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- ABSTRACT

The resolution of a two-element interferometer increases
in proportion to the element separation distance, so that
incorporation of interferometer elements on satellites will enable
very long baseline interferometry (VLBI) arrays to achieve greater
resolution of celestial sources than has been possible using
elements on the earth. The interferometric response is the visibility
function, which is the Fourier transform of the source's brightness
distribution function. Since a satellite typically moves faster
in its orbit than does a point on the rotating earth, and since the
integration time period for cross-correlating the received signals
will generally be larger for a system which includes satellites,
the interferometric response will actually be an averaged visibility
function as opposed to a point-wise sampled visibility function.
Since the baseline magnitude is finite, the visibility function is
not known throughout its domain and is therefore effectively
truncated. Truncating and averaging the visibility function adversely
affects the brightness function resolution, and understanding these
effects is therefore necessary to more fully realize the source
resolution capabilities of an interferometer incorporating elements
on satellites.

This thesis investigates the effects on brightness function
resolution when the visibility function is truncated and averaged.
The causes of truncation and averaging are presented, and the basic
Fourier transform relation between the visibility and brightness
functions is reviewed. Basic properties of the two-dimensional
Fourier transform are reviewed, and the standard Fourier inversion
method is presented. This method is based on a generalization of
the Sampling Theorem and does not account for truncation or
averaging effects. The effects of truncation and averaging are
illustrated for a double Gaussian model source using the standard
Fourier inversion method. Theorems concerning the Fourier transforma-
tion of a truncated and/or averaged function are then developed,




and an algorithm based on this study is presented. This algorithm
attempts to enhance resolution by using a derived relationship
between an average value of the visibility function and the true
source brightness function. The algorithm is applied to several
one-dimensional test cases to illustrate its potential.

Thesis Supervisor: IRWIN I. SHAPIRO

Title: Professor of Physics
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Purpose of This Study

1.1.1: The Role of VYLBI

Interferometric techniques in the radio region of the
electromagnetic spectrum have been developed to the present state at
which this technology provides the most accurate means of determin-
ing positional and structural information on extragalactic objects
that are emitters in this part of the spectrum. An interferometer
is an instrument consisting of two or more receiving terminals (or
“elements") which compares signals received at each element from a
common source in order to obtain information on the nature and
position of the source. As will be shown later, the resolution of
an interferometer exceeds that possible with a single element, and the
maximum resolution is directly proportional to the greatest separation
distance between elements. Present technology has enabled systems
with element separations on the order of intercontinental distances
to be used, resulting in angular resolutions on the order of milli-
arcseconds. These systems, in which the widely-separated elements are
not in communication with one another during the actual conduct of an
experiment, are known as Very Long Baseline Interferometry (VLBI)

systems.

The importance and utility of VLBI as a research tool is

PSR A N




immediately realized by a consideration of the diverse applications
which it serves. Highly accurate source position measurements and
capabilities for high resolution of source structure are of great
value in astrometry and astrophysics. Enhanced knowledge of the
kinematics of celestial bodies and of diffuse objects, such as HI

and HII regions and molecular clouds, can be used for refined

testing of dynamical theories and to achieve greater understanding of
astrophysical processes and source parameters (mass, angular momentum,
etc.). Examples of some applications of VLBl along these 1ines.
include resolution of close but discrete water-vapor masers in our

own galaxy, accurate positional determinations for ALSEP transmitters
on the moon yielding information on lunar kinematics, and tests of
general relativity by measuring changes in relative quasar positions
by deflection of radio waves in the sun's gravitational field [Shapiro
(1976)]. Additionally, VLBI may become an important tool in accurate
spacecraft tracking [Addleman (1978), Treinish (1978)].

VLBI can also be applied to geodesy and to studies of
dynamics of the earth's crust [Counselman (1976), Whitney (1974)].
Shapiro and Knignt (1970) enumerate and discuss the geophysical
applications of VLBI and indicate the attainable levels of accuracy

for determinations of various geophysical parameters.

If a point source is observed with a two-element interferom-

eter, accurate determination of the source position is predicated on

[T ST S Sy
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accurate knowledge of the baseline vector, which is the vector between
the two elements. We can therefore see that accurate knowledge of a
point source's location can in turn be used to provide information

on the baseline vector. In actual practice, by using one or more
different baselines and observing a number of different sources, both
source positions and baseline lengths may be treated as unknowns

and solved for by using the interferometry data. (See Whitney 74 for
more details on this method.) In this way, distances between points
on the earth's surface will be ascertained to the centimeter level

of accuracy, and hence provide geodetic information and insight into

associated dynamical processes.

We have illustrated the importance of VLBI as a research
instrument, and seen the order-of-magnitude resolution capable with
present baseline lengths. Given that interferometer resolution
improves with increasing baseline length, a natural improvement on
existing systems would be to incorporate elements on satellites
thereby greatly increasing baseline length and enhancing resolving
power. However, there are some disadvantages incurred when a
satellite is used as an interferometer element. In this thesis, we

shall be concerned with one aspect of these inherent problems.

1.1.2 Purpose and Scope

The purpose and scope of this thesis will be an examination

of the adverse effects of truncating and averaging a function on the




i
V
i
{
i
i
'

~

Lm wwe - ey  v@P- W

R,

i e X i et —n > A o BT

R 4

rxl

1

resolution of its conjugate Fourier transform. We will examine these
effects, and then develop theorems which relate the truncated, and/or

averaged function to its exact Fourier transform. We will then

develop an algorithm based on these theorems which attempts to achieve

at least partial compensation for the effects of truncating and
averaging V(u,v) and possibly giving a better approximation to the
true brightness distribution function than does the standard

Fourier inversion method.

1.1.3 Adverse Effects on Resolution

Antenna gain is broportibnal to the physical aperture of
an antenna. [Kraus(1966)] Since the radio signals from celestial
sources are generally quite weak, large physical apertures are
normally employed in the radio telescope antennas which serve as
elements in an interferometer array. To yleld intelligible informa-
tion from a celestial signal, the signal must not be less than the
fluctuations of the noise which is present. The noise results not
only from instrumental sources which may be reduced, but also from
fundamental causes such as background noise in the sky and quantum-
statistical limitations which cannot be circumvented. A large
physical aperture providing high antenna gain is therefore an
important factor in achieving an acceptable ratio of signal to rms
noise (signal to noise ratio, or SNR) for the system. The SNR is
enhanced when the received signals are integrated during the

process of cross correlation. Increasing the integration time period
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by a factor of N results in enhancing the SNR by the factor .
[(Kraus (1966)].

We have seen that antenna size and integration time are two
primary parameters affecting the SNR. For an earth-based interferometer,
the physicail aperture may usually be constructed adequately large to
keep the required integration time period relatively small while
maintaining adequate SNR's. The integration time period here is
considered small relative to the time required for the projection
of the baseline vector B normal to the source vector §° (a unit
vector towards the source, which will here be considered infinitely
distant) to change by an appreciable amount. (We shall presently
clarify the term "appreciable”.) The maximum interferometer
resolution occurs when the source vector is perpendicular to the
baseline vector and is directly proportional to baseline length |Bl;
however, the resolution for a tvpical case in which the source
vector is not perpendicular to the baseline vector depends upon the

projection of B normal to §_. What we have heretofore ignored is

0"

B and §0 are in relative motion due to the earth's

the fact that b
rotation {other motions such as the earth's orbital motion, the

motion of the solar system barycenter, etc., can be ignored for the
infinitely distant source which we are idealistically considering here).
Therefore, the resolution of the interferometer is really a time-

dependent function.

The brightness distribution function, B(x,y), characterizing

-.-._..Q./ ———t S L \ R N -
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a source can be conceived -as the function which specifies the
radiation intensity distribution as a function of positional coordin-
ates x and y on the plane of the sky. (In general, B(x,y) is a
frequency dependent function; however, we will consider it to be
independent of frequency in this thesis.) Since B(x,y) is an
intensity, it is constant along a ray path in free space and hence

the brightness function measured at the earth is identical to the
brightness function at the surface of the source, and for this

reason the brightness function provides important information on the
physical parameters characterizing the source. As we will show later,
the interferometer response is a function V, known as the visibility
function, which is the fourier transform of the brightness distribu-
tion function. The visibility is a function of the interferometric
resolution, and we shall see that the arguments of V are in fact

two orthogonal resolution components, designated u and v. As mentioned
above, the interferometric resolution is time dependent; hence, u and
v are time dependent parameters. The domain of the visibility function
is the u-v plane, in which u and v serve as orthogonal coordinates.

As the baseline vector B moves relative to the source vector §O, we
know that the interferometric resoiution varies, and hence we must

be moving along a path in the u-v plane. We will see that these

paths are generally ellipses in the u-v plane. As P moves relative

to §o » the interferometer is measuring the visibility function
V[u(t), v(t)] (implicitly a function of time t) by recording values

of V along the track in the u-v plane which is given by the Yocus of

points [u(t), v(t)].
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We can now see why it was important to have integration
times relatively short compared to the time required for IExéol to
vary appreciably. In the 1imit of zero integration time, the
interferometer measures V(u,v) along the relevant track in the u-v
plane. However, when we integrate, the interferometer records the
average value of V(u,v) over that segment of the track which is
traversed during the integration time period to. Because B(x,y)
is the Fourier transform of V(u,v), it is immediately discernible that
the brightness distribution function is distorted when observations
with tO#O are made. 1If t0 is non-zero but small, then the segment
traversed in time to is small and we are almost measuring V(u,v),
since

ult,) wity) |
\/[M(%),U(%)J’A’ J‘E: du :\\r\IL“\;‘r)

uw),vte)

This case generally applies to earth-based VLBI systems, and averaging
effects have previously been ignored. Fomalont (1973) states the
criterion for short averaging intervals as being those cases in which
]Fx§ol changes by an amount less than the antenna radius during the
integration time period. However, a satellite in a typical orbit
about the earth moves roughly ten times faster than a point on the
surface of the earth, and therefore l3x§0| undergoes a greater change

in the time period than it would for an earth-based VLBI system.

Although there is no physical limitation on the aperture

e A e e ks i e
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size for a satellite element, practical limitations will require that
the antenna aperture sizes be considerably smaller (at least for
initial experiments) than earth-based elements. Consequently, we
realize that integration times will have to be correspondingly
increased to achieve an acceptable SNR, which has the adverse effect
of making the averaging considerations for V{u,v) discussed above a

more significant problem.

To get an order-of-magnitude "feel® for the impact of this
effect, let us suppose that, all other factors being equal, the
satellite's aperture is 1% of that of a typical earth-based antenna.
The interferometer's aperture 1s the geometric mean of the two
individual antenna apertures, or VA{(.OTA) = .1 A, where A is the area
of the antenna on the earth. The signal gain from the interferometer
therefore decreases by a factor of 10. The interferometer system:
sensitivity is (ideally) related to the integration time t, by
[Kraus (1966)]

sensitivity o(/f; .

If te is the integration time period for an earth-based VLBI system
and t,S the corresponding period for our satellite system, then to
increase the sensitivity by a factor of 10 to compensate for the
decreased antenna gain implies ts=100te. In practice, one would not
approach the sensitivity limit of the interferometer because the
corresponding integration time period could well be of the order of

an orbital period for the satellite. Thus, only relatively strong

. T e s vp———
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sources would be chosen for observation.

Another problem which we have not yet addressed concerns
itself with the fact that practical limitations prevent the measure-
ment of V(u,v) throughtout the entire u-v plane. This problem is
independent of the averaging problem and is present in ea;th-based
systems also. Now, from the basic uncertainty relation for conjugate
functions B(x) and V(u) in a one dimensional Fourier transform pair,
we know that as we decrease the domain of the function B(x), the
corresponding domain of the transform function V(u) necessarily increases.
The implication here is that as we probe into smaller regions of the
x-y plane, i.e., as we examine smaller sources (or eitended
sources in greater detail) by using our satellite VLBI system with
large |B!, then the associated visibility function V(u,v) “spreads-
out" in the u-v plane. Limitations on the extend of the u-v plane
examined during the VLBI experiment then present more acute problems,
because we are now truncating V(u,v)into a restricted domain which
is significantly less than its true domain of definition. To see
this more tangibly, we need only consider that a point source has a
Fourier transform of infinite extent, and hence any truncation of
V(u,v) due to practical limitations will distort the brightness
function deduced from the measured V(u,v). This is gguiva1ent'to

saying that infinite resolution is required to resolve a point source.

Since all celestial sources are of a finite, “region-

limited" extent in the plane of the sky, a generalization of the
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: consider. We will later see that this theorem allows us to merely

sampling (or Nyquist) theorem to two dimensions is beneficial to

sample V(u,v) at distinct points in a 2-D Tattice extending
. throughout the u-v plane, and nevertheless reproduce B(x,y) exactly.
The Sampling Theorem is the basis for the technique of aperture
‘ synthesis, whereby it is possible to synthetically produce information !
% equivalent to that obtainable from an aperture of very large
extent by using smaller physical antennas. Essentially, the concept
here is that if the small antennas are located at properly spaced
points on a 2-D lattice, then their correllated information is
.i equivalent to one hugh antenna whose physical aperture would be the
same as the area encompassed by the 2-D lattice of antennas. In fact,
it is sufficient to successively move a few antennas throughout thé
lattice and subsequently combine individual recorded results at a

later time to produce the aperture synthesis result (if the signal

from the source is not time dependent). Earth-rotation aperture

synthesis uses array elements at fixed points on the earth, so that

the earth's rotation causes the array elements to move in some fashion

with respect to the source. If scme of the properly spaced lattice ]

~ -
O WM e | e o e i .

T -

points are not occupied by an array element during the observation

period, an approximation to the brightness function can be obtained

from the data obtained along the tracks in the u-v plane generated by

e —ng v

the element pairs. Interferometer arrays having enough elements to

provide good coverage of the u-v plane can therefore be used to

obtain reasonable approximations to the brightness function. If an

.- e e o e cvpreeig o S \ L. .. ]
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array includes elements onm satellites, then the averaging problems
discussed above must be considered. However, the sampling theorem
alone cannot fully compensate for the effects of averaging and
truncation (which inrealistic experiments means not only restricting the
extent of the u-vplane examined, but also restrictingmeasurements of V(u,v)

to tracks in the u-v plane which do not for a simple 2-D lattice).

1.2 Thesis OQutline

In Chapter 2, a sample calculation for a track in the u-v
plane for a two-element, earth-satellite interferometer will be
presented. Basic VLBI concepts for a two element interferometer will
be reviewed. Basic Fourier transform theorems in 2-D will be
reviewed, and some examples of exact transforms given. Truncation
effects are discussed and summarized by a theorem. The representation
of an averaged function is considered, and the standard Fourier
transform for averaged functions is presented. We then examine the
sampling theorem and its relevance to the 2-D visibility-brightness
function pair. Aliasing effects and the effects of the epoch of
sampling intervals are considered. In Chapter 3, we apply the
standard transform method to a typical model of a truncated and
averaged visibility function. In Chapter 4, we derive theorems for
truncation and averaging effects and develop a matrix algorithm for
the implementation of the basic theorem for these effects. The
matrix algorithm is applied in Chapter 5 to several one-dimensional

test cases, and these results are compared with the results obtained

- o= et "
R - _....._._...,,/ —— S \' - . -
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from the standard Fourier dinversion method applied to the same data
sets of average values of the visibility function. Chapter 6
presents a summary and the conclusions of the study. A definite
conclusion as to whether the standard Fourier inversion method or
the matrix algorithm is the better technique to obtain the highest
resolution from a given set of data requires further analysis

than has been possible to perform here. Therefore, the conclusions
presented here concerning the comparison between the two techniques
should be considered preliminary conclusions, subject to more

extensive investigation.
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CHAPTER 2

BACKGROUND AND PRELIMINARY CONCEPTS

In this chapter, we will present a brief background
discussion on VLBI which includes a derivation for the baseline
vector of an earth-station satellite-station two element interferometer.
We then consider the two dimensional Fourier transform and prove
some fundamental theorems relevant to our work here. The standard
Fourier transform method fer an averaged function is presented. The
Sampling Theorem is derived for the two-dimensional case and its

implications are discussed.

2.1 Baseline Vector for the Earth-Satellite Two-Element Interferometer

The baseline vector for the earth-satellite interferometer
will be taken as the vector from the earth station to the satellite
station. We calculate the position vector as a function of time
for each station separately, and take their vector difference to

obtain the baseline vector.

We choose a rectangular frame of reference based on the
standard equatorial coordinate system. The origin of coordinates is
at the center of the earth with the z axis along the spin axis of
the earth, the x axis in the direction of the true vernal equinox of
date, and the y axis completing a right-handed triad. We will

consider this earth-centered system as being inertial over the time

periods of interest to us.
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Let the earth station have latitude o and longitude e
and have a radial distance from the center of the éarth of re.
Define the vector é as a unit vector along the line connecting the
center of the earth to the point where the Greenwich meridian
intersects the x-y plane. Let 9 be the angle between G and x at
the time t=0. From Figure 2.1, it is easy to see that the position

vector ﬁE(t) for the earth station at time t is given by

-—dvy

Re(t) = 1 frp cos g cos(ut+g +yg)

e >

+ ]rE cos ¢E| cos(wt+go+¢E)
+ K " sin ¢

where w 1is the angular velocity of the earth.

We consider the position vector for the satellite. Viewed
simplistically (i.e., neglecting effects of perturbing bodies,
non-sphericity of the earth, tidal effects, effects of general
relativity, etc.) the satellite travels about the earth in a plane
Keplerian orbit. Define a primed coordinate system with origin
at the center of the earth and with z' normal to the plane of the
orbit, x' along the iine from the center of the earth to perogee,
and y' completing a right-handed triad. (See Figure 2.2.) Let i
the direction cosines of the primed axes in the unprimed system 7
be  (ays s Ber oy s Yyo 2 (opn oo Byo ps vy 5, and
N »B0y ’Yz',z) for x', y', and z', respectively. Given an A
initial position and an initial velocity for the satellite at time t=0,

one may compute the position vector ﬁ‘s(t) for the satellite at any

time to. (This is a standard well-documented problem in astro-




FIGURE 2.1 -- Earth Station
Geometry

FIGURE 2.2 -- Satellite Orbit Plane




dynamics and we will not present the full general solution here.
The Fortran algerithm which was used to solve for ﬁ's(t) on the
computer was based on a similar algorithm written by T. Herring.)

The conversion of ﬁ's(t) to our unprimed system is given by

:Rbs(‘t = t (Rx' ’(x,'x +R"’ O(Y"* +Kt’ a(z"‘)

4 (R Pax *RoBurt R Ben) + (R ¥R Mo + R )

where 'ﬁ's(t) = [Rx., Ry., Rz.].

The baseline vector as a function of time is then given

by

B(t) = ﬁs(t) - KE(t)

2.2 Basic VLBI Concepts

A detailed descripticn and analysis of a VLBI system
would involve a far more extensive study than is possible here and,
in any event, there are extensive references in the literature
discussing the intricacies of VLBI. Ve, therefore, present a
simplified view of VLBI which will be sufficient as background and

motivation for the specific problem studied in this thesis.

R N, - - . - - ,._,_._,_‘.-/ —_—t ~ \ . . .
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The two element interferometer, which is the building block
for multi-element arrays, consists of two receiving antennas and
equipment to process and correlate their received signals. If a real-
time link such as a cahle is used to connect the two elements,
then real-time data analysis is possible and, more significantly,
if the electrical path lengths are properly set then the relative
phase information for the received signals is directly input to the
correlator. In VLBI, a real-time link between elements is usually
not possible due to the very large baseline distance. Therefore,
real-time data analysis is not carried.out, and instead the data
are recorded for later processing. To preserve the relative phase
information, which is essential for correlation, to an acceptable
level of accuracy commensurate with the desired level of accuracy
expected for the parameters of interest now requires highly accurate
timekeeping during the conduct of the independent observations. The
advent of hydrogen maser frequency standards provided the time-
keeping accuracy required to enable VLBI to exceed the accuracy
levels attainable by connected element interferometry [Whitney (1974)].
With accurate time-keeping at each e1ement,'the received signals
can be recorded on magnetic tape for later processing. In fact,
when the data are correlated, it is possible to ascertain the
error in original clock synchronization between the two elements
and thereby provide a technique for unprecedented accuracy (to
about .1 nanosecond) in clock synchronization over intercontinental

distances [Shapiro and Knight (1970)]. The actual reduction and

processing of data from a VLBI experiment is an extensive subject
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in itself and cannot be discussed here. There are several different
algorithmic approaches to the problem of data analysis, and ample
references may be found in the literature [see, for instance,

Whitney (1974), and Moran (1976)].

The basic geometry for a two-element interferometer is
illustrated in Figure 2.3. We assume an infinitely distant point
source so that plane waves are received by the interferometer
elements, which therefore point in the same direction at angle ¢
with respect to the baseline vector [ (i.e., we neglect parallax
effects which would have to be accounted for if the source were
sufficiently close to the interferometer to cause different antenna
orientations). The baseline vector b points from the reference
station to the remote station, where the reference station receives
any given wavefront earlier than the remote station by a time
factor known as the group delay ngés'go‘ The projection of the
baseline normal to the source is just [bx§,|, and will be seen to

be related to the interferometric resolution.

Our aim at this stage is to demonstrate that the response
of the interferometer is the visibility function, which is the
Fourier transform of the source brightness distribution function.

A detailed derivation requires the application of coherence
theory to the two element interferometer [see, for instance, Swenson
and Mathur (1968)]. However, a less sophisticated development

will suffice for our purposes here. We will base our discussion

on the treatments presented by Moran (1976), Fomalont (1973), and

-




incident y_ - ; N

wavefront \

gigﬁgn Reference

» Station

FIGURE 2.2 -- Basic Interferometer Geometry
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Whitney (1974). Partial coherence theory establishes that all
characteristics of a source's radiation power idstribution (i.e.,
angular distribution, frequency distribution, and polarization) are
related to spatial, temporal, and polarization cross correlations
of the received signals at the two interferometer elements. We
will primarily deal oniy with the spatial correlation aspects here,
which assumes monochromatic plane polarized radiation from our

infinitely distant point source.

Let the point source emit a sfnusoidal signal at frequency
Vo with intensity Bo' Denoting ey and e, as the received voltages
at the reference and remote stations, respectively, we have, using

complex phasor notation,
e ()=yB. ¢
27 Yo (2.~ %)
e.(t)=VB. e

(’,.?,WV. t

The interferometer correlates these two received voltages. [See
Rogers (1976) and Kraus (1966) for discussions of various techniques
of detection and concomitant correlation method. We will assume a

simple phase-switched, or multiplying, interferometer.]

Thercross correlation of two real complex functions in

the interval .O,to] is defined by [Bracewell (1978)1:

to
Rix aj; du g lu-¥) h(w)
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For our interferometer, then, the cross-correlation function for the

signals received in the time period [O,to] is

~ (2mreT
Rirp=t[ e e t-m) =B *

where superscript "*" denotes complex conjugation. The time period
t, is referred to as the integration time period. R(rg) is the

response of the interferometer for the point source. Now,

2% =5 5. = 37 b =P

where we have made the angle ¢ between b and §o a time dependent
parameter because the relative orientations of B and §° are changing
as a result of the earth's rotation (and satellite motion for a
satellite element in the two element interferometer). We can then

write
(2T cos §8)

Pe)=5. ¢

We see that R(¢) is an oscillatory quantity with a mean of zero,
amplitude of Bo, and time-varying phase factor of 2n§cos¢(t).

An alternative description for the slow oscillations in R(¢) derives
the cross-correlation function in terms of beating between the two
signal frequencies from the two elements, whose difference (in

general from v, and from each other) arises from the differential

0
Doppler shift in the received frequencies due to the relative
motion of the elements with respect to the source. [See Rogers (1976)

for this approach.]
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In terms of ¢, we may think of R(¢) as a spatial

correlation function. The spatial correlation of the incident radia-

tion field is determined by the correlation of the signals from the
two elements located at different points in space, and we see from
Figure 2.3 and from the expression for R(¢) that the two signal

phases will be mutually reinforcing (or partially reinforcing) or

9 2 cos¢, i.e., depending

upon the difference in phase path length for each wavefront reaching

cancelling depending upon the magnitude of +

the two elements. (We have tacitly assumed the Timit T+0 here so
that the spatial correlation is performed point-wise in space as
l{ opposed to averaging over seaments of space for non-zero integration
time periods.) This phenomenon is directly analogous to the
i fringe patterns of optical interferometry, and R(¢) is known as the

fringe pattern.

| The phase factor 2 — b 5 €os¢ in R(¢) 1is known as the fringe
,; phase o(t). R(¢) assumes its maximum value Bo when %-cos¢ is

H
t? equal to an integer. The interval between successive maxima in

R(4) denoted A4, is known as the fringe spacing. Let 1 and ¢,

“ be two values of ¢(t) which produce adjacent maxima in R(¢). Then

g 271"%' Cos &, ’Z‘ﬂ"f" CosP =2M(«nt)-2TNn = 27
o ©

? ﬂi- (c“"SCF&, CeS CF)) ""('12 s —£—£h15x ) -',

|

bt
! Assumiﬁg tha; ¢% 297, We write ——2—— = ¢=¢].¢2 and
' 2 "1 2 "1

sin z 1?-. Then, '2"7F sing = 1, which gives the

But, b, . = |Bxs,|

sine

magnitude of the fringe spacing as A¢ = bs?n¢
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which is the component of B normal to the souce vector §o-
We therefore see that the fringephase provides information about the

source location §o.

