AD=A093 788 MCDONNELL DOUGLAS ASTRONAUTICS CO MUNTINGTON BEACH CA F/6 9/2
METRICS OF SOFTWARE QUALITY,(U)

NOV 80 Z JUELINSKI» P MORANDAr J CHURCHWELL F'%20-71-C-0099
UNCLASSIFIED MDC=69326 AFNCR=TO=AN=137

, HNEEEENEEEE

‘ A

(0L NVI 90) LOPIZZ-0C

e M-

ADA093788

MCDONNELL DOUGILAS ASTRONAUTICS COMPANY

d

MCDONNELL DOUGLAS

339

éonmamn

G5o FILE COPY.

METRICS OF SOFTWARE QUALITY
FINAL TECHNICAL REPORT

——e A
DOUGLAS

CORPORATION

NOVEMBER 1980 MDC G9326

AIR FORCE OFFICE OF SCIENTIF1C RESEARCH (AFSC)
NOTICE OF TRALSMITTAL TI0 DDC

This tecliidcal report heas teen reviewed and s
approved for public release IAW AFMR 190~12 (7b).
Distribution is unlimited. {
A. D. BLOSE i
lechnical Information Officer

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY-HUNTINGTON BEACKH
5301 Bolsa Avenue Huntington Beach, California 92647 (714) 896-3311

DL S p ED

SECYRITY CLASIZICATION OF THIS PAGE (When Data Entered)

l‘lRE ORT oocuueurmou PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
2. GOVT ACCESSION NO.

M AL Aeazh5R () r vt e

2 T XAE-Or-REPORT & PERIOD CO
1 Jun W77-30 Ogj:,_!_egjt
Tinal Report

METRICS OF SOFTNARE QUALITY , r‘ . REPORT NUMBER
% | MDC-G9326
.1 AYTHOR(s) - 4/ JGRANT NUMBER(a)

o od FISHY - 77 PP5T
'Z’ Jehnsk1PP B/Morandag‘ and J. B/Churchwel] < 777
9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PRgGR’Ag E —— TNPURMOBJECT TASK

McDonnell Douglas Astronautics Company 'Cs e
5301 Bolsa Avenue G A bx{.yﬂz?/y
Huntington Beach, CA 92647 [,

Bolling Air Force Base 3. NUMBER OF FAGES

1. CONTROLLING OFFICE NAME AND ADDRESS 12..REPORY DATE
Air Force Office of Scientific Research//fﬂ J tNovembe—-ioapf
District of Columbia 20332 130

4. MONITORING AGENCY NAME & ADDRESS(/f dll(cuﬂ! trom lerollh!‘ Ollico)

15. SECURITY CLASS. (o

e e o St

/9\ ;LL‘I“Q Unclassified m

e 1Sa. ogcggssnencnvrnonw‘mﬂf

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT (of the abstract entered In Block 30, if diiferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae side ! necessary and identify by block number)

Software Metrics
Test Tools

20. ABSTRACT (Continue on reverse side If necessary end dentity by block number)

\:BThis report covers the period from 1 June 1977 to 30 October 1980.
A major task on this contract was to make a comprehensive review of
the literature on software metrics and of quantitative measures of — .

>,<

(Continued on next page)

FORM
DD \ian'ss MI3 eoimionor 1 nov esis °"°T‘ iy aS Lo D

.‘ . ; o
f // { 0 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersd)
é ili

b

YA e LSS 2

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

program testing., The original review is contained in the first Interim
Report (MDC 67517, dated July 1978); this review has been slightly revised

égg,updated”in this report.

“Another accomplishment was the development of an automatic procedure for
testing FORTRAN programs with random numbers and random symbols. This
procedure first drives the program with sets of random data, then senses
the tracks taken, compares each generated track against all predecessors,
then on the basis of the pattern of occurrence of new tracks, provides an
estimate of the total number of residual paths. Additional sets of random
numbers can be then generated.

The program developed to instrument a given FORTRAN program and provide
data for evaluating coverage is described in the Final Report of earlier
work (MDC G6553, dated December 1976), Changes which have been made are
described herein,

In the related topics of Software Reliability, two methods of estimating
the residual error content of an entire program on the basis of data
obtained in the testing of portions of it have been developed and are
detailed here.

~

I

W/ APV IRV LID),

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

iv ;'
—— T T T T " e —————— IR AR e J

ué

PREFACE

T

G - P DT
This report documents the results obtained during an Air Force

0ffice of Scientific Research Contract (SN[IIED. entitled
"Metrics of Software Quality." This work conducted during the
period 1 June 1977 to 31 October 1980, was performed by personnel
of the Computer Science Branch of the Data Control and Processing
Subsystems Department of Avionics Control and Information Systems L
Subdivision, McDonnell Douglas Astronautics Company-West, in '
Huntington Beach, California. The Principal Investigator and study

director was Zygmund Jelinski. Substantial contributors to the study
were P. B. Moranda and J. B. Churchwell. This work was monitored by
Lt. Col. George W. McKemie whose assistance is gratefully acknowledged.

4

' MCDONNELL poua;(@_
H

.

ABSTRACT

A major task on this contract was to make a comprehensive review
of the literature on software metrics and of quantitative measures of
program testing. The original review is contained in the first
Interim Report (MDC G7517, dated July 1978); this review has been

slightly revised™and updated in this report. g

A O

Voo]

Another accomplishment was the development of an automatic pro-
cedure for testing FORTRAN programs with random numbers and random

symbols. This procedure first drives the program with sets of random

data, then senses the tracks taken, compares each generated track
against all predecessors, then on the basis of the pattern of occur-
rence of new tracks, provides an estimate of the total number of
residual paths. Additional sets of random numbers can be then
generated.

The program developed to instrument a given FORTRAN program and
provide data for evaluating coverage is described in the Final Report
of earlier work (MDC G6533, dated December 1976). Changes which have
been made are described herein.

In the related topics of Software Reliability, two methods of
estimating the residual error content of an entire program on the
basis of data obtained in the testing of portions of it have been
developed and are detailed here.

vii

McoonnELL oouo;&

‘“jii-lllllllllEIEE’ ' - F‘!f.-

D SRR

Section 1

Section 2

Section 3

Section 4

Appendix A
Appendix B
- Appendix C

MCOONNRLL ”UG‘L“%

L“——M— . -

CONTENTS

INTRODUCTION AND OVERVIEW

1.1 Introduction 1
1.2 Objectives and Tasks Descriptions 1
1.3 Course of the Research Program 2
1.4 Publications and Presentations 5
LITERATURE REVIEW AND CRITIQUES OF
SOFTWARE METRICS 7
2.1 Reviews 7
2.2 Critiques of Software Metrics 13
COVERAGE BY RANDOM AND CONSTRUCTED CASES 33
3.1 Introduction and Background 33
3.2 Applications 56
3.3 Additional Problems in Coverage

Testing 80
ERROR~DETECTION MODELS - 87
4.1 Summary 87
4,2 Introduction 87
4.3 Conclusions 95
4.4 Glossary 95
REFERENCES 97
AUGMENTED ORLA PROGRAM A-1
APTS OUTPUT 8-1
OUTPUT FROM A CONSTRUCTED CASE AND
CONSTRUCTED CASES LISTING C-1

—)

0 N Y Y RWwN

10
1
12
13
14
15
16

FIGURES

Test Scores Program and Flow Diagram

Coding for Example Program

Combined Flow Chart and Code of Example Program
Augmented Code for Example Program

Flow Diagram of Miller and Spooner Example
Selected Path Through Example Program

Response to Zero Matrix

Response to Data Formed by Interchanging 1st
and 2nd Rows of Original Matrices

Reversal Analysis

APTT Numbering for Program
APTS Segment Identification
Listing of an Example Program
Response to First Data
General Flow of Computation
Partially Pruned Flow Diagram

Purification Process and its Realization

TABLES

ORLA Segment Usage Versus Trial Number

xi

mMcooNNELL ooual.iu%

36
42
43
a4
47
48
51

52
60
61
62
76
81
82
85
89

70

Section 1
INTRODUCTION AND OVERVIEW

1.1 INTRODUCTION

The essential focus in this research has been the production of useful
metrics to characterize the quality of software at any stage of its develop-
ment. The end product desired is simply a set of metrics which have utility
and a description of the means of applying them. The metrics selected are
few in number. For completeness a list of all metrics which were found and
considered as candidates at the time of the review in 1978 are included with
comments on their prospective use.

The primary metric considered as an integral part of this research is
coverage. Coverage can be described by a spectrum of choices: coverage at
the branch level, at the instruction level, the segment level, "track" level,
or execution path level. The procedures which are required to firmly estab-
lish the level of testedness or coverage of a software package form the
substantive portion of this research.

In addition to coverage metrics, the software reliability models
developed during an earlier contract and which have been employed to estimate
mean times to failure and error content of a completed package, were modified
so as to derive estimates on the basis of observations of errors during the
initial phases of testing on incomplete or partial programs. Two models were
developed, one is based on the assumption that a cumulative record is main-
tained of the percentage of the completed program that the (varying) tested
portion represents, the other assumes that the count of the number of
instructions under test is available.

1.2 OBJECTIVES AND TASKS DESCRIPTIONS

The original plan for the first phase of the research was given in terms
of the tasks:

A. Review contemporary work of researchers in software testing field to
postulate testing strategies.

7/

MCDONNELL DOUGL{“%

B. Perform preliminary tests of selected programs to obtain some data
on various testing strategies.

C. Evaluate parameters influencing software quality to suggest
appropriate metrics.

D. Document as appropriate to facilitate later extensive experiments.

The primary effort during the second period encompassed work on three
tasks:

A. Tailor or expand the testing programs that were developed in the
first phase of the contract.

B. Code so as to provide valuations of the program predicates, and
values of the artificial program variables which provide the data for the
search procedures.

C. Modify, install, and test the tool on a laboratory computer when
the scope and size of the test tool are established.

The subsequent work centered on the assessment of the practicality of
a fully automated version of testing. The goal of this work was to test the
tool and the methodology, using the several constructs (connection matrix,
status vectors, predicate valuations, and input and output data) through the
implementation on a "laboratory" type of computer, such as the Nanodata QM-1.
The assessment of the practicality has been carried out but the implementa-
tion required programming effort which far exceeded budgeted labor.

1.3 COURSE OF THE RESEARCH PROGRAM

The initial effort was made on a Titerature review. The review made was
very comprehensive and its scope is indicated by the list of papers, publi-
cations, and reports which were reviewed either in depth and critically, or
in content. This list comprises Section 2.1. Subsequently, evaluations of
the metrics which had potential ability were made. These are given in
Section 2.2.

/
mMcoonnELL nouou@_
L

The substantive contribution to two aspects of software quality were
initiated after the literature review. The metrics which showed promise,
the two which could be most productively studied were the degree of coverage
(or testedness) and MTTF (meantime to next error detection). These two
metrics were exclusively studied in this research.

Previous successes in testing simple programs with random numbers led
to the belief that such testing could serve as an efficient initial testing
set on more complex programs. This testing has been found to be very much
more effective than the sometimes trivial and always, limited in number,
check problems, which are normally used (some of the cases generated by
random test data for a polynomial-solving routine produced polynomials whose
coefficients had ratios of 1013

ceivable choice for most testers). Accordingly, experiments were performed

and this would be an essentially incon-

on progressively larger FORTRAN programs and the general tendency which was
indicated on smaller programs was supported, random numbers generally pro-
duced good tests and in fact, in one of the later programs tested, the first
100 random number sets produced 99 different tracks.*

A means of determining the number of residual tracks still existing has
been developed in earlier work (Reference 1) but it required a time consuming
matching or comparison procedure. One of the earliest programming tasks
was to automate this procedure. Developed was an even further extension of
the already augmented Program Evaluation and Tester (PET) tool, which itself
was developed in 1974 (Reference 2). With the random number generator, which
was an augmentation to PET made in earlier work (Reference 1), and distin-
guished by the name Program Testing System (PTS), and the automated compari-
son procedure, it was possibie to produce sets of data in quantities approach-
ing, to any desired degree, the asymptotic number of tracks which could ever
be generated by random numbers. The modified program is designated as the
Augmented Program Testing System (APTS).

*A track derives its name from two facts: first, a segment of the associated
execution sequence is counted only once even though it may have appeared with
multiplicity in the execution sequence; second, the order of execution is
immaterial and, for example, the sequences ABCAC and BACCA are equivalent.

’,
MCOONNELL DOUGL @_.
{

-

The next step was to develop a systematic way of executing the still
remaining tracks by formation of what are called constructed cases. The
framework in this was a procedure developed by W. Miller and D. L. Spooner
(Reference 3). This consists in converting the problem of unguided search-
ing for data input points which will drive a particular path or track, into
a systematic process related to a common optimization problem. Auxiliary
variables are inserted at predicate sites, and a certain simple function of

these variables is evaluated for each input data set, when a data set is
found which produces a positive value in the function, the path associated
with the preassigned predicate valuations then will have been exercised;
and, if the trial data set does not produce a positive value, then any

of several search techniques commonly employed in optimization problems can
be used to determine subsequent trial data sets. The initial work in this
application was all performed without computer assistance.

The final major goal was to incorporate both the random testing and
constructed cases into one comprehensive sequential testing process. Starting
with random numbers, these would be employed until new cases become difficult
to find, at which point a transfer to testing by constructed cases would be ‘
made, using displays to show the predicate sites and the unexercised branches
(valuations of the predicates). Auxiliary variables would then be inserted,
the program would be recompiled, starting- or trial-data would be used, the
composite objective function would be evaluated, and a search procedure
invoked. The latter two steps would be carried out in an iterative fashion
until the selected path was achieved or judged to be infeasible. Unfortu-
nately, the magnitude of the programming effort required to implement the
display/operator/computer complex was judged to be too extensive and expensive
to carry out. Accordingly, only portions of the implementation have been |
developed. These are described in this report.

With respect to the study of the MITF, it was carried out in a low i
priority status, throughout the course of the research. Interfaces were made
at several conferences with most of the analysts who have worked in the field
of software error modelling. Two significant new models of the error-making
process were developed during the third year of this study.

/ 4 4

|
MCDONNELL oouou@_
{ .

1.4 PUBLICATIONS AND PRESENTATIONS

sponsored in whole or in part by the Air Force Office of Scientific Research:

1.

The following are the major publications or presentations of research

P. B. Moranda, "Limits to Program Testing with Random Number Inputs",
Proceedings of COMSAC 1978, November 13-15, Chicago, I1linois.

P. B. Moranda, "Event-Altered Rate Models for General Reliability
Analysis", IEEE Transactions on Reliability, Vol R-28, No. 5,
December 1979.

Presentation by P. B. Moranda of a paper, "On the Modelling of the Error
Process", to the 1st Minnowbrook Workshop on Software Performance
Evaluation, sponsored by Syracuse University at Rome Air Development
Center, October 1978.

P. B. Moranda, "Error Detection Models for Application During Program
Development", Proceedings of Pathways of System Integrity, ACM Meeting
Gaithersbury, MD, June 1980.

Presentation by P. B. Moranda of same paper at National Computer
Conference, Anaheim, California, 22 May 1980.

Presentation by P. B. Moranda of same paper to 3rd Minnowbrook Workshop
on Software Performance Evaluation, sponsored by Syracuse University and
Rome Air Development Center, August 1980.

Presentation by Z. Jelinski of a paper "An Approach to Solution of
Problems with Support Software as Deliverables" to Defense Systems
Management Review, Ft. Belvoir, Virginia, March 1978.

P. B. Moranda, "Asymptotic Limits to Program Testing, INFOTECH
State-of-the-Art Report on Program Testing, INFOTECH 1979.

!

Section 2
LITERATURE REVIEW AND CRITIQUES GF SOFTWARE METRICS

2.1 REVIEWS
Two different levels of review were made, one is thorough and complete

at an analytical level, the other for content only.

2.1.1 In Depth Reviews

2.1.1.1 Review of Work Published Prior to July 1978

Rather extensive and detailed examinations were made of the literature
of the software testing field and of software metrics in general. The
following papers were reviewed indepth during the period June 1977 to
June 1978. Informal reviews of the following listed papers were provided
to the contractor.

1. TRW Software Reljability Study. TRW Final Report, RADC, TR-76-236,
August 1976.

2. M. L. Shooman, "Structural Models for Software Reliability Predictions",
Proceedings of the 2nd International Conference on Software Engineering,
13-16 Oct 1976, San Francisco, California.

3. H. E. Williams, T. A. James, A. A. Beaurequard, and P. Hilcoff,
"Software Reliability Systems: A Raytheon Project History",
RADC-TR-77-188, Final Technical Report, June 1977.

4, IBM Federal Systems Division, "Statistical Prediction of Programming
Errors", RADC-TR-77-175 Final Technical Report, May 1977.

5. Doty Associates, Inc., “Software Cost Estimation: Vol 1", RADC-TR-77-220,
Final Technical Report, June 1977.

6. J. R. Brown, H. N. Buchanan, "The Quantitative Measurement of Software
Safety and Reliability" SDP 1776, 24 August 1973.

7. M. Shooman and A. Laemmel "Statistical Theory of Computer Programs -
Information Content and Complexity" Digest of Papers Fall COMPCON 77,
Washington, D. C., 6-9 September 1977.

8. G. J. Schick and R. W. Wolverton, "An Analysis of Competing Software
Relijability Models" IEEETSE, March 1978; Vol. SE-4, No. 2.

7
7/
mcponnELe wua(@_
- —_— - N ’ . . - = -
rorRTa—].-ill - -‘_).4_..“;..4 o ada - R & i - .

9.

10.

11.

G. J. Myers, Software Reliability, Wiley-Interscience, 1976,

A. Fitzsimmons and T. Love, "A Review and Evaluation of Software
Science", ACM Computing Surveys Vol. 10, No. 1, March 1978.

B. Littlewood and J. L. Verrall, "A Bayesian Reliability Growth Model
for Computer Software", Record of 1973 Symposium on Computer Software
Reliability, New York, N.Y., 1973.

2.1.1.2 Additional Reviews

1.

A. L. Goel and K. Okumoto, "Bayesian Software Prediction Models, Vol I:

An Imperfect Debugging Model for Reliability and Other Quantitative
Measures of Software Systems", RADC-TR-78-155, Rome Air Development
Center, N.Y., 1978.

J. D. Musa, "Progress in Software Reliability Measurements”, Proc. 2nd

Software Life Cycle Management Workshop, Atlanta, Georgia, August 1978.

R. E. Schafer, et al, "Validation of Software Reliability Models", Hughes

Aircraft Co., RADC-TR-79-147, June 1979.

W. D. Brooks, R. W. Motley, "Analysis of Discrete Software Reliability
Modelis", IBM Corp., RADC-TR-80-84, RADC, New York, April 1980.

€. H. Forman and N. D. Singpu:rwalla, "An Empirical Stopping Rule for
Debugging and Testing Computer Software", Journal of the American
Statistical Association, Vol 72, December 1977.

A. N. Sukert, "An Investigation of Software Reliability Models", Proc.
1977 Annual Rel. Maint. Symp., Philadelphia, PA, 1977.

2.1.2 Literature Reviewed for Content

1.

Z. Manna. Mathematical Theory of Computation, McGraw-Hill, Inc.,
New York, 1974,

T. Gilb, Software Metrics, Winthrop Publishers, Inc., Cambridge,
Mass., 1977.

A. Goel. "Bayesian Software Predictions Models," RADC-TR-77-112,
March 1977,

M. Shooman, "Manpower Deployment Effects on Software Error Models,"
in RADC-TR-76-143, May 1976.

Boeing Computer Services, "Software Data Acquisition," RADC-TR-77-130,

April 1977.

W. H. Howden, "Methodology for Generation.of Program Test Data,"
IEEE TransComp, Vol. C-24, May 1975.

L. Clarke, "A System to Generate Test Data and Symbolically Execute
Programs," TEEETSE, SE-2, 1976.

MCDOONNERL ”UOLL@

8. S. Gerhart and L. Yelowitz, "Fallibility in Applications of Modern
Programming Techniques," IEEETSE Vol. SE-2, No. 3, Sept. 1976.

9. R. F. Serfozo, "Compositions, Inverses, and Thinning of Random
Measures,” Syracuse University, Dept. of Ind. Eng. and Ops. Research,

December 1975.
10. L. Osterweil, "Depth-First Search Techniques and Efficient Methods for
Creating Test Paths," Univ. of Colorado Dept. of Comp Sci TR No.

CU-CS-077-75, August 1975.

11. W. Miller and D. Spooner, "Automatic Generation of Floating Point Test
Data," IEEETSE Vol. SE-2, No. 3, Sept. 1976.

12. G.E.P. Box and K. B. Wilson, "Attainment of Optimum Conditiions,"
J. Royal Stat Soc., Vol. XIII, No. 1, 1951.

2.1.3 Review of Testing Tools and Procedures

Articles of a review nature have identified and briefly described a
large number of different testing tools. D. J. Reifer (Reference 4)
identified 70 different types of tools and briefly discussed each type.
C. V. Ramamoorthy and S. F. Ho (Reference 5) discuss, in some detail, 15
different tool types. A review of these different types here would be dupli-
cative. Instead a composite review of the limited number of reports listed
above dealing with the testing process will be presented. Usually the
potential deficiencies of the processes or tools are brought out in the
description, but not their advantages.

Before the discussion of individual classes of tools is undertaken here,
jt is well to note that the paper by Goodenough and Gerhart {Reference 6)
illuminates many of the heretofore neglected points concerning testing.

Some of the important points they make in this respect are:

A. It is not enough to execute a statement with a particular set of
conditions, it must be tested in all combinations of conditions;

B. In the same sense, a path through a Toop may have to be taken
several times before the conditions for error revelation are met;

C. Missing, but required-for-correctness, components of a program
(such as predicates or assignments) clearly cannot be identified by
"cover-testing" a program;

D. Generally a program must be examined for what it actually does
instead of what the tester is told the program does and, at each point of

/
MCOONNELL DOUGLAS
(L

- - -

- b veama
——— e

interface, it must be examined for what it can do;
E. The environment, including the operating system, hardware
processor and language, have to be examined.

2.1.3.1 Inside Out Testing .

Several different techniques have been employed to develop test cases on
the basis of a specified set of valuations or outcomes of the program's
predicate. The mathematical expressions employed in the program predicates,
are used to develop a set of restrictions on the input data space. Solution
of the set of equations then produces a point or set of points that will
achieve the path through the program. The difficulty with the procedure is
that the set of equations involved often are not tractable, even for cases
where only "area" (as distinct from point) solutions are required. This
difficulty is, to a degree, alleviated by use of interactive entry of data
and display~-guided solutions.

2.1.3.2 Symbolic Execution

Instead of operating on numerical (or logical) values for variablec in
a processing, the program's operations can be carried out on the symbols
themselves. This technique was independently proposed by W. E. Howden
(Reference 7) at McDonnell Douglas Astronautics Company, B. Elspas, et al.
(Reference 8) at Stanford Research Institute, J. C. King of IBM (Reference 9)
and Lori A. Clark (Reference 10) of the University of Massachusetts.

Programs, so exercised must be augmented so they become capable of
symbolic execution of expressions and provide means for selecting specified
branches or paths in them. Howden employs a system (DISSECT) processing the
program that is to be symbolically executed, along with a 1list of commands
that cause symbolic execution.

The advantages of symbolic execution are clear. In certain cases the
printout consists of an explicit formula that is unambiguous to the reader.
If the formula is correct, the program is correct for all data and there is
no necessity for numerical comparisons or independent checks.

In many cases, however, the output is far from clear to any but the most
experienced users. There is, for example, sometimes a need to maintain the

10

7/
MCcooOnNNELL poual@_
N

——— -

list of possible antecedents (a suspense file) for a program variable having
several different symbols and values assigned to it. Further there is a
context-dependency that a given assignment may have, caused, for example,

by different encounters of an assignment during looping. This must be
accounted for, and in the case of DISSECT, the context is identified by a
number representing the dynamic instruction number (as distinct from the
static sequence number associated with a 1isting). These and more complex
problems have been faced by Howden and others and they provide finished
products that are proof that such techniques can be used to good effect

when the tools are in the hands of experts.

While there are some barriers to the "field" use of such techniques,
they do not seen insurmountable and it is probably reasonable to expect that
symbolic execution can be of common use.

2.1.3.3 Automated Verification Systems

Several systems instrumenting a given program to permit the tallying of
the uses of its instructions, branches, and so forth, are classified as
automated verification systems by Reifer (Reference 4). They are usually not
automated in the strict sense of the word: although they require a set of
input test data to drive the program, there is no instantaneous feedback to
change the data to test new unexercised sections of the program. A complaint
on word usage can be also made that these systems do not really verify the
tested program, and generally do not even consider the output in respect to
its accuracy, or even its relevance.

A McDonnell Douglas Automation Company tool, called PET (for Program
Evaluator and Tester) described by L. G. Stucki in a company report
(Reference 2) and in the open literature (Reference 11), is typical of this
class.

For a given data set, PET reports the usage by instruction and branch,
which the execution sequence represents. There are other useful metrics,
including the range of value for each of the program variables. Lists of
unexercised program components also are printed out.

An augmented version of PET, that formed segments consisting of

MCDONNELL nouou.as%
G

"

"dynamically contiguous" program instructions, was used and described in a
recent AFOSR-sponsored study (Reference 1). In that study, as with most
other applications of PET, the emphasis is on the "coverage" of the tested
program. Repeated tests with randomly generated input data were used, and
their effects merged to produce a composite (montage) of the testing status
of the program. Unexercised segments were used to find the governing predi-
cate or predicates in the program listing, and so-called constructed cases
were then formed. The process was continued as far as deemed possible to
establish the testing degree.

