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ABSTRACT

The resolution of a two-element interferometer increases
in proportion to the element separation distance, so that
incorporation of interferometer elements on satellites will enable
very long baseline interferometry (VLBI) arrays to achieve greater
resolution of celestial sources than has been possible using
elements on the earth. The interferometric response is the visibility
function, which is the Fourier transform of the source's brightness
distribution function. Since a satellite typically moves faster
in its orbit than does a point on the rotating earth, and since the
integration time period for cross-correlating the received 'signals
will generally be larger for a system which includes satellites,
the interferometric response will actually be an averaged visibility
function as opposed to a point-wise sampled visibility function.
Since the baseline magnitude is finite, the visibility function is
not known throughout its domain and is therefore effectively
truncated. Truncating and averaging the visibility function adversely
affects the brightness function resolution, and understanding these
effects is therefore necessary to more fully realize the source
resolution capabilities of an interferometer incorporating elements
on satellites.

This thesis investigates the effects on brightness function
resolution when the visibility function is truncated and averaged.
The causes of truncation and averaging are presented, and the basic
Fourier transform relation between the visibility and brightness
functions is reviewed. Basic properties of the two-dimensional
Fourier transform are reviewed, and the standard Fourier inversion
method is presented. This method is based on a generalization of
the Sampling Theorem and does not account for truncation or

iaveraging effects. The effects of truncation and averaging are
illustrated for a double Gaussian model source using the standard
Fourier inversion method. Theorems concerning the Fourier transforma-
tion of a truncated and/or averaged function are then developed,

1., _ _ ,... . - . .. .. -" '" ". .
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and an algorithm based on this study is presented. This algorithm
attempts to enhance resolution by using a derived relationship
between an average value of the visibility function and the true

source brightness function. The algorithm is applied to several
one-dimensional test cases to illustrate its potential.

Thesis Supervisor: IRWIN I. SHAPIRO

Title: Professor of Physics
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CHAPTER I

INTRODUCTION

1.1 Problem Statement and Purpose of This Study

1.1.1: The Role of VLBI

Interferometric techniques in the radio region of the

electromagnetic spectrum have been developed to the present state at

which this technology provides the most accurate means of determin-

ing positional and structural information on extragalactic objects

that are emitters in this part of the spectrum. An interferometer

is an instrument consisting of two or more receiving terminals (or

"elements") which compares signals received at each element from a

common source in order to obtain information on the nature and

position of the source. As will be shown later, the resolution of

an interferometer exceeds that possible with a single element, and the

maximum resolution is directly proportional to the greatest separation

distance between elements. Present technology has enabled systems

with element separations on the order of intercontinental distances

to be used, resulting in angular resolutions on the order of milli-

arcseconds. These systems, in which the widely-separated elements are

not in communication with one another during the actual conduct of an

experiment, are known as Very Long Baseline Interferometry (VLBI)

4, systems.

'1 The importance and utility of VLBI as a research tool is



immediately realized by a consideration of the diverse applications

which it serves. Highly accurate source position measurements and

capabilities for high resolution of source structure are of great

value in astrometry and astrophysics. Enhanced knowledge of the

kinematics of celestial bodies and of diffuse objects, such as HI

and HII regions and molecular clouds, can be used for refined

testing of dynamical theories and to achieve greater understanding of

astrophysical processes and source parameters (mass, angular momentum,

etc.). Examples of some applications of VLBI along these lines

include resolution of close but discrete water-vapor masers in our

own galaxy, accurate positional determinations for ALSEP transmitters

on the moon yielding information on lunar kinematics, and tests of

general relativity by measuring changes in relative quasar positions

by deflection of radio waves in the sun's gravitational field [Shapiro

(1976)]. Additionally, VLBI may become an important tool in accurate

spacecraft tracking [Addleman (1978), Treinish (1978)].

VLBI can also be applied to geodesy and to studies of

dynamics of the earth's crust [Counselman (1976), Whitney (1974)].

Shapiro and Knight (1970) enumerate and discuss the geophysical

applications of VLBI and indicate the attainable levels of accuracy

for determinations of various geophysical parameters.

'4 If a point source is observed with a two-element interferom-

eter, accurate determination of the source position is predicated on

i~
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accurate knowledge of the baseline vector, which is the vector between

the two elements. We can therefore see that accurate knowledge of a

point source's location can in turn be used to provide Information

on the baseline vector. In actual practice, by using one or more

different baselines and observing a number of different sources, both

source positions and baseline lengths may be treated as unknowns

and solved for by using the interferometry data. (See Whitney 74 for

more details on this method.) In this way, distances between points

on the earth's surface will be ascertained to the centimeter level

of accuracy, and hence provide geodetic information and insight into

associated dynamical processes.

We have illustrated the importance of VLBI as a research

instrument, and seen the order-of-magnitude resolution capable with

present baseline lengths. Given that interferometer resolution

improves with increasing baseline length, a natural improvement on

existing systems would be to incorporate elements on satellites

thereby greatly increasing baseline length and enhancing resolving

power. However, there are some disadvantages incurred when a

satellite is used as an interferometer element. in this thesis, we

shall be concerned with one aspect of these inherent problems.

1.1.2 Purpose and Scope

The purpose and scope of this thesis will be an examination

"I of the adverse effects of truncating and averaging a function on the
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resolution of its conjugate Fourier transform. We will examine these

effects, and then develop theorems which relate the truncated, and/or

averaged function to its exact Fourier transform. We will then

develop an algorithm based on these theorems which attempts to achieve

at least partial compensation for the effects of truncating and

averaging V(u,v) and possibly giving a better approximation to the

true brightness distribution function than does the standard

Fourier inversion method.

1.1.3 Adverse Effects on Resolution

Antenna gain is proportional to the physical aperture of

an antenna. [Kraus (1966)] Since the radio signals from celestial

sources are generally quite weak, large physical apertures are

normally employed in the radio telescope antennas which serve as

elements in an interferometer array. To yield intelligible informa-

tion from a celestial signal, the signal must not be less than the

fluctuations of the noise which is present. The noise results not

only from instrumental sources which may be reduced, but also from

fundamental causes such as background ioise in the sky and quantum-

statistical limitations which cannot be circumvented. A large

physical aperture providing high antenna gain is therefore an

important factor in achieving an acceptable ratio of signal to rms

noise (signal to noise ratio, or SNR) for the system. The SNR is

enhanced when the received signals are integrated during the

process of cross correlation. Increasing the integration time period
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by a factor of N results in enhancing the SNR by the factor X.

[Kraus (1966)].

We have seen that antenna size and integration time are two

primary parameters affecting the SNR. For an earth-based interferometer,

the physical aperture may usually be constructed adequately large to

keep the required integration time period relatively small while

maintaining adequate SNR's. The integration time period here is

considered small relative to the time required for the projection

of the baseline vector normal to the source vector io (a unit

vector towards the source, which will here be considered infinitely

distant) to change by an appreciable amount. (We shall presently

clarify the term "appreciable".) The maximum interferometer

resolution occurs when the source vector is perpendicular to the

baseline vector and is directly proportional to baseline length [;

however, the resolution for a typical case in which the source

vector is not perpendicular to the baseline vector depends upon the

projection of t normal to So" What we have heretofore ignored is

the fact that t and So are in relative motion due to the earth's

rotation (other motions such as the earth's orbital motion, the

motion of the solar system barycenter, etc., can be ignored for the

infinitely distant source which we are idealistically considering here).

Therefore, the resolution of the interferometer is really a time-

dependent function.

The brightness distribution function, B(x,y), characterizing

* "- -
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a source can be conceived as the function which specifies the

radiation intensity distribution as a function of positional coordin-

ates x and y on the plane of the sky. (In general, B(x,y) is a

frequency dependent function; however, we will consider it to be

independent of frequency in this thesis.) Since B(x,y) is an

intensity, it is constant along a ray path in free space and hence

the brightness function measured at the earth is identical to the

brightness function at the surface of the source, and for this

reason the brightness function provides important information on the

physical parameters characterizing the source. As we will show later,

the interferometer response is a function V, known as the visibility

function, which is the fourier transform of the brightness distribu-

tion function. The visibility is a function of the interferometric

resolution, and we shall see that the arguments of V are in fact

two orthogonal resolution components, designated u and v. As mentioned

above, the interferometric resolution is time dependent; hence, u and
v are time dependent parameters. The domain of the visibility function

is the u-v plane, in which u and v serve as orthogonal coordinates.

As the baseline vector moves relative to the source vector So' we

know that the interferometric resolution varies, and hence we must

be moving along a path in the u-v plane. We will see that these

paths are generally ellipses in the u-v plane. As t moves relative

to so 9 the interferometer is measuring the visibility function

V[u(t), v(t)] (implicitly a function of time t) by recording values

of V along the track in the u-v plane which is given by the locus of

points [u(t), v(t)].
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We can now see why it was important to have integration

times relatively short compared to the time required for xso I to
0

vary appreciably. In the limit of zero integration time, the

interferometer measures V(u,v) along the relevant track in the u-v

plane. However, when we integrate, the interferometer records the

average value of V(u,v) over that segment of the track which is

traversed during the integration time period to* Because B(x,y)

is the Fourier transform of V(u,v), it is immediately discernible that

the brightness distribution function is distorted when observations

with tONO are made. If to is non-zero but small, then the segment

traversed in time to is small and we are almost measuring V(u,v),

since

This case generally applies to earth-based VLBI systems, and averaging

effects have previously been ignored. Fomalont (1973) states the

criterion for short averaging intervals as being those cases In which

Ib XS0I changes by an amount less than the antenna radius during the

integration time period. However, a satellite in a typical orbit

about the earth moves roughly ten times faster than a point on the

surface of the earth, and therefore ItXoI undergoes a greater change

in the time period than it would for an earth-based VLBI system.

Although there is no physical limitation on the aperture
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size for a satellite element, practical limitations will require that

the antenna aperture sizes be considerably smaller (at least for

initial experiments) than earth-based elements. Consequently, we

realize that integration times will have to be correspondingly

increased to achieve an acceptable SNR, which has the adverse effect

of making the averaging considerations for V(u,v) discussed above a

more significant problem.

To get an order-of-magnitude "feel" for the impact of this

effect, let us suppose that, all other factors being equal, the

satellite's aperture is 1% of that of a typical earth-based antenna.

The interferometer's aperture is the geometric mean of the two

J individual antenna apertures, or /AT.AT = .1 A, where A is the area

of the antenna on the earth. The signal gain from the interferometer

therefore decreases by a factor of 10. The interferometer system,

sensitivity is (ideally) related to the integration time to by

[Kraus (1966)]

sensitivity o(/F

If te is the integration time period for an earth-based VLBI system

and ts the corresponding period for our satellite system, then to

increase the sensitivity by a factor of 10 to compensate for the

decreased antenna gain implies ts=lOOte . In practice, one would not

approach the sensitivity limit of the interferometer because the

corresponding integration time period could well be of the order of

an orbital period for the satellite. Thus, only relatively strong
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sources would be chosen for observation.

Another problem which we have not yet addressed concerns

itself with the fact that practical limitations prevent the measure-

ment of V(u,v) throughtout the entire u-v plane. This problem is

independent of the averaging problem and is present in earth-based

systems also. Now, from the basic uncertainty relation for conjugate

functions B(x) and V(u) in a one dimensional Fourier transform pair,

we know that as we decrease the domain of the function B(x), the

corresponding domain of the transform function V(u) necessarily increases.

The implication here is that as we probe into smaller regions of the

x-y plane, i.e., as we examine smaller sources (or extended

sources in greater detail) by using our satellite VLBI system with

large ItI, then the associated visibility function V(u,v) "spreads-

out" in the u-v plane. Limitations on the extend of the u-v plane

examined during the VLBI experiment then present more acute problems,

because we are now truncating V(u,v)into a restricted domain which

is significantly less than its true domain of definition. To see

this more tangibly, we need only consider that a point source has a

Fourier transform of infinite extent, and hence any truncation of

V(u,v) due to practical limitations will distort the brightness

function deduced from the measured V(u,v). This is equivalent to

saying that infinite resolution is required to resolve a point source.
.I

Since all celestial sources are of a finite, "region-

limited" extent in the plane of the sky, a generalization of the

-~~~~o the .-.- J- -
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sampling (or Nyquist) theorem to two dimensions is beneficial to

consider. We will later see that this theorem allows us to merely

sample V(u,v) at distinct points in a 2-D lattice extending

throughout the u-v plane, and nevertheless reproduce B(x,y) exactly.

The Sampling Theorem is the basis for the technique of aperture

synthesis, whereby it is possible to synthetically produce information

equivalent to that obtainable from an aperture of very large

extent by using smaller physical antennas. Essentially, the concept

here is that if the small antennas are located at properly spaced

points on a 2-D lattice, then their correllated information is

equivalent to one hugh antenna whose physical aperture would be the

same as the area encompassed by the 2-D lattice of antennas. In fact,

it is sufficient to successively move a few antennas throughout the

lattice and subsequently combine individual recorded results at a

later time to produce the aperture synthesis result (if the signal

from the source is not time dependent). Earth-rotation aperture

synthesis uses array elements at fixed points on the earth, so that

the earth's rotation causes the array elements to move in some fashion

with respect to the source. If some of the properly spaced lattice

jI points are not occupied by an array element during the observation

period, an approximation to the brightness function can be obtained

from the data obtained along the tracks in the u-v plane generated by

the element pairs. Interferoreter arrays having enough elements to

provide good coverage of the u-v plane can therefore be used to

obtain reasonable approximations to the brightness function. If an
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array includes elements on satellites, then the averaging problems

discussed above must be considered. However, the sampling theorem

alone cannot fully compensate for the effects of averaging and

truncation (which in realistic experiments means not only restricting the

extent of the u-v plane examined, but also restricting measurements of V(u,v)

to tracks in the u-v plane which do not for a simple 2-D lattice).

1.2 Thesis Outline

In Chapter 2, a sample calculation for a track in the u-v

plane for a two-element, earth-satellite interferometer will be

presented. Basic VLBI concepts for a two element interferometer will

be reviewed. Basic Fourier transform theorems in 2-D will be

reviewed, and some examples of exact transforms given. Truncation

effects are discussed and summarized by a theorem. The representation

of an averaged function is considered, and the standard Fourier

transform for averaged functions is presented. We then examine the

sampling theorem and its relevance to the 2-D visibility-brightness

function pair. Aliasing effects and the effects of the epoch of

sampling intervals are considered. In Chapter 3, we apply the

standard transform method to a typical model of a truncated and

averaged visibility function. In Chapter 4, we derive theorems for

truncation and averaging effects and develop a matrix algorithm for

the implementation of the basic theorem for these effects. The

matrix algorithm is applied in Chapter 5 to several one-dimensional

"I test cases, and these results are compared with the results obtained
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from the standard Fourier inversion method applied to the same data

sets of average values of the visibility function. Chapter 6

presents a summary and the conclusions of the study. A definite

conclusion as to whether the standard Fourier inversion method or

the matrix algorithm is the better technique to obtain the highest

resolution from a given set of data requires further analysis

than has been possible to perform here. Therefore, the conclusions

presented here concerning the comparison between the two techniques

should be considered preliminary conclusions, subject to more

extensive investigation.

I

'1
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CHAPTER 2

BACKGROUND AND PRELIMINARY CONCEPTS

In this chapter, we will present a brief background

discussion on VLBI which includes a derivation for the baseline

vector of an earth-station satellite-station two element interferometer.

We then consider the two dimensional Fourier transform and prove

some fundamental theorems relevant to our workhere. The standard

Fourier transform method for an averaged function is presented. The

Sampling Theorem is derived for the two-dimensional case and its

implications are discussed.

2.1 Baseline Vector for the Earth-Satellite Two-Element Interferometer

The baseline vector for the earth-satellite interferometer

will be taken as the vector from the earth station to the satellite

station. We calculate the position vector as a function of time

for each station separately, and take their vector difference to

obtain the baseline vector.

We choose a rectangular framne of reference based on the

standard equatorial coordinate system. The origin of coordinates is

at the center of the earth with the z axis along the spin axis of
the earth, the x axis in the direction of the true vernal equinox of

date, and the y axis completing a right-handed triad. We will

*consider this earth-centered system as being inertial over the time

periods of interest to us.

I .. ..
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Let the earth station have latitude E and longitude IPE

and have a radial distance from the center of the earth of rE.

Define the vector G as a unit vector along the line connecting the

center of the earth to the point where the Greenwich meridian

intersects the x-y plane. Let g0 be the angle between G and x at

the time t=O. From Figure 2.1, it is easy to see that the position

vector RE(t) for the earth station at time t is given by

AE(t) = I IrE cos E1 cos(wt+go+* E)

+ j 1rE cos OEI cos(wt+go+Y E)

+ k rE sin E

where w is the angular velocity of the earth.

We consider the position vector for the satellite. Viewed

simplistically (i.e., neglecting effects of perturbing bodies,

non-sphericity of the earth, tidal effects, effects of general

relativity, etc.) the satellite travels about the earth in a plane

Keplerian orbit. Define a primed coordinate system with origin

at the center of the earth and with z' normal to the plane of the

orbit, x' along the line from the center of the earth to perogee,

and y' completing a right-handed triad. (See Figure 2.2.) Let

the direction cosines of the primed axes in the unprimed system

be ( x 'x',y x,z' (y,x y,y Yy,z) , and
" (1'' z , ' , z for xy 'z

(Izx, 9a'y S for x', y', and z', respectively. Given an

initial position and an initial velocity for the satellite at timet=O,

one may compute the position vector Ws(t) for the satellite at any

time to. (This is a standard well-documented problem in astro-
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dynamics and we will not present the full general solution here.

The Fortran algorithm which was used to solve for PS(t) on the

computer was based on a similar algorithm written by T. Herring.)

The conversion of 's(t) to our unprimed system is given by

where 's(t) [R,, Ry,, Rz,].

The baseline vector as a function of time is then given

by

= (t) - E(t)

,4 2.2 Basic VLBI Concepts

A detailed description and analysis of a VLBI system

would involve a far more extensive study than is possible here and,

9i in any event, there are extensive references in the literature

discussing the intricacies of VLBI. We, therefore, present a

simplified view of VLBI which will be sufficient as background and

motivation for the specific problem studied in this thesis.

-t -- -. .. .. ." J ' "
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The two element interferometer, which is the building block

for multi-element arrays, consists of two receiving antennas and

equipment to process and correlate their received signals. If a real-

time link such as a cable is used to connect the two elements,

then real-time data analysis is possible and, more significantly,

if the electrical path lengths are properly set then the relative

phase information for the received signals is directly input to the

correlator. In VLBI, a real-time link between elements is usually

not possible due to the very large baseline distance. Therefore,

real-time data analysis is not carried out, and instead the data

are recorded for later processing. To preserve the relative phase

information, which is essential for correlation, to an acceptable

level of accuracy commensurate with the desired level of accuracy

expected for the parameters of interest now requires highly accurate

timekeeping during the conduct of the independent observations. The

advent of hydrogen maser frequency standards provided the time-

keeping accuracy required to enable VLBI to exceed the accuracy

levels attainable by connected element interferometry [Whitney (1974)].