Having obtained some understanding of an idealistic
interferometer response for an infinitely distance point source
emitting monochromatic radiation, we now want to look at the more
realistic case where an extended source with centroid approximately
at ;o is observed in the bandwidth Av centliica on Vo by an
interferometer with frequency characteristic F(v) and primary power
pattern G(g-go) (defined as the product of the two elements’
voltage patterns). Heretofore, we had assumed G(§-§°)=5(§-§0)

and F(v)=6(v-vo).

First, we note that if 6g is the maximum angular ‘source
extent, then we must have

- A
8 = B5Tne” %

since a source larger than the fringe spaceing will have simultaneous
reinforcements and cancellations from its vérious parts and

therefore the meanincful fringe pattern is lost. The amplitude of

the fringes for an extended source will, in general, be different
from the amplitude for a point source of the same strength, and the

ratio of these amplitudes is known as the fringeamplitude.

The reason for a specified reference direction §° for an

extended source is seen in the following analysis. For observation
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of a point source over bandwidth av [but assuming an infinitely

narrow beam for the primary power pattern, G(§-§0) = 5(§-§°)] we

WY
have *%7 V.+% aT = cos P |

A = D=
R®) = 9 " v Rier)= 55 » &7 €

= B, 3x (T2 Wees) (2T Yo o5 P
® ™ .:___ AY co5 Q

where we have assumed a flat frequency response

| Ve [Wri)2, (V.rav)/z]
F(v)=

o OTHERWISE

and inc1udeds%)as a normalization factor to compare this result with

the monochromatic result above, We see that this result is

identical with the monochromatic result except for the factor

SIN b
] ) g.,_ T AV e,sq>=7ravfta,

which is a tapering factor which reduces the fringe pattern amplitude.
This presents the conflicting goals of using ce (i.e., the

g Av
signal correlation time g; must be much greater than the group
delay time) in order that the fringe amplitude be sufficiently
large, and the other goal of using as large a bandwidth as possible

to be able to detect weak sources or source components without

excessively long integration times (since sensitivity a QG;TTQ'
0

We can achieve both of these goals if we can keep t, very small.

g
To do this, we define a reference direction ;o to be roughly in the
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direction of the point source or the direction of the centroid of an
extended source. A delay factor is then incorporated into the
reference station arm of the interferometer by using, say an extra
length of cable, such that rt_=0 when the interferometer elements
are pointed in the directicn §°. Then, Tq will be small for all

S near §o, which is usually the case for observed celestial sources.

In VLBI, this delay factor can be introduced by an appropriate

delay synchronization between the magnetic tapes from the two
elements when they are brought together and played back for correla-
tion, or equivalently by introducing a relative shift in the bit

|{ strings of data during cross correlation for digital systems. With
the delay factor, the fringe phase is set to zer: at ;o’ so the

{ fringe amplitude i1s maximum there and falls off very slowly due to

sing
3

delay factor can also be tracked to compensate for changing T

i the factor for s slightly offset from s We notethat the

0"

g
and thereby allow Av to be even larger than for fixed delay.

o

The appropriate generalization for the correlation function

giving the interferometer response for a point source observed in

bandwidth sv with accurate delay tracking is
- A Led A ~n
1 A Lzl s, ,;:.f% b'(5-5)

- -—
-l e _.“I a4 ——

Generalizaing this to the case of an extended source with brightness

distribution function B(§-§o), we have
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o V- “.,?.)
Ve T Vet ;278 b'(
ATz b -5:[ s87e

V-4 “"fdg Fi) G(5-5)B(s-3)e

va . S
Yo b Se
2T < v('\;)

=
n

e
=e

where the function V(B) is defined to be

&
Yot Z-

V(B) = L_ 9?49 Jd3 Few) G(§-§.) Bcé‘—fs‘.)e

- A A
7 [ b(S-S0)

We can interpret this result as follows. Tre factor e

is just the interferometer response to a monochromatic point source
with unity intensity. This factor has a relatively fast oscillation
rate corresponding to closely spaced fringes. The complex function
V(B) gives the amplitude and phase offset needed to properly
characterize the extended, non-monochromatic source which is
actually observed. Oscillations in V(B) are large compared to the
fringe spacing (or, equivalently in terms of a temporal parameter,
V(B) oscillates slower than do the fringes as the base1fne rotates

relative to §o).

We can express the result in a more convenient form in
terms of a suitable astrometric coordinate system. First, we note
that the vector s can be expressed by an angle x in right ascension
and y in declination relative to the reference direction §0.
Alternatively, but equivalently, we can think in terms of a

rectangular coordinate system on the plane of the sky, with origin
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at the point where s_ intersects the plane of the sky, and with

0
unit vectors x and y with ground projections_in the east.and north
directions, respectively. We will adopt the latter terminology
here. The appropriate units for x and y are radians, since the
angular description is the operationally correct one, although the
planar descriptionmakes it easier to conceptualize brightness

distribution functions on the sky. (We will not be concerned with the

longitudinal component here, which is in the direction §°=i xy.)

: With this notation, G(§-§°) can be written G(x,y), B(§-§0) as B(x.,y),

ds as (dx-dy), and @-§O) as Xx + yy. For monochromatic radiation,

. we may now write

2 (1% +YY)

f | v(B) = ﬂx ‘[4\, GLY) By e

Considerations of diffraction Tlimiting effects in one
! dimension show that the maximum resolution of a two-element inter-

ferometer is —lgl-(to within a factor of order unity), which occurs =

when the baseline is normal to §0. Clearly, infinite resolution

e

is possible only for an infinitely long baseline. Infinite

" o

- e ——————y @~
© A 5 P Y R S - e — . SV A oo

resolution corresponds to zero fringe spacing, and the resolution
decreases as the spacing between fringes increases. In the two-
dimensional problem wich we are considering here, we must deal with

two orthogonal components of resolution. We use the & and § directions,

and we define unit vectors Uzx and v=y in a u-v plane which is

parallel to the x-y plane. The u and v axes then give the orthogonal

- . _,___‘,./ ——t ~ S N . . . l
iy
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resolution components in the east-west and north-south directions,
respectively. The units of u and v are the same and are reciprocals
of the units of x and y; for x and y in radians, u and v are in

fringes per radian.

We can express ;i- in terms of the resoluticn components:
0

>a|c‘+

zux + vy + (B-s))
o 0

We will neglect the last term which gives the longitudinal component,

and consider only the transverse component Ep s ux + v}. In terms

of the standard earth-based coordinates of right ascension o« and

declination &, we write (ao, 60) for the angular coordinates of

§° and (ab,éb) for b, The transverse component of b, which is

normal to the source direction §0, can then be written as '
B - (SB)R5 = Rbesfy sm(, - %)
1 + §ufom§ cosgs = sm s cos, con (-t )]
| ; We identify
; o2 %o ees§, (X, ,)
! and

_%: [SIN gb cosgs - sldgs c,cvsgb ces (O(b"o(s)]
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Now, expressing V(E) in terms of u and v, and noting that
(§-§o)p = xx + yy, we can write
,;;1r(u’~+‘-"7)
v = Jifdy o Buw e

The function V(u,v) is know as the visibility function, and for an

isotropic primary power pattern, we have

V(u,v) = falea\y B(x,\/) e

LRTTIUX+UY)

Thus, the visibility function and the source brightness distribution
function are a Fourier transform pair. Fomalont (1973) discqsses
the major assumptions and simplifications which are incorporated
into this result and its inherent limitations, as well as the effect

of a large bandwidth Av.

We note that u and v are time-varying parameters due to
the relative motion between B and §o. For an interferometer with
two earth-based elements, the locus of points in the u-v plane

transversed by u and v will Tie on an elliptical tract, since
2
ut L o)
T T a =1
where

as -‘%Cosgb dg%: Cos gb Smgs

and Vo 3 -g—: 5'”8\, us&s

— o B S
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However, when cne or both elements of an interferometer are on

o . —t———————————

satellites, the periods of the individual elements (which for two
earth-based elements are both 24 hours) are no longer necessarily
commensurate, and it can be shown that the track in tﬁe u-v plane

is not a closed figure, but rather is "open-ended" and undergoes a
precessional-type advance through the u-v plane. Thus, a two
element interferometer whose elements have non-commensurate periodic
motions can (in principle, with infinite observation time) provide
observational coverage over the entire u-v plane inside the trunca-
tion limits (which are the maximun resclution limits along the u

and v axes).

Figure 2.4 illustrates a portion of the track which is
traced out in the u-v plane for the case of an earth station located

3 at 43° latitude and 70° longitude and a satellite element in a

circular orbit over the poles st distance 8-109cm from the
center of the earth (1.62-104km altitude). The source coordinates
i used were those for 3C273, right ascension 12H 26m 33s and declination

2°20' [Kraus (1966)], and the observation wavelength was taken

as 3cm. The oniy portions of the u-v plane which may actually

— .

JE .
C L e A e o

be observed are those portions where the source is visible to

- -

both elements. From the figure, we can get an appreciation for the
role of the integration time period in terms of the extent to which
the visibility function is averaged as apposed *2 being sampled (i.e.,
measured point-wise). The integration time to was taken as 1000

seconds for the example case here. As discussed previously, the

hm e g
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FIGURE 2.4 -- Track in the u-v plane.

The start of this portion of the track

The inteval between markers corresponds to a 1000 second
is the end near the origin.

integration time.
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integration time period is of the order of 100 times greater for an
earth-satellite interferometer as compared to an earth-based system.

! The effects of averaging must therefore be accounted for when a satellite
is used as an interferometer element. A useful simplification arises

if we shift axes so that v°=0 or if the data are "gridded" (see discus-
sion below) onto a aregular lattice. In this case, then, the arc or cell
.k midpoint at (un,vm) has the same projection magnitudes on the u and v

i axes as does the arc or cell with midpoint at (u_;,v_.), where u_,=-u,

Vo= Vi If we can call these projections Tu,n and Tv,m’ respectively,

T . This simplification will

then we can write T =
,M V,-m

u,n=Tu,-n and Tv

be used later in our discussion of averaging effects.

Essentially, we have found that the interferometer measures
o the Fourier components of the source brightness distribution. As we
will prove later, the Sampling Theorem states that knowing the
Fourier components of a function at discrete, properly spaced lattice
points in the u-v plane enables one to completely specify the

brightness function. This concept is the basis for aperture

synethesis techniques, in which B(x,y) is determined from incomplete

sampling of the visibility function in the u-v plane. Since the

coverage of the u-v plane is confined to the tracks made as the

- -y

P A T it e

> ~
relative orientation of b and So changes, it is desirable to use

many-element arrays with various baseline vectors so that ample

- ——————y WP~

coverage of the u-v plane results from an observation. Each pair

J of elements in this array produces a track in the u-v plane. If the

" signal from the source is not a rapidly time-varying phenomenon
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(such as the solar brightness function), or is approximately a steady-
state phenomenon over the period of all observations, then the
various observations to be incorporated into the aperture synthesis
map need not be made simultaneously. This fact presents the

added advantage of allowing one to use a certain number of elements
for a series of observations, where the baseline vectors are
changed (say by moving elements on railroad platforms) from one
observation period to the next. In this manner, it has been possible
to obtain aperture synthesis maps which result from excellent
coverage of the u-v plane. Although the density of observation
points may be reasonably high, there still remains the problem
that the tracks in the u-v plane do not (in general) pass through
the properly spaced lattice points required by the Sampling
Theorem to yield the brightness function exactly and uniquely.
Various methods are in use for extrapolating (or "gridding") the
known data to the lattice points, including convolution and

cell averaging techniques [see Thompson and Bracewell (1974)

for a discussion of these methods]. An additional problem concerns
the fact that, although good coverage of the u-v plane may be
obtained, full coverage (i.e., infinite resolution from infinite
baselines) is not possible and effectively we are dealing with a

truncated version of the true visibility function.

Aperture synthesis theory applies to VLBI. In a particular

case, 1f it is not possible to obtain sufficient coverage of the

u-v plane to enable a high resolution brightness distribution map

o oo
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to be constructed, then a simple model source, commensurate with

the known data, may be coﬁstructed to represent the true source

[see, for example, Knight, et al (1971)]. With a sufficient number
of ground based stations, and by using satellites as 1nterferometer.
elements, it should be possible to obtain good coverage of the u-v
plane to enable very high resolution aperture synthesis maps to

be produced.

Having demonstrated that the relationship between the
visibility function and the source brightness function is a
Fourier transformation, we now review the basics of Fourier
transform theory, and subsequentiy, we will study the effect on
the brightness function due to truncating and averaging the

visibility function.

2.3 The Two-Dimensional Fourier Transform

2.3.1 Usefulness of the Fourier Transform as an Integral Transform

Of the different possible integral transforms, the Fourier
transform, because of its basic properties, is one of the most useful
and widely employed. These basic properties are linearity, shift

invariance, and orthogonality of the integral transform's kernel.

If we denote the Fourier transform operation by the

operator symbol¥, then

Bz {BM} = V()

1P YN TN T A AT I, A 4
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means that the Fourier transform of a function B of variable x gives
a function V of the conjugate variable u. In terms of units, u
and x are reciprocals; for example, if x is in centimeters, then

u is in inverse centimeters.

The property of linearity means that

F{x B+ BB 0} =t Vulw) + PV ()

where

?{B,(x)}: Niwy T{Ba 0} =Nz (u).

Shift invariance implies, for a constant c,

T 1B(x+ c.)} =LV
where #i'ﬁ(x)‘s = \j(\ﬂ

and f(c) is a phase factor, depending upon constant c¢ and u, but
independent of x. The orthogonality property enables the inverse

Fourier transform, denoted by the operator# '1, to be defined.

Thus if, _;{B(X)} — \/( u)

e 37 Vo) = B

In one dimension, the Fourier kernel is written as eiz""x, so that

the integral transform appears explicitly as

V)= F5800} = 2 e“™ B ax
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The orthogonality of the Fourier kernel then lets us write

® o amad] [T ema
f' du "zm\lcuﬁ[,,me“ U:.,c ‘Bcoéx]

=./_:dx aﬁﬁdu emu(x-x')

"‘"j.:clx Bw) &x-x’) =BW)

We, therefore, see that the orthogonality property lets define the

-i2wux

inverse transform kernel as e , and the inverse transformation

appears explicity as
s T UX

B = '?"{\lcm} =l.dy e Viw)

It is the importance of linearity, shift invariance, and
inverse transformation operations in practical applications which
accounts for the diverse and widespread use of Fourier transforms.

2.3.2 The 2-D Fourier Transform

Muiti-dimensional Fourier transforms are defined

analogously to the one-dimensional form, with the number of

conjugate variable pairs being equal to the dimension. In particular,

the 2-D Fourier transforms are given by

BwY)=¥" {\hu,\r;} J:Ju.f dw c—bﬂ(u“vg\/(u v)

= [ 4 €™ a0 77 Neww
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' L2 (Ux+TY)
and \l( u,v) = ?{BU\.H&} =£A$[dg (2 BxyY)
anux . (2roy |
=_]_:Ax e ﬁ% e B,y . |

We will now consider a few examples of the 2-D Fourier transform

which will prove relevant in our discussion below.

A point source at the origin is represented by B(x,y)=6(x,y),
where the 2-D Dirac delta function is defined by &(x,y)={x)s(y).

The corresponding visibility functicn would be

ind - (2T (UR4\Y)
Vv =f_..elx f...els e $

(x4 = 1

Thus, a point source has an associated visibility function of
constant amplitude over the entire u-v plane. If the visibility

function were of constant amplitude over only a finite rectangular

area of the u-v plane i For W €[-U,,0L.], \re[_-VZN'.']

\/(Q.U')-_-_
©  ELSEWHERE

the corresponding source brightness function would be
0

B(*n‘i)=_[§uf_:du QAT AT \

= [ [* iR (uxevry)
[ o T
- [ Ql2TOex_ ~LRTN ][ LETRY_ -ty

EZTTR LRTY
= SNRTTOX _sin2T VoY
X ™Y
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The sine function divided by its argument will appear frequently

in our work, and will be called a sinc function following Bracewell's
sinmx
—

convention: sinc x = Thus, the previous brightness

function may be written as

Bwx,Y)= 20U, smc2UaX - RV, smne21Y |

As a final example, we will consider a Gaussian visibility

function, \/( ) &_11'(\,\‘4-\!")
uuv) =
N Y O S
en vY) = du/ av e
_ ~[rud+ L2 -[rrots amy)
[ Lae [ar< .

Consider the u integral. Completing the square of the exponent,

U+ (2T = (Wru+i ﬁxf+ T

-[ru* +izmux]
let us write I':“[:dl e

- - [Wu +LiER]?
=& ﬂd«. c . !

Define Eaﬁl{ +£ﬁx y S
dé= ¥rdu .

afe - E* -mx*
Then, L= e--‘ﬂ'xj:-c_lv% eE = gﬁ:(ﬁr’)

- Trx%
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So we can see that the corresponding brightness function to a

Gaussian visibility function is 2 2
~w(x“+4")
BixY)= <

It should be noted that the Gaussian is the only non-generalized
function which preserves its function form under Fourier
transformation. (The generalized function IT] discussed later,

will also be seen to have this property.)

2.3.3 Fundamental Theorems

We have seen that even a simple Gaussian requires
some effort to perform the Fourier transformation by direct

evaluation of the integral. Fortunately, there are a number of

fundamental theorems which not only ease the calculation of
transforms, but also provide further insight into properties of
Fourier transforms. Since we will extensively rely on these
theorems in what follows, we will prove a number of them here.
[Most of these theorems are stated without proof for the 2-D
Fourier transform by Bracewell (1978).] The symbol "D" will

be used to denote a Fourier transform pair, so that

Niwo D Bxny) ae By Y(w,v)

Note that one dimensional versiorsof these theorems are easily

realized by setting y and v to constants in the equations. (Of

course, these arbitrary constants do not affect th= results.)
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Separable Product Theorem: If B.I(x):) V1(u) and Bz(y)
DV,(v), then B;(x)By(y) D Vy(uVy(v).

Proof: Let V(u,v) = V,(u)V,(v) and B(x,_y) = B, (x)B,(y).

Then f {V(u u‘)} r&-\j‘d\r -dZmiune i) V.(u)V;(“’)

:[ j-' _Lzﬂ‘u.x\" UL)]U s e -i2Tod V&w)]
=B.W) Bz Q’l) .

2-D Addition Theorem: If B](x,y) > Vl(u,v) and
Bo(x,y) D V,(u,v), then

Bo (*’%) + B& (*'3) 2 V .(u.\r) "'Vz (u,\f)

f"{ ‘+Proo: } j‘duf Ao -‘.znr(u.x-r\r'd)[\“k . ""‘,,L»\.\r)]

= B‘ (x.'j\ + Bz(xnlﬂ\

It is readily apparent that

g{B.(XMH'Bz(&M)} = Vl (u,v) + Vz('*-") |

2-D Shift Theorem: If B(x,y)™ V(u,v), then

Bx-a,4-b) O szn'(a.ubu-) Yeu,v)
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_ 2T (ke ba)
and  \f(u-a,or-b) D € Buy)

e ——————

Proof:
-i2m(Un+yvy)

?"{\J Lu.a.,\r—\o)} '-J;u S e \' (u-a,v-b)

~iamlaxabey) _izwr[(u-ayx+(v-by)
:l::i(u-ngl_;l(‘"’v) € (2 V(u-a )

; - &—iz'n'(a.x-\- bY) Bixy)

Similarly, we have

L2TMMR+ T Y)

flpocasw)=diy e Boxa,4-b)
t. caTloutby) 2T [(x-a)u+ (Y-o)
""'E“*'“j-‘; ) e )C- &) %(X%.‘:l‘h)

~ i2.7)‘(a.u+\o\") V(u_ U')

[ ]
2-D Similarity Theorem: If B(x,y) D V(u,v), then

V(awow) 2 T B

and

Blaxb) 2w V(&)
roof TAUCE Al
5 (Vi) 2B < N

N st -ilmaus &+ o -&-) i
= &7 Torfae g e > Yo, be)

= \abv) B(l&‘%)
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Similarly, we have fe . LAT(UR+vY)
${Blax, o)} =3 fc.ia B (ax,by)
" 2T(exB +b
- fa v [Fefiey e ATIE DL Ly

='i?:\IT \M%»%)' 2

2-D Definite Integral Theorem:

Ex 4 By)=\(e,0)
ﬁx 3, P_% (fx " U:;* "y cu:tr(um-ug?B Cx.tj))u.-a
[\l(n.\r) l‘é’-,.',‘é = \}(Q.o)

Similarly,

Euﬁv\hmv\ = B(o,0) .

2-D Differentiation Theorem:

(% ) ( ) Bx M) = ‘2-7Tu)-n(£27r\’) V(u, v

Proof:

P& (&) BOu)= 2 e
S35 FTH &) By
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Integrate by parts once for the y integral:
${(&)™ (F) By =

BT UX anvy . _ 2wy
_[ e (.7 ) [ (.73) B(x,g)L._‘ dy (£27v) e’

(&) B x.‘s)]

The integrated part vanishes if
L =
a-':” B(x,y) =0

(as we will be concerned with). Perform (m-1) further intergrations
by parts for the y integral, and then n integrations by parts for

the x integral; the result is
2T PR Y)

"?i(%im Bf-x.‘:l) [uf:g Cizmy) (mn.,-)me BUY
= (-izmu)” (2me)™ Yu,v)

Similarly,

. . wn
£ &N E Vo) = @ @) Bogy
Hermiticity Theorem: If B(x,y) is a real function, then
V(u,v) must be Hermitian, i.e.,
V(u,v) = V¥(-u,-v)

Proof: L2 (Ux+ o)

Y = ${suwyy = fd*fdt\ e B, Y)
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Since B is real, we have \‘,(“.VS""E?‘E-" c.o:s[Z‘lf(uK*“’ﬂ)] Bu.y)

Nty v)= j: :l:x 5;.24 sl [zﬂ(axw—q\] BWwY)

where V(U\,U'\ =\l,,(u.\r\ & "-\l[ (wvy |

We clearly see that \],, (A =\l\,(-u,-\r3 ) \I.‘,(M.\ﬂ=-\,.; (-u-v),

Hence \Qu.v') = \’*(' “,"r) . ]

Hermiticity Corollary 1 -- If B(x,y) is a real function
and is even in its joint argument, B(x,y) = B(-x,-y), then V(u,v)

is real and even in its joint argument, V(u,v) = Vr(u,v) = Vr(-u,-v).

Proof: From the equations for Vr(u,v) and Vi(u,v') in the
proof of the Hermiticity Theorem, we need only note that if B is
even in x and y, then the integrals in the V.i equation vanish, and

the V_ equation yields Vr(u,v) = Vr(-u,-v).

Hermiticity Corollary 2 -- If B(x,y) is a real function
and odd in its joint argument, B(x,y) = -B(-x -y), then V(u,v) is

imaginary and odd in its joint argument.

Proof: From the proof of the Hermiticity Theorem, this
case causes the Vo equation integrals to vanish while yielding

V,(u,v) =~V1(-u,-v).

From these theorems, we deduce the concepts that

reality of one function in a fourier transform pair implies

P ——nee? L F o~ \' . ]

it s o A
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Hermiticity of its conjugate function, and that a real even
function has a real even conjugate while a real odd function has

a pure imaginary odd conjugate.

The convolution of two functions, B](x,y) and Bz(x,y),

is denoted by 81*32’ and is defined by

B\Lﬁ,\S)* lex.&)i E‘I.d,‘ B|k*.)‘5') Bz (!-K’, ﬂ’ ‘1.)
]
= f gx]_;.y' B (x-x,4Y) Balx4)
We now prove a very useful theoremArelating the Fourier transform

of the convolution of two functions to a product of their separate

transforms.