This class of program monitors is useful in another way. Frequently

exercised portions of a program can be identified by the tallies or counts
and the identified regions can be examined to see if improvements can be
made in the coding or basic algorithms.

2.1.3.4 Automatic Test Generators

Conceivably any particular segment of a program has some input data that
will cause it to be exercised. Since it is possible, as indicated in the
section on inside-out testing, to back up from a particular point in the pro-
gram to the "top," it should be possible to choose a set of inputs that will
cause any given segment to be exercised. The technique used amounts to an
identification of the program variables that are "active" at the segment, and
then to relate these to the input variables. This is illustrated in
Section 3.1.2 where the precise set of relations to the input data are
developed explicitly from a particular "straight 1ine" path through the
program.

Usually it will not be necessary to develop the precise relations (which,
it is noted, is almost the same as symbolic execution) between the program
variables and the input, and it is only necessary to identify those inputs
affecting the selected program variable. This can be accomplished in an even
less elegant way by simply generating random numbers to serve as values for
the input variables.

Whatever scheme is used, the automatic test generators provide & basis
for economically meaningful testing-to-“completion."” The idea is simply to

P 12

MCDONNELL DOUGE @_
'

- . . . ——__

zv

——

form a "feedback" loop between a cumulative record of the segments previously
tested to, what might be called, a scenario generator. The scenario
generator would provide a one-at-a-time selection for the untested segments,
and the standard test generators could be used to "find" the required data.
This will then cause the new scenario update and a new selection. This idea
is mentioned again later in connection with the use of "tracks" and the
automatic case generation process.

2.1.3.5 Domain-Testing Strategies

The point mentioned above, in connection with the possible creation of a
truly automatic test tool, brings up the important problem identified earlier,
the essential impossibility of producing a particular numerical value by the
usual kinds of random number generation. This is not a prablem in estimating
the asymptotic limits to testing with such numbers, because of the infreguent
occurrence of these numbers in the sample. For tne development of con-
structed cases where exhaustive testing can be achieved, it is necessary to
specify the set of points in the input space which, after processing, will
produce a specified value for a program variable.

Generally speaking, the particular set of points achieving the specified
value has relatively small dimensionality (a point in two-space, a line in
three-space, etc.) making the problem of testing boundaries important.

E. I. Cohen and L. J. White of Ohio State University (Reference 12), have
investigated this and similar problems and developed strategies that will test
domains with linear and non-linear boundaries (the Jatter only in two
dimensions at present) in efficient ways. As noted, work of this kind is
essential to any ultimately automatic testing scheme.

2.2 CRITIQUES OF SOFTWARE METRICS

2.2.1 Software Science Metrics

In the review paper by A. Fitzsimmons and T. Love (Reference 13) the
principal metrics employed in Software Science are discussed in some detail.
They are few in number: Jlength, volume, program level, Tanguage level,
effort and time.

. 13
/

MCOONNELL oouou@_
t

~ - : L e

e - - ce e A o
it

A troubling feature of these metrics is that they are all based on counts
of operators and operands and, as noted in Reference 14, there are many cases
where it is not at all clear what particular mix of these fundamental elements

a given program instruction represents. The effects of this lack of precision
in the definition of operator and operand has been studied by J. L. Elshoff
(Reference 15). In this study all of the primary metrics are computed for
some 34 different programs for each of eight different interpretations of the
way in which the counts of programming elements should be taken. These eight
different methods produced exceptional variability in the metrics in cases
where there was a significant effect in the vocabulary definitions. For
example, program No. 13 which is the largest program, showed counts of 185

and 746 for operations and operands, respectively, under the first interpreta-
tion, and counts of 118 and 900 for the second interpretation. The effects

on the metrics under the two interpretations are:

estimated length 9,645 versus 8,512 (11.7% smaller)
volume 91,902 82,373 (10.3% smaller)
Jevel 0.00365 0.00212 (41.7% smaller)
minimum volume 334.6 174.2 (47.9% smaller)
effort 25.243 38.945 (54.2% larger)
global level 1.1037 0.607 (45% smaller)

The variation in these metrics is indicative of the effect that the sub-
jective choices (8 different types) can cause. In a separate comparison, the
single metric, effort, for the 8 options (for program No. 1) were: 0.783,
0.881, 0.937, 1.010, 1.065, 0.764, 0.794, 0.679. This variability, which is
over 50% (from min to max) is evidence of a lack of "objectivity" in this
"(and other) measures.

2.2.1.1 Complexity (Software Science Interpretation)

In the abstract of the paper by Fitzsimmons and Love it is noted that
complexity of programs can be measured by the theory of Software Science.
It was difficult to locate precisely where in the paper this complexity is
measured because the word appears only incidentally in the text. [t was
determined, by direct inquiry, that it was measured by the effort metric.

MCOONNELL DOUGL @»
\

= .- - ~aly

This use of an extensive measure for complexity is indeed novel and does
not correspond to intuition or to any other measures advanced by others.
Ha]stead states that complexity of a program is measured by the total number
of elementary discriminations required to produce it, and this count depends
on the bulk of the program more than on its logical structure.

The previously published measures of complexity had to do with intensive
measures such as the (normalized-to-unity) spectrum of the program listing
across its indenture levels, or the density of branching statements.

The recently described measure of complexity by T. J. McCabe
(Reference 16) is the cyclomatic number obtained from the flow graph of the
program. This metric is described in a later section when the topic of com-
plexity is re-examined. Suffice it to say, it is more an intensive measure
than an extensive measure, and as McCabe points out (op.cit.) it is easy to
write a program that is physically small but ultra complex.

The complexity measure of software science is directly related to the
Tength of the program (the total number of operators and operands) and is
finally developed on an absolute basis by the use of the so-called Stroud
number, which is taken by M. Halstead to be 18 mental discriminations per
second.

This Stroud number has, as its basis, some physical measurements of a
human's ability to discriminate the frames of a kaleidoscopically presented
visual sequence of images (related to the "flicker rate" in motion pictures).
The use of this visual discrimination rate, as equal in value to the mental
discriminations rate, is surely questionnable.

2.2.2 Software Metrics
Probably the best starting point for this discussion is a review of the

metrics presented in the book by Tom Gilb (Reference 17). This serves more
to cover the field than to make precise the concepts and definitions of the
many metrics identified. Following this is a list of metrics having a
reasonable likelihood of surviving through test and time.

15

L.

2.2.2.1 Review of Gilb Metrics

Maintainability
The first definition offered by Gilb is that of maintainability. He

defines it as

“the probability that, when maintenance action is initiated under
stated conditions, a failed system will be restored to the condition
within a specified time."

That definition is essentially the same as that used for hardware. In
the hardware case the measure is almost always applied in a bottoms-up way, 4
that is the maintainability is derived for each major assemblage from the
records of its contained minor assemblies; the system’s figure is derived
from the major assemblies. Work records on the times to fix are estimated

during design, and, once hardware is delivered, records are kept of the
actual fix times.

Software should be amenable to the same broad guidelines. Some modules
are likely to be more easily fixed than others and a better systems-wise
figure can be developed from the bottoms-up composition. The records of
maintenance of individual modules should be used to extrapolate for new
errors. The fact that the process of error-finding tends to have long periods
between finds (probably) does not alter the fundamental measure of the
average time to fix. This is (probably) so because the late occurring
errors are (probably) not of a different level of difficulty than the early
occurring errors. (Should there be a trend towards longer fix times with the
“age" of the error, a model would need to be developed).

Logical Complexity

Gilb's introduction into this topic identifies early work by L. Farr and
H. J. Zagorski, who used the IF statement density as a measure of the logical
complexity. Gilb also mentions "psychological" (his quotes) complexity of
source programs and refers to some statistical work by L. M. Weissman which
correlated metrizable program aids (comments, indentations, etc.) to

productivity and accuracy.

MCOONNELL DOUGLAS
(.

- —_— i L -y

16

Structuredness
One of the metrics identified by Gilb is structuredness. This was one of

many metrics proposed by TRW in a study for the National Bureau of Standards.

Structuredness is one of 12 Tow-level metrics identified by Gilb, the
others are: device independence, completeness, accuracy, consistency, device
efficiency, accessibility, communicativeness, self-descriptiveness,
conciseness, legibility, and augmentability.

For structuredness, there are 9 submetrics which are, in actuality,
questions concerning the existence of module size limits, program flow, and

so forth. Gilb's Figure 51 (page 103) can he referred to for identification
of the particular questions. It does not appear that the underlying metrics
have any quantitative basis, and necessarily have either a zero or an all
value.

Typical of a question, under a column headed "Definition of Metrics to
Measure Structuredness," is: "Do all subprograms and functions have only
one entry point?" Here, should the answer be no, there is no way of
differentiating between "all-but-one" and "none."

Presumably a yes answer to all questions would indicate a perfectly
structured program. Using these the characterizing features (from Figure 51
of Gilb) the program would be one which:

A. Has rules for transfer of control between modules.

B. Has limited modules sizes (Note: the limit is not specified).

C. Has the ordering: commentary header block, specification statements,
executable code (Note: it is hard to imagine a program that does not follow
the order).

D. Subprograms all contain, at most, one point of exit.

E. Subprograms and functions all have only one entry point.

F. Program flow is always forward, except where commented.

G. Overlay structure is consistent with the subprogram's sequencing.

H. Is subdivided into modules in accordance with readily recog:ized
functions.

I. Is written in standard constructs.

AMICDONNMELL DOUGLAS
C

17

These submetrics are then scored as to their "correlation”" with a "high
score for the metric." The use of "correlation" as a descriptor for sub-
jective judgment is highly questionable: there are no numbers to associate
with the identified metrics, and the numbers associated with the "score," if
present at all, are certainly vague.

Nonetheless, the "quantifiability" of the metrics is judged against six
categories which, while neither exhaustive nor mutually exclusive, are
nonetheless indicated as such by the tabular entries.

The other 12 metrics are probably treated in the same way as the
structuredness metric, and, beyond their identification, do not appear to
merit additional inquiry. (Self-descriptiveness, communicativeness, and
accessibility, for example, appear to be invented to exercise the invention
process, and do not represent useful metrics; others, such as augmentability,
may have some value).

Reliability
Gilb's definition of system reliability is in close accord with the ‘
customary (hardware) definition. It states that "reliability is the proba-
bility that the system will perform satisfactorily (with no malfunctions) for
at least a given time interval, when used under started conditions." This
is modified only slightly under the definition offered later. Gilb's variation
of his definition for system reliability when applied to program or software
reliability are minor, a particular machine is denoted, and operations are
"within design limits."

Repairability

The concept of repairability is a variation of the maintainability con-
cept. The emphasis is on the probability of a repair within a specified time,
when maintenance is performed under specified conditions. The requisite
tools, parts, and men, are assumed to be available at the start, and this is
one of the specified conditions.

18

MCDONNELL DOUOLL”%

e e meml s — T—

-y

Serviceability

This metric is taken from hardware reliability and is the degree of ease
or difficulty with which a system can be repaired. It is not considered
quantifiable at present.

Availability
Again, from the hardware reliability definition, this is the probability

a system is operating satisfactorily at any point in time. It is usually
measured by a ratio of times or mean times, and Gilb offers three variations
of the concept (intrinsic-, operational-, and use-availability).

Attack Probability
This metric is one of several Gilb suggests in the security aspects of

programs. This metric is the protability of an attack (of a particular type)
on a system during a particular time interval.

These attacks can be considered to be active (malicious) or passive
(typified by invalid data).

Security Probability
This is described by its alternative title, attack repulsion probability,
and is a metric gauging the probability of a successful rejection in the

system at any time. The attack type is specified. Gilb states that this
concept is close to the concept of error detection probability. This is less
true of active attacks (which may not persist) than it is for passive

attacks such as bad data.

Integrity Probability
This probability is the probability of no successful attack on the

system:

Ig = 1—[At-(1-S)]

where At is the attack probability for a particular time interval, and S is
the probability of rejection (for all times).

19

MCDONNELL WUOL%

Accuracy
Several examples of the metric and a discussion contrasting it with

precision are given by Gilb. The measurement ratio, correct data/all data,
appears to be too vague for use involving, as it does, the idea of "correct
data." Usually accuracy involves a continuum of values so that "correct"
data is too narrowly defined for practical usage.

Precision

The suggested measure of this metric, which aims to gauge the degree
"to which errors tend to have the same root cause," is the ratio formed by
dividing the number of actual errors at source, by the number of
corresponding root errors observed in total caused by source bugs.

The difficulties in first knowing how many errors there are at the source
seem unsurmountable, and tying together the "corresponding" errors with the
source would not seem to be an easy task.

Error Detection Probability

Gilb suggests a categorization of the error types and an assignment of
the likelihood of detection of errors of the pre-specified type. The failure
to include time aspects into the problem makes for a flawed definition. The

probability of an eventual detection of an error is (probably) unity for
almost all error types.

Error Correction Probability
As defined by Gilb, this is the probability of reconstructing "data in
the form and content originally intended.” This is a vague concept when

identification of the random event is sought. The originally intended form
and content is generally not known, rather it develops as effects are judged
unsatisfactory and tentative changes are made. There is a chance that the
repair made will have an error that may lie undiscovered for a period of
time, and so time should be involved in the measure in some way.

Logical Complexity

In the text two metrics for logical complexity are identified, the
numoer of binary decisions and the ratio of absolute logical complexity to

MCDONNELL DOUGL. k"%

- : - - —

20

T ORI

b total complexity. But Gilb also suggests under the Figure 83 on page 161
that it be measured by the number of possible logical path combinations in
a program.

In this respect Gilb illustrates with an unanswered question, the defect
in using even the density of branching statements as a measure of complexity.
In his Figure 84, two programs are shown, one which has 6 binary decision
points and the other only one. But for a sufficiently large number of total
instructions (say 239 as indicated in the description) the density of the
clearly more complex program is less than the ultra-simple one. This alert
is examined in the discussion of complexity later in this report.

Flexibility
Gilb defines this as that part of complexity that is useful, and it is
the ratio of useful to total that is the metric.

Built-in Flexibility
This is defined as the ability of a program to immediately handle

different logical situations. It must be built-in in order to respond
without loss of time. ‘

Adaptability (open-ended flexibility)

Gilb acknowledges the difficulty of originating a metric for this con-
cept and suggests, as a tentative measure, the count of the linkages between
modules. This is the same as the metric used later for structural
complexity.

Tolerance

This is defined as the ability of the system to accept different forms
of the same information as valid. The proposed metric is the count of the
number of different variations that can be handled by the system, where
variation means the different media, different formats of input, or logical
variations (such as misspellings and synonyms).

P

MCOONNELL ”UOLL“%

Generality
The "degree of applicability of a system within a stated environment"

constitutes generality. Its measurement is subjectively assigned (0 to 1).

Portability
This is defined as the ease of conversion of a system from one environ-

ment to another. The metric is obtained by first forming the ratio of the
resources required to move the program to a target environment to the
resources needed to create the program for the target environment, and then
subtracting the ratio from unity. The result is the ratio of the cost dif-
ference to the creation cost and, on the extremes, agrees with an economic
measure of portability, because for a zero-cost move the portability is
unity, and for a cost equal to the creation cost, the portability value is
zero.

Compatibility

This attribute is, according to Gilb, related to the concept of porta-
bility, the difference being that portability is a characteristic of a single
system whereas compatibility applies to an average over a class of systems.
This distinction provides the metric, an average portability over the
collection of program systems.

Redundancy Ratio

This is the first of what are called structural metrics by Gilb. This
ratio generally is formed by taking the actual count of quantities to the
minimum possible count.

Hierarchy
This structural metric describes the number of indenture levels and the

spectrum of program elements across these levels.

Structural Complexity

As noted earlier in the section concerning adaptability, this is
measured by the number of modules (absolute) or the ratio of linkages to the
total number of modules. This is an easy metric to derive for some languages

22

mcoonveELs nouol.&

. — R i L -

as Gilb shows. For FORTRAN the modules are counted by the number of
subroutines and functions, and the number of linkages is the total of
subroutine parameters and the references to the common area.

Modularity
Although modularity is stated to be a synonym for structural complexity,

it seems to stress the number of modules and not the linkages.

Distinctness

Distinctness as defined by Gilb involves errors and, in fact, is
measured by a ratio between the number of bugs in the module and the number
that are common to the module and another ("simultaneously”). It is hard to
see how this ties to the intuitive concept of uniqueness, particularly how
errors are necessary components of distinctness.

Effectiveness

Among the performance metrics, effectiveness is listed first. It is a
probability of "success" within a given time and specified environment. The
"success" means meeting an operational demand. Gilb composed efficiency
from three probabilities: reliability, readiness probability, and design
adequacy (on a scale from 0 to 1).

Efficiency
This attribute is defined as the ratio of useful work to the total

expended.

Cost
Among financial metrics are costs and its major subdivisions, fixed and
variable. Gilb uses the terms capital and operational.

Time
Computer and "Human" time resource metrics.

Space Metrics
This is more commonly called the size of a program. It can be measured

on an atomic level by bits and bytes and, on the more common scale, by the

number of instructions.

MCDONNELL MUOL&

23

———

o

Information
Gilb says that information content of a program is not directly
measurable, and suggests use of "useful data” as an indirect means for

measurement.

Evolution

This is a measure of the incremental change to a system during a time
interval, t. If the change is so pervasive that it constitutes a
substitution, the metric would have a value of unit.

Stability
Stability is the complement of Evolution and it denotes the percentage

of unchanged content of a program (over a specified time period).

2.2.3 Candidate Metrics
Clearly some of the guestions that should have been asked of the

community several years ago are:
A. Are any attributes worth study?
B. Which attributes are useful?
C. Can these be measured in a form useful to the community?

It is clear from inspection of the Gilb metrics that there are many that
will not survive the tests required of practical gauges. Most of the 13
low-1evel metrics identified by Gilb have little hope of common usage. The
discussion concerning structuredness, in that section, indicates that the
concept is initially vaque and becomes amorphous after its component parts
are identified (in the form of questions).

Of the metrics listed above, the following are considered of primary
value: reliability, complexity, cost and time.

Regarded as secondary in importance are: maintainability and
availability.

24

{

A . e

Supplementing these metrics are some that history may judge to be of more
value than any of the metrics identified above: mean-time-to-next error,
mean-time-to-perfection, error content, testedness, and purification level.

Excepting the complexity metric, it does not seem necessary to amplify
on the previous Gilb definitions, and the following subsections deal with the
augmenting metrics.

2.2.3.1 Mean-Time-To-Next-Error

Of primary importance in the testing of programs is the decision on
whether or not to release a given module or program. A good guide to this
choice lies in the time pattern of the errors found, whether this pattern lies
in a data base metered by CPU units, hours, days, or weeks is not relevant
(except as its potential future uses may have to be considered). If the time
pattern indicates a steady state or constant error rate, or, even worse,
shows an increasing failure rate, there is clearly no reason for releasing
the module and much evidence to the contrary. Once a pattern of decreasing
counts (per unit time) is achieved, any of several models can be applied to
the data that the error pattern represents, and estimates of the mean-time-
to-next-error can be obtained.

It is the magnitude of this mean-time-to-next-error, or more commonly
called the mean-time-to-failure, MTTF (which for a certain probability
distribution, and steady state conditions, is the same as the mean-time-
between-failures [MTBF]}, considered in the context of its expected use, that
is important. For real-time systems, governing, for example, weapons or
aircraft, the MTTF should be several times as large as the mission duration.
The proper figure for the MTTF is determined by the reliability specified by
the customer for the system.

Values for the MTTF are available in any of several models: Jelinski-
Moranda, Shooman, Schick-Wolverton, Moranda Geometric Purification, Moranda
Hybrid Geometric-Poisson.

Littlewood and Verrall (Reference 18) avoid MTTF and insist instead on
percentiles (such as the median) of the distribution describing the time
between errors.

MCDONNELL DOUGLAS
{

25

- .-

It is important to note, that for all models the MTTF is a parameter
that is changed by either event or time. The Jelinski-Moranda model has an
MTTF, indexed by the dummy variable i, which increases at the occurrence of
each error, and can be given in terms of the model parameters N and ¢ as

. i 1
MITRy M = Re-TTo

The Schick-Wolverton model has an "instantaneous" MTTF depending on both
time and event, and it has an averaged MTTF that is obtained from the first
moment of the Rayleigh distribution for the time of next error. Thus,

1/2
-/ 1
MITFs W = /;[(N—n)cp:l

For the Geometric Purification model, the MTTF is

1
MTTF = —
G-P K"

where D is the failure rate for the first error, k is the geometric ratio
which is used to obtain the error rates, and n is the number of found errors.

The Shooman MTTF is given by

MTTF, = E:ET-EC(tﬂ -1

where C is a proportionality constant, E; is the total error content, and Ec(t)
is the total number of errors found.

2.2.3.2 Mean-Time-To-Perfection

Some models permit an estimate of the mean time required to achieve an
error-free program. Generally this estimate is accompanied by a variance
(standard deviation) that is so large that it has little or marginal utility.
It is nonetheless a guide to management and it is changed, and generally
made more precise, as more errors are discovered.

MCOONNELL DOUOL(”%

- . —_— o ~—l

26

* The simplest way to form this estimate is to sum the estimated MTTF's
z' for all remaining errors; hence (using MTTP for mean-time-to-perfection), the
estimate so formed for the Jelinski-Moranda model is:

1 &
MTTPJ_M = 3 NTJ_

J=n
For the Schick-Wolverton Model,

N-]
MITPs y =) /?[(NIJ)J

1/2

This last formula is incorrectly given in the latest Schick-Wolverton paper
(Reference 19).

The Shooman model does not permit an estimate of the MTTP because the
failure rate of that model is a continuous exponential. The mean time to ‘u
achieve a zero with the exponentially decreasing failure rate is infinite.

The Moranda Geometric Purification model also does not have a finite
average time to perfection. Even though discrete, the failure rate does not
attain a zero value.

The Littlewood and Verrall model, based on Bayesian adjustment, does not
involve a parameter that can be directly related to the MITF, and it is
required that some alternative be found. This can be provided by any of the
percentiles of the distribution formed by convolution of the family of
related exponential distributions they use in their examples. It is neces-
sary, however, to rely on the most recently available, "a posteriori" distri-
bution for one of the two parameters, and to continue the assumption con-
cerning the way that the sequence of values for the other parameters are

related. It presents a difficult problem analytically and probably has
practical objections.

-~

The recent publication by A. L. Goel and K. Okumoto (Reference 20) has

relevance to this and some of the other problems. Their work in the present
context employs a family of distributions that are the same as those used by
Jelinski and Moranda but with an essential difference, they assume an
imperfect repair and account for it with a parameter, p, that is the same for
all errors. Using these variations, the distributions of the "first passage”
times (zero errors) and of the times to achieve various levels of purification
are derived.

2.2.3.3 Error Content

Three models can be used to derive estimates of the error count. The
Jelinski-Moranda medel accomplishes it through use of equations developed
from the assumption that there is a direct proportion between error content
and failure rate. The corresponding Shick and Wolverton assumption is that
the failure rate is proportional to both the number of errors and the
"debugging time." The Shooman model can be used at two or more separated
time intervals to estimate the error content. From observations of the
average MTTF for these intervals, parameters of the linear relation between
failure rate and error content can be found by simultaneous equations (for ‘:
two intervals) or by least squares (for three or more).

2.2.3.4 Purification Level

Although some models do not measure error content and may not achieve a
perfect state, there is a measure that, in some cases, can be used to describe
the state of perfection achieved at a given point in time. For error-content
models, the ratio of the number found to the total number (estimated) provides
the reasonable estimate. For the Moranda Geometric Purification process, the
purification state can be estimated by taking the ratio of the initial

failure rate to the achieved failure rate.

The purification level or percentage is clearly of more value than the

error content since the absolute number is, by itself, generally a poor
indicator of status because it is size-of-program related.

28

Y,

mMCcoOONNELL oouou@__
{

The several estimators of the purification percentage are (in terms of
their defined parameters):

Jelinski-Moranda x 100

2|

Schick-Wolverton % x 100

Ec
Shooman E—-x 100

T
Geometric (l-kn) (100) '
Purification .

2.2.3.5 Testedness (Degree to Which a Program Has Been Tested)

A metric of a different kind is represented by the degree to which the
program has been tested. There are several different types of "coverage" for
a program, where "coverage" means that the program "elements" have been
executed.

E. C. Miller (Reference 21) presented a useful list of several different
coverage types in a sequence reflecting the increasingly larger size of the
covering unit. The lowest level of coverage is obtained when every statement
is executed at least once, the next level is achieved when each segment
associated with the explicit or implicit predicate outcome is executed.

For complex programs involving nested loops, the test coverage may neces-
sarily be limited to the exercising of the proéyam so as to test, one time,
all so-called boundaries and interiors of Ioops:git being assumed that all
segments are exercised. (Boundaries are the entr}gs and exits from a loop.)
A higher order of coverage consists of multipte passes through loops, these
are tests that iterate all loops up to a certain specified limit {even 1),
and provides additional coverage. The ultimate test coverage (with several
other types in between) exercises all logical paths through a program.

29

MCOONNELL DOUGLAS
{

One additional type is afforded by the testing of the type described in
the earlier work (Reference 1), where tracks were identified. Coverage by
tracks is intermediate between segment coverage and logical path coverage.

