
•	CLASSIFI							NL.	
		5	្ទ						
					×				
									END DATE FILMED 2 - 84 DTIC

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED DO NOT RETURN IT TO THE ORIGINATOR

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	NO. 3. RECIPIENT'S CATALOG NUMBER
CERL-TR-M-283	5. TYPE OF REPORT & PERIOD COVER
PAVEMENT EVALUATION AND REPAIR RECOMMENDATION	TEINAL
SIERRA ARMY DEPOT, AMEDEE AIR STRIP	1
	6. PERFORMING ORG. REPORT NUMBEI
7. AUTHOR(#)	8. CONTRACT OR GRANT NUMBER(.)
M. Y. Shahin	/ IAG-PR-9-80 /
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TAS
U.S. ARMY /	AREA & WORK UNIT NUMBERS
CONSTRUCTION ENGINEERING RESEARCH LABORÁTORY P.O. Box 4005, Champaign, IL 61820	12/66.1
1. CONTROLLING OFFICE NAME AND ADDRESS	12 ABPORT DATE
	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office	62 15. SECURITY CLASS, (of this report)
	Unclassified
	154. DECLASSIFICATION/DOWNGRADIN
	SCHEDULE
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES	from Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	formation Service
 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 KEY WORDS (Continue on reverse side if necessary and identify by block numb 	from Report) Formation Service
 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 KEY WORDS (Continue on reverse eide if necessary and identify by block numb 	from Report) Formation Service
 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 19. KEY WORDS (Continue on reverse eide if necessary and identify by block numb Sierra Army Depot, CA maintenance Amedee Air Strip repair runways, pavements i 	formation Service formation Ser
 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Sierra Army Depot, CA maintenance Amedee Air Strip repair runways pavements i 28. ABSTRACT (Continue on reverse side if mecessary and identify by block numb The Pavement Condition Index (PCI) procedure wa natives for repairing the runway of the Amedee Air California. Based on the PCI analysis, it was recomme recycled and used as a base, with a new asphalt concrete 3 inches at the central 75 feet and tapered to I inch at the was based on the assumption that the engineer has flexibi grade of asphalt needed. If not, reconstruction with con- 	formation Service formation Ser

i a

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

÷.

-

15.10.25

، مىلەر ئەرىزىغە مەملۇر 1928-

FOREWORD

This research was conducted for the Sierra Army Depot, Herlong, CA, under IAO PR 9-80 by the U.S. Army Construction Engineering Research Laboratory, Champaign, IL. The Sierra Army Depot Project Monitor was Mr. Michael P. Balerviez. The CERL Principal Investigator was Dr. M. Y. Shahin.

The following people are acknowledged for their participation in surveying the runway: Mssrs. Mike Flaherty and Jim West, DARCOM; Mssrs. Mike Balerviez, Ray McMillan, and David Wickward, Sierra Army Depot. Dr. R. Quattrone is Chief of CERL-EM. COL Louis J. Circeo is Commander and Director of CERL, and DR. L. R. Shaffer is Technical Director.

Acce	ssion For	
	GRA&I	X
DTIC		
Unan	nounced	n I
Just	ification	
		······································
By		. I
	ribution/	
Ava	ilability	Codes
{	Avail an	d/or
Dist	Specia	1
	1	
Δ		
17.		
	1	1

CONTENTS

	DD FORM 1473	1
	FOREWORD	3
	LIST OF FIGURES AND TABLES	5
1		7
	Background and Description of Existing Facility Objective	
2		7
	Runway Condition Survey	
	Field Investigation	
	Laboratory Investigations	
3	EVALUATION	8
	Evaluation of Past Performance and Selection of	
	Feasible Maintenance and Repair (M&R) Alternatives	
	Prediction of Future Performance of	
	Selected M&R Alternatives	
	Life-Cycle Costing of Selected	
	M&R Alternatives	
4	CONCLUSIONS AND RECOMMENDATIONS	10
	FIGURES AND TABLES	11
	APPENDIX A: PCI Computer Output	35
	APPENDIX B: Results of AC Laboratory Testing	50
	APPENDIX C: Program Output of PCI Prediction	
	for Each M&R Alternative	53
	APPENDIX D: Program Outputs for Predicting	
	Future Cracking	55
	APPENDIX E: Future M&R Costs for Each M&R Alternative	57

DISTRIBUTION

4

5.