2-D Convolution Theorem: If By D Vy and B, D V,, then

By % B, xy) D Ve N, (wv)

Proof:

B.(uY) * By ()= _Exﬁg' B (') B, (-),4-4),
o w53of 3 I B m ek
-.-EEB’ B\(x',‘s'){ fiJ ;'i cizmw‘wg)&, (x-x',a-s')}

""E‘ﬁ' B'“"q)[e’mm ~ ;).(“-")] (SHPT T
=\ [ e 2T )

= N, () - N, (yv)

o . TR 8 LW TPED T, Ay ar ARSI O P, - NI BN

I SV RN \




53

We similarly obtain the converse of this theorem as:

V, ) % Vo uw) 2 B,y B wy)

2.3.4 Truncation Effects

We define the 2-D box function in terms of 1-D rectangle

functions, following Bracewell's notation (1978):

TT(uv) = TT W) TT(V)

where ( 1 ‘“\<J2-.
Tw = | % Iul=%
o >z

\

Rectangular truncation of a visibility function in the
u-v plane is equivalent to multiplying that visibility function by
a 2-D box function which has zero amplitude outside the specified
rectangular region. Since truncation can be expressed as a
product of functions in u-v space, then the corresponding brightness
function can be determined by the Convolution Theorem. To consider
the general case of rectangular truncation, we must know the

M‘C U- Q\r
transform of 7—7‘ b: ) -

which specifies a box function with unit height inside the rectangular
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region with edge lengths b.u and bv’ centered on y along the u axis
and <, along the v axis, respectively., Since this transform will’

be important later, we now prove a theorem for the general case.

Box Function Transform Theorem:

“.'C\A Lr.c, - -L. Zﬂ(Cux"Cvu) "‘Wb‘& , Trhr ;
?{TT Tou! b )} =€ 2 Tx 5—17,-_\.,‘&.

Proof:

—iRT(UrevY)
STCER P e )
c..w‘ ‘[“ﬂi’c\w _,zw(uxnr\j)

c“ ‘%‘ 24w - .\? i
2 o -éATR(Cavey) g:wrrx(c..- L) . e:izﬂ CC.'*‘i")_ e-'wmcv-ya
—ZZTT)\ —lm
= e ~e2WCA e o ok i oY
TR ™ s

The effect on the brightness function resulting from the truncation

of the visibility function is expressed by the following theorem.

Truncation Effect Theorem: If V2O B, then 1f'\7'

represents the truncated visibility function,

B = ${0, \r\}
e et g

Proof: For 2-D rectangular truncation of V{u,v), we

can write \/(u,u’) \,(u “_) .Tr(u.'Cw ’\J'-::-
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We will use the curly overbar "~»" to denote a truncated visibility
function and its associated transform. Then, by the Convolution

Theorem

| Bd) = § 10 v)

| = .ESon%) *xe

¥ ) ¢ ! . i
g | =f 4"\:’:‘3' e tamlCan ey ’sm Tk smTro, 4
i o0 o0 X' WS—F

- Be-x,4%-4),

-iaTEeare) s Thod
B 4

Qualitatively, truncation of V(u,v) givesrise to oscilla-
'{ . tions, or ringing, in the function Ekx,y) as compared to B(x,y).
: The origin of the ringing is seen in the convolution of B(x,y)

-12x(cux+evy) and with the sinc

{ with an oscillatory factor e
| functions, which have decaying oscillations. The effect of
truncation can also be qualitatively described in terms of a loss
of resolution in the sharp features of the conjugate function.

This is especially clear for the conjugate functions of inter-

ferometry, since truncating V(u,v) means that we are not using the

high resolution information for large u and v outside of the

truncation 1imits, and therefore B(x,y) is "blurred" or "smoothed"

Wl WIS B e b e A A -

by being convoluted with the sinc factors to produce'ﬁ?x,y).

s p e~ gy  vEE WP Yy

2.3.5 Representation of an Averaged Function

AP

Consider a visibility function which is averaged in

rectangular cells over the u-v plane. Let one cell be centered on

- r _ R o e g e NS . . 1
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the point (0,0). Then we can specify any cell by double integer
indices (n,m), where the "n" specifies the nth cell along the u A
axis and "m" the mth cell along the v axis. We let n and m range
from -= to +=, where the +/- sign will denote the relevant half-
axis which the cell is referenced to. The (n,m)tP average value

of V(u,v) is then given by

\ Tyt B |
[V'-m‘m] = 'ﬁm—rqm L_nmd\.\ Vom- Tom dv \/(u,u’_
z z 4
where T, and T denote the lengths of the (n,m)th averaging

cell along the u and v axes, respectively, and U, and vy are the

midpoint coordinates for the (n,m)th cell. The overbar and

brackets will be used to denote an average value of the visibility

function.

To represent the average value of V(u,v) in the (n,m)th
cell as a function of u and v, we will use a 2-D delta function at
the cell's midpoint whose strength is given by the average value

over that cell. We therefore write

—\-jm.m(u,\r) = TumTu-.m{V_“M] é(\,\- WU, ,\J‘-\J‘,,:) .

Note that the area of the (n,m)th cell, (T ), has been included

u,n Tv,m
as a factor multiplying the delta function in order that the delta
function properly represent the average value over the entire cell.

The V(u,v) function averaged over its entire domain can now be

written as a sum over these average value terms, and will be
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designated by 77(u,v):

7(“.\7) ZT'.\ ZTM\ [V-n.m\] S(l&-u, .U'-\J’,.)

WS >0

A few comments are in order regarding the specification
of the (n=0,m=0) cell as being centered at the origin (u=0,v=0),
and the particular choice of representation for the averaée value
in a cell as a function of u and v. Specifying that the (n=0,m=0)
cell be centered on the origin is based_upon a natural generalization
of the 2-D Sampling Theorem to the case of averaging. The Sampling
Theorem specifies that sampling be performed in a regular fashion
with one sampling point located at the origin. The effect of the
epoch of sampling will be further discussed below in our considera-
tions of the Sampling Theorem. The use of delta functions to
represent the average values is also a natural generalization from
the Sampling Theorem. The other reasonable way to represent the
average values would be by rectangular boxes whose height is the
relevant average value in the particular cell. Now, a box representa-
tion for a particular cell can be expressed as the convolution of
a delta function, which is located at the cell midpoint and whose
amplitude is the average value of V(u,v) over that cell, with a box
of unit height and identical cross section to the relevant averaging

cell:

V2, (00} ([T ] § (et o) % T (20 )
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where V denotes the box representation function. Consider the

n,m
case of constant cell sizes, so Tu n and Tv m are constants for
all n and m. From the convolution theorem, we immediately see

that, if Eé(x,y) represents the transform of the delta function

representation for the averaged visibility function:

B (= FEL T Toin [ Vor] S 11U ,\r-m..)} ,

then ﬁcéx,y), which represents the transform of the box representa-

tion for the averaged function, can be written as

i(*d\ snTTaX sm"r‘r;-g
Bu(*"i)"" % TS )

Stnce L [(T“ 3:::;"\"..&)(1' smc'I.-‘j)] T. T

Tu—~O
To~0

we see that, as the averaging cell sizes go to zero, ﬁE:and ﬁé
become identical. However for large Tu and Tv , as we will be
concerned with, the box representation results in preferentially
decreasing the amplitude of 36 as we move away from the origin, by

the factor

(Tu siwe Tuk)(To sme ToY)< L ror xy#o

In fact, the box representation produces zero brightness at all

zeros of sin(nTux) and sin(nTvy). We would Tike éa and é;: to matc

the true brightness function B(x,y) as closely as possible. However, ;

ﬁtfx,y) incorporates a sinc modulation factor which must have zeros

h
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at definite points in the X-y plane, regardless of the amplitude
of B(x,y) at those points. This consideration, as well as that
of the natural generalization of the Sampling Theorem, makes the
delta function representation the preferrable method to use to
represent the averaged visibility function. A comparison of these
two representations for a number of one-dimensional test functions
was conducted, and those results support the choice in favor of the

delta function representation.

2.3.6 The Standard Fourier Transform for an Averaged Function

The averaged visibility function is specified by

Fuw)=L L Tom Toom| Vo] § (-t 150

R~ M-

The Fourier transform of this function, designated Ba(x,y) will be
an approximation to the true brightness function B( ,y). Taking

the Fourier transform of 'F‘gives

- oo - “ -i2¥(uravy)
%&(X. 3)=§.‘§‘.‘Tmnﬂw[v.‘.“] [é‘* '[;r ¢ S (“.q“:r'.o"é
=£ f: 7."'.-.\")'."-...[?.. _m] e-azvr(u*x +~—‘-n!)‘

NS -0 S

If V(u,v) has been truncated, then we will have only a finite number

of terms in the sum, which can then be written as
e:aam‘(u..m Owy)

A N o]
B‘ (x,‘j) "—'-z f " Tu-.-n_T\::m[Vq.-m] .

maeN M

uslasskithighinte iibiatiiaatats s niibatibaision
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where we have assumed symmetric truncation about the origin along

the u and v axes.

Now, B(x,y) must be a real, non-negative function since
it represents the radiation intensity from a physical body. The
visibility is, in general, a complex function. We can therefore
write [vn,m] = [Vn,m]r+i[vn,m]i , where the subscripts refer to
real and imaginary parts. It appears at first sight that éa may
be a complex function, and would therefore not be a good approiima-
tion to B(x,y). However, we have shown that the Fourier transform
of a real function must satisfy the Hermiticity property, and this
property is invariant under averaging operations. We will see
that, for an untruncated or éymmetrica]Ty truncated visibility
function, Bs will always be real, although it may possibly.assume
negative values contrary to the nature of the true brightness

function.

Clearly, since

‘ el e
[\lnnn]=:‘1;’"-n;"J[;-ZEa;A“HJ[ 2%;1‘40. \/<\“ v')

the average values [Vn m] will satisfy a "discrete Hermiticity

relation” if V is Hermitian:

Veusys Vieurv) =o{ Vo] = [Torn) *

This statement assumes that the epoch of averaging is at the origin

[(n=0,m=0)->(u=0,v=0)]. If we write

- DR A BNV .
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Vo) = [ )t Vol

then for symmetric truncation (or no truncation if N+, Ms=) we have

B o=t £ Tl e amonsan +[2,,],

ﬂ'.“ “8‘

. S 2T (U % o’..ﬂi—i[[vﬁqv s.NZTr(u‘xw;‘vs)—[v\_J cos 2T (i, L% 3}]

Since [vn,m]r is even in n and m while sin ZW(unx+vmy) is odd in
(un,vm), then their product is odd and vanishes in the double
summation process. Similarly, the second imaginary term vanishes
in the double summation. Both of the real terms are even in (n,m)

and (un,vm) SO we can write

B (x,4)= i’: Tow To0 {[\L‘.’] CoSZTNuLA +[V .] sin2mMU, ’s} -+
Zz f Tan Tom {[V,M] wSZW(uAW&\Q +[‘\7 ,_lsm?ﬂ(u,xw'.]}

Sy
We have shown that §6 js indeed real for symmetric truncation of
V(u,v) (and for no truncation at all). Furthermore, the last
equation impiies that a knowledge of the average values of V(u,v)
over only half the u-v plane is required to specify éc' The two
guadrants in the chosen nalf plane must be adjacent, not diagonal
to one another, in order that the Hermiticity property be used

to deduce the average values in the other half of the u-v plane,

If the visibility function is truncated asymmetrically,
then és may be complex valued. The Hermiticity property satisfied
by V(u,v) for real B(x,y) enables us to relate the values of the

visibility function in two adjacent quadrants of the u-v plane to
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its values in the other two quadrants. Therefore, in cases of
asymmetric truncation, it may be possible to ascertain the
average values of V(u,v) needed to symmetrize the truncation. If
this is not possible, then the set of average values of V(u,v)
should be decreased to result in a data set reflecting symmetric
truncation in order to produce a real-valued ﬁc(x,y). One dimen-

sional test functions were examined for the case of asymmetric

truncation, and the results corroborate the assertion that
asymmetric trunction produces a complex ﬁa(x,y) with the imaginary
portion contributing no information useful in discerning B(x,y)

or a best approximation to it.

2.4 The Sampling Theorem for Fourier Transforms

2.4.1 Statement of the Sampling Theorem in 1-D

The Sampling, or Nyquist, theorem for Fuurier transforms
in 1-D may be stated as follows. Consider a function B(x) which
is non-zero only in a finite portion of the x-axis, from -Lx to
Ly- Such a function is usually referred to as being "band-limited".
Let V(u) be the Fourier transform of B(x), and let Y(u) be period-
ically sampled with the epoch of sampling at the origin (i.e.,
a sample is taken at u=0 and periodically thereafter in both
directions). If the sampling interval is less than or equal to

%[ , then it is possible to reconstruct the function B(x) exactly
X

[and hence of course also V(u)], The largest sampling interval

which can be used and still reproduce B(x) undistorted is known as
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the Nyquist interval, which we will denote by TNI'

{
!
!

In its one-dimensional form, the Sampfing Theorem is of
use in signal processing applications. A suitable generalization
to 2-D makes this theorem of use in VLBI data analysis. Since the
o proof of the Sampling Theorem in 2-D is entirely analogous to the
one-dimensional proof, we will prove this theorem below only for

the 2-D case of interest.

2.4.2 Relevance to VLBI Data Analysis

‘ Since all celestial emitters of radio waves have a
finite physical size, their brightness distribution functions have
! non-zero amplitude only over a finite, bounded region on the
plane of the sky. In two dimensions, we will refer to such a
function which is non-zero only in a certain portion of the plane

of definition as being "region-limited".

]: As discussed above, an interferometer measures the

visibility function which is the Fourier transform of the brightness

~

function. But since all brightness functions are region-limited,

- -—

then a generalization of the Sampling Theorem to 2-D would imply

that sampling V(u,v) in some periodic lattice fashion over the u-v

plane would provide sufficient information to reconstruct B(x,y)

L e — g -

exactly, provided that the sampling cells were acceptably small,

R

g e R e —————— * o W s

The ramification of this theorem for radio interferometric observa-

Rl W,

tions using aperture synthesis is obvious, and with this motivation

we now consider the 2-D Sampling Theorem in duviail,

- . o I ——? S~
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2.4.3 Derivation and Discussion of 2-D Sampling Theorem

Consider a region-limited brightness function:

Blxy)  Ix[stys Iylsty
B(x,y) =
0 otherwise

Let 8(x,y) be the periodic extension of B(x,y), such that
B(x+pLx, y+qu) = B(x,y), if p,q are inteééré.. We can expand

g(x,y) in a 2-D Fourier series: —
& & -s 4+ Amwmy,
pop=f 5 Co e TR
nerg M "9

Notethat 2Lx and 2Ly give the full source extent along the x and y

axes, respectively. The Fourier coefficients are g1ven by

Com = 25 ""‘ e 3 {— f"“ e F""'”}

j‘ arm; Rmm
d (x, 2hy
4'L;‘~s y Bxy) et .
In the region of interest, B(X,y) B(x,y), SO we may write
“ ; (270 )
T Com € " ZEn T TZNy/ Fer ISl
BWX \3\- Meow WME=D |‘l\$L-‘\
M) =
o) OTHERWISE

Let V(u,v) be the visibility function which is the Fourier transform

of the brightness function B(x,y):

B x4 =E~\E~’ C'mmw“’ V(u,u—)

Since B(x,y)=0 outside the regionlkax,lykiy, we have for the

y
in erse transformation:
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Lu ply .
(2T(uUx+vy)
Viuw) =Jdxfds e B(x,y).

Consider the particular values of V(u,v) at the regularly
spaced lattice points
( s u._v_'!\_)
W= Zik ' VU ? 21).
Note that the point (0,0) is included in this set. At these points,

we have _
2Tn% é:1rVngg)

*
“w 2L, Z
V(—;’:_t.——-z‘. fx .\g B, Y) e Ly

Comparing this equation with the previous one for Cn m shows that
C"""W' - 4L;L\j (ZLI ZL’)

Thus, we see that a knowledge of periodically sampled values of

the visibility function in the u~v plane provides all necessary

Fourier series coefficients Cn m to completely determine the

function B(x,y} exactly. Hence we can write

- (E0oA . 2Tmy
B(x4)= Zm; Con € i( Zie T u,)
© “ -L(zZL;-*?g:C;:

TR VED zR)e

0f course, exact knowledge of B(x,y) implies that V(u,v) is also

completely specified from the Fourier transform relations.

We therefore conclude that for a region-1imited brightness

function, knowledge of periodically sampled values of the associated
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visibility function completely specifies B(x,y) and V(u,v). The

proper lattice constants for the periodic sampling lattice are

AU = ZL = luwnz AU"‘E%,'-':TW:;

where Tu,NI and Tv,NI refer to the "Nyquist interval" Tenqths

along the u and v axes, repectively.

Because B is a real function and V is therefore
Hermitian, we can further reduce the sampling requirement. Only
two adjacent quadrants need be periodically sampled in order to
reproduce B(x,y) and V(u,v) exactly, since samples of V(u,v) in
these two quadrants are related to the sample values (on a regular
lattice) in the other two quadrants by the Hermiticity property.

If we write
V(75 38)= Ve Ghgn) + Ve (30 3)

and expand the complex exponential in terms of sines and cosines,

we can simplify to get

B(x v) i 41_‘\_5 {V (2.1. ) O)cos 21 'F 2", N (F, D)) st‘)T-z-E;_}

+7—1’£ m“{\lv(ﬁ F1e )°°52“(zl* zu\“'\‘&(};z\.\)
. SINm-( 3I-; ?&")}
Note the similarity of this result to that obtained for Ba(x,y),

and Tv,m

intervals, and we replaced the average values by sample values, H

if the averaging intervals T were fixed at the Nyquist

u,n

then the results would be identical (since un=%fg and Vm=g[& now).

- —— et e \ RN .
N ) ) ]




2.4.4 Aliasing

Conceptually, the aliasing effect in 1-D 1s identical
to the effect in 2-D. Therefore, we will base our discussion and
work in one dimension, and state the very obvious generalizations

to two dimensions.

In one dimension, the Sampling Theorem may be written
for a real function B(x) which is band-]imited‘h1|kax, as:

B = Taz Ve le) + 21::2 .{“. (m'r,‘,) cos dMmTuz X
+ Vil8\Tog) S8 2T Tz X

where TNIE }E; , and 2Lx is the full 1-D source extent. The

S

expression written for B(x) is recognized as just a standard
Fourier series expansion for that function in its domain of

definition [-Lx,Lx]. Note that the periods, X, yr» Of both

P,N
trig functions are defined by
A . 2hx

xe, NI & nTez -

The fundamental period occurs for n=1, with all other values of n
producing shorter harmonic periods. Since all terms in the sum
have the common beat period Zi.x, we see that the superposition of
the various harmonic terms produces a function 8(x) which is
identical to B(x) in the interval ['Lx’Lx] and reproduces B(x)
periodically along the entire x axis with period xp=1,NI=2Lx in the
bands [er,(r+2)Lx], r=odd integer. This is, of course, the
standard periodic extension of a function when represented by its

Fourier series. What 1s important to recognize for our considera-

e i, L




e —————

© o i A e S

~

- -——
L T P

i ———e g P

—.

Rty W,

68

tions is that the particular choice of TNI for the sampling
interval produces a Fourier expansion which properly "fits" into the
true domain of definition for B(x), ['Lx’Lx]' 8(x) reproduces B(x)
in each band without interference between bands i1f we sample at
intervals TNI because all terms in g(x) have the common beat

~

period 2Lx. Figure Z.5a illustrates this case.

Suppose now that we consider sampling V(u) at intervals

T<<TNI' The Sampling Theorem result then is

B0 = Te Vo (o 4 2T E (Vo (oTe) os 2 x
+ \/a(wﬂ:) Sl Mnle x} .

The period is, now

\ |
Xo< = 3T > 2

and the common beat period is

4 .

T Taz -
s<(x) is the periodic extensijon for this Fourier series which
matches B(x) in the interval

and reproduces B(x) an all intervals

[ L2
ZT ' 2T

with r an odd integer. We immediately see that, since the
period here is greater than xp=1,NI we still prevent interference
between bands. Note that we may define a band-1imited function

B (x) which is identical with B(x) in [-L,,L,] and zero outside

this interval, but whose basic domain of definition is chosen as
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[-Lx-éx, Lx+5x],5x>0. If V_(u) B_(x) then the sampling theorem
properly applies here with T<,N15§Tti:3;7" But clearly V(u)=V_(u)
since the Fourier transform integral is performed over the entire
one-dimensional space. As illustrated in Figure 2.5b, B((x) is
identical with B(x) in ['Lx’Lx] but its periodic bands are now
spaced a distance apart instead of being juxtaposed. Sinée we are
really interested only in the function B(x), we conclude that sampling
at T 5TNI is capable of reproducing B(x) exactly in the regidn of

interest.

Now consider T>>TNI as the sampling interval. The component

periods in 8_(x) now are
\ |
Xey = T < T

" and the common beat period for all terms is

£ < 4 -2
We have a situation where other bands have a non-harmonic overlap
into the interval ['Lx’Lx]' and B(x) is not exactly reproduced in
its basic domain of definition. Thus, sampling at T>TNI causes
distortion of B(x). We will presently show by an argument using
the Convolution Tineorem [based on a similar discussion by
Bracewell (1978)] that the effect of using T is to simply cause
B,(x) to be a superposition of overlapping bands wherein g (x)
would match B(x) except for the overlap effects. It is not
possible to deduce the true form of B(x) by compensating for the

overlap in some way, and thus sampling V(u) at T>TNI results in an

unrecoverable loss of information on B(x).




——— e

A

We can concisely prove these observations by using the

Convolution Theaorem. We define the Sampling Function by

g ('15") = T;%_, § (w-nT)
where T is the sampling interval. Sampling V(u) at intervals T
is equivalent to multiplying V(u) by III(%J. Denoting the sampled
visibility function by Vs(u), we write Vs(u)-v(u)-III(¥9. Let 8(x)
be the Fourier transform of Vs(u). Then the Convolution Theorem

gives us

By =¥ Vg = T {veu) # ¥ {3
- B x ' {mr($)}.

i

The Fourier transform of a sampling function is another sampling
function, III(u) = ITI(x) [see Bracewell (1978) for a discussion
of the proof of this transform pair]. By the Similarity Theorem,

we then have
F{mr (%) =_"i:im8 (A-F) = TI(TX).

S

) ﬁcx\ = B(X) & T IL(TX)
= Dﬁ' Bu) [g_‘&Lx- -'3)]

= [ 4 Bod §(r-x-2)

Nevd

=_f,: Bla-3).
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This result clearly reveals the effect of the size of the
sampling inteval. For B(x) band-Timited in ['Lx’Lx]' then ciearly
TNI=2%;-causes 8{x) to be a non-overlapping periodic extension of
B{x). Similarly, for T<Ty» e simply widen the bands, as was
illustrated in Figure 2.5b. For T>TNI, then %<2Lx and we see that
the bands now overlap, producing a distored version of B(x) in the
interval of interest [-Lx,Lx]. The present statement of this result
lucidly shows that the distortion results from superposition of
different bands, each of which may be conceived as containing one

undistorted period of B(x). {See Figure 2.5¢)

The term "aliasing" has been used to describe this effect
because sampling at intervals greater than the Nyquist causes
spatial frequencies in different bands to mix due to the overlapping
of the bands. It is therefore said that higher spatial frequencies
are posing as lower frequencies, and hence the higher frequencies

have lower frequency aliases because of the overlapping.

The generalization to two dimensions is quite straight-
forward. Samplina in 2-D is performed on a rectangular lattice in
the u-v plane, and sampling along any line of lattice points in the
u or v directions i{s independent of behavior in the other direction
and hence exactly equivalent to the 1-D case. We can therefore
think of the 2-D lattice as being a direct product of two 1-D

lattices. We then have

P(x'lj) = Blx\Y) * T.T-IL (‘ﬁ*.n‘i)

ad ke
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where

IT (X, o) = TC(Tax) 7L (oY)
= iﬁj‘-‘; S(x~‘=‘3,-;)]°[‘fw;‘+: §(y-F)

The result is:

B =E § B(x-Z,y-2).

™mTap

We immediately see that all of the previously discussed
cases for one-dimension apply to each argument of B independently.
In other words, for true recovery of B(x,y) in the region of
. 21
interest {[-Lx,Lx],[-Ly,LyJ}, we must have T, < T, nr = iy and
Tv < Tv,NI = 2%— . If the sampling interval along u or v exceeds
its relevant Nyquist length, then aliasing effects occur and
B(x,y) will be distorted along the respective direction (i.e.,
if TufTu,NI but Tv>Tv,NI’ distortion of B(x,y} occurs only
parallel to the y axis).