The metric for any of the types is simply the ratio of the number of
"elements" (defined as instructions, segments, branches, predicates, tracks
or logical paths) to the total number of these elements.

A new concept was introduced by Moranda (Reference 1) where the diffi-
culty of enumerating the number of different elements is avoided. By using
random numbers, it is possible (under some assumptions that are reasonable
or acceptable to some and questionable or unacceptable to others) to esti-
mate the total number of program elements that will eventually be achieved
by random numbers. This technique was used in the original work
(Reference 1) to estimate the total number of "tracks,” but could as easily
be used to derive the asymptotic limit to the number of logical paths.

2.2.3.6 Complexity

As noted in the discussion on the effort metric employed for complexity
measures by the Software Science advocates, the use of an extensive measure
for complexity runs counter to intuition. The total number of "elementary
discriminations" required to produce a program does not seem to properly
reflect the structural aspects of complexity, for a "straight-line" program
(no loops) of extreme length would have a high effort value, but might be
judged rather simple.

Other measures were suggested in that same discussion. The density of
branching statements was suggested, but as noted by McCabe in Reference 16,
the density, as measured by instruction count, may be misleading. In that
reference, a reasonably complex program containing six branches had so many
(hypothesized) instructions that the density of branching statements was
less than a short straight-line program (with one branch).

It is clearly necessary to alter the concept, and base the metric on the
segment counts, rather than the instruction counts. This is a reasonable

30

MCDONNELL oouo;/%

L

position to take because some segments may contain a very large number of
instructions. As far as the intricacies or complexities of a program are
concerned, all segments are the same and do not depend on the number they are
comprised of.

Thus, a more satisfactory metric for complexity would be either the
number of segments or the number of logical paths. Since the latter are
difficult to count in many cases, the former can be used, even though the
way they connect is not measured thereby.

Another measure of complexity which may be of use is the indenture level
spectrum. This concept is rather simple in that it tallies into each inden-
ture level, each instruction of the program. By dividing the number in each
category by the total number of instructions, a normalized-to-unity spectrum
can be produced. There are clearly some deficiencies in this approach since
a program that "shifts" back and forth between two adjacent levels is not
judged to be more complex than one that has the same number of instructions
at each level and "shifts" but once. The metric would require a compliementary
measure to provide a total measure of complexity.

A far better metric for complexity has been developed by 7. J. McCabe
(Reference 16). He suggests that the program be represented by a directed
graph, G, in the usual way. The way the nodes (or vertices) and segments
(edges) of G are connected is measured by a cyclomatic number, denoted by
V(G), determined by the number of edges, vertices, and connected components
(where the latter is a subgraph of G).

McCabe proves a theorem that permits an alternative way of finding the
cyclomatic number: for strongly connected graphs, the cyclomatic number is
the maximum number of linearly independent circuits. In order to apply this
theorem, it is necessary to form a strongly connected graph by looping back
from the exit node to the entrance node.

It is generally easy to identify the cyclomatic number of most reasonably
well-structured programs of small to moderate size. Where the program is
extensive, the algebra set up by McCabe can be used to calculate the number.

3t

/
MCDONNERLL DOUGL(@‘

——

Section 3
COVERAGE BY RANDOM AND CONSTRUCTED CASES

3.1 INTRODUCTION AND BACKGROUND
The following introductory section is essentially a duplicate of the
text material used to introduce the topic of coverage in Reference 1.

3.1.1 Framework for Representation ;

In the customary renditions of program flowcharts, each (rectangular)
block represents either a simple instruction, or a group of operations, with
a single output, while each diamond represents a single, explicit or implied,
predicate which has two or more exit options. Connecting the blocks and
diamonds of a flowchart, are directed lines denoted, and referred to, as i
arrows. These lines represent the options possible and are called flow-of- :
control arrows. These fundamental building blocks are adequate for the |
static or structural description of a program, but are not convenient for ‘
representing its operational aspects. The basic operations are better
defined in terms of some simple program components. These lend themselves
to mathematical descriptions and they motivate the choice for the "atomic"
or fundamental unit of description.

First, it is noted that an instruction in a program, while easy to define
(statically) in "machine language", becomes rather difficult in most of the
higher order languages. Thus a "clear and add" instruction, in machine
language, causes a register (accumulator) to be set to zero and another
register to be transferred to the cleared register and nothing more. Once
the final bit is transferred, the machine waits until the next instruction,
which is generally started by a timing or clock pulse. On the other hand, ‘
the concept of an instruction in the higher languages is less clear. An)
"instruction" in ALGOL, for example, is either a statement or a declaration, i
and in either case is used to indicate required compiler (as against computer)
actions. As a result of compiler action, an object program with computer
interpretable instructions, is produced.

a3 .4

MCDONNELL DOUOGZ”%

B ~ - -

Thus, there is a spectrum of statements in that language: the simplest
type is an assignment, such as X:=1; while one of the more complex statements
is, begin ... end, which groups statements together to form compound
statements (and blocks).

In any higher order language where grouping is required, there is a need
for so-called delimiters (explicit or implicit) which can be used as bound-
aries for the steps, and form the building blocks of a program. A similar
device is required in the description of dynamic operations - a means of
grouping instructions into fundamental operational units.

Generally, the linking of instructions can be represented by means of a
Boolean indication, with the value 1 used where the instructions are or can
be "contiguous"”, and 0 used to denote the fact that they are not connected.
These Boolean values could be used as entries of a connection matrix whose

row and columns are numbered to accord with an (arbitrary) numbering scheme
for the steps. But a straightforward application in this manner, on the
instruction level, would normally produce inordinately large and unmanage-
able connection matrices. Some of the redundant information in such a

matrix could be eliminated if certain agreements can be made: for example,

if step 1 is always followed in sequence by steps 2, 3, and 4 and there is not
opportunity for branching until step 4 (at least), then steps 1 through 4

can be merged or combined, and three of the rows and columns of the connector
matrix could be eliminated. This reduction in redundancy is an additional
reason for choosing groups of instructions for the description.

Because certain instructions or statements have more than one output
(such as if...then...else) there is a need to devise a conventic: which will
permit identification of each of the exits. If statement A is a single-
output statement and it connects to statement B which has multiple outputs,
the notation [A,B), which is "closed" on the left and "open" on the right, is
meant to imply that A is executed and control is passed to (or toward) B,
but that B is not executed, but it is next in line. If B is a two-output
instruction and connects to Ly and Ly, then both [B,Ly) and [B,L;) are used
to describe the optional branches which can be taken.

MCDONNELL DOUOIL“%

- T —————— e < &

The proceduke which has been described can be illustrated by a flow diagram
of a very simple program. In Figure 1 is a combination of a code listing on
the right and a flow diagram on the left. Numbers refer to the instructions
listed. The program is designed to process a sequence (one or more) of lists,
with each list consisting of "test scores" augmented by the number -1 (which
is not a test score); the last list is further augmented with a -2 (for HALT
purposes). The program tallies the number of scores within each list
which are at least as large as 70 (passing), and also tallies the total
number of passing scores within all lists (the Grand Sum).

To continue with the description, it will be seen in Figure 1 that the
first connection to a branching instruction is made at instruction number 3.
From 3 the branch taken is determined by the predicate (X=-2) and how the
input to 3 (carried out of 2) values it (true or false). Thus, instruction
number 3 is connected to 14 and to 4, as potential {operating) successors
to 3. In the same way, 5 as a branching statement connects to 6 and 10.

A variation of the technique which is usually employed, characterized
by connecting "nodes" (representing sets of instructions) is proposed here.
Emphasis in this variation is on the branches which emanate or terminate
with branching instruction, and, in fact, the fundamental or "atomic"
element in the representation of a program is taken to be a segment or
string of instructions between two branching instructions. More precisely
a segment is: a sequence of instructions starting with either a START, o
a branching instruction, and ending (but not inclusively) with the first
subsequent branching instruction, or a HALT, in which particular case the
segment is considered to include the instruction which ends it.

As an example of the way segments are developed, the flow diagram in
Figure 1 is analyzed:

S [1,2,3)
Sy = [3,14,15)
Sy *F (3,4,5)
5S¢ ° (5,10,11,12,13,3)
S¢ = [5,6)
S¢ © (6,8,9,5)
S; ° (6,7,8,9,5)
, 35
SE—
~ : Baad

A et e e — e

12

13

15 15

Figure 1. Test Scores Program an:i 1"fow Diagram

. 36
/

MCOONNELL MUGL&
&

GSUM -- 0

READ X

IF X =-2GOTO 14

SUM -0

IF X = -1 GOTO 10

IF X<70G0TO8

SUM + SUM — 1

READ X

GOTO 5

PRINT SUM

GSUM + GSUM ~ Sum

READ X

GOTO 3

PRINT GSUM

HALT

The distinction between brackets and parentheses is important and has

been noted. The only cases where square brackets are used on the right are
those in which the last instruction listed is a HALT (number 15 in the example).

Any particular set of values (for the coordinates) of the input vector
(point in the input space), causes exactly one sequence of operations to be
executed. These segments linked together form a logical path through the
program. This is also called an execution sequence.

It is useful to modify the term logical path with the work realizable
when input data can cause it. Before data is entered, possible (or feasible)
logical paths can be formed by any concatenation of contiguous segments which
have the START-segment first and end with a HALT-segment. In the case a

program has self-contiguous segments (loops) or one or more concatenations
which join end-to-end, the number of (possible) repetitions of the joined
segments is arbitrarily large - except where a predetermined number of
traversals are specified in the program.

The following sequences of segments in the program of Figure 1 are
illustrative of some possible or feasible logical paths:

S]S2

51535452

S]S3S4S3S4S3SSSGS452

515335565452

515355575452
The first path is of minimum possible length, linking, as it does, the
START - and HALT - segments. The last two are interesting in that they

exhaust the collection of segments (but not the logical paths).

In order to determine realizable logical paths, the documentation or
"program writeup" must be considered. In this simple case it is very easy
to establish data which will realize the flows represented by the last two
sequer.es of the above list. (It should be noted that insofar as testing
to the instruction-level only one of these two need be driven but to obtain
se,ment or branch-level testing, both need to be tested).

37

S DONWNEELE DOVSL “y

If for example the data sequence (stacked)
x = 35, -1, -2

is employed, the next to the last sequence of the above 1ist describes the
flow, and for the "stack"

x = 75, -1, -2

the last sequence describes the flow. The two stacks together provide an
exhaustive test of the segments of the program.

Moreover, a single sequence 35, -1, 75, -1, ~2 would also produce an
exhaustive test of the segments with the sequence 5153555655575452' While
these do not exhaustively test the realizable logical paths (which, without
further explicit restrictions, are infinite in number), it is well to note
that the complete segment-testing partially accomplishes one of the major
purposes of case selection, that of exercising all instructions so as to
uncover incompatibitities with the machine and other errors.

This Timited form of testing brings up a very interesting and very
obvious observation that is true for any program represented as a collection
of segments: 1if a program consists of k segments, and every segment can be
exercised by some data point, then only k data points are required to
exhaustively test the program in the segment testing sense. This is of course
very useful in the case that an interactive or communicative mode of testing

is employed.

3.1.2 Extension to Testing for Track Coverage

Under AFQOSR contract AF 44620-74-C-0008, MDAC developed a model which
employs random numbers as input data, and, on the basis of the trial numbers
on which "new" logical paths are driven by the input data, estimates the
asymptotic, or eventual, lTevel of testing achieved with random numbers.
The basic analysis mechanism is the original Jelinski-Moranda model
(Reference 22). The measurement used in the model is the number of trials

4

2 &
MCDONNELL DOUGI.(‘.

-

——-

occurring between the discovery of new logical paths (rather than times
between errors which comprised the raw data for the estimation of residual

error content in the original application of the model).

There is another relevant use of this same model. If the probability
law governing the selection of input data is known, then the coupling of
information derived from sampling with universal (a priori) error rate data
will permit an estimate of the operational reliability of the program. This
procedure, also developed under the same AFOSR contract was reported in
Reference 23.

A second model employing program or software input data for analysis, is
due to TRW (Reference 24). In essence, this model uses a subdivision of the
input data space into equivalence classes, each characterized by the
particular logical path exercised by all of its members.

This subdivision was suggested earlier by W. Howden (Reference 7) and
also by B. Elspas, et al., (Reference 8). In applications the TRW model has
been used in the estimation of software reliability. The estimate is derived
by composing the assumed-to-be-known probability that each subdivision is
employed, with a sample-derived conditional probability of committing an
error when the subdivision is used. The problem in the application of such
a model is the difficu]ty”involved in the formation of the subdivisions,
confirmed by almost everyone who has attempted to work from a specified
Togical path to the descriptor of the input data associated with it. Another
deficiency occurs when the model is used for estimation because, a permanent
program is assumed which does not change to remedy the found errors. The
problem of precisely carving out the equivalent classes is a severe barrier
to application of such techniques. It is probably better to avoid the problem,
as done in the application of random numbers described in Reference 1, or by

using techniques like those described by W. Miller and D. Spooner (Reference 3).

The use of random numbers as inputs to a software package has fundamental
limitations. For example the occurrence of an input which takes on a zero
value is essentially impossible and this input, and others of a similar
nature, must be supplied to produce a set of inputs which will achieve such

values.

MCOONNELL MUOIZ”%;

i i Podfrnii, o

Nevertheless, as shown in earlier work (Reference 1), the fundamental
limitation can be numerically estimated for a given program on the basis of
the set of logical paths effected as a result of random drivers. It can be
said that the number found in this way is an always fair and often an
excellent bound on the total number of logical paths which are ever actually
exercised.

The work of Miller and Spooner avoid these problems with an elegant
substitute: instead of attempting to solve, in the input data space, the set
of equations (or inequalities) associated with a specified logical path, they
insert a new set of variables, one at each branching point in the program.

An objective function of these variables is chosen so that when its functional
value is positive, the input data is in the equivalence set associated with
the specified logical path. This method employs standard procedures from

the field of system optimization, starting with a randomly chosen initial
point in the input domain.

For additional background, a review is made of the means of representing
the flow graph by a connection matrix. As noted in prior work the matrix is
constructed by assigning a 1 or 0 as an entry, according to whether or not
there is a connection between the nodes (or segments) corresponding to the
associated row and column of the matrix. A simple way of visualizing the
problem of exhaustive testing can be posed in matrix format. Since a
connection matrix C is a descriptor of potential links between segments, the
execution sequence in response to an input data value X (in most applications
Xy is a vector instead of a scalar), can be associated* with a submatrix of
C, say S]. Since € is finite, the problem of exhaustive testing can be

framed as follows: for C a given connection matrix find a set Xy oXose e X
so that for the associated submatrices 51’52""Sm
m
Cc = B S
= T

*As discussed in Reference 1, an execution sequence can be mapped to
submatrix by ignoring the ordering of its branches. This is valid only
because of the definition used here fu~ exhaustive testing.

MCOONNELL oouaxn%
{

--

- oo _ e

e

where

now3d
w

i=1 !
represents the Boolean union or sum of the Si‘ (This essentially defines
the nature of exhaustive testing at the track level).

An efficient test would be one in which the number of test points,
m, is minimal. ".

As noted above, essentials of the process involve associating with each
decision point (two-way) or predicate within the program, a function which
has a non-negative value when the predicate is true, and negative value when
it is false. In many cases, such as comparison between program variables
by inequalities, the expression in the predicate can serve directly to define
the function. If, for example, there is a test P<Q, then the variable
assignment, or function, C=P-Q, can be used. Since the functions are
relations among variables, they can be considered to be program variables.

By forming variables of this kind at each branch point, the program is .
augmented in such a way that, in response to an input data set, an execution

sequence will take place in which values are given not only to all program

variables but also to the augmenting variables, which, as noted, are program

variables.

Because the signs (+ or -) of the augmenting variables, set up a unique
pattern for any input data, they can be used to define the equivalence
classes mentioned above. It is noted again that in the formation of the
equivalence classes the ordering of the sequence has been ignored.

In a different mode of usage, the sign of each of the augmenting
variables can be specified in advance, and a point (or region) in the input
data space causing this pre-spacified pattern of signs can be sought. By
assignment of any of a number of simple objective functions of the augmenting

variables, with properties described subsequently, the problem can be stated |
as a search problem generally identified with optimization problems. :

41

MCDONNELL mcn%

] Generally the search is made to find data which will make the objective j
function positive; it is not necessary to achieve a maximum for the objective

function, only that the value of the function be positive. This problem is i
much simpler than the optimization problem.

The technique due to W. Miller and D. Spooner (Reference 3) is
illustrated by their example shown below. Their description of the example
has been augmented in several ways.

The problem of the example is one of triangularization of an NxN matrix

by Gaussian elimination.

The original code is shown in Figure 2. A combined flowchart and code
with predicates and branches identified, is shown in Figure 3. The predi-
cates, shown enclosed in rectangular boxes are attached to the node represent-
ing the site of their occurrence. The augmented code employing the functions
associated with the predicates, is shown in Figure 4. The input data to the
program consists of the nine matrix entries: A(1,1),A(2,1)...,A(3,3).

IPIN) = 1
DO6K=1N
IF (K.EQ.N) GO TO 5
KP1 = K+1
M=K
DO 1 1 =KPIN
IF (ABSIA(LK)).GT.ABS(AIMK)}) M=
1 CONTINUE
IPIK) = M
IFIM.NE.K) IP(N) = -IP(N}
T=A{MK}
AlMK) = A(K.K)
AKK)=T
IF (T.EQ.0.)GOTOS
DO 2 1 =KPI.N
. 2 AlLK) = -A(L KT
| DO 4 J=KP1 N
T=A(MJ)
AlMJ) = A(K D)
AlKJ) =T
T IF(T.EQ.O0.) GO TO 4
DO 3 1 =KP1,N
3 Alld) = ALY + AlLK)®T
4 CONTINUE
5 IF {A(K,K}.EQ.O.) PIN)=0
6 CONTINUE
RETURN
END

Figure 2. Coding for Example Program

) 42
/

mMcoonnELL pouou@
{
. I . - —_—— - Lo B . el
) i X o T T T e T

8CR34
IPIN) = 1

DO6 K = 1N

M=K
DO1 | = KPIN

— - -—-{-ABS(A(I,KH > ABSIAM.K))]

TRUE
M = |

1
IP(K) = M

IP(N} = -1P(N)
T = AMK)
A{M,K) = AIK K}
AKK) = T

- — 7]

DO2 | = KPIN

AlLK) = -A{LK)IT
2

DO4 J = KPI N
T =AM
AMJ) = A(KJI
AKJ =T

R AIT

DO3 | = KPI N
AL = AlLJ) + AlLK)®T

3

4

5 = — —-l A(K,K)-OI
TipiN) = 0

6

Figure 3. Combined Flow Chart and Code of Example Program

43
/

MCDONNELL DOUOLAS
(

Formation of the augmented code is accomplished by making a straight line
pass through the program under the assumption that the predicates inside sthe
DO loop 1 are all true, and all of the rest are valued false. It is noted

that the test results denoted as K=N, are governed by the input assignment

to the matrix order, N, here taken in the example as N=3. There is a "false"
valuation until K=3. These valuations are implicitly made in the construction
of the program into a straight line representation. Similarily the tests,
denoted as M=K, are completely determined by the tests in the DO Toop 1 and
do not explicitly show in the augmented code; they are used to develop the
straight line code.

The variable C], shown on the first line of Figure 4, is positive if the
predicate, ABS (A(2,1))-ABS (A(1,1}), is true; and this condition has been
specified as holding, since the predicate is in the DO loop 1. A similar
remark applies to C2 and C7 in the straight Tine Tisting because they are
repeats of the same test encountered under new conditions. On the other

8CR34
¢, = ABS(A(21)) ~ ABS(A(11) > O
ey = ABS({A(3,1)) — ABS(A(2,1)) > 0
T=A(3.1)
A3.1) = A(1,1)
Al1,1)=T

= ABS(T}) >0
A{2,1) = -Al2,11T
A(3,1) = A3, N/T
T=A3,2)
A(3,2) = A(1,2)
A{12)=T

= ABS(T} >0
Al2,2) = A(2,2) + A(2,1)°T
A(3.,2) = A(3.2) + A(3.1}°T
T=A(33)
A(3.3) = A(1.3)
A{13)=T

¢ = ABSIT) > 0
A(2,3) = A(2.3) + Al2,1)°T
Al3.3) = A(3.3) + Al3,1)°T
g " ABS(A(1,1)) >0
= ABS{A(3,2)) - ABS{A(2,2}) > O
T=A(3,2)
Al3.2) = Al2,2)
Al2,2)=T
c = ABS(T} > 0
A(3.2) = -A(3,2)/T
T=A{33)
A(3.3) = A(2,3)
Al23)1 =T
g = ABS(T) >0
Al3.3) = Al3.3} + AI3,3)°T

cg = ABS(A(22) > 0
Cyy = ABS(A33)) >0

4

Figure 4. Augmented Code for Example Program

MCOONNELL DOUVGL ‘9%
{

- - . . e SN

hand, the two tests shown in Figure 3, denoted as T=0, are taker to be
false on each encounter, and the value C3, C4, C5, C8 and C9 will all test
positive if the false branches are to be taken. (Since it is only required
that T be non-zero, the C's could also be chosen to be negative, but the
analysis is tailored around positive valuations.)

il

It is, of course, possible to express the C's to explicitly relate them
to the input data. This was done by Miller and Spooner threading back from
the predicate, where variable is defined, through intermediate assignments
to the original input data. This is fairly simple because the program is
straight-lined. The technique is illustrated by a detailed analysis of the
auxiliary variable, C7. In terms of program variables

C, = ABS (A(3,2))-ABS(A(2,2)),

and these can be traced through the calculations and assignments as follows:
substituting for A(3,2) and A(2,2),

C, = ABS (A(3,2)+A(3,1)*T)-ABS(A(2,2)0+A(2,1)*T);

then, since only A(2,2)O is input data (and is marked by a superscript, 0)
further backing is required; since T = A(3,2)0 at this point in the program,
and A(3,2)0 is input data, the expression can be written

= ABS (A(3,2)+A(3,1)*A(3,2)%-ABs(A(2,2) A (2,1)*A(3,2)?)

but A(3,2)=A(1,2)%, A(3,1)=-A(3,1) /A(3,1)° and A(3,1) in the numerator is
equal to A(],l)o. These and similar substitutions provide

ABsiA(1,2)? - (a(1,1)%a(3,1)%)*a(3,2)%73-ABs1A(2,2)0

[ep]
"

L. %ai3.0) 3,20,
This is an explicit representation of C7 in terms of input.

This illustrates the difficulties in attempting to relate logical paths to
input data. , 45

MCOONNELL DOUGLAS

Although this process is feasible for simple programs, and in many respects
resembles symbolic execution in"reverse, it presents the same difficulties
accompanying the development of equivalence classes. An alternative is to work
forwardly from the input data to valuations of the C's, and their associated
predicates. In this procedure, for properly picked input, all of the C's will
be positive and the execution path will proceed along the prespecified path.

The new problem is then one of searching for areas rather than solving for
points. These may seem to be problems of the same order of difficulty but they
are not. In general applications the searching process need not proceed to the
same level of definition that the solving process does. An analogy can be made
with polynomial evaluation: it is far easier to locate a point where a
polynomial is positive, than it is to find a root for the polynomial.

3.1.3 Test Techniques for Segment Coverage

To illustrate some of the characteristics of the test techniques employed
the problem discussed above is taken in the framework of the flow diagram of
Figure 5. The node numbers shown are in a 1-1 relation to the instructions and
labels of Figure 3. DO-loops are easy to identify by the letters E (end) and S
(stay), emanating from the end of the loop. The predicates are also easy to
identify by means of the T and F letters labelling the exits. The DOl loop, for
example, starts at node 6 and ends at node 9, similarly the D06 loop starts at
2 and ends at 31. The specified path for the sample problem can be identified
in Figure 6. Al1 predicate valuations (that are input dependent) are false
except the one inside of the D01 loop. Both True and False branches were
shown to be taken of the nodes 3 and 11, corresponding to the predicates
K=N|] and [M = K| . These are not assigned auxiliary variables but are used
to straightline the program; as a result they are permitted either predicate
valuation.

Miller and Spooner employ several "objective" functions, generically denoted
f(C],Cz,...Cm); each has the property that f>0, when one or more of the C's is
negative, and f>0 when all of the C's are positive. As an example, the function

F(CysCpsnvnsC)=min(Cy ChyssC,)

would serve for that purpose.

/
MCDONNELL MUGL@‘
A

rEYHI8

MCDONNELL DOUOLL”%

weiboud sdwex3y ybnoay) yied perdejes ‘g sunbiy

g 1 L
A 1 p Pv LHVLS
L L £
0's 0L BV’
Ao._ G98°E1 - mmuo.cv viva-
01 z9'81 LS8E°0 3

(1) 90a 40 ang3

48

»'SHIHLO0 TV NI 351vd ANV

‘L 400 04 3AISNI 41 40

INYL VL SAVMIV,,

pEHO8 €=N :S23dS

—

L

MCDONNELL DOUGLAS

b

. : The problem at hand, then, becomes one of searching over the input data
i space for values where f is positive for the specified execution track. In

the example problem, Miller and Sponner start the search with a "randomly"
chosen matrix

3 1 1
A = 1 4 1
0
i 1T 1 5

which produces f = -2
Using direct search methods, they derive a data set

0.3857 18.62 1.0
A =]0.6268 -13.865 1.0
1.439 1.0 5.0

which makes f=0.2411. According to Miller and Spooner, this is accomplished
in less than 1 second of CPU time on an IBM 370/168. The resulting coverage
of the program is indicated in Figure 6. Because of multiple passes over
some portions of the program, depiction is less than perfect. The specified
path, however, is achieved by the data.