. 453

FIGURES

Num	ber	Page
1	Layout and Typical Sections Amedee Army Airfield	11
2	Division of Runway Into Features	12
3	Division of Features Into Sample Units	13
4	PCI of Individual Sample Units for Central, North, and South Features	14
5	Photograph of Sierra Army Depot, Amedee Runway. Showing Primary Type of Distress	15
6	Runway Layout Showing Location of Cuts	15
7	Cut #1	16
8	Cut #2	17
9	Cut #3	18
10	Tensile Strength Vs. Temperature for AC Surface Top 1.5 Inch	19
11	Data Used in Temperature Cracking Program	20
12	Predicted Cracking Using Temperature Cracking Program	21
13	Airfield Pavement Condition Evaluation Summary	22
14	Correlation of M&R Zones With PCI and Condition Rating	23
15	Rate of Deterioration of AC Pavements	23
16	Evaluation of Load Carrying Capacity	24
17	Expected PCI Over Time for Each M&R Alternative	25
18	Alternative A: Continue Crack Seal to PCI=40 (1987), Then Overlay	26
19	Alternative B: Overlay 1980	27
20	Alternative C: Replace Surface — 3-Inch Deep	28
21	Alternative D: Recycle Surface and Use as Base, Add New Surface	29

22	Alternative E: Replace Surface Central 75 Feet, Crack Seal Outside	30
		30
23	Life Cycle Costing of M&R Alternatives	31

TABLES

Nu	Imber	Page
1	Summary of Linear Cracking for Entire Runway	32
2	Summary of Distresses Other Than Linear Cracking	32
3	Predicted Cracks and Repair Costs for Entire Runway	33
4	Summary of Linear Cracking Outside the Central 75 Ft	33
5	Predicted Cracks and Repair Cost for Outside the Central 75 Ft	34
6	Comparison of \$/Unit Performance for Each M&R Alternative	. 34
BI	Bituminous Mix Analysis	50
B2	Indirect Tensile Results	51
B3	Sample Size	51
B4	Computation of Indirect Tensile Strength	52

PAVEMENT EVALUATION AND REPAIR RECOMMENDATION SIERRA ARMY DEPOT, AMEDEE AIR STRIP

1 INTRODUCTION

Background and Description of Existing Facility

Amedee Air Strip is located at Sierra Army Depot, Herlong, California, east of Honey Lake and 50 air miles northwest of Reno at an elevation of 4000 feet.

A layout of the runway is shown in Figure 1. The runway surface is a 3-inch layer of asphalt concrete (AC) which, with the 4-inch crushed base below, was added in 1969. The original runway was constructed in 1943, and the 1969 overlay was emplaced because of considerable cracking in the original surface. The 4-inch crushed stone base was used to eliminate (or minimize) reflection cracking in the new surface.

Since its overlay in 1969, the runway has had a history of problems, and experts from Office, Chief of Engineers (OCE), Sacramento District Engineer Office, Defense Acquisition and Readiness Command (DARCOM), Depot Systems Command (DESCOM), and the U.S. Army Corps of Engineers Waterways Experiment Station (WES) have made on-site evaluations of its condition. These evaluations showed that although the runway appears to be structurally sound, the pavement has oxidized, causing surface cracks. It was also concluded that the cracks are not reflective cracks from the old pavement constructed in 1943.

The cost of maintaining the runway from 1969 to 1979 1.3s been \$320,550, and is increasing rapidly.

Objective

The objective of this study was to determine the optimum maintenance and repair alternative for Amedee Airfield.

2 INVESTIGATION

Runway Condition Survey

On 13-15 November 1979 a team from DAR-COM, the Sierra Army Depot, and CERL performed a condition survey of the runway using the Pavement Condition Index (PCI) procedure developed by CER1. and implemented by the U.S. Air Force worldwide.¹ The runway was divided into distinct features based on structural composition and traffic distribution as shown in Figure 2. Each feature was divided into sample units for inspection. The number and location of sample units inspected were determined as shown in Figure 3. A PC1 inspection was performed on all the runway features, and the results are shown in parentheses in Figure 2. Figure 4 shows a plot of the PCI for the individual sample units of each feature, and Appendix A provides a complete PC1 computer output.

The results of the PCI survey (Appendix A) showed that the distress is mostly linear cracking. Figure 5 is a photograph of the runway surface. Table 1 summarizes the quantities and severities of linear cracking found in each feature and Table 2 summarizes the other distresses that were found.

