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FOREWORD

This report is a revised and extended version of
"Bayesian Inverse Regression and Discrimination:
An Application of Credibility Theory" by R.

Avenhaus and W. S. Jewell, reproduced as part of /
Operations Research Center Report 76-~16, June, ¥
1976.

This version was originally issued as Report

KfK 3007 of the Institut fir Datenverarbeitung in
der Technik, Kernforschungszentrum, Karlsruhe,
Germany, and 1is reproduced in this format to
facilitate pre—publication distribution.
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\\ ABSTRACT
A
y

Many measurement problems can be formulated as
follows: First, a certain linear relationship
between two variables is to be estimated by using
pairs of input and output data; thereafter, the
value of an unknown input variable is to be esti-
mated given an observation of the corresponding
output variable. This problem is often referred
to as inverse regression or discrimination.

In this paper first non-Bayesian approaches to

the problem, thereafter the Bayesian approach by
Hoadley are presented. Third, a Bayesian approach
by Avenhaus and Jewell is discussed which uses the
ideas of credibility theory. Finally, a new
Bayesian approach is presented. The advantages
and disadvantages of the various approaches are
put COgetherT
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FORMULATION OF THE PROBLEM

The relationship between an independent variable x and a response

variable vy can often be described by the linear regression model
v - a+8'xi+o-ui R i=1,...,n ,

where the u; are independently and identically distributed random variables
with means zero and variances one. Usually the u; are assumed to be normal-

ly distributed, i.e.,

t t,Z
‘/. exp(- ——)dt' , i=l,...,n .

-

p(uiSt) =

(]
)

The problem is to estimate the unknown parameters a, B and o.

The inverse linear regression problem is an extension of the above:
here, in addition to the responses corresponding to the n known independent
X, there are m further responses ZiveeasZo, corresponding to a single un-

known x. The model is

y. = a+3-x,+0°u. i=1,...,n
i i i ’ ’
2, = a+Bex +r-vj j=l,...,m

where u; and vj are independently and identically distributed random vari-
ables with means zero and variances one. The problem is to make inferences

about x.

Four examples of this class of problem are given below.

— . .
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Nuclear materials, e.g. plutonium, are extremely difficult to
measutre directly by chemical means. Therefore, one uses indirect
methods, based upon the heat production or the number of neutrons
emitted, in order to estimate the amount of material present. From
well-known physical laws, we have a general relationship between
these variables, but any measurement instrument based on these
principles needs first to be calibrated. Usually, this calibration
can be done with the aid of standard inputs, containing known

amounts of nuclear materials. However, these inputs (xi) are not




o
|

generally under our control, and in some cases, may have residual im- .

precisions in their values,

Measurement instruments often have longer-term drifts, during
which they tend to loose their original calibration. For this reason,
measurement of a given production rum often consists of two distinct
phases: (re)calibration of the instrument, and actual indirect meas-
urement. With a fixed amount of time available, it is of interest to
determine how much time should be spent on the two phases, assuming
that additional time spent on each observation reduces observational . ;

error.

Tarzimacion of Family Incomes by Polling

We wish to estimate, through a public opinion poll, the distribu-

tion of family incomes in a certain city district. As the major part of
the population will not be willing to divulge their incomes, or will
give only a very imprecise figure, we locok for a dependent variable
which can be more easily determined. According to the literature (see,
e.g. Muth (1960)), housing expenses are strongly related to family in-
come, and, furthermore, it may be assumed that the population is less
reluctant to divulge this figure, even though they may not be able to
do so precisely. Clearly, to determine this relationship exactly, we
must have some families in this district who are willing to give both
their total income and their household expenses. On the other hand, we
have strong prior information on this relationship from similar sur-
veys, and may have general information on income distribution from

census and other sources.

cee . .. 3 . - . - .
2yt Yo Ty T > o Zov v, Ay
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In a paper with this title, Press and Scott (1974) consider a
simple linear regression proublem in which certain ot the independent
variables, X;, are assumed to be missing in a nonsystematic way from
the data pairs (xi.yi). Then under special assumptions about the error

and prior distributions, they show that an optimal procedure for esti-




mating the linear parameters is to first estimate the missing x; from

an inverse regression based only on the complete data pairs.

Bioassay

Using the methods of bioassay the effect of substances given in
several dosages on organisms is investigated. A problem of inverse re-
gression arises if first parameters of dosage response curves have to
be estimated by evaluation of observations and later on an indirect as-
say is carried out to determine the dosage necessary for interesting

effect (see, e.g., Rasch, Enderlein, Herrenddrfer (1973)).