The usefulness of this procedure is best appreciated when used in
conjunction with a combination of the "random" drivers, suggested in the
earlier work, augmented by constructed cases. The latter cases, are designed
to "fill-in" for data that were taken so infrequently by random numbers that
they make the former process uneconomical.

For illustrative purposes, the initial input data is taken as the "random"
matrix, used by Miller and Sponner to start the process. For this matrix as
input, the FALSE branch out of 7 is taken at least once. Thus, the "random"
start exercises a path segment which the "optimum" data does not.

49

MCDONNELL ”UGL@

The predicates [T_= 0] are not true unless the zero-valued matrix elements.
If the 3x3 zero matrix is used for data, all tests T=0, as well as the final
A(K,K)=0 are true, and the constructed case produces the execution track
shown in Figure 7.

Additional tests for programs can often be suggested by some built-in
symmetrics in the problem. Thus, for a short problem it can be generally
assured that when input data is permuted, the resulting execution tracks will
be different. When a polynomial solver is employed it is well known that a
set of symmetric relations, involving the roots, define the coefficients of the
polynomial. Further, there are relations between the coefficients of a
polynomial and the polynomial whose roots are shifted, squared, and inverted.
In the present instance of a matrix triangularization, the interchange of two
rows can be expected to cause a different response.

As a matter of interest, when the matrix obtained by the optimization
process is used with its 1st and 2nd rows interchanged, the resulting track is
shown in Figure 8. The False branch out of node 8 is taken on the first entry,
and the True branch on (one or more) subsequent passes. {In the particular
sequence of tests employed, there is nothing new added by this test).

For the simple problem illustrated here, all segments of the program
are tested by the three cases consisting of the starting "random" matrix, the
zero matrix, and the matrix obtained by the optimization procedure.

The method suggested in the illustration leads to extensions of value
to the general problem of exhaustive testing. As noted in earlier work, the
problem of testing a program, only to the point where every instruction and
every branch has been executed, is generally a computationally small enough
problem making it feasible for almost any program. This is true basically
because, for a minimum with k predicates (two-way), there are no more than
2k data points required to "test" the program in this way, whereas there are
as many as 2k differential Togical paths (many more if loops are permitted).

MMCOONNELL ”Uﬂl&

- - = - - L. e

Xinep 0187 03 ssuodsay L einbiy

51

McooNNELL oouatn%
(2
- —

s3I SLBLIO J0 sMOY PuZ Pue 38| BuiBuRYDILIU AQ Pow.od meQ 0 ssucdsey g sinB)y

0's oL 6EY°L
\ oL 2981 LS8E°0 viva
/o.p G98°EL- 89290

(ssvd 1S1)

— 7
mMcoonNELL DOUGLAS Y
c
()&—

vyEHI8

- g e

For the general testing problem, a sequence of random numbers or vectors
many be used to develop a set of tracing vectors whose components represent the
Boolean valuations of the C's. These runs would generally be both inexpensive
and, because they are the first to be employed, would be of high yield. After
a reasonably large set of random numbers have been run, the set of associated
vectors (as distinct from the values of the auxiliary function exemplified by
f in the above discussion) can be examined.

Except for cases where predicates involve equality between expressions
involving program variables, the vectors can be collected on the basis of com-
ponent comparisons. Thus, if there are both zeros and ones* in the first
component position, the testing has "“exhausted" the cases provided by the first
predicate,

A simple sorting procedure will identify unexercised branches. In case
specific predicates are not represented by both "true" and "false" values,
the process described above can be used to search for data that will force
the program in the desired way. Should there be neither valuation, the same
general procedure can be used initially.

It is possible in this scenario, that the so-called "scaling probiem”, a
result of non-common scales on the variables involved which tends to confuse
some optimization problems, can be used to advantage in the case of a search
for data to exercise a specific branch. For example, if a variable associated
with a predicate is more sensitive by multiplication or division of appropriate
factors employed in its definition, then strong responses will occur with only
small changes in input. A sequence of applications of such factors to each
localized variable would, probably, produce good coverage.

3.1.4 Test Techniques for Tract 2.1 Loverage

The major use of the above technique is in establishing exhaustive tests
for a given program package. The utility as a software metric is clear, As

*A blank would indicate no test.

63

MCDONNELL ”001(”%

noted in Reference 1, one quality of s.ftware having universal appeal, is the
degree to which a problem has been tested. Ideally this would be measured in
terms of the ratio of the number of logicat paths executed by all tests per-
formed on the package, to the total number of paths present. However, the
latter is almost never known, and there are many non-realizable paths which are
not apparent; even the realizable ones may not be easy to enumerate. Thus the
more easy to obtain ratio is a substitute.

Reference 1 describes the method of estimating the total number of tracks
realizable by random numbers. This method depended on the development of the
count of the number of trials between discovery of new paths. An asymptotic
limit to the total was then developed on the basis of an algorithm. This
technique could be applied to individual branches or to any selected set of
branches. Some measure of the degree to which a program has been tested
may be developed from the combination of the yields obtained by using
constructed cases and from apptication of random numbers. In specific
production-type applications, studies of so-called impossible pairs may be
made but for development of a universal metric, such a fine-grained investi-
gation is not warranted.

In order to automate the track-level testing procedure several
modifications to the APTS were made and a post processor of data was
programmed.

First, the algorithm which obtains the estimated number of tracks
through a program obtained by using random numbers as program drivers was
programmed as part of a post processing routine. This problem had been solved
in principle, but implementation of it heretofore had been effected by the
tedious process of desk checking segment usages against all past usages.

The selection of random values for the input variables (real or integer)
provides the set of values for one run. The procedure employed for estimating
the number of tracks that will be exercised requires a number of executions
and comparisons. In the automatic version, the track that accompanies one
input data (random) selection is identified in terms of a zero or one assign-
ment to the arbitrarily ordered set of segments which comprise the list of

MCDONNELL ”Uﬂlz “%

segments: a zero for nonusage and a 1 for one or more usages. (Two paths
which differ in their nonzero counts of the usages of segments, or in their
order of execution, are considered to have the same track).

In the implementation of the estimation process, the above outlined initial
portion is followed {in the postprocessor) by a routine which compares the
sequence of binary n-tuples (one "ordinate" for each program segment) in
order to accomplish two things:

A. Establish whether a newly examined track is the same as some track
earlier examined, effected by comparing the n-tuples ordinate by ordinate
against all previously taken tracks,

B. Marking the trial number of the current track by a zero or 1 in
accordance with the results of the comparisons, a zero if an "old" n-tuple
has been found and a 1 if the examined track is new,

The data for the estimation procedure consist of the pattern of 0's and
1's obtained in the above comparisons. The primary observable consists of the
total trials between adjacent 1's. These spacings between 1's are reported
as X], XZ""’Xn and represent the difference in the indices representing
trial numbers: X] is the separation between the first trial number (by defi-
nition, the first trial results in the first new track) and the trial number
which produces the second new track (usually this separation is 1 because of
the high 1ikelihood that a new data set will produce a different track); X2 is
the separation between the third and second new track, etc.

With data X], xz,...,xn obtained by running the program over T trials,
the number of new tracks is estimated from the equation

nT

n
NT - 30 (i-1)X,
i=] !

n
- 1
E:] T ON-(F-TY

where N is the unknown, Xi are as defined, T is the total number of trials and
n is the number of Xi employed.

The augmented version of PTS achieves this entire process of comparison and

estimation automatically.

MCOONNELL mot@.
{

55

e et st e o, ez At s e bt

————

3.2 APPLICATIONS

3.2.1 Air Force Logistics Model--ORLA

In order to avoid the algorithmic-type programs previously studied,
programs which are more typical of those encountered in the field were
reviewed, specifically the Air Force Logistics programs were reviewed. Inspec-

tions of several programs were made for the purpose of selecting a useful
candidate for coverage testing. A review of the MOD-METRIC model revealed

a very complex program which would have provided an excellent candidate because
of the diverse modes which can be exercised. However the fact that documen-
tation of the FORTRAN program is almost non-existent in the mid-levels of i
documentation (between the overview, on the one end, and inserted comments, |
on the other), the program was passed over. The LSC (Logistics Support Cost)
model was not selected because it consists of a set of rather simple algebraic
formulas. Another model, LEM (Logistics Effect Model) is not yet widely known
in the Air Force, and primarily was eliminated for that reason. The Air Force
LCOM (Logistics Composite Model) was investigated and while its basic or
underlying language is FORTRAN, it has a lanquage of its own and is not there-
fore suitable for analysis. Another difficulty with LCOM is that production
runs with that model would cost far in excess of any contemplated expenditures
for the testing task which was planned. This is so because the model relies
on simulations with an underlying SIMSCRIPT Il program, to produce Monte Carlo
based statistics of operational parameters. The program with greatest poten-
tial among those investigated is commonly called ORLA (Optimum Repair Level
Analysis). The particular version employed was written by 0. R. Johnson of
Warner-Robins Air Force Logistics Center.

ORLA employs costs associated with the acquisition, logistic support,
and replacement, or airplane subsystems. Three options are generally con-
sidered in an ORLA analysis: discard at (suspected) failure of the subsystem;
repair of the failed subsystem at the base (home airport), or repair at an
Air Force depot (generally supporting several bases). Some 11 different cost
components are involved for the latter two options, while 3 cost components
comprise the discard option total. Although computations are not complex,
and, indeed, the cost components are simply algegraic formulas, the so-called
sensitivity analysis presents some interesting complexities and decisions.

MCOONNELL DOUGLAS
(

—~——

The aim of this sensitivity analysis is to determine (to the nearest 1% of
the baseline value) the point at which the nominal decision, derived from
the baseline values, will be reversed. This is accomplished for any choice
from the 17 different input factors, and it provides, as the name indicates,
a measure of the sensitivity or stability of the decision in the face of
possible changes in or misestimation. The sensitivity analysis is flow-
charted in Section 3.2.1.1 where the application to the ORLA program is
illustrated.

3.2.1.1 Segment Level Coverage of ORLA

The main ORLA program consists of 488 1ines of FORTRAN code (each branch
of branching instructions are counted). Briefly the components of ORLA can
be described by the following: Initialization (about 15 instructions); Read
Constants (64); Compute Failure Rate (59); Computation of Aerospace Ground
Equipment Usage (66); ORLA Variable Identification (34); Economic Analysis
(33); Write Summary (15); Computation Routine (58); Rank Economic Values (22);
Sensitivity Analysis (93); Write Repair Summary (12). (In addition three
peripheral and non-essential subroutines are included in the program: two
are merely messages for the user in case he requires explanations of the
program, the third is set of error messages in case of inconsistencies in
the data. These subroutines are not included in the discussion which follows.)
A listing of an APTS-augmented ORLA is given in Appendix A.

To drive the basic ORLA a total of 54 variables are employed. These
variables provide descriptions of all the logistics involved in acquiring,
shipping, repairing, maintaining, and resupplying an aircraft subsystem.
Included are variables which represent overhead, such as, training of main-
tenance personnel, management of ir.entory, and facilities. The 54 variables
are divided into 2 main classes. First a set of 36 variables describe the
rates which hold or are projected to hold for the time of the analysis, the
force size and deployment scheme, labor and material rates, and so forth.

In addition to these, a second class bears directly on the item or subsystem
analyzed (ORLA'd); there are 17 variables in the class and they describe,
cost and weight of the subsystem and its parts, repair time, and the docu-
mentation, training, and special faci.ities which are required for the item.

, 57
McooONNELL ”"“(@i‘
i - e e
et

—h .

In addition to these basic variables there are 10 additional variables
which are derived from intermediate computations which rely either on keyboard
entry (of parameters relating to the MTBF) or on sharing of resources by
several items (AGE or test equipment which is employed or several different
subsystems of the aircraft for example). The reason for identifying them
with the input variables is that they also can be subjected to the sensitivity
analysis.

As noted earlier the ORLA program employs the input values associated
with a given item and computes the costs which would be incurred under the
three options (discard, repair at base, repair at depot). On the basis of
the three ranked costs the optimum or least cost repair level can be determined.
Although the numerical values of the costs of the various components of cost
are printed out and an indication of the assurance or firmness of the decision
which the program makes can be made from these magnitudes, a better measure
of the firmness of the decision can be made by use of sensitivity analyses.
Each run a set of up to 10 user-selected variables can be identified for use
in this analysis. As noted before, the primary purpose is to determine, from
variations in the costs due to changes in the selected variable, the point
(a percentage of nominal value) where the decision based on nominal or baseline ‘
costs 1s reversed. This is determined to the nearest percentage on the range
20% to 500% (1/5 to 5 times nominal). Should no change in decision occur
over this range, the decision is clearly stable with respect to the variable
inspected.

Certain variables are known to affect certain options more than others
and a user wishing to test for coverage could be guided by this a priori
knowledge. Some of this kind of knowledge is also used in the construction
of cases which are discussed here. This is counter to the mode which would
be used in the final testing scheme where it is assumed the user is unaware
of the relationship between input and any particular program segment. In the
final version each variable would be varied at random to provide an initial
coverage; subsequent coverage would be initiated by a specification of a
program path or track, then continued by invoking a search procedure on the
input data, and hopefully consumated by an identification of a point which

7
MCOONNERL ”Wl.(@-

produces an execution which includes selected path or track. Because the
status of the study has not progressed to the point where automatic insertion
and data generation are possible the procedure used in the example relies

on knowledge of the progran.

It is cumbersome to illustrate the usage of APTS on the entire ORLA pro-
gram, but a good indication of the way APTS can be applied in static analysis
can be provided by use and inspection of a compact portion of the listing.

In Figure 9 is a flow chart of the portion of the program called Reversal
Analysis. This is used in part of the sensitivity analysis to compare and
rank the costs of the three options. For convenience the ORLA program with
segments identified comprises Appendix A.

Application of APTS in static composition of segments from the coding of
the above identified program portion is effected by first numbering the instruc-
tions as shown in Figure 10. This shows the numbering in the leftmost column
and these are associated with the instruction on the right. Labels shown
correspond to the original listing and are employed in the flowchart of
Figure 9. Thus 396 corresponds to the labelled (215) instruction, JSEN(1)=KDT,
at the top of Figure 9, 415 corresponds to the predicate,l NUMK(])-NUMJ(1)=§],
which appears just after the Tabelled 310 CONTINUE instruction in Figure 10.

The APTS segmentation of the program in the above described region is shown

in Figure 11.

It is important to note that in most cases the segments are made up of
several of the PTS segments defined in Reference 1. Those segments were
truncated by labels, GOTO's, etc. Several other points require explanation.
First the segments identified with the bracket/parenthesis, start with an
instruction number which is either the start of the program or subroutine,
or a predicate (IF statement in most cases), the remainder of the numbers
in the sequence denote the instructions which will be executed in sequence,
the end of the sequence of numbers is identified by a number corresponding
to a predicate or branch point. Thus T] starts with the labelled instruction
396, then in turn by 397. 398, 399, 400 and ends with 401. The instruction
401 is an implied predicate, | DO LOOP END=TRUE|. If the predicate is true
the next segment taken is T3 which describes passage from the D0210 loop to

§9
/

MCOONNELL DOVOL @_
-

R,

ENTRY LABEL 216 () ssen (1) = xOT
. JSEN (2} = KFT
JSEN (3) = KTT

DO210 1=1,3

210 NUMJ (1} =1

DO 310 18=1,2]
K=1B8+1 ’
DO 310 12=K,3

NO, ——-4—--{ JSEN (1B) -~ JSEN 12) € O J

306 HOLD = JSEN (1B}

JSEN (18) = JSEN (I1Z}
JSEN (1Z) = HOLD
HOLD = NUMJ {1B)
NUMJ (1B) = NUMJ 12} i
NUMJ (12) = HOLD ‘

OX = ORIG*PCT

VAL {IC} = OX

QCTGM (IPASS) =
UE*UR*QPA/MTBF

ASSIGN 715° TO JUMP

—— — NUMK (1) = NUMJ (1) =0 J

y
TO TO “COMPUTATION
d) ROUTINE" ()22

- PCT = PCT « 0.1

VAL (iC) = ORIG

. GO TO “SENSITIVITY ANALYSIS™ I
* 715 “CHECK FOR REVERSAL”

Figure 9. Reversal Analysis

MCOONNELL DOUGLAS
(

R - —_

396
397

398
399

400-401

402
403
404
405
406
407
408
409
410
N

412-414

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

215

210
300

305
306

REVERSAL ANALYSIS

JSEN(1; = KDT
JSEN(2) = KFT
JSEN(3) = KTT

D0 210 1 = 1,3

NUMI(I) = 1

DO 310 IB = 1,2

K= 1B +]

DO 310 IZ = K.3

IF (JSEN(IB)-JSEN(IZ)) 310,310,306
HOLD=JSEN(1B)

JSEN(IB) = JSEN(IZ)

JSEN(1Z) = HOLD

HOLD = NUMJ(IB)

NUMJ(IB)=NUMJ(1Z)

NUMJ(1Z)=HOLD

CONTINUE

IF (NWK(1) = NUMJ(1)) 320,228,320
CONTINUE

IF (IP-8) 322,222,229

PCT = PCT-.90

GO TO 2300

PCT = PCT-.1

G0 TO 2300

PCT = PCT + .1

GO TO 2300

CONTINUE

IF (1pP-8) 375,375, 360

PCT =PCT + .09

GO TO 340

PCT = PCT -.08

0X = ORIG * PCT

VAL(IC) = OX

QCTGM(IPASS)=VAL(31) * VAL(32) * VAL(46)/VAL(56)
ASSIGN 715 TO JUMP

GO TO 100

Figure 10. APTT Numbering for Program

MCDONNELL DOUGLAS
(

-

61

Figure 11. APTS Segment Identification

MCDONNELL ooual.@

- -

MDAC SEGMENT XLATOR

[396-401)
[401,399~401)
[401-405)
[405,412-413)
[413,404~405)
[413-414)
[414,402~405)
[414-415)
[415,424-425)
[425-427,429-433,304-319)
[425,428-433,304-319)
[415-417)
[817,420-421,460~461)
[417-419,460-461)

[417,4220-429,460-461)
[405-413)

62

the DO310 loop, and continuation to the next predicate which is an explicit
predicate, [Q§EN(IB-JSEN(IZ)=0]. If the predicate is false, the segment T2
is executed, with an initial 401, the entry or reentry into the D0210 loop
at 399.

Because of the selection of only a portion of the program, some segments
shown in Figure 11, such as T]O’ list instructions which are outside the range
of those shown in Figure 10. The explanation for T]0 which will be given here
should serve for others as well, T]0 is made up of (425-427, 429-433, 304-319),
and it is the last group that is out of range. Instruction 433 is a GOTO 100
instruction and the APTS number 304 corresponds to the label 100, which is the
start of the so-called Computation Routine. This routine computes cost compo-
nents for the three options and the 304-319 segments is the initial segment
of that routine. A "return” to the portion which is displayed in Figure 9 is
at the end of the Computation Routine (at APTS number 355-not shown). There
is one entry point from the Computation Routine and that is at T]. So far as
the local analysis is concerned T]0 joins to T]. The original set of segments
can be tailored so as to exhibit only local connections by the above method.

So far as the illustration of technique is concerned, however, there is no
need to work at that level of detail. ‘

Figure 9 shows the two major exits: computation routine (label 100 and
APTT number 304); sensitivity analysis (label 2360, APTS Number 384). The
program was initially driven with a set of standard elements for one of the
Air Force's aircraft types and an imaginary subsystem. The program’s pre-
selected variables were used in the sensitivity analysis (these correspond
to the size of the force being fitted, the number of hours per month the
aircraft will be used, the repair manhours, the unit cost, the Mean Time
- Between Failures, the cost of depot AGE, and the cost of base level AGE).
The initial data exercised the segments listed in Figure 11 as follows.

Segment Number of Executions
, T] 118
; T2 236
. T3 118

Segment Number of Executions

T 24
Ty 118
T6 236
T, 118
Tg 118
T9 5
T10 3
T]] 2
Ty 113
Ty3 28
Ta 4
N5 81
T]S 113
For this arbitrary set of data all explicit and implicit predicates were '

exercised. This complete {local) testing was fortuitous in a sense, for in
three successive runs with other data T]O was not exercised, while T9 and T]]
were not exercised in one case.

The static aspects of APTS are weil illustrated by the foregoing. The
dynamic aspects can be illustrated by the results from four data sets. The
first or nominal is the set identified above, the second maintained the same
standard elements and changed one item parameter, the unit cost (from 3600 to
36). The third restored the unit cost to the original value and changed one
standard element, depot labor rate (from 12.44 to 1). The fourth changed
the turnover rate from D.15 to 15.

Results over the entire 113 segments of the program show that the initial
choice of data was indeed exceptional, since 96.63% (86 out of 89) of the
segments exercised by the four segments were exercised by the initial set.

MCOONNERL MUC%&

g

A

The change in cost by a factor of 100 (the second case) exercised two
segments not exercised by the first set and these correspond to predicate
branches caused by the re-ranking of the costs of the three options (discard
would be the least expensive). Similarly for the fourth set, a reversal of
the costs of depot and intermediate repair is effected by the extreme value
chosen for depot turnover,

Examination of the 113 segments comprising the ORLA program, shows that
24 segments were unexercised by the four simple cases. But, of these, 13
depend on choices which are prompted by the program; that is they are yes/no
responses to questions concerning choices as to whether the user wishes to
correct an entry, whether he wishes an explanation, whether he wants to run
a batch of several items, etc. In some cases these choices reflect into the
substance of the program and in others they stimulate isolated calls and
returns without exercising any computations. Of the 11 segments which remain,
all but four can be exercised with data.

As a very simple and brief explanation of the actual technique used for
constructed cases, and as a useful means of discussion of the automated version
of the process, the predicate, » involving the two program variables
EOQ and A will be discussed.* The APTT post-processor tally usages of the
entire program shows that the true branch of this predicate is taken on every
encounter (1143 passages in the 4 cases). The code contiguous to the predicate
shows that the true branch corresponds to the inequality:

4.4 /A < A
or

19.36 < A

*These variables occur in the Computation Subroutine and represent Economic
Order Quantity (EOQ) and a "Pipeline” content (A).

e
MCOONNELL DOUGL @_
i

Sl i i e

} Again by use of other parts of the code, it is established that

A=]2.V45.V48V3].V32.V46/V56
where the V's are all input variables.

Thus the choice V45 = 0, among many others, will cause the false branch
to be taken.

It is well to note that in the contemplated scheme, random numbers would
be used over convenient ranges for all of the input variables, and, in this
case, the probability of producing an A value less than 19.36 would be
extremely high. Thus it is highly 1ikely that the case investigated here
would not have arisen in the context of an unexercised branch at a correspond-
ing stage of testing, and in fact, when 100 cases were run this branch was
indeed executed.

Should a similar predicate branch be untested after an initial set of
data runs, the following procedure would apply. The augmenting program
variable C=E0Q-A would be inserted at the predicate site during the APTS pre- ‘
processing. During each pass the value of C would be evaluated (in combination
with other inserted augmenting variables at other sites of predicates). Varia-
tions on the input data would be made according to a search scheme until a
point is reached where all augmenting variables have the desired sign - in
the present case, C must be positive.

The more extensive test of ORLA comprised a run of size 100. Several
interesting problems arose in the process of obtaining these runs.

Most of these problems concerned character string inputs. To test in a
random way, the variables of ORLA, the user must become somewhat familiar with
the sites where meaningful input is done, and what type of input is expected.
There are five types of input required by ORLA:

1) real variable containing either "yes" or "no" ‘

2) real variable containing real values

|

I
MCDONNELL DOUGLAS I
(.

by

!

3) integer variable containing integer values
4) double precision variable containing an a8 string

5) double precision variable containing one of sixty-four possible

a8 string names

Because FORTRAN allows character strings to appear in all data types,
trying to recognize inputs and generate random values for them causes a major
problem. After the sites for inputs from the user were established they were
replaced by a call to a hand-generated input routine of the proper type.

It was decided to run one hundred test cases using the random inputs as
test values. The ORLA source program was pre-processed by APTS and compiled,
then linked to the random input routines. One hundred executions of the
instrumented program followed. For each execution, an output report was
generated by ORLA and a post-processor report was generated by APTT. A log
was also kept for each test case run. There were five types of run-time
errors that were detected by the FORTRAN run-time 1ibrary.

1) Floating point divide check

2) Floating point overflow

3) Square root of a negative number
4) Integer overflow

5) Il1legal character in data

Each of these errors is not an expected output of the ORLA program. At
this point, an interesting point should be made about program testing. To
facilitate the testing of computer programs where there is a possibility of
run-time errors, either fatal or non-fatal, there must be a mechanism for
gathering the statistics that have been collected up to the point of the
error. Fortunately the DEC-10 operating system has such a facility.

67

MCDONNERL oouou@_
(

After one hundred test case executions, only four segments failed to
be executed:

1) Segment 86 [457,461), To execute this segment there must be a
premature end of file on FORTRAN logical unit IWORKZ2. This appears
to be impossible because the loop which reads the data from this
file is controlled by a variable that is incremented for each
write to IWORK2. (See line 277.)

2) Segment 96 [199-204), To execute this segment the variable ITAGE
must be less than two and the AGE SUMMARY option must have been
selected.