Field Investigation

From the PCI inspection, it was determined that the majority of the cracks are temperature related; however, whether the distress was reflective, started from the base course (i.e., bottom-up), or started from the surface (i.e., top-down) was not clear. Therefore, three cuts (approximately 1 x 2 feet) were made around the different cracks so that their cause and characteristics could be clearly determined (Figure 6). Cuts #1 and #3 were outside the traffic area, and cut #2 was in the traffic area.

Cut #1 (Figure 7) was across a 4-inch-wide crack extending through the full depth of the top AC surface. There was no evidence of the crack in the base or on the old AC surface below.

Cut #2 (Figure 8) was made across two cracks, one of medium severity and one of low severity. Both cracks were continuous throughout the full depth of the top AC surface but not through the base or old AC surface. The low-severity crack was only about 1½ feet from the medium-severity crack and both were in the wheel path, as indicated by the tire markings. These two cracks were also beginning to be connected by random cracking. It was evident that the initial temperature cracking was becoming alligator cracking because of the weakened pavement condition around the temperature cracks.

¹Airfield Pavement Evaluation Program, AFR 93-5 (Department of the Air Force, 1980).

Cut #3 (Figure 9) was made across the tip of a hairline crack in a nontraffic area. The cut showed that only portions of the crack had propagated to the bottom of the AC surface. In Cut #3, the surface crack was 8 inches long and only 3 inches had propagated to the bottom. Therefore it was concluded the crack had originated at the surface.

Based on the field investigation, it was concluded that the cracking in the Sierra Army Depot runway is limited to the AC surface. Furthermore, it was speculated that the temperature cracks are caused by thermal fatigue in the AC surface resulting from the high daily temperature cycling variation in this area.

Laboratory Investigations

The laboratory investigations were designed to verify field observations that the AC surface had oxidized and that the cracks were caused primarily by thermal fatigue cracking. The AC slabs obtained from the three cuts described above were forwarded to WES for testing. Appendix B provides the results of the testing.

Tests performed included: AC Marshall Stability, flow, percent voids in total mix, percent voids filled; and asphalt penetration, softening point, and viscosity. The results showed that the pavement had oxidized, as indicated by a penetration of 15 and softening point of $71.2^{\circ}C$ (160°F) for the asphalt in the surface course.

Construction records from 1969 showed that the asphalt had an original penetration of 90 and a softening point of 49.4°C (121°F). The construction records also showed that penetration (percent of original) after the Thin Film Test was 72. The drop in penetration from 90 in 1969 to 15 in 1979 is considered high.

In addition to the above tests, the indirect tensile test was performed at four temperatures (-20, 20, 50, and 75°F) at loading rate .05 inches/minute, and at three temperatures (20, 50, and 75°F) at loading rate 2.0 inches/minute. Figure 10 is a plot of the tensile strength of the AC mix (top 1.5 inch) versus temperature.

To verify the cause of cracking, the program developed by Shahin² was used. The program predicts both low-temperature and thermal-fatigue cracking as a function of the AC mixture properties and climatic factors. Figure 11 shows the input to the program. Figure 12 is a plot of cracking versus age as predicted from the program. As shown in the figure, there is a close agreement between the measured and predicted amounts of cracking.

Detailed analysis of the program output showed that the cracks are caused by thermal fatigue cracking (resulting from daily temperature cycling) rather than just simple low temperature. The close agreement in prediction is encouraging in that the same program can be used for future mix design and selection of optimum asphalt grade to minimize cracking. It is believed that a careful mix design and careful selection of asphalt grade can increase the pavement life by several years.

3 EVALUATION

Evaluation of Past Performance and Selection of Feasible Maintenance and Repair (M&R) Alternatives

The evaluation, which was performed according to the M&R guidelines CERL developed for the U.S. Air Force,³ was performed for feature RC3 since it is the largest feature, receives most of the traffic, and has the lowest PCI. Following is a brief discussion of the results, which are summarized in Figure 13.

1. The PCI of the feature is 61, which locates the feature in an M&R zone of routine, major, and overall. This is based on the guidelines shown in Figure 14, which were developed by a group of experienced Air Force engineers and subjected to considerable field testing and validation. It is to be noted that the M&R zone reflects needed M&R within 2 years of the PCI survey date.

2, Localized variation exists. Variation results because one sample unit has a PCI of 33 (sample unit #20), while the average PCI of the feature is 61.