With accurate time-keeping at each element, the received signals

can be recorded on magnetic tape for later processing. In fact,

when the data are correlated, it is possible to ascertain the

error in original clock synchronization between the two elements

and thereby provide a technique for unprecedented accuracy (to

4>1 about .1 nanosecond) in clock synchronization over intercontinental

distances [Shapiro and Knight (1970)]. The actual reduction and

processing of data from a VLBI experiment is an extensive subject

* - t -
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in itself and cannot be discussed here. There are several different

algorithmic approaches to the problem of data analysis, and ample

references may be found in the literature [see, for instance,

Whitney (1974), and Moran (1976)].

The basic geometry for a two-element interferometer is

illustrated in Figure 2.3. We assume an infinitely distant point

source so that plane waves are received by the interferometer

elements, which therefore point in the same direction at angle 0

with respect to the baseline vector t (i.e., we neglect parallax

effects which would have to be accounted for if the source were

sufficiently close to the interferometer to cause different antenna

orientations). The baseline vector t points from the reference

station to the remote station, where the reference station receives

any given wavefront earlier than the remote station by a time

factor known as the group delay rtg-I . The projection of thegc 0
baseline normal to the source is just Ibxiol and will be seen to

be related to the interferometric resolution.

Our aim at this stage is to demonstrate that the response

of the interferometer is the visibility function, which is the

Fourier transform of the source brightness distribution function.

A detailed derivation requires the application of coherence

theory to the two element interferometer [see, for instance, Swenson

and Mathur (1968)]. However, a less sophisticated development

will suffice for our purposes here. We will base our discussion

on the treatments presented by Moran (1976), Fomalont (1973), and
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Whitney (1974). Partial coherence theory establishes that all

characteristics of a source's radiation power idstribution (i.e.,

angular distribution, frequency distribution, and polarization) are

related to spatial, temporal, and polarization cross correlations

of the received signals at the two interferometer elements. We

will primarily deal only with the spatial correlation aspects here,

which assumes monochromatic plane polarized radiation from our

infinitely distant point source.

Let the point source emit a sinusoidal signal at frequency

Vo with intensity B0. Denoting el and e2 as the received voltages

at the reference and remote stations, respectively, we have, using

complex phasor notation,

The interferometer correlates these two received voltages. [See

Rogers (1976) and Kraus (1966) for discussions of various techniques

of detection and concomitant correlation method. We will assume a

simple phase-switched, or multiplying, interferometer.]

The cross correlation of two real complex functions in

the interval O,to] is defined by [Bracewell (1978)):

.

.I
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For our interferometer, then, the cross-correlation function for the

signals received in the time period [O,t I is
'0

where superscript "*" denotes complex conjugation. The time period

Sto is referred to as the integration time period. R(T ) is the

response of the interferometer for the point source. Now,

where we have made the angle between ; and So a time dependent

parameter because the relative orientations of t and So are changing

as a result of the earth's rotation (and satellite motion for a

satellite element in the two element interferometer). We can then

write

We see that R(O) is an oscillatory quantity with a mean of zero,

bamplitude of Bo , and time-varying phase factor of 21T coso(t).

An alternative description for the slow oscillations in R(O) derives

the cross-correlation function in terms of beating between the two

signal frequencies from the two elements, whose difference (in

general from v and from each other) arises from the differential
I0

Doppler shift in the received frequencies due to the relative

motion of the elements with respect to the source. (See Rogers (1976)

for this approach.]
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In terms of w, We may think of R() as a spatial

correlation function. The spatial correlation of the incident radia-

tion field is determined by the correlation of the signals from the

two elements located at different points in space, and we see from

Figure 2.3 and from the expression for R(0) that the two signal

phases will be mutually reinforcing (or partially reinforcing) or

cancelling depending upon the magnitude of Tg7 cos, i.e., depending
g c

upon the difference in phase path length for each wavefront reaching

the two elements. (We have tacitly assumed the limit T-*O here so

that the spatial correlation is performed point-wise in space as

opposed to averaging over seaments of space for non-zero integration

time periods.) This phenomenon is directly analogous to the

fringe patterns of optical interferometry, and R(¢) is known as the

fringe pattern.

The phase factor 2 coso in R(0) is known as the fringe
phase t(t). R() assumes its maximum value B when bcos is

equal to an integer. The interval between successive maxima in

R(W) denoted Ao, is known as the fringe spacing. Let 0l and 02

be two values of y,(t) which produce adjacent maxinma in R( ). Then

*-a ?,= z,2c1 (--A 1t) -7r-n ;a 7r

Assuming that * = , we write 2- and

sin 1 .2 u ThnAX'onsi n i = t2.hen , a - sino 1, which gives the
mnagnitude ofthe fringe spacing as A0= But, b. ~

bsin sin4 = 0~o

i 9 '
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which is the component of normal to the souce vector So"

We therefore see that the fringephase provides information about the

source location So"

Having obtained some understanding of an idealistic

interferometer response for an infinitely distance point source

emitting monochromatic radiation, we now want to look at the more

realistic case where an extended source with centroid approximately

at s0 is observed in the bandwidth Av cent--.c. on vo0 by an

interferometer with frequency characteristic F(v) and primary power

pattern G(s-s ) (defined as the product of the two elements'

voltage patterns). Heretofore, we had assumed G(S-S )=S(s-s o)

and F(v)=6(v-v ).

First, we note that if os is the maximum angular 'source

extent, then we must have

4 since a source larger than the fringe spaceing will have simultaneous

reinforcements and cancellations from its various parts and

therefore the meaningfulfringe pattern is lost. The amplitude of

the fringes for an extended source will, in general, be different

from the amplitude for a point source of the same strength, and the

ratio of these amplitudes is known as the fringeamplitude.

The reason for a specified reference direction s for an

extended source is seen in the following analysis. For observation
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of a point source over bandwidth 6v [but assuming an infinitely

narrow beam for the primary power pattern, G(g- 0 ) = (;-S )] we

have

where we have assumed a flat frequency response

and included as a normalization factor to compare this result with

the monochromatic result above. We see that this result is

identical with the monochromatic result except for the factor

37r AVs aSCP 7r AVt/L'

which is a taperinq factor which reduces the fringe pattern amplitude.

1

dThis presents the conflicting goals of using To e o (i.e., the

signal correlation time must be much greater than the group

delay time) in order that the fringe amplitude be sufficiently

large, and the other goal of using as large a bandwidth as possible

to be able to detect weak sources or source components without

excessively long integration times (since sensitivity a VA=
0

We can achieve both of these goals if we can keep Tg9 very small.

To do this, we define a reference direction s0 to be roughly in the

- *-----0
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direction of the point source or the direction of the centroid of an

extended source. A delay factor is then incorporated into the

reference station arm of the interferometer by using, say an extra

length of cable, such that Tg=O when the interferometer elements

are pointed in the direction so, Then, T will be small for all

i near So, which is usually the case for observed celestial sources.

In VLBI, this delay factor can be introduced by an appropriate

delay synchronization between the magnetic tapes from the two

elements when they are brought together and played back for correla-

tion, or equivalently by introducing a relative shift in the bit

strings of data during cross correlation for digital systems. With

the delay factor, the fringe phase is set to zer at ;o , so the

fringe amplitude is maximum there and falls off very slowly due to

the s factor for s slightly offset from so  We notethat the

delay factor can also be tracked to compensate for changing Tg

and thereby allow Av to be even larger than for fixed delay.

The appropriate generalization for the correlation function

giving the interferometer response for a point source observed in

bandwidth iv with accurate delay tracking is

Generalizaing this to the case of an extended source with brightness

distribution function B(S-So), we have
0

£I
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A0A

C--- (5sSj.)

Re

where the function V(t) is defined to be

We can interpret .-his result as follows. The factor e

is just the interferometer response to a monochromatic point source

with unity intensity. This factor has a relatively fast oscillation

rate corresponding to closely spaced fringes. The complex function

V(t) gives the amplitude and phase offset needed to properly

characterize the extended, non-monochromatic source which is

actually observed. Oscillations in V(s) are large compared to the

fringe spacing (or, equivalently in terms of a temporal parameter,

V(M) oscillates slower than do the fringes as the baseline rotates

relative to io) .

We can express the result in a more convenient form in

terms of a suitable astrometric coordinate system. First, we note

that the vector ; can be expressed by an angle x in right ascension

and y in declination relative to the reference direction So"

Alternatively, but equivalently, we can think in terms of a

rectangular coordinate system on the plane of the sky, with origin
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at the point where s intersects the plane of the sky, and with
0

unit vectors x and y with ground projections in the east and north

directions, respectively. We will adopt the latter terminology

here. The appropriate units for x and y are radians, since the

angular description is the operationally correct one, although the

plan r description makes it easier to conceptualize brightness

distribution functions on the sky. (We will not be concerned with the

longitudinal component here, which is in the direction ,= x .)

With this notation, G(s-s ) can be written G(x,y), B(g-g ) as B(x,y),
0 0

di as (dx-dy), and Cs- ) as x + y'. For monochromatic radiation,

we may now write

Considerations of diffraction limiting effects in one

dimension show that the maximum resolution of a two-element inter-

ferometer is J (to within a factor of order unity), which occurs

when the baseline is normal to o Clearly, infinite resolution
0'

is possible only for an infinitely long baseline. infinite

resolution corresponds to zero fringe spacing, and the resolution

decreases as the spacing between fringes increases. In the two-

dimensional problem wich we are considering here, we must deal with

two orthogonal components of resolution. We use the 9 and 9 directions,

and we define unit vectors a= and 5 in a u-v plane which is

parallel to the x-y plane. The u and v axes then give the orthogonal
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resolution components in the east-west and north-south directions,

respectively. The units of u and v are the same and are reciprocals

of the units of x and y; for x and y in radians, u and v are in

fringes per radian.

We can express o in terms of the resolution components:

- u + v + (.o
0 0

We will neglect the last term which gives the longitudinal component,

and consider only the transverse component bp = ux + vy. In terms

of the standard earth-based coordinates of right ascension a and

declination 6, we write (ao , 6 0) for the angular coordinates of

s and (abb) for b. The transverse component of b, which is

normal to the source direction io9 can then be written as

p

We identify

and

I I I 1 11 .. . - " -
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Now, expressing V(s) in terms of u and v, and noting that

(i-io)p = xx + yy, we can write

V(u,v) = J av-J y G ( ,Y)V- Iy , B

The function V(u,v) is know as the visibility function, and for an

isotropic primary power pattern, we have

V(u'v)--=Lf (,y ;T w e

Thus, the visibility function and the source briqhtness distribution

function are a Fourier transform pair. Fomalont (1973) discusses

the major assumptions and simplifications which are incorporated

into this result and its inherent limitations, as well as the effect

of a large bandwidth Av.

We note that u and v are time-varying parameters due to
the relative motion between t and S For an interferometer with

0*

two earth-based elements, the locus of points in the u-v plane

transversed by u and v will lie on an elliptical tract, since

where

a XO5"~ CO5S vN

and v0  5114 C.o54

r
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However, when one or both elements of an interferometer are on

satellites, the periods of the individual elements (which for two

earth-based elements are both 24 hours) are no longer necessarily

commensurate, and it can be shown that the track in the u-v plane

is not a closed figure, but rather is "open-ended" and undergoes a

precessional-type advance through the u-v plane. Thus, a two

element interferometer whose elements have non-commensurate periodic

motions can (in principle, with infinite observation time) provide

observational coverage over the entire u-v plane inside the trunca-

tion limits (which are the maximun resolution limits along the u

and v axes).

Figure 2.4 illustrates a portion of the track which is

traced out in the u-v plane for the case of an earth station located

at 430 latitude and 700 longitude and a satellite element in a

circular orbit over the poles at distance 8-10S9cm from the

center of the earth (l.62-I0 4km altitude). The source coordinates

used were those for 3C273, right ascension 12H 26m 33s and declination

2020 ' [Kraus (1966)], and the observation wavelength was taken

as 3cm. The only portions of the u-v Plane which may actually

be observed are those portions where the source is visible to

both elements. From the figure, we can get an appreciation for the

role of the integration time period in terms of the extent to which

the visibility function is averaged as :pposed 61 being sampled (i.e.,

measured point-wise). The integration time to was taken as 1000q0

seconds for the example case here. As discussed previously, the

°i 4
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V

I _t:L

FIGURE 2.4 -- Track in the u-v pl ane.

Note: The inteval between markers corresponds to a 1000 second
integration time. The start of this portion of the track
is the end near the origin.
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integration time period is of the order of 100 times greater for an

earth-satellite interferometer as compared to an earth-based system.

The effects of averaging must therefore be accounted for when a satellite

is used as an interferometer element. A useful simplification arises

if we shift axes so that vo=O or if the data are "gridded" (see discus-

sion below) onto a aregular lattice. In this case, then, the arc or cell

midpoint at (un,Vm) has the same projection magnitudes on the u and v

axes as does the arc or cell with midpoint at (un,vm), where u-n=-Un ,

V-m=-Vm . If we can call these projections Tun and Tv,m respectively,

then we can write Tu,n=Tu,_n and T vm=Tv,_m. This simplification will

be used later in our discussion of averaging effects.

Essentially, we have found that the interferometer measures

the Fourier components of the source brightness distribution. As we

will prove later, the Sampling Theorem states that knowing the

Fourier components of a function at discrete, properly spaced lattice

points in the u-v plane enables one to completely specify the

brightness function. This concept is the basis for aperture

synethesis techniques, in which B(x,y) is determined from incomplete

sampling of the visibility function in the u-v plane. Since the

coverage of the u-v plane is confined to the tracks made as the
^

relative orientation of b and so changes, it is desirable to use

many-element arrays with various baseline vectors so that ample

coverage of the u-v plane results from an observation. Each pair

of elements in this array produces a track in the u-v plane. If the

signal from the source is not a rapidly time-varying phenomenon
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(such as the solar brightness function), or is approximately a steady-

state phenomenon over the period of all observations, then the

various observations to be incorporated into the aperture synthesis

map need not be made simultaneously. This fact presents the

added advantage of allowing one to use a certain number of elements

for a series of observations, where the baseline vectors are

changed (say by moving elements on railroad platforms) from one

observation period to the next. In this manner, it has been possible

to obtain aperture synthesis maps which result from excellent

coverage of the u-v plane. Although the density of observation

points may be reasonably high, there still remains the problem

that the tracks in the u-v plane do not (in general) pass through

the properly spaced lattice points required by the Sampling

Theorem to yield the brightness function exactly and uniquely.

Various methods are in use for extrapolating (or "gridding") the

known data to the lattice points, including convolution and

cell averaging techniques [see Thompson and Bracewell (1974)

for a discussion of these methods]. An additional problem concerns

the fact that, although good coverage of the u-v plane may be

4 obtained, full coverage (i.e., infinite resolution from infinite

baselines) is not possible and effectively we are dealing with a

truncated version of the true visibility function.

Aperture synthesis theory applies to VLBI. In a particular

4 case, if it Is not possible to obtain sufficient coverage of the

u-v plane to enable a high resolution brightness distribution map
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to be constructed, then a simple model source, commensurate with

the known data, may be constructed to represent the true source

[see, for example, Knight, et al (1971)]. With a sufficient number

of ground based stations, and by using satellites as interferometer

elements, it should be possible to obtain good coverage of the u-v

plane to enable very high resolution aperture synthesis maps to

II- r be produced.

Having demonstrated that the relationship between the

visibility function and the source brightness function is a

Fourier transformation, we now review the basics of Fourier

transform theory, and subsequently, we will study the effect on

the brightness function due to truncating and averaging the

visibility function.

2.3 The Two-Dimensional Fourier Transform

2.3.1 Usefulness of the Fourier Transform as an Integral Transform

Of the different possible integral transforms, the Fourier

transform, because of its basic properties, is one of the most useful

and widely employed. These basic properties are linearity, shift

invariance, and orthogonality of the integral transform's kernel.

If we denote the Fourier transform operation by the

operator symbolf, then

' . .. o . .. ...LA)



42

means that the Fourier transform of a function B of variable x gives

a function V of the conjugate variable u. In terms of units, u

and x are reciprocals; for example, if x is in centimeters, then

u is in inverse centimeters.

The property of linearity means that

where

Shift invariance implies, for a constant c,

where -5kY) U

and f(c) is a phase factor, depending upon constant c and u, but

independent of x. The orthogonality property enables the inverse

Fourier transform, denoted by the operator 1 -, to be defined.

Thus if, CX3 i

then

In one dimension, the Fourier kernel is written as e2wuX, so that

the integral transform appears explicitly as
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The orthogonality of the Fourier kernel then lets us write

We, therefore, see that the orthogonality property lets define the

inverse transform kernel as e-i2ux and the inverse transformation

appears explicity as

It is the importance of linearity, shift invariance, and

inverse transformation operations in practical applications which

accounts for the diverse and widespread use of Fourier transforms.
I

2.3.2 The 2-D Fourier Transform

Multi-dimensional Fourier transforms are defined

analogously to the one-dimensional form, with the number of

conjugate variable pairs being equal to the dimension. In particular,

the 2-D Fourier transforms are given by
LAM. T-,InJ.btlw

SO / 4,, V ,-
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and B CXM

We will now consider a few examples of the 2-D Fourier transform

which will prove relevant in our discussion below.

A point source at the origin is represented by B(x,y)=S(x,y),

where the 2-D Dirac delta function is defined by S(xy)-x)S(y).

The corresponding visibility function would be

Thus, a point source has an associated visibility function of

constant amplitude over the entire u-v plane. If the visibility

function were of constant amplitude over only a finite rectangular

area of the u-v plane . Fo eeF- [ ,U.), '- e-,'W

C> E LS.CWM£RP

the corresponding source brightness function would be

LrI F .04r cVd Ir

_ s,2"L'o,,, ____, ___

=x - 1

44 -r
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The sine function divided by its argument will appear frequently

in our work, and will be called a sinc function following Bracewell's

si nwxconvention: sinc x x Thus, the previous brightness

function may be written as

LX,4)=  2U. SIICz . • zit. S,.ZV1I

As a final example, we will consider a Gaussian visibility

function,

Then ? (.X, 11) Lc.jd j.l(&4" P-" j)

+

Consider the u integral. Completing the square of the exponent,

I.q + ,-LZ7r) Y.) LL F~ t + c f iFxri 1h

let us write If S ..
.7r a -x - [f L ,]O Y

Define ej ."r'ifv } E'o

Then, =- - = (

-7rX 2-
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So we can see that the corresponding brightness function to a

Gaussian visibility function is

It should be noted that the Gaussian is the only non-generalized

function which preserves its function form under Fourier

transformation. (The generalized function III, discussed later,

will also be seen to have this property.)