3) Segment 98 [187,200-204), This segment appears to be impossible to
execute under all input values. If variable ITAGE is greater than
two and the AGE SUMMARY option has been selected then the loop
from statements 143 to 199 would be exited at statement 169 before
segment 98 has a chance to be executed.

4) Segment 104 [64-64,62-64), This segment was not executed due to
the restricted range of values selected for random input to varia-
ble IT. If the range had been expanded from (0,10) to (0,11) then
segment 104 should have been hit.

Thus segment coverage by the 100 test cases was essentially complete.
Two of the segments are apparently impossible to execute, and two require user
options which could be taken but were not. The comprehensiveness of the
random number testing is clearly demonstrated in this example.

3.2.1.2 Track-Level Coverage of ORLA

The 100 test cases which were used tor the segment coverage testing were
also employed in the analysis of track coverage. This number turns out to be
inadequate for this purpose but the difficulties which were described in the
previous subsection proscribed any attempt at exhaustive testing. The fact
is that 98 out of the hundred tracks generated were unique. This relatively

simply formula-oriented program requires a test sample of at least 100 different

MmCDONNELL Mw&;ﬂ%
C

runs and as indicated below the probability is high that several hundred or
several thousand may be required. This is in stark constrast to the fact that
almost all segments have been covered.

For ordinary programs there would not be any problem for generation of
random input is "from the top" and can be inexpensively provided, whereas,
for the interactive ORLA, requests for input must be responded to by on-line

monitoring, resulting in constant attention and manual input of information.

Nonetheless, the procedure of track estimation can be well illustrated
by considering the initial segments of the ORLA, and sequentially increasing
its size from 15 to 75 in steps of 15. Estimates are made on these segments

to produce trend data.

In Table I (two parts) the segment usages of the complete ORLA program
are shown. This program consists of 113 segments in the main program. These
correspond to the first 38 octal numbers to the left of the arrow between the
38th and 39th number. Those to the right of the arrow represent subroutines.
Each of the first 37 octal numbers represents usages aof three consecutive seg-
ments. An octal digit of 5 in the first position indicates, for example,
usage by the 1st and 3rd segments and non usage of the 2nd, a 7 indicates
usage by all three segments. This coding is continued, each representing
3 consecutively listed segments. The 38th digit represents a mix of the
112th and 113th segment of the main program and the first segment of the
first subroutine (which is immaterial).

It is noteworthy that the subroutines of the program have apparently
or probably been fully tested at the track level since the octal numbers
(in the 39th through 41st columns), 375, 777, 775, 377, 335, 001 appear to
comprise all tracks, with no new occurrences past the 36th run number.

As noted above the number of runs made could not serve to test the

entire (113 segments) program. But it is interesting to analyze the problem
from the bottom up.

MCOONNELL MUG%&

i fibtalion i i, Bl -

OV ST~ N

68 06 66 00 96 00 58 40 40 00 00 00 20 00 5 00 08 00 00 04 08 00 68 00 40 00 00 00 04 00 60 00 36 50 45 00 00 89 00 00 55 00 08 00 g0 0 55 60 08 N0

o g Pob b pud Pt PP st b fus P b b b S ot b et P b b b b pd b pud P ok b O PO pud b ik P ped b b b fud pub o P pud pud pmi P pb b i

Table I (Part 1). ORLA Segment Usage Versus Trial Number
(Page 1 of 2)

100

57567777777777777757777761171755660757673750000000
T157577T71777717713777777777775740000157667770000000
773671777777 7771371711771T7777777757000700077750000000
$736777777771773777577737617753760700063770000000
771777777177777777717771777777740000100067750000000
S716777775777737717577737612751660757663350000000
777677777777773776177000007753000700067770000000
577677777177737777577777617751000700063750000000
ST1717771717171717717377717177777736740000155663350000000
7757777771777773777577777617740000157667770000000
575777717171777737777177777777740000157663350000000
S77357777757703736177000003640000100063750000000
771677777177737777377777537755000757777750000000
5756777717771337777777777771757765757673750000000
571657777777733776177000005753000755663750000000
ST157177771577777776177000007740000155663750000000
$7977771717717743777777777777740000157663750000000
771677777777717777577777617755000757677750000000
ST171717171711717171377717177777177171740000100063750000000
571677777577773777401777755015000757673750000000
77771777777717717771771777777777740000100067750000000
ST11717177717177743777777777757740000157663750000000
776263777577743776177000002653000700067750000000
575657777177733776177000003751000757663750000000
577657777577773777577777617753000700063750000000
575777777777773776177000007740000157663750000000
776277777577743777401777614653000700067350000000
5736777771577773777177777773757000700073750000000
774717777577773776177000003740000157667750000000
§71677777777773776177000007757000757673750000000
177717771775777677171777777717177740000100067750000000
T17176717177777717677775717777617751000700067750000000
5756777775777677775771777617753000757663750000000
$7367771777177733776177000006753765700063750000000
ST76777177777733776177000002753760700063750000000
$70677777777743777777777773753760757660010000000
7717777771777777777577777617740000157667750000000
T716777777777377717777777773755000757677350000000
$776777777171717737171777771777157755000700073750000000
573757777577767777577777617740000100063350000000
7736777777717773777577777617755000700077750000000
$736777777717773777577777757751065700063750000000
771777777577743777577777557740000157667750000000
775677777577777777777777737755000757677750000000
577677777777733776177000002751000700063350000000
775777777177733776177000007740000157667750000000
575677777777777777777777777757000757673750000000
5707777777777337771777777777740000157660010000000
$736777777771337177777777177751065700063350000000
777677777757703736177000003751000700067350000000

70

'
MCDONNELL oouo;@_

00 S0 06 60 00 40 00 S8 20 00 05 20 58 00 40 05 00 68 04 60 96 °F 05 00 00 00 U0 30 08 €0 SO 00 00 04 00 00 5 90 00 40 20 ¢0 00 00 40 68 46 00 ¢

Y el o L N N e O e N e N . g el L oy e g oy N Y Py g

Table I (Part 2). ORLA Segment Usage Versus Trial Number
(Page 2 of 2)

773677777177733776177000007753000700067750000000
$736771717771171371177777777771755660700073350000000
7716777777777371777777777777755000757677350000000
T775777771777733776177000007740000157667750000000
575677777777737777577777617751000757663750000000
T1L71777711577773776177000007740000157667350000000
5716777777777737777777177777753000757663750000000
71573717177777777777577777617740000155667750000000
773677777777733776177000007757065700077350000000
T136TT1717577173777777777777751660700067750000000
T717777771777177137771377777415740000157667750000000
775663777777733776177000002757000757677750000000
T773677777177733776177000003751000700067350000000
5716777771771733776177000007757065757673750000000
§736777771777671717777777773757760700073350000000
5736777775777437717577777617755000700073750000000
$73677717777717737777177777777755000700073750000000
773777777577173777577737617740000100067750000000
7776777777177773777577777617751000700067750000000
$T77677771717777777771577777617755000700073750000000
STL67771757T111TTT15TTT77617755000757673750000000
7717777177171777737777771777771740000157667750000000
777677777177737777777777777755000700077750000000
575677171771777713T771517777617757660757673350000000
57567777777177737717577777617757660757673350000000
575677771777777717717717717737755065757673750000000
ST167TTTT17777437771777777777753000757663750000000
5776777775777713771577737617757760700073750000000
1757777777777737761770000077400001576677500000C0
T75777777717773777777777777740000157667750000000
117117177715 TT11TTT7777717733740000100067750000000
777777777777737776177000006740000100067750000000
5757777177157777177177577777617740000157663750000000
ST716777771777743777777777777757000757673750000000

777673777777733776177000007757000700077750000000
$77777777177733777777777775740000100063750000000
T1567771717777733777377777417757765757677750000000
973677777117733776177000007755660700073750000000
$77677777777773776177000003751000700063750000000
T15777777577773777577737617740000157667750000000
STTTTTITTTTIT77IT177777777777740000100063750000000
7757777777777337761177000003740000155667750000000
771677777777773776177000007757165757777750000000
773677771577773777717777777755065700077750000000
773677777577767776177000003753000700067750000000
7777777777717773777777177757740000100067750000000
777777777577777777777777617740000100067750000000
T7756777717177727776177000007753000757667750000000
S137177171717711777171717171777777617740000100063750000000
7776777177577773777777777777751000700067750000000
T171717771771771717777177771717777771757765757777770000000

n

7/
mMcoonnaLL muoﬁ@_

-y

The initial analysis on the main program was carried out on the first five
octal numbers (representing the 15 initial segments of the list of segments
shown in Appendix A). It is well to note again that the octal number 57567,
or binary 101111101110111 associated with the first run, means that segments
2, 8, and 12 were not exercised and all the rest were exercised. By comparison
of the first five numbers of each run with its predecessors the pattern of
occurrences of new (partial) tracks can be established. From this sequence
the Xi's of the algorithm can be established as

X]=x2=...=x_‘2=x]3=]

Xjg = 2, Xy5 = 4, Xpg = 4

Y17 = X8 = 13 X9 = 2, Xpp = 2
Xor =75 Xpp = 1s Xp3 = 3,

Xpg = 8 Xpg = 4, Xpp = 14

Xy7 = 65 Xpg = 31.

(The Sequence of Boolean symbols is not written because they can be recovered
from the Xi: 13 ones, 1 zero, 1 one, 3 zeroes, etc.)

The ratio £(i-1) Xi/zXi in this case is 20.94, and the tables in
Appendix 11 of Reference 1, indicate that the expected residual track count
(by extrapolation) is less than 0.04 (notwithstanding the occurrence of a
unique track on the 99th run).

For the first 30 segments (i.e., first 10 octal numbers) the pattern is

=2, X]S =

=X

14

22

The ratio z(i-1) Xi/xi is 29.13 and tables for n = 47 in Appendix A of
L Reference 1, show that this corresponds to a residual count of 10.9 tracks.

In the context of the present illustration this means that there remain

10.9 tracks which will exercise the first 30 segments differently from the
way they were exercised in the first 100 runs and which will differ from
one another.

A very coarse approximation to the total testing required can be found
by multiplying the number of remaining tracks by the mean number of trials
between occurrences of the next track as provided by the entry for the MTTF
analog to this in the tables of Reference 1. In this case this meantime is
about 5.8 so that total testing will require in excess of 63 additional trials
(163 in all).

A better estimate can be obtained repeated use of the tables, in this way
the stretching out of the MTTF which occurs as new tracks are found can be
accounted for. Using the aforementioned tables this estimate for the addi-
tional trials § is

w>
n

5.6 +5.7+6.0+65+7.0+7.7+85+9.9+12.0+16.6+ 30.1
115.6

i

where the individual terms are taken from the MTTF column of the tables for
n =47 to 57. The refined estimate is that about 116 additional runs are
required.

For the 45 initial segments the separations between new tracks are:

Xy = K = e 2 Xyg = 15 Xy = 35 Xy = Xy = Koy = 15
Xoq = 23 Xpg = Xpg = +o0 = K3y = 15 Xgg = 35
X39 = 15 Xgg = 2 = Xgq = Xgps Xg3 = 1 = Xpq3
Xgs = 25 Xgg = Xg7 = Vi Xgg = 25 Xpg = Xgg = Xgg = Xgp = 1,
X537 2 Xgq = 1 = Xggi Ko = Xgy = 25 Xgg = 13
73
MCDONNELL Douoﬂ(@
-y

Xgg = 23 Xgg = 15 Xgy = 33 Xgp = 15 Kgg = 35 Xgq = 13
Xgs = 33 Xgg = Xgy = 15 Xgg = 35 Xgg = 13
X70 = 23 Xgy = 5 Xgp = 15 Xyg = 23 Xgy = Kyg = 1.

The pattern of separations of occurrences, produces an estimate of 95.5
(170.5 total) additional tracks, and a mean time to next new track of only 1.82.
The number of trials required to achieve perfection can be approximated by
the formula for MTTP for Section 2.2.3.2. In this case N = 170.5, ¢ = 0.00576,
and

which can be approximated by the sum of the logarithm of n and the Euler
constant

MTTP ~ — (in 95 + 0.57721)

©|—

=~ 890
Thus 890 additional tests are estimated to be required for a complete test.
For the first 60 segments, the pattern of 87 Xi's, produces an estimate

of the undiscovered tracks of about 359, of ¢ = 0.00217, and the total number
of runs required for a fully tested program is about

445 359
1 1 1 1
MTTP =~ 346 -1 ¢ k
i=87 k=1
~ 300

The analysis for the initial 75 segments produces 91 separation intervals,
with a pattern showing only 8 values of Xi differing from 1. These are all 2

MCDONNELL nouoa&

- - . i —a

74

and occur at the indices 21, 43, 51, 60, 71, 79, 82, 85, and 86. These
produce an estimate of N = 1108, ¢ = 0.000857. Corresponding is an

1107 1016
1 IR o]
MTTP”¢Z]108-1 s K
1=92 k=1
~ 8750

Naturally these later estimates are extremely weak with unquestionably
extremely large variances. The point with any such estimates is one of
determining the status of testing and gross estimates are sufficient.

The preceding sequence of tests clearly indicate by the increasingly
large value of MTTP that the testing required is extremely large, probably
in excess of 50,000 runs. And this is for track level testing on coverage,
not execution sequence coverage.

It is useful to note that the bottom row, denoted all, which shows in
each position the "union" of all octal tokens above it in the column, shows
segment coverage complete through 85 segments. (86 was noted before an
impossible segment.)

3.2.2 Comprehensive Testing of Matrix‘Triaggylization Problem

The matrix triangularization example discussed earlier will be reexamined.
Directed graphs of the potential program flow, and a few examples of the
coverage by random numbers and constructed cases were given in Section 3.1.2.
Listings of the MAIN and TRIANGULARIZATION subroutine comprise Figure 12.

Appendix B contains tables and reports of the APTS output for three
separate test runs. The reports show the testing coverage provided by using
the user-described input routine INROUT. INROUT returns a new set of randomly
distributed over the logarithm in the range -2 to 1. The sign of the individual
data items is also selected randomly.

75

S DOMNELL ”UOL@_
i

(COT°0Z8’XEXE//.€0?117.) KOAAVTASTINONY ca J¥0day L)lyrels i

(W21 9(a’T=07(0%1)%9))2 (31700 dll

(5%7T1=17(R1=0(£71) %)

(Z 40 | oBrd) weiBosg odwex3 Uk jo Bunsy ‘ZL einbid

4¢172-)ivat=(L V)Y
fIn04NI=a811I00CE
P1=5418Y HevA

ke

YIRS SAN
Che Gl

)
TONVIEsl ¥Ela¥ Lditrcla inl ¥l
1 gl

o
duls ¢l
CLAS 9 S i (W il ~G1
t
(Rf¥7dD)unv¥lcd TINo 6
THCTUTZ0¢) iy L
(v)Lln0anl TV)
ffl=zn ol 1L €
t=r ¥
(A t

INCUAS.=SS5I0V 4, SE¥ LY 10d.=5%10%, $ 250, =a0 A8/ 0L=LINL) nE4L

P
"o

-

.

]
]
(=]

[8]

as

(Z=¥)HusSiinl LIO1Tuwnl
Klvs wvelitd

76

MCDONNELL DOUGLAS

{2 10 Z sBeg) weabolg spwex3 ue Jo Bunsy “Z) unbyy

Gt o €t |
Aahle” vt M
e L P R i g) 9 'n&m
C6=(N)d1 (C°CEt(ifx)vIdL g L -tt m
ANMNIINCL i te ~CE :
La(X2)X2(L1)V=(r’1)Y t ¢ -0t]
: %’lad=1 € OC (24 ‘1
v oulos (G vdtl)al et ~=Li ,
1=((7A)Y 9z
Ceo3T=(0/)N 5t .
(£ n2v=1 P 7 5
A/Tdi=r v JJ A X 4 |
/A 1%==(271)N 4 PO 4 3
N‘Tdxd=I ¢ Cd €T
6 ulid (p°hEcl)dl £ =8l ;]
I=(x’4)i L1 ~
(AA)¥=(37n)i 91 ~ .
(A’n)v=l ol .
(Mai==(n)dT (2°3K°h)al Y1 -€1 :
n=(5)di A
. IBNLinGD i 11T -e1
I=r (((2%n)0)SEVL0°((H’I)¥)CEY) S o -t
N%1ga=1 1 0 L
HE 5
Tei=1dA ¢
u GLUS (MDY)da v -t
K4T=4 9 L [4
1=(h)cl 1 -0 : o
5 . i3
L2ty MNTa 3
(€)S1 adurill m
o/
(2-¥)5393INI 1ID1%GrI T,
(W/¥‘31)oRNTEL INTLAGELDS - m .
‘ §

The first three cases of test run No. 1 (see Pages B-2 to B-4 in Appendix B)
show coverage of code for the MAIN program as 100% in the column marked Summary.
Subroutine TRIANG gets a summary coverage of 86.96%. The remaining segments
to be tested are numbers 3, 12, and 16, as seen in the segment reference report
(Page B-3 of Appendix B). The segment reference tables are used to relate the
segment numbers and their corresponding program statement numbers together.

As an example, it is seen that segment 3 contains lines 34, 35, 36, and 37 in

subroutine TRIANG (see Figure 12). These lines correspond to:

IF(A(K,K).EQ.0)3% 1P(N) = 0%

CONTINUE -~ K = k+13® 1F (K.LE.N)37 100p

(DO-1oop termination includes an implied conditional branch)

Following the summary reports and the segment reference tables, the trial
statistics appear on Page B-4, for example. These are the Xi that are needed
to calculate the estimate of the number of remaining tracks. (Actually, more
than three cases are required for the estimation and the three entries on
Page B-4 form only a part of the data used.)

Supplied as part of the testing package is a program that interacts with
the user and calculates the difference of the two sides of the estimation
equation in Paragraph 3.1.4 based on trial solutions supplied by the user.

To explain how the Xi are formed, the formation of X] and X2 will be
considered. Case) of run 1 (see Page B-2) shows the number of times each
segment of MAIN and TRIANG were executed. Since this is the first test case,
the first unique track is automatically formed. Case 2 of run 1 for TRIANG
(Page B-2) shows the same segments being executed (the number of executions
of each segment listed happen to be the same, but this is irrelevant, the
comparison is made on the basis of whether or not the segment was executed,
not on how many times) as in case 1, run 1. However, the MAIN routine shows
a difference in execution. Therefore case 1 and case 2 are different, so we
form X] = 1. This means that one case occurred since the last unique track.
1f we compare case 3 of run 1 against cases 1 and 2 we also find a difference
in the MAIN routine (see segment 3 execution counts). This gives us our
third unique track. Hence, x2 = 1, also, since only 1 case occurred since
the last unique track.

.-

78

I
|
]
|4
|
l’l

Continuing in this fashion, by comparing cases 1 through 9 (in Appendix B),
in order, we find unique tracks for cases 1, 2, 3, 4, and 8. (A summary of
the nine cases is found on Page B-10.) The Boolean tokens associated with the

sequence are shown below:

CASE 1 2 3 4 5 6 7 8 9

NEW/

1]
LD
(=1,=0)
X, =4

X]=] X2=1 X3=1 4
By using the estimation equation, it was determined that there existed 9.1 new

tracks to be found.

Appendix C contains reference tables of the APTS output for a constructed
case. The constructed case shows the use of monitor variables (page C-2).
For constructed cases, the user is required to supply input data to the program,
and to supply the monitor variables. It is seen that the user-supplied input
is in the DATA statement in the MAIN program. Subroutine TRIANG shows the
use of monitors inserted into the program of branch points.

By analyzing the unexercised segments, 3, 12, and 16 of the three test
runs of Appendix B, where they are marked by asterisks in all three of the
segment reference tables (Pages B-3, B-6, B-9), it can be determined from the
listing that the variable T holds the key to exercising these segments.
Further examination suggests that if A[3,3] is equal to zero then segment 3

will be exercised.

Segment 12 requires variable T to be zero. For this to be true, A[1,1]
could be equal to zero or |A[3,2]| could be greater than [A[2,2]| and A[1,2]
must be equal to zero.

Segment 16 also requires variable T to be equal to zero. This condition
will result if A[1,1] is not zero and A[1,2] is equal to zero.

These findings determined the initial values of A for the DATA statement.
By observing the segment reference for subroutine TRIANG, we find that seg-
ments 3, 12, and 16 have been executed and the test coverage is complete.

MCDONNELL M“l&

79

3.3 ADDITIONAL PROBLEMS IN COVERAGE TESTING

3.3.1 Formation of Execution Sequences
It is well to state at the outset that only the outline of this problem
has been established. The following paragraphs describe the background and

outline of the problem.

The use of tracks as proxies for execution sequences is in part necessary
and in part expedient. Tracks are necessary because one usually canrot deter-
mine the actual sequence from a Tist of usages: with several entrances and
several exits from a node and a different usage number of.each, there is
usually no way to determine the actual sequence of the computation that would
produce the usage numbers. On the other hand, information often is available
which would allow the program flow to be determined in a gross or general way,
and that information heretofore has not been employed in our studies. It
would be helpful to program testers to provide a general sequence of the flow
resulting from a given input driver set,

To illustrate this, an example, depicted in Figure 13, shows the set of
executed segments and their counts as solid lines or arcs between all nodes
which were passed during the first data set employed on the ORLA program.

It will be noted that dotted lines are also shown emanating from certain of
the nodes which were passed. These are branches which were not taken on this
run; they would be important in coverage testing but can be ignored for the
present discussion. The flow of the computations can be determined unambigu-
ously only in the cases where a single execution is performed on a segment
and no other segment paraliels the segment. For example, there is such a
segment joining nodes 355 and 263 in the central lower one-third of the chart.
This and others are highlighted in Figure 14, where they may be easier to
locate.

The general flow can be formed from the unambiguous segments which show
a usage of one. In one case, there are (at node 226) two segments, both with
a count of 1, shown exiting a node. But this particular ambiguous case is
easily resolvable (i.e., precedence determined) because the branch along
segment 13, joining nodes 226 and 483, joins to the exit (END), and so cannot

MCDOONNELL DOUOI:“%

CR76

20_ . Jw
L

4
3(99) 113(1)
(el

st1)
@ L -

112(1)

8(1)

@ 30 a7

102(1)

110(0)
(7}

188 . 8800 1101)

S
~ 0\\?\. @ 87(1) @ _1£0L_226
A @

as(ml\ %0(2)
- @ 9101

@ (18)
140(0M

171

96(1) [15(1) o

13(1) @ s

1801)

3
\\5\ ’)
S1~"" 113 4
. @ @‘@ 531118 @' 62(236)
b6, (5402411
)

84(111)
Figure 13. Response to First Data

MCDONNELE nouol.”%.
{

81

a0 __ _Jam
-

/
3(99) 1301
(Tl

@ (1)
@ @ 7(0)

112(1)

G \

8(1)

@ 30 a4

102(1) 110(0) |
/

188 \~\88(0) 11{1)

~— 8701) @ 121(0)
— 226
Pk .\0\\\‘ @ @

sg«o)l\ %012)

911

() 1aot0) |
'
140(0) 1701}

96(1) J1501)

&S

(31)
WS

641111)

Figurs 14. Genersl Flow of Computation

MCOONNELL DOUVOL ‘.%
[

e e ——— . o e L
- B e RO ——,

82

precede the segment joining nodes 226 and 235. This suggests an interesting
problem of which the preceding example is the most trivial: given a set of
nodes and their counts, determine under what conditions the actual flow can
be determined. This “academic" problem will not be pursued in this study.

The application of the simple rule which establishes the one-time and
segments (a "footprint," or better, a "one-print") permits a linking of
certain segments to form contiguous blocks of the program, the General Flow
of the title of Figure 13.

Such linkings are shown in Figure 14, where the defined flow consists of
the following:

Block 1: Segments 1, 113, 4, 6, 112, 8, 102, 11, 87, 101

Block 2: Segments 96, 18, 86

Block 3: Segment 26

Block 4: Segments 30, 32, 33, 45, 36

Block 5: Segments 41, 42, 13, 15, 17 (END)

Even the undefined flow can be combined to form pseudo segments if there
are not dotted lines: thus, the series/parallel segments 20, 21, 84, 22, 23,
24, and 25, which are between nodes 319 and 355, can be treated as a single
pseudo segment with a usage of 150, the entry and exit counts at the two
joined nodes. In addition to these pseduo segments, another type of merging
is possible in certain areas. For example, some of the segments from Block 4
of the above list can be joined with the segment of Block 3 to form a super-
block. Since all possible paths to and from nodes 263 and 273 have been
exercised, these can be eliminated from further consideration, permitting
formation of a pseudo segment with which to join segment 30 to segment 26.
Also, since node 291 has all exits exercised, it too can joint to form a
larger block (26, pseudo segment, 30, and 32). Because node 292 has a dotted
line out of it, there is no further merging possible between the two blocks.

Even though the remainder of the program flow is undefined, there are
many points which are internal to the undefined blocks where reduction is
possible. A trivial example is the pair of parallel paths 91 and 99 between
nodes 191 and 209, which can be merged into a two-use segment; more interesting

MCOONMELL ”UOLL”%

cases can be identified in the lower left portion of Figure 13. Thus, between
nodes 401 and 415 are segments 53, 68, 54, 55, 57, 56, and 58, all of which
can be merged to a 118-use pseudo segment.