We will call a rectangular cell with edge lengths Tu NI
and Tv NI 2 Nyquist cell. When we say that a given cell is smaller
than the Nyquist cell size, we mean that TufTu,NI and vaTv,NI

for the given cell. A cell which is referred to as being larger

than a Nyquist cell will have Tu>Tu,NI or Tv>Tv,NI’ or both.

2.4.5 Effect of the Epoch of Sampling

Heretofore, we have used the Sampling Theorem with the
epoch of sampling at the origin, which is the conventional statement

of the theorem. We now investigate the effect of an epoch of sampling
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not based on the origin. Again, we will work in 1-D and state the

generalization to 2-D.

Suppose that we sample V(u) at regular intervals T, but
we do not center the samples on u=0; this is equivalent to shifting
the Sampling Function by some increment a, with O<a<T. Then

I (%) —IC ($-=).
The sampled visibility function Vs(u) is now

Vg(w) = V() TIT (% -a).

From the Shift Theorem, we have

The Convolution Theorem then requires that the Fourier transform

of Vs(u) be:

Ba (0= $7Vs Lu§}=B(x) x €T Iy

=T ix‘ Bx-x) c.zzm-x‘[#z*“x._ ?—')]

% ..iZﬂTqua'
.. B(x-%

As before, B(x-%) is a periodic extension of the band-1imited
function B(x). MNow, however, sa(x) has a complex factor in its
terms. Note that $<1, and if %-is irrational, then e-iZWn;
i{s non-periodic. If % is rational, then e"iz"n‘r is periodic

in n. Suppose that n is the integer period such that na=T and
o RTH +es) -2 Fn
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for any integer r. Then the complex function Ba(x) will have a.
1

5‘-
>

Bl

2TLx

period
n2Lx =

In particular, for T=T,., ea(x) has a period

—i—

2L,. Hence, if T<Ty,, no overlapping occurs, and we

1]

see that for n=0, we do in fact recover B(x) in the interval of

interest [-Lx,Lx].

j Consider the case T>TNI now. Clearly, we will have over-

! lapping as discussed previously, but the distortion now will be
far worse than when the epoch of sampling was at the origin,
because the adjacent bands which mix into the region of interest

i have complex weighting factors in them.

, The generalization to 2-D incorporates a translational
i . -

'! displacement of the epoch of sampling for ‘he lattice from
| (u=0,v=0) to (a,b). The result is .

-sz%me-i&W%w

/sa,'g, (xM) =':z‘w ;i'.‘ B(X'% ' 'j '%) (A

i The cases discussed above for 1-D apply separately now to each

5 coordinate.

‘3 | As a simple illustration of the effect of the epoch of
sampling in one-dimension, let us consider a case where a=%-for

the conjugate pair V(u) = sinc u  1-]x|=B(x) for |x]:1. We have

TNI = 7%; = .5, The complex modulating factor fs now e""", with

F period n=2. But
o
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e'i"" i +1  n even
-1 n odd

The resulting function sa(x) for T=Ty; is pictured as:

A Batx)

as compared with the standard Sampling Theorem result for sampling

ﬁ\ p&*\

epoch at the origin:

> X

14
»
-
- 4
'y
s o

Based on the considerations of this section, it is
considered preferable to use an epoch of sampling at the origin.
In our discussions, we will want to consider averaging cells with
dimensions both smaller and larger than the Nyquist cell. When we
represent the average value of V(u,v) over a cell by a delta
function at the cell midpoint, we are imitating the sampling process,
and hence the observations on the effects of cell size versus Nyquist

cell size are applicable. If we average over the entire visibility
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function with cell sizes equal to or smaller than the Nyquist

cell size, then aliasing effects will not be present and the
transform of the averaged function will represent B(x;y) except

for possible distortion due to the fact that average values were
used instead of true sample values. Averaging with cell sizes
greater than the Nyquist cell size produces greater distortion due
to aliasing ~ffects. As we have seen, an epoch at the origin
produces less distortion than a shifted epoch in cases where the
Nyquist size is exceeded, and we would therefore prefer to use

an averaging epoch at the origin (u=0,v=0) for these cases. Since
we will be considering various averaging cell sizes, and since the
epoch does not affect the result in the region of interest fof

cells smaller than the Nyquist cell whereas it may adversely affect
the result for cell sizes greater than the Nyquist cell sizé, we |
see that fixing the epoch of averaging at the origin for all cases
of cell size (including mixed cell sizes) is the best prescription.
It should be noted that in an actual experiment, it may not be
possible to choose an epoch of sampling at the origin. However,
although the elliptical tracks may not conform with a sampling or
averaging epoch at the origin, if the data are gridded onto a ﬂ

rectangular lattice, then it would be preferable to use a lattice

with epoch at the origin if such an extrapolation is feasible.
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CHAPTER 3

THE STANDARD FOURIER TRANSFORM METHOD

3.1 Statement of the Methed

In an actual experiment, V(u:v) can be examined over only
a finite portion of the u-v plane, and hence the visibility function
js effectively truncated. We will assume that the truncation is
symmetric in u and v (or has been made symmetric as previously
discussed). We have shown above that the Fourier transform of

the truncated and averaged visibility function is

‘§ (x,4) =i T Toe {[V,,,]rcos 2munx +[V, ], 3 Z-:ru...x:}

+ 2._:2- "{ Tam Toim {[Vm.“]r cos 2TM(Unk+ T Y)
+{V..), s~ 2m( u,‘x+u.,.g)}

where Tu n,Tv n are the averaging cell lengths in the u and v
directions, respectively; (un,vm) is the midpoint of the {(n,m}th

cell in which the average value is

[V ﬁ»w],* L[V

For completeness, we state the result for asymmetrical

truncation:

B (b o [Fa H O

.& qn..

For asymmetrical truncation, gs(x,y) will be compIeX.

We can easily show that, for a given truncation of the
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visibility function, the value of §6(0,0) is independent of the
particular averaging lattice which 1s used, and 1s in fact equal
to B(0,0), the origin value of the function resulting from trunca-
tion of V(u,v) alone, without averaging. We have shown that the

effect of truncating V(u,v) produces

4

=iZT(CuX+CoY) o Trh X To. Y
(X )= [ £ ) SIN -
Bl =BxY) % |e = L
where: ¢y = i1 coordinate value _of the midpoint of the non-truncated
portion of V(u,v)
b1. = Tength along the i axis of the non-truncated part of

V(u,v).

By the Convolution Theorem,

Bl ﬁﬁw & AT - T s, Tla]

Since the integrations are independent of x and y, we have, using
the definition of % | bo ))

Blxa0,4:0) =fc:?°‘“£

We can write Esfx,y) in a form which applies to either symmetric or

Corls
Yy 3
R Viwv).

v

asymmetric truncation,

N _ y g
BS (x,‘&):mz: %" M—r%'nTv:m[V.,\..,,‘] e AW (U R+ RmY)

B, '3 =M,
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where Z .T . = b z Tq-ma Lw

we-n, 3o,
(T:?f tﬁ:ﬂ"‘)’ (1'%':2 ig:~.~)= C. , ( +Z. -Er.m) (T"°+E_IT,~..) Co .

-

(or x=y=0, 'é‘(o,o) j‘;. g m['\? ]
1;
i?b - 'Tan[;mn{"f:;g;:\/""-—fn ./n 1: ‘L’qu“'{i

-nl-d.m- M,

YT Cod ,
fc Zdu f du- Viuv) ,”

Thus, EG(O,O) = B(0,0) = Volume under the visibility function inside the

truncation limits.

3.2 Illustrative Case: The Two Component Gaussian Source

We now want to consider a practical example to examine
the effects on resolution due to truncating and averaging the
visibility function. As our model source, we chose a two component
Gaussian brightness distribution function. This model source has
been chosen not only because of its relevance to actual observed
sources which have two or more peak components in the brightness
function which we wish to resolve, but also because it provides
an excellent case to study changes in symmetries, the vector
between the peak brightness points, and the width of the components

as functions of truncation 1imits and averaging cell sizes.

The basic form of the brightness function for this model
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source is

molen®?] _puftxen®ed®]
BlxY) = e + e

where w is a parameter characterizing the width of each component.
The Gaussian components have peak brightness of unity at the points
(-1,0) and (1,0). Figure 3.1 illustrates the cross-section of the
model source for four different values of w. Figure 3.2, a-d,
presents three dimensional views of the model source for the four
values of w, as well as their associated visibility functions.
(Note that these scurce and visibility functions are smooth
functions; any sharp edges in the 3-D plots are due to the mesh

size used in the plotting algorithm.)

3.2.1 Exact Brightness Distribution function and Its Transform

The Fourier transform of the brightness function

Y 2 s 2 %
Blxy): C--rm[(x N+ y?] .e wwl(Xe)*+Y"]

is derived as follows. Lét
Viuvy= ¥ {B(*.‘i)}

Note that _rrw [x2eyt]

B(xY) = € # [ §(x-1)+{(xe )]

By the Similarity Theorem and the Separable Product Theorem, we
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immediately have

“Tw L+4?] -E V']
fi{e }= Se

and by the Shift and Addition Theorems we have

Ej { §(x-1) + §(x40)} = 2 cos 2,

Hence, by the Convolution Theorem, we get

~Llu+v?]

\J’(l&,tf)-=. %E; cos 2TU ([ .

Note the ease with which this transform is obtained using the theorems

as opposed to a direct calculation.

Since thg double-Gaussian model that we are using is not
a truly reglon-limited function, one cannot properly define a
Nyquist cell size. However, the Gaussians fall-off sufficiently
fast so that we may define effective 1imits for the extent of B(x,y)
in the x and y directions. This effective length will be specified
as twice the value x_ for which B(x,y) has an amplitude less than
or of the order of .001 of its peak amplitude for all X3X . and
similarly for Ve The effective Nyquist interval lengths are

then

1

- ) -
wND T 2x, A TyNr =y

T

Table 3.1 shows the effective cut-off lengths and corresponding

Nyquist intervals, as well as the peak values of B(x,y), the
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location of these peaks in the brightness function and the half-
widths [defined as half the peak value in B(x,y)] for the four

width values w used in this study.

It was desired to examine cases of both severe and
negligible truncation of the visibility function. Since V(u,v) is
sharply peaked and falls-off very fast for w=.25, whereas it decays
quite slowly for w=10, it was decided that a common truncation
limit of [ul=1 and |v|=1 for all cases studied would achieve the

goal of examing both radical and minimal truncations.

Three different sets of averaging intervals commensurate
with these truncation 1imits were used. One set, designated A,
used averaging cells which were all smaller than the effective
Nyquist cells for the w=10 and w=1 cases (but were larger than
the Nyquist cells for the other two w cases). Set B used céll
sizes which were all greater than the effective Nyquist cell
stzes for all four w cases. Set C used cell sizes which were a
mixture of cells both smaller than the smallest effective Nyquist
cell and larger than the largest effective Nyquest cell in the
four w cases. Al1 cells were taken to be sauares, i.e., the u
and v edge lengths of any given cell were the same. The three
different averaging schemes are summarized below, where 1t is
understood that the intervals along the v axis are the same as

the intervals along the u axis which are 11lustrated.
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3.2.2 Method of Analysis
‘ A11 of the program references in this section refer to

Program A of the Appendix.

‘ The function B(x,y) was obtained by performing the

| relevant convolution integral numerically. Since the magnitude of
B(x,y) is less than .001 for all x and/or y values greater than
3.5 for the three cases w=10, 1, .5 (the corresponding value along

the x axis for the case w=.25 is 3.96), the highest x and y values

for which B(x,y) can be caluclated must be 3.5 less than the

—— e o e Pl o

magnitude of the x' and y' 1imits on the respective integrals. In

~

other words, since we must nut a practical bound on how far out we ]

-
e e

go to integrate over x' and y' in the convolution integral, we 3

must insure that the chosen limits are sufficiently far out so

- p ——— @ -

that effectively all of the volume under the shifted function
B(x-x', y-y') in the intergrand is included in the numerical

integration. The falling sinc factors, which are less than unity

except at the origin, actually help to taper the integrand,
]
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sinc(tu,nx) sinc(Tv’my) B(x-x',y-y;), so that the cut-offs at 3.5

are somewhat conservative.

The expense and CPU time involved in performing the
convolution integrals to a reasonable level of accuracy (about
.05 of true values) limited the range of x and y values from 0
to 2.5 in increments of .25. Furthermore, é(x,y) was actually
evaluated only at lattice points in one quadrant. This was
considered acceptable because the integrand arguments are even in
x and y, and truncation of V(u,v) was also performed symmetrically,
so that the values of é(x,y) in one quadrant should be symmetrically

related to its values in the other three quadrants.

The effective 1imits used for both the x' and y' integra-
tions were -6 to 6, in accordance with the comments above. A mesh
with step size .1 in both x' and y' was used to numerically
evaluate the integrals. The simplest integration technique of
summing over cell volumes (value of integrand at cell midpoint
times the cell's base area) was used for speed; improved accuracy
would involve at least a fcurfold increase in computer time. To
generate onevalue of é(x,y) required14,400 iterations of the
summation loop to evaluate the integrals numerically,, so that
even the very sparce x-y lattice containing 100 points required
considerable computer time. Attempts to increase the density or

extent of the lattice points examined were considered cost-

ineffective for our purposes here.
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Figure 3-3, a-d, illustrates the visibility function after
truncation. Truncation is negligible for the cases w=.5, .25, and
therefore the long convolution integral calculations were omitted

for those cases.

To obtain an overall comparison of é(x,y) with B(x,y),

the following parameters were defined:

ﬁlx dy [Bu)- "E(x.u)]
A

w/fo,Eg [Bony- By

Normalized Deviation =

Normalized Root Deviation Squared =

{ where the integrals are performed over a square region of the x-y
plane whose area is A. The division by area was included to
normalize the result so that comparisons could be made with other

i cases where the section of the x-y plane which was examined had a

v different area. Since we evaluated B(x,y) only over the region O

to 2.5 along the x and y axes, the integrals above had to be

numerically performed over this single quadrant. The mesh step size

~

was .25 along the x and y axes (the available data values for B(x,y)

-
o a

have this increment step), which is quite large. Therefore, the

calculated parameters should not be viewed as very accurate

quantities here, but rather as quantities which are only sufficiently

o —— ey P -

3 accurate for comparitive purposes with other similarly calculated

parameters.
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Other tests (such as peak locations and halfwidths) were
not performed for ﬁ(x,y) due to the prohibitively long calculations
needed at each step of the iterative procedures required for such

tests.

Numerically performing the averaging process for the
visibility function was considerably faster and more accurate,
using a mesh with step .025 along both the u and v axes. The
visibility function was numericaily integrated over an averaging
cell and the average value calculated by dividing by the averaging
cell's area. Only the upper half-plane was used (by virtue of
the Hermiticity relation) and the values of ﬁs(x,y) were calculated
using the standard discrete Fourier inversion method discussed

in Chapter 2.

Several tests were then performed to study the function
ﬁs(x,y) and its relation to B(x,y) and E&(x,y). The two main peaks
in ﬁs(x,y) were located using an iterative search procedure
incorporating the subrotine VAO6A of the Harwel Library.6 The

accuracy control for this calculation was specified by the condition

A2 £ 2 S 2
19 B1%= [28u]", [ 25BN o)
oR o4
for the iteration to terminate.
The magnitude and angle (with respect to the x axis) of the
vector connecting the two peaks was then calculated. Since the
half-widths of the separate Gaussian components are not well-

defined in the x direction due to overlapping of the two components,
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the determination of the half-width for each component in §5(x,y)
was performed in the y direction where half-width is well-
defined (i.e., unaffected by overlap effects). The half-width

was defined as the distance between the y value at a component
peak and the y value where the brightness magnitude is half the
peak magnitude. The half-widths were determined by iterative
search, and the error bound criterion specified that the magnitude
of ﬁs(x,y) be within .01 of the true half-width magnitude for

the iterative search to terminate.

Overall comparative parameters were defined for ﬁé(x,y)
in an analogous fashion to those used for ﬁ(x,y). For comparison

with the exact brightness function, the parameters were:

ﬁ*fc‘a [Buw- By
A

Normalized Deviation =

\/ Jafuy [Bra)- ﬁs(w]i
A

Normalized Root Deviation Squared =

The square region {with area 64) from -4 to 4 along both the x and

y axes was examined, and the mesh step size used to perform the 1

integrations numerically was .2 along both the x and y axes. Again,
the results here should be viewed as sufficiently accurate for

comparative purposes but not highly accurate in themselves.

For overall comparisons with ﬁ(x,y), the following parameters

were used:

. .
-
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_};x y [Bixy- B xy]
A

Normalized Deviation =

V fixJag[Bug- Bowy] *

Normalized Reoot Deviation Squared = ¥

the same first quadrant region and mesh size as used for the

comparison of B(x,y) with B(x,y) was used here.

Eé(x,y) was also examined to see if the reflection

symmetries through the x and y axes which are present in B(x,y) are o

CITIO

preserved in ﬁs(x,y). The region from -6 to 6 along both the x

and y axes was examined using a mesh with step size .1 along each

direction. The criterfon for symmetry between two reflection
symmetric points was that the two values of Qs(x,y) agree with

each other to within .001, and the condition for an overall judge-
ment that B (x,y) was symmetric under reflection through the x and
y axis was that no more than 10 pair of points, of the 7200 pairs
examined for each reflection symmetry case, be unsymmetric. This
tolerance of about .1% was inccrporated to allow for any possible
rounding errors or other inaccuracies in the computer's calculations

which may have been present and incorrectly imply an asymmetry.
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3.2.3 Results

Table 3.2 summarizes the results of the model study.
Every case was found to preserve the reflection symmetries through
X and y axes, and therefore these results were not included in
Table 3.2 Similarly, the component peaks were symmetric about the
origin in all cases studied, so that only the second component

peak (at positive x value) was included in the Table.
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3.2.4 Observations and Discussion -

Preservation of the reflection symmetries of B(x,y) in
éa(x,y) is an expected result, since V(u,v) was symmetrically
truncated and the averaging cells were symmetric in the sense that
T

T and T T

UsN ' Uy=n vam Tv,-m®

The component peaks in §6(x,y) are generally not coinci-
dent with the peaks in B(x,y). In some cases, the peaks are seen
to shift inward along the x axis toward the origin; in other cases
the shift is outward; however, in all cases, there is no shift in
peak location along the y direction. Peak shift is most severe for
averaging scheme B, where the cells are all larger than the
relevant Nyquist cell size (for all four w cases). Ih‘an extensive
study of about 300 one-dimensional sample cases, it was found that
peak shifts result from truncation effects alone as well as from
the combined effects of truncation and averaging. Qualitatively,
we can account for peak shifting by realizing that a peak in B(x,y)
results from the overall cumulative reinforcement of the component
sinusoids of which B(x,y) is composed in its Fourier expansion, and
therefore omitting some of these sinuscids {due to truncating V(u,v)],
altering their relative amplitudes [due to averaging V(u,v)],
and using a limited set of "non-Nyquist" expansion "frequencies"
(specified by the aveaging cell midpoints) can give rise to a rein-
forcement peak at a point which is displaced from the peak in
B(x,y). Three cases in the model survey show a peak in ﬁé(x,y)

coincident with the peak in B(x,y), to within the accuracy limits
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of the calculation as discussed above. Two of these cases are for

averaging scheme A, where the cells are smaller than the respective
Nyquist cell size. The truncation of V(u,v) was not severe for
these cases. A very small shift (i.e., undetectable to our

accuracy 1imit) is therefore not surprising for these cases. The

third case involved radical truncation of the visibility function
and used averaging scheme C which incorporates mixed cell sizes;
apparently, the peak shifting influences of truncating and
averaging V(u,v) tended to cancel in this case producing a very

small (i.e., undetectable) net peak shift.

The peak magnitudes of ﬁs(x,y) are seen to differ from
the peak magnitudes of B(x,y). In most cases, the peak magnitude
of ﬁs(x,y) was less than the peak magnitude of the corresponding
B(x,y); however, in two cases the converse is seen to hold. For
w=10, all three averaging schemes show peaks in B (x,y) which are
significantly less than the peak in B(x,y). The visibility function
was severely truncated in this case, and therefore we would expect
that the omitted Fourier components had significant amplitudes,
so that a peak in B{x,y) results from a greater number of reinforcing
Fourier components with significant amplitude than are available to
form a peak in Bs(x,y). (The relation §6(0,0)=§IO,0) for any
averaging scheme holdshere. Note, however, that different averaging
schemes with the same truncation 1imits can lead to different peak F
brightness magnitudes here because the peaks are not at the origin.)

The effect of truncation is only one factor accounting for the differ-
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ence in peak magnitudes between és(x,y) and B(x,y). The relative
amplitudes and "frequencies" of the component sinusoids in és(x,y)
are determined by the particular averaging scheme which is used,

aﬁd these factors also influence the peak brightness. For w=10,

the effect of truncation is dominant, whereas for the other three
cases, the peak magnitudes are determined by a more balanced
contribution of the above cited factors. In particular, the two
cases where the peak magnitude of és(x,y) exceeds the peak magnitude
of B(x,y) can be qualitatively viewed as cases in which the combined

factors result in greater reinforcement magnitude for §5 than for B,

The halfwidth of és(x,y) js similarly influenced by
truncation and averaging effects. From the previously discussed
theorem for the effect of truncation, we know that truncating
V(u,v) leads to a broader and less sharply resolved function B(x,y)
as compared with the true source brightness function B(x,y). For
the case w=10 where truncation was severe, we clearly see that the
truncation effect is dominant and the halfwidths are all larger
(by about a factor of 2) than the halfwidth of B(x,y). In the
other cases where the truncaticn and averaging influences are more
balanced, the differences between the halfwidths of éa(x,y) and
B(x,y) is less severe than the case w=10. (These differences are

about 10% as compared with the factor of 2 difference for w=10.) %

The parameters defined to enable overall comparisons to

be made between the various cases confirm the expected results that,

aenerally, truncation without averaging yields a betver approximaticn
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to the brightness function than does truncation with averaging, and
the smaller the averaging cells the better the overall approximation
of ﬁé(x,y) to B(x,y). Again, these are general trends and it is
possible (as occurred in several cases) for éd(x,y) to give a
better approximation to B(x,y) than does é(x,y) for some

particular choi;es of truncation limits and averaging scheme. This
observation is supported by sample cases among about 300 one-
dimensional test cases where ﬁ(x) and §6(x) were plotted and
visually inspacted for goodness of fit to B(x). The entries in
Table 3.2 clearly show that averaging scheme B (cell sizes all
greater than the Nyquist cell size) was always significantly worse
in fitting B(x,y) than were the other two averaging schemes where

some or all of the cells were smaller than the Nyquist cell size.

Having obtained a qualitative understanding from the
model study of the effects on the brightness function resulting from
truncating and averaging the visibiiity function, we now analyze
these effects quantitatively in Chapter 4 to further elucidate

the nature of these effects,
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CHAPTER 4

THEORY OF TRUNCATION AND AVERAGING EFFECTS

Having seen the effects of truncation and averaging
illustrated in Chapter III, we now take an analytical look at the

causes of these effects.

4.1 Periodicity Considerations

Our discussion on the periodic nature of the brightness
function resulting from sampiing or averaging the visibility

function has thus far been concerned with a fixed sampling or

averaging interval. We now discuss the periodicity phenomenon for

irregular intervals, i.e., intervals of varying sizes. We will

work in one dimension and then generalize to 2-D.

Theorem 4.1: Consider a visibility function V(u) and
: let it be averaged, with averaging intervals in the set'{Tn}. Then

i* és(x) is a periodic function in x, with period
‘ X, = LML 133
' N p u,' “n#0
]

5; where LCM = Least Common Multiple.

Proof: For the general case of truncation and averaging
(including asymmetric truncation) we have




105
A Na _ _i2TMim A I
S(x) =.§_~"T:“ [Vm] e "

: Na

| =3 T { LW, cos2miax 4 [V,]; s 27unx]

nz-AN,
i ‘_[_V.,,]\, sin 2 TTU X = [Vm]i cos 2y, x}} )

. For a given n, all trig functions have the common period Xp n = I%—J.
.‘ ’ n

. The number of distinct periods is just (N2+N]+1). The period of

B will therefore be the lowest beat period of these "component"

periods: ;

| X, =remlxp,) = rem || .
| : e [-M,N]

We specify n#0 because u°=0, for which the trig functions reduce to

constants. Therefore, the n=0 term is automatically commensqrate

with the common period of all the other components. Now, u, is the

midpoint of the nth averaging interval, and if Unin is the lower
o truncation limit, we can write

Qe “nel
“ "M_,“': u‘\ml-u"'z 7:—"")-2‘ .
i o3 -N,

If we use a constant averaging interval T and truncate

symmetrically, then

;
|
‘ n € {f'rl) PQ]

d -

" U = Ui + 2. T + T

‘5 ns-N 2

i = Uy, + (- 14N +) T + L

= u*\\'m + LN"'M"'%)T

‘,.._.-,-..4-/ -———— v
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Then,

X P LC"‘\[\ u.ml +(No~n+t)‘|'n~..¢o'

= LCM [] P f(a.Ni-Z*nH)T' ”w.so :

But,
zu-w\.-‘ ='<“~“* - N.‘;_‘) - - (l”"’l) T , Se

e
Xp= L,C.M[l-'% “ZN-1 +2N+2n+) \].,*,: LW[\JF':\RHM“,

| =T -
This agrees with our previous results for fixed T, including the
Timiting case where V is not truncated so that N+ (provided that

Néo for then }fo).