2.3.3 Fundamental Theorems

We have seen that even a simple Gaussian requires

some effort to perform the Fourier transformation by direct

evaluation of the integral. Fortunately, there are a number of

fundamental theorems which not only ease the calculation of

transforms, but also provide further insight into properties of

Fourier transforms. Since we will extensively rely on these

theorems in what follows, we will prove a number of them here.

[Most of these theorems are stated without proof for the 2-D

Fourier transform by Uracewell (1978).] The symbol "D" will

be used to denote a Fourier transform pair, so that

k Note that one dimensional versiorsof these theorems are easily

*1 realized by setting y and v to constants in the equations. (Of

course, these arbitrary constants do not affect th2 results.)

j.
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Separable Product Theorem: If Bl(x)Z V(u) and B2(y)

YVv), then Bl(x)B 2(y) D Vl(u)V 2(v).

Proof: Let V(u,v) - Vl(u)V2 (v) and B(x,y) BI(x)B 2 (Y).

2-D Addition Theorem: If B2(Xy) "y V(UV) and

B2(x,y) dV2(u,v), then

,2xy .>V(lvte
Proof:, , f f4_

It is readily apparent that

2 Sm .

2- hf horm fBxy)Vuvte
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and Vct - £%r )De

Proof:

PV C. azrC4-~ ++~.

Similarly, we have

2-D Similarity Theorem: If B(x,y) D V(u,v), then

and

Proof:
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Similarly, we have iLtC)

2-D Definite Integral Theorem:

Pro f: e. :

Similarly,

)Clio)

2-D Differentiation Theorem:

Proof:

eY,,

- Iis( .
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Integrate by parts once for the y integral:

eq La (iUflLr) a~~rr

The integrated part vanishes if

L #o^ B(x,y) = 0

(as we will be concerned with). Perform (rn-1) further intergrations

by parts for the y inte gral, and then n integrations by parts for

the x integral; the result is

Similarly,

Hermiticity Theorem: If B(x,y) is a real function, then

V(u,v) must be Hermitian, i.e.,

V(u'v) =V*(-u,-v)

Proof:so 0

1 y. t13Kr)j fJr~Kd e (XI~
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Since B is real, we have c1 j'frT3  1#iusI

where

We clearly see that (Qu~ PNJA-, tr , N1"-.-ui.

Hence 'u")V ~,LI - r

Hermiticity Corollary 1 -- If B(x,y) is a real function

and is even in its joint argument, B(x,y) = B(-x,-y), then V(u,v)

is real and even in its joint argument, V(u,v) = Vr(u,v) = Vr(-u,-v).

Proof: From the equations for Vr(u,v) and Vi(u,v) in the

proof of the Hermiticity Theorem, we need only note that if B is

even in x and y, then the integrals in the Vi equation vanish, and
the Vr equation yields V r(u,v) = V r(-u,-v).

Hermiticity Corollary 2 -- If B(x,y) is a real function

and odd in its joint argument, B(x,y) = -B(-x,-y), then V(u,v) is

imaginary and odd in its joint argument.

Proof: From the proof of the Hermiticity Theorem, this

case causes the Vr equation integrals to vanish while yielding

Vl(U,v) =-Vi (-u,-v).

": From these theorems, we deduce the concepts that

reality of one function in a fourier transform pair implies

-, -- ~I
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Hermiticity of its conjugate function, and that a real even

function has a real even conjugate while a real odd function has

a pure imaginary odd conjugate.

The convolution of two functions, Bl(x,y) and B2(x,y),

is denoted by BI*B 2 , and is defined by

We now prove a very useful theorem relating the Fourier transform

of the convolution of two functions to a product of their separate

transforms.

2-D Convolution Theorem: If Bl  Vl and B2  V2 , then

Proof:

So. .r ~' P-~1

x4 f- L r 4ASI ,, e

k
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We similarly obtain the converse of this theorem as:

2.3.4 Truncation Effects

We define the 2-D box function in terms of l-D rectangle

functions, following Bracewell's notation (1978):

TTOA,vi-) T L 7T M u

where .<,

Rectangular truncation of a visibility function In the

u-v plane is equivalent to multiplying that visibility function by

a 2-D box function which has zero amplitude outside the specified

rectangular region. Since truncation can be expressed as a

product of functions in u-v space, then the corresponding brightness

function can be determined by the Convolution Theorem. To consider

the general case of rectangular truncation, we must know the

transform of 7 66

which specifies a box function with unit height inside the rectangular

g. ,, .. .... .- ... -,,
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region with edge lengths b. and b centered on cu along the u axis

and c v along the v axis, respectively. Since this transform will

be important later, we now prove a theorem for the general case.

Box Function Transform Theorem:

OTT ( tcc% I nCVCj) SDNW~o. SNTO'

Proof:

-J t-., )I = .,a -

fIL fA tor
=arc, " C."

£ 4, r(c.,C ,) ix, X (," "q'7,,.C.,

- "r-, - I

The effect on the brightness function resulting from the truncation

of the visibility function is expressed by the following theorem.

Truncation Effect Theorem: If V > B, then if V

represents the truncated visibility function,

•~N~~ j:Zp . Tar( C'. , -j'

Proof: For 2-D rectangular truncation of V(u,v), we

~~1 can write Lk-= \ ( Fl(.Cu)

(low
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We will use the curly overbar "N" to denote a truncated visibility

function and its associated transform. Then, by the Convolution

Theorem

',I' -A, -%r]

31K'4\ L * M (co.o~ ~1I

Qualitatively, truncation of V(u,v) giverse to oscilla-

tions, or ringing, in the function V(x,y) as compared to B(x,y).

The origin of the ringing is seen in the convolution of B(x,y)

with an oscillatory factor e i2w(cux+cvy) and with the slnc

functions, which have decaying oscillations. The effect of

truncation can also be qualitatively described in terms of a loss

of resolution in the sharp features of the conjugate function.

This is especially clear for the conjugate functions of inter-

ferometry, since truncating V(u,v) means that we are not using the

high resolution information for large u and v outside of the

truncation limits, and therefore B(x,y) is "blurred" or "smoothed"

by being convoluted with the sinc factors to produce B(x,y).

2.3.5 Representation of an Averaged Function

Con-Ader a visibility function which is averaged in

rectangular cells over the u-v plane. Let one cell be centered on



56

the point (0,0). Then we can specify any cell by double integer

indices (n,m), where the "n" specifies the nth cell along the u

axis and "m" the mth cell along the v axis. We let n and m range

from -- to +-, where the +/- sign will denote the relevant half-

axis which the cell is referenced to. The (n,m)th average value

of V(u,v) is then given by

2
where Tu,n and Tv,m denote the lengths of the (n,m)th averaging

cell along the u and v axes, respectively, and un and vm are the

midpoint coordinates for the (n,m)th cell. The overbar and

brackets will be used to denote an average value of the visibility

function.

To represent the average value of V(u,v) in the (n,m)th

cell as a function of u and v, we will use a 2-D delta function at

the cell's midpoint whose strength Is given by the average value

over that cell. We therefore write

Note that the area of the (n,m)th cell, (TnTm), has been included

u,n v,M

as a factor multiplying the delta function in order that the delta

function properly represent the average value over the entire cell.

The V(u,v) function averaged over its entire domain can now be

written as a sum over these average value terms, and will be

,ri
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designated by ?(u,v):

A few comments are in order regarding the specification

of the (n=O,m=O) cell as being centered at the origin (u=O,v=O),

and the particular choice of representation for the average value

in a cell as a function of u and v. Specifying that the (n=O,m=O)

cell be centered on the origin is based upon a natural generalization

of the 2-D Sampling Theorem to the case of averaging. The Sampling

Theorem specifies that sampling be performed in a regular fashion

with one sampling point located at the origin. The effect of the

epoch of sampling will be further discussed below in our considera-

tions of the Sampling Theorem. The use of delta functions to

represent the average values is also a natural generalization from

the Sampling Theorem. The other reasonable way to represent the

average values would be by rectangular boxes whose height is the

relevant average value in the particular cell. Now, a box representa-

tion for a particular cell can be expressed as the convolution of

a delta function, which is located at the cell midpoint and whose

amplitude is the average value of V(u,v) over that cell, with a box

of unit height and identical cross section to the relevant averaging

cell:

II
-f - - - ° ---. u.~ ...
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where V0 denotes the box representation function Consider the
nm

case of constant cell sizes, so T and Tvm are constants foru,n m
all n and m. From the convolution theorem, we immediately see

that, if 9 (x,y) represents the transform of the delta function

representation for the averaged visibility function:

then B (x,y), which represents the transform of the box representa-

tion for the averaged function, can be written as

Since ," U T.T

we see that, as the averaging cell sizes go to zero, B and B

become identical. However for large Tu and Tv , as we will be

concerned with, the box representation results in preferentially
decreasing the amplitude of 0 as we move away from the origin, by

the factor

In fact, the box representation produces zero brightness at all

zeros of sin(wTTux) and sin(7TTvy). We would like B and B to match

the true brightness function B(x,y) as closely as possible. However,

B (x,y) incorporates a sinc modulation factor which must have zeros
Czeros

I .....
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at definite points in the x-y plane, regardless of the amplitude

of B(x,y) at those points. This consideration, as well as that

of the natural generalization of the Sampling Theorem, makes the

delta function representation the preferrable method to use to

represent the averaged visibility function. A comparison of these

two representations for a number of one-dimensional test functions

was conducted, and those results support the choice in favor of the

delta function representation.

2.3.6 The Standard Fourier Transform for an Averaged Function

The averaged visibility function is specified by

The Fourier transform of this function, designated 8,6(x,y) will be

an approximation to the true brightness function B( ,y). Taking

the Fourier transform of Vgives

=I E

If V(u,v) has been truncated, then we will have only a finite number

of terms in the sum, which can then be written as

A .
't
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where we have assumed symmetric truncation about the origin along

the u and v axes.

Now, B(x,y) must be a real, non-negative function since

it represents the radiation intensity from a physical body. The

visibility is, in general, a complex function. We can therefore

write (V ] = [Vn) +i[Vn ]i , where the subscripts refer to
n,ni n,m r n,m1

real and imaginary parts. It appears at first sight that may

be a complex function, and would therefore not be a good approxima-

tion to B(x,y). However, we have shown that the Fourier transform

of a real function must satisfy the Hermiticity property, and this

property is invariant under averaging operations. We will see

that, for an untruncated or symmetrically truncated visibility

function, B6 will always be real, although it may possibly assume

negative valuescontrary to the nature of the true brightness

function.

Clearly, since am. + L 520- "  r  +'

2

the average values [Vnm ] will satisfy a "discrete Hermiticity

relation" if V is Hermitian:

VC 14 U. %r) ==C>,i

This statement assumes that the epoch of averaging is at the origin

[(n=O,m=O)-(u=O,v=0)]. If we write
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RI=
then for symmetric truncation (or no truncation if N-b, M-bc) we have

Since [Vn,mJr is even in n and m while sin 2w(unx+vmY) is odd in

(UnVm), then their product is odd and vanishes in the double

summation process. Similarly, the second imaginary term vanishes

in the double summation. Both of the real terms are even in (n,m)

and (u n ,vm ), so we can write

SJM2qm YmS'4

We have shown that 6, is indeed real for symmetric truncation of

V(u,v) (and for no truncation at all). Furthermore, the last

equation implies that a knowledge of the average values of V(u,v)

over only half the u-v plane is required to specify B. The two

quadrants in the chosen half plane must be adjacent, not diagonal

to one another, in order that the Hermiticity property be used

to deduce the average values in the other hilf of the u-v plane.

If the visibility function is truncated asymmetrically,

then may be complex valued. The Hermiticity property satisfied

by V(u,v) for real B(x,y) enables us to relate the values of the

visibility function in two adjacent quadrants of the u-v plane to
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its values in the other two quadrants. Therefore, in cases of

asymmetric truncation, it may be possible to ascertain the

average values of V(u,v) needed to symmetrize the truncation. If

this is not possible, then the set of average values of V(u,v)

should be decreased to result in a data set reflecting symmetric

truncation in order to produce a real-valued B6(x,y). One dimen-

sional test functions were examined for the case of asymmetric

truncation, and the results corroborate the assertion that

asymmetric trunction produces a complex Bd(x,y) with the imaginary

portion contributing no information useful in discerning B(x,y)

or a best approximation to it.

2.4 The Sampling Theorem for Fourier Transforms

2.4.1 Statement of the Sampling Theorem in I-D

The Sampling, or Nyquist, theorem for Fuurier transforms

in 1-D may be stated as follows. Consider a function B(x) which

is non-zero only in a finite portion of the x-axis, from -Lx to

Lx. Such a function is usually referred to as being "band-limited".

Let V(u) be the Fourier transform of B(x), and let V(u) be period-

ically sampled with the epoch of sampling at the origin (i.e.,

a sample is taken at u=O and periodically thereafter in both

directions). If the sampling interval is less than or equal to

I then it is possible to reconstruct the function B(x) exactly
x

(and hence of course also V(u)]. The largest sampling interval

which can be used and still reproduce B(x) undistorted is known as

1. .... ....i r ...I ...........i • I H ...... ..I ...............
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the Nyquist interval, which we will denote by TNI.

In its one-dimensional form, the Sampling Theorem is of

use in signal processing applications. A suitable generalization

to 2-D makes this theorem of use in VLBI data analysis. Since the

proof of the Sampling Theorem in 2-D is entirely analogous to the

one-dimensional proof, we will prove this theorem below only for

the 2-D case of interest.

2.4.2 Relevance to VLBI Data Analysis

Since all celestial emitters of radio waves have a

finite physical size, their brightness distribution functions have

non-zero amplitude only over a finite, bounded region on the

plane of the sky. In two dimensions, we will refer to such a

function which is non-zero only in a certain portion of the plane

of definition as being "region-limited".

As discussed above, an interferometer measures the

visibility function which is the Fourier transform of the brightness

function. But since all brightness functions are region-limited,

then a generalization of the Sampling Theorem to 2-D would imply

that sampling V(u,v) in some periodic lattice fashion over the u-v

plane would provide sufficient information to reconstruct B(x,y)

exactly, provided that the sampling cells were acceptably small.

The ramification of this theorem for radio interferometric observa-

tions using aperture synthesis is obvious, and with this motivation

we now consider the 2-D Sampling Theorem in dt.ail.



64

2.4.3 -Derivation and Discussion of 2-D Sampling Theorem

Consider a region-limited brightness function:

lLx yI,<L~
BB~x ~yy)

0 otherwi se

Let e(x,y) be the periodic extension of B(x,y), such that

B(x+pLX, y+qL) B(x,y), if p,q are inteqers.. We can expand

Oka~) in a 2-D Fourier series:

Notethat 2Lx and 2L ygive the full source extent along the x and y

axes, respectively. The Fourier coefficients are given by

IL

In the region of interest, a(x,y) B(x,y), so we may write

Let V(u,v) be the visibility function which is the Fourier transform

Sof the brightness function B(x,y):

Since B(x,y)=O outside the region Jxk<Lx, lyk<Ly, we have for the

in erse transformation:
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Consider the particular values of V(u,v) at the regularly

spaced lattice points

Z-L4 s I r- LIS

Note that the point (0,0) is included in this set. At these points,

we have

A LI t L- A  - US

Comparing this equation with the previous one for Cn, m shows that

4LYLj-LI ZLV

Thus, we see that a knowledge of periodically sampled values of

the visibility function in the u-v plane provides all necessary

Fourier series coefficients Cn,m to completely determine the

function B(xy) exactly. Hence we can write

AL .. ,,..

4L 1Lj ,
Of course, exact knowledge of B(x,y) implies taVuv)is also
Of cuseatkoldeo xy)ipisthat V(u,v)isao

completely specified from the Fourier transform relations.

We therefore conclude that for a region-limited brightness

function, knowledge of periodically sampled values of the associated

I. ........I il -" I I I I I I ....
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visibility function completely specifies B(x,y) and V(u,v). The

proper lattice constants for the periodic sampling lattice are

'A, e4Z ALT

where Tu,NI and TvNI refer to the "Nyquist interval" lengths

along the u and v axes, repectively.

Because B is a real function and V is therefore

Hermitian, we can further reduce the sampling requirement. Only

two adjacent quadrants need be periodically sampled in order to

reproduce B(x,y) and V(u,v) exactly, since samples of V(u,v) in

these two quadrants are related to the sample values (on a regular

lattice) in the other two quadrants by the Hermiticity property.

If we write

and expand the complex exponential in terms of sines and cosines,

we can simplify to get

Note the similarity of this result to that obtained for B (x,y);

if the averaging intervals Tu,n and Tvm were fixed at the Nyquist

*1 intervals, and we replaced the average values by sample values,

then the results would be identical (since un- and vm=m y now).

Kx
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2.4.4 Aliasing

Conceptually, the aliasing effect in I-D Is identical

to the effect in 2-0. Therefore, we will base our discussion and

work in one dimension, and state the very obvious generalizations

to two dimensions.

In one dimension, the Sampling Theorem may be written

for a real function B(x) which is band-limited in jxkLx , as:

+ Vd1 ) 9NZ17rz X)
where TNI=--U x , and 2Lx is the full l-D source extent. The

expression written for B(x) is recognized as just a standard

Fourier series expansion for that function in its domain of

definition [-Lx,Lx]. Note that the periods, Xp,NI, of both

trig functions are defined by

'ii

The fundamental period occurs for n=l, with all other values of n

producing shorter harmonic periods. Since all terms in the sum

have the common beat period 2Lx, we see that the superposition of

the various harmonic terms produces a function s(x) which is

identical to B(x) in the interval [-Lx,L x] and reproduces B(x)

periodically along the entire x axis with period XP. 1 NI= 2LX xin the

bands [rLx,(r+2)L ], r=odd integer. This is, of course, the

standard periodic extension of a function when represented by its

Fourier series. What is important to recognize for our considera-

I-
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tions is that the particular choice of TNI for the sampling

interval produces a Fourier expansion which properly "fits" into the

true domain of definition for B(x), [-LX,L x]. (x) reproduces B(x)

in each band without interference between bands if we sample at

intervals TNI because all terms in O(x) have the common beat

period 2L . Figure 2.5a illustrates this case.