Problems of this kind are described in textbooks on the theory of meas-
urements and are sometimes called discrimination problems (Brownlee (1965), 3
Miller (1966)). They differ from the subject of 'Stochastic Approximation'’
(see, e.g., Wasan (1969)) in that the regression function is assumed to be
linear. Stochastic approximation only requires some monotony, but this ad-
vantage is invalidated by the superiority of standard methods to the sto- ‘
chastic approximation method in the case of linear regression functions. There-
fore the procedures of stochastic approximation will not be examined in this

repott.

In the following first the non-Bayesian approaches to the inverse
linear regression problem are presented, especially the difficulty of the
infinite variances of all the estimates is outlined. Thereafter, the
Bayesian approach by Avenhaus and Jewell (1975) is discussed which uses the
ideas of credibility theory and which has been written down so far only in
form of an internal report. Finally, a new Bayesian approach is presented
here for the first time. In the conclusion the advantages and disadvantages
of the various approaches are put together. The present situation may be

characterized in such a way that there are promising attempts but that there

is not yet a satisfying solution to the admittedly difficult problem.




NON-BAYESIAN APPROACHES

A well-known approach is first to estimate a and 8. The maximum like-

lihood and least squares estimates of a and 8 based on SATR

n - -
RSO CASY)
@ - i=]

n
3 (xi-;)2
i=|

>

A

X N

o

A -
a =y =

where ; and x denote the mean values of yl,...,yn and of x,,

]
ly. This leads to the 'classical' estimator

It can be seen immediately that QC

s ey X
’“n

--,y, are

respective~

coincides with the maximum likelihood

2
estimator for o~ >0, r2>0 and normally distributed us, vj: The likelihood

function of a, 8, 3, 7 and » is given by

L(yl,...,yn,z,,...,szn,s,a,r,x) =

-z
2 n
a 2
= (2=07) cexp(- —l; 'f (y.—x-S-x.)z)
26” i=p * t
.
a2 .3 2
(2117) “exp(= ==+ ) (z.-1=8'x)°)
.= 3 J
277 =1
. . . 3L 3L 5L
The partial derivatives 33’ 38 and ™ assumed to equal zero
tions
-I_.')-( —yae _.]_-T( -4=8°x) = 0
ARA S xi) 5 (2 a8 x
3" 1 7]
1 1 5 .
- = (y.-x=8'x.)x, = =5 )(z,=2r=3:%x)'x =
771 73
L.7
-3 Hz,=a=3'x):8 = 0
T )

vield the equa-




By exclusion of 3=0 one obtains Z(zj-a-S'x)=0. Hence the first two equa-
. . . A A
tions reduce to the usual equations for the last square estimators 2 and B.

The solution of the third equation is then given by QC'

One cannot judge this 'classical’ criterion of minimizing the mean-

square deviations, however, because of

2

E((QC-X) 10,8,0,T,X) = 4=,

A . .
and furthermore, because x, has an undefined expectation value.

C

Krutchkoff (1967) proposed the inverse estimator QI defined by L

A A 8.3
XI=Y+"Z’

where

L=y (x=%)

A - -
Y =x =~ 06y

are the least squares estimators of the slope and intercept when the xi's
are formally regressed on the yi's. Although the mean square error of QI
is finite, Williams (1969) doubted the relevance of QI' He showed that if
cz(trz) and the sign of B are known, then the unique umbiased estimator of
x has an infinite variance. This result led him to the conclusion that since
any estimator that could be derived in a theoretically justifiable manner
would have an infinite variance the fact that Kruttchkoff's estimator had a

finite variance seemed to be of little account.

Williams suggested to use confidence limits which should provide what
is required for inverse linear regression. Hence the two papers of Perng
and Tong (1974 and 1977) could meet his approval. They treated the problem
of the allocation of n and m for the interval estimation of x so that the

probability of coverage is maximized when the total number of observations

n+m is fixed and is large.




An independent discussion of the inverse linear regression problem

was given by Hoadley (1970) for o=t. Part of his results will be presented
in the following.

Without loss of generality it is assumed
$x. =0 .
=71
i
The maximum likelihood estimators of ¢ based on y alone, z alone and both

y and z are

1
v = ;:E:E:T'[(n'Z)-v]+(m-I)'v2] .

The F-statistic, defined by

~

R, is often used for testing

AL . . . \ .
where 3 1s the maximum likelihood estimator of &,
the hypothesis 2=0, as in fact under this hypothesis F is F-distributed

with | and n+m degrees of freedom.