In two dimensions, we have

A N M —
Bex D=L L Tam Toem L Voro] ©

NE-N Ws-M

-2 (Ua % 4 0haY)

Clearly, if we fix one variable, say y, then ﬁc(x,%ﬁ is a periodic
function in x with a period

Xp= LCM[\ -'\‘7:\] e [-N,a]

‘nygo

exactly analogous to the 1-D case considered above. Thus, both
orthogonal components of the two dimensional brightness function

satisfy the 1-D periodicity relation independently.

In a real experiment many different cell sizes occur,
and their midpoint coordinates generally do not form a set whose
inverses have a low Least Common Multiple. For example, if two values
of ll—nl in the set are 1 and .617, then their LCM is 617, without

even considering other midpoint values. This observation leads to
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the conclusion that the x and y periods of B (x,y) will be very large
for a realistic case, and hence aliasing effects should not be
important (unless the data is gridded onto a regular lattice with

cell sizes greater than the Nyquist cell size).

4.2 Effect of Truncation Alone

We have previously shown that truncation of the visibility
function V(u,v) into a rectangular region with sides bu and bv’ and
center at (cu,cv), results in a brightness function B(x,y) given by

%(x)\”"ﬁ:ﬁﬂ, c-iCW(Cu%'-\-Cwﬂ') s b X’ alnﬁi:u;i'
e T Ty
. B(xx4-9),

where B(x,y) © V(u,v). B( x,y) exhibits ringing, i.e., it resembles
B(x,y) (to an extent depending upon the severity of truncation), but
with truncation-induced oscillations as a modulating factor, and B

is smoother than B(x,Y).

4.3 Effect of Averaging Only

In the next several sections, we investigate the effects
of averaging over the entire visibility function and averaging a
truncated visibility function. Initially, we will work in one dimen-
sion with a fixed averaging interval size. We then generalize to

the case of irregular averaging intervals, and finally we will

generalize the results to two dimensions.

:
i
!
é
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The following theorem will be considered our basic theorem

relating an average value of the visibility function to the true
source brightness function. We will later formulate an algorithm
which uses the information on the effect of averaging conveyed by
this theorem in an attempt to improve the brightness function
resolution by accounting, to some extent, for the fact that V(u,v)
has been averaged. The standard Fourier inversion method does not

incorporate this information.

Theorem 4.2: For the case of averaging with the epoch
of averaging at the origin, each average value of the function V(u)
can be written in terms of a definite integral over x which includes

B(x), the true conjugate function for V(u), in the integrand.

Proof: Let V(u) be averaged with integer index ne[-=,=]
denoting the nth averaging interval with epoch (n=0) at the origin,
such that the sign of n denotes the relevant half-axis on which a
particular interval is located. The nth average value of V(u) is

given by

Unt
[V‘h] = ".FL T <u V(“) .
TR

We can replace V(u) in this expression by its Fourier transform

elation:
r ° 1Ln+'IEL

- 2 ¢
19202 %) g e Lk <™ 3],
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We assume that the order of integrations can be reversed (which is
true for analytic functions, and we will justify this even for the i
j case where B(x) is a generalized function, say representing a point

source). Then, i
u‘ T"h !

[V.)= faxax)[f ke .;Jexscx [= [:*1%
ks

7!“7' —Lfr-ux
= 7= [ dx Blx erru..x e’ i
™ o0 B ) ™ 2i ) _
+[ BTUAX ST

j_:olx Bx) sme ToX @ {RTUAX
[ [;X Bx) sime T, X cizﬂux _] - \? { BX) s"‘c_l;'\'x}

e u‘ ‘\‘“-n

Note that if we average with a fixed interval T, then un=nT. We also
note that if B(x) is a band-limited function in the interval [-Lx,Lx],

then the definite integral's limits need be only from 'Lx to Lx.

We must now prove several intermediate results which

will be needed in our development.

Theorem 4.3: - T | ®
L, = 7L §(x-F)
Proof e
TL §(-F) = T ()
Now,
¥ {III.(‘T'XS} =+ 7T (%) ‘j‘f.o §(u-n7)

- . . I PR S BN \
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Hence,

© ) iy “Tx
FL_S(x-3) =L e

“Ne-ad

Qualitatively, we see that this result is reasonable because if x=%,
then -
~L@TNnT(TF)

< =1
so the sum is infinite. However, for x#¥3 the infinite sum over

sines and cosines with varying phases will vanish. u

Corollary 4 .3A:

_,_"Zﬂ\ c_zzrn'rx__z c.;zrn‘rx sm T NT (x-'2)
wz-N+G - T (R

where N and D\ are integers.

Proof:
N+Y
- [ % w-\\'T
- =
m&mﬂu nT) ———( ) ’IT‘< SNT

Then analogous to the previous proof,

g-l NEW S (- \_‘_)} -'Z e _£21‘~n‘1‘x?

"n'- n=z=-N N+l

But, by the Convolution Theorem,
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| o k2T ) TX 50 2ENTY L
-ﬂx c '——?;;—" Z J(X -x'-

= _%f C-:ZZTT&T(X‘ -r) 504377'”7'(:(-—:—)

(X E)

T=of

Comparing results, we find

T 23 eI aTNTx )
“nz-e T (X~ 1'1)

Corollary 4.3B:

T z e ~LRm A TR _F  smRTNT(x-3)
=N nz-o T(X-2)
Proof: Setting®l=0 in Corollary A, this result is

obvious.

We can now apply these intermediate results to prove

several theorems on averaging effects.

Theorem 4.4: The effect of averaging V(u) over its entire
domain with constant averaging interval T is to form the periodic

extension of B(x) multiplied by sinc(Tx).

Proof: As previously defined,

Fouw=E T [7.] §lu-w
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Using Theorem 4.2 for [Vn], we write

Pw=TT [Ex'B(x') smeTx' € ,zan §(u-u,)
Now,

Be(x)= $7'[ Fow)
BS(X) f du € dm"x{TZ [ f dx Bl swc T '€’ TXJ g(u-ung}

NET -ed

. r _iRmnTx’
= 7§ e T W'Bu)aeTx' e

For averag1ng with the epoch at the origin, up =nT, so0 we can write

B&(X\ TZ ‘/ZX B(x)smc,‘r,( e"z'ﬂ"’)T(x-x}

z-00

= TEx' Bx sine T/ f e-'—ZW"nT(X -xX")

‘Nz -0

clx B (X’ sme Tx 2 {[(x x')- “2‘-]

- -
where we used Theorem 4.3, So,

'és(x) = L B(xB) s T2

Ax ~a0

This is a periodic extension of the true brightness function modulated
by the sinc factor. HNote the implications for aliasing if B(x) is

band-Timited in [-L_,L_] but Trs-, or if B were not band-1imited
X’"X 21y
at all.
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We now consider the important case in which the visibility
function has been symmetrically truncated and averaged with epoch

at the origin.

Theorem 4.5: The effect of averaging a function V(u) {
which has been symmetrically truncated is expressed by a convolution
jntegral which contains B{x), the true conjugate function to V(u),

in its integrand.

Proof: If V(u) is symmetrically truncated and averaged,

we have

)= Tiﬂ [9.] €0ewnT)

e T 28

where un=nT for epoch at the origin. Proceeding exactly as we did
in the previous theorem, we get
N .

-és(x)= T_/_;"' B(x") schx,Ewc-drmT(x-x'.)
Since the summation is no longer from -«,+=x, as it was in the
previous theorem, we cannot simplify the convolution integral any
© further. Noting that
i 6_;21r~n'r(x—x')= |+ 22"{ co.s[Z"T'nT(X-X')]'

w=-N "t

we can give an alternate statement of the result:
il i ' -T‘I N '
ByW=T dx Br') smwe Tx [I + 2L cos ZmnT (X=X )]
- e/
The presence of the cosine factor accounts for the ringing expected

when the visibility function is truncated. A third alternate form
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can be written using Corollary 4.3B:

Bs(x) Z x' B smeTX' st'trNT(x-x'-?,-_).
e = 7 (X-x'-2)

4.4 Examination of the Theorems

We now examine the theorems in further detail. We will
check for consistency with known results for the limiting case as

T+0, and then discu s the case where V(u) is a linear function.

This case is important because, if V(u) is linear, then averaging
and sampling produce identical results, and thus the distortions

predicted by our theorems should vanish for T=TNI'

4. 4.1 Limiting Cases

If V(u) is averaged over its entire domain, we found

B, (x)= T B(x-2) sweT(x-3).

M"‘

The 1imiting case is then

Line By (%) ) = Limk Bx-2) s T (X2

T-»0 T O mE =0 TR 5y

Using the theorem for the limit of a product (Kaplan, 1952), which

states

i [Q(X\ ‘a(X)J [Lm S(x)] [Lm

R+ X, X*X,

G& (X)]’

we can write

LrM B (x) = Z [L,“ B(,(-__J Ly SN WT(X-;\.)

-z~ T~o0 T-bc WT(X"‘:’-}) -
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Now,
_B(YQ ¥ uw=o

‘v - =] =
B rwmzpo

where we understand B{x-=) to mean the function B(x) displaced to =,
and hence aliasing effects are no longer relevant (assuming

LM BX)= e

Relp oo

or that B(x) is in fact a band-limited furction). Also,

sin TT(X-2) L {sm TTX cos M - Cos T Tx SN Ty
= M

TT({x-2%)
swTTX _ _ [© Wwh#o

T o TT(X":?—) T~o

= kM Cas T

T+0 TTRTN 1 Fw=o

Hence, we have

im Bs(x) :i [B] g.,.“_ = BW)

*T» 0 An-e
BIX) IF vz
RIE
BX-0) IF nzto

and the Knonecker delta is

where

1A =/
O ol

We have obtained B(x) as expected for T»C, in which case

Sim =

we are effectively sampling every point in V(u). Note that B(x),

not its periodic extension, is obtained.

If we symmetrically truncate V(u) and average with intervals
T with epoch at the origin, we found that -
,ﬁ e-zzm‘r‘(x-x')

A n=N

By (x) = T ' BOY) smeTx

}
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Then, A B _lz2TnTixx'
" L BSLX) 2 L T, dx'B(x') smeTx'Z e e<im y
Tao Teo - weeN

N . gt
= ’dx' B{-*') LlM [Tsmc. -’—;‘,Z e—&stﬂ'(,( X )]
- T>o

s
Note that, in this case, we require N+® as T»0, in order to keep
the truncation limitsi:(N+%)T finite and fixed in value as wé take

the 1imit. Consider the limiting term:

N 2T AT X=X’
L= lam Tswc-r)('x e™ TAT(X-X)
T-=0 wz=-n

o . o’
= [Luu s:chx'J_[L#:“ Ty “LRTnT(X X)J

Two -~

4 _i2mwaT(x-x')
=[1]'[%E:T§_N€ 7 ]

<
N

= b i v ZTNT(X-x'-2)

Mo =70 T (X=X )
NT PWITE
where we have used Corollary 4.3B. So,

s BITNT)(x-x')

- IF9=0
b fIL, sm T(NT)(X-X-L) = o
= M -x!- =
eolge  TOANR) e s 2N nente)
NT Rurre W(X-X'-GO)

For n#0, the term is understood to represent the sinc function shifted
to », and since the magnitude of the sinc function goes to zero as
(x -x')»=, we see that in any region of interest for a band-limited

brightness function, (x-x')<=, and then

gin 2 (N T)(A=x'-~e0)
T (R-%'- o)
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if effectively zero. Our result then is

A - [dx' By S T (ZNT)(X-x")
‘I;-LNO _Bg(x\ n/-‘«ox ) T {%=~-x")

But, for symmetric truncation,

g - ' " snThb (x-x")
BW) = JdX Bx') T o)

where bu is the length of the non-truncated portion of V(u), i

b =u

" max'umin=(2N+1)T=2NT for T»0, while NT remains finite. Hence,

gim B (x)=B(x),

T-0
as expected. It is straightforward to show that this result is
also obtained if V(u) were asymmetrically truncated, but we will not
go through the details here since the asymmetric truncation case {

is not of interest for our purposes. ' |

4.42 Linear Visibility Function

If V(u) is a linear function with a real fourier trans-

form, then V(u)=iau¢b, and B(x) must then be a generalized function:

B(x)= ’?"{\/(u)} =-2= 35 {00 + wlw

where we have used the derivative theorem.

We first show that the previously discussed reversal
of integration orders is valid if B(x) is a generalized function.

Suppose B(x)=&(x) and V(u)=1. Then

= . L[ } J:J“n* 2Wuk
[v,‘]-.r\fu‘_% d V=i ) Lffuce S0

+Ts

[+ Z ), =

7:1\1(“.7_'3 U
2

T SO R et o

. ——et e F N .
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If we reverse integration orders, we get:

kot 21  27TUX - .
) 5“’[.[ ;d“ e’ ]"ﬁ[i* §oe T TR l

=E& Scx) e“a““xsm‘l:.x =1 . 1

Thus, reversing integration orders is acceptable if B(x)=6(x).

Suppose now that V(u)=i2wand B(x) %—{G(X)] Then,
T

wt T
(%)= 7 - T " V() = J‘AU‘ a4 et mx”"‘ S(x)]
z

u...-i-.:s

= LZWMX
= 5= u».‘-'.i; du [ (-izmu) e |

2O

= =LA

S [0t B~ -] = T [2u0T]
=-L2TT U, -

If we reverse integration orders, we get

%—‘ ‘/: [S(x)] [ f C;zvrux]

- j“ [g(x)] LRTUWA <\ T TouX

A
LATIWA
- -—Jai [ e sine T X] Y=o
™., L 2TNULA
= {Lzm“ @ LT e T x} - {ef m-g-[sm'l';x}“
xs o X
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Thus, if V(u) is an arbitrary linear function such that B(x) is
impulsive, then reversal of integration orders, which was essential

in deriving the theorems, is valid.

Consider now the case where V(u)=1 so that B(x)=58(x).
The theorem for averaging over the entire visibility function with

fixed interval T then says

és(x) =¥ B(X-B) swe T(X-B)

NE-
=i' §(x-B) S TT(X-2)
24
Nrew mTTX-B)
To analyze this result, consider the following integral. Let f(x)

be some function of x.

.0 £ N © ' < J '
5.,&*[ §(x-3) ::f:_;;]ﬁa() X _/_:dx g(x')_"%"_'-{'(x *%))

oy T LY
=% §(3)
ii.[ }:a:x‘ CYRY (X'+‘%)] = [E*[gwé (x-'%)] f ).

Therefore, the generalized function
i g(),\_ \:.\) E17 WT()(-:—,’__‘:\_

= T _A
behaves as A TTA -r)
& W

and so we may write
A -
B (X =L S(x-%)

which is the periodic extension of B(x).

— it e N v . . - I
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Suppose now that V(u)=i27u so that B(x)=d—d§{5(><)]. Then

'és(x) m-“{n[g(x \&)]} sin T (X-3B) ;

we have

WT()\-A) ”
S dx-¥) 4 s TTIX-2)
z [s0- 9] =25

wmz-o 4% 4(*'?‘)

To analyze this result, consider the fo'Howing' behavior, where f(x) ]

; is some function of x:

Loasd Hlx) 2IIER) £

ne- TR 2}.)

<F [ gasw] 252 foeeny

‘ ‘ =,‘i:‘,. dx’' [sm‘l"rr—::‘ F(x' _,.ﬁ.)] } o
, = ;}:'._‘[RM‘-‘*)* (AT ST (x+‘-ﬂ)1
=-L 53
= [ [ e lsep] s00] !

e e e

We therefore see that the generalized function

~

g o d Cry. SINTTT(X-2)
Z u’.x \X' ) S
'ﬂ‘T(x-?}

- -
-
-

behaves as

var-

&)

t Hence, we sece that

By=L d6(x-3),

the periodic extension of the brightness function R(x),
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We conclude that, if we average a visibility function
V(u)=iau+b with Fourier transform B(x), then we get for the Fourier
transform of the averaged function a periodic extension of B(x)

with period }; Note the similarity with the Sampling Theorem result
for point-wise sampling at intervals T, which is the expected result

here because, for a linear V(u),

1
- (n+2)T
Average Value = [Vn] = }'j ?
(n-z')T
Note also that if T>TNI we will get aliasing in ﬁc since we have

effectively point-wise sampled V at intervals T>Tyy.

We have tested the theorems on averaging for Tlimiting
cases as T*0 and for the case of a linear visibility function with
constant-interval averaging over its entire domain. A1l tests have
indicated that these theorems are consistent with the general
properties of Fourier transforms. We will not examine the case of
a symmetrically truncated and averaged visibility function here due
to the algebraic complexity involved in that case. However, it is
reasonable to expect that, based on the other successful consistency
tests, this case also will yield the required result that averaging

a2 linear visibility function is equivalent to sampling that function.

4.5 Peak Shift Effects

One of the most important pieces of information to be

obtained from interferometric observations is the location of a point

V(u)du= V(nT)=V(un)=Samp1e Value
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source (or source below the resolution Timits) or the peak
brightness for an extended scurce. As we saw in Chapter 3, it is
possible for truncation and averaging effects to distort the bright-
ness function so as to cause shifts in the location of the peak
brightness away from the true source peaks. This case can easily be

demonstrated for the case of point sources.

Consider two point sources in one dimension with bright-

By = & [ §0x=p + s(x+8)]

ness function

The visibility function is then V(u)=cosmu. Suppose we truncate
V(u) at Ju[=1 and average with intervals of T=.4. Figure 4.1
illustrates the true source brightness function and compares it with

§(x) and éa(x). The peak shifts are quite evident.

In this section, we attempt to discern the origin of
peak shifts and conditions for a peak in §6(x) to be coincident
with the corresponding peak in B(x). We will discuss truncation
and averaging effects separately, and then their combined effect
will be examined. Although we are most interested in the peaks, the
discussion will actually deal with relative extremum points. For
the case of averaging over the entire visibility function, we can
express éd(x) directly in terms of B(x): however, for B(x) and
for the case of averaging a truncated visibility function, the expres-
sions involving B(x) are convolution integrals and will be difficult
to work with. For this reason, we will analyze the case of averaging

over all of V in terms of B(x), whereas we will analyze the other two

S et e N '
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cases in terms of the visibility function.

The Derivative and Convolution Theorems let us write

gié(x) as
£ Boo=f e €™ Lotz Ve T (2280 ))

¢ +h -L2TuX
= -L ) ALL wLkTu. e V(u)
" ?

We will set C, =0 so that the truncation is symmetric. Let
V(u)'V (u) + iv4(u); webcan then write

3" ng) ﬁZTf;JK[(uV cos ATux — U Ve sw 21rux)
-i (v\ Ve cos 2run +uVi sm.?-rrux)]

The imaginary terms are odd functions of u, so they vanish in the

symmetric integration. If a—B(x ) [a— B(x)] =0, then

- TERE 27Tf du (Vi ens 27— Yy S 2k

Similarly, we can obtain

2 ‘EU\@)—"MT’! du (M V. eosZJrux,
w2V, s/~21rux,)

It is evident that, in general, dx (x )=0 does not imply a—B(x )=0.
Although 57 é(xo) may be small, it will consistently vanish only for

a peak at the origin for the case in which B(x) is an even function.

In this case, V;(u)=0, and x =0 causes the term in V.(u) in the expres-

. - 2 .
sfon for g; B(xo) to vanish, so gy B(xo)=0 and —:—;? B(xo)<0. We are
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usually assured that the second derivative is negative because L

is symmetric with
‘ .
Vi) = \/¢(°)=J;¢|x BW Yo

and

f_.x“u Nelw) = Blo) >0

although in some particular cases we may find a different result

possible.

On the other hand, for a peak in B at x,#0, or if B(x)
is not an even function, then the general case will be that the
peak in B will occur at a different point than that in B(x), although
again some particular cases should be possible where the peaks

are coincident. One particular case, in which
Vi (u) cos 2Tux, = Vo (n) Sm 2TUX,

will cause the peaks to be coincident. Also, the more general case

where 1Y \ou
f ZJ\A.‘\A \I.‘_ Cog STUX, =-j:; du \&Vv s WX,

e
Z
can likewise lead to coincident peaks.

Unfortunately, it does not appear possible to write a
concise expression, valid for a general visibility function with
arbitrary symmetric truncation, which sets an upper bound for the
peak shift in B(x) resulting from truncation. However, if we assume

that the peak shift is small, we can arrive at an approximation to
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the peak shift, which we will designate by ay.

d 3 - e d _
Consider the case wflere a—B(x +1\) =0, if a—B(xo)-O. Then
3B J=o0= zwf aw[uvbcos 2l ~UNy 2 (et )

= 2;;'] " | WV tos 27Y, cos 27Ul = UV Sin Bru, SNZTUd,

- UV,. 3IN27Yx, Cos 2TUA, - u\ cos Jirux, SNZ'ma.AA].
If we make the assumption that Ay is small, we can expand to

first order in A, to get

o= f haduY: cos2mux, - 2A W0V SN 2Tuxe
- M.\'r SINZ"U-Xo —Zﬂ'&‘u_zv CoS ZTU-M]

We can now solve for Ayt

)
_L_gdu w [\l;usZa‘n'u-X. -\, st'iruﬂ
ﬂj:%c!u. L&'[Vi sm2mux, + Vy cosZ-;ru,z,]

As an example, consider the case V(u)=cosmu, truncated

at |ul=1. We have 1;,hen, for the point source at x,=.5,

A= odw W cosTTU SN
.=

]
21 4w L2 casma
©

1
2 - t 2 2 1
-% 2= s | —E—L du W2 [c.os T = ST |
|
Zﬂi du W? cos® T

2
.--‘l’-: - [.lg “(};'BJ;')SMZ‘!TLL—QQ_%ZT! l\
[ L #’) SN2 TY + “0-0‘5277"&\

= .06597
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The exact peak shift is calculated as follows. The exact form for

=i\l g, smE-x) . +
Bixys) 3 2L [ G(x-5)+ 5(x+3)]

= siNe Z(x-t) + sime 2(% """z")

Searching for the peak iteratively gives the peak location at x=.56285
(to five places), and thus the peak shift is .06285, which agrees
reasonably well (to about 5%) with our estimate based on the expansion

to first order in the peak shift.

We now consider peak shifts which are due to averaging
effects only. If V(u) is averaged with constant intervals over its

entire domain, then

By =f Bx-2) ame T(x-%)

“nE-0
Consider:é— ( %)_
A e Ay s TT T (X=
3 B0k B o) 2R ]
_& aBWX)
..;g’o = \%,s 2 Sine. T(X- %)

+Z B(X‘?',"—) [ces TT(R-Z) _ SN T{A- ) ]
e (x-3) (*-'B)

Suppose now that g—)-(-B(xo)=0. Then,

KB = B[22 - ST ] L F {B'(x.-‘%) e T )

* %z
-A eosTT(Xe"F) _ sme T{X.-2)
+ B(Xo 1‘)[ (x",‘ g_) (x._ ?) ] .

The terms in the sum are seen to represent possible aliasing effects

e PP N S O
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which, of course, can themse]ves cause peak shifts. In particular,
let us now suppose that B(x) is a band-limited function in leSLx.
Then, if we consider IonLx, all terms in the sum over non-zero n

are seen to vanish provided that TfTNI, since if we average at inter-
vals as small as or smaller than the Nyquist interval, then there

will be no aliasing effects to influence peak shifting.

With these qualifications, we may write

d 2 SIN TR
5 B(k) =By [=2RDe - T ]

In this case, then if és(io) is to be a relative extremum point
coincident with a relative extremum in B(x), we must satisfy one of

the two following conditions:

1. B(xo) =0

9 COSTTXe = S MTXe

Xs FTRZ = TN TXe = TTXe.

Note that as T-0, the condition tamrTX0=TrTXo becomes satisfied, being
exact in the limit 7=0, as required, for any Xo* Note that this
transcendental equation has an infinite number of possible solutions
for Xq- If a peak in B{x) occurs at one of these solutions, for a
given value of T, then the corresponding peak in éc(x) will also
occur at Xq- Note that this result predicts that the peak shift

oscillates in such a way as to be zero for those values of 5 which

satisfy condition 2 above, for a given fixed value of T.