Suppose now that we consider sampling V(u) at intervals

T <<TNI. The Sampling Theorem result then is

5,L9)= T,. V 1 +Z3 1 { !,v,,T) cs 2r-,%r
+ 'h&Q -rT) sm Z-r. X)

The period is, now

and the common beat period is

B<(x) is the periodic extension for this Fourier series which

matches B(x) in the interval

and reproduces B(x) an all intervals

with r an odd integer. We immediately see that, since the

period here is greater than Xp=,1 NI we still prevent interference

between bands. Note that we may define a band-limited function

B<(x) which is identical with B(x) in [-LxL x] and zero outside

this interval, but whose basic domain of definition is chosen as
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[-Lx- Lx+x],6>O. If Y<(u) B<(x) then the sampling theorem
properly applies here with T<,N I__x+ But clearly V(u)iV<(u)

since the Fourier transform integral is performed over the entire

one-dimensional space. As illustrated in Figure 2.5b, B4(x) is

identical with B(x) in [-L x,L x] but its periodic bands are now

spaced a distance apart instead of being juxtaposed. Since we are

really interested only in the function B(x), we conclude that sampling

at T <TNI is capable of reproducing B(x) exactly in the region of

interest.

Now consider T>>TNI as the sampling interval. The component

periods in a>(x) now are

and the common beat period for all terms is
.J. <LA

* We have a situation where other bands have a non-harmonic overlap

into the interval [-Lx ,Lx], and B(x) is not exactly reproduced in

its basic domain of definition. Thus, sampling at T>TNI causes

distortion of B(x). We will presently show by an argument using

the Convolution Theorem [based on a similar discussion by

Bracewell (1978)] that the effect of using T> is to simply cause

O>(x) to be a superposition of overlapping bands wherein O>x)

would match B(x) except for the overlap effects. It is not

possible to deduce the true form of B(x) by compensating for the

overlap in some way, and thus sampling V(u) at T>TNI results in an

unrecoverable loss of information on B(x).



71

We can concisely prove these observations by using the

Convolution Theorem. We define the Sampling Function by

l.9z

where T is the sampling interval. Sampling V(u) at intervals T

is equivalent to multiplying V(u) by III(l-). Denoting the sampledT
visibility function by V (u) we write V (u-u.III(). Let s(x)

S S

be the Fourier transform of V (U). Then the Convolution Theorem

gives us

15tx)

The Fourier transform of a sampling function is another sampling
function, IM(u) H I1x) [see Bracewell (1978) for a discussion

of the proof of this transform pair]. By the Similarity Theorem,

we then have

So,

- f"a,' . tie) . ,
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This result clearly reveals the effect of the size of the

sampling inteval. For B(x) band-limited in (-Lx,L x, then clearly

NIT NI=, causes OWx to be a non-overlapping periodic extension of
x

B(x). Similarly, for T<TNI, we simply widen the bands, as was

illustrated in Figure 2.5b. For T>TNI, then Tr2Lx and we see that

the bands now overlap, producing a distored version of B(x) in the

interval of interest [-Lx,L 1. The present statement of this result
x

lucidly shows that the distortion results from superposition of

different bands, each of which may be conceived as containing one

undistorted period of B(x). (See Figure 2.5c)

The term "aliasing" has been used to describe this effect

because sampling at intervals greater than the Nyquist causes

spatial frequencies in different bands to mix due to the overlapping

of the bands. It is therefore said that higher spatial frequencies

are posing as lower frequencies, and hence the higher frequencies

have lower frequency aliases because of the overlapping.

it
The generalization to two dimensions is quite straight-

forward. Samplina in 2-D is performed on a rectangular lattice in

the u-v plane, and sampling along any line of lattice points in the

u or v directions is independent of behavior in the other direction

and hence exactly equivalent to the I-D case. We can therefore

think of the 2-D lattice as being a direct product of two I-D

lattices. We then have
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where

The result is:

We immediately see that all of the previously discussed

cases for one-dimension apply to each argument of B independently.

In other words, for true recovery of B(x,y) in the region of

interest {[-Lx,Lxl,[-Ly, Ly]1, we must have Tu f Tu,NI " I and
1 

lx

Tv - Tv,NI -- . If the sampling interval along u or v exceeds

its relevant Nyquist length, then aliasing effects occur and

B(x,y) will be distorted along the respective direction (i.e.,

-if Tu.Tu,N but Tv>Tv,NI, distortion of B(x,y) occurs only

parallel to the y axis).

We will call a rectangular cell with edge lengths Tu,NI

and TvI a Nyquist cell. When we say that a given cell is smaller
than the Nyquist cell size, we mean that Tu<Tu,NI and Tv!Tv NI

for the given cell. A cell which is referred to as being larger

than a Nyquist cell will have Tu>Tu,NI or Tv>Tv,NI or both.

2.4.5 Effect of the Epoch of Sampling

Heretofore, we have used the Sampling Theorem with the

epoch of sampling at the origin, which is the conventional statement

of the theorem. We now investigate the effect of an epoch of sampling
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not based on the origin. Again, we will work in I-D and state the

generalization to 2-D.

Suppose that we sample V(u) at regular intervals T, but

we do not center the samples on u=O; this Is equivalent to shifting

the Sampling Function by some increment a, with O<a<T. Then

The sampled visibility function Vs(u) is now=S

V3 ( 9) = V( L .(eo )
From the Shift Theorem, we have

'f'tEE.4-o)1 =e-7Jr1 -rx).

The Convolution Theorem then requires that the Fourier transform

of Vs(u) be:

As before, B(x-E) is a periodic extension of the band-limited

function B(x). low, however, 3 (X) has a ccmplex factor in its

terms. Note that 1I, and if r is irrational, then e-i2rn
T< a

Is non-periodic. If a Is rational, then e-i2,nT is periodic

in n. Suppose that 5 is the integer period such that na=T and

- i L
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for any integer r. Then the complex function a (x) will have a.

period a = a In particular, for T=TNI, Sa(x) has a period
62Lx =2TLx

~ - > 2L x N Hence, ifTT no overlapping occurs, and wex a T<N.

see that for n=O, we do in fact recover B(x) in the interval of
interest [-Lx,Lx].

Consider the case T>TNI now. Clearly, we will have over-

lapping as discussed previously, but the distortion now will be

far worse than when the epoch of sampling was at the origin,

because the adjacent bands which mix into the region of interest

have complex weighting factors in them.

The generalization to 2-D incorporates a translational

* displacement of the epoch of sampling for the lattice from

(u=O,v=O) to (a,b). The result is

.)% . .r-,J I&- e

The cases discussed above for 1-D apply separately now to each

coordinate.

As a simple illustration of the effect of the epoch of

Tsampling in one-dimension, let us consider a case where a=T for

the conjugate pair V(u) = stnc u l-IxI=B(x) for IxJl. We have
I Z - Iwn

TNI = = .5. The complex modulating factor is now e , with
x

period i-2. But

* -~.J7A
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In 1+1 n even
e 1 n odd

The resulting function Ba(x) for T=TNI is pictured as:

-SA.

as compared with the standard Sampling Theorem result for sampling

epoch at the origin:

L

!K

Based on the considerations of this section, it is

considered preferable to use an epoch of sampling at the origin.

In our discussions, we will want to consider averaging cells with

dimensions both smaller and larger than the Nyquist cell. When we

represent the average value of V(u,v) over a cell by a delta

function at the cell midpoint, we are imitating the sampling process,

and hence the observations on the effects of cell size versus Nyquist

I. cell size are applicable. If we average over the entire visibility
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function with cell sizes equal to or smaller than the Nyquist

cell size, then aliasing effects will not be present and the

transform of the averaged function will represent B(xy) except

for possible distortion due to the fact that average values were

used instead of true sample values. Averaging with cell sizes

greater than the Nyquist cell size produces greater distortion due

to aliasing effects. As we have seen, an epoch at the origin

produces less distortion than a shifted epoch in cases where the

Nyquist size is exceeded, and we would therefore prefer to use

an averaging epoch at the origin (u=O,v=O) for these cases. Since

we will be considering various averaging cell sizes, and since the

epoch does not affect the result in the region of interest for

cells smaller than the Nyquist cell whereas it may adversely affect

the result for cell sizes greater than the Nyquist cell size, we

see that fixing the epoch of averaging at the origin for all cases

of cell size (including mixed cell sizes) is the best prescription.

It should be noted that in an actual experiment, it may not be

possible to choose an epoch of sampling at the origin. However,

although the elliptical tracks may not conform with a sampling or

averaging epoch at the origin, if the data are gridded onto a

rectangular lattice, then it would be preferable to use a lattice

with epoch at the origin if such an extrapolation Is feasible.

1.1
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CHAPTER 3

THE STANDARD FOURIER TRANSFORM METHOD

3.1 Statement of the Method

In an actual experiment, V(uv) can be examined over only

a finite portion of the u-v plane, and hence the visibility function

is effectively truncated. We will assume that the truncation is

symmetric in u and v (or has been made symmetric as previously

discussed). We have shown above that the Fourier transform of

the truncated and averaged visibility function is

1 TB T. 2ira. , .

+ ZE 41s.c~"

where Tu,nTv,m are the averaging cell lengths in the u and v

directions, respectively; (U v ) is the midpoint of the (n,m)thn9 m

cell in which the average value is

+ L

For completeness, we state the result for asymmetrical

truncation:

For asymmetrical truncation, (x,y) will be complex.

We can easily show that, for a given truncation of the
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visibility function, the value of B6(O,O) is independent of the

particular averaging lattice which is used, and is in fact equal

to 9(0,0), the origin value of the function resulting from trunca-

tion of V(u,v) alone, without averaging. We have shown that the

effect of truncating V(u,v) produces

where: ci = i coordinate value of the midpoint of the non-truncated

portion of V(u,v)

bi = length along the i axis of the non-truncated part of

V(u,v).

By the Convolution Theorem,

Since the integrations are independent of x and y, we have, using

the definition of 'TT' ( it - 1A i-C

;.:~~~C, -4. ¢

We can write (x,y) in a form which applies to either symmetric or

asymmetric truncation,

i rc .+%,

II I-Is
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where W%

~~-uu.d,.~o

"rr, ..'r,,{

ror x-y-0, ;(C ' )~1 T5 -;.

Thus, 186(0,0) = 83(0,0) = Volume under the visibility function inside the

truncation imits.

( 3.2 Illustrative Case: The Two Component Gaussian Source'

We now want to consider a practical example to examine

J the effects on resolution due to truncating and averaging the
u visibility function. As our model we chose a two component

Gaussian brightness distribution function. This model source has

been chosen not only because of its relevance to actual observed

sources which have two or more peak components in the brightness

function which we wish to resolve, but also because it provides

an excellent case to study changes in symmetries, the vector

between the peak brightness points, and the width of the components

as functions of truncation limits and averaging cell sizes.

The basic form of the brightness function for this model
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IL
source i s

where w is a parameter characterizing the width of each component.

The Gaussian components have peak brightness of unity at the points

(-1,0) and (1,0). Figure 3.1 illustrates the cross-section of the

model source for four different values of w. Figure 3.2, a-d,

presents three dimensional views of the model source for the four

values of w, as well as their associated visibility functions.

(Note that these source and visibility functions are smooth

functions; any sharp edges in the 3-D plots are due to the mesh

size used in the plotting algorithm.)

3.2.1 Exact Brightness Distribution function and Its Transform

The Fourier transform of the brightness function

,+ .

is derived as follows. Let

Note that &.L41

By the Similarity Theorem and the Separable Product Theorem, we
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immediately have

and by the Shift and Addition Theorems we have

I ~ Y f) ~(. + XL~4V + Z Z . w~u..

Hence, by the Convolution Theorem, we get

Note the ease with which this transform is obtained using the theorems

as opposed to a direct calculation.

Since the double-Gaussian model that we are using is not

a truly region-limited function, one cannot properly define a

Nyquist cell size. However, the Gaussians fall-off sufficiently

fast so that we may define effective limits for the extent of B(x,y)

in the x and y directions. This effective length will be specified

as twice the value xc for which B(xy) has an amplitude less than

or of the order of .001 of its peak amplitude for all x xc, and

similarly for yc. The effective Nyquist interval lengths are

then

1 ~ 1
Tu,NI = - and Tv,NI = 2 .

Table 3.1 shows the effective cut-off lengths and corresponding

, Nyquist intervals, as well as the peak values of B(x,y), the
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location of these peaks in the brightness function and the half-

widths (defined as half the peak value in B(x,y)] for the four

width values w used in this study.

It was desired to examine cases of both severe and

negligible truncation of the visibility function. Since V(uv) is

sharply peaked and falls-off very fast for w=.25, whereas it decays

quite slowly for w=lO, it was decided that a common truncation

limit of juI=l and Iv{=l for all cases studied would achieve the

goal of examing both radical and minimal truncations.

Three different sets of averaging intervals commensurate

with these truncation limits were used. One set, designated A,

used averaging cells which were all smaller than the effective

Nyquist cells for the w-10 and w=l cases (but were larger than

the Nyquist cells for the other two w cases). Set B used cell

sizes which were all greater than the effective Nyquist cell

sizes for all four w cases. Set C used cell sizes which were a

mixture of cells both smaller than the smallest effective Nyquist

cell and larger than the largest effective Nyquest cell in the

four w cases. All cells were taken to be souares, i.e., the u

and v edge lengths of any given cell were the same. The three

different averaging schemes are summarized below, where it is

understood that the Intervals along the v axis are the same as

the intervals along the u axis which are illustrated.
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Averaging Scheme A 1.Z. .. s,..a .I. i r Lr LJS. .2 .z .

-I 0

Averaging Scheme B I .,S .4' . , .it.r
-I 0 3

Averaging Scheme C I .LS " .z .I .2 " . S"" .3 1

3.2.2 Method of Analysis

All of the program references in this section refer to

Program A of the Appendix.

The function B(x,y) was obtained by performing the

relevant convolution integral numerically. Since the magnitude of

B(x,y) is less than .001 for all x and/or y values greater than

3.5 for the three cases w=10, 1, .5 (the corresponding value along

the x axis for the case w=.25 is 3.96), the highest x and y values

for which B(x,y) can be caluclated must be 3.5 less than the

magnitude of the x' and y' limits on the respective integrals. In

other words, since we must put a practical bound on how far out we

go to integrate over x' and y' in the convolution integral, we

must insure that the chosen limits are sufficiently far out so

that effectively all of the volume under the shifted function

B(x-x', y-y') in the intergrand is included in the numerical

integration. The falling sinc factors, which are less than unity

except at the origin, actually help to taper the integrand,
6
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sinc(tunX) sinc(Tv,mY) B(x-x',y-y;), so that the cut-offs at 3.5

are somewhat conservative.

The expense and CPU time involved in performing the

convolution integrals to a reasonable level of accuracy (about

.05 of true values) limited the range of x and y values from 0

to 2.5 in increments of .25. Furthermore, B(x,y) was actually

evaluated only at lattice points in one quadrant. This was

considered acceptable because the integrand arguments are even in

x and y, and truncation of V(u,v) was also performed symmetrically,

so that the values of B(x,y) in one quadrant should be symmetrically

related to its values in the other three quadrants.

The effective limits used for both the x' and y' integra-

tions were -6 to 6, in accordance with the comments above. A mesh

with step size .1 in both x' and y' was used to numerically

evaluate the integrals. The simplest integration technique of

summing over cell volumes (value of integrand at cell midpoint

times the cell's base area) was used for speed; improved accuracy

would involve at least a fourfold increase in computer time. To

generate one value of B(x,y) requiredl4,400 iterations of the

summation loop to evaluate the integrals numerically,, so that

even the very sparce x-y lattice containing 100 points required

considerable computer time. Attempts to increase the density or

extent of the lattice points examined were considered cost-

ineffective for our purposes here.
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Figure 3-3, a-d, illustrates the visibility function after

truncation. Truncation is negligible for the cases w=.5, .25, and

therefore the long convolution integral calculations were omitted

for those cases.

To obtain an overall comparison of B(x,y) with B(x,y),

the following parameters were defined:

Normalized Deviation
A

Normalized Root Deviation 
Squared A

where the integrals are performed over a square region of the x-y

plane whose area is A. The division by area was included to

normalize the result so that comparisons could be made with other

cases where the section of the x-y plane which was examined had a

different area. Since we evaluated B(x,y) only over the region 0

to 2.5 along the x and y axes, the integrals above had to be

numerically performed over this single quadrant. The mesh step size

was .25 along the x ano y axes (the available data values for B(x,y)

have this increment step), which is quite large. Therefore, the

calculated parameters should not be viewed as very accurate

quantities here, but rather as quantities which are only sufficiently

'4 accurate for comparitive purposes with other similarly calculated

parameters.
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Other tests (such as peak locations and halfwidths) were

not performed for B(x,y) due to the prohibitively long calculations

needed at each step of the iterative procedures required for such

tests.

Numerically performing the averaging process for the

visibility function was considerably faster and more accurate,

using a mesh with step .025 along both the u and v axes. The

visibility function was numerically integrated over an averaging

cell and the average value calculated by dividing by the averaging

cell's area. Only the upper half-plane was used (by virtue of

the Hermiticity relation) and the values of B6(x,y) were calculated

using the standard discrete Fourier inversion method discussed

in Chapter 2.

Several tests were then performed to study the function

B(x,y) and its relation to B(x,y) and 9(x,y). The two main peaks6 6
in B6 (x,y) were located using an Iterative search procedure

incorporating the subrotine VAO6A of the Harwel Library.6  The

accuracy control for this calculation was specified by the condition

for the iteration to terminate.

The magnitude and angle (with respect to the x axis) of the

vector connecting the two peaks was then calculated. Since the

half-widths of the separate Gaussian components are not well-"!.

defined in the x direction due to overlapping of the two components,

L t,/ "•
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the determination of the half-width for each component in B6(x,y)

was performed in the y direction where half-width is well-

defined (i.e., unaffected by overlap effects). The half-width

was defined as the distance between the y value at a component

peak and the y value where the brightness magnitude is half the

peak magnitude. The half-widths were determined by iterative

search, and the error bound criterion specified that the magnitude

of Bi6(x,y) be within .01 of the true half-width magnitude for

the iterative search to terminate.

Overall comparative parameters were defined for B6 (x,y)

in an analogous fashion to those used for B(x,y). For comparison

with the exact brightness function, the parameters were:

Normalized Deviation A

Normalized Root Deviation Squaredd
The square region (with area 64) from -4 to 4 along both the x and

y axes was examined, and the mesh step size used to perform the

integrations numerically was .2 along both the x and y axes. Again,

k1 the results here should be viewed as sufficiently accurate for.4

comparative purposes but not highly accurate in themselves.

For overall comparisons with B(x,y), the following parameters

were used:
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Normalized Deviation [ A

Normalized Root Deviation Squared -

the same first quadrant region and mesh size as used for the

comparison of l(x,y) with B(x,y) was used here.

