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ABSTRACT

This paper presents four new statistical measures of monotone relationship

derived from the concept of monotone correlation. A nonlinear optimization

algorithm is employed to evaluate these new measures, as well as the monotone

correlation, for ordinal contingency tables. A computer program to implement

©
the algorithm is developed, and is applied to several insightful examples to

>
provide further understandinge of the uscfulness of these measures.
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CONCORDANT AND DISCORDANT MONOTONE CORRELATIONS AND

THEIR EVALUATION BY NONLINEAR OPTIMIZATION
by

1
George Kimeldorf , Jerrold H. May, and Allan R, Sampson2
University of Texas at Dallas, University of Pittsburgh,

and University of Pittsburgh

1. Introduction and Statistical Background

Measuring and understanding the basis for the association between two ran-
dom variables X and Y is extremely important for the intelligent application of
statistics, as well as for more insight into the underlying bivariate proba-
bilistic structures. The focus of this paper is on association between ordinal
random variables, that is, random variables where the observed values have a
natural ordering without nccessarily having naturally ascribed numerical values.
For example, the value: may arise {vem guestionnaire responses based on the five-

point scale: strongly disugree, disarrce, no opinion, agree, strongly agree.

In measuring association between two ordinal variables using a measure based

on assigning numerical valucs to the possible data values, it is natural to re-
quire that the resultant numerical measure of association not depend on the actual
numerical valucs but only the orderinge. Thiu property can be described as

monotone scale invariance. Uhen Pearson's correlation coefficient is used by

The work of this author was supported by the National Science Foundation
under Grant MCS-80-02152.

2The work of this author is sponsored by the Air Force Office of Scientific
Research, Air Force Systems Command under Contract F49620-79-C-0161.
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States Government.
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assigning the values 1, ..., N to the scole levels, the resulting measure is not

monotone scale invariant., For the five-point scale example, assigning 1 to
strongly disagree, ..., 5 to strongly agree and then computing the Pearson cor-
relation would not provide a monotone invariant measure of association.

One monotone invariant scale measure is the sup correlation p' introduced

by Gebelein (1941), developed further by Sarmanov (1958a,b), Rényi (1959), and
Lancaster (1969), and defined by p'(X,Y) = sup p ({(X), g(¥)), where the supremum
is taken over all Borel-mcasurable functions f,g such that 0 < Var £(X) < « and
0 < Var g(Y) < o, where p is the Pearson correclation coefficient. For random
variables (X,Y) jointly taking values on a finite rectangular lattice, there
are computational methods for computing n' using eigenvalue routines (see Sarmanov
and Lancaster). Tor continncus random variahles X,Y, the sup correlation is
computable only in special rases where the joint p.d.f. admits a certain type
of bivariate orthogcnal expansion face Toncasior),

An important denendence concept bhetween two random variables is that of
complete dependence, introduced by Tancaster (1963). A random variable Y is
said to be completelv dependent on a random variable X if there exists a func-

tion g such that

(1.1) Prob[Y = g(X)| = 1.

If Y is completely dependont on ¥ und vice versa, then X and Y are said to be

mutually completely dependent: in this rase X and Y are perfectly predictable

from each other. Observe that if X ond Y are mutually complete dependent then
p'(X,Y) = 1.

Kimeldorf and Sampson (14973) provided an example of random variables X and
Y which were natually completely depondent arcl yet were "almost" stochastically

independent. To circumvent this difficult, Iimeldorf and Sampson defined Y to
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be monotone increasing (decreasing) dependent on X if (1.1) holds for a mono-

tone increasing (decreasing) function p. TFurthermore, motivated by trying to

measure the degree of monotone dependence, they defined the monotone correlation

between random variables ¥ and Y by

(1.2) P*(X,Y) = sup o(f(X), u(Y)),

where the supremum is taken over all monotone functions f,g, for which

0 <Var f(X) < = and 0 < Var g(Y) -~ ». The monotone correlation is a monotone
scale invariant measure of association and the maximizing functions (assuming
they exist) for (1.2) are the "best" monotone scalings for cross linear predict-~
ability of X and Y. (Monotone scalings are order-preserving assignments of

