that it has great potential value in deriving simplified scales for large data

sets.
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Table 6.1

Random 10 x 10 Probability Matrix

NY b1 b2  b3  b4  b5  b6  b7  b8  b9  b10

a1  .0331 .0111 .0092 .0049 .0016 .0028 .0009 .0108 .0096 .0007

a2 .0101 .0361 .0057 .0081 .0133 .0062 .0121 .0066 .0003 .0020

a 3  .0102 .0059 .0347 .0027 .0055 .0020 .0104 .0046 .0069 .0056

a 4  .0144 .0018 .0065 .0342 .0006 .0071 .0055 .0066 .0084 .0113

a5  .0006 .0016 .0087 .0132 .0435 .0061 .0100 .0046 .0044 .0053

a6 .0022 .0035 .0151 .0015 .0056 .0427 .0062 .0035 .0089 .0125

a7  .0002 .0084 .0026 .0020 .0005 .0086 .0387 .0007 .0034 .0111

a8  .0084 .0100 .0079 .0036 .0100 .0128 .0044 .0303 .0121 .0065

a9  .0028 .0079 .0141 .0008 .0133 .0077 .0064 .0139 .0402 .0068

al0  .0009 .0149 .0042 .0108 .0022 .0144 .0130 .0151 .0146 .0438

11

7. Program Availability

The M(NCOR program, written in FORTRAN, is available for distribution. For

specific details contact Professor Jerrold May, Graduate School of Business, Uni-

versity of Pittsburgh, Pittsburgh, PA 15260.



17

REFERENCES

1. Avriel, M., (1976). Nonlinear Programiung: Analysis and Methods, Prentice-
Hall, Inc., Englewood Cliffs, NJ.

2. Bishop, Y.M.M., Fienberg, S.E., and Holland, P.W., (1975). Discrete Multi-
variate Analysis: Theory and Practice, MIT Press, Cambridge.

3. Dixon, L.C.W., and Szego, G.P., (1975). Towards Global Optimisation, North-
Holland Publishing Company, New York.

4. Dixon, L.C.W., and Szego, G.P., (1978). Towards Global Optimisation, 2, North-
Holland Publishing Company, New York.

5. Gebelein, H., (1941). "Dz Statistiche Problem der Korrelation als Variations
und Eigenwert problem und sein Zusammenhang mit der Ausgleichungsrechnung."
Z. Angew. Math. Mech. 21, 364-379.

6. Glass, D.V. and Hall, J.R., (1954). "Social mobility in Britain: A study
of inter-generation changes in Status." In Social Mobility in Britain.
Ed. by D.V. Glass. Routledge and Kegan Paul Ltd., London.

7. Kimeldorf, C. and Sampson, A.R., (1978). "Monotone dependence." Annals of
Statistics 6, 895-903.

8. Kuhn, H.T., and A.W. Tucker, (1951). "Nonlinear Programming," in J. Neyman
(ed.), Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, pp. 481-492. University of California Press,
Berkeley.

9. Lancaster, H.O., (1963). "Correlation and complete dependence of random vari-
ables." Ann. Math. statist. 34, 1315-1321.

10. Lancaster, H.O., (1969). The Chi-Squared Distribution. Wiley, New York.

11. May, J.H., (1979). "Solving Nonlinear Programs Without Using Analytic Deriva-
tives," Operations Research, 27, 457-484.

12. Payne, W.H., Rabung, J.R., and Bogyo, T.P., (1969). "Coding the Lehmer
Pseudo-random Number Generator," Communications of the ACM, 12, 85-86.

13. Rdnyi, A., (1959). "On measures of dependence," Acta. Math. Acad. Sci. Hungar.
10, 441-451.

14. Sarmanov, O.V., (1958a). "The maximal correlation coefficient (symmetric
case)." Dokl. Akad. Nank. SSSR 120, 715-718. (English Translation in
Sel. Transl. Math. Statist. Probability 4, 271-275.)

15. Sarminov, O.V., (1958b). "The maximal correlation coefficient (non-symmetric
case)." Dokl. Akad. Nank. SSSR 121, 52-55. (English Translation in
Sel. Transl. Math. Statist. Probability 4, 207-210.)

. . . - . . . . -



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER .* 2. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBERAFOSR.- T. 8 0- 13 -4 4 ,,p-PL
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Concordant and Discordant Monotone Correlations /.-.:f/

and Their Evaluation by Nonlinear Optimization
.TC6. PERFORMING ORG. REPORT UMER

7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(&)

George Kimeldorf, Jerrold H. May and F49620-79-C-0161
Allan R. Sampson

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
University of Pittsburgh AREA 6 WORK UNIT NUMBERS

Department of Mathematics & Statistics , 1/ -'2///2
Pittsburgh, PA. 15260

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research//# October 1980
Boiling Air Force Base1( 13. NUMBER OF PAGES

Washington, D. C. 20332 17
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECL ASSI FI CATION/ OOWNGRADING
SCHEDULE

II I I&. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

II. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Monotone correlation, concordant monotone correlation, discordant monotone
correlation, isoscallng, ordinal contingency tables, nonlinear optimization

20. ABSTRACT (Continue on reveres side If necessary and Identify by block number)

This paper presents four new statistical measures of monotone relationship
derived from the concept of monotone correlation. A nonlinear optimization
algorithm Is employed to evaluate these new measures, as well as the monotone
correlation, for ordinal contingency tables. A computer program to implement
the algorithm is de'eloped, and is applied to several insightful examples to
provide further understanding of the usefulness of these measures.

DD FOR, 1473 EDITION OF I NOV 6S IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)