B~ (x,y) was also examined to see if the reflection

symmetries through the x and y axes which are present in B(x,y) are

preserved in B6 (x,y). The region from -6 to 6 along both the x

and y axes was examined using a mesh with step size .1 along each

direction. The criterion for symmetry between two reflection

symmetric points was that the two values of §8(x,y) agree with

each other to within .001, and the condition for an overall judge-

ment that B (x,y) was symmetric under reflection through the x and

y axis was that no more than 10 pair of points, of the 7200 pairs

examined for each reflection symmetry case, be unsymmetric. This

tolerance of about .I' was inccrporated to allow for any possible

rounding errors or other inaccuracies in the computer's calculations

which may have been present and incorrectly imply an asymmetry.

'4~

- -- - . -
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3.2.3 Results

Table 3.2 summarizes the results of the model study.

Every case was found to preserve the reflection symmetries through

x and y axes, and therefore these results were not included in

Table 3.2 Similarly, the component peaks were symmetric about the

origin in all cases studied, so that only the second component

peak (at positive x value) was included in the Table.
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3.2.4 Observations and Discussion

Preservation of the reflection symmetries of B(x,y) in

B (x,y) is an expected result, since V(u,v) was symmetrically

truncated and the averaging cells were symmetric in the sense that

T =T and T =T
u,n u,-n v,m v,-m

The component peaks in B (x,y) are generally not coinci-

dent with the peaks in B(x,y). In some cases, the peaks are seen

to shift inward along the x axis toward the origin, in other cases

the shift is outward; however, in all cases, there is no shift in

peak location along the y direction. Peak shift is most severe for

averaging scheme B, where the cells are all larger than the

relevant Nyquist cell size (for all four w cases). In an extensive

study of about 300 one-dimensional sample cases, it was found that

peak shifts result from truncation effects alone as well as from

the combined effects of truncation and averaging. Qualitatively,

we can account for peak shifting by realizing that a peak in B(x,y)

results from the overall cumulative reinforcement of the component

sinusoids of which B(x,y) is composed in its Fourier expansion, and

therefore omitting some of these sinusoids [due to truncating V(uv)?,

altering their relative amplitudes [due to averaging V(u,v)],

and using a limited set of "non-Nyquist" expansion "frequencies."

(specified by the aveaging cell midpoints) can give rise to a rein-

forcement peak at a point which is displaced from the peak in

B(x,y). Three cases in the model survey show a peak in B (x,y)

coincident with the peak in B(x,y), to within the accuracy limits

- r _ . -- -- '-'---
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of the calculation as discussed above. Two of these cases are for

averaging scheme A, where the cells are smaller than the respective

Nyquist cell size. The truncation of V(u,v) was not severe for

these cases. A very small shift (i.e., undetectable to our

accuracy limit) is therefore not surprising for these cases. The

third case involved radical truncation of the visibility function

and used averaging scheme C which incorporates mixed cell sizes;

apparently, the peak shifting influences of truncating and

averaging V(u,v) tended to cancel in this case producing a very

small (i.e., undetectable) net peak shift.

The peak magnitudes of B (x,y) are seen to differ from

the peak magnitudes of B(x,y). In most cases, the peak magnitude

of B (x,y) was less than the peak magnitude of the corresponding

B(x,y); however, in two cases the converse is seen to hold. For

w=l0, all three averaging schemes show peaks in B (x,y) which are

significantly less than the peak in B(x,y). The visibility function

was severely truncated in this case, and therefore we would expect

that the omitted Fourier cowponents had significant amplitudes,

so that a peak in B(x,y) results from a greater number of reinforcina

Fourier components with significant amplitude than are available to

form a peak in B(x,y). (The relation B (O,O)=(0,0) for any

averaging scheme holdshere. Note, however, that different averaging

schemes with the same truncation limits can lead to different peakg

brightness magnitudes here because the peaks are not at the origin.)

The effect of truncation is only one factor accounting for the differ-

... ... ..., ......*n ml II I I l l 4 I i il I ll I ... ..... .......
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ence in peak magnitudes between B6 (x,y) and B(x,y). The relative

amplitudes and "frequencies" of the component sinusoids in B6(x,y)

are determined by the particular averaging scheme which is used,

and these factors also influence the peak brightness. For w=l0,

the effect of truncation is dominant, whereas for the other three

cases, the peak magnitudes are determined by a more balanced

contribution of the above cited factors. In particular, the two

cases where the peak magnitude of B6(x,y) exceeds the peak magnitude

of B(x,y) can be qualitatively viewed as cases in which the combined

factors result in greater reinforcement magnitude for B6 than for B.

The halfwidth of B6 (x,y) is similarly influenced by

truncation and averaging effects. From the previously discussed

theorem for the effect of truncation, we know that truncating

V(u,v) leads to a broader and less sharply resolved function B(x,y)

as compared with the true source brightness function B(x,y). For

the case w=l0 where truncation was severe, we clearly see that the

truncation effect is dominant and the halfwidths are all larger

(by about a factor of 2) than the halfwidth of B(x,y). In the

other cases where the truncation and averaging influences are more

balanced, the differences between the halfwidths of B (x,y) and

B(x,y) is less severe than the case w=l0. (These differences are

about 10% as compared with the factor of 2 difference for w=l0.)
I

The parameters defined to enable overall comparisons to

be made between the various cases confirm the expected results that,

ginerally, truncation without averaging yields a bet-:er approximation
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to the brightness function than does truncation with averaging, and

the smaller the averaging cells the better the overall approximation

of B6(x,y) to B(x,y). Again, these are general trends and it is

possible (as occurred in several cases) for Bd(x,y) to give a

better approximation to B(x,y) than does B(x,y) for some

particular choi es of truncation limits and averaging scheme. This

observation is supported by sample cases among about 300 one-

dimensional test cases where B(x) and B(x) were plotted and

visually inspected for goodness of fit to B(x). The entries in

Table 3.2 clearly show that averaging scheme B (cell sizes all

greater than the Nyquist cell size) was always significantly worse

in fitting B(x,y) than were the other two averaging schemes where

some or all of the cells were smaller than the Nyquist cell size.

Having obtained a qualitative understanding from the

model study of the effects on the brightness function resulting from

truncating and averaging the visibility function, we now analyze

these effects quantitatively in Chapter 4 to further elucidate

the nature of these effects.

,!

I
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CHAPTER 4

THEORY OF TRUNCATION AND AVERAGING EFFECTS

Having seen the effects of truncation and averaging

illustrated in Chapter III, we now take an analytical look at the

causes of these effects.

4.1 Periodicity Considerations

Our discussion on the periodic nature of the brightness

function resulting from sampling or averaging the visibility

function has thus far been concerned with a fixed sampling or

averaging interval. We now discuss the periodicity phenomenon for

irregular intervals, i.e., intervals of varying sizes. We will

work in one dimension and then generalize to 2-D.

Theorem 4.1: Consider a visibility function V(u) and

let it be averaged, with averaging intervals in the set'{Tn1. Then
tn

B6(x) is a periodic function in x, with period

Xp = LCM[II]n#0
n

where LCM I Least Common Multiple.

Proof: For the general case of truncation and averaging

(including asymmetric truncation) we have

1z
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-L1V~7 Z IN A.4,1

For a given n, all trig functions have the common period X = ILI

The number of distinct periods is just (N2+N1+l). The period of

B will therefore be the lowest beat period of these "component"

periods:

Xc [-C, 0

We specify n$O because uo=O, for which the trig functions reduce to

constants. Therefore, the n=O term is automatically commensurate

with the common period of all the other components. Now, un is the

midpoint of the nth averaging interval, and if umin is the lower

truncation limit, we can write

-~ t +

If we use a constant averaging interval T and truncate

symmetrically, then

and .- L

++
--r °
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Then, I i)

= LCM /-,

But,
2Lt~ -- (aN4+I) -r )S,

+0" +1- ""

This agrees with our previous results for fixed T, including the

limiting case where V is not truncated so that N-+- (provided that

N- for then 1-0).

In two dimensions, we have

Clearly, if we fix one variable, say y, then B (xY) is a periodic

function in x with a period

exactly analogous to the 1-D case considered above. Thus, both

orthogonal components of the two dimensional brightness function

satisfy the l-D periodicity relation independently.

In a real experiment many different cell sizes occur,

and their midpoint coordinates generally do not form a set whose

inverses have a low Least Common Multiple. For example, if two values

of I in the set are I and .617, then their LCM is 617, without

even considering other midpoint values. This observation leads to

4% '"J 7 "'"''Ii EE'IJ M"dB- a:.lti i' " "*:i

L. ....... .. iI I | .. " -
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the conclusion that the x and y periods of B (x,y) will be very large

for a realistic case, and hence aliasing effects should not be

important (unless the data is gridded onto a regular lattice with

cell sizes greater than the Nyquist cell size).

4.2 Effect of Truncation Alone

We have previously shown that truncation of the visibility

function V(u,v) into a rectangular region with sides bu and bv, and

center at (cucv), results in a brightness function B(x,y) given by

where B(x,y) : V(u,v). BCx,y) exhibits ringing, i.e., it resembles

B(x,y) (to an extent depending upon the severity of truncation), but

with truncation-induced oscillations as a modulating factor, and

is smoother than B(x,Y).

4.3 Effect of Averaging Only

In the next several sections, we investigate the effects

of averaging over the entire visibility function and averaging a

truncated visibility function. Initially, we will work in one dimen-

sion with a fixed averaging Interval size. We then generalize to

the case of irregular averaging intervals, and finally we will

generalize the results to two dimensions.
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The following theorem will be considered our basic theorem

relating an average value of the visibility function to the true

source brightness function. We will later formulate an algorithm

which uses the information on the effect of averaging conveyed by

this theorem in an attempt to improve the brightness function

resolution by accounting, to some extent, for the fact that V(u,v)

has been averaged. The standard Fourier inversion method does not

incorporate this information.

Theorem 4.2: For the case of averaging with the epoch

of averaging at the origin, each average value of the function V(u)

can be written in terms of a definite integral over x which includes

B(x), the true conjugate function for V(u), in the Integrand.

Proof: Let V(u) be averaged with integer index nc[-,-]

denoting the nth averaging interval with epoch (n=O) at the origin,

such that the sign of n denotes the relevant half-axis on which a

particular interval is located. The nth average value of V(u) is

given by

We can replace V(u) in this expression by its Fourier transform

relation:

O r-- a

\4 7 J~e

a,, L .. .. .. .. . - - - - - " " .. .
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We assume that the order of integrations can be reversed (which is

true for analytic functions, and we will justify this even for the

case where B(x) is a generalized function, say representing a point

source). Then, "~B

.1,t .rnfc 1(.4) 1_. -,)

note3( taifBxisabn-iiefution Xn th intrva X ,L]

i~i Theorem L4.3

) . W149, )

- 'f IX .3(V e 7 rAX ( r e7rTwmx Xd~l~c-

J,, q7rA

= X f N ) OWcC X s= f7LtZ

I1.1

Note that if we average with a fixed interval T, then u =nT. We also

note that if B(x) is a band-limited function in the interval -SLI

then the definite integral's limits need be only from -L X toLx

We must now prove several intermediate results which

will be needed in our development.

Theorem 4.3:

Proof:

Now,

fi-= -ryol -L 7z (IT-) 0
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But,.''-,,~ ~ -2i~ 4

Hence, -L g(% -r -i&z r 7

Qualitatively, we see that this result is reasonable because ifx-T

then

so the sum is infinite. However, for x4n the infinite sum over

sines and cosines with varying phases will vanish.U

Corollary 4.3A:

-' - -. TJ)Th ,N2~7r (x- )

where N and A are integers.

Proof:

2 N

Then analogous to the previous proof,

~ ~~r)} 1

But, by the Convolution Theorem,
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= ~~-r. x "i '  x '''  '' -,__ ( -r
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Comparing results, we find

Corollary 4.3B:

Proof: Settingqt=O in Corollary A, this result is

obvious.

We can now apply these intermediate results to prove

several theorems on averaging effects.

Theorem 4.4: The effect of averaging V(u) over its entire

domain with constant averaging interval T is to form the periodic

extension of B(x) multiplied by sinc(Tx).

Proof: As previously defined,

f_ -... ...- -.J L _ ..,
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Using Theorem 4.2 for [in], we write

,90 so' 5 CAT -. ,. f , j* Now,

*J~ c6) jZv & sncTx e w U)

- e 13(A~~~qLI ~~ ) Or/4*:Tk' e Ld7rnTx'

For averaging with the epoch at the origin, un=nT, so we can write
A6, e iZ r- I T 4rl X" ')

7 -t

13 zfm5 7 4(K ,- - _

where we used Theorem 4.3. So,

This is a periodic extension of the true brightness function modulated

by the sinc factor. Note the implications for aliasing if B(x) is

band-limited in [-Lx ,L] but Tv-- or if B were not band-limited

at all.
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We now consider the important case in which the visibility

function has been symmetrically truncated and averaged with epoch

at the origin.

Theorem 4.5: The effect of averaging a function V(u)

which has been symmetrically truncated is expressed by a convolution

integral which contains B(x), the true conjugate function to V(u),

in its integrand.

Proof: If V(u) is symmetrically truncated and averaged,

we have

J

where un=nT for epoch at the origin. Proceeding exactly as we did

in the previous theorem, we get

Since the summation is no longer from -c,+w, as it was in the

previous theorem, we cannot simplify the convolution integral any

further. Noting that

we can give an alternate statement of the result:

F400) Vajl

The presence of the cosine factor accounts for the ringing expected

when the visibility function is truncated. A third alternate form

-r*----
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can be written using Corollary 4.3B:

,,,.. "r U x-

4.4 Examination of the Theorems

We now examine the theorems in further detail. We will

check for consistency with known results for the limiting case as

T-1O, and then discu s the case where V(u) is a linear function.

This case is important because, if V(u) is linear, then averaging

and sampling produce identical results, and thus the distortions

predicted by our theorems should vanish for T=TNI.

4.4.1 Limiting Cases

If V(u) is averaged over its entire domain, we found

-Wi' -,0

The limiting case is then

', ,- _ _ _ _--) LN

Using the theorem for the limit of a product (Kaplan, 1952), which

states

we can write
13S
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Now, IF '-,.= a

where we understand B(x--) to mean the function B(x) displaced to ,

and hence aliasing effects are no longer relevant (assuming

L).A 75

or that B(x) is in fact a band-limited function). Also,

, IN 7T'7( x- ) X ,, . . " , 7"s. - C.os 7r-/x ,,P

7-4o r-r (X - =!L) -JV r-r (A-

.LOA 
IP , '- S#o

Hence, we have

where { " I -, o

-B(X- o) IF ',o
and the Knonecker delta is

~~0 ,. ..

We have obtained B(x) as expected for T-, in which case

we are effectively sampling every point in V(u). Note that B(x),

not its periodic extension, is obtained.

If we symmetrically truncate V(u) and average with intervals

T with epoch at the origin, we found that

-VI -Ai ~ (,-Q
' (x'}=T( ',_. I C',,'Jr,'=7,, e-" & 'r x ''

- ... .. ---.,# - %', ,.-Al:--i

1I. .. lr... .IIII -
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Then, I z

LIM,. bf LX) im Tji'c ) vmic T' e,
= ~~~~~I' bt X') 1-,,,4 1T ,,,r.-r e. ' ' ' r( ' '

Note that, in this case, we require N-A*as T-+O, in order to keep

the truncation limits± (N T finite and fixed in value as we take

the limit. Consider the limiting term:

L B [.,, Ts eeTXZ)T(X-X'

"1"-0 0 ,,PW.

LAM TEe

M T Fw#fli
where we have used Corollary 4.38. So,

i)=[1,T-z )('-x') ,"' -' Z=rN1(jx-.) " °

7r ( )x 7r Cx'o

For n#O, the term is understood to represent the sinc function shifted

to -, and since the magnitude of the sinc function goes to zero as

(x -x'),-, we see that in any region of interest for a band-limited

brightness function, (x-x')<-, and then

,,. ' )( -'-.

I -]
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if effectively zero. Our result then is

" A. su" "W(wNT-x)

But, for symmetric truncation,

lr x-x')

where bu is the length of the non-truncated portion of V(u),

bu=Umax-Umin=(2N+l)T=2NT for T-O, while NT remains finite. Hence,

9im 9 (x)=B(x),
T-*O

as expected. It is straightforward to show that this result is

also obtained if V(u) were asymmetrically truncated, but we will not

go through the details here since the asymmetric truncation case

is not of interest for our purposes.

4.4.2 Linear Visibility Function

If V(u) is a linear function with a real fourier trans-

form, then V(u)=iaub, and B(x) must then be a generalized function:

vLyo V( LA)1 Z -

v where we have used the derivative theorem.

We first show that the previously discussed reversal

of integration orders is valid if B(x) is a generalized function.

Suppose B(x)=6(x) and V(u)=l. Then

•1, ,,( --r-

A Lt

a.J
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If we reverse integration orders, we get:

T TX

Thus, reversing integration orders is acceptable if B(x)=d(x).

Suppose now that V(u)=i2Tand B(x)=jx46(x)]. Then,

T h

X La~ j7rLAX~,,,,j.,,_7r)A C,[- ..

2- - I-1 7

=-Z7r I, 1  7

If we reverse integration orders, we get

= + /7i, ++> i.:=-,, n,,k
J- " ,OM.'

= -

Ir U.,
: - -9. .. l
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Thus, if V(u) is an arbitrary linear function such that B(x) is

impulsive, then reversal of integration orders, which was essential

in deriving the theorems, is valid.

Consider now the case where V(u)=l so that B(x)=s(x).

The theorem for averaging over the entire visibility function with

fixed interval T then says

X 5 7rTh c -V)
'-n- -r

To analyze this result, consider the following integral. Let f(x)

be some function of x.

:66))

Therefore, the generalized function

behaves as

and so we may write

which is the periodic extension of B(x).
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Suppose now that V(u)=i2,ru so that B(x)=-d6(x)]. Then

we have

To analyze this result, consider the following behavior, where f(x)

is some function of x:

:L- -rr(x ) f(x )

%'L-

46 1C SA C X-
the~~~~W Xeioi eeso of e b rxns fcI o ' (.!.

,Y TTu( T

dos

We therefore see that the generalized function

behaves as

Hence, we sce that

the periodic extension of the brlqhtness function P(x).
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We conclude that, if we average a visibility function

V(u)=iau+b with Fourier transform B(x), then we get for the Fourier

transform of the averaged function a periodic extension of B(x)

with period 1. Note the similarity with the Sampling Theorem result

for point-wise sampling at intervals T, which is the expected result

here because, for a linear V(u),
[(n* )T

Average Value = = n V(u)du= V(nT)=V(u )=Sample Value
n (n-2-)Tn

Note also that if T>TNI we will get aliasing in B, since we have

effectively point-wise sampled V at intervals T>TNI.