In case of m=1 a confidence set S is derived form the fact that

g'(Qc-x)' n >
ve{n+l+xT)

has a t-distribution with n-2 degrees of freedom. If F " is the upper >

‘9‘)

point of the F-distribution with | and v degrees of freedom, one gets

! . r N ! - -
Bl A it F Fz;l.n—2
’ - 1 . “m 1 n+l i~ C
S = tX: xingv{x. x-xU} if n+1+Q2 rz;l,n-l"F Fl;“n_2
Xe .
. n+l
(= #2) if Fe n+l*Q2 2y lyn=2 '

C )

Bi




L X%

where X and Xy are equal to

1
A 2
Fx.

C

(F=
{ Fa

- A2
. {’a;l,n—z Clasl) s (F=F | 2)+F %}

) F-Faz;l,n-2

3 1,n-1
with X <Xy A graphical display of S is given in Figure | for n=9, x=1.

As we see, this confidence set is not very helpful if

n+l

F< ¥, -
. n+l+§é a;l,n=2

.

- A . =
In this case B is not significantly different from zero, which may tempt

one to conclude that the data provide no information about x.
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THE BAYESIAN APPROACH BY HOADLEY

The situation is changed substantially if Bayesian rules are admitted.
Since Bayesian rules are usually biased, the absence of an unbiased estima=-
tor for x with finite variance does not matter. Furthermore, whenever F>0
a shortest posterior interval can be obtained from the posterior distribu-

tion of x after the observation of LAERES and Z)...z .

For the sake of completeness some properties of Bayesian rules will be
derived as given, e.g., by Ferguson (1967). Let 8<0O denote the state chosen
by nature. Given the prior distribution  on O, we want to choose a non-

randomized decision rule d that minimizes the Bayesian risk
r(,d) = [[f2(3,d(k))dF (k]8)1d¥(9) ,

where 2(.) denotes the loss function and FK(.fe) the distribution function
conditional on the chosen 8. A choice of 9 by the distribution ¢, followed
by a choice of the observation K from the distribution FK(.!G) determines in
general a joint distribution of 8 and K, which in turn can be determined in

general by first choosing K according to its marginal distribution

Fe(k) = [F (k{8)du(8)

and then choosing 8 according to the conditional distribution of 3, given

K=k, (. k). Hence by a change in the order of integration we may write
r(v,d) = [{fe(e,d(k))dy(8]k) JdF, (k)

Given that these operations are admitted, it LS easy now to describe a
Bayesian decision rule. To find a function d(.) that minimizes the last
double integral, we may minimize the inside integral separately for each
k; that is, we may find for each k the decision, call it d(k), that mini-
mizes

fa(e,d@k))dy(e k)

i.e., the Bayesian decision rule minimizes the posterior conditional ex-

pacted loss, given the observation.

In the case of the inverse linear regression problem let p(9) and

p(8 data) denote the prior and posterior density of the unknown parameter 2,




respectively. It is assumed that (a,8,%n o) has a uniform distribution, i.e.,

2
pla,8,5°) « 15 . *
7

The most important results of Hoadley are given in form or the following
two Theorems.
Treorern 1
”
Suppose that, a priori, x is independent of (2,3,07), and that the
2
prior distribution of (a,3,07) is specified by

p(u.s,oz) « -'7
g

Then the posterior density of x is given by

PORIY seeesY s Zpaeeeazy) = DX L(X) ,

where

m+n=-3
ol

”
(1+ % +x7)

{

Lix) = m+n=2 '
n A2 F vran A2 2
b R G DR
and where
R F

" Frmrn-3

The function L(.) is a kind of likelihood function representing the
information about x obtained from all sources except for the prior distri-
bution of x. As it turns out L(.) has a lot of unpleasant properties. It
seems that a proper prior for x is a prerequisite to sensible use of the
Bayesian solution in the preceding theorem.

. . A ,
In the case m=! the inverse estimator xI can be characterized by the

following

* . . . .. . .
) In Bayesian inference, the notation u«v indicates that the [unction u

is up to a proportional factor equal to v.




—

Trneorem °
1f, a priori,
n+!

X = cn-3. n-3

where the random variable tn-3 has a t-distribution with n-3 degrees of free-

dom, then, a posteriori, X conditional on CATEERES SPIE JETERRL M has the same

distribution as

where -2 has a t-distribution with n~2 degrees of freedom.

im]
[

This Theorem provides a better understanding of the inverse estimator
A . . . .
X as well as of Bayesian estimators in general. It seems that this result
has not yet been extended to a broader class of informative priors due to
technical difficulties. The papers by Halperin (1970), Kalotay (1971) and
Martinelle (1970) treat other aspects and do not extend the Bayesian ap-

proach.