numer ical values to ordinal Jdata.) Kimeldorf and Sampson evalated the monotone

correlation in oniy the tvo sperinl situations: (i) X and Y bivariate normal,
] . P . .
in which case p* = [/, and (iiv 7 aad ¥V oindependent, in which case p* = 0.
The purposes ot thiv piper re ~wofold: wne is to derive new measures

associated with the ponotone ¢ wrolation ond o study their applicability. A
second is to provide a .omiotational procodure and computer program to evaluate
the monotone correiation and these Jdoyived meosures for the case when X and Y
assume a finite number of vn]nvr.] The approach is to find an equivalent non-
linear program and then om:lov a moditiration of the optimization algorithm of
May (1279) to compute the =ariticing vidies ond the points at which they occur.
In Section 2, we introdure the concep:s of concordancy, discordancy, and iso-
scaling foer measuring monotere association. The equivalent nonlinear programs
are given in Sectjon 3. “The wpecific algorithm and the computer program, which

we call MONCOR, are described in Section 4. A number of interesting applications

1 . ; .
The authors are in the ¢ ccece of examining procedures for data from cer-
tain continuous distributic.. :.




and examples are considered in Section 5. In Section 6, we discuss how these

methods might be used for scale reduction.

2. Concordancy, Discordancy, and Isoscaling

The concept of monotone correlation can be refined by measuring separately
the strength of the relationship between X and Y in a positive direction and
the strength of the relationship in a negative direction, that is, to measure
separately the extent of concordancy and of discordancy between X and Y. These
concepts are related to so-called measures of disagreement and measures of dis-
sociation. If in (1.2), f and g are both restricted to be increasing1 (or
equivalently both decreasing), the resulting measure is called the concordant

monotone correlation (CMC). When f is restricted to be increasing and g

decreasing (or equivalently f decreasing and g increasing), we find it conven-
ient to examine -sup p(f(X), g(Y)), which in turn can be expressed as -sup p(f(X),
-g(Y)), where both f and g are increasing. This leads naturally to defining

the discordant monotone correlation (DMC) by inf p(f(X), g(Y)), where f and g

are both restricted to be increasing.

The DMC and CMC have natural interpretations as measures of negative and
positive association, respectively, for ordinal random variables., They also can
be interpreted as providing bounds for the correlation between any arbitrary

monotone scalings; specifically, for arbitrary increasing f and g,

(2.1) DMC < p(f(X), g(Y)) < CMC.

Suppose it is desired to impose numeric monotone scalings for a pair of new
tests; if the CMC and DMC are close, then by (2.1) it makes little difference

which monotone scales are used. Also if CMC = DMC = 0, then X and Y are inde-

1The terms increasing and decreasing are used non-strictly.




pendent random variables; however, it is possible for DMC < CMC = 0 and X and
] ! Y not to be independent. Further note that if X and Y are increasing monotone |
dependent then CMC = 1; and if X and Y are decreasing monotone dependent, then

DMC = -1.

i e =

Sometimes the situation occurs when X and Y should have the same scaling.

For example, X is a psychological test score pretreatment and Y is the score

post~treatment on the same test. This leads to another extension of monotone L

e

correlation, which we refer to as isoscaling. If in (1.2) we restrict f = g

the resulting measure is called the isoconcordant monotone correlation (ICMC).

Analogous to the DMC definition, the isodiscordant monotone correlation

(IDMC) is given by inf p(f(X), g(Y)), where f = g. Obviously isoscaling is

not practically appropriate when X and Y have essentially different ranges of

values.

If X and Y are exchangeable ordina’ rawlem variables it might be conjec~
tured due to all the symmetriecs invoived that TCMC = CMC (and IDMC = DMC).
However, as is shown in Section 5, *his is surprisingly not the case.

The actual functions that meximize the corrclations (assuming they exist)
are of importance in developing mcnotone scales. We refer to such functions
generically as monotone variables with their specific interpretation depending

on which monotone corrclation measure is used in their derivation.