We have tested the theorems on averaging for limiting

cases as T.O and for the case of a linear visibility function with

constant-interval averaging over its entire domain. All tests have

indicated that these theorems are consistent with the general

properties of Fourier transforms. We will not examine the case of

a symmetrically truncated and averaged visibility function here due

to the algebraic complexity involved in that case. However, it is

reasonable to expect that, based on the other successful consistency

tests, this case also will yield the required result that averaging

a linear visibility function is equivalent to sampling that function.

4.5 Peak Shift Effects

One of the most important pieces of information to be

obtained from interferometric observations is the location of a point

., . .
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source (or source below the resolution limits) or the peak

brightness for an extended source. As we saw in Chapter 3, it is

possible for truncation and averaging effects to distort the bright-

ness function so as to cause shifts in the location of the peak

brightness away from the true source peaks. This case can easily be

demonstrated for the case of point sources.

Consider two point sources in one dimension with bright-

ness function

The visibility function is then V(u)=cosnu. Suppose we truncate

V(u) at juI=l and average with intervals of T=.4. Figure 4.1

illustrates the true source brightness function and compares it with

B(x) and B6(x). The peak shifts are quite evident.

In this section, we attempt to discern the origin of

peak shifts and conditions for a peak in BW(x) to be coincident

with the corresponding peak in B(x). We will discuss truncation

and averaging effects separately, and then their combined effect

will be examined. Although we are most interested in the peaks, the

discussion will actually deal with relative extremum points. For

4i the case of averaging over the entire visibility function, we can

express B directly In terms of B(x): however, for B(x) and

for the case of averaging a truncated visibility function, the expres-

sions involving B(x) are convolution integrals and will be difficult
to work with. For this reason, we will analyze the case of averaging

over all of V in terms of B(x), whereas we will analyze the other two
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B(x)

: I iI - :- 1. ___;_t i :- - I i _
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', FIGURE 4.1 Peak Shift Effect in 1-D
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124

cases in terms of the visibility function.

The Derivative and Convolution Theorems let us write

-B(x) as

~~L~()=J~~c1U. &arj-~ 7rltV4,, w7(u'c )
~ ~ b Q4 '7L. .~ V )

We will set Cu=O so that the truncation is symmetric. Let

V(u)Vr(u) + iVi(u)hwe can then write

gc. ~ -f L tA * V. cvs ozrto, - LV, ir 1J2irL

- AY c'- r" + i.4 * rj 27ru xh)

The imaginary terms are odd functions of u, so they vanish in the

symmetric integration. If P(x o ) [x B(x)]x0,xo=, then

JW
ki T( 27f 9u. L (LkV4 o-os 27r& X,- IA. Yv-StO27ruxa)

Similarly, we can obtain

~ '5~ -47-f 2CL4 (w~\]rUXo,1does-not imply j, r 0)=0.

It is evident that, in general, dx (Xo)=O does not imply P- (Xo)=O.
Although Tx (x0 ) may be small, it will consistently vanish only for

a peak at the origin for the case in which B(x) is an even function.

In this case, Vi(u)=O, and xo=O causes the term in Vr(u) in the expres-

slon for B O  to vanish, so d (Xo)=O and d' B(x )<0. We are

7')

SOL-
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usually assured that the second derivative is negative because Vr

is symmetric with

and

f2. 4 Lu) 0() 0

although in some particular cases we may find a different result

possible.

On the other hand, for a peak in B at x0 O, or if B(x)

is not an even function, then the general case will be that the

peak in B will occur at a different point than that in B(x), although

again some particular cases should be possible where the peaks

are coincident. One particular case, in which

V U) Cc527T4X.. \(LA) siri 2-irLX&

will cause the peaks to be coincident. Also, the more general case

V where

zz LcIIA k qL eo~s 27Lmx. sir2?rtx

can likewise lead to coincident peaks.

Unfortunately, it does not appear possible to write a

concise expression, valid for a general visibility function with

arbitrary symmetric truncation, which sets an upper bound for the

peak shift in B(x) resulting from truncation. However, if we assume

that the peak shift is small, we can arrive at an approximation to
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the peak shift, which we will designate by AX .

Consider the case where jB(xo+ -'4=, if P8(xoJ=O. Then

u V. &N 2-.4 * 7ruA ,u - 4A. c-os .ru x. *PO] q

If we make the assumption that Ax is small, we can expand to .

first order in A x to get

We can now solve for Ax:

As an example, consider the case V(u)=coswu, truncated

at tuI=l. We have then, for the point source at x,=.5,

Us 7Tk SO 7TU%

2 -f .L4. -d 1,a

-~ [4L~-s~sI~4 ~~Az

-7 Mf I ' e osTr- im71
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The exact peak shift is calculated as follows. The exact form for

W(x) is

40 7r(K- X.1)

Searching for the peak iteratively gives the peak location at x-.56285
(to five places), and thus the peak shift is .06285, which agrees

reasonably well (to about 5%) with our estimate based on the expansion

to first order in the peak shift.

We now consider peak shifts which are due to averaging

effects only. If V(u) is averaged with constant intervals over its

entire domain, then

A 713 ---

Consider:

A 4 A A-. ()h-B

Suppose now that d B(Xo)=O. Then,

.1y -g (X.).- .X6]

The terms in the sum are seen to represent possible aliasing effects

,. .
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which, of course, can themselves cause peak shifts. In particular,

let us now suppose that B(x) is a band-limited function in IxSL .x

Then, if we consider Ixo Lx , all terms in the sum over non-zero n

are seen to vanish provided that TMTNI, since if we average at inter-

vals as small as or smaller than the Nyquist interval, then there

will be no aliasing effects to influence peak shifting.

With these qualifications, we may write

%r C.05 wT - 2].4 71TX,
7B( X') I ,TYj .T

In this case, then if B6(xo) is to be a relative extremum point

coincident with a relative extremum in B(x), we must satisfy one of

the two following conditions:

1. B(xo) = 0

2. "X S/P "1""r'K°
X . 7FX 0T WX.

Note that as T-+O, the condition tannTXo=TrTXo becomes satisfied, being

exact in the limit T=O, as required, for any xo. Note that this

.4 transcendental equation has an infinite number of possible solutions

for xo. If a peak in B(x) occurs at one of these solutions, for a

given value of T, then the corresponding peak in B 6(x) will also

occur at xo. Note that this result predicts that the peak shift

oscillates in such a way as to be zero for those values of xo which

satisfy condition 2 above, for a given fixed value of T.

7.TI1
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If xo0 , we must consider the following limit:

b, * _L. TTX,. - S"1-TX. 1
xo"& 0 7"WTX&

Using L'Hospital's rule gives

L ,*S 7r7 S- X- 7rT sit, 7rTA, - J: 7-.]
-'.o %.,O- I- - . .

since the slope of the sinc function is zero when its argument is

zero. From this we conclude that averaging with fixed T.TNI, so

that aliasing effects do not occur, will not produce a peak shift

in a peak at the origin. This result resembles the fact that

truncation alone does not produce a shift in a peak at the origin.

For x0 O, let us suppose that

CL A

Then

v( which implies

car7TTX. ~ - MT 3i~rP 10Jrr / 7rM% C..3 r4dX+ C n"Y% SJ 1-

CAIIr X eos .774 091471T,2A.& -,

Expanding to first order in peak shift AX , which we assume to be small,

gives

-- .. . . . .. . l~ - - l . .. . ". ..- I iN ill -~ -.. .. . . . .il l ll i ... . .. . .
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.. s- Fr-X - 7r- A*. sm 7, rT(

- s 7rTx (+ +7rTA 7T 7X.

Rearranging, and neglecting terms in 8x higher than first order gives

)(, S,7M'. - "1-TX. cos 7TY),

-Trx. , -p"",'x.- (-'--r- &. + j),.,'nrx.

As an example, consider the transform pair

(. L Lk .,., =. OF + -x:: Y:+ ,) a B(. .
5

Now, V(iuI>-3.5)<lO - , so we effectively are averaging over the full

visibility function if we truncate at IuI=3.5. Since B(Ixl l)<10 -4 ,

the "effective" Nyquist interval is TNI=.5. We choose a fairly gross

averaging interval T=l. The exact peak in B(x) is calculated to be

xo=.07879. The peak in B6(x) can be determined by searching on the

computer. and is xo=.0685, to four places, giving Ax=-.QlO29

for the true peak shift. Our equation predicts Ax:-.01976, giving

* the peak at x=.059. A is a good estimate for A but is off by a

factor of 1.92 as opposed to the previous case for shifts due to

truncation only, which agreed to within 5% with the true shift.

We now consider peak shifts resulting from symmetric

truncation and averaging. For the case of averaging a symmetrically
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truncated visibility function, we have

A

-E~~~ -z 7r4 V4

Then,

Treating the value un as constant independent of the u integration,

we may write T

- -sZ-raY )L +s 0-L ks,ip-r x + V-sz~r u,

Noting that un is odd in n with uo=O, Vr is even in u and Vi is

odd in u, we see that the sum over integrals can be written as

,,, -l ('4. S/Id2 -Y Lt0s Lr x

As before, we suppose that d B(Xo)=O and that (XO+N)=O. Then,

- \j' e rSW., ( '+())

which implies

..... [rql, , ( S1 ,,, Z, rV C-3 7rU. Ax

+ cws -ru., sinrt, ~ :V (co5 7 , C~S 7rLA A
-S eMiru., YS, 510 zrl"Ax)



iA

132

Assuming that the peak shift- in small, we expand to first order

in Ax and simplify to get

rk

As an example for this case, we consider

V )-T L-- +..]c ?>. , -- ,= (X)

VU[Z r( - 1+ [2+7r..S+ X)Jz

We want to truncate a fair amount of V(u) and average with T>TNI.

We choose truncation limits at lul=l.5, and use T=.6, since

V(Iu>.1.5)<.2231 and B(IxI_7.2)$.O0l implies TNI=.0694 as the

effective Nyquist interval. The true peak is at xo=.49939 and the

peak in B6(x) is at xo=.49877, both found by iterative search to

five places. Our equation for peak shift gives an estimate of

AX=-.0002374, whereas the exact peak shift.is -.00063. Agreement

here is to within a factor of 2.6. Our equation gives an order of

magnitude estimate.

In a real experiment, one would not know the true

visibility and brightness functions, but would rather have only the

average values of the visibility function as data. For the cases

of averaging over the entire visibility function and averaging a

symmetrically truncated V(u), our equations involve only integrations

over the visibility function, which are Just equal to the average
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value (which we have as data) times the knownvalue of the averaging

interval. We can thus estiiate a margin of error for all peaks

in the brightness function generated from the average value data.

For the case of truncation only, we cannot determine the integrals

(which now contain other factors of u) from the available data;

however, this case is not of significant importance since experi-

mental data will be in terms of average values of the visibility

function.

4.6 Irregular Averaging Intervals

In the development of the averaging theorems in this

chapter and in the discussion of peak shifts, we have used the

simplifying assumption that T was a fixed averaging interval size.

We now want to consider the generalization to the case where T

is a variable parameter.

For the case where V(u) is averaged over its entire

domain with irregular averaging intervals with epoch at the origin,

we have

* ! where the midpoint of the nth interval is now given by

+ M.

4+ -7Z:.

# qr'71
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Then,

~~S'c~ , i =TIhu e '.f B-)-v)4,J

- ~ ~ ~ ~ i~ Ux (.)k'. ., - X'

Because un Tfor irregular intevals, we cannot replace the present

sum by a sum over delta functions and thereby simplify the integral,

as was possible for constant T.

For the case where V(u) is truncated symmetrically and

averaged with irregular intervals, we get

In particular, for the important case Tn=Tn, this can be simplified:

, T .fln' 3(x') s,,4er. Y,' + BZ r x w;7 Cx'
Wi -"

SC~' s'-1~C+ZZT n,,x4'2,').,X
+

4NA YI + ~ 2SPI271L + Y.

II, where S,}

" 'r T,, 2 -i r , = I T +

rrT.,-~ 2"N. =Ia

_ ._.smmwe =r, ,,a =€. . , . _ .. . .'-'' ~ zsr .. r,,. .- ,,r ,[T--,. _
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For irregular intervals, we have seen that only the bounds

on the index n distinguish the cases of averaging over the entire

V(u) and averaging a symmetrically truncated V(u). Therefore, we

need to discuss the generalization of the peak shift equation only

for averaging a symmetrically truncated visibility function. We will

make the further restriction that Tn=Tn which will often be the relevant

case (along both the u and v axes) for the radio interferometer

system in which we are interested. It is obvious from a review

of the method used to derive the peak shift Ax for the case of

averaging with fixed T over a symmetrically truncated visibility

function that the appropriate generalization for irregular intervals

is just the previous result

TA ILKcL L. (\4 Zra42X. -Vi "s-Tru,4

JiL.. cTu 'L s/21rZU, +V, cAvsZ-n~x.

with un nT now.

4.7 Generalizations to Two Dimensions

The generalization of our 1-D results to 2-0 is entirely

straightforward. We will illustrate the procedure for one theoremS.

and then simply state the other results. The epoch of averaging is

always at the origin. We will assume that the cell sizes are

irregular, and state the simplified form for constant cell sizes if

one exists.

- t ,
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Theorem 4.6: Each average value of V(u,v) can be expressed

in terms of a definite integral over the true source brightness

function:

Proof: The average value of V(u,v) in the (n,m)th cell

1 ~ T ~ ~ 2 L T 7- V (;..

where the cell midpoint coordinates are (u nvm):

T"l, 0 :.0 T

I.,,

Using 27r(f ! rz 4*4T)(Xa- e 1 (x,,1)

we write

TJ,%Tqr . U

PZ 1

t7 X s,'j

I I



137

For fixed cell sizes, un nTu , Vm=mTv. We now state the other

generalizations to 2-D.

The effect of averaging V(u,v) over its entire domain

with fixed cell size is given by

For irregular cell sizes, the result is

A (XII)I

If V(u,v) is truncated symmetrically in u and v and

averaged with irregular cell sizes, we simply change the infinite

limits for the n and m summations to (-N to N) and (-M to M),

respectively. (Note that averaging the truncated V(u,v) with

* fixed Tu and TV does not simplify this result except to remove the

cell size (Tu'T v ) from the summation.) For the case where Tu,n=Tu,_n

and Tvsm:Tv,_m' we have

'1

II
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-0 7r:A * 51'7

C0-k A! s, r.oA/ ,4 P~o'_ 6, i 1*f ;. su.L%& ,,?,7" ;!,X 13,,s,+ r-M,-.,,, '

+~O 6;421L~ Y, Co

where e -- j, 0 + fl)\~ [r.i -1 t

We may express the peak shift in two dimensions by (P ,

where the x and y components independently satisfy the l-D peak shift

equation for irregular averaging intervals given in the previous

section. Note that this result explains why there was no peak

shift in the y-direction in the model source study since both peaks

occurred at y=O values, and we found that peaks at the origin do

not displace.

4.8 Development of an Algorithm

H I

Having examieds the peaksfet on te brimhesios functiony
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of truncating and averaging the visibility function, we now attempt

to develop an algorithm which uses the relation between the average

values [Vn,m ] and the exact brightness function B(x,y) to obtain

a better estimate of B(x,y) than does the standard Fourier

inversion method. The advantage to this approach lies in the fact

that, although the fourier inversion method disregards the fact

that the visibility function has been averaged, an algorithm

incorporating this information might be capable of giving higher

resolution than one which disregards it. The algorithm which we

will develop here is by no means the only approach to the problem,

nor is it necessarily the best; however, it may be a useful

alternative to the standard inversion method, and as such deserves

consideration. We will develop the basic concept in I-D and then

generalize to the two dimensional case where V(u,v) is averaged

over a rectangular grid.

We have seen that the average value of V(u) In the nth

interval can be expressed as

Because the true source brightness function, B(x), appears in the

Integrand of a definite integral, we cannot invert the equation to

solve for B(x). An approximation is therefore necessary.

Since we are concerned with band-limited functions, let us
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assume that B(x) is band-limited to the interval [-Lx,Lx]. We can

then expand B(x) in the complex Fourier series form

where the Cn may be complex, and B(x) is of course a real function.

If we substitute this Fourier series for B(x) into the definite

integral, we would be able to calculate the definite integral's

value, with the integration limits now set at -Lx and Lx . Although

we can now compute the value of the definite integral, we are

still not able to evaluate the infinite number of Fourier coefficients

to deduce B(x) exactly. What we propose to do, then, is to convert

the (2N+I) complex (in general) average values of the visibility

function into the first (2N+I) complex Fourier coefficients in the

expansion for B(x).

Let B(x) denote the approximation to B(x) determined by

this method. Then

Inserting 5(x) for B(x) in the definite integral gives

Soria- C. X C
M fL,..,, 7rx izrX1

We have (2N+l) equations for the (2N+l) values [V n] , nc[-NN]. Since

the definite integral is Just a number, we call it Tii, n.* We therefore

- V --- S
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can write

N

~P:- N

We have a system of (2N+l) linear equations in the (2N+l) unknowns

C p. Hence, we have the matrix problem

p7

and we can obtain the required Fourier coefficients:

The matrix elements are determined as follows:

LI~/i -izry..E-_u)

Lt TTRX,,f jt

The imaginary portion has an odd integrand integrated over

symmetric limits and therefore vanishes. Using a trigonometric

identity givesL

where

oL7T, + 2 T
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The integral cannot be given in closed form; the series result is

The matrix elements I are real numbers, and we can therefore

p,n

separate the problem in complex parameters into real and imaginary

parts:

and

The series which results from the above integration must

be checked for convercence. (The alternating theorem definition

and theorems which we will cite here are taken from Marsden and

Weinstein, 1980. B the algebraic sum rule, we can treat the

composite series in [(an L ) 2r+l r+ ] as two separate
p,n x (pn x aIi series, and provided each converges separately, then the composite

series converges to the sum of the Individual series. Consider the

following limit:

-t ---
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Both of these limits are zero (see Hildebrand, 1976, for verifica-

tion of the second limit). The same result is obtained for the series

in (s L )2r l Since each of the separate series alternates in
p,n x

sign and the summation terms in both have the limit zero as r-,

then both of these series satisfy the definition of an alternating

series. We are therefore assured of convergence by a theorem which

states that all alternating series are convergent. Additionally,

another theorem insures that if we use only a partial sum to

represent the series (as we will have to for practical calculations),

then the error resulting from using the partial sum will be no

greater than the first omitted term.