The following two approaches start from a Bayesian point of view, too.
By restriction of the class of admitted estimators they need only the know-
ledge of some moments instead of the whole a priori distribution of a, 5, o,

T, and x.

—— = Cnasadha i, . a e ias ¢ e e e
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THE TWO~-STAGE LINEAR BAYESIAN APPROACH ACCORDING TO
AVENHAUS AND JEWELL (1975)

With the help of this approach the problem is solved in two stages.l)
At the first stage estimators for a and 8, which are linear in
Yyseres¥, are constructed in such a way that a quadratic loss function is
minimized. At the second stage an estimator for x, which is linear in the
only observation z, is constructed in such a way that a second quadratic
funtional is minimized. Since the apriori expected value of the variance 02
is not updated, only the apriori first and second moments of «, 8, 0, T, and

X are needed.

Generally the procedure may be described as follows: Let 9<Q denote
the state chosen by nature, and let } denote the prior distribution on 3.

Using a quadratic loss function

£(8,d) = const.(8-d)>

for the decision d, the posterior quadratic loss E(e(8,d) K=k) for given ob-
servation K=k is merely the second moment about d of the posterior distribu-

tion of 8 given k:

Ee(8,d) 'K=k) = [2(8,d)d4(8 k) = const. [(G-d)>-d (& k)

This posterior quadratic loss is minimized by taking d as the mean of the

posterior distribution of 4 given k. Hence the Bayesian decision rule is

d(k) = E(d K=k)

This procedure now will be applied to the Bayesian version of the in-
verse linear regression problem which will be presented once more for the

sake of clarity.

2m+2n+5 random variables

a CyTsXyll, g0yl e Vijyeoo P
2BsT, T X, 1 1Y Yl, ,Yn, i? m K m

are considered which are defined on a probability space (..7-P). It is as-

sumed that the random vectors (x,3,3,%), X, u U vl,....vm are stochas-

o
tically independent and that the following equations hold:

l) In the original paper by Avenhaus and Jewell (1975) only the case o=t and

m=] was considered.




zj =2 q + 3°x + TV, , Jj=sl,...,m.,

It is assumed that the first and second moments of u; and Vj are known:

E(ui) = E(vj) = 0, E(u%) = E(v?) =1; i=l,...,n , J=l,...,m .,

In the model of decision theory the sample space is the (n+m)-dimen-

sional Euclidean space; the statistician chooses a decision function d,

which gives for each observation of values of Fyseess¥pr Zpsecesz an esti-
mate for x, in such a way that the Bayesian risk belonging to a loss func-

tional ¢,
£: Rx R =~--> R

is to be minimized: Let v
a,8,0,x

and let P (v yeenye s o yeueys '2,8,3) be the conditional
EREETS SPRE IERPIYE 3 '

distribution of Yyseoes¥os ZpseeonZy given a, 8, U, and t. Then the Bayesian

risk, defined by

r(r,d(.)) = [R(",8",0",x",d(.))d

(!',3',0',.\1') ’

be the apriori distribution of a, 8, ¢ and x,

1,3,0,x
where R(.) is defined by
R(a',8',0',x"';:d(.))
- [ ' LI '
Ja(x ,d(s],....sn,tl,...,tm))dPyl““’yn,z".“’zm(s‘,...,tm at,E, ),

is to be minimized.

It has been pointed out already that in the case of a quadratic loss

function 9
2(x,d) = const.(x=-d)"

the solution of the minimization problem is

E(x}yi =S zj = tj' i=1,...,m)

LTV T

man e L




The first theorem of Hoadley given in the preceding chapter highlights
the complexity of this conditional expectation. Therefore, Avenhaus and
Jewell (1975) use at the firsr stage of their approach the following approx-

imate estimate for x, which is extended here to arbitrary m,

m
A
xAJ o= CO(Y'.---,Yn) + jzlcj()'l,---,yn) Zj
The functions
c.: R"--> R, j=0,1,...,m,

J

are determined in such a way that the mean square error of x, with zyi=)

and using the definition of the conditional expectation given by 1

m
E(x~ z cj(y

2
j=0 .’yn)'zj) .

50

m
= [E((x~ Z cj(y.