3. Program Formulation

The preceding extensions of the monotone correlation are applicable to all
suitable pairs of random variables, continuous or discrete. We now focus on the
case where X and Y jointly take on a finite number of values (ai, b)), i=1,

‘ h|
ooy I, 3 =1, «vey J and Prob(X = ag Y = bi) = piﬁ' Then
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I I f(a)pyE(b) - (Ipy £ E P, e(b))
(3.1) CMC = max 13-l = i1 .
(T @by, - CEp, f@NDE wop., - (1o b D"
o . RIS RS M BN R R

subject to £ and g being increasing functions for which the denominator in (3.1)

J I
- = I = I . t 1
is non-zero and where P;. j=1pij and p.j i=lpij Denote the values f(ai)
by Xes i=1, ..., I and g(bj) by yj, j=1, «..5 J, so that (3.1) can be reform-
ulated as
x'Py - (x'Pe)(y'P'e)
(3.2) cMC = max 5 LA 2'“;’” — 7 -
(Ix;"py, = (x'P))*(Iy."p,. = (y'P'e)")
subject to: Xp S eee 2% UYRL VY 3" v
Yy < oo 2V,
1 i i
x #c.e, y¥coe ‘
n 1’\; 4" 2'\4

= v = ' = = '
where x = (xl, seay xI) s z (yl, ey yJ) R z {Pij} and e = (1, ..., 1)".

N "]
Thus to compute the CMC all that is required is the matrix P of probabilities.
n
For instance, the values ags e 85 could be the five-point scale strongly dis-
agree, ..., strongly agree. The resultant monotone variable x would then pro-
n,

vide a numeric scale assigning x, to strongly disagree, ..., Xg to strongly

1
agree.

Analogous formulations of (3.2) can be given for ICMC, DMC, and IDMC. Again
the ICMC and IDMC are not defined when I # J.

When reporting the monotone variables, we standardize them without loss of

generality so that in (3.2), for example, x, = ¥y = 0 and Xp =¥y = 1.

1
Until this point, the CMC, etc., have been defined as population quantities.
For data from finite discrete distributions, the joint probabilities can be

estimated from the data viewed in ordinal contingency table form. Then the CMC

can be evaluated based upon the estimated probabilities. In this situation, the
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CMC can either be viewed as an estimate of the 'true" CMC or be viewed as a

measure of monotone association for the ordinal contingency table.

4. Optimization Approach and MONCOR Description

The nonlinear programming problem (3.2) involves the optimization of a non-
linear fractional form subject to linear constraints, Note that if it were not
for the monotone constraints, (3.2) would be an eigenvalue problem. The objec-
tive function in (3.2) is not pseudoconcave. To see this, consider the simple

case of evaluating the ICMC = max(x'Px - (x'Pe)z)/(inzpi. - (x'Pe)z) for a sym-

N oA N oA vy

metric probability matrix P. While both numerator and denominator are continu-
n

ously differentiable on the feasible region, and (Exizpi_ - (x'Pe)z) is a

LYY
positive convex function of x, (x'Px - x'Pe)2 would have to be nonnegative and

N A A A
concave for pseudoconcavity (see Avriel (1976)). This latter condition does not
hold in general for symmetric P. Hence, in general, the CMC, and ICMC, DMC and
IDMC, will involve the optimiz:tion of a function with local optima. Although
much work is presently being done in the area of global optimization (see, for
example, Dixon and Szego (1975), (1978)), we follow the standard procedure of
using various starting points, computing the optima, and then chcosing the best
result based upon the different starting points.

Note that since correlation is unique in x and y only up to location and

N N
scale change, we could express (3.2) as

(4.1) Maximize x'Py ,
oy ﬂ

] - 2 = =

. 0, §yjp.j 0, ixi pi' 1, §y 1, Xy §_x2 < 4e0 <X

subject to Ix

2P
s 3Py

1Py

and ylf_yzf_...g

Yy
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The formulation of (4.1), because of its nonlinear constraints, is not a desir-
able formulation since complexity in the objective function is much easier to

deal with than complexity in the constraints. The constraints x # cle and y # c2e

n N N 4"}
in (3.2) are not computationally implementable in continuous variables. However,

without loss of generality, we eliminate those constraints by fixing x, and Y1

1

at zero and Xy and i at one.