We must now address the problem that this method, which

we will call the "matrix method", presupposed a knowledge of the

true source extent Lx in order to calculate the matrix elements Ip,n .
In the realistic case, Lx is one of the parameters which would be

determined from the interferometric observations. To compensate

for this difficulty, we propose that a zeroth order estimate for Lx

be used initially in the calculations. This estimate may be based

on a lower resolution observation capable of yielding a close

estimate for Lx while still being unable to resolve the source

" structure. Using the zeroth order estimate Lx(o), we determine the

<1
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Cp's and hence deduce B(°W(x). Now the definite integral theorem

states that fLA

We can define an approximate definite integral relation by

LA

form which we can deduce a better estimate for the true source

extent, Lx(l) Using Lx(1), we can determine B)(x) from the

matrix method. This process may be continued iteratively until we

satisfy the approximate definite integral relation to within some

error bound (assuming, of course, that the iterative scheme

converges).

During initial I-D trial cases using the matrix method,

it was found that cases in which irregular averaging intervals

were used, especially when the interval sizes differed by factors

not near unity, gave totally incorrect results. It is believed that

the cause of this phenomenon lies in the fact that a "frequency"

factor 2L was assumed in the Fourier expansion for B(x). Now,
x

zLl are the ndtural set of frequencies required to expand a

function B(x) which is band-limited in the inteval [-LxLx]. However,

we are required to sample or average V(u) at the Nyquist interval,
T _I
NI-M x , in order to produce this natural set of frequencies for

• j the expansion of the band-limited function B(x). This is just the

logic involved in the proof of the Sampling Theorem. By using a set
orof averaging intervals of different sizes, we are, in essence,
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"confusing" the frequency information from which we are attempting

to derive the fourier series coefficients, Cp.

To circumvent this difficulty, it is possible to

reformulate the problem into one using averaging intevals whose

sizes are fixed at the Nyquist interval. Thus, given a set of

data containing average values of V(u) over irregular intervals,

we can convert the data into an appropriate form for use in the

matrix method.

The proposed reformulation algorithm proceeds as follows.

First, we examine the truncation limits to see if an integral number

of Nyquist intervals, with epoch at the origin, will fit in between

these limits. If this does not occur, we symmetrically extend the

truncation limits so as to satisfy this requirement. In the

extension region, we assign a zero value for the average visibility.

(Assigning a zero value for the average vixibility in the extension

region is similar to other methods where zero values are implicitly

or explicitly assigned to portions of the u-v plane for which data

is not available; however, other techniques, such as assigning a

data value based on a Gaussian taper, may be more advantageous.

These possibilities have not been investigated here, but further

study should include considerations of alternative data extension

techniques.) We will say that the original data set index n runs

ne[-N,N], where it is understood that N accounts for the domain

extension, if it was necessary. We now "reaverage" the average values

of the visibility function to obtain Nyquist interval average values.
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Consider the kth Nyquist interval, with indexing scheme

in k similar to the indexing scheme in n for the data values. Let

there be Jk original data intervals lying wholly or partly in the

kth Nyquist interval. Denoting Vk as the average value in the kth

Nyquist interval whose midpoint is uk, we have

where nk is the lowest index number (in the possibly extended set

nc[-N,N])for an original averaging interval which is contained

wholly or partly in the kth Nyquist interval. Using the original

[I/n] data values in this equation, we compute the values for the

"reaveraged" data set Vk

Now, we can also write our expression for [VI/n in terms

of B(x) for the terms in the sum:

%. #

hoLet there be (2KI) Nyquist intervals so that kc[-K,K]. The Fourier

k!expansion for B(x) is2 K

Vand we can obtain (2ti) coefficients from the (2va) Nyquist

rint aver age values of V(u):

Now cnasowieou xreso or[' i em



147

zfL--zo-L,

Using this expression for B(x) in the integral gives

Vv a , i r -. 1:,C? _ r ( L"i

where, as done previously,-r -r,)

and

Now, since the sum over n here is independent of the sum over p, we

can write V4 , T.-

4 L
, = - I ¢ .

where we define

We have now completely reformulated the original problem into a form

. in which the frequency confusion problem for irregular averaging

intervals has been circumvented. We again have a linear system, but

now with (2K+I) equations in the (2K+1) unknown C

P,..
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For the generalization to two dimensions, we start with

the previous result 7'4
[~~ ~ SIr'CTw, x e-J2 rM 'jif C. YueTujC B 1)

We initially suppose that all averaging cells are fixed at the Nyquist

cell size. Let there be (2N+l) by (2M+l) cells inside the

truncation limits. The appropriate approximation to B(x,y) is now

Using this expression for B~x,y) in the previous integral gives

Each integral is recognized as being of the same form as the

previously considered 1-D integral. We therefore define

where

0( + 21T IA%) 0t7

4 .I 7, I y
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We can formulate a matrix equation by trating (n,m) and (p,q) as

the two indices [ ]:

The solution to this 2-D problem therefore proceeds in a manner

directly analogous to the 1-D case, Including Iterative refinements

for Lx and LY.

The reformulation algorithm also proceeds in direct

analogy to the l-D case. Let there be (2K+I).(2L+I) Nyquist cells

inside the truncation limits. The truncation limits may have had

to have been extended along the u and/or v axes, as previously

discussed for the u axis in the 1-0 case. We will say that the

original data set indices run as ng[-N,N], mc[-M,M], where it is

understood that N and M account for the domain extension, if it

was necessary. Index kc[-K,K] is the Nyquist cell reference index

along the u axis, and lc[-L,L] is the Nyquist cell reference index

along the v axis. Let Vkl denote the average value of V(u.v) in

the (k,!)th Nyquist cell. We "reaverage" the average value data

into Nyquist cells:

.' Ii

% % L I - MI 1 1 I . . . . . . . . . . . . . .. . . . .
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Here, nk and mI are the lowest values of n and m such that the

(nk,ml)th cell in the original (possibly extended) data set lies

wholly or partly in the (k,l)th Nyquist cell. Similarly, Jk and G,

are the highest values of n and m such that the (Jk,Gl)th cell in

the original (possibly extended) data set lies wholly or partly in

the (kl)th Nyquist cell. Then, using the analogous procedure as

we discussed for the I-D case, we have

Ca-K. La

where we define, x *-- : E),L .

We formulate a matrix problem here by grouping indices:

I 4t t (- ,L "",) Lif

where

(. el .,A

Solving this linear system for the C(pq) vector gives us B(x,y).

44 Note that a suitable index contraction scheme is:

•(k,, = (k-l) K +

(p,q) (p-l) P + q

.7*1PFM g ..
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CHAPTER 5

APPLICATION OF THE MATRIX ALGORITHM

In this chapter, we apply the matrix algorithm to several

one-dimensional test cases. Development of a suitable Fortran source

code for the implementation of the two-dimensional algorithmr has been

in progress, but as yet has not been completely debugged. An

advantage to the presentation of some one-dimensional test cases is

that the results may be graphically displayed without excessive

computer time necessary to generate a sufficient density of points

for plotting, as would be required for a decent plot of a 2-D

test case. Additionally, numerical evaluation of the convolution

integrals needed to study truncation effects can be performed

faster and to higher accuracy for one-dimensional examples than for

two-dimensional cases. After presenting the test cases, the

limitations of the algorithm will be pointed-out, and we conclude

with a brief discussion of a possible direct application to

averaging along curvilinear tracks in the u-v plane.

5.1 Application to Test Cases

The Fortran source code for the implementation of the I-D

matrix algorithm is presented as Program B of the Appendix. Evalua-

tion of i(x) and B(x) was performed in a manner similar to that used

for the 2-D model study (see Program A of the Appendix). The only

significant difference was that the numerical integration required

L _ . . . . . . . . .. . . -.. . .. .. .. . . .
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to compute Tr(x) used the average value of the two Integrand values

at each end of an integration mesh interval times the interval's

length instead of the integrand's value at the interval's mid-

point times the interval. Since the l-D program to determine

B(x) and B,(x) is considerably simpler than, but analogous to the

2-D case, the l-D program is not included in the Appendix.

Four simple brightness functions were used as test

functions, and each was studied for two averaging schemes applied

to their respective visibility functions. The averaging schemes,

designated A and B, were as follows:

Averaging Scheme A * *a 'Ii

Averaging Scheme B m '

Table 5.1 presents the parameters of interest for thetest

functions. Averaging scheme A uses intervals which are all smaller

than the Nyquist interval for test functions 2 and 4. Utilization

of the matrix algorithm is intended nrimarily for cases where the

effects of averaging are significant, i.e., T re the averaging

intervals are larger than the Nyquist interval; averaging scheme B

uses intervals which are larger than the Nyquist interval for all of

the 4 test functions.

Figures 5.1 through 5.8 provide comparative illustrations

. ..
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of B(x), B(x), B(x) and B6(x) for the eight test cases which were

examined. Results are illustrated only within the bounds of the

estimated source extent Lx which was assumed for each model source

in order to apply the matrix algorithm.

5.2 Observations and Discussion

For averaging scheme A, it is clearly seen from the

figures that B(x) surpasses B6(x) in estimating the true

brightness fuction B(x). For the case of two point sources, we also

see that the peaks in B(x) are closer to the true point source

locations in B(x) than are the corresponding peaks in SW;

thus it appears that B(x) givesa smaller peak shift than does B6(x).

We should note that the matrix algorithm does not yield a non-

negative estimate for B(x).

The estimated source extent Lx was chosen as 1.25 for all

four cases using averaging scheme A. This then sets the Nyquist

interval TNI=.4 , and a domain extension was not required to apply

the matrix algorithm since five N)quist intervals with an epoch

of averaging at the origin fit ins,& : .. .

that the chosen estimate for Lx is not the true source extent (or

even an effective source extent based on our previously specified

criterion) and it therefore appears that the matrix alqorith7 Is rot

very sensitive to the source extent estimation, provided that d--Iln

. extension is not required.
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An estimated source extent of 1. was chosen for use with

averaging scheme B. This value for Lx set the Nyquist interval

at .5, and a domain extension at .25 was then required at both

truncation limits in order to have the epoch of averaging at the

origin. For these four cases, the choice as to whether B6(x) or

B(x) gives the better estimate for B(x) is not as clear as the

previous four cases. Averaging scheme B used averaging intervals

which were larger than the effective Nyquist interval for all

four test functions. The peak shift in 6,(x) for the case of the

two point sources is quite severe, and B(x) yielded a smaller peak

shiftthan B^(x). However, B(x) has flattened-out in comparison

to B,(x) and in this way B(x) is less representative of the true

source than is B (x). Thus, we have a trade-off in this case,

with B(x) providing a better estimate to the locations of the point

sources but with B6(x) providing a better resemblance to the

symmetric nature of the true point sources. The most probable cause

of the flattening in B(x) is the fairly severe domain extension

and the assignment of a zero value for the average visibility

in the domain extension region, since the required extension here

was 25% of the estimated source extent.

For the test function B(x)=l-lxI and B(x)=sinc 2x, the

matrix algorithm clearly gave a better estimate for the true bright-F 4ness function than did B(x). For these two test functions, the

corresponding visibility functions have small or zero values in the

domain extension regions, and the assignment of a zero value for the
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averagoR visibility in the domain extension regions-was therefore

not a bad assumption. Note also the severe effect of aliasing in

BS(x) in Figures 5.6 and 5.7. B(x) does notshow this severe aliasing

effect.

For the Gaussian test function, we see that B(x) is

clearly worse in estimating B(x) than is B (x). B(x) has broadened-

out in comparison to B,(x). Again, the likely cause for the poor

estimate given by B(x) is the fact that the visibility function

has non-negligible values in the domain extension regions, and

the assignment of zero average visibility in the domain extension

regions is therefore a bad assumption for this case.

From the rather limited survey of test functions which

has thus far been conducted, we can make the following tentative

conclusions, which require further analysis to fully justify them.

First, it appears that the matrix algorithm reduces the size of

the peak shift interval, and therefore B(x) provides a better

estimate for the locations of the peaks in the true brightness

function than does B W. The matrix algorithm does not appear

to be very sensitive to the estimation of Lx if such an estimate

does not require a domain extension. However, the matrix algorithm

does appear to be sensitive to estimates for Lx which require domain

extension if the visibility function has non-negligible values in

the extension regions and a zero value for the average visibility is

assigned in the extension regions. A possible remedy for this
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problem might be to assign a value for the average visibility in the

extension region based on a Gaussian taper rather than the arbitrary

assignment of a zero value. Finally, we have seen that the matrix

algorithm does not always provide a non-negative estimate for the

value of the brightness function, and therefore i(x) as well as

BW(x) sometimes fail to yield physically meaningful (i.e., non-

negative) values for the brightness of a real source.

5.3 Limitation of the Matrix Algorithm

In this section, we will discuss problems with and

possible limitations of the matrix algorithm.

From the test functions which were examined, it can be

seen that reasonable estimates for Lx appear to be sufficient for

the calculation of the matrix elements. The estimate for Lx

determines the effective Nyquist interval and thereby also determines

the amount of domain extension required to reformulate the data

into Nyquist intervals with an epoch of averaging at the origin.

The present algorithm was designed specifically for an averaging

epoch at the origin; for the case where two averaging intervals meet

at the origin, singularities were found to occur and the algorithm

* breaks down. Furthermore, as indicated by Figure 5.8, the domain

extension may be sufficiently radical so as to cause the matrix

algorithm to yield a poorer estimate for B(x) than does the standard

Fourier inversion method. Using an average value based on a Gaussian

i

- v -" --l . . ." ' - l r .. ' . . .. '~ . .. . .h .. . . . l-mIl . . . . .. . . .. . . . .
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taper in the domain extension regions may be of some benefit here,

and in any extent should give a better estimate for B(x) than does

the arbitrary assignment of a zero average value in the domain

extension regions, which was the technique used in the present

study.

Another problem concerns the use of the matrix algorithm

for cases where the number of Nyquist intervals in the reformulated

problem exceeds about seven intervals. It was found that, in such

cases, some of the matrix elements become very large and the order

of magnitude differences between some elements was as high as 107.

For cases where the matrix elements have such a wide range of

values, the matrix inversion process often breaks down (at least

for the two different inversion methods which were tried in this

study). Additionally, accuracy problems were encountered,

especially for cases where the number of Nyquist intervals exceeded

about seven intervals. Each matrix element is calculated by an

Iterative process, and accuracy may be lost in the calculation of

individual elements aswell as in the matrix inversion process. These

inaccuracies generally result in poorly determined values for the

Fourier series coefficients for B(x). For example, If V(u) is a

real function, then we expect the Fourier series coefficients fort(x) to be real and symmetric (i.e., Cp=C p); however, the symmetry

between corresponding coefficients is often lost due to the accuracy

problems, and B(x) undesirably becomes a complex function. Modifying

the Fortran program to operate in double-precision and perhaps using
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better matrix inversion techniques may help alleviate the accuracy

problems.

The 2-D matrix algorithm will undoubtably be even more

sensitive to accuracy problemsthan the 1-D case, expecially for

those problems related to the matrix inversion. If there are N2

Nyquist cells in the reformulated problem (N intervals along both

the u and v axes), then the matrix which must be inverted will

have N4 elements. Accurate inversion of a large matrix then becomes

a further problem to be considered.

For successful application of the matrix algorithm to

"real-world" data, the above cited problems would have to be adequately

alleviated. At this time it is uncertain whether or not the

algorithm, in its present form, will be capable of application to a

general 2-D case because of its present numerical problems. Thus,

although the results illustrated in Figures 5.1 through 5.8 are

encouraging, one must keep in mind that application of the algorithm

to more complicated cases and to 2-D functions may become intractable.

The results presented here should be taken as encouraging evidence

for the feasibility of an inversion technique for an averaged

visibility function which yields a better estimate to the true source

brightness function than does the standard Fourier inversion

method.

J . . . ...
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5.4 The Problem of Curvilinear Tracks

Direct application of the matrix algorithm to averaging

along a curvilinear track may be possible. Time has not permitted

a detailed analysis or model study for this technique, and we

therefore confine ourselves to a brief speculative discussion

(admittedly lacking details) of a possible approach to this problem.

If such an algorithm could be developed, it would offer the advantage

of dealing directly with the experimental data obtained along

tracks in the u-v plane without the preliminary requirement of

"gridding" the data into rectangular cells.

We have seen that the response of the interferometer is

a sequence of average values of the visibility function along a

curvilinear track in the u-v plane which is determined by the

relative motion of the baseline vector with respect to the source

vector. For the case of an interferometer with two elements on the

earth's surface the track is elliptical, whereas for a system

I I incorporating elements on satellites the curvilinear track is not

SI a simple closed curve, although the "open-ended" trajectory in the

u-v plane can be calculated as a function of time. For simplicity,

we will consider the case of an elliptical track; the generalization

to an arbitrary track replaces the elliptical curve by the appropriate

relation v=v(u).

Let 4 denote a curvilinear track in the u-v plane, which

for simplicity we choose to be an ellipse:
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2L

The differential line element for this track is

and the arclength sj over the jth averaging segment is

Denote the average value of V(u,v) along the jth averaging segment

4 ' by [V]sj, so that

13 J 1s4 (LAr to e~lZ~(L4-
i .....

where we have assumed a region-limited brightness function and

replaced V(u,v) by the Fourier transform of its conjugate function.

As above, we assume that B(x,y) has an exact Fourier expansion given

by

and that an approximation to B(xy) Is given by

B..x. el
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Substituting B(x,y) for B(x,y) in the expression for [V]s. gives
:_ ~~L -L A ..L, i.lp_- it

e s,,2-irLx & f- u.) slwi2rL&~ r

The line integral can be performed by expressing v in terms of u

along the arc ej and expressing ds in terms of du; we get

p =s d "V )A .i N. " Ot-,

Contracting the indices p,q to a single index [(p,q)=(p-IIP+qj

then let us formulate a matrix equation:

I I
where the matrix elements are given by

+ e e- L
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The integrals may be performed numerically. As discussed in the

previous cases, we assume that a-priori estimates for Land L arety

available, and that an iterative refinement of the source extent

may be possible if such a scheme converges.

A few comments are in order. We have attempted to

outline a one-dimensional treatment for a 2-D Fourier transform

because actual data is available along 1-D curvilinear tracks. The

variable u was chosen arbitrarily here as the l-D independent

variable; actually, the variable chosen to be independent should

probably have the smaller of the two Nyquist interval lengths

(i.e., choose u if T uNI<T vNI)* It will probably be necessary to

reformulate the problem in some way as discussed above for the

1-0 and 2-d cases with rectilinear averaging. Since only one variable

is left independent, it may be necessary to use TNI (the smaller of

the two Nyquist interval lengths) instead of 2Uhv and K.7 in the

expression for 
a(xy), i e. 

r

N 'A) =EE

Since the smaller of the two Nyquist intervals is used, aliasing effects

should not occur along the x or y direction. The averaging scheme

could then be reformulated in terms of the smaller Nyquist interval.

(i-- ---, choeui uN<vN ) It-~ wilpoal -encsayt
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To check the feasibility and develop the details of a

curvilinear track approach will require considerable further analysis

and model studies.