2.
j=0 J""’yn)'zj) 'yl'sl""’yn'sn)dPy

(sl,---.sn) ,

].---'Yn

is minimized. This is performed by first minimizing the conditional expecta-

tion of the mean square error, given by

w -
E((x-j{ocj(.)'zj) DAL ITERRTS ALY

m ” '
= f<r-.Z C'(.).tj) dpx,zlo....Zm(r't‘""’tm‘ylssl"°"yn=sn)

j=0 3

Derivation with respect to the Cor CprreeaCo gives

m m
- Y 3 - - - Ny . ' = =
f(r j:OCj tj)dP E(x)~c, jilcj E(z; 'y =s 0 veny =s )

m
f(r-.Z c.'t.)':ndP = E(X'zt,yl-sl,...,ynssn)-co'E(zl yl=s|,...,yn=sn)

j=0

’ i

% ~3

lcj'E(zj‘zl‘yl-s‘,....yn-sn) y =) ....m




Putting these derivations equal to zero, we obtain the following necessary and

sufficient conditions for the ¢ ,C

IEEREE L

m
co(sl,...,sn) = E(x) - J.z;‘cj(sl,...,sn)°E(zJ..,yi=-s(,....yn = Sn)

.,sn)'cov(zj,zziy]-s',...,ynﬂsn) = cov(x,zi,yl=sl,....yn = sn) .

i=l,...,m .

Actually it is not necessary to consider this system of m+! unknown

CgrCpseeaCos since all relevant information of the sequence ZyaeneazZy is

contained in the mean value
m
- 1
z 1=~ ) z. .
m . ]
i=1

This can be proven as follows: Let Zj(sl,...,sn), j=0,1, denote the mini-

mizing coefficients for the case m=l. If we write zl=:2, then the Ej’ j=0,1,

are given by

c. (s

0 ‘,....sn) = E(x)-E(z{ylxsl,...,yn = Sn)

_ cov(x,z'yl=s .,yn=sn)
Cl(sl,---'s ) =

1"’

var(z,yl-s,,...,ynssn)
Now it can be verified easily that in the general case m>|
c.(s s ) := L.
7Tt om T

solve the system of equations given above. Hence it suffices to consider

2z, which means that the estimator can be written as

A
X, ., = . U ¥
Al O(y‘, 'yn) + L,<y|, .)n) z .




Explicitly the terms, which are contained in this solution, are given as

follows (for the sake of simplicity we write Yi=8; instead of YIES | seeen
=5 ):

’a n)

E(z,yi-si) = E(a,yi=si) + E(n‘yi=si)-E(x)
cov(x,z.yi-si) = E(B.yi=si)-var(x)

B 2,
cov(zl.zzlyi=si) = var(zl»yiﬂsi)-E(r ‘yi=si)

! = = ' = Y. . 3! =
vat(zl,yi si) var(a‘yi Si) + 2-E(x)'cov(a,s Y; Si) +
) 2 :
+ var(x)-((E(o‘yi=si) +var(3 yi=si)) +

2 1 . 2 i =
+ (E(x)) var(S.yi si)+E(‘ Yi si) .
The remaining problem, which represents the seconi stige of this ap-

proach, is to determine the conditional expectations

E(a;yi-si), E(B‘yi=si), var(u,yi-si), cov(a.s‘yi=si)

| 2.
var(a;yi-si) and E(+ vy ) .

Avenhaus and Jewell do not use the observations of vi in order to get a bet-
9 2
ter estimate for 77, instead they replace E(s~ yi=si) by the apriori moment
hal
E(¢7). All other terms are estimated by means of linear estimators for a and

2
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in such a way that the expectation of the quadratic loss function,

N 2 vea 2Ta a2
E((“‘*o'g"i YT 8Ty

Y 2. and ﬁi. This leads to

is minimized with respect to the unknown =x o

Ov
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- the following system of equations
n
ay = E{a) - iElai'(E(a)ﬂl(B‘xi))
n
By = E(B) - izlsi-(s(am(e-xi))
[ 4
n
.Z a. cov(yi.yj) = cov(a,a+8'xi) , i=l,...,0 ,
J=l
n
.Z B.'cov(yi,yj) = cov(B,a+8'xi) , i=l,...,n .
J=1
It can be shown (Jewell 1975) that the solution can be written as
A
‘“B\ . -M\'EE(Q)\ . q.:a\
\Bg L2 By TR
where
1 O
I, =, \, 1 ‘
* 2 \0 I '
i
. T 2 T ! |
M= Coxext LE(CT) +Crx«x
N l
|
“ var(a) cov(a,B) i
= I
¢ " cov(a,B8) wvar(8) . °* s
/I x" i
X = 1 x2 , } 7
{ X
n
4
Ty -
v (xx) exTe ot
6' ynl
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! - A = .
Now, E(a;yi si) and E(8 Y; si) are estimated by uB(sl,...,sn) and bB(S',...,

sn) respectively. The second moments of a and B, i.e. the covariance matrix

! '
var . =3, covia V.=s.
(a]y;=s;) (0,8 v, =s )

cov(a,BFyi-si) var(B?yi=si)

- ]
is estimated by M'(xT'x) l.