T S Y e y ac
— - ,‘.,.__.A.J —t ™l . PN .
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If x°=0, we must consider the following limit:

(WIVIE -5 .
b, [eem 7T - s ]

Using L'Hospital's rule gives

Qo3 TThe =~ S TXe _ L T SmTTh -f;[smc TX.] o

[TV Xo o, '

e -

since the slope of the sinc function is zero when its argument is
zero. From this we conclude that averaging with fixed TSTNI, S0

that aliasing effects do not occur, will not produce a peak shift
in a peak at the origin. This result resembles the fact that

truncation alone does not produce a shift in a peak at the origin.

For xO#O, let us suppose that

d A <
Ix By (Xt bi)=0 o F-BWL)=O.

Then

5;: .és(xo"' Av.) =0= R( xa-.-Ax) [w 1;1.:1‘*‘})_5’”:732*‘;)]
oty oty

which implies

CoS T THo Cos T T Ay = SNTT T, SINTIT Ay SINTTX, o3 TT + LosTTY, SINTITA
%o + A‘ - '"'T(x.z +2x°A‘ + A‘z)

Expanding to first order in peak shift Ay, which we assume to be small,

gives
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cos " le - WTA* ’INTTxO
xo"'bt

= SNTTTXe+TTTA, <03 TT Xeo
TT(XE+ 2% 4y)

Rearranging, and neglecting terms in Ay higher than first order gives

A - xo SIN T TXe = 11—I'X.z ¢os WTX@
x TTXe @05 TTXe = (T*T2XE+1)SINTTX,

As an example, consider the transform pair

Zx?.

Nwy= (1x ‘-'-\,—%) c.’”‘zj (F+mry e’ * = By,

Now, V(|u|23.5)$10'5, so we effectively are averaging over the full
visibility function if we truncate at |u|=3.5. Since B(leil)si0'4.
the "effective" Nyquist interval is TNI=.5. We choose a fairly gross
averaging interval T=1. The exact peak in B(x) is calculated to be
Xo=.07879. The peak in éa(x) can be determined by searching on the
computer. and is x0=.0685, to four places, giving £X=-.01029

for the true peak shift. Our equation predicts Ax=—.01976, giving
the peak at x=.059. 8y is a good estimate for 8x but is off by a
factor of 1.92 as opposed to the previous case for shifts due to

truncation only, which agreed to within 5% with the true shift.

We now consider peak shifts resulting from symmetric

truncation and averaging. For the case of averaging a symetrically

———et S NS t
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truncated visibility function, we have

B (%) = f"{ 'Fcu)} ): T [V,] R

Unt T
Then,
Un+Tn
T BN W =5 (izmu,) e FATT U X L duViw),

Ly -3

Treating the value u, as constant independent of the u integration,

we may wr1te

ax B(*) —sz Umf T du{(\l\. S 2T U,

%-‘-

- V; ees ZTI‘U..,‘)\)-!- '—(VL SN T UMLK + \/v' u327ru..x)},

Noting that U is odd in n with u°=0, Vr is even in u and Vi is

odd in u, we see that the sum over integrals can be written as

ot e
il'i B (X) = -4TT Z W f Ju (Vy sl A=V, cos Z'n'u.,\x),

xei
As before, we suppose that dx B(x )=0 and that B s(xgs,)=0. Then,

u,-r73
fiB (Xe+d,)=0= 4T} \L,J . &W(\lvwsz\(mn )

)
- \I" "-’5277.““ (Xo"' Ax))

which implies

o= f" u_kfu"+"3au‘-_\1, (s 2GR, cos 2T U, Ay

F eos MU, Ko SN Z”un A = Vi (eos 27U X cos2TUL A,
- SINZTTU Ko stﬂ'\L‘nA&)J

o va—

———? S~

——— - . 1T S e
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Assuming that the peak shift. in small, we expand to first order

in 4, and simplify to get

p uw”%

A&: .__:lZL]l un”-@; w (\Iv s/~21ru,x.- Vi cosZ-n'u,”xb

N - .
S —211'21)_5‘ -\""'z,m W (VL S Z7ru.,x,+ V'_co.s ZTI‘?.L.‘X.)
-"nsf u_‘-‘_r?

As an example for this case, we consider

PRI \ | -

.i We want to truncate a fair amount of V(u) and average with T>Thy-
We choose truncation limits at |ul=1.5, and use T=.6, since
! V(lu|21.5)%.2231 and B([x|27.2)<.001 implies Ty;=.0694 as the
' effective Nyquist interval. The true peak is at x0=.49939 and the
peak in éa(x) is at ;°=.49877, both found by iterative search to
) five places. Our equation for peak shift gives an estimate of
A,=-.0002374, whereas the exact peak shift is -.00063. Agreement

i here is to within a factor of 2.6. Our equation gives an order of

o

magnitude estimate.

S -~y
v

In a real experiment, one would not know the true
visibility and brightness functions, but would rather have only the 4

average values of the visibility function as data. For the cases

e I P

DU S

of averaging over the entire visibility function and averaging a

-

symmetrically truncated V(u), our equations involve only integrations

over the visibility function, which are just equal to the average
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value (which we have as data) times the knownvalue of the averaging
interval. We can thus estimate a margin of error for all peaks

in the brightness function generated from the average value data.
For the case of truncation only, we cannot determine the integrals
(which now contain other factors of u) from the available data;
however, this case is not of significant impoftance since experi-
mental data will be in terms of average values of the visibility

function.

4.6 Irregular Averaging Intervals

In the development of the averaging theorems in this
chapter and in the discussion of peak shifts, we have used the
simplifying assumption that T was a fixed averaging interval size.

We now want to consider the generalization to the case where T

is a variable parameter.

For the case where V(u) is averaged over its entire
domain with irregular averaging intervals with epoch at the origin,
we have

Yoo = T.09,] Slu-u.)

m=-a

where the midpoint of the nth interval is now glven by

A
[ a Y]
u-“_ = ] : =0
T oLt T.
[ B+l T+ 2 :meo
G2 = Z

- v-—-*-o"/ —d o~ \
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Then,

%s (X = f_:‘l:.. [glu c'izm‘*[ _]: ;lx’ B swe TnX ezzru...xj Slu-w,)

=i7;f dx' Bx") SIﬂcT;x'e‘-—iaﬂu,‘(*_xl)
-0 Y "R .

Because un#\Tfor irregular intevals, we cannot replace the present
sum by a sum over delta functions and thereby simplify the integral,

as was possible for constant T.

For the case where V(u) is truncated symmetrically and

averaged with irregu]ar intervaTs we get

(X\ ZT-“ J.X Br') Smc-rx e_-‘ﬁ"mu(x-x)

nv-N

In particular, for the important case Tn=T_n. this can be simplified: ]

’ N ' t
‘BSL)Q z 7:]:;:(' B(x) smeTox' + 2&:’;_[2%’ Bx') SINC.’); X L
- z#un(x X')

=T f dy' B(X) smeTox' +ZZT« mm.\xf A'BX) 1

s

SM'CT“X Cojzm,\)( +4LT~" S"WUMXJ{:;" B(XJ oJN'Qj:A
™ S TULN

J.x B(x) s"f,rn" +2 Cos 2TUX | clx B(%’) [smWE N

! i

45,,.k x] + s,.«z'/ru,.xj:l 'w‘[usk...% Cos\e x]}

where +
d W= TRt 2w, = T+ 28 7]
-.{“ =l
:.1 kIs T~ 2Ty, =-T[ T+ ZZ,TJ .
AR PR B K O SR TN DL SRy L RO T ik A A G G PEIIRT: 7t KA T AT Ll B AN
: L - S A IR
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|
|
f For irregular intervals, we have seen that only the bounds
| on the index n distinguish the cases of averaging over the entire
V(u) and averaging a symmetrically truncated V(u). Therefore, we
need to discuss the generalization of the peak shift equation only
for averaging a symmetrically truncated visibility function. We will
make the further restriction that TnéT_n which willoften be the relevant
case (along both the u and v akes) for the radio interferometer
! system in which we are interested. It is obvious from a review
of the method used to derive the peak shift L for the case of
averaging with fixed T over a symmetrically truncated visibility
function that the appropriate generalization for irregular intervals
o is just the previous result
"z"
o du (Vo s 2T %~V s 2T ,)

= g

| A= Z’L.\

+T-n
“Zﬂé?‘m _: du ( VL s 2w Xo +\/,. “521711-.\7\.)
&

with unfnT now.

4.7 Generalizations to Two Dimensions

The generalization of our 1-D results to 2-D is entirely
straightforward. We will illustrate the procedure for one theorem
and then simply state the other results. The epoch of averaging'is
always at the origin. We will assume that the cell sizes are
irregular, and state the simplified form for constant cell sizes if b

one exists.
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Theorem 4.6: Each average value of V(u,v) can be expressed

in terms of a definite integral over the true source brightness

function:
o> .
- LaMU,, ..szm
[Vw.,....-] = j: :lx sie Ty X € 49 Sme. To, Y & B( XY).
Proof: The average value of V(u,v) in the (n,m)th cell
is Xy, -.-Tnm

+'T~".n
e
[q.“‘“‘] -n-r\l“.'m 'ﬁ- B f _?d‘r V(u' U’)

where the cell midpoint coordinates are (un,vm):

[ ==
T“"&'n,r - T L T v T2
=< O ' N=o D'-m=4 o twmro
i
[Tuo +Z Tq’q—‘." ﬁ- <o {T". +Z .—K"f'f-’:' L0

Usi °r<
sing \I(u.\ﬂ‘-’-‘/_::l:‘_/_‘iB eLzr(MW’S)B(X"S)
we write

Ut %— +T" iaml vy)
[‘u.wn] T Teim “‘.-r..,,‘ U‘ yue el Bx lj)]

Une- Ibzn

Upd Tum Gont 1M
il ™z 2m(ux+vy)
= ﬁnﬁﬁ! B(X.‘D _? j;‘ 1;..‘ dre ]

\ ® fe L T (U R+ n‘i)
= TT——»,T-W _E.x. :lg Bx,Y) e SINTTTam X sinT 15y

mX 'Y
| |
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For fixed cell sizes, un=nTu, vm=mTv. We now state the other

generalizations to 2-D.

The effect of averaging V(u,v) over its entire domain

with fixed cell size is given by

'és(x,ﬂ)=z f ‘-B(X‘ %) lj":-r!-‘:) siee Tg (X'%) Suc.T\-r(\j-%).

NE-0 ‘M-

For irregular cell sizes, the result is

A - . ' o2 »
‘DS(X":‘) = T hm L Toom Ex smeToux €~ Um (X- %)

9z-0 WE-e ‘
= — 2V (M-
.j_:i;' ::»«-7::-...3'6 AMm (Y t‘)B{)(,'fij.
If V(u,v) is truncated symmetrically in u and v and
averaged with irregular cell sizes, we simply change the infinite
1imits for the n and m summations to (-N to N) and (-M to M),
respectively. (Note that averaging the truncated V(u,v) with
fixed T, and Tv does not simplify this result except to remove the

cell size (Tu'Tv) from the summation.) For the case where T T

U,N 'U,=n

and T, =T . we have
3 )

e et e =~ '
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A - ' ,m.x 2Tro !
B (M)—f-\* i 5.5'2'_"_._’-'-;:}33“;5')

+, -
+'{', Z {Cos 2T lnX Co5 277 03mY f:x. st x's ka.,.x
- o0

Nt 'Mmzj n

f ) ""‘""*‘“‘ Sl d BUXY) 4 cos2TUnk s Zrviny |

f“ ' s.g\g"'x-\-:uk,x 45' eosh.,,,‘iw:osk-m Bxy) j

cashy N - coskAy [1 S k...ty sin ko,
+ st 2T X “SZII'V“J‘[ ' Tx' ~ad \A - Yy \l 4

cBY) F sm2ruak S8 RTUY c;*'coslu\x - cosiEN

m!
Jo o et m
where .
etz T[T+ 28 Tac] s T 20 Tore]
k=2 [T+ 28 Tor] Rz TG 28 T |
=z}

We may express the peak shift in two dimensions by (Ax’Ay)
where the x and y components independently satisfy the 1-D peak shift
equation for irregular averaging intervals given in the previous
section. MNote that this result explains why there was no peak
shift in the y-direction in the model source study since both peaks

occurred at y=0 values, and we found that peaks at the origin do

not displace.

4.8 Development of an Algorithm

Having examined the effects on the brightness function
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of truncating and averaging the visibility function, we now attempt
to develop an algorithm which uses the relation between the average
values [Vn,m] and the exact bfightness function B(i,y) to obtain

a better estimate of B(x,y) than does the standard Fourier
inversion method. The advantage to this approach 1ies in the fact
that, although the fourier inversion method disregards the fact
that the visibility function has been averaged, an algorithm
incorporating this information might be capable of giving higher
resolution than one which disregards it. The algorithm which we
will develop here is by no means the only approach to the problem,
nor is it necessarily the best; however, it may be a useful
alternative to the standard inversion method, and as such deserves
consideration. We will develop the basic concept in 1-D and then
generalize to the two dimensional case where V(u,v) 1s averaged

over a rectangular grid.

We have seen that the average value of V(u) 1in the nth

interval can be expressed as

f dx Bix) smTme e’ia'ml-n&

d' ..“K

Because the true source brightness function, B(x), appears in the
integrand of a definite integral, we cannot invert the equation to

solve for B8(x). An approximation is therefore necessary.

Since we are concerned with band-1imited functions, let us

~4
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assume that B(x) is band-limited to the interval [-Lx,Lx]. We can
then expand B{x) in the complex Fourier series form
_12!!235

‘E5(>C\=:i§ Che 2

“Nx-00

-where the Cn may be complex, and B(x) is of course a real function.

If we substitute this Fourier series for B(x) into the definite
integral, we would be able to calculate the definite integral's

value, with the integration limits now set at -L, and L,- Although
we can now compute the value of the definite integral, we are

still not able to evaluate the infinite number of Fourier coefficients
to deduce B(x) exactly. What we propose to do, then, is to convert
the (2N+1) complex (in general) average values of the visibility
function into the first (2N+1) complex Fourier coefficients {n the

expansion for B(x).

Let B(x) denote the approximation to B(x) determined by
this method. Then

— o £27l'
BX) =’Z ,.:Q"’ e e 2~ BIX)

Inserting B(x) for B(x) in the definite integral gives

L 2T :
t_\"\n] .[:-ﬁ Ce 2 =y Silc TwX & T

er-i
; S
=Z Cf_[l YL TT-"-;X e—tZTX(zL" 1{-.)

We have (2N+1) equations for the (2N+1) values [V ], nc[—N;N]. Since

the definite integral is just a number, we call it In n We therefore




can write

[V.,.]= ZNCP Tom

We have a system of (2N+1) 1inear equations in the (2N+1) unknowns

C.. Hence, we have the matrix problem

p<)<"‘ ]

and we can obtain the required Fourier coefficients:

D7 (%))

The matrix elements are determined as follows:

k - L.
L. ﬁ[;«lx s TaX 2T (g7, Vo)
[ 8

T T

Le, s TTox sm‘w'ﬁ.x
=‘[L‘dx ——7;_‘—;’”;' [LF14 zﬂ( u.n) d Sm—m— SN ZMZL -Ll,‘)

The imaginary portion has an odd integrand 1ntegrated over
symmetric limits and therefore vanishes. Using a trigonometric

identity gives

T sy o X X
Pm ™ z-n‘T..f ( - ;-3——1- "“eﬁ:ﬂ—)
2 SN K" X SIN@'MX )
le";,Z Ax( o

where

oAy Sl T T 2T (o )], B2 [T -2 -],
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The integral cannot be given in closed form; the series result is

I - Liad) zr+
IP,‘Y\ TTT‘Z (2!‘-}0(2\““")' [(o('“‘.. ) + (pP-n " l]

The matrix elements Ip n are real numbers, and we can therefore
]

separate the probiem in complex parameters into real and imaginary

parts:
rq'.ﬂ]r & {C.,&
: =( X !
9., ") \ade.
and

£9-u3; ( (NR(3
: - 17;1)( :
Ml SefCu]

The series which results from the above integration must
be checked for converaence. (The alternating theorem definition
and theorems which we will cite here are taken from Marsden and

Weinstein, 1980, B the algebraic sum rule, we can treat the

2r+l,
b, ntx) (Bp nbx

series, and provided each converges separately, then the composite

composite series in [(a )2r+1] as two separate

serfes converges to the sum of the individual series. Consider the

following limit:
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Both of these 1imits are zero (see Hildebrand, 1976, for verifica-

tion of the second 1imit). The same result is obtained for the series

in (Bp,n x

Since each of the separate series alternates in
sign and the summation terms in both have the limit zero as re,

then both of these series satisfy the definition of an alternating
series. We are therefore assured of convergence by a theorem which
states that all alternating series are convergent. Additionally,
another theorem insures that if we use only a partial sum to
represent the series (as we will have to for practical calculations),

then the error resulting from using the partial sum will be no

greater than the first omitted term.

We must now address the problem that this method, which
we will call the "matrix method", presupposed a knowledge of the
true source extent Lx in order to calculate the matrix elements Ip,n‘
In the realistic case, Lx is one of the parameters which would be
determined from the interferometric observations. To compensate
for this difficulty, we propose that a zeroth order estimate for Lx
be used initially in the caiculations. This estimate may be based
on a lower resolution observation capable of yielding a close

estimate for L while sti11 being unable to resolve the source

structure. Using the zeroth order estimate Lx(o), we determine the

C e —~— et ed S '
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Cp's and hence deduce é(°)(x). Now the definite integral theorem
states that La
L, A Bx)= V(o).

We can define an approximate definite integral relation by
)
L

‘/:_L;n cl.)k B(ozx) = [;/.]

form which we can deduce a better estimate for the true source
extent, Lx(l). Using Lx(1), we can determine 5(1)(x) from the
matrix method. This process may be continued iteratively until we
satisfy the approximate definite integral relation to within some
error bound (assuming, of course, that the iterative scheme

converges).

During initial 1-D trial cases using the matrix method,
it was found that cases in which irregular averaging intervals
were used, especially when the interval sizes differed by factors
not near unity, gave totally incorrect results. It is believed that
the cause of this phenomenon lies in the fact that a "frequency"
factor ?E—' was assumed in the Fourier expansion for B(k). Now,

X
{ n } are the natural set of frequencies required to expand a
2Ly
function B(x) which is band-limited in the inteval ['Lx’Lx]‘ However,
we are required to sample or average V(u) at the Nyquist interval,
1

TNI=2I;" in order to produce this natural set of frequencies for
the expansion of the band-limited function B(x). This is just the

logic involved in the proof of the Sampling Theorem. By using a set

of averaging intervals of different sizes, we are, in essence,
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neconfusing" the frequency information from which we are attempting

to derive the fourier series coefficients, Cp.

To circumvent this difficulty, it is possible to
reformulate the problem into one using averaging intevals whose
sizes are fixed at the Nyquist interval. Thus, given a set of
data containing average values of V(u) over {rregular intervals,
we can convert the data into an appropriate form for use in the

matrix method.

The proposed reformulation algorithm proceeds as follows.
First, we examine the truncation 1imits to see if an integral number
of Nyquist intervals, with epoch at the origin, will fit in between
these limits. If this does not occur, we symmetrically extend the
truncation limits so as to satisfy this requirement. In the
extension region, we assign a zero value for the average visibility.
(Assigning a zero value for the average vixibility in the extension
region is similar to other methods where zero values are implicitly
or explicitly assigned to portions of the u-v plane for which data
is not available; however, other techniques, such as assigning a
data value based on a Gaussian taper, may be more advantageous.
These possibilities have not been investigated here, but further
study should include considerations of alternative data extension
techniques.) We will say that the original data set index n runs
ne[~N,N], where 1t is understood that N accounts for the domain
extension, 1f it was necessary. We now "reaverage" the average values

of the visibility function to obtain Nyquist interval average values.
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Consider the kth Nyquist interval, with indexing scheme
in k similar to the indexind scheme in n for the data values. Let
there be Jk original data intervals lying wholly or partly in the
kth Nyquist interval. Denoting Vk as the average value in the kth

Nyquist interval whose midpoint is U, we have

—_ \ \&w\-“'ﬂz
Vi = ﬁj % an V(w)

; W R YA
{ T‘ -T:“ z u‘\\* _22.
' = - V(u
"h ™ _rv‘I T 4 . )
= Y
wz::“_-rnl-{: ] !

where Nk is the lowest index number (in the possibly extended set

i j ne[-N,N]) for an original averaging interval which is contained

wholly or partly in the kth Nyquist interval. Using the original
[Vn] data values in this equat1on; we compute the values for the

"reaveraged" data set Vk‘

: Now, we can also write our expression for [Vn] in terms

of B(x) for the terms in the sum:

. — Ly ;2T UK
5 Vi = 'T;axf T L Sx' Bw) s Tax' "
=y

Let there be (2K+1) Nyquist intervals so that ke[-K,K]. The Fourier

S -y

T e 1he e Y ——— ¢ LY e

' expansion for B(x) is 2TPR
) B(X)= Z C, e " TE
i Pc-e

and we can obtain (2K+1) coefficients from the (2K+1) Nyquist

g

interval average values of V(u):

_: y 1o APRIR A g G X Viin o PR T I nbiaranend

- . - _ . -t o _F NS v




. 2P
Blx)= z Co €72 x Bx)

(T j

Using this expression for B(x) in the integral gives
~i2wy'
V“ Tﬁ: Y.Tm): Cf J,x smeTon' € z'- "')

'“""u {es- Prn C'}

where, as done previously,

I - & ZH\ 2wl
Lom™= Ty ?n Q@ernlzer)) [("<9m L) @ ) ]

and |
Aoz T +27r(-f-* w.) , ﬁp’maTR-z-rr({-.;; W.,)

Now, since the sum over n here is independent of the sum over p, we
can write

—\7"* C’ [_'r' z 'T' I‘Pm]

h

’i:- LCe T

P=-

where we define

[} } T
Loz -'F';g va\ :
We have now completely reformulated the origina'l problem into a form
in which the frequency confusibn problem for {rregular averaging

intervals has been circumvented. We again have a linear system, but

now with (2K+1) equations in the (2K+1) unknown Cp.
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For the generalization to two dimensions, we start with

the previous result

LRATaRX LRT U
[\,_'w f dx SNeTywXe

H S'N‘T""“H e Bl ‘j)

We initially suppose that all averaging cells are fixed at the Nyquist
cell size. Let there be (2N+1) by (2M+1) cells inside the

truncation limits. The appropriate approximation to B(x,y) is now

L2 2mgy
Blxy) = ZZ Coa€ 2= e 24 mBRY).

Pz-Nqe-M

Using this express1on for B(x,y) in the previous integral gives

[Vewio 1= 2;.., ;L:'-uc'm[f“* sie Ty X C"a’m‘ﬁ‘ u.,)]
| [ 3y e Tomy e ety il

Each integral is recognized as being of the same form as the

previously considered 1-D integral. We therefore define

Iﬁ"": f;% = I’ﬁﬂ Iz'm /

_ l - ‘.’n' A0+ ZO".'
Lo = Tﬁ.\g.. (2% +1)(2r+1)] [(o(""‘ L +(ﬂ"‘“ x J
o R\ 20 2r
IZ:‘M" mmf ’m' [.-(‘ ‘“L + (BI LJ\’ :"’
where
Ky E 1rT“,,+zvr(.%,:,- Un) o(w -=-7rTrm+z7r('§':,-trn)

Bron TTom - 213 -1, Py > T Tom -2 (J 5
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We can formulate a matrix equation by trating (n,m) and (p,q) as

the two indices [ ]:

(Vo] Tenmiiin \ [ Somen
L“ h?‘“) : I‘”‘:"‘)( P.}) < ':‘ ¥
[\‘ “. M] ) ‘ c‘ “' M

The solution to this 2-D problem therefore proceeds in a manner
directly analogous to the 1-D case, including iterative refinements

for Lx and Ly.