Figure 15 shows a considerably pruned version of the flow diagram. As
with the preceding, it is developed from the one-prints and more is required
to establish the sequence. For example, segment 42 appears to follow
(dynamically) 41, but there is no reason to think, a priori, or in a local
context that it actually does. In a giobal context, however, it is known
that segment 42 is the later exit from node 385, because 42 joins to 226 and
from there out to the END.

The primary purpose of investigation of the problem of pruning the flow
diagram was to assist in the development of a display-aided test bed, where
sections of the program could be showed in network form and successively
pruned on a case by case basis.

3.3.2 Partially Automated Test Bed
In keeping with the desire to achieve economical testing, the goal was

to automate the entire process which has been outlined in the preceding
discussion.

The major problems in completely automating the cover-testing process are
in construction of the software required to establish the status of testing,
maintain suspense files on all unexercised program segments, insert augmenting
viarables corresponding to predicates which define the entry into the (unex-
ercised) computational segments, search the inpht variable space to achieve
entry, compare the resulting track with previously abtained tracks, and prune
the original tracks to a set of smaller dimension (manifested in the reduction
of the original n-tuples to tuples of smaller size). This is to be done within
the restricted physical environment of current displays and 1/0 equipment.

The complete Tist of tasks required is briefly summarized once again:

A. Identify unexercised branches (at the end of the initial runs with
random numbers).

- 4

i
4

CR76 :
i
2(0) mh
29
T

3(99) ‘@ 4(1)

@ 6(1)

() - | i

112(1)
8(1) ;
..__..?.“?_. @ '
2] %y00 \ :

a0)
N\ 8701) 11(1)
12(0)
139‘2’ 10101 J158) (153)- ~ 2% 226 (i)

30—~ |
1 177(1)
|
@ 15(1) @ {
96(1) 43\
g k
16(0} ’

{118) Pseudo
D { “° 52(236) i
11
59(5) Lrowg, \ss2) ’

84{111)

Figure 16, Partislly Pruned Flow Disgram

85
MCDONNELL Wuol“%
€
e ——— e e -y
- ——— — e i e e e
O PR adReu.. " - e en

B. Pick an unexercised branch and display the listing associated with
the branch {a "back" sort is required which identifies the instruction number
of the involved predicate).

C. Formation of an auxiliary variable based on the nature of the
predicate. (For example, if the test, A<B, is the predicate, the auxiliary
variable could be C] = B-A).

D. Create a variable (with requisite modifications to the object
program). Recompile the program.

E. Vary input variables until the auxiiiary variable is positive.
Rationale for the variation depends on the program variables identified in
the listing.

F. List all exercised segments and compare with preceding usage. }

G. "Release" the variable and proceed to a new unexercised branch.

H. In an extension of the above procedure, several auxiliary variables
can be inserted at one time and input data chosen in some systematic way
(a search) to achieve arbitrary valuations on all auxiliary variables.

The results of a run or series of runs can be displayed in the form of
a list of unexercised segments. It is clear that the information of the type
shown in the bottom row of Table 1, can provide a quick look at the status
of segment coverage after an initial set of runs has been made. The segment
numbers marked by asterisk as, for example, on Page B-3 of Appendix B, can be
displayed.

The back sort to identify the instruction number at the beginning of
any chosen segment can be easily automated.

The process of inserting auxiliary variables at the predicates associated
with unexercised segments at present must be done manually. The problem of
inserting the variables requires a recompilation and this must be monitored.
Development of the form or expression with which to represent the auxiliary
variable may require scanning the listing over an extensive set of instructions.

MCDONNELL “Uﬂt(”%_

e -

Section 4
ERRGR-DETECTION MODELS

4,1 SUMMARY

Two variations of the Jelinski-Moranda model were developed for estima-
tion during program development. The first permits estimation of the error
content of the completed software package using data which is taken on only
portions of the package. That model is applicable when the eventual size of
the program is known at the outset.

The second model permits a similar analysis during the development of any
software package which is homogeneous with respect to its complexity (error
making and finding).

These models should assist analysts in an early determination of error
content. They should also eliminate the present practice of applying models
to the wrong regime (decreasing failure rate models applied to growing-in-
size software).

4,2 INTRODUCTION

In normal usage of the Jelinski-Moranda model, the software package
under test is assumed to be of fixed size with a fixed number of incipient
errors. The size of the package does not appear explicitly in the model as a
parameter, and its effect is only indirectly realized by the way it affects
the number of incipient errors which exist at the start of testing (there is
a direct relation between instruction count and error count).

The model could not be employed legitimately on software packages which
were incomplete. Several workers attempted to fit the model to an initial
period of time when its error rate was, indeed, increasing, due to the grow-
ing size, and they met with no success. (As a matter of fact, the only models
which produced reasonable estimates when applied during this regime, were
the increasing failure rate models.)

87

McooNNELL DOUGL &

= ik ki

— ——— oy

L

——

It would be helpful if, at the outset, an estimate could be obtained of
the total error count which will be realized in test and usage of a package.

Recent work by IBM (Reference 25) has prompted a reexamination of the
original Jelinski-Moranda model for the purpose of incorporating the (changing)
program size. This turns out to be very easily effected if good record keep-
ing can be maintained during program development so that the size of the
package is recorded as a function of some convenient timing metric (CPU or
calendar). Following is a description of the analysis.

The original model is depicted in Figure 16, where the two parameters
are shown in Figure 18(b), and a typical realization of the error-finding
process is shown in Figure 16(a). N is the initial error content (of a com-
pleted program) and ¢ is the contribution to the error rate due to a single
error.

While the meaning of ¢ is maintained in the two models, the meaning of
"jnitial error content" needs to be clarified. This is done below in the
description of Model 1, where, in effect, N maintains its meaning as the
number of errors in a completed package. In the second model, a fixed error
rate per instruction is assumed, and growth of the package is measured by the
count of instructions (under test) versus time.

4,2.1 Model 1

Let S(t) denote the fraction of the total number of statements which a
complete program will have. The metric t is measured in terms either of the
accumulated CPU time, or of the amount of calendar time, which has been used
for testing the package.

The simplest way of introducing the effect is to use S(t) as a "modulation"
of the error detection rate Z(t) of the original model. In the notation
formerly employed, this combined or modulated rate, denoted W(t), is:

W(t) S(t) z(t)

u

S(t) [(N-i+1)¢] for T3 ; < t < T; (2)

AD-A093 788

UNCLASSIFIED

MCDONNELL DOUGLAS ASTRONAUTICS CO HUNTINGTON BEACH CA
METRICS OF SOFTWARE QUALITY.(t)
NOV 80 Z JELINSKI» P MORANDA» J CHURCHWELL F89620=77-C=0

MDC~G9326

FOSReTReAN=1XT7A

F/6 9/2

099
(¥

MCDONNELL ”Uﬂl(”%

A
STEPSIZE = ¢
No
N = INITIAL CONTENT
‘4‘»
TIME
{b) FAILURE RATE VERSUS TIME
@
o
@
o4
w
.
o
w
: + 4 t 4
w
=]
(5}
Zz
4’
TIME
a) TYPICAL REALIZATION
‘ Figure 16, Purification Process and its Realization

R

and TS, T!

2 Té,..., denote the times of detection for the errors. (Primes

are employed on T's to distinguish them from the times of the original process.)

The effect of S(t) on the T; should be made clear at the outset. When S(t),
the fraction of the total count, increases, the composite error rate will
generally increase, as will the liability for error for the "modulated"
process. For this reason, the times T; for the composite process, W(t), will
be different from the Ti of the Z(t) process. Since N in the original model
represented the total error content of a complete software package, a proper
correspondence which preserves the meaning is that N is the error content at

a time corresponding to the completion of the software package, S(t) = 1.00.
This necessarily presumes that the size of the package which will be developed
is known at the outset. (So(t) would represent the fraction of the total
which is accomplished at time t.) This may or may not be a serious barrier.
Some modules can be sized at the outset, but large complex programs may not be.
An alternative to this is offered subsequently in Model 2.

For the present model, So(t) is a nondecreasing function which starts at
zero at Té and achieves its maximum value at some unknown-at-the-outset time,
T'.

c

Thus, 0 < S (t) < 1, with S (Tg) = 0 and S_(T) = 1.

While So(t) is, in the large sense, random, the records of progress will
permit specific values of So(t) to be determined and the randomness is of no
concern, In particular, it is necessary that So(t) can be determined at the
epoch times Ti, Té,..., Ta at which the errors are detected.

When the completion time, Té, is reached and for times thereafter, the
software package is complete (So(Té) = 1) and, formally, the density given in
Equation (1) is the same as that given in the original paper (Reference 3).

It has been mentioned earlier that the time pattern of errors will be
different for the "modulated" process, and it is interesting to see just what
would happen if So(Tb)’ or for short, SO(O), were 0.10 (10% of the package is
initially available for test), and it did not increase beyond that for a long

MCDODONNELL DOVOL @.

-

period of testing. The time pattern of errors Ti, Té,..., Ta which would

' occur, would have associated separations Xi = T]' - T('), X]' = Té - Ti, coes

-] 1
*n = Tn = Tnae

& Because SO(O) = 0.10, the composite detection rate for the first error
would be (0.10) N¢, that is, 10% of the original error-detection rate. This
means that the first detection time Ti, would (on the average) be 10 times
as long as the time for the corresponding error of the ummodulated process.
The second error would have the same property (on the average), and so forth.
The implications of this fact can be seen from the following. The 1ikelihood
function would be

n
L(x.’ Xé’ evey X;‘) = .n] SO(O)¢[N-(1"‘]) exp {—[So(o)¢(N"i+])X’]}-
]:
The likelihood equations obtained by differentiating the logarithm of the

likelihood with respect to N and ¢ are:

~

n n
L wr L -5,(0) ¢ LN -o (3a) |
and ;
n
3 - Sol0) 1_}:;] N-(i-1D1 X} = 0) (3b) i

As noted above, the observables X% would be (about or on averige) 10
times as large as before. Thus, from Equation (3b), the solution ¢ will be
(on average) the same as its value for the unmodulated process, or for the
completed software package.

Using the solved-for value of ¢ in Equation (3a) and the fact that
So(o)xi in the new process is the same as X; in the original process, it is
seen that the solution N is also the same as before.

91

- 4
mMcoonNELL mw;& .

{ - O ————_. - -

The analysis then shows that if it is known that a package under test
represents (in all respects) a certain percentage of the total, then the total
eventual error content can be estimated by using these slightly modified
likelihood equations.

The result is encouraging for the outlook for success in the following
simple generalization of the above example. In this generalization, the
So(t) modulating function is constrained to be constant during each test
interval. Using essentially the same notation as before, the likelihood
equations for the generalized modulated process are

n
.Z] N'-':’+'| -9 XS % =0 (4a)
'l:
and
n . -
i E} S;_y(N-i+1)x3 = 0 (4b)
th

where Si-] is the percentage completion achieved prior to the start of the i
interval,

Solutions for the parameters can be carried out as indicated above in
the example.

The mean-time~to-next error MTTF (n+1 st in the present context) can be
estimated by evaluating the rate at time Ta and taking the reciprocal of it.
In the present case (using a subscript on the left side to correspond to the
model number):

1

MT'II:F] z ———,

S(T!) (N=n)o

where N and ¢ are solutions to the Maximum Likelihood Equations (MLE's).

MCOONNELL DOUGE :u%

- PR . - ——

4,2.2 Model 2

Let E_ denote a characteristic rate of error-making for the programmer
(or programmer team) and the program type. This rate will be estimated by
application of the model described subsequently, but there are some useful
facts concerning this parameter.

In 1975, it was observed (Reference 23) that there appears to be a
", .. 'universal' coding - error rate ...," which has a value of about 2 errors
per 100 instructions (of the language in which the program has been written).
This observations was based primarily on the data (now famous) provided by
F. Akiyama, but also on earlier observations made by B. J. Hatter, et. al.
Subsequently, the validity of this "thermodynamically stable" parameter has
been reinforced by several other studies,

The interesting feature of some of this later data (Reference 24) is that
the error rate of two per hundred was observed on programs which had completed
their development and integration phases; they were under test before the
relevant error counting was initiated. This is surprising since the coding
error rate is thought of as being similar to a typist's miskeying, and should
be purifiable by edit routines and by code checking due to early misstarts of
the program.

These features of an hypothesized entity are fortunately not used in the
following analysis.

The error rate at any point in the development of a program whose cur-
rent instruction count is G(t) is assumed to be proportional to the current
error content

v(t) = ¢[G(t)-Ep - n(t)] (5)

where n(t) is the accumulated number of error corrections, and Ep is the

per instruction error rate.

As before, if G(t) can only change at error-discovery epochs, T], T2,
cens Tn, and, if n(t) also has this feature, then the rate has the form

MCDONNERL ”UOL\%

93

—_ B |
v(t) = o¢l6;_, Ep - (-] for T, ; <t < T, (6)
where Gi-] = G(Ti_]), and n(t) is i-1 for the interval starting at Ti-l‘
Since G(t) is a function or process which takes place without any apparent
dependence on the error-finding process (except that the error epochs are
assumed to be the points of entry of new code) it is reasonsble to assume that
the random time separations between errors (X], Kos eees Xn) are statistically
independent,
Under these conditions, the constant rate implies an exponential dis-
tribution for the Xi’ and the likelihood function for n errors is: |
4
L(X-I, XZ’ es e xn) =
L ol6iy By - ()] exp (-0K;[6; B, = (-] (7)]
The MLE's obtained by differentiating the logarithm of the likelihood "
function with respect to ¢ and Ep are:
——— - ¢ G; ¢ X; =0 (8a)
= Gi-l Ep (i-1) il 1%
n . -
i 3 [Gi-i Ep - (i-1)] Xi 0 (8b)
The MLE's are solved as before: Equation (8b) can be algebraically 51
solved for ¢; this is substituted in Equation (8a), and the resulting key
equation is solved for Ep by trial and error.
It is recalled that the desired performance parameter is E_, which can
then be used with either the current (known) or projected (estimated) instruc-

tion count to determine the total error content.

sMcoonnELe nouac(u%

Estimates of the MTTF at any time can be obtained by the formula

MTTF, = N R (9)
¢[Gn Ep -n]

4.3 CONCLUSIONS
The two models presented in the analysis are both very tractible
analytically.

Model 1 would be of use for those programs whose eventual size is known
at the outset. It requires that a record of the times of error occurrences
be maintained as well as a record of the percentage of completion at each of
the error-detection times. It provides, at any stage of testing, an estimate
of the error content of the untested complete package.

Model 2 applies to any developing software package which is homogeneous
with respect to the complexity of programming and with respect to the talents
of the programmers. The important property is that Ep, the error-making
rate (or error-finding rate), must be a constant across the entire software
package. In case of inhomogeneity separate analyses are advised.

4.4 GLOSSARY
Terms and symbols used in the preceding sections are identified as
follows:
SO(O) A "modulation function" which ranges from
0 :_So(t) < 1.0 and is nondecreasing. It represents
the fraction of the code complieted up to time t. It
s a given for the problem.

Z(t) The Jelinski-Moranda detection or purification
process.

w(t) The product of S(t) and Z{(t). It represents the
error-making or error-detecting rate versus time
for Model 1.

N The number of errors in the completely coded

software package. This is estimated from data.

MCDONNELL DOVOL L‘%

n(t)
v(t)

L(X], XZ""’ X)

MCDONNELL mtc%

The contribution of one ervor to the detection

(failure) rate. This is estimated from data.

The time at which the 1'—Izh error is found, measured
in any convenient timing metric. An observable.
The separation between the iEn and the 1‘—1§£

error. An observable.

The cumulative number of errors found in testing

up to time Tﬁ'

Is the percentage of completion during the (i+1) st
interval. This is provided as exogenous data.

The estimated meantime to error obtained by using
Model i (i = 1,2).

The nondecreasing function representing the total
instruction count of the package at time t. This
is a given for the problem.

The error making rate for a given program-programmer
mix. It is estimated from data.

The number of errors found during test up to time t.
An observable.

A stochastic process representing error-making

or error-detecting rate versus time.

The generic representation for the likelihood
function.

P

10.

11.

12,

13,

REFERENCES

P. Moranda, "Quantitative Methods for Software Reliability Measurements”,
Final Report on AFOSR Contract F44620-74-C-0008, MDC Report G6553,
December 1976.

L. G. Stucki, "Program Evaluation and Tester: PET", MDC Report
M2085074, 1974.

W. Miller and D. L. Spooner, "Automatic Generation of Floating-Point
Test Data", IEEE Transactions on Software Engineering, September 1876,
Vol SE-2, No. 3.

D. J. Reifer, "A Glossary of Software Tools and Techniques”, Computer,
July 1977.

C. V. Ramamoorthy and S. F. Ho, "Testing Large Software with Automated
Software Evaluation Systems”, IEEE Transactions on Software Engineering
March 1975; Vol. SE-1, No. 1.

J. Goodenough and S. L. Gerhart, “Toward a Theory of Test Data Selection”,
Proceedings of International Conference on Reliable Software, Los Angeles,
California, 21-25 April 1975.

W. E. Howden, "Methodology for the Automatic Generation of Program
Test Data", TR No. 41, McDonnell Douglas, February 1974.

B. Elspas, M. W. Green, K. N. Levitt, and R. J. Waldinger, "Research in
Interactive Program Proving Techniques," SRI Report 8398-11, Standard
Research Institute, 1972, Menlo Park, California.

J. King, "Symbolic Execution and Program Testing," Communications of the
ACM, July 1976.

L. Clarke, "A System to Generate Test Data and Symbolically Execute
Programs," IEEE Transactions on Software Engineering, September 1976;
SE-2, No. 3.

L. G. Stucki, "Program Evaluation and Tester: PET," MaDonnell Douglas
M2085074, 1974.

E. I. Cohen and L. J. White, "A Finite Domain-Testing Strategy for
Computer Program Testing," (CSU-CISRC-TR-77-13), The Ohio State University,
Columbus, Ohio, August 1977.

A. Fitzsimmons and 7. Love, "A Review and Evaluation of Software Sc{ence“,
ACM Computing Surveys, Vol. 1, No. 1, March 1978,

97

MCDOONNELL DOUOIZA‘%_

i
’
{

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

P.B. Moranda, "Comments on A Review and Evaluation of Software Science",
Surveyor's Forum, Computer Surveys, Vol 1, No. 3, September 1978,

J. L. Elshoff, "An Investigation into the Effects of the Counting Method
Used on Software Science Measurements," IEEETSE, Vol. SE-2, No. 4,
December 1976.

T. J. McCabe, "A Complexity Measure." IEEE Transactions on Software
Engineering, December 1976; Vol. SE-2, No. 4.

T. Gilb, Software Metrics, Winthrop Publishers, Inc., Cambridge, Mass.
1977.

B. Littlewood and J. L. Verrall, "A Bayesian Reliability Growth Model
for Computer Software", Record, 1973 ILEE Symposium on Computer Software
Reliability, New York, NY, 1973,

G. J. Schick and R, W. Wolverton, "An Analysis of Competing Software
Reliability Models," IEEETSE, March 1978; Vol. SE-4, No. 2.

K. Okumoto and A. Goel. "A Model for Reliabijlity and Other Quantitative
Measures of Software System Subject to Imperfect Debugging," Vol {(of 5),
RADC-TR-78-155, July 1979.

E. C. Miller. Tutorial on Program Testing Techniques. COMSAC77,
Chicago, I1linois, 8-11 November 1977,

Z. Jelinski and P. B. Moranda. "Software Reliability Research" in
Statistical Computer Performance Evaluation, Walter Freiberger, td.,

P. B. Moranda, "Estimation of A Priori Software Reliability," Computer
Science and Statistics Interface Symposium, February 1975, Los Angeles,
California.

T. A. Thayer, M. Lipow, and E. C. Nelson, "Software Reliability Study",
Final Tech Report AD030798, TRW, Feb., 1976,

R. W. Motley and W. E. Brooks, "Statistical Prediction of Programming
Errors", RADC-TR-77-175, Final Technical Report AD41106, Rome Air
Development Center, AFSC, Griffiss Air Force Base, New York, May 1977.

MCcooNNELL oouac.(&

PR

i

—

MCDONNELL DOUGLAS
(

Appendix A
AUGMENTED ORLA PROGRAH

A

ORLA MDAC SFGMENT XLATOR 10/31/71930 11:36 FM PAGE 1

PROGRAM ORLA

c
c -= OPTIMUM RFPAIR LEVEL ANALYSIS (ORLR)
C -= 0.R. JOHNSON ACDCY-WARNER RUNINS ALS-5503
c
c == THE CONSTANTS ARE ASSIGNED ACCORUINGLY-
C 1-RRT 2-CON 3-DLA 4-DLaR
c 5-DPt, 6-0S53 7-FLA R=FLWR .
c 9-TAC 10-1IPC 11-N 12=-0STICNN i
C 13-0SsT108 14~0STNCNN 15-NSTNOS 16=-PILP i
C 17-PSLRCON 134-P5L 205 19-pSMRCON 20-PSMRO3 ;
r 21-PWRCON 22~PURAS 23=-2AC 24-pC
c 25-SA 26-~SRICCN 27-SRINS 28-SRNCUN
c 29-S9N0S 30-TD 31-uU% 32-Ur
c 33-yD 34-VF 35-Y7Y 36-47 ,
c ~= THE VARIAALES ARE ASSICNED ACCORUINGLY~ , :
C 37-DF 33-DMR 39-~FAT 40-FF
c 41-H 42~J 43-11 44-L0
C A45-pp 46-0RA 4T~-2uE 48~SC
C 49-SH 50~-0UC S51~-0¥% 52=%
c 53-X S4-¥D 55-20
c ~= THE CCOMPUTEN VARIABLES ARE ASSIGNSL ACCORCINGLY~
C S6-MT8C S7-UA 58-DaM 59~FA
c 60-FAM
r ~=- THE ACE COST YARIABLES ARE ASSIGMNEL ACCORTDIYGLY~
c 61-DCS 62-DUA 63-1CS 54~10U1 ‘
r
c -= STORAGE TABLES
c
INTEGER EVAR(18) SKF(11) LKkD(12) ,
- K™() LKSEN(6),JISEN(3) NUMY(3),
- NUMI(3),IPAS(100)
c
RPFAL vaL(64) eFUCLY) L,0V(12Y ,
- QCTHRV(100) fTYV(3Y) ,
- HRS(100) e TTTH(100) ’
- ATA(100) +DAACL00)
c
REAL AMSWER ,BLANK ,DASH N0 ’
- QUT(3) ,X 2YES
- c
DUURLE PRECYSINN AGH(2,2) sAIR ,C ’
- U“TE(:) 'DT ,DV ’
- :‘A“(2,100'2) ,N"A(3) ’N!]"l(ﬂ) v
- RFA SPNCYY L,PLS5(2,d) ’
- SVAR(12)Y sTC VAR (SY),
- »11C(2)
c
c == LITERML. FO?YATS UF DATA NBMES
C
C LLOGICAL Lta(lo)y LD +LACT) #
c
]
4

A-2

/
MCDONNELL DOUGLAS
(.