As already mentioned, the method does not use an aposteriori estimate
a
for ¢”. This might easily be changed if one assumes that the apriori estimate
was derived from a trial with a known number N of observations YooYy Also *
2

a multiple of observations of z could be used for the estimation of 5% in the

case of o=t. Furthermore the problem has to be reconsidered whether or not the

loss function for the estimation of a and B is appropriate.




A QUADRATIC BAYES APPROACH

This approach tries to maintain the property of linear Bayes estima-
tors insofar as only some moments have to be known and not an apriori dis-

tribution of a, 8, 0, T and x.

The idea is the following: Instead estimating the parameters a, B8 and
Tt of the relation

Z. = a*B R+TV., j=l...m

j i ] »
the parameters of the transformed relation

X = Y+6-zj+wj s J=l...m ,

where

are estimated by estimators which are linear in Yis i=l...n .

Explicitely the estimator for x is given by

QQ=¢+§§ z. ,
j=r 3
. A
where the estimators y and @.,
A 2
Y ® Yoo L di0™Ys

are determined in such a way that the Bayes risk, belonging to the quadrat-

ic loss,
m 2 -oon
feoxads T 820% ap m f(oxs 3 Vdoyz)” e,
j.l J J j,o igo J ]

~

where z =y, =1, is minimized. The solution yields a guadrazics ~ssiwzzop

b= 1 7
Xa= ) ) d..ry.rz. ,
Q2o jmo 1 L7
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the coefficients of which are the solution of the following system of equa-

tions

m n
f(*x+ Z Z &;:'v.°z.)'y 2z, dP =0, k=0,...,n; i=0,...,m,
j=0 i=0 1] ‘1 7] k "¢
which is obtained by differentiating the Bayes risk partially with regard
to the parameters dkﬁ' In terms of the moments of Ys and z, this system of

equations has the form

.'yk'zj-zt) = E(x-yk'zz), k=0,...,n3; 1=0,...,m ,

which means that only the first four moments are needed.

Role of Cosarvations z4

It seems to be plausible that each observation zj, j=1,...,m, should

have the same importance for a 'best' estimator of x. Therefore we replace

z in the case of m=1 by the mean value
- l m
z :='a'§_.z.
Aj=IJ
and ask for the risk minimizing parameters aij’ i=0,...,n, j=0,1, of the
estimators
- - n.
Y i=dgot 2 A1y
1=0
- - no.
= + ty
§ i=dyy* 2 4y tyg
i=1

tor vy and 3§ of

X = y+8 z4w .

Since the risk is a convex and quadratic function of aij the optimal aij

are completely determined as solutions of

] n .
- - - -3+ -0

) ) d..'E(y." -Z3 ) = E(x'y,*2) , k=0,...,n; i=0,1 ,
5;0 i=Q 1J yz yk yk




where 20:=l. Since

E(yi‘yk.zj.z:)

=2 2 1 2
E(yi'yk'z ) = E(yi'yk'Z,) - —-—m; 'E(yi'yk'r ) ‘ﬁ

where
o] hid?
x(3,2) := for
1 j=t
we get
E(Yi')’k'z) = E(Yi')'k'zl) ’
where

2 2 2
E(yi'T ) = E(Q'T ) + xi'E(S'T ) ’

2 2 2 2
E(y;-rz) = E(az-rz) + 2°xi'E(a-8'r') + xi’E(S'-rz) + E(OZ'T )

2 2.2 .2 2 2 . .
E(yi-yk-r Y=E(a""7T )+(xi+xk)-E(a-a-t )+xi-xk-E(3 7Yy , i,k=l,...,n 1i#k .

we show that the estimator

n_ _
5 d. . (z)?

|
X, = 7 :
j=0 i=o *J

Q

represents a solution of our original problem. Let

40 = dip

1
ij T wm G

It is easily shown that these terms solve the original system of equations

] 72

et~

therefore

) .
= E(Yi'yk'zﬁ) - W(j,ﬁ)'E(yi'yk'r”) , Jei=l,...,m .

© . . . . = . . .
édij E(yi Y zitz,) = E(x Y zi) H

”m'

2




A m
X, = )

n n__ .
o™ L Tdpyye = JooYa. ()
T j=0 i= =

o 13717

is the risk minimizing estimator for X.

It should be noted that the mean value estimator is not always the

single solution.

Unbitasedness

The first equation (k=2=0) of the system of equations determining dij’

I oI
d.."E(y,-z,.) = E(x) ,
jZo (Ll ROy T RGO

shows that the estimator is unbtzsed with regard to the apriori distribu-

tion.