Specifically, the computation of the CMC (DMC) involves optimizing a non-
concave (nonconvex) function in I + J - 4 independent variables subject to
monotonicity constraints. (The ICMC and IDMC involve I - 2 independent vari-
ables.) Since P is envisioned to be not much larger than 10 x 10, a modified

v

Newton method was considered desirable because it should converge in a small
number of iterations. QRMNEW (see May), an optimization method not requiring
analytical derivatives, was employed because of its ease of adaptation and compu-
tational use.

QRMVEW is a hybrid local variations-modified Newton method, using orthogonal
(QR) matrix factorization to derive a representation for the locally feasible
region. Tt has been proven globally convergent to a point satisfying both first
and second order necessary optimality conditions, so that any solution generated
is at least a local optimum. Superlinear and order 2 convergence rates can be
~stablished under somewhat stronger conditions. Denote by {(x,y)k} the iterative
sequence of points generated by the algorithm. In general, because of the lack
of psendoconcavity (pseudoconvexity) for the CMC and ICMC (DMC and IDMC), an
iterate (x,y)k will usually be in a region not locally concave (convex). The
algorithm does have a rather sophisticated method for dealing with the indefinite

projected matrix of second derivatives . implied by the lack of local concavity (con-

vexity).
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While a complete mathematical description of QRMNEW is given by May, a
general iteration is illustrated in Figure 4.1, to show the underlying logic.
Given the current point x and a stepsize s > 0, the constraints, if any, that
are satisfied exactly at x are used to generate, via orthogonal matrix factori-
zation, a set of n coordinate directions. If u constraints are active, u direc-
tions lie in the manifold determined by those constraints, and the remaining
n~-u directions are determined by computing a generalized inverse and are
orthogonal to that manifold. (If no constraints are active, the standard Car-
tesian coordinate system is used.) The objective function is then evaluated at
2 points along each of these coordinate axes. For example, in Figure 4.1, two

. . . o3 . . . .
constraints are active in R™. Three directions are generated: dl’ which lies

in the manifold, so that movement away from x in either +d] or -d, is feasible,

1

d2, where going along +d, leads to infeasibility, and d3, which is analogous to

2

d,. The function is evaluated at points 1 through 6, yielding second order

approximations to first and second partial directional derivatives along d., d

1’72

and d3. Assume a maximum is being sought, e.g., computing the CMC or ICMC, and

that the first derivatives along ¢ d2, and d3 are, respectively, positive,

1’

positive, and negative. Then the ohjective function caumnot be increased by move-

ment along d3, so that it is dropped from consideration. The function is then
evaluated at point 7, which is needed to approximate the second mixed partial
directional derivative with respect to d1 and d2' A Newtun~type search direc~-
tion is computed and searched, and the algorithm moves to the best of the points

found by the Newton search procedure and points 1 through 7.

MONCOR is an interactive package designed to analyze probability matrices, P

~

of dimension less than or equal to 20 x 20. The user may input a single starting
point for an optimization run, or allow the program to generate its own multiple

starting points. In both cases, the constraint set corresponding to the




Figure 4.1

An Iteration of QRMNEW

f Constraint #2

N

7

—t + j

~Constraint #1

correlation measure requested is generated internally, and QRMNEW is used to com-
pute an optimum. Additionally, two different strategies are employed in

seeking an optimal solution. Numerical experience indicates that optimum values
sometimes lie at monotone extreme points, i.e., points where all the x and y

~n n
entries are either zero or one. This appears to be especially the case when

computing the DMC or IDMC for a matrix with highly positive CMC, and vice-versa.
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In fact, for certain cases, the optima for all four monotone correlation measures

might be achieved only at such points. Additionally, because non-~optimal mono-

tone extreme points can be local optima (satisfying the Karush-Kuhn~Tucker

second order necessary optimality conditions (see Kuhn and Tucker (1951))), QRMNEW
starting from a random point might well be trapped by these local optima. Note

that for an I x J matrix, there are only (I - 1)(J - 1) monotone extreme points

to consider for the CMC and DMC ((n ~ 1) for ICMC and IDMC, assuming I = J = n).
Hence, in order to avoid stopping at a local optima when the global optima is a
monotone extreme point, MONCOR evaluates the correlation of all monotone extreme
points. Moreover, MONCOR generates ten random monotone points, with coordinates
selected on (0,1), using the DEC random number generator (see Payne, Rabung, and
Bogyo (1969)), and calls QRMNEW to compute an optimum starting from each of them.
The user may select to see only the final output, or an iteration-by-iteration

output of the monotone correlations and monotone variables.