3. The long-term rate of deterioration is high compared to other airfield AC pavements of the same

²M. Y. Shahin, "Prediction of Low-Temperature and Thermal-Fatigue Cracking in Flexible Pavements," Ph.D. Dissertation (University of Texas at Austin).

³M. Y. Shahin, Development of a Pavement Maintenance Management System, Vol VI: M&R Guidelines-- Validation and Field Applications, ESL-TR-79-18 (USAF Engineering and Services Center [AFESC]).

age throughout the United States. This is illustrated in Figure 15.

4. Analysis of the load-carrying capacity showed the pavement to be structurally adequate (see Figure 16). Distress evaluation showed that 56 percent of the deduct value stem from load-associated distress (alligator cracking). However, this can be attributed to the weakened areas adjacent to cracks caused by temperature variations.

Application of the M&R Performance Standards recently developed for the U.S. Air Force* to the results of the evaluation in Figure 13 showed that most experienced maintenance engineers would consider the following M&R alternatives:

- (a) Routine,
- (b) Surface Treatment,
- (c) Thin Overlay, and
- (d) Recycling or Replacement of Surface.

The above alternatives all seemed feasible. Selection of a specific M&R alternative is a function of future performance and life-cycle costing.

Prediction of Future Performance of Selected M&R Alternatives

Five Specific M&R alternatives were analyzed:

Alternative A: Continue to seal cracks to a minimum (acceptable) PCI; then overlay with 3-inch AC at center, tapered to 1 inch at edges.

Alternative B: Seal cracks and overlay immediately with 3-inch AC at center, tapered to 1 inch at edges.

Alternative C: Replace entire surface with a new 3-inch-deep AC hot mix.

Alternative D: Recycle surface and reuse as base; then add new 3-inch AC for central 75 feet and taper to 1 inch at edges.

Alternative E: Replace central 75 feet of surface course with 3-inch AC hot mix, and continue to crack seal outside areas.

Along with each of these alternatives, it was assumed that a rejuvenating surface treatment would

be applied periodically to retard surface brittleness and thus temperature cracking.

The PCI for each alternative was predicted, using a computer program based on M&R consequence models developed for the U.S. Air Force.⁴ Appendix C provides the program output for each M&R alternative. Figure 17 is a plot of the expected PCI over time for each alternative.

Life-Cycle Costing of Selected M&R Alternatives

The life-cycle costing is determined based on initial cost, future M&R cost, and salvage value. The presentworth method was used to consider both interest and inflation rates. Figures 18 through 22 provide work summary and initial cost estimates for each alternative.

Future cracking had to be predicted in order to estimate future M&R cost. The maximum cracking expected to occur in the future, is block cracking with an average size of 10 feet x 10 feet. This translates into a total cracking length of approximately 197,050 linear feet for an area that is 150 feet x 6800 feet. The total amount of cracking currently existing is 51,053 feet. Using statistical techniques.⁵ future cracks were predicted; (see Table 3). Appendix D provides the computer output used in the prediction. Future M&R was computed on a two-year basis, assuming a repair cost of \$1.0/linear foot. Another assumption in the computation of future M&R was that cracks must be resealed every 6 years. Table 3 shows all cost calculations.

For M&R Alternative E, where only the central 75 feet would be replaced, it was essential to do the crack prediction for only the outside 75 feet. Table 4 summarizes the cracking outside the central 75 feet.

The maximum cracking expected to occur outside the central 75 feet will be in the form of block cracking having an average size of 10 feet x 10 feet, or a total

Ú.

^{*}U.S. Air Force Pavement Major Command Engineers meeting held at CERI, 15-17 Jul 80.

⁴M. Y. Shahin, M. I. Darter, and T. T. Chen, Development of a Pavement Maintenance Management System, Vol VII: Maintenance and Repair Consequence Models and Management Information Requirements, ESL-TR-79-18 (AFESC, December 1979)

⁵M. Y. Shahin, M. I. Darter, and S. D. Kohn, Development of a Pavement Maintenance Management System, Vol IV: Appendices A through I. Maintenance and Repair Guidelines for Airfield Pavements, CEEDO-TR-77-44 (AFESC, 1977).

cracking length of approximately 105,325 feet. The total cracking currently existing is 18,906 feet. Using statistical techniques, future cracks were predicted (see Table 5). Appendix D provides the computer output used in the prediction. Another assumption in the computation of future M&R was that cracks must be resealed every 6 years. Table 5 shows all cost calculations.