- — . —

ORLA

[o Tl = W) - WNMO OO

17
19
21

-

MCDONNELL DOUOLL@‘

VDAC SEGMENT XLATOR 10/31/1980 11:36 FM™ TAGE

DATA BTANK ,DASH 2ND e X +¥YFS
J14 10/ e 2UND e 1HX ¢ IVYES
DATA AIR +REA
JTHAIKLIFT ¢+ THNON=-AIR /
DATA VAR
J°8RT* ,°CON° ,°DLA", "ULWwR*® ,°CPL"
DSS® ,°FLA® ,° FLwWR“,"IAC s 12C”
“N* 2 "0OSTICON” ¢ TOSTINS*
“OSTNQOCN® 2 7OSTLOS® s"PIUP®
“PSLRCONT s “PSLEUS” ’
“PSHRCONT s “PSHROS” ’
“PW?CON” 2 PWP0S " s°PA"
“opl® L,°SA° 2“SPICUN® s°SNICS”,
“SRNCON® 2 TSRNCS ,°TL° TVEe ’
‘yUR* 2°VO" PR 'S 2 P 2 & e 71" P
“NE° s °DMRT L 7PANR" ,°FF° PR L P
M R 2 LA’ s TLP" s " PP 72010 ,
“RMY*® ,°SC* PRi1. 270C” PRt T ’
o Pt & s°VL”" 20" £ TATRC” ,
“DA” s DAV L FAC s “FAV® ,°DC5° ,
DUA® ,L,°ICS"™ ,°Tur
-= RECORD FORMATS
FIRMAT(8F9.2,8X)
FORMAT(1491,10X,°CONSTANTS YUSED IN THIS RUN®,SX, "RATE®, 2K,
AB,2X,A8//)
FORMAT(2Y,A7,F12.4,4%X,47,F12.4,4X,47,F12.4)
FORMAT(I3,5X,7A9)
FORMAT(FR.0,4F5.2,2X,11)
FIRVAT(8FY.2)

PORMAT(4F9.2,4X,312)

FORMAT (20X, “ECNNDOMYC/SENSITIVITY ANALYSIS®,6X, NUMRER",T13//)

FORMAT(2Y,14,4X,288,A1,17,3A8,A2,248,42)

FURMAT(/11Y,°K FACTIRS: X1°,F5.2,7 X2°,F>5.2," ¥37,7f5.2,
* K47,F5.2)
FORMAT(/6X, "DESIGN MTEF®,F3.0,2%,°vr2p°,F10.1,° UC”,

F3.0,3%,AT)
FORMAT(I1,9%X,4410,F12.2,F5.2,13)
FORMAT(I3,7X,3A10,F3.1)
FORMAT(1%1,7X, "INTERMEDIATE MULTIPLE SUPPJIRT asE SUMMADPY®,
BKI’DATE.,-’X’AR'2X'ARlI)
FIOMAT(” AGE NIMSENCLATUR®®,11X,°wWUC”,4X,7AGE CO5T*,3Y,
*HRS AVATIL?,2X,"R8GF SETS NREDEDT/)
FORMAT(LIH ,3A8,82,1X,A5,F2.2,2X,F3.2,€6X,13)
FIRMAT(/1X,“ITEM A0, DEXANDS/ wTTT RFQUIRED”,
° 3TOTAL SHARS OF AGE COST “/13¥%, “¥OuTYH",11X,
“HOURS®,5X, “HOURS,5X,“CNST?,5X,“ALLCCATIUNT /)
FORMAT(2X,14,4X,F7.1,4Y,F5.1,F9.1,F9.2,2(2%x,%10.2))
FOOMAT(/9X, “TOTALS,10%X,F10.1,F9.2,2F12.7)
FIRMAT(1M1,11X,°DEPIT MULTYPLT SUPPDARAT ASY
“DATE®,2X,A8,A2/)
FURMAT(/26Y, "ECONNMIC ANALYSV3°/)

SCMMARY ?,HY,

A3

7/

6010

6011

| 6020
; 60390
9350
7991
9353
6040
6050

60S5
9992

MDAC SF¥GMEANT XLATOR 10/31/1930 11:3€ ¥4 PACE 3

FOPMAT(/26Y, "DFPOT“,6X, “INTERMEDIATE,6X, “DISCARD*/)

FORMAT(/ /26X, INPUT DATA VALUES®//)

FOPMAT(LY,“BASE STNCKX LEVEL®,6X,19,6%X,19,6X,19)

FORMAT(AY, A7 ,812.4,2%X,AT7,F12.4,2%,17,¥12.4)

FORMAT(® AGE“,19%X,19,6X,719)

FORMAT(”® AGE MAINT.®,12X,19,€X,19)

FORMAT(” ITEM NR“,7X,°PART NUMBER",7X, NOMFENCLATUKE®,14X,
*NEXT HIGHFR ASSK4“/)

FORMAT(® TECH DATA",13X,19,6%X,19)

FORMAT(” TRAINING®,14X,19,6X%X,19)

FOQMAT(” PACKING /J SUIPPING”,4%X,19,6X,17,6Y,19)

FORMAT(” SAFETY STOCX-",10X,I9)

FORMAT(® LABOR",17X,19,6X,19)

FORMAT(” SPECIAL FACILITIES®,4X,19,6%,19)

FAORMAT(” RFPAIR MATERIAL°,T7X,I9,6X,19)

FORMAT(4X, AT ,F12.4,2X,47,F12.4/)

FORMAT(/)

FORMAT(” ITEM ENTRY“,17X,19,6X,19)

FORMAT(" SUPPLY ADMIM,.”,24X,19)

FORMAT(® PIPELINE SPARES*,7X,I9)

FORMAT(” RFPLACEMENT SPARES®,34X,19)

FORMAT(/5X,"TOTAL",12X,110,5%,Y19,5X,110)

FORMAT(2X,“LIMITS- FROY 20% T0O 500% OF ORIGINAL FACTOR®,
* VALUF, WITHIN 13°/10X, PRINTED AT RFVYSISAL/)

FORMAT(I14,34A8,A3,F8.0,F3.,0,311)

FORMAT(2X,I3,4X,3A8,41,F8,0,F9.0,2(5X,A1),6Y,:1)

FORMAT(1H1,25X,°SENSITIVITY ANALYSIS®//)

FORMAT(/TX,“FACTOR",6X,” % ORIC “,6X,"VALUE*,€X,"DEPCT?,
66X, INTER®,4X,"LISCARD”)

FORMAT(/TX,AT7,14%X,F5.2,1%,3112,4X)

FORMAT(/18X,F6.0,4X,F9.2,1%X,3112,4%/)

FORMAT(IR,24A8,A42,3A8,A3,248,12)

FURMAT(/21X, "REPALR LEVEL SUMMA2Y“®,15X, "DATE",2X,A3,2X,A372/)

FORMAT(3X,“ITE"" 30X, UKTT",14X,“REPAIR LEVEL®’,S5X)

FORMAT(2X,"NUMAER",3X, "NOUMENCLATURE®, 13X, "PRICE",5X,
“MTBD®,3¥%X, “DEPOT INTER DISCARD?/)

FORUAT(//)

FORMAT(TX, “NDMENCLATURE,5X, “NVA®, 10X, "DATE", 95X, A8)

FORMAT(/” 00 YOU wISH AN EXPLANATION OF TYIS PDPIGRAV?,
T (YES/ND)Z,S)

FURMAT(A4)

FORMAT(1X,34)

FORMAT(//20X, “0ORLA casT “ODRL L))

FORMAT(" ENTHER CONSTANT VALUFS (36 YALUES) IN DEDEP AS LISTENT)

FORMAT(7X,10(A7,5X))

FUIMAT(1X,10F12.4)

FIRMAT(/TX,9(13,9X))

FORMAT(/)

FORMAT(/® ANY ACOITIONAL CONSTANTS/VARTABLRS FDPR SENSITIVITY
TANALYSIS?®)

FURMAT(/® HOW MANY? (LIMIT 10)°)

FORMAT(LIX,I2)

A-4

s
MCDOVARLL DOUGLAS
(

=

HWwNO

OO BN

anoa

MDAC SFGMENT XLATOR 10/31/198C 11:36 F“ PAGE 4

FORMAT(/* NAME ~,13,° ACDITIOWMAL CONSTANTS/VARIALFS®,
* (USE",I13,° LINES)")
FORMAT(AB)
FORMAT(1X,10A8)
FORMAT(” INCORRECT NAME®)
FORMAT(2X,A8,° DROPPED FROV ANALYSIS.®)
FORMAT(/" FNTER THE NUMBFR OF ITEMS TC RF RUN IN THIS ANALYSIS®)
FORMAT(L8X,"ENTER ITE¥ DATA®)
FOOMAT(/1X, ENTER PART NUMBER, NOMENTLATURE, NEXT u[nysr -,
“ASSFMSLY® /10X, F0R TITFEM NUMBER *,T13,4%X,7(US® 3 LINIS)")
FURPMAT(3A8/4A8/318)
FORMAT(1X,3A8/1X,4A8/1Y,3R3)
FORMAT(® ENTFR MFAN TIME BETWEEN FATLUREI, ¥ FACT
FORMAT("® AND SHIPPING CODE (0 = AIRLIFT, 1 =
FUOMAT(1Y,F3.0,4%6.2,14)
FOQMAT(® ENTER VARFTABLES (23 VYALUES) FIR THIS ITFM [N Tu:Z °,
“PROPER ORDER")
FORMAT(/7X,10(12,10X))
FORMAT(/® ANY CORRRCTIINS? (YES/ND)®)
FORMAT(7X,10(A7,5X))
FORMAT(” DO YOU WISH TO RPUN AN AGE SUMAARY CCMPUTATICHN??,
* (YES/NO)®)
FORMAT(/* D3 YOU WANT AN EXPLAMATION COF AGE SUMMARY? (Y:i5/N2)°)
FURMAT(/® ENTER THE NUMBFR QOF AGE SUMMARIES TC 8% TUN?)
FORAAT(/ FNTER TYPE OF AGF,COST, AVAILABILITY/HOURS, ANC*/
® THE NUMRER OF [TRMS YQU HAVE FUP THE AGE SUvvaARY”)

MRS (4 VALUES)?)
NUGM=ATRLIFT) °)

FIRMAT(® ENTER AGE NOMENCLATURE (MAXIMUM OF 26 CHAR)"/ '
* AND #UC UNIT CODF (HMSF 2 LINES)”)

FIOMAT(323,A2/2A8)

FORMAT(1X,248,122/1¥,248)

FUIMAT(1X,71,3F10.2)

FORAAT(/” FNTER THE TTEM NUMRER ANC vEAN TIWF TO TFST?)
FORMAT(1YX,14,F10.2)

CIRMAT(F9.C,4F€.2,71,7F10.2)

FORVAT(5F10.2)

FORMAT(11F10.2)

~-= OPEN LOGICAL DEVICES

IPENCUNLIT=R,0EVICE="08X:")
OPFN(UNIT=4,0EYTICE="D5%:",DIALOG="0RLA.INP",ACCESS="3FQIN")
DPSN(UNIT=10,0EVICF="0SK2“,ACCFSS="SEQINDUT*,CTISPUSE="VLLFTE®)
JPEN(UNIT=12,0RVIC ="DSK: ", ACCESS="SCQUNIUT ", LISPASE="DFLE TV)

-= ADD CUDE TO ALLOWN RRCOVFRY OF STATISTICS UPON ARNOkMAL EXIT

ASSION 510 TO IREEN
CALL REEN(IQIEEM)
TUITPT=0
WRITE(TIOUTPT,6019)

TNoyT=4
149RK1=10

.
MCDONNELL DOUGLAS
¢ !

-

————- -
oRLA MDAC SEGMSNT XIATOP 1073171390 11:36 F¥ PARFE
11 [RORK2=12
c
¢ -- REPLACE WITH NANDOM YES/NO
c
¢ READCINPUT,6011)ANSAER
12 CALL ASK(ANSWER)
¢ - WRITECIQUTPT,HO012)ANSHER
13- 14 IF(ANSWER.FQ.YSS)CALL XKPLATH(IQUTPT,VAR)
C
¢ -= INITIAL VARIARLFES,TABLE
c
15 ICOUNT=0
16 Dg 51 N=1,100
17 ATA(N)=0.0
18 DAR(MN)=0.0
19- 20 51 CINTINUE
21 Do »1t I=1,18
22 YYARCT)=0
23- 24 511 CINTINUE
25 NVAR(1)=31
26 MYAR(2)=32
27 NVAR(3)=47
25 NYAR(4)=50
29 NVAR(5)=56
30 NVAR(6)=62
31 HYARCT)=64
c
C -2
C
32 WRITF(IOUTPT,6020)
~
c ~~ READ CONSTANT VALUES
C
33 CALL DATFV(DATF(1),DATE(?))
34 WRITF(IQUTPT,6030)
35 WRITE(TOUTPT,9353)(1,1=1,9)
36 WRATTECIQUTPT,9350) (VAR(I),1=1,9)
c
¢
» INPUT=4
c
[-~ QEPIACE WLTH RANDNYM REAL,
™
f READCINPUT,*)(YALCD),I=1,9)
18 CALL RFAL4(VAL(1),9,~2,2)
39 WRAITECTOUTP?, 9991 (VAL(T),1=1,9)
40 WRITECTOUTIT,93%3)(L,1=10,13)
41 WHITE(TOUTPT,9350)(VAK(I),1=10,18)
c
¢ -~ QEPLACE AITY WUNDOM REAL
c READCINPUT,*Y(VAL(T),1=210,138)

A6

;
i MCDONNELL ”UOLL@-
b

, URLA MDAC SFEGMENT XLATO® 10/731/198C 11236 F4 FAGF 6

C 42 CALL REAL4(VAL(10),9,-2,?)
R X ARITE(IOUTPT,9991)(VAL(I),[=10,18)
44 WRITE(JOUTPT,9353)(1,1=19,27)
45 WRITECIOUTPT,9350)(VAR(L1),1=19,27)
c
c ~- REPLACE WITH RANDOM REAL
(o
c READCINPUT,*)(VAL(T),1=19,27)
46 CALL REAL4(VAL(19),9,-2,2)
47 WRITECIOUTPT,9991)(VAL(I),1=19,2T)
48 NRITE(TOUTPT,9353)(1,1=29,16)
49 WRITE(IOUTPT,9150)(VAR(I),1=28,36)
c
c ~~ REPLACE AITH PANDOM RFAL
c
c READCIKPUT,*)(VAL(U),I=28,136) ‘
50 CALL PFATL4(VAL(29),9,-2,2)
51 WRATTE(TYOUTPT,9991) (VAL(T),T=28,36)
52 AITECICUTPT,2955)
53 INPUT=4
c
c ~- RFPLACE #ITH RANDOM VYFS/NO ;
C ;
n PEADCINPUT,6011)ANSAER '
54 CALL ASK(AYNSWER) ,
55- 56 [F(ANSWEP.EU.YES)CALL CORECT(INPUT,IOUTPT, VAL, ANS«FR,VAr) '
57 WRITE(IOUTPT,6050) ..
58 [NPUT=4
c 1
c ~- REPLACE WITH RANLNM YRS/NN \
c 1
C READCINPUT,5011)ANSWFR
59 CALL ASK(ANSWYER) *
C WRTITE(TOUTPT,6012)ANSaCK
60- 61 [F(ANSHED,.FQ.NO)GUTY 50
62 1600 WRITE(TUUTPT, 6055)
C
‘ C -~ REPLACE WITH RANDIM INTEGFER
c
c READCINPUT,*)[T 1
63 CALL INTA(IT,1,1,10) i
4 c WRITE(IQUTPT,9992)I7T :
64- 65 TF(IT.GT.10)GUT0 1600
66 WRITE(IOQUTPT,1620)IT,IT
c
; c -- RFPLACE NTTH RANUOM INDEX OF vaPp
c
c READCIRPUT,1621)(SVAR(J),J=1,IT)
1 67 CALL CHRVADP(VAR,SVADR,IT)
1 c UATTE(TOUTPT,1622)(SVAQ()),J=1,1T) :
) 69 11=0 N
69 00 1630 I=1,1T R
L 70 DU 1635 J=1,64
, A7 .
MCOONNELL DOUO I.L”% ‘ I

ORLA MDAC SEGMENT XLATOR 1073171930 11:36 F¢ PAGE
72 TF(SVAR{ Y)Y EQ.VARLINIGITY 10125
174 16135 CONTINTE
YRITE(IOUTPT,6060)
1J=13+1
WRITE(IOUTPT,1640)SVAR(I)
GOTO 1630
1638 NVAR(T7+#1-1J)=J
31 1630 CONTINUE
c
C -= COMPUTC QCTGM FOR EZACH PASS
C

ARITECIOUTPT,6040)
50 CONTTNUE
WRITECIOUTPT,606%)

~~ REPUACF wITH PANLDOM INTEQEPR

e EeNgNy]

READ(CINPUT,*)IT

CALL INTA4(IT,1,1,190)

WNRITE(IQUTPT,9992)I T

DI 5550 ¥=1,1T
WKITE(IGUTPT,6070)
WRITE(IDUTOT,149)
YRAITE(TUUTPT,1710)K

<2

== RFPLACE #ITY RANDCM CHARACTER

A

REAOCINPUT,1711)PN,NOM, NHA

CALL CHAR3(PY,3)

CALL CHARH(NO4,4)

CALL CHAR4(N'A, D)

C ~~ WRITE(IOUTPT,1712)PN, N0V, NHA

IPASS=Y

WRITE(TWNRK1,412)IPASS,PY, N0 1, Y4A
WRITF(IDUTPT, §540)
WRITF(IGHTPT,6080)
WRITECTOHTPT,6090)

~= OFPLACE wITH RANONM REAL/INTEGED

PRTTIO

FEADCIMPUT " YXMTRF XKL XK2,XV 3, KkK4,LTFT
CALL REAT.A(XK1l,1,-2,2)

CALL RFALA(X®2,1,-2,2)

CALL REAL1(XX3,1,-2,?)

3 102 CALL RFAL4(XK4,1,-2,2)

103 CALL TMTA(LIST,1,0,1)

104 WRITECICUTPT,6091) XMTRF, XK1, XKD ,YK3,YK4,LIFT
105 WRITF(IOUTPT,6010)

106 WRITE(CIQUTPT,C100)

107 WRITE(YUONTTT,9394)(1,1=1,10)

| 108 PATTECTUNTPT,, 92X (VAR(T) 1237, 46)

3 109 INPIT= Y

4 gRLA MDAC SEGMENT XLATOR 10/31/1980 11:36 F4 PAGE a
c
c -~ REPLACE WITH RANDOM REAL
c
c READCINPUT, *)(VAL(L),1=37,46)
110 CALL REAL4(VAL(37),10,-2,2)
111 WRTTE(TOUTPT,9391) (VAL(I), T=37,46)
112 WRITE(IOUTPT,9154)(1,I=11,19)
113 wRITECTOUTPT,9352)(VAR(I),1=47,55)
c
c -- REPLACE wITH RANDOM REAL
c
] ¢ QEADCINPUT, *)(VAL(T),[=47,55)
! 114 CALL REAL4(VAL(47),9,-2,2)
115 WRITE(TONTOT,9991)(VAL(L),T1=47,55)
116 WRITE(TUUTPT, 9154) (I, 1=20,23)
117 SRTTEC TOUTPT,9352) (VAR(I), T=61,64)
c
c ~- REPLACE WITH RANDDY REAL
c
c READCINPUT,*)(VALCI), [=61,64)
118 CALL RFAL4(VAL(61),4,-2,2)
119 WRITECTOUTPT,9991)(VAL(I),I=61,64)
120 WRITE(TJUTPT,2955)
c
c ~- REPLACE WITH RANDOM YRS/ND
C
c QEAD(INPUT,6011)ANSWFR ‘
121 CALL ASK(AYSAER)
c ~- YRITE(TCUTPT,6012)ANSHER
122- 123 TF(ANSWER.FQ.¥YTS)CALL CORECT(INPUT, I0UTPT, VAL, ANSa"O,
- VARQ)
124 WRITE(IWOKK1,2997)XMT8F,XK1,XK2,XK3,XK4,LIFT,
- (VALCI),[=37,43)
125 WRTTE(TWNRK1,2998) (YAL(Y),T=44,43)
126 WRITE(TWORK1,2999) (VAL(T),1=49,55),(VAL(J),J=61,64)
127 VAL(S6)=XMTRF/(XK1*XK2*XK3*XK4)
128 QCTGM(TPASS)=VAL(31)*VAL(32)*VAL(46)/VAL(SE)
129- 130 5550 CONTINUE
‘ c
j c -~ AGE SUMWARY COMPUTATINY
| c
{ 131 ARITECTUYTPT,6040)
132 WRITE(IOUTPT,6110)
133 14PUT=4
c
c —- PEPLACE #4ITH RANJOM YES/NO
c
c PEADCINPUT,0011)ANS«FRD
134 CALL ASK(ANSWER)
e -- ARUTECIOUTPT,EG12)AMSHER
1 135- 136 IF(AMSHERLFQ.NDISOTI 05
e
c -= AGE COMPUTATIM QDUTTNE

.
MCOONNELL DOUGLAS o
(i

-~ S . o . .

ORLA

an

137

138
139~ 140

(2} [¢] ez K KX]

141

Qa0

142

a3

143
144
145

Aaa O

146
147
148
149

2 Xz ExKg]

150
151
152
153
154

€

155
156
157
158

QIS

159
160
161
162
163
164

MODAC SFGMENT XLATOR 10/31/1980 11:36 FH PAGE

-- ITAGE=} INTSRMEDIATE , =2 DTRECTY
WRITE(IOUTPT,2000)
-~ RFPLACE WYT! RANDOM YES/NO

RIAD(INPUT,6011)ANSWER

CALL ASK(AMSWED)

~~ WRITE(IOUTPT,6012)ANSHER
IF(ANSWER.FQ.YES)CALL AGFTLK(INUTPT)

WRITE(IOUTPT,6120)
-~ REPLACE WITH RANLOM INTEGER

PEADCINPUT,*)IT
CALL INT4(IT,1,1,10)
-~ WRITE(IOUTPT,9992)IT
DO 553 L=1,I1T
WRITE(TUUTPT,6040)
WRITECIOUTPT,6130)

-~ REPLACE WITY RANDOM CHARACTER

READCINPUT,61591)(C(AGE(T1,0),0=1,2),1=1,2),5s(C
CALL CHARU(AGE,4)

CALL CHARS(aUC,2)
WRITECIOUTPT,6192)CCAGE(T,I),J0=1,2),1=1,2),sLC
WRITE(TOUTPT,6140)

=~ REPLACL WTTH RANDOM INTEGRR/REAL

READCINPUT,*)ITAGE,AC,Ah, RNASE

CALL, INT4(ITAGE,1,0,9)

CALL RFAL4(AH,1,-2,2)

CALL RFAL4(RNAGE,1,-2,7)

WRITE(TQUTPT,6193)ITAGE,AC, AH,RNAGE
-- WRRITE(IOQUTPT,A150)

YAGE=RNAGE

T1iRS=0.0

L0 57 [=1,4AGE

HRIPE(TCGUTPT,6160)

== RFPLACE WITH RANDOM INTESER/RFAL

READCINPUT,*)YIPAS(CI),TTTH(T)

CALL [MTACIPAS(I),1,1,10)

CALL RFALA(TTTM(I),1,-2,2)
WRITE(IQUTPT,6161)IPASC(ID), TTTM(I)
TF=TPAS(I)
HRS(I)=QCTGM(IP)*TTTV(I)
THOS=TYRS¢YPS(I)

A-10

' ORLA MDAC SECMENT XLATOR 10/31/1980 11:36 FM PATE 10
165- 166 57 CONTINUE
167 XNAS=ATNT(THRS/A%¢.99999)
168 NAS=XNAS
169 IF (ITAGE-2)54,55,65
170 54 WRITE(IQUTPT,49)
171 WRITE(TOUTPT,13)DATE(1),DATE(2)
172 GOTO 56
173 55 WRITE(IOUT®T,49)
174 WRITE(TOUTPT,19)DATE(1),DATE(2)
| 175 56 WRITE(IOUTPT,14)
| 176 WRITE(TOUTPT,15) C(AGE(T,J),J=1,2),1=1,2),
‘[- “UC(I)’AC’AH’NAS
| 177 WRITE([OUTPT,16)
178 TSHAR=0.0
179 TFRAC=0.0
180 TXT4=0.0
131 ro 63 I=1,NAGE
182 _ 1P=IPAS(T)
183 FOAC=HRS(1)/THPS
184 SHARF=FRAC*AC
185 XTA=SHARE*XNAS
; 186 FrkAC=FRAC*100.0
187 IF(ITAGE~2)60,61,65
188 60 ATA(TP)=XIA
189 COTC 62 |
190 61 DAACTP)=XTA |
191 - 62 CFLTRCTOUTST, 17) IPAS(D), 4 TavCToy, Trrvey, |
- HRS(T),FRAC, SHARE, X1
192 TFUAC=TFRAC#FRAC
193 TSHAR=TSHAR+SHARE
194 TXIA=TYIA+YLA
195- 196 63 CUNTINUE
197 WRITE(IOUTPT,13)THRS,TFRAC,TSHAR,TXIA
198- 199 553 CONTINUE
c
c -~ URLA PASS ROUTINE
c
200 65 RENIND INDRK1
c
c -- WRITE CONSTANTS FOR RUN
c
201 69 WRITE(TOUTPT,49)
202 WRITECTOUTPT, 3)DATE(L),DATE(?)
203 WRYTE(TOUTPT,4)(VA?(1),VAL(T),T=1,36)
204 70 READ([WORK1,412,EKD=500) TPASS, PR, NO¥, NUA
205 N RRAD(LWORK1, 2997) XNTAF, XK1, XK2,XK3,XK4, LIFT, (VALCT),1=37,43)
206 RCAD(INURK1, 2998) (VAL(T),1=44,43)
207 READCIWORK1,2999) (VALCI),1=49,55),(VAL(J) ,J=61,04)
208 YAL(56)=YMTRF/(XK1*YK2#XKI*KK4)
209 1F(LIFT)73,72,13
210 12 0STC=VAL(12)
- 211 NSTO=VAL(13)
T 212 SR=VAL(26)

mMCcOONNELL wwtn%
C

ekl

213
214
215
216
2117
218
219
220
221
222
223
224
225
226
227
228

229
210
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

ORLA

246- 247

248
249
250
251
252
25}
254
255
256
257
258
259
260
261
262

73

74

~aan

76

17
78

79
30

MDAC SEGMENT XLATQOR 1073171980 11:36 M PAGE 11
S =VAL(27)

TC=AIR

GaTn 74

DSTC=VAL(14)

ASTa=VAL(15)

SI=VAL(28)

SRL=VAL(?29)

TC=REA

WRITE(IOUTPT,49)

WRITE(TOUTPT,119)IPASS

WRITE(TIOUTPT,129)
WRITECICUTPT,9)IPASS,PN,NOY, NEA
WRITE(TOUTPT,10) XMTHF,VAL(56),VAL(SC),TC
WRITE(TOUTPT,109)KK1,XK2,XK3, XX~

ASSIGN 75 TN JuMmp

GNTH 100

~= PRINT ROUTINE ¥FOR c£CONOMIC AMALYSIS

WRITE(IOUTPT,550)
WRITE(TOUTPT,S551)(VAR(T)Y,VAL(I),T=77,54)
ARITE(TIOUTPT,551)VAR(S5),VAL(SS),(VAR(I), VAL(1),T1=61,02)
WRITE(TOUTPT,S552) (VAR(T),VAL(I),1=63,64)
ARYTF(YOUTPT,49)
WRTITE(IDUTPT,21)
WRITE(IOUTPT,2?)
D) 80 1=1,12

1F(1-3Y76,76,17

KUCI)=DV(I)

KF(I)=FV(I)

KT(I)=TV(I)

YF('-’.I)78'78’79

Ko(1)=nVv(I)

FFC(U)=FV(D)