The reformulation algorithm also proceeds in direct
analogy to the 1-D case. Let there be (2K+1)-(2L+1) Nyquist cells
inside the truncation limits. The truncation limits may have had
to have been extended along the u and/or v akes, as previously
discussed for the u axis in the 1-D case, We will say that the
original data set indices run as ne[-N,N], me[-M,M], where 1t is
understcod that N and M account for the domain extension, if it
was necessary. Index ke[-K,K] is the Nyquist cell reference index
along the u axis, and Te[-L,L] is the Nyquist cell reference index
along the v axis. Let Vk,] dencte the average value of V(u.v) in
the (k,1)th Nyquist cell. We "reaverage" the average value data

into Nyquist cells:

— Ta G
Voo T TP g 19

"Rt ¥ 'TT‘,:JI.'TJ-N;
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Here, n, and my are the lowest values of n and m such that the
(nk,m])th cell in the original (possibly extended) data set lies

{ wholly or partly in the (k,1)th Nyquist cell. Similarly, Jk and G]
| are the highest values of n and m such that the (Jk,G-I)th cell in
the original (possibly extended) data set 1ies whoily or partly in
the (k,1)tM Nyquist cell. Then, using the analogous procedure as

we discussed for the 1-D case, we have

G
=1

TomTo L
TenTom ¢ 5 - S

V
RL NN Tz Tonr % g2-L

]

. _&.E
t -2 C-P.} Ih,ﬁ,f,?

P2 §u-L

| where we define, ’ = ' '
| re we e T ot by = Ton :I:z'g_ ;

&,
Too =Y Tam ! 2T Tom
| e way Tong T I?“! e, Tv;nz Iz’“
,§ We formulate a matrix problem here by grouping indices:
i 3, =2 Crpny Lot
) V 3
Bl (o= (ko OB TR, ey

where h

! ' [
Itk,xx. g = Lt T3

cw—
b W P et x

Solving this linear system for the C(D‘q) vector glves us §(x,y).

i, ey @~

Note that a suitable index contraction scheme is:

(k,2)
(p,q)

c

.
et S s

(k=1) K + 2
(p-1) P+q .
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CHAPTER 5

APPLICATION OF THE MATRIX ALGORITHM

In this chapter, we apply the matrix algorithm to several

one-dimensional test cases. Development of a suitable Fortran source
code for the implementation of the two-dimensional algorithm has been

in progress, but as yet has not been completely debugged. An

advantage to the presentation of some one-dimensional test cases is
that the results may be graphically displayed without excessive
computer time necessary to generate a sufficient density of points
for plotting, as would be required for a decent plot of a 2-D

test case. Additionally, numerical evaluation of the convolution 1
integrals needed to study truncation effects can be performed

faster and to higher accuracy for one-dimensional eXampTes than for

two-dimensional cases. After presenting the test cases, the
limitations of the algorithm will be pointed-out, and we conclude
!
i with a brief discussion of a possible direct application to
|

il averaging along curvilinear tracks in the u-v plane.

5.1 Applicaticn to Test Cases

The Fortran source code for the impiementation of the 1-D

T AT

matrix algorithm is presented as Program B of the Appen“ix. Evalua-

tion of §(x) and éd(x) was performed in a manner similar to that used

s ey WP W~y

for the 2-D mode) study (see Program A of the Appendix). The only

- RN
A L wmas #ml

significant difference was that the numerical integration required

S W
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to compute ﬁ?x) used the average value of the two integrand values
at each end of an integration mesh interval times the interval's
length instead of the integrand's value at the interval's hid-
point times the interval. Since the 1-D program td determine

B(x) and és(x) is considerably simpier than, but analogous to the

2-D case, the 1-D program is not included in the Appendix.

Four simple brightness functions were used as test
functions, and each was studied for two averaging schemes applied
to their respective visibility functions. The averaging schemes,

designated A and B, were as follows:

Y 25— 25 ¥ 1

Averaging Scheme A %,- e A |
-1 -3 \
A, e LT

Averaging Scheme 8 |
}

I
| 1
© [

Table 5.1 presents the parameters of interest for thetest
functions. Averaging scheme A uses intervals which are all smaller
than the Nyquist interval for test functions 2 and 4. Utilization
of the matrix algorithm is intended primarilv for cases where the
effects of averaging are significant, i.c., where the averaging
intervals are larger than the Nyquist interval; averaging scheme B

uses intervals which are larger than the Nyquist interval for all of

the 4 test functions.

Figures 5.1 through 5.8 provide comparative filustrations
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of B(x), B(x), B(x) and éﬁ(x) for the eight test cases which were
examined. Results are illustrated only within the bounds of the
estimated source extent LX which was assumed for each model source

in order to apply the matrix algorithm.

5.2 Observations and Discussion

For averaging scheme A, it is clearly seen from the
figures that é(x) surpasses ﬁs(x) in estimating the true
brightness fuction B(x). For the case of two point sources, we also .
see that the peaks in é(x) are closer to the true point source |
locations in B(x) than are the corresponding peaks in ée(x);
thus it appears that B{x) givesa smaller peak shift than does és(x).

We should note that the matrix algorithm does not yleld a non-

negative estimate for B(x).

The estimated source extent L, was chosen as 1.25 for all
four cases using averaging scheme A. This then sets the Nyquist
interval TNI=.4, and a domain extension was not required to apply

the matrix algorithm since five Nyquist intervals with an epoch

MO

of averaging at the origin it insiau 1o oot o
that the chosen estimate for L, js not the true source extent (or
even an effective source extent based on our previously specified
criterion) and it therefore appears that the matrix algorith= is rot

very sensitive to the source extent estimation, provided that c--ain

extension is not required.

ey g G L SR N
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An estimated source extent of 1. was chosen for use with
averaging scheme B. This value for Lx set the Nyquist interval
at .5, and a domain extension at .25 was then required at both
truncation 1imits in order to have the epoch of averaging at the
origin. For these four cases, the choice as to whether éa(x) or
B(x) gives the better estimate for B(x) is not és clear as the
previous four cases. Averaging scheme B used averaging intervals
which were larger than the effective Nyquist interval for all
four test functions. The peak shift in §‘(x) for the case of the
two point sources is quite severe, and é(x) yielded a smaller peak
shift than ﬁs(x). However, B(x) has flattened-out in comparison
to és(x) and in this way é(x) is less representative of the true
source than is és(x). Thus, we have a trade-off in this case,
with E(x) providing a better estimate to the locations of the point
sources but with éé(x) providing a better resemblance to the
symmetric nature of the true point sources. The most probable cause
of the flattening in B(x) is the fairly severe domain extension
and the assignment of a zero value for the average visibility
in the domain extension region, since the required extension here

was 25% of the estimated source extent.

2x, the

For the test function B(x)=1-|x| and B(x)=sinc
matrix algorithm clearly gave a better estimate for the true bright-
ness function than did ﬁd(x). For these two test functions, the
corresponding visibility functions have small or zero values in the

domain extension regions, and the assignment of a zero value for the
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averages visibility in the domain extension regions was therefore

5 not a bad assumption. Note also the severe effect of aliasing in ;
5‘(x) in Figures 5.6 and 5.7. é(x) does notshow this severe aliasing

effect.

For the Gaussian test function, we see that E(x) is %

. clearly worse in estimating B(x) than is és(x). E(x) has broadened-

out in comparison to és(x). Again, the likely cause for the poor
estimate given by E(x) is the fact that the visibility function
has non-negligible values in the domain extension regions, and
the assignment of zero average visibility in the domain extension

regions is therefore a bad assumption for this case.

( From the rather limited survey of test functions which
has thus far been conducted, we can make the following tentative
conclusions, which require further analysis to fully justify them.
First, it appears that the matrix algorithm reduces the size of

the peak shift interval, and therefore §(x) provides a better
estimate for the locations of the peaks in the true brightness
function than does §5(x). The matrix algorithm does not appear

to be very sensitive to the estimation of Lx if such an estimate
does not require a domain extension. However, the matrix algorithm
does appear to be sensitive to estimates for Lx which require domain
extension if the visibility function has non-negligible values in
the extension regions and a zero value for the average visibility is

assigned in the extension regions. A possible remedy for this
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problem might be to assign a'value for the average visibility in the
extension region based on a Gaussian taper rather than the arbitrary
assignment of a zero value. Finally, we have seen that the matrix

algorithm does not always provide a non-negative estimate for the i
value of the brightness function, and therefore B(x) as well as
ﬁs(x) sometimes fail to yield physically meaningful (i.e., non-

negative) values for the brightness of a real source.

5.3 Limitation of the Matrix Algorithm

In this section, we will discuss problems with and

possible Timitations of the matrix algorithm.

From the test functions which were examined, it can be

seen that reasonable estimates for L, appear to be sufficient for
the calculation of the matrix elements. The estimate for L,
determines the effective Nyquist interval and thereby also determines
the amount of domain extension required to reformulate the data

into Nyquist intervals with an epoch of averaging at the origin.

The present algorithm was designed specifically for an averaging
epoch at the origin; for the case where two averaging intervals meet
at the origin, singularities were found to occur and the algorithm
breaks down. Furthermore, as indicated by Figure 5.8, the domain
extension may be sufficiently radical so as to cause the matrix
algorithm to yield a poorer estimate for B(x) than does the standard

Fourier inversion method. Using an average value based on a Gaussian
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taper in the domain extension regions may be of some benefit here,
and in any extent should give a better estimate for B(x) than does ,

the arbitrary assignment of a zero average value in the domain

2 -

extension regions, which was the technique used in the present

‘study.

Another problem concerns the use of the matrix algorithm
for cases where the number of Nyquist intervals in the reformulated
problem exceeds about seven intervals. It was found that, in such

cases, some of the matrix elements become very large and the order

of magnitude differences between some elements was as high as 107.
For cases where the matrix elements have such a wide range of
values, the matrix inversion process often breaks down (at least
for the two different inversion methods which were tried in this
S study). Additionally, accuracy problems were encountered,

‘ especially for cases where the number of Nyquist intervals exceeded
about seven intervals. Each matrix element is calculated by an
jterative process, and accuracy may be Tost in the calculation of
individual elements aswellas in the matrix inversion process. These
k inaccuracies genarally result in poorly determined values for the

| Fourier series coefficients for B(x). For example, 1f V(u) is a

real function, then we expect the Fourier series coefficients for

p=C_p); however, the symmetry

between corresponding coefficients is often lost due to the accuracy

!
’ . B(x) to be real and symmetric (i.e., C

problems, and B(x) undesirably becomes a complex function. Modifying

] the Fortran program to operate in double-precision and perhaps using

T
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better matrix inversion techniques may help alleviate the accuracy

problems.

The 2-D matrix algorithm will undoubtably be even more
sensitive to accuracy problems than the 1-D case, expecially for
those problems related to the matrix inversion. If there are N2
Nyquist cells in the reformulated problem (N intervals along both
the u and v axes), then the matrix which must be inverted will
have N4 elements. Accurate inversion of a large matrix then becomes

a further problem to be considered.

For successful application of the matrix algorithm to
"real-world" data, the above cited problems would have to be adequately
alleviated. At this time it 1s uncertain whether or not the
algorithm, in its present form, will be capable of application to a
general 2-D case because of its present numerical problems. Thus,
although the results illustrated in Figures 5.1 through 5.8 are
encouraging, one must keep in mind that application of the algorithm
to more complicated cases and to 2-D functions may become intractable.
The results presented here should be taken as encouraging evidence
for the feasibility of an inversion technique for an averaged
visibility function which yields a better estimate to the true source
brightness function than does the standard Fourier inversion

method.
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5.4 The Problem of Curvilinéar Tracks

Direct application of the matrix algorithm to averaging
along a curvilinear track may be possible. Time has not permitted
a detailed analysis or model study for this technique, and we
therefore confine ourselves to a brief speculative discussion
(admittedly lacking details) of a possible approach to this problem.
If such an algorithm could be developed, it would offer the advantage
of dealing directly with the experimental data obtained along
tracks in the u-v plane without the preliminary requirement of

"gridding" the data into rectangular cells.

We have seen that the response of the interferometer is
a sequence of average values of the visibility function along a
curvilinear track in the u-v plane which is determined by the
relative motion of the baseline vector with respect to the source
vector. For the case of an interferometer with two elements on the
earth's surface the track is elliptical, whereas for a system
incorporating elements on satellites the curvilinear track is not
a simple closed curve, although the "open-ended" trajectory in the
u-v plane can be calculated as a function of time. For simplicity,
we will consider the case of an elliptical track; the generalization
to an arbitrary track replaces the elliptical curve by the appropriate

relation v=v(u).

Let € denote a curvilinear track in the u-v plane, which

for simplicity we choose to be an ellipse:




.

The differential line element for this track is
a2 + ¥ (\2-a%)
o2 u?

ds=dw

and the arclength s over the jth averaging segment is

uj-o-m, o.?'-!-u"(io— 2.)

Denote the average va’lue of V(u,v) along the jth averaging segment

ﬂ &; by [\-/]sj, so that

| (2T (uxtvy)

i [VJ%’%;_£¥V(H.W)‘ fds”; d e B(x,g)]
N R

where we have assumed a region-l1imited brightness function and

} replaced V(u,v) by the Fourier transform of its conjugate function.

! As above, we assume that B(x,y) has an exact Fourier eipansion given
o (3 + 3L

by -

Bxy) = Z F oy, e

Ar-00 %s—n

L4

& -.-— -
ey Ry

and that an approximation to B(x,y) is given by

-&3!‘( %‘

Bx,4)= I. f- Ce, %&‘)xstx,g).
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Substituting B(x,y) for B(x,y) in the expression for [V]s gives

[-V] '”L ) g C—e?_Lels[f_ a*c.'u'mz"*'u)]

14 Py=-2
J‘ -iZﬂ’ﬂ(ﬁ,-v)]
P @ :
- -Sl.;g Z CP‘% ds 3”‘27”-; (2&(:"'_“-42 $IN2'”L|1<-%:‘-‘U_'1 - ‘
PPy R ¢ T(F - u) T(_ﬁ_1_¢)

The line integral can be performed by expressing v in terms of u

along the arc 6;] and expressing ds in terms of du; we get

(9], =%LE Copfo /™ .
,,,-Q PE Jug w a®-u*

sin Ry ( :.:zfl:;_' “) SINZWL.!L%T_‘“ - U’(t)) .
T(F5-u) T('it,, —'u-(u))

Contracting the indices p,q to a single index [{p,q)=(p-1)P+q]

then let us formulate a matrix equation:
[V]s‘ C:-t
Evls = Ty e \ copy
i

where the matrix elements are given by

i"‘ /o.‘m*(b‘ =D el W onirh y[.h-_.,/mz_{ ]
i ﬂﬁ:—u] k- Bew]

Y
fu‘ Q‘\i a"m."(b-o.}

U a-u*

I'iv‘f’%) =
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The integrals may be performed numerically. As discussed in the
previous cases, we assume that a-priori estimates for Lx and Ly are
available, and that an iterative refinement of the source extent

may be possible if such a scheme converges.

A few comments are in order. We have attempted to
outline a one-dimensional treatment for a 2-D Fourier transform
because actual data is available along 1-D curvilinear tracks. The
variable u was chosen arbitrarily here as the 1-D independent
variable; actually, the variable chosen to be independent should
probably have the smaller of the two Nyquist interval lengths
(i.e., choose u if Tu,NI<Tv,NI)' It will probably be necess&ry to
reformulate the problem in some way as discussed above for the
1-D and 2-D cases with rectilinear averaging. Since only one variable

is left independent, it may be necessary to use TNI (the smaller of

. R 1 1 .
the two Nyquist interval lengths) instead of and in the
Yq ) g A, 2{;
expression for B(x,y), i.e.
— ¢ a -idT Tz (Pr+r¢y
BxY)=L L ey e )
Pr-f 3R

Since the smaller of the two Nyquist intervals is used, aliasing effects
should not occur along the x or y direction. The averaging scheme

could then be reformulated in terms of the smaller Nyquist interval.
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To check the feasibility and develop the details of a

curvilinear track approach will require considerable further analysis

i and model studies.
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CHAPTER 6
T 1
SUMMARY AND CONCLUSIONS
We have reviewed the origins of the basic Fourier j

transform relation between the brightness distribution function and

the visibility functions. For VLBI systems in which some or all of

the array elements are located on satellites, the interferometric
response is a set of average values of the visibility function
obtained along a curvilinear trajectory in the u-v plane. For a
pair of interferometer elements on the earth, the trajectory through
the u-v plane is elliptical; however, if one or both elements of
the pair are on satellites, the trajectory is in general an open-
ended curve. An advantage to the use of elements on satellites

is that the curvilinear track in the u-v plane does not close back

upon itself after completion of an orbit (due to the non-commensurate
orbital pericds for the two elements), and the track's coverage of
the u-v plane therefore increases with time. In this way,
observational data may be obtained over a large portion of the u-v
plane inside.the truncation limits, which are determined by the

maximum baseline projecticn normal to the direction to the source.

Using interferometer elements on satellites provides the
opportunity for longer baselines and hence higher resolution of
source structure than is possible with elements on the earth. How-

ever, due to a number of factors which we have discussed, averaging

of the visibility function along the track in the u-v plane becomes
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a significant problem for systems which incorporate elements on
satellites, and the brightness function which is derived from the
observational data may be seriously distorted due to the influence

of averaging effects.

The major goal of this thesis has been to elucidate and
understand the effects on the brightness function due to truncating
and averaging the visibility function. We first gained a qualitative
appreciation for the nature of these effects by studying a model
case. We then quantitatively analyzed these effects. Periodicity
considerations were discussed, and we concluded that aliasing
effect should not be severe unless the data are gridded onto a
lattice with constant (or nearly constant) cell sizes which were
larger than the Nyquist cell size. We then investigated the
separate effects of averaging and truncation, as well as their

combined effect.

The effect of symmetrically truncating the visibility
function is to smooth the brightness function and to introduce
"ringing", and this effect is concisely eXpressed by the convolution
of the true brightness function with sinc factors whose widths are
determined by the truncation limits. The effect of averaging the
visibility function with constant averaging intervals was concisely
expressed by multiplying the true brightness function by a sinc
factor whose width is determined by the size of the averaging

intervals, and periodically extending this function with a period

i,

-~ ’»...4-./ —d NS A




.
C e — —————————

e e e

175

given by the inverse of the averaging interval size. Averaging and
truncating the visibility function produces a brightness function
which bears a combination of the individual influences cited above.
We then examined these results to check for consistency in limiting
cases, and also for the case of a linear visibility function for

which averaging and sampling became identical.

It was found that averaging and truncating the visibility
function produced shifts in the location of peaks in the brightness
distribution function. This effect was analyzed and we produced a
result capable of predicting the peak shift to first order. This
result can be applied to actual experimental data; however, future
work in tnis regard should consider expansions to higher order
in peak shift and then use the computer to solve the resulting

polynomial for the peak shift.

Since the basic theory of truncation and averaging effects
was developed in one-dimension for fixed averaging interval size,
we then generalized our results to include irregular averaging

interval sizes, and we generalized to two-dimensions.

The ancillary goal of this thesis was to try to apply
our knowledge and understanding of truncation and averaging effects
to develop an algorithm which, by accounting for the effects of
truncation and averaging, might possibly produce a better estimate
for the true source brightness function than does the standard

Fourier inversion method. We developed an algorithm in 1-D, and
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subsequently generalized it to 2-D. We have called this method the
matrix-algorithm because our particular application of the theorem
relating an average value of the visibility function to the bright-
ness function resulted in a matrix equation which, when solved,
yielded a set of Fourier series coefficients for a function which
approximated the true brightness function. The matrix algorithm
was applied to a few test cases,-and the results were compared

with those of the standard Fourier inversion method. Unfortunately,
the matrix algorithm did not produce the best estimate for the true
brightness function on a consistent basis. It appeared that the
domain extension, which is sometimes necessary in order to be able
to use the matrix algorithm, was the cause of the poor results
obtained in some cases. In those cases, the visibility function
had non-negligible values in the demain extension region, and

our crude assumption which assigned a zero value for the average
visibility in the extension region apparently led to the poor
estimate for the brightness function. Future investigations

should try alternative techniques for assigning a value in the

extension region; for example, a value based on a Gaussian taper

may be useful.

The matrix algorithm was found to have some numerical
difficulties when attempting to apply it to cases where the number
of Nyquist intervals in the reformulated problem exceeded about

seven intervals. A refined computer program may correct this diffi-

ciency, but if it cannot be corrected then the matrix algorithm will
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not be feasible for "real-world" applications, and another approach

should be considered.

The possibility of applying the matrix algorithm
directly to averaging along a curvilinear track was briefiy considered.
A basic approach was sketched-out, but a definitive stétement as to
the feasibility and details of such a technique will require
considerably more study than has been possible here. If such a
technique could be developed, based either on the matrix algorithm
or some other algorithm which accounts for truncation and averaging
effects, it may possibly provide a much better estimate for the
brightness function than does the method of gridding the data and

applying the standard Fourier inversion method.
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APPENDIX A

SYMBOL GLOSSARY

The following alphabetized 1ist provides a summary of the
major symbols used throughout this thesis. Symbols which are
introduced in the text and used only for a short topic are not
included here.

Baseline vector for a two-element interferometer.

b

B(x,y) Source brightness function.

ﬁ(x.y) Brightness function which is the Fourier transform
of a truncated visibility function.

és(x,y) Brightness function which is the standard Fourier
transform of a truncated and averaged visibility
function.

E(x,y) Brightness function obtained by matrix algorithn
from truncated and averaged visibility function.

bu’bv Extent of the visibility function inside the
truncation limits in the u and v directions,
respectiveiy.

CyuCy Midpoint coordinates for the non- truncated portion
of the visibility function.

§(x,y) Two dimensional Dirac delta function, (x,y)= (x) (y).

Ax»>dy Peak shift values along the x and y directions,
respectively; i.e., 4, indicates the distance
along the x axis from a peak in the true source
brightness function B(x.v) at x5 to the corresoond-
ing peak in B(x,y) at (xg+3,).

1? Fourier transform operator.
1;-1 Inverse Fourfer transform operator
Ip n Matrix used in the matrix algorithm whose elements
1]

are definite integrals over the source region.
i /1.

i, as subscript: Imaginary part.

. sk, b .




XY

NI, as subscript:

r, as subscript:

-~

5o

Unin*Ymin

v(u,v)

V(u,v)
[V ]
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Distance from the origin along the x and y axes,
respectively, to the region boundary of a region-
1imited brightness function. If B(x,y) is not
truly a region-limited function, then an effective
region boundary may be defined; here, we use the
criterion that B(x,y)<.001 for all x,y outside

the effective region boundary.

Nyquist interval, i.e., Ty n means that the
averaging 1nterva1 along the u axis is equal
to the Nyquist interval.

Real part.

Unit vector in direction of a point source or
approximately in the direction of the centoid of
an extended source.

Unit vector in the direction in which the inter-
ferometer is pointed.

sinc x = §1£§35 , after Bracewell (1978).

Integration time period.

Averaging interval size: subscripts u and v designate
respective axis along which interval lies; subscripts
n and m index a particular interval along the
respective axis; no n or m index indicates that the
averaging intervals all have the same length along
the relevant axis; no subscripts at all indicates
constant averaging interval for one dimension only.

Orthogonal components of the interferometric
resolution.

Midpoint coordinates for the (n, m)th averaging cell
{or the (n,m)*" averaging arc for an elliptical
track in the u-v plane).

Lower truncation 1imits along u and v axes,
respectively.

stib;lity function; exact Fourier transform of
B(x,y).

Truncated visibility function.

The average value of the visibility function in the
(n,m)th celnt.




PO

Vn‘m(u,v)

¥iu,v)

X,y

x0 "yO

IT1

TVu.v)

180

The average value of V(u,v) in the (n,m)th cenn
expressed as a function of u and v by using a
delta function at the cell midpoint (standard
representation).

The function which represents the truncated and
averaged visibility function; Fourier transform of

Ba(x,y) ; Y(u,v)sn}’:m Vn,m(u,v) .

Width parameter for the model source.

Angular position coordinates for a celestial object;
viewed as rectangular coordinate system on the plane
of the sky; angular-rectangular conversion possible
if distance to source is known.

Position coordinates for a peak in B(x,y).

Convolution product, if used as a superscript,
denotes complex conjugation.

Indicates a Fourier transform pair: V(u) 2 B(x).

Sampling function: III(%D =T T &(u-nT), after

Bracewell (1978). n=-e
2-D Box function, w{u,v)z«(u) =(v), where
1
1 IUI<2-
TI(U) = }Iul=12.