The information in Tables 3 and 5 was used to compute future M&R costs for each alternative. (Appendix E shows the computation of future costs.) The cost information was then input to a presentworth economic analysis program. Figure 23 shows the results of the cost analysis, with ranking of alternatives based on net present cost shown at the top of the figure. Considering the amount of predictions and estimates involved, the difference in cost among the various alternatives is not large enough to allow selection of an alternative based on cost alone.

4 CONCLUSIONS AND RECOMMENDATIONS

The runway AC surface had oxidized, as shown by a measured asphalt penetration of 15 (1979) versus an original penetration of 90 (1969). Large daily temperature variations (average daily temperature range of 40°F) have caused the oxidized AC surface to crack. The amount of cracking is expected to increase at a high rate, as predicted in Table 3.

Figure 2 shows the PCI of the various runway features. The lowest PCI is 61 for feature RC3, which has been caused by further breakdown of the cracks under load.

Five feasible M&R alternatives were identified and analyzed. Figure 17 shows the performance (PCI over time) expected for each alternative. Figure 23 shows the results of life-cycle costing for each alternative. The most costly alternative (C) is only about 30 percent higher than the least costly alternative. Therefore, considering the amount of predictions and assumptions necessary to perform the life-cycle costing, the difference in net present cost among the various alternatives cannot be used as a sole indicator for selecting the best alternative. Another factor to consider is the dollars spent per unit performance. This is computed by dividing the net present cost for each alternative by the area between the PCI (Figure 17) and the minimum acceptable PCI during the analysis period (1980 to 2000). Table 6 shows the results of these computations. Although the differences are still narrow, alternatives B, D, and E appear to be more advantageous.

Based on the overall analysis, it is recommended that alternative D be adopted; i.e., recycle surface, reusing it as base, then add new 3-inch AC for the central 75 feet, and taper it to 1 inch at the edges. Alternative D is recommended, because it offers the following unique advantages:

1. It is the strongest alternative structurally of great importance in case of the heavy traffic operations.

2. It requires the least amount of future maintenance and thus less frequent traffic interruptions.

3. It will eliminate the possibility of reflection cracking by recycling the surface and using it as a base.

4. It provides an environmental advantage because of recycling.

It is recommended that alternative D be implemented within the coming 3 years (1981 to 1984).

It must be emphasized that any new AC mix should be carefully designed to minimize temperature cracking. Special attention should be given to the asphalt grade and specifications. Acceptance of the mix should be based on analysis similar to that described in the section on "Laboratory Investigation".

The asphalt selected should have a penetration of approximately 120 and percent penetration after the thin film oven test of 65-75. If no asphalt supplier in the area can meet the required specifications, then consideration should be given to reconstructing the runway with concrete. Concrete was not analyzed in detail, since the initial cost was estimated to be four times that of alternative D. However, if no asphalt supplier can meet the requirements to minimize cracking, then reconstruction with concrete may be economically justified based on the life cycle costs.

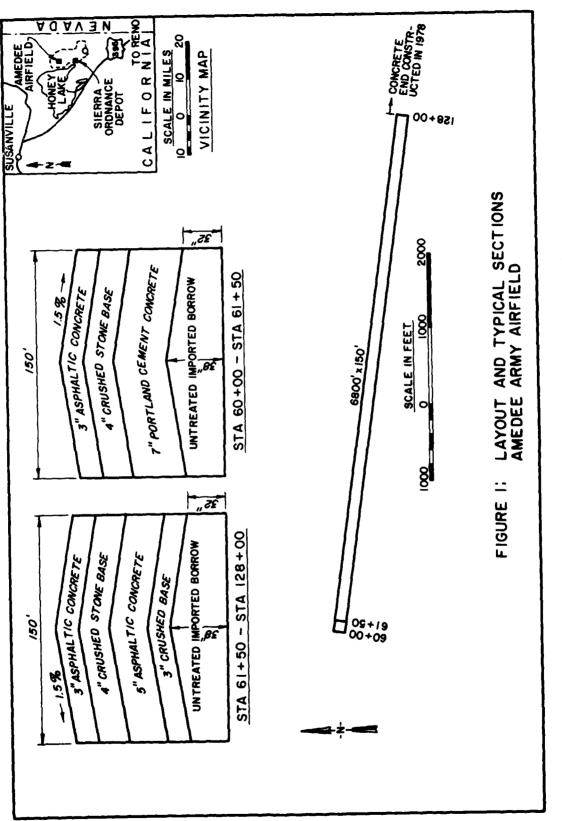