CUTy o0

koCt)=ov(n)
CONTINCE
WRLTS(TUUTPT,2)KD(B),KEF(5),KT(3)
WRITS(IQUTPT,24)KI(2),KF(1)
WRTTE(TOQUTPT, 25)X0(3),XKF(2)
WRITECTOUTPL,26)KD(4),XF(3)
WRITF(IQUTPT,27)KD(S),KF(4)
WRITECTGUTPT,2B)YXD(6)Y,YF(T),XT(2)
WRITE(TIONTPT,23)XD(7)
ARITE(CICUTPT,30)KD(I),KF(n)
dRYTE(TOQUYPT,31)%D(10),xF(I)
WRITECTOUTPT,32)KL(C11),KF(1D)
WRITE(TIOUTPT,3I)KD(1?),KF(11)
WRETE(CTOUTPT, 3 YF ()
WIITECTIGUTOT,30)K0(CL)
CUVITECIQUTPT,I6)KT(L)
WOTTE(TOUTPT,3THIKOT,KFT, KTT

MecoOonNELL nooouu%
(

- -

263
264

ORLA

265~ 266 82

268
269
270
271
272
273
274
275
276
271
278

279
280
281
282
293

«BS
286
287

2838
289
290
291

292
293
294
295
296
291
298
299
300
301

302
303
304
305
3oé

7

108
110

120
130

MDAC SFGMENT XLATOR 10/31/1980 11:36 v PAGE 12
~= WUTF TO WARX TAPE THE REPAIR LEVTL SUVMARY

DO 82 ¥=1,3
NUT(K)=PLANK

CONTINUE

[F(KFT-K0T)37,37,35

IF(KTT-KOT)89,89,88

INDEX=2

GuTO 95

[F(KTT-KFT)39,89,96

INDEX=1

GIT0 95

INDEX=3

NUT(INDEX) =X

WRITE(IWCRK2,41)IPASS, NOM, VAL(50),VAL(56), (0UT(I),1=1,3)

[SOUNT=ICOUNT+1

GJTO 200

-~ COMPUTATION ROUTINE

TXY¥=QCTCM(TPASS)*VAL(16)*12.0

TV(1)=TXX*VAL(50)

P3CCOAN=VAL(L9) «VAL(1T)+VAL(21) %59
PSCUS=VAL(20)+VAL(13)+¢VAL(22)*SR1
PXX=VAL{(?2)*PSCCON+(1.0~-VAL(2))*PSCOS
TV(2)=TXX*VAL(51)*PXX
OSTO=QCTGM{IPASS)*(VAL(2)*ASTC+USTI* (1. 0=VRL()))
OSTX=(0STO+SQRT{(3I.N*0STL))

TV(3)=VAL(50)*0STX

FYCLI)=ATACIPASS)+VAL(64)+VAL(6)/VAL(IY)

FV(2)=VAL{39)*VAL(16)*(ATACIPASS)+VAL(64))

FV(3)=VAL(42)*VAL(0)/vAL(11)

FUC4)=C1.00VAL(34)*(VAL(10)=1.0))*(VALIS2)*VAL(SS)™*
(VAL(36)+#4N0.0*vAL(8)))

A=VAL(A5)*VAL(43)*12.0*QCTGM(IPASS)

£0N=4.4*SQ°T())

IF(E0Y=-A)108,120,120

Al2=a/12.0

[FC*19-212)110,130,13C

£3Q=4A12

GOTO 130

2U=A

RRE=QCTGM(IPASS)*VAL(L)

PV(5)=VAL(SO)*(BRC+5IRT(F.0*BRC)I+VAL (43)*(1.0=-VAL(45))"
NSTX+ENY

FV(6)=TXY*VAL(47)*VAL(S)

PYIT)=TXX®VAL(4))*PXYX

FUC3)=VAL(LI6)*YAL(23)*(VAL(43)+VAL(44))

FV(9)=VAL(40)

FYC10)=QCTONCIPASSY*12.0*VAL(16)*VAL(48)

FYCLI1)=(PALCA4)=1.0) /VALCLL)*(VALCLIO0)#(VALCI€)=1.0)"YAL(D4))+
VAL(43)/VALCLI1)* (VAL (9)+(VAL(1A)~1.0)*YAL(23))

Vs
MCOONNELL MWIZ@'

308
309
310
311
312

313
314
315
316
317
318
319
320
3
322
323
324

ORLA

325~ 326 140

327
328
329

330- 331 150

332

333
334
335
336
337
338

339
340
kL)
342
343
344
345

200

NTO O

346- Y147 335

348
349
350
351
352
353
354
355
356

304

MCcoonNELL oouou@_
L

MDAC SEGMENT XLATUOR 1073171980 11:36 FM

DV(1)=QCTGM(IPASS)*VAL(S)*VAL(50)
DV(2)=(DARACIPASS)+VAL(62)¢TAL(61))/VAL(LL)

PAGE 13

DV(3)=(VAL(3IB)*VALC16)*(CAACIPASS)+VAL(62)))/vaL(1})

DV(4)=VAL(41)*VAL.(J30)/VAL(11)

DV(5)=(1.04VAL(3I)*(VAL(16)=1.0))*(VAL(53)*VAL(D4)"

(VAL(35)+40.0*VAL(4)))/VAL(11l)
DY(6)=TXX*2.0*VAL(51)*PXX
DV(7Y=QCTGM(TIPASS)*VAL(6)*VAL(50)
DV(3)=TV(3)
DV(9)=TXX*VAL(A4A7)*VAL(4)
DV(10)=VAL(3T7)/VAL(1])
DV(11)=TXX*VAL(48)

DV(1I2)=FV(11)
KTT=0

KFET=0
KDT=IFIX(DV(12))
D0 140 I=1,3

KTT=KTT+IFIX(TV(1))
CIONTINUE
pu 150 1=1,11

KFT=XFT+IFIX(FV(T))

KOT=KUTeIFTIXC(OV(I))
CONTINUE
GATO JUMP,(75,215,71%9)

NV=0

LSA=10
VAL(S7)=T¥(2)
VAL(S3)=DV(3)
VAL(59)=FV(1)
VAL(60)=FV(2)

== PANK THF FCNN VALUES

KSEN(1)=KDT
KSEN(2)=YFT
KSSN(3)=KTT
D3 315 1=-1,)
NUMK(I)=I
IH=I¢3
KSEN(IM)=KSEN(T)
CONTINUE
00 3100 t3=1,2
K=18+¢1
Dy 3100 17=K,3
TE(KSEN(YI)=-FSFH(IZ))3100,310(,304
HULC=KSEN(CIR)
KSEN(IN)=KSFM(IZ)
¥SEN(17)=4NLD
HoLu=KNUMY (T8
NUMK(IR)=NUMK(TID)

3

357
358- 360

361
362
363
364
365
366
3617
368
369
370
31
372

373
374
375
376
371
378- 379
380
331
382
383
384
385
386
387
388
389
390- 392
393
394
395
396
39
398
399
400
401
402
403
404
405
406
407

© <408

QRrRLA

3100

2360
2365

2370

NQAOO

210
300

305
306

310

228
222

322
229

320
375

360
340

vDAC

CONTINUE
== SENSI

NV=NY+1

IF(NVAR(
IC=NVAR(
C=VAR(IC
OGRIG=VAL
PCT=0.90
Dy 2300

SEGMENT XLATQOP 1073171330 11:36 F™ DAGE 14

NUVK(IZ)=HOLD

TIVITY ANALYSIS

NV))T0,70,2365
sV

)

(I1c)

1P=1,48

CX=0RIG*PCT

VAL(1IC)=CX
QCTGM(IPASS)=VAL(3I1)*VAL(32)*VAL(46)/VAL(H6)
ASSIGN 215 T JuMe

GOTO 100

-=- REVERSAL ANALYSTS

JSFN(1)=KuT %
JSEN(2)=KFT
JSFN(3I)=¥TT
00 210 1=1,3
NUMICI) =T
COMTINUE
Co 310 10°=1,2
=8+l ‘
DO 310 1Z=K,3
[F(JSENCIB)-JSEN(I7))310,310,30%
YOLD=JSEN(I®)
JSEN(IR)=JSFN(IZ)
JSFN(IZ)=HoOLD
HOLD=NUMJI(I[R)
NUMJI(IB)=NUMJI(IZ)
NUMJI(17)=i0LD
CONTINUE |
TF(NUMK(1)=NIMJI(1))320,228,320
1F(IP-8)322,222,229
PCT=PCT+0.90
¢aTa 2300
PCT=PCT-0,1 g
GOTO 2300 F
PCT=PCT+0.1
GOTO 2100
[F(IP=-3)375,375,369
PCT=PCT+0.09 . ‘
GOTH 340
PCT=PCT-0.19
O0X=ygRIG*PC"T
VAL(EC)=3X
GCTGM{IPASS)=VAL(I1)*VAL(I2)*VAL(46)/VIL(CA)
ASSIGN 715 TO 1LMp

409

410
411
412
413
414

ORLA

~aaa

415- 416 712

417
418
419
420
421
422
423
424
425
426

700

705
706

427~ 429 710

430
431

31590
355

325

436- 437 2300

451

452
453
454
455
456
457

400
4009

4010
425

500
c
c
c
505

MCODONNELL DOVGY

{

MDAC SEGMENT XLATOR 10/31/1930 11:3¢6 FM™ PAGE 15
GOTO 1900
-- CHECK FJR RFVFRSAL

JSFN(1)=KDT
JSEN(2)=KFT
JSFN(3)=KTT
ro 712 1=1,3
NUMJ(I)=T
CONTINUE
GO 716 19=1,2
{=Ty+1}l
ng 710 17=¥,3
[F(JSENCIR)-JSEN(I7))710,710,7C5
HILD=JSEN(IE)
JSENCIR)=JSEN(LZ)
JSFN(IZ)=FOLD
YILO=NUMICIR)
NUMICTHY =NUMI (T 4)
NUMJI(IZ)=40L3

CONTINUE
[F(NUMK(1)~N1IMI(1))400,350,400
TF(IP-9)1355,355,325
PCT=PCT-0,01
GOT3 340
PCT=PCT+0.01
CoTa 340

CONTINUE

VAL(IC)=CRIS

GOTI 2360

TF(LSA~10)4009,4009,4010
WRITF(IOUTPT,49)

WRTTE(IOUT?T,42)

WRITF(YOUTPT,40)

WRITE(IGUTPT,43)

PCT=PCT*100.0
WRITECIQUTPT,44)C,0RIG, (KSEN(K),X=4,6)
Lsh=l5a+1
ARTTECTQUTPT,45)PCT, X, KDT,KFT,KTT
VAL(IC)=CRIC

GUTd 2361

QEWING TwORK?2

=~ WDITF RFEPAIR LEVEL SUMMARY

ARITECTIUNTPT,49)
ARITE(TCUTPT,46)DATE(L), DATE(2)
wRITFE(TUUTPT,47)
ARITE(TIOUTPT,4)
Dd 508 I=1,ICOUNT
PEAD(IYORK2,41,FNU=510)IPASS,)4, VAL(SD),VAL(SH)
(LOT(K),X=1,1)

ORLA MDAC SEGMENT XLATOR 1073171930 11236 FM PAGE 16

—— - PR

458 WRTTE(TOUTPT,411)IPASS, NOV,VAL(20),VAL(S6),
- (0"7((-),(..:1’3)

459~ 460 508 CONTINUF

461 510 STOP

462 END

1 MCDONNELL DOUGL%

. —-— ; iy

38.

40.
41.
42.
43.
44,
45,
46.
47.
48,
49.
50.

MDAC Segment Xlator

€0-13)
€13~-20)
£20,156-20)
€20~24)
£24,21-24)

€ 24-55)
£55-60)
£60-61,83-122)
€122-130)
£130,36-122)
£130-135)

€135-1136,200-204)

1204-209)

€209,216-228,279-294)

£294-296)

€296~-298,300-326)

£326,323-326)
£326-331)
€331,327-331)
£331-332)
£332,229-237)
£237-241)

£241-244,246-2147)

£247,236-2317)
£247-266)
[266,263~266)
£266-267)
£267,271)

€271,274~278,333-347)

£3147,342~-347)
€347-351)
£351,358-359)
£359,350~351)
€359~350)
€360,348~351)
€360-362)
€362,204)

[362-372,279~294)

£351-359)

10/31/1980 12:51

Sejment Reference

£271,269=-270,275-278,333-347)

€267-263)

£268,274-278,333-347)

€268,272-273,275-274,333~347)

£241,245-247)
€237,241)

€332,373-379)
€379,376-379)
£379-381)

£383,390-331)
£391,382-3493)

A-18

N

fage

4

51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
13.
74.
15.
76.
17.
18.
79.
80.
B1.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100,

mMcooNNELL oouou@_
(

UDAC Segment Xlator

Segment Reference

€391-392)
£392,380~-383)
£392-393)

€393,401)
£401-403,405-409,279-294)
£401,404-409,279-294)
£393-394)
r394,397-398,436-437)
£437,367-372,279-294)
£437-439,361-362)
£394-396,436-417)
£394,399-400,436-4317)
r343-391)
€332,410-416)
£416,413-416)
£416-420)
€420,427-1238)
€428,419-420)
£428-429)
£429,417-420)
£429~430)

£ 430, 440)
[440-450,361-362)
£440,445-450,361-362)
£430-431)
£431-433,405-409,279-294)
€431,434-435,405-409,279-274)
£420-428)
£296,300-1326)
£294,299-326)
£209-215,221-228,279-294)
£204,451-45T)
£457-460)
£460,456-457)
£460-4611

£457,461)
£135,137-139)
C139-166)
[166,157-166)
[166-169)
(169-172,175-18M)
£187-189,131-196)
£196,191-197)
€196-199)
€199,143-166)
£199-204)
€187,190-196)
€187,200-204)
€169,173-187)
[169,200-204)

/

—_— - .. -

1073171980 12:51 Nv

S - M

o

UDAC Sejment Xlator 10/31/19%G 123151 N Faiqge t

SRLA Segment Peference

101. (139,141-166)
102. [122,124-130)
103. [60,62-64)

* 104. (£64-65,62-64)
105. 164,66-71)
106. T[71~72,79-81)
107. 1©81,59-71)
108. r31-122)

109. £71,73-74)
110. T€74,70-T1)
111. 74-78,80-%81)
112. 155,57-60)
113. (C13,15-20)

~ ND CSSMONTTOR for MOUULE “URLA -

AGETLK Seguent Reference
1« €0~-21
- NO CSSMONITAR for MUDULE “AGETLK * -~

XPLAIN Segmsent Reference ‘
1. [0—7)

- NI CSSMONITNR for MNOLULE “XPLAIN * -

CORECTY Seqment Refecence

10 (0'7)
2- (7"6,13"16)
- . 16-17,0-7)
4. (16,18-191
5. [7’9“10)
i be [10,6~T)
' T« €10-12,2-7)

- ND CSSMONITOR fac YNOULE *CORFCT ° -

OATEY Sequent Raeference
1. C0'31
- ND CSSMONITO? for MODULE "LATEY Y -

/ A-20
acoonnRLL pomu(@_

-

Appendix B
APTS OUTPUT

MALN

TRIANSG

*Proqgran

mMcooONNELL wuo;@
(&

"N -
[]

PRSI AR I SR)
e 6 & ¢ & & o o [)

Ll ol
_—y 2
¢« o 0

-t ot
D NN
o o O

15,
le.
i1.
1R.
1(-“.
20,
21.
22«
:)"

Case 1 Cuse 2 Case 3 Sumaaty

65,67 "¢ 13.233 Pc 31.33 Pc 100.00 Ic
H 0 U 1
! M J p;
8} 0 1 1

N TO 6.9 P 8€,9¢ Pc 396 I’C
1 1 1 3
1 1 1 3
) n 0 0
2 2 2 6
1 1 1 3
3 3 3 J
7 2 2 b
3 1 1)
l 1 1 2 j
P4 2 z 14}
K 1 1 3
1} 0 ¢ G
2 2 2 6
1 1 1 3
2} 2 2 o
) 0 0)
1 1 1 3
2 2 2 6
1 3 3 Q
: 2 2 i
3 3 3 9 |
2 2 2 t
N 3 k!]

84,52 Dc 90,77 Pc 80.77 Pc¢ 89. 16 Pc

B-2

N

MAIN Segment Peference
1. [0—11)
?. [11,5-11)
3. [11-12]

- NO CSSMONITUR for MOJULE “MAIN ¢ -

TRIANG Segment Reference
1. [0-3)
2. r3-"34)
* 3. [34-37)
40 t3712-1)
50 [37‘25] p
fe [34,36-3T)]
7. €3,5-8)
. (3-11)
9, T11,7-8)
10. C11-13)
' 11. [171-10)
* 12. tla‘l)l34)
12. €£13,20-22) ﬁ

14. [22,20-22)
15. [22-77)

. 16. £27-23,32-33)
17. €£32,23-27) |
18, [33-3D)
19. €27,23-31) 1
20, T31,2)-31)
21. [31-33)
22. [13,15-19) ;
23, €8,10-11)

NO CSSYONITNR for HONULF *TRIANG ° -

Trial Statistics

Number of trials(T)= 3
i; value of Xi:

Xt 11
Xc 2

8 oo
- gt

Nusber of Xi(N)= 2

|
i
r . ~ 4 ~ [ad
Tase v Tase 5 Case o Summaty
MAIN KCoFT D 33.73 pPc 331.1313 pc 100,03 Pc
1. i 7) 1
Ze 1 1] 2
3. J 0 1 i
TRIANS 37«01 ¢ 8. 9€ PcC J5e % Pc d%. 38 Pc
1, 1 1 1 3
2. i 1 1 3
. 3) Ll n
4, 2 2 2 6
f Ce ! 1 1 3
fo 3 3 3 9
T ? 2 2 b
Cu 2 2 1 5
9, ! t 1 3
10, " 2 2 5
il. J 1 i 2
12. A ! 0 0
13, - ? ? /]
Ja. : 1 1 3
15, ? ? S
16,)) J 2
17. 1 1 1 Rl
19, ‘ ? P 6
19, 3 3 3 9
R o 2 é 6
2. ? 3 J “
i?. - ? 2 4
27, ? 3 3 9
£0rogr £7.71 "¢ $1,77 Pe 3n.77 Pc 3%.45 vr-

B-5

AMCOONNELL ml‘”%

MAIN

1.
?.
3.

£o0=-11)
£11,5-11)
ri1-121

- N) CS8apNITNR for 4NLULE “MAIN

TRIANG

1.
?.
3.
4.
Se
€e
7.
Re
S.
10.
11.
12.
13.
14.
15.
1€.
17.
lq.
9.
20.
:’1.
272.
21.

o=
£3-4,34)
€34=-17)
€37,2-3
£37-181
31,30-17)
[3[5'%)
[3-11)
r11,7-8)
r11-13
£13-14)
[14-139,34)
r18,290-22)
£27-27)
£27-23,32-33)
r3y,23-217)
C33=34)
r27,23-31)
£31,2:-31)
ri1-313)
ri3,1s-13)
£3,10-11)

N) CSSUDNITOD For MJJULS "TRIANG

L 4

Sejaent Reference

Senment Reference

Nusher of trials(™)=

Talue of ¥i:

Xt 17 ¢ 1
XC R 1
Xr K 1

Yumbzr of Yi(Y)=

AT DONNELS m‘(g-

Trial Statisti-

o3

MAIN

TRIANG

*Program

Case

23.

ucnnwnJoouwéggi;

ol e i e gl g < et =

66.57 Pc

36.96 Pc

834,62 Pc

-

7 Case

1
1
Vv

NMWMUNPOMHMOF‘MP‘F‘NNPNOHF-

33.33 Pc

78.26 Pc

73.03 Pc

8 Case
33.33 Pc
1
0
86.96 Pc

QNUMMNMONF‘MOONNOMUHNONF‘

80.77 Pc

9

0
0
1

MNUMMMHONHMOF‘NHQMMP‘NQHOH

Summary

100.00 Pc

86.96 Pc

88.46 Pc

1

[l

\DONCO\\DC\(&OO\(A’O\ONO\NQOO@O\O@U)

MATN Segurnt Peference

1. [0-1‘)
2o Tll,9-11)
. r1'-121

- NJ TS5CHUNITIR for “0DULT MY ’ -

TRIANG Seqrent “eference
1' ':0'3)
?. l']':,?f.)

* 1. r34=-37)

4. [37,/}"’3)
6. [31,35-137)
T. [3,5=3)
8. ra-11)
9, (C11,7-1)
16 C11-11)
11. [13-13)
* 12 112-19,2D
13. 1%,20=22)
14. [22,7u=272)
1. (22-27)
* 16. [27-75,132-27)
17 133,23=-27)
1. 133=-711)
1% ©27,2:-11)
. €1,29=-211)
21. C31-3J)
?%. [13,15-1%)
23. 04,10-11D)

ND CSSMONITAN for M4OLILE *TRPIANG -

Trial Statistics

Number of trials(T)= 9

Value of Xi:

Xt 11 ¢ 1

Xc P 1

Xc D I 1 :

XL 4] 4 !
' Nuaber of Xi(N)= 1

PRNSENGNSI T N

MCOONNELL DOUGLAS L

Appendix C

OUTPUT FROM A CONSTRUCTED CASE }1
AND ;
CONSTRUCTED CASES LISTINGS

OUTPUT FROM A CONSTRUCTED CASE

! fase 1 Summary

MAIN 66.67 V¢ €5.67 2¢

~J
.
ras O p=

1
0
1

TRIANS 73.91 Pc 73.91 Pc

11.

20,

22.

WN O SO e O s OF e OO [N wo ™, b s s
WO OO R O, ps ©OF rd O NP NN W N o s

*Program 72.28 Pc 73.02 ve

MCDONNELL ”UGLL“%

——— e e e —

!

!

|

!

MCOONNELL ”UGIL“% '|,
— T L - — - T e iv ._.__ﬁ_.;_‘:_ - .

i
&
! MATY Sejment ‘aference
L 10 l'O-lO)
' * e flf",:-~10)
1. rlo=-11)
- NJ CASYNNITI® for 07 *vay ‘-
TRIANS Sejynent "efercance
1e T0G=-3)
?e 03<4,34)
3. r3s=711)
4, [3+4,72-1)
% 331N
e ©15,%145=-219)
7. T},"'-i)
9« L¥#-11)
‘-‘. [11,7'})
1. rii1-113)
* 11. Cli3-1
12. f1%=729,3%)
13. fl),"l-23)
* 14, r23,71=-"1)
1%, C223=-2))
1A, £27=11,34-1%)
* 17. L3z2,%24=1)) ‘
1re C3%-24)
* 1. €27, 21-373)
* ?C. [3!,'}1"})
* 21. r33-"5)
D2 T17,145=19)
23, Ci,10-11)

- Monitor l'reiinut> =

Precirite Tyne “Winimua “I1vimnuag
1. « Inta2jer 1 3
2. LN neid «D00GOGNCHNO0N000L+D «£30055001090000F+8
- 3o, MU tanl « 0300005070090 70D «0330070000000005¢0

—_—

Nuaber of trials(T)=

Yalue of Yij:

Numder of Xi(¥)=

MCOONNELL ml&

0

Trial Statistics

&

[y B]

101
102

CONSTRUCTED C:ASES LISTINGS

PROGRAM MAIN)
IMPLICIT INTEGER(A-Z)

INTEGER TP(3)
EAL A(4,3),R

DATA 4/0.0,4.0,3.9,5.0,2.0,4.3,0.0,7.1,9.0,0.0,11.0,12.C
OPENCUNIT=20,0%VICE="USKs °,FILE="BRAD.RE5°,ACCESS="SEQOUT")

L£x:E
H &£
-l w
o

DO 10 K=1,M
WRLTE(20,101)K,(CACL, D), J=1,N),1=1,KY)
CALL TRIANG(IP,A,N)
WRITFE(20,102)X,((A(I,J),J=1,N),1=1,N%)

CINTINUE

STIP

FORMAT(” BEFORF TRIANGULARIZATION (°,I1,°)°//3(3X,P20.10))
FOQMAT(” AFTER TRIANGULARIZATION (°,I1,°)°/73(3X,%20.10))

END

32~
34~
36~
38~
49
1

14

20
23

30

33
35
37

SURROUTINE TRIANG(IP,A,N)
[MPLICIT INTEGER(A-2Z)

IVTEGER IP(3)
R3\L R(4,7),T
QR AL MANT ¢ TMOR

1r(N)=1
DN 6 K=1,N

CSEMINLITOP=INTREGER(K);

1F(K.EQ.N) COTD S

Kel=Kel

v=K

50 1 I=KP1,W
TF(ARSCACL,K))<CT.A8S(A(¥,%))) 4=l

CONTINUE

TP(X)=N

IF(MNELX) IP(N)=-TP(N)

T=A(M,X)

A(M,X)=A(K,K)

MX,K)=1T

MONT=ARS(T)

C$SUNNITNR=RFAL(MNNT); ;

CSSMONITIR=REAL(TMON);

QY Ui o (W

I€(f.EQ.0) GOTO S :
P 2 T=KP1,N j
A(T,K)==A(T,K)/T
Y 4 J=KP1l,N
T=A{4,) '
A(KIJ)'-'T
TMON=ABS(T)

IF{T.ER.D) GOTO 4
PO 3 I=KPI,N
A(T,J)=A(T,T)¢R(1,K)*T

TUNTINUE
TF(A(K,K).EQ.0) IP(N)=0
COYITINUE
NETYSN
FND