5. Applications
By means of the algorithm and the MONCOR program, we now compute the CMC,

etc., for several insightful examples. Let (X,Y) be a discrete bivariate random

e — -

vector taking values in a 6 x 6 lattice: {ai, ey a6} X {bl’ ey b6}. Further
suppose Prob(X = ai) = 1/6, for all i, and Prob (Y = bj) = 1/6, for all j; i.e.,

X and Y have uniform marginals. If X and Y are monotone increasing dependent

a4

then P = (1/6)I, where P = {Prob(X =1, Y = j)}, and T is the 6 x 6 identity matrix;
ny u n 4"
if X and Y are monotone decreasing dependent then P = (1/6)I*, where I* = {§(i +
" N ~

j =71}, and $(x) is 1 if x = 0, and is 0, otherwise. Now consider a one-para-

-

-

meter family of distributions indexed by 6, i.e., for a given 8, Prob(X = {1,

Y = j) is the (4i,j)th element of Py where
Y

1+
2

= ¢

8 2

(5.1) P
N

Haset + =5 are 1,
N n,

e ; T ——————— . w:::ll
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where -1 < 6 < 1. Note that X and Y still have uniform marginal distributions

f for all 6. For 6 = 1(-1), P, corresponds to the most monotone increasing (de-~
i 4

I creasing) dependent case; and intermediate values of 6 describe varying degrees
! of mixtures of the two dependent extremes. In Figure 5.1, we graph the values
of the CMC, ICMC, DMC and IDMC as functions of 8 for Pe given by (5.1). (More-

v z
over, because the support of X and Y is two disjunct pieces in the sense of

Lancaster, it follows that the sup correlation p' is 1 for all 6 in (5.1).) .

Figure 5.1

CMC, DMC, ICMC, IDMC vs. 8

PG given by (5.1)
A
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From Figure 5.1, it can be observed that the CMC, DMC, ICMC, and IDMC are
all linear functions of 0. Moreover, the IDMC = 6. The CMC and ICMC coincide,
and the CMC at 0 is equal to the negative of the DMC evaluated at -8.

Now consider (X,Y) defined on a 3 x 3 lattice with

0 1/4 o0

(5.2) 1/ 0 1/44 ,

e v
"

0 1/4 0

so that, for example, Prob(X = a_,, Y = b2) = 1/4. Note that P is a symmetric
4"

probability matrix, so that X and Y are exchangeable random variables. It fol-

1’

lows in this case by direct computation or by use of MONCOR, that the ICMC is

0, and the monotone variables for X and Y are (0, .5, 1)'. However, the CMC is
1/3, and the monotone variables for X and Y, respectively, are either (0, 1, 1)'
and (0, 0, 1) or (N, 0, 1)" and (0, 1, 1)'. Thus (5.2) provides an example of
exchangeable random variables where ICMC # CMC.

We now consider applying these monotone measures to an actual data example,
taken from Bishop, Holland, and Fienberg (1975, p. 100), which in turn was
adapted from Glass and Hall (1954, p. 183). These data are given in Table 5.1.

Because the same categories are used to measure father's and son's occu-
pational status, it is appropriate to use isoscaling. The ICMC, IDMC and the
associated monotone variables were computed by the MONCOR program based on
the empirical probability matrix specified by Table 5.1. The values of the

ICMC and IDMC as well as the monotone variables are presented in Table 5.2.