0 lul>% , after Bracewell,
(1978).
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! XL=4, s\, YL n-LY :
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-‘ RIAD 223G 10 UMTY, UMAKy VM T 4y VMAX Toresran Foi BOJ Lsmmmemae T
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i PRINT 2201, UMEM9UMAX, VHI L, VMAX ]
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D=l 1.Jf€hfﬁfww MESH SI2E
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PRINT 2C .2y NWN
2.2 FLRAMATUISH MIN=9 1%e/27/717)
PAUINT 2 .3
2073 F JAMATE3Xe THXe L1Ae iHY 4 12X, THRB S X, Y))
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S0 Lot = Ly L
[X=11KK-,
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Xl=xX-xX"ID
ITFEX TN D)L T 2007
XY[0=412232201
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VAlUus{=5e~(D/24) )4l IYMIL=D)
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IF{YMIDNELIGO TY 2309
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o aTiNg: } Rl £
AILIT el oo Xo Yo lHnlulLIXC,LEYY) ‘B"'UJ‘D = bc))
WRIT 07427 10) KXYt THIT(TIIXXyLIYY)
FEIMAT(OLXgFTal9aXsFTa3gl XyEL568)
(O] B BNV I
Co il Is B IrACT 0D
- LOMPARICN OF 2TLID o TH CYACT
ATl 730 047)
FRAMAT{3SHDTDT . s mamnax (3] xamakexuss’ ) 00)
PUNT 12¢
PLUINT 122
PRIYT 1.8
ueTL = -
3T o=
XLINCR= o8
YLilh=.25
SVARL A= B wE
re3mn =1, 11
Xx={I-p ) XLIines
303011 J=1,11
Y=(J=-1)=YLIMCR
RTO=LTDe((BIX, Y )=THIL [y J))*SMAREA)
ATYI=ATSOM UL iXoY)=3THID([,J))%%E2)%SMARCA)
WRITLCT9T715) XeYodTD,,3TSD
ITLS  FORMATH2(Fe.1)e2(=16.81))
9711 CUNTI NUE
9710 CONTINUE
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3815 F.RMAT(62H THr ToTAL LceVIATION OF BEXAZT FROM BTWAIC=,£16.8)
PRINT 7516,8TSC
J8L6  FORMAT(4)OH THZT TUTAL 3QUAIZD DEVIATIUN OF BEXAD FRIM BIWID=9E16.8)
END CCHMPARISUN ST YR
USINSG JNLY 1 QuATRANT
END TUNZATION ONLY S1UDY
PAINT 128
PRAINT 128

T
LN A Vi at

DT 1o

. e i
BEGINNING~ oF ‘B&(x,-\\ STy

READ 1325 0FLTApx M UieYM I dg (X oMY XMAX

FOANAT(IF 16 8y314)

OD7=2zLTAwx?

AL Lol IXUMTICI o XUMAXC I )y XVMENT T ) g XVMAXUT) o IUL L) oIVIT),
& [=1,X"AX) R ap 0 oS N VI
-‘.‘.",’(/,‘I'.t).;'.“!.,’ K“"P‘\: BRATY \ VUV E =S A
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<32

o
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131

123 :

145
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70

703

702
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197,

135
161

7AD 1 2,0TVL. ¢Jdd) o d¥ e ) g dd=1,11V)
FAOAMAT(FLO. 30 1) - e
Coll dc _):‘.(’,4;« S g
PALHT L32,0FLTA, w MY Ny
FOIVATOTH DELTA=zZ = 1562y 9Xe79HX AUD Y TTzRVALS s« 2

e

ATsc AT TC

. ‘_,/Hl‘:'-."-»/ A

Elyy

DO R CA I ST TR BN O

PULT 131 KAr

FIi2 TO23H NUMIz2 oF 0ATA 3RGUPS=,14)
PRINT 128

PALNT 123

EX~MATU /2777077 77)

Lot 1Lt ISRIUP = rYAK
w2l T3(T,4165)
ZIIMATE3SHI Ll L ewkakdrwexx] 1]l aukkxkeksw]]1]111)
[lus{ut1573U2)
[1/=1v(T1L00P)

JJd=1

.7 I=1,101U

(S 2TD="1 150209, 1)

Ju T.1 J=E1eNSETU
TTUSLIII=TUCISRAUL,,T)
JJ=JJyel

CaNTI JUE

ZONTINUE

NUNAX=II-1

JJ=1

20 7.2 1=1,11v
NSETV=NVIIGRIUP, I

WD T3 J=1,NSETV
TTYVEIII=TVIIORULUP I
JJ=JJe2

COITINUE

CONFIHJFE

NVSAX=Jd-1

DLINT 739, NUMAXNVHAX

F o AMAT(TH NJVAX =z [Lehti ¥ iX=y [ &)
.

[ A E
vl oaou. Y= _4NY

BrtIXelY)="
CONMTIMUE

CONTIYJE
JMIN=COMINCIGR2YP)
uraxs=xuraAx(iI13°ue)
VMIN=XVMINGTIS2000)
VMAX=XIMAX(IGRLUL2)

PRINT L3¢, 1GRUJP
FUIVATOI3 HIXT LATA LRJP SUQUENCE NUMRIR=,14)
PLINT 134, UMINs UMY A VHT y VVAX

FRUATHLELH NLw LATA GRJIUPeIMIN= E16e80aXe 5HUNMAX= = 10eBobX,y
5‘)‘1’“& T ldel o '.'.LV..'..-.\/zt-!.fln."’

BUINT L33, 0 TULL oAUl LY »MULISRAQUP LY sL=1o1l 1 W)

PRINT 161, (TVLIGRIJIPoLL )y ivUISRIUPHLL)gLL=111V)

FORMATIO( TU=gLiLebe5Xe310J=y 144280 NUNKER OF TIMLES FIR THIS TU)

FIRMATESLH TV=ecloe8e5Xe341iV=,14,284 NUMBCR OF T1%r> FOR THIS TV)
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1651 C2NTINGE PTemyacts TR E
CHA 2= ATSTUMAX=U 0 ) Ll
LSl elTealdou T 113 wEcmie
PRAUYT Ll4, IGROUP T b i

V16 F L MAT(4TH TU [NTEVALS 40T ZOMMENSURATE WITH U RAUNGELSET,164) ,
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XX{LY=0(-1le)=XL) ¢ ((I-2)%CLINCR)
00 11l JU=1,4)
AXL2)=0(-Le)=YL)e((J—-1)~YLINCR)
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PRINT 126
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PRINT 723,uTSMNRE
723 FORMAT(37X,114 40 ALIZEC=,F16,.8)
PAINT 123
PRINT 128

11¢)

c
c
c
C CHECA FJOR SYMMEITRY ACJUT Y AXISelE,ARE SCURTES MIRROR IMAGES OF ZACH
C OTHER
[Syvwi="
vt 1220 IX=1y31
XX{1)Y=(1Ix-1)71".,
0y 1.1 IyY=1,31
XN(E2¥=(TY=-1V/0 .
ol L. T T e oo !
SOANTL T T T T TR OF T G2 ECTIV T aRs
o 3UT JwLyY TrtSl DIVFL<Z 30 12 [VPORTANT HERE

XX{L1)=XxX{1)~(-1.)
CALL CALCHBANIXK g AT 4 0)
! ABOIFF=A2SIBHATLI=-4HAT.)
‘ [FIABDIFE L Tee ' 2)00 D 2208
’ FSYMi=1SYM]L ¢}
1o 8 TFIXXIPIIL 17,10 1,171
1010 XX(2)=xX{(2)«<(~-1.
20T 1011
1271 COUNTINUE
1023 C il uE
pPaIMT 1216
1506 Faf ot e oY 0 0TRY 1 G JCKgREFLECTIGA SYMMETRY [ 23 ¥ AXIS)
IFCISYYLlelEel V50 1O Luljo
PRINT 1025, 1I5YM]
1075 FCURMATESZH ASYNELTRY WAL FOUND BETWEEN THE 2 SOURCE COMPINENTS,

-




I

T

-

g

o

!

N imnten e ikt v ok il M s et GNIANGS Cis N5 - SN i AL NS N A CNRLI RN . 4 RN, . R

LEVEL

‘1 WAl 4 192 A = 6.3:3 3949731

T 1SYMLi=y1%6/7/777)

b T 1.1
1.4 P NT Y .7
1227 F aMAT {ooH NO STOUVIFICANT ASYMMETRY WAS FIJND BETWIEN T4 2 ,
£ LTASOUPCE CUVPUNCITS 211 77)
1219  puivy=1l,
DU |
C
PAINT 124
PRINT 124
S OCZHEZK ZELICTING SYYOZTRY FUROZTACH SOURTL THIU THL CJoMad)y AXIS
. IsyM.="
20 1227 1y=1,31
XXt2)=(1Y-1¥/1" .
DU 1221 [X=1,31
XXCL)=(IX=-1)/1_.
1J31 CALL CALCB3I(N XX, HAT1,5)
XX{2)={=1.)%XX{c)
CALL CALCBB(N XX 3orAT2 0}
ABOIFF=ABS(NHATL-21AT)
IF(ABUOTFFLTeWal )30 TU 1228
ISYM2=1SYM2 +1
1528 IFEXX(L)YL1o3i,1.21,1:21
1030 XX(1¥=xXX(1)%(-L.)
Gu Tu 1231
1921 JuldTlUk
1920 COUTINMNUE
LA S S
R ST T IR e Ty Ty 6 AT
{ (D v L el VL0 Ty L.
PRUINT L.ocSeISYHL
1325 FURMATI2TH ACSY Y T2Y wAS FUUND, ISYM2=,14,77777)
GL T3 1.27
1026 PRINT 1C¢
1027 GAIMATE35H MO SIGUIFICANT ASYMMETRY WAS FOUND,/Z77177)
1J29 Quivy=],
PRINT 128
PRINT 128
c
C
<
11 SUNTLVIE
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L3YFL oL MAT 193 JATE = &u3l3 Y 2% VI

(S IS

PILNT 1032
32 FLRMaT(130 PRISRA, ST

(]

.
(RESNSEINER NGNS ENNSN e NT

‘ Y

|

ol

o+ . L X
e i T Bl SN LN —




—— e -

QIUTLT CALZFOigXgFy 3)
Wll VRTAVSL 29 n) o VLI (29425) o TTUULZS) h TTVVLZ3 1 oUUN(23 )
& ((..))' IJ :\K. R
3l'ﬁ;lﬂliﬁﬂ 52 4400)
N=2
Pl=3,14l0
TPL=2. P
S F IS =:3\20X,Y)
L)
2)
l I=szUFAK
)

ror

172 J=1,9VNA

MT ,.ZQUU\(I)'TTUL(ll VYMII) s TTVV D)y vRZAVOL I, J), VIVAVSI L, )
v, T( /('F‘,QU') .F .0 Oy 7‘ F]..ob SX F.':t() 1 X "50.“'5"‘.15.3,

Co o

coemTHUJLL) THvV )
=((“'d(l)*X(L))*(VVN(J)*X(Z)))*TP[
{

PRI IR RS

It

T

FAC®{EVIEAVSIT o J)={ZOSTARGI I+ UVINAVGIT I EISTYLARG)))))
SEDIHUT2 L =FAC=UGHLI D = CIVREAVS T = (SIN(AGY) ) -
l“~V0(loJ)*(C.-(A 261010 ))
SO2Y=502) e (T2 =k 0mvyt ()R (VREAVGIT 4 J) % (STN{AXG)) ) -

S WirwWiii, J) ‘h_u(A?J),)))
i Cooartac
’ SINTLUE

A=TUWN

)

¢
IMm>mMATCO wm

-
-— e

&

- !

e re
QS

LEVIL o CALLES 194 UATE = g.313 39749/ .

L Ak s s e madems o fA i




LEVEL L cALDY 2 195 CATE = £.313 01435/ .

SU"IJUT!\“: :AL::'_'(“'K’F' .41’

M VIITAY Sl )y T NIl 5028) o TTUULLS) o TIVVLZD) yUUNLZ2S)
! G O VIME25) 0 VT oy VN

‘ 2LA201SION G(2) 4 XiE)

—— e
_‘
-
-
n
[ 9]
- -
t
<
—

LT IAR
DU L.l J=l,NVvax {
- PALHT 2 2300501 TTUL L) o VVNTD ) o TTVV I )y VREAVG( T, J) e VIVAVG(T,J)
1S s FJ{W-\T(Z.‘(.FI..b.)\‘.Fl..t.)‘(.FlL‘.6.5X.Fl_\).6'lGX,Elb.S.SX,Elf).S)
FAalseo xTTUDLT) ITIVI) 1
A2o=((UU ILT) &) e (VY (UIEX(2)))*TP] !
) FaF=f{FACR({VRIELVLIT o J)XIZUSTARGII I =(VIMAYGIT ¢ JI*(SINIARG)})) })
151 Mt tNug

————— -

19 Co Tl it ‘ ' ‘i
}OTURN 3
Lvd
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21 MA TN 197 DATE = 80325 13727746

DIMENSICON LI2T),,M(T)

DIMENSION 2(07,CD)

DIMENMSICN ZZALToCT19222(.7,G7)
CIMINSICN VRLI(3C),VIL(30)

DIMENSION CR(3D),L1I13C)

DIMENSION TDATA(30).T(3L)

DIMENSICN A(37)

DIMENSION VR(25),VI(25)4YBR(25),VBI(25)
DIMENSION BR(1D0Q)EI(103)

DIMEMSIUON TUSET(3)

VREALIUDI=(2. /W) (JUSI2.2PT*U) JREXP(((-1.) %P1 /W) (U*s2)) I
VIMAG(U)=0*U

s it e

W=10. 1
N=T

PI=3,.1416

POWCK=10C.**T0 3

READ 1,XL,UMIN,UEL TAVY

FORMAT (3 (E16.8))

PRINT 8,XL,UMIN,CELTAU

FORMATOUGH LX=9E 16e895XeSHUMINZ4E164895X, THDELTAU=451648)
READ 2 (TDATA(J)9J=1oN)

FORMAT(EL6.8)

PRINT 9,(J,TDATA(J)y J=1,N)

FORMATI3H T(,12,2H)=,E16.3)

PRINT 6

FORMAT(//17171711)

PRINT 85

FORMAT( 20X, 14HAVERAGE VALUES,/)

THE *Z MATRIX® IS THE INTEGRATION *I MATRIX®

UONE=UMIN e e e
UTWO=UONE+DELTAU \

D0 3 J=1,N

T(J)=TDATA(J) C ALC UCATE S
TUSET(J)=T( J) AVERAC-E
SUMVR=0 Al e OF
SUMV [=0 VALVES ef
MN=T (J)/DELTAU+.1 Viu) 18 €a4cH
PO & T4CU=1,%Y4 4 )

} > R JRA DA SR BR A AR AR SRR I I I

UnNE=,270071

IFCUTWO)1113,1114,1113

UTWI=,.3C00%1

SUMVR=SUMVR+{( [VREAL(UTWI)+VREAL(UONE)) /2.) ®*DELTAU)
SUMVI=SUMVI+(((VIMAG(UTHO ) *VIMAG(UONE) ) /2. ) *DEL TAU)
UONE=UONE+DELTAU

UTWI=UTWO+DELTAU

COitF INUE

VR1 (J)=SUMVR/T (J)

VI I =SUMVI/ZT(J) |
PRINT 180,30 VR1(J) pJdyVI1(J)

FORMAT(4H VRU9I292H)=gE 16489 15Xe3HVIly[242H)=,E1668)
CONTIE — SR

RS & T

TNI=L./7(2.%XL) EVALUATE NyGuid T INTERVAL
RCHK=( (=1 *UMIN) /TNI)#45 -

NCHK =R C HK \

]

e —— i - — T d




LEVEL 21 MAIN 198 DATE = 8C325 13727746

. * . LI - et
A E DA SXTEN Lo 05 WSS s
e -3

-

CHK=RCHK=-NCHK - il
[F(CHK.LEL.OCSIGU TO 851 - - ‘
RANGE EXTENSIC: : e Dot ¢ ATER N IS e
' NITOT=0({=2.%UMTN)/TNI)+L.) 4,995
: NMAX=NITOT
PRINT BS3,NITUT
8353  FORMAT(TH NITOT=,14)
: C=oS5*(INITOT2TN1)+(2.%UMIN))
! UMINEW=UMIN=D
PRINT 891,UMINEW
398  FORMAT(8H UMINEW=9E16.80///77)
UMIN=UMINEW
c DATA SET MODIFICATION BY EXVENSION
NPLUS1=N+]
03 590 I1=2,NPLUSL
[IMINL=11-1
VRUIL)I=VRLI(IIMIND)
VI(IL)=VIL(IL™INL)
TOLL)=TDATA(I1IMIN])
TUSET(I1)=T(I1)
390  CCNTINUE
. VRI1)="
! VI(l)=C
NPLUS2=NPLUSL #)
VR(NPLUS2)=0
VIINPLUS2)=0
T(1)=D ]
TUSETI1)=T(1) ]
{ TINPLUS2)=D
TUSETINPLUS2)=C
GO T3 852 ' TENZiIN A5 NOT
851 D=0 B ) L . DL MAM EX
NITOT=0{(=-2.)%UMIN)/TNI}+.995
NMA X=NI TOT
PRINT 853,NITOT
NPLUS2=N
DO 852 IL=1,N
VREIL)=VRI(IL)
VICIL)=VILCOIL)
352  CoUNTI'WIE
5"

(R

- 4 rn e ———— -

v
“ 35" NCT=1
J . NSE=1 CEFrtmy LT GECT o
| TSUM=0 sapr oF REFImv SR
! DO 630 NTNI=1,NITOT ~————— - ST Fer Ate. vARvEs < VM
 PRINT 951,TBIT,TSUM b 3 MATRiw I8 TEAMS
351 FORMATI6H TBIT=,E16.8,84 TSUM=,E16.8) AN D Nreevac
UU=TNI OF NyGusT INTELVAZS

602 IFITINCT).GE.UUIGE TO 631
AINCT)=TINCT)/ TN
UU=yu-TINCT)
PRINT 954 yUUAINCT) o TINCT )4 NCT
154 FORMAT(4H UU=9E16.899H AINCT)I=9EL16e898H TINCT)=oE168¢4HNCT=414)
IF{NCT.GENPLUS2)50 TO 635
1ICTr=17T+1
GJ TU 602
501 AUNCT) =UU/TNI
PRINT 9544UUsAINCT) o TINCTINCT
505 NSTOP=NCT




21 MAIN 199 CATE = 80325 13727746

VBRINTNI)=0
VRTINTNT) =0
DU 670 N2INIT=1,NITGT
ZUNTNL G N2IMIT) =)
. 670 CONTINUE - :
! PRINT 952,NST,NSTCP
952  FORMAT(18H ENTERING TI1 LUOPs6H NST=,14,8H NSTOP=,[4) _
/ DO T2l NJ=NST,NSTUP N AT Qe L
? VARINTNT)=VRINJ ) =AINJ D¢ VBRINTNT) — VBR 3 A vdive oF 00

VBILATNI) =V E(NI ) =A(NI ) #VB TINTNT) INTeRVAL , REAL 17
N2=1 - T T T s, A VRI CinES THE 1rin&. R
NN=(1-NITOT)/2 CUE MATIG
; NNCHK=NST=NJ
. 732 UNL=UMIN#TSUM#(TUSETINJI/2.)
; PIT=PI*TUSETINJ)
L2 AL=((2.*PT )% ( (NN/(2.%XL))=UNL))

ALFA=PIT+AL

SETA=PIT-A1

AL=KL*ALFA .

BL=XL*BETA acrr

SISh=1, ¥ ety o Uy

SM=AL+BL DS @jll,.m-ffr \_ ' '
} | ‘ NODD=3 ARGV -ATE ‘/;,/ (;é\'*‘\"‘d‘ o eF THE N

r———

11

POM12=0 , v
5 IF{POW12.LE.POWCKIGO TO SC TERN)
PO“AL=1 °
POWBL=1.
DU 799 INCNT=1,NUDD
POHAL=POWAL* (AL/INCNT)
POWBL=POWBL*(BL/INCNT)
799  CONTINUE
POWER={ POWAL+POWBL) /HUDD
GO TO 25
50 POWER={ ( (AL)*%NODC) +( (BL) **NQCC) } /NOCD
PUW12=POWER
SIGNCK=1.
IFINODD.LT.54)G0 TO 22

PRSI

]
{

o [F(PINER)23,22,204

ki 23 Sisin==l,

4! PLWER=PDAER®(~14)

G{ 24 POWRLN=ALOG(POWER)
] DO 651 LNFACT=2,NODD

XLNFAC=LNFACT
POARLN=POWRLN=~(ALSG{XLNFAC))
651 CONTINUE
PIHER=EXP{POWRLN)#SIGNCK
GO TO 25
22 DO 657 IFACT=2,NGCD
POWER=POWER/IFACT
650 CONT INUE

o ————r

Rl o

25 SIGN=SIGN%(-~1,)
SMINCR=SIGN*POWER
SM=SMe SMINCR
AINCR=ABS{SMINCR)




21 MAT 200 DATE = 80325 13727746
LF(AINCR.LE..051)00 TO 7 |
NOUD=NODD+ 2 i
50 13 5 :

| 7 ZUNTNEGN2) = (S¥/PIT ) AN ) +2 INTNI,N2)

; , ZZUNTNI gN2) =Z (NTNI yN2)

% [FIN2.EQ.NITITIGU 10 60

; NZ=NZ+1

. NN=NN¢1

, G0 T0 21

60 TSUM=TSUM+TUSE T{MJ)

700  CONTINUE
702  PRINT 80, (NTNIoJN2 o ZINTNI4JIN2)y JN2=1,MITOT)
80 FORMAT(3H I(,12,1H,,12,2H)=,E16.8)
RRCHK=T INSTOP )-UU
IF{RRCHK.GT..C21)GC TG 680
NCT=NCT+1
NST=NSTOP+1
: GO TO 69
58)  TSUM=TSUM~TUSET(:{J)
TINSTOPY=T(NSTOP)-UU

NST=NSTOP
o NOTE THAT NCT REMAINS THE SAME HERE SIdCE THE CURRENT

1 o T OLD INTERVAL STRADDLES THE NEW TNI IMNTERVAL

i 609 ConT INUE

' PRINT 6

PRINT 6104(JsVBR{J) gJsVvBI IV, J=1,NMAX)
613 FORMAT(5H VBRI9IZy2H)=9E16.84 10X y4HVBI(31292H)=4C1648) ]
{ PRINT 6 '
c LINEAR SYSTEM SOLUTION FOLLOWS
717 PRINT 8GO0
800 FORMAT(24H LIMEAR SOLUTION FOLLOWS./7)

70 CALL MINVIZ NMAX¢DyLgM) —--—m——— CAbCAL 4T3 puny, Gmced
LLL=1 I VERSE AITRIR .. ’ - e

; CALL GMPRD(Z,VBR,CRyNMAXyNMAX pLLL) Fel ® N e n-
: PRINT 90, (J,CR(J), J=1,4MAX) o pear b TRHE SCre
. 90 FORMATU4H CR(412,211)=,E16.5) SeLves e T TiIFIc Sv3”
‘ CALL GMPRD(ZyVEBIsCEgNMAXy NMAX,LLL ) ANy (MAG ne s R TINE
i PRINT 91,(J4CI(J)y J=1,NMAX) e foﬂd“{’“jl, THC KA EE
: 91 FORMAT(4H CI(, 12, H)=yE1648) Crivien s =¥ Fen ThE
% PRINT 6 P A ‘

"1 e Ull'[(J‘.,-J;'[,(J‘L'J‘;] .}1=1,'..'("~T(). J::I.'..:‘.’«‘-(,
51 FUUYATIOH 2 g2l elly i) =421642)
CALL GMPRODI(Z9ZZ¢ZZ2 3y NMAKyNMAXyNMAX)
PRINT 6
PRINT 61140 (J1,J29Z2Z(J31,5J2) 9 J1=1,NMAX), J2=1;ixMAX)
PRINT &
PRINT 6
NX=81 Ay eATES
PRINT S01,NX s VAWVE S %
501 FORMAT(23H NUMBER OF X INTERVALS=,14) —
DO 552 NXX=1,NX BLXR)
BRINXX)I=D
BliNgX)=0
CrsTluE
N XK=}
506 Xz(=4,¢(1%{\NXX=-1)))
D0 503 NNX=1,NMAX
‘ NINT=({1-NMAX)/2)¢(NNX-1)

T -

[P

<

N . ——~——— @~
-7 SO S

.
- Y S
3
<
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XFAC 1=COSU(PI=NINT*X)/XL)
XFAC2=S IN((PI="TnT&X)/XL)
BAENKXY=(CRIN R)EXFACL)~(CIINNX)EXFAC2) +BRINXX)

BEANXX)=(CT INNX)*XFAC L) ¢{CRINNX)*XFAC2)+BT(NXX)
CONTINUE

BMAS=SQRTU(BRINXX) «*2) ¢ (BI{NXX)%%2))

PRINT 5049 XyBRINXX) 9 XoBIUNXX) » X9 BMAG

FORMAT(4H BR(yF6a3¢2H)=3C16e85 10Xy3HBI(9F6e392H)=9EL6.8910X,
& SHBMAG(4F6.342H)=,E16.8)

IFINXX<GE.NX)GO TU 535

NXX=1XX+1l

GG TO 506

PRINT 6

sTop

END
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