One would regard the estimator as trivial if dOO=E(x) and dij=0 for
(i,j)#(0,0), i.e., if the estimator neglected the observations of Yyreeos¥po
CITERET By inspection of the equatians determining the dij’ this holds
if and only if

var(x)'E(u‘3+82'xk) =0, k=0,...,n ,

or equivalently if
2
var(x) = 0 or E(37) =0 .

Hense these cases have to be excluded.

Cormputartonal Proceiure

In the following we consider only the mean value z of observations
zj, j=1,...,m. Therefore we write z instead of z for the sake of simplici-
ty. For the same reason we write dij instead of Eij, i=0,1,...,n, j=0,1,
This can be interpreted as the description of the situation where one has

. . 1 2, 2
only one observation z, with the error il instead of t~.

In the case that the first four joint moments of Yyreres¥y and z can
easily be obtained, another system of equations can be used for the deter-

mination of the estimator. With the definitions




the system of 2-n+2 equations for the coefficients dio’ d. ., i=0,...,n ,

1l
has the following form:
dOO + E(A) + dOI'E(z) + E(B-z) = E(x)

dOO'E(z) + E(A*2) + dOl-E(zz) + g(s-zz) = E(x*2z)

dOO'E(Yk) + E(A'yk) + dOI'E(z-yk) + E(B-yk-z) = E(x-yk)

2 2 X .
dOO E(yk z) + E(A Vi z) + dO! E(z yk) + E(B Y2 ) = E(x-yk z), k=l,...,n.

Solving the first two equations for d and dOI’ we get

00

1

dol = Sar ) *[cov(x,z)-E((A+B*z) - (z=E(2))]

1

dOO = ;E;T;T-'fcov(x'z,z)-cov(x,22)+E((A+B'z)'(i'E(z)-E(zz)))] .

Inserting these formulae into the remaining equations we get with the map

£(.,.) defined for each pair of random variables U,V by
2
E(U,V) := var(z)‘E(U-V)=E(V)* (cov(U-z,2)~cov(U,z"))-E(V-2) "cov(l,2)

the following system of equations for diO‘ d.,, i=l,...,n:

il

n n

izldio-ﬂyi,yk) + iZldil-f(yi-z,yk) = £(x,y,)

n n

z dio f(yi,yk'z) + ) dil'f(yi'z,yk'z) = f(x,yk‘z), k=1,...,n .

i=| i=1

Having solved these equations, we can determine dol and dOO as follows:

! n n
o1 ~ Var(z) [eovix,z) = .E digrcoviy;,z) + Y d. "cov(y,*7,2) ]

i=] i=1 1l

d

L




i n .
1 . 2 v . co oY= 2
do0 = Var(z) LCOV(X*z,2)mcov(x,zT) ¢ i;ldi‘o (cov(y; z,2)=cov(y;,z7))
2 2 2
L gy (eovtyyreimmeovty; 2,21

where the moments needed explicitely are given by

E(z) = E(a)+E(x)-E(8B)

E(y,'2) = E))+Ix +E(x) 'E(a*8)+x "E(x) -E(8%)
E(y;y) = EGD)elx g 1 Ea 8)+x; " x "E(8D)+x (i, k) "E(a™)

E(y;'y02) = E(a3)+txi*xk+ﬁ<x>J'E(a2-3)+rxi'x +xi'5(x)+xk‘ﬁ<x)1-z(a-sz>+

k

#x; 0 E()TE(BY) #x (1,K) *[E(ar6?)+E () “E(8-07) ]
2 2 2 2012
£GzY) = E(D) 42 B E(ar8)+E() B Leie?)

E(yk'zz) = E‘]—-E(a-rz)*'xk'é'E(S'T:)*E(x3)*[2'E(X)‘xk]'E(C‘z'B)+
2 2 2 3
+[2-xk-5(x)+E(x Yl'g(2'8 )+xk'C(x')'E(E )

) / 2
E(Yi‘yk'z“) = E(a4)+fxi+xk*2'E\x)]'C("B-i)*fsi'xk+2'(xi*xk)'E(x)+E(x")]'

22 2 v, 3
E(a”8 )+[(xi¢xk) E(x7)+2 XX E(x)I'E(x-£7)+

+ . .E 2 . ("!‘ + ]'E( 2.-2 .l-;:( * 2 2
xi X (x")E(37) = 17T )#(xi+xk) b )+

oL 2 2 c oo 2.2 2 202
+xi T E(B7 t7)+v(L,k) " [E(x™ c™)+E(xXx ) "E(8" "5 )+

2
-

+20E(x) E(2°8-0")+ %~E(J:-r )1

+

E(x'y,) = E(K)’[E(1)+xk-E(S)]