14

Table 5.1
British Mobility Data
(3,500 Father-Son Data Values)

. o e ot e S e S A e e 4 e o A i S o o e

sL 52 s3 54 55
s1 50 45 8 18 8
| s2 28 174 84 154 55
13 '3
EEEEEE-E.QEEE%%EEQEEE s3 11 78 110 223 96
: Status
""" sS4 14 150 185 714 447
85 3 42 72 320 411
]
! Table 5.2
! ICMC, IDMC and Monotone Varjables for
' British Mobility Data
| Measure Value of ieasure Monotone Variable Values
i ICMC L4696 0. .627 .842 .923 1.0
IDMC 242 0. 0. 0. 0. 1.0

j The analogous version of (2.1) for isoscaling, namely IDMC < p[f(X), g(¥)]
H < ICMC, shows that regardless of the assignment of numerical values to the five

ordinal categories, the resultant correlation is between .242 and .496.

N

1Status S1 1is professional, and high administrative; status S2 is manager-
ial, erecutive, and higher grade supervisory; status S3 is lower grade super-
visory: status S4 is skilled manual; and status S5 is semi-skilled and unskilled
manual.
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6. Scaling
One important use of monotone variable theory is the ability to develop
me mingful scales for ordina atdes. vr e aaple, suopose Lhe 1Uive-point

sccle response to some question is elicited pre- and post~ some experimental
intervention. Through the use of the ICMC, we can provide a numerical scale for
this five point response; this numerical scale has the property that among all
possible such ordinal scalings, the post-response for this scaling is most
linearly predictable from the pre-response. In Table 5.2 the row correspond-
ing to ICMC provides this scaling for the occupational status variable based
on the Briftish mobility data. Specifically, the numerical values for S1, S2,
$3, €4, and 85 are 0., .627, .842, .923, and 1.0, respectively.

Nfren, the number of distinct values for the numerically scaled variables
cnosetetantially Tess than the number of values for the original ordinal vari-

ablos. Thie yodaetion occinn e vher *he optimizing f,g in (1.2) are not one-to-

o fempetise e, P ilTustrate this phenomepum, we consider the following example.
A EO e T satrde e penerated where ench ontry dis a randomly generated number

an YY) et pene st nd dindernandently of the ather entries. In order to
grerorate 5 abichit! o secitive dependent distribution, the constant 2 was added

to each diagonal and the entire matrix scaled sn as to add to one. The resultant
natrix is giv-on 90 Table 6.1.

The CMC “or the nmotrix in Table 6.1 is 0.443, and the monotone variables for

aps eeee @ and bl’ cees blO’ are, respectively, (.000, .461, .461, .461, .872,
872, .872, .872, .873, 1.000)' and (.000, .537, .541, 541, .842, .842, .842, .842,
842, 1.000V' . Mote that while the original variables each had 10 separate valqes,
there are only five distinct monotonely scaled values for X and five for Y. While

tirie en-le reduection nheneomenum is baged unon empirical observation, it is clear

that it has great potential value in deriving simplified scales for large data

sets.




Random 10 x 10 Probability Matrix

Table 6.1

3 by b B3 b by Bg b By by by,
a, |.0331 .0l1l .009% .0049 .0016 .0028 .0009 .0L08 .0096 .0007
a, |.or00 .0361 .0057 .0081 .0133 .0062 .0121 .0066 .0003 .0020
a; |.0102 .0059 .0347 .0027 .0055 .0020 .0l04 .0046 .0069 .0056
a, |.044 .0018 .0065 .0342 .0006 .0071 .0055 .0066 .0084 0113
ag |.0006 .0016 .0087 .0132 .0435 .0061 .0100 .0046 .0044 .00S3
a;, |.0022 .0035 .0151 .0015 .0056 .0427 .0062 .0035 .0089 .0125
a, |.0002 .0084 .0026 .0020 .0005 .0086 .0387 .0007 .0034 0111
ag | .0084 .0100 .0079 .0036 .0100 .0128 .0044 .0303 .0121 .0065
ag |.0028 .0079 .0141 .0008 .0133 .0077 .0064 .0139 .0402 .0068
aj, |-0009 .0149 .0042 .0108 .0022 .0144 .0130 .01S1 .0146 .0438

7. Program Availability

The MONCOR program, written in FORTRAN, is available for distribution.

For

specific details contact Professor Jerrold May, Graduate School of Business, Uni-

versity of Pittsburgh, Pittsburgh, PA 15260.
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