.Il

Ii ,

1 . .Iii ,
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CHAPTER 6

SUMMARY AND CONCLUSIONS

We have reviewed the origins of the basic Fourier

transform relation between the brightness distribution function and

the visibility functions. For VLBI systems in which some or all of

the array elements are located on satellites, the interferometric

response is a set of average values of the visibility function

obtained along a curvilinear trajectory in the u-v plane. For a

pair of interferometer elements on the earth, the trajectory through

the u-v plane is elliptical; however, if one or both elements of

the pair are on satellites, the trajectory is in general an open-

ended curve. An advantage to the use of elements on satellites

is that the curvilinear track in the u-v plane does not close back

upon itself after completion of an orbit (due to the non-commensurate

orbital periods for the two elements), and the track's coverage of

the u-v plane therefore increases with time. In this way,

observational data may be obtained over a large portion of the u-v

plane inside the truncation limits, which are determined by the

maximum baseline projection normal to the direction to the source.

Using interferometer elements on satellites provides the

opportunity for longer baselines and hence higher resolution of

source structure than is possible with elements on the earth. How-

ever, due to a number of factors which we have discussed, averaging

of the visibility function along the track in the u-v plane becomes

*1



174

a significant problem for systems which incorporate elements on

satellites, and the brightness function which is derived from the

observational data may be seriously distorted due to the influence

of averaging effects.

The major goal of this thesis has been to elucidate and

understand the effects on the brightness function due to truncating

and averaging the visibility function. We first gained a qualitative

appreciation for the nature of these effects by studying a model

case. We then quantitatively analyzed these effects. Periodicity

considerations were discussed, and we concluded that aliasing

effect should not be severe unless the data are gridded onto a

lattice with constant (or nearly constant) cell sizes which were

larger than the Nyquist cell size. We then investigated the

separate effects of averaging and truncation, as well as their

combined effect.

The effect of symmetrically truncating the visibility

function is to smooth the brightness function and to introduce

"ringing", and this effect is concisely expressed by the convolution

of the true brightness function with sinc factors whose widths are

determined by the truncation limits. The effect of averaging the

visibility function with constant averaging intervals was concisely

expressed by multiplying the true brightness function by a sinc

factor whose width is determined by the size of the averaging

intervals, and periodically extending this function with a period

i i
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given by the inverse of the averaging interval size. Averaging and

truncating the visibility function produces a brightness function

which bears a combination of the individual influences cited above.

We then examined these results to check for consistency in limiting

cases, and also for the case of a linear visibility function for

which averaging and sampling became identical.

It was found that averaging and truncating the visibility

function produced shifts in the location of peaks in the brightness

distribution function. This effect was analyzed and we produced a

result capable of predicting the peak shift to first order. This

result can be applied to actual experimental data; however, future

work in this regard should consider expansions to higher order

in peak shift and then use the computer to solve the resulting

polynomial for the peak shift.

Since the basic theory of truncation and averaging effects

was developed in one-dimension for fixed averaging interval size,

we then generalized our results to include irregular averaging

interval sizes, and we generalized to two-dimensions.

b

The ancillary goal of this thesis was to try to apply

our knowledge and understanding of truncation and averaging effects

to develop an algorithm which, by accounting for the effects of

truncation and averaging, might possibly produce a better estimate

for the true source brightness function than does the standard

Fourier Inversion method. We developed an algorithm in l-D, and
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subsequently generalized it to 2-D. We have called this method the

matrix-algorithm because our particular application of the theorem

relating an average value of the visibility function to the bright-

ness function resulted in a matrix equation which, when solved,

yielded a set of Fourier series coefficients for a function which

approximated the true brightness function. The matrix algorithm

was applied to a few test cases, and the results were compared

with those of the standard Fourier inversion method. Unfortunately,

the matrix algorithm did not produce the best estimate for the true

brightness function on a consistent basis. It appeared that the

domain extension, which is sometimes necessary in order to be able

to use the matrix algorithm, was the cause of the poor results

obtained in some cases. In those cases, the visibility function

had non-negligible values in the domain extension region, and

our crude assumption which assigned a zero value for the average

visibility in the extension region apparently led to the poor

estimate for the brightness function. Future investigations

should try alternative techniques for assigning a value in the

extension region; for example, a value based on a Gaussian taper

may be useful.

The matrix algorithm was found to have some numerical

difficulties when attempting to apply It to cases where the number

of Nyquist intervals in the reformulated problem exceeded about

seven intervals. A refined computer program may correct this diffi-

ciency, but if it cannot be corrected then the matrix algorithm will

-|1 
M Y X
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not be feasible for "real-world" applications, and another approach

should be considered.

The possibility of applying the matrix algorithm

directly to averaging along a curvilinear track was briefly considered.

A basic approach was sketched-out, but a definitive statemert as to

the feasibility and details of such a technique will require

considerably more study than has been possible here. If such a

technique could be developed, based either on the matrix algorithm

or some other algorithm which accounts for truncation and averaging

effects, it may possibly provide a much better estimate for the

brightness function than does the method of gridding the data and

applying the standard Fourier inversion method.

,I
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APPENDIX A

SYMBOL GLOSSARY

The following alphabetized list provides a summary of the
major symbols used throughout this thesis. Symbols which are
introduced in the text and used only for a short topic are not
included here.

*Baseline vector for a two-element interferometer.

B(x,y) Source brightness function.

B(x.y) Brightness Function which is the Fourier transform
of a truncated visibility function.

B6 (x,y) Brightness function which is the standard Fourier
transform of a truncated and averaged visibility
function.

B(x,y) Brightness function obtained by matrix algorithn
from truncated and averaged visibility function.

bu,b Extent of the visibility function inside the
truncation limits in the u and v directions,
respectively.

Cu, Cv Midpoint coordinates for the non-truncated portion

of the visibility function.

8(x,y) Two dimensional Dirac delta function, (x,y)= (x) (y).

AxAy Peak shift values along the x and y directions,
respectively; i.e., A indicates the distance
along the x axis from a peak in the true source
briqhtness function B(x,v) at x. to the corresoond-
ing peak in B(x,y) at (xo+,x).

Fourier transform operator.

Inverse Fourier transform operator

Ip,n  Matrix used in the matrix algorithm whose elementsp.n are definite integrals over the source region.

"1 i, as subscript: Imaginary part.
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LILy Distance from the origin along the x and y axes,'xPY respectively, to the region boundary of a region-

limited brightness function. If B(x,y) is not
truly a region-limited function, then an effective
region boundary may be defined; here, we use the
criterion that B(x,y)$.OOl for all x,y outside
the effective region boundary.

NI,as subscript: Nyquist interval, i.e., TuNI means that the
averaging interval along the u axis is equal
to the Nyquist interval.

r, as subscript: Real part.

^so  Unit vector in direction of a point source or
approximately in the direction of the centoid of
an extended source.

s Unit vector in the direction in which the inter-
ferometer is pointed.

sinc x slnc x = sin rx after Bracewell (1978)r X

to Integration time period.

TunTv,m; Averaging interval size; subscripts u and v designate
Tu1;Tv~m respective axis along which interval lies; subscripts
TuTv;T n and m index a particular interval along the

respective axis; no n or m index indicates that the
averaging intervals all have the same length along
the relevant axis; no subscripts at all indicates
constant averaging interval for one dimension only.

u,v Orthogonal components of the interferometric
resolution.

Svm Midpoint coordinates for the in,m)th averaging celln) M(or the (n,m)th averaginq arc for an elliptical
track in the u-v plane).

Uminlvmin Lower truncation limits along u and v axes,
respectively.

V(u,v) Visibility function; exact Fourier transform of
B(x,y).

V(uv) Truncated visibility function.

n,m] The average value of the visibility function in the
S(n,m)th cell.
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Vm(u,v) The average value of V(u,v) in the (n,m)th cell

expressed as a function of u and v by using a

delta function at the cell midpoint (standard
representation).

y(u,v) The function which represents the truncated and
Overaged visibility function; Fourier transform ofB6(x,y); ?(u,v)-- Em Vn,m ( u ' v ) "

nm

w Width parameter for the model source.

x,y Angular position coordinates for a celestial object;
viewed as rectangular coordinate system on the plane
of the sky; angular-rectangular conversion possible
if distance to source is known.

xoY o  Position coordinates for a peak in B(x,y).

* Convolution product, if used as a superscript,
denotes complex conjugation.

Indicates a Fourier transform pair: V(u)Z B(x).

III Sampling function: III(u)=T F 8(u-nT), after
Bracewell (1978). n=-o

lTu,v) 2-D Box function, 7r(u,v)-1r(u) ,(v), where
J ul<

1(u) 1ul=f 1 -
'after Bracewell,

(17 )
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APPENDIX B

Procram A
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DIH4StON TUSr(3:)
, VRE-AL(U3=12o/W)*(' S(2.*PI*U))*EXP( ((-l.*P/W)*U**2Z *

V 1MAG( U )=!U

W=10.

P 1=3. 1416
POWCK= ". ** TO
READ lXLtUMINtUELIAU

I FURMUr(3E16.8))
PRINT 8,XL,UMIN,CELTAU

a FORMAT(4H LX=,EI6.&3,5X,5P!UMKN=,E16.8,5X,?IliELTAU=,E 16.8)
READ 2. (T0ATAUJ)vJ=,ri)

2 FORPATIE16*8)
PRINT 9(JTDATAIJ), J=L,N)

9 FORMAM(H T(,!2,2HivE16.8)
PR14T 6

6 FORMAT(I////////)
PRINT 85

85 FOR'IAT(ZUjX914IHAVERAGE VALUES,/)
c THE IZ MATRIX' IS THE LITEGRATION of MATRIX'

LJONE-UMIN
UT WD=U ONE +0ELT AU
00 3 J=1,N
T(J)=TDATA(J) c -L'Lirm
TUSET J) =T( J)A
SUM R=O Or
SUMV[=O
MN=r(J)/DELTAU4.l INL\ r~ LC,

£0 4 !'lC!U=1,'--4

11M Uf.,4L= *>U.

L~l I[Fl UTWO) 1113 ,111491113
1114 UTW=. 1(~
1113 SUMVR=SUMVR+(((VREALIUTWJ)+VREAL(UDNE))/2.*)*DELTAU)

SUMVI=SUM4V!+(((VIMAG(UTWO)4VIMAG(UONE))/2.)*DELTAU)
UOAE=UONE+DEL TAU
UTWU =U TWO+ DE ITA U

4 CO~t 1I4UE
VR1 (J)=SUMVR/T (J)
VIII-.SUMVYI/T( .3

18) FOAMAT(4H VRII2,i3-11=,Li6.8,15X,3HVI(,12,2H)-,E16.8)

rNIsLo/(Z**XLI Cv/a...A-r6 Nlcli$7iKv

NCNKsRCHK



FL EVE L 21 P'A IN 198 DATE - BC325 13/27/46

IF( CHK.LE, o Cc GU rTC 651-
R.V4GF EXrENSIIT > p!.4 . A'

NMAX-41TroT
PRINT 8539NITUT

353 F9R'IAF(71 NIJYa=,14)
D=.5*((NITOT*Tr31)4(2.*UMIiN)
UPINEW=UMIN-D
PRI'41 8919UMIN4EW

3921 FflRmAr(8H um1NU-=,Lr16.8,/////)
UMI N=UMI1NEW

c DAT4 SET MODIFICATION BY EXTENSION
NPLUSI=M11
00 690 11=2,NPLUSl

VR( Ii)=VR1( IlMIrU4)

TUSET( I1)xT( Il)
990 CCITINUE

VRI 1)='

* NPLUS2=NPLUS1+1
VR( 4PLUS2) =e
VI(4PLUS2 )=C
T(11=0
TUSET(l)=T(l)
T(NPLUS2)=D
TUSET( NPLUS2 )=C-
GO ro 85-3-L/~$~~c-X

851 D=O --- -u___

NITDr=((U-2.)*UMIV)/TNIJ+.995
* NMAX=ITOT

PR4 853,NIITOT
NPLJS2=N
DO 852 IL=1,N

* VR( IL )VR U IL)
V I( IL )=V IIU IL

9 2 Ci'JT L'IAF

TSUMVf) '
00 6J0 NTNI=,Nlror i-v m Al.Vz-- (,

MRIT 951,TBITiTSUMtA)-M L
751 F03MAT(6H T8IT=,El6*8v8H TSUMfttE16*8) AN AJ> ~ ~ *

UU-TN4 y EP- NV&i-T W 1
602 IFrI'4CT).GE.UU)Gs'' O64

A(NC )=T('4CT 3/?)!
UU-UU-T(NCT)
PRINT 954tUUqA(NCTlvT(NCT),NCT

154 FUArlA4H UU29PI6.899H A(NCr)-9El6o8o8H T(NCTJ),E16*8v4HNCT-tI4)
IF1NCT.GEoNPLUS2iGO0 TO 635
4 C r = 1 . I
GJ FU 602

601 A ( C T) aU/fT NI
MRIT 954tUUtAINCT19T(NCJl9NCT

5~05 3SrOPz4CT



LEVEL 21 MAIN 199 CATE 8 0325 13/27/46

VsR(4T4I 3=0

00 670 41N2[NIT=I=)iT

'670 
CONTINUE* PR14T 952,NSTPNSTUP

-52 FOIMAT(18H ENTERIN~G 7ZI LuOjP96H NST-91498H NSTOP=,1I4)
00 7:.11 NJ=NST4ST'UP t;L,--I'-
V 99 1 4T I I )=V R (NJ ),A (N J .V3R (N TN I -~ ~ A;~A~v;C
V~uRI3tl=VI(e4J),;(NJ+VRI(NTNl)

'4N I-4 ITOT)/2
4NCHK=NST-NJ

73' U41=UIN4TSUM+(TUSET(NJl/2.)
P1 J=PI*TUSET(NJ)

* 21 Al=(2.*PI )*( (NN/(2.*XL))-UNI3)
ALFA=PIT+Al
312JA=P IT-41
AL=XL*ALFA
BL=XL*BE TA
S 1 -JA= 1
S1= AL 4 (L ~_-

A N00D3 d-

POW 12=0 W 001

5 IF(POW12.LEoPOWCK)GO TO 5C ~L5
PO4A1=1.
PD WBL= 1.
DO 799 INCNT=19NUDD
PCWARL=POWAL* (AL/I NCNT)
POWBL=POWBL*( BL/IN1CNTJ

799 CONTINUE
POWER=tPOWAL+P0W8L) /tlUDD
GO TO 25

50 POWER=(((AL)**NODOI+((BL)**NOCD))/NODO
PjW 12=POWER
SIGtICK=l.
IFIIODD.LT.54)GO TO 22

24 POWRLN=ALOG(Pnw~R)

XL4FAC=LNFACT
PUWLN=POWRL4-(AL3%'(XLA~FAC))I 65.1 CONTINUE
PJWEA=E XP (POWRLN) * SI GNC KGOTO2

22 00 65 IFACT=29NOD
POWER=POWFR/IFACT

650 C04rINlUE



LEVEL 21 MA 11 200 DATE 80325 L3/27/46

IF(AI4CR.LE..0311)GO0 TO 7
40OD='40DD+2

Tu J 5

L1(NT4IN2)=Z(NTNI ,N2)
1F(V42.EQ.NITJT)GJ TO 60
Na=N2+1
NN=Nt i.
Go TO 21

60 TSU4=TSUM+TUSETIJ)
ro) CONT1~4LE
702 PR~INT 80v(NTNIJN.2vL(NT-%IiJN2)v JN2=1,NITOTJ
80 FOR'4AT(3H II ,I2v1H,vI2,d2t4)ll,El6.8)

RRCH-K=TINSTOP )-UU
IF(RRCHK.GT..C!1360G TG 680
NCT=4CT+lI
>S4STOP+l
GO TO 603

681 TSUP,=TSUM-TUSET(-JJ)
I rlST0Pl=T(NST0P )-UU
NST=11S TOP

- NOTE THAT NCT REMAINS TH-E SAME HERE SI.JCE THE CURRENT
C T OLD INTERVAL STAADDLE 3 THE NEW TNI INTERVAL
600 C -34 rIN UE

PaI4T 6
PR14T 610v(JVaR(J)vJvVBI(Jlr J=1,NMAX)

613 FORMAT(5 VBR(, 12,2HJ=,E16.8, 10K,4HVBI(,l2,2H)=,216.8)
4 PRINT 6

c LINEAR SYSTEM SULJTION FOLLOWS
777 PRINT 800
800 FORMAT(24H LPI1EAR SOLUTION FOLLOWS*//)

10 CALL MINV(ZNMAXvD.LM) i

LLL=. t~ j dlgJ
CALL GMlPRDIZvVBR,0R,NMAX,NMAAX9LLL) ''~ ' -- ~
PRINT 90r(JCRJb J~.1,.MAX) pp ~ SC4AL

90 FnRMAT(4H CR(,12,)H[=jEl6.5) -,S -j a i)- SL

CALL GMPRP(ZvVB1,Ci,1AArNMAXt1LL) ;?t,'~~
PRINT 91,(JCI(J), J=0MX x > *t ~ ~

91 FJRM4AT(4H CI(,I2,..H3=vE6.81 , T
PrTNJT 6

F A T !J' ( 3H Z 2 . 1-- Z1 5 .>X ,. 1,.:

CALL GMjPRD(ZZ1,LLL,'IMAX,NMAX9,NmAx)
PRINT 6
PRIMT 611,1 (JIJ2,Z(J1,J2), JI=1,NMAX), J2z1,iiMA~l
PRINT 6
PRINT &
NX=81 ______

PR14T 501#NX VArf
501 FORMAr(23H NLJMdER OF X I\ITERVALS=,14)

DO 502 NXXINPX
BR(4xxl=o
BIINX )zO

5i06 AinN-4...(1*INX)-IfI
00 503 NNX=19NPAX
~4NTI I 1-NMAX)/214INNX-1)



LEVEL 21 MAIN 201 DATE 80325 13/27/46

XFAC1=COS( (PI*NINT*X)/XL)
XFAC2=S IN( (P 1*'! 1 jT,;X )IAL)
ci.(N4X) =CR(AJk) XFACl -1 C(NN)*XFAC2 )4BRtNXX)
(1,%X)=(CI(NX)#XFACII+C(NNX)*XFAC2),BI(NXXI

t3?MA=SQRT(BRNXX)**2)G(8[(NXX)**2))
PR14JT 504,XER(NXX)vX,0I(NXXlvXvBMAG

504 FOi4MAr(4H BR(,Fb.3#211)=,C16.8itIOX93HBI(9F6.392HIu-,EI6.891OX9
C~ 5HiBMAG~vF6.3,?H)=qEi6*8)

IF(4XX.GE*NX)GO TU 5115
NX=EX+l
GO TO 506

505 PR14T 6
'F STOP

t:ND
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