E(x'z) = E(x)°E(a)+E(x>)-E(8)

ECxty, - 2) = EG)"Ea7)+[EG)ex "E(x) ' (e 8) +x, “E(x) E(8D)




Let us now assume that a and 8 are exactly known, i.e.,

E(a) = a, E(B) = 8; var(a) = var(8) = O

Then we get

var(z) = var(a+8-x+1:v) = Bz'var(x)+ %'E(TZ)
cov(x,z) = cov(x,x+B8°x) = B'var(x)

it l o
cov(x*z,z)=cov(x,z”) = =a-3+var(x)+ E'E(r“)*E(x)
E(x-yk) = E(x)‘E(yk) etc.,

and therefore

E(x,y,) = E(y) [E(0)- (82.var(0)+ T-E(x0))+ar 3 var(x)- Leah e

-(a+3*E(x)) 8 var(x)]1 =0 ,

f(x.yk'Z) = E(yk)'[E(a'x+B'x2)'(Bz'var(X)* %'E(rz))+(:*5'E(X))'(a-S'var(x)

i 2 2 ] 2 2
- ;'E(r Y E(x))-(8% var(x)+ E'E(T Y+ (+3°E(x)7 )8 var(x)] = 0 .

As the system of equations for the di d i=l,...,n is homogeneous, the

(L
! system has the trivial solution

= £ .3
diO dil =0 for i=l,...,n .

This result is reasonable: If the parameters x and 2 of the regression line

are exactly known, one does not need the ¥ for estimating these parameters.,

With A=B=0 we get

4 - cov(x,z) - grvar(x)
(0]} 2 i 2
var(z) g var(z)+ ;'E(t )
2 1 2
- cov(x*z,z)~cov(x,z") -3 var(x)+ ;-E(r Y -E(x)
- - m

d
00

var(z) 52~var(z)+ %'E(rl)




Therefore x is estimated by

"
-arB8-var(x)+ i-E(r')'E(x)*S‘var(x)'z

3y = dgg 4z - : —
B~ -var(z)+ E'E(r )

This estimate can be written in the following intuitive form

QQ= L . E(x) + L SR i
i+ m* 8" var(x) 1+ E(r7)
3 5
E(tT) m-B” " var(x)

which can be interpreted as follows: If the apriori information on X is

. . . 1 2 2
much better than the measurement uncertainty, i.e., if ;'E(r }y>>37*var(x),
then x is simply estimated by the apriori information. In the opposite case

x is estimated by inverting the regression line.




CONCLUSIONS

Four estimators of practical importance were considered, the maximum

. . . A . . . A
likelihood estimator x.,, the inverse regression estimator x the two stage

C’ ‘[’
. A . . A . .
estimator XAJ’ and the quadratic estimator xQ. All of them are linear in the

-7 A _ L. .
mean value z, i1.e., all have a shape x=co+cl‘z. The coefficients <y and Cl

depend on the observation of Yyoeoos¥y and the apriori information. Since

. A . . . .
the expectation value of x, does not exist, its relevance as a point esti-

C
mator seems doubtful. All other estimators have their own merits and short

. . A, . . Ce.
comings. The estimator x, is easily calculable but up to now justified as a

I
Bayesian estimator only for special a-priori distribution functionms. QAJ
uses only the first and second a-priori moments instead of the whole a-
priori distribution. The numerical expenditure is substantially higher as
with Qi' The estimator QAJ however needs further theoretical investigation.
The quadratic estimator &  is the only one which has been derived as a solu-

tion of a risk minimizingqproblem. It is the only one which is linear in the
observation LATERTES AP Its confidence region and sequential properties have
not been investigated as vet. Furthermore even more computation effort is
needed as for the other estimators. In addition the required knowledge of
the third and fourth moments of the apriori distribution requires an in-
creased effort. Whether this problem can be circumvented by a similar "semi-
minimax" estimator using only the first, two apriori moments cannot be

answered as yet.

So far only a few numerical calculation have been performed. They in-
dicated that the four different methods led to not too different estimations
and ¢, of the linear form c. +c -z dif-

0 } (VI
ferent substantially depending on the apriori information. Thus it seems that

of x however, that the coefficients ¢

considerable numerical work is required in order to get a feeling for the use-

fulness of the various approaches under given circumstances.

Contrary to the fact that already a large amount of research eftfort
has been invested into the inverse regression problem, only a few results
have been obtained especially if more general nonlinear estimators are con-
sidered. It seems that the scope of the problem of inverse linear regression

has not yet been understood.

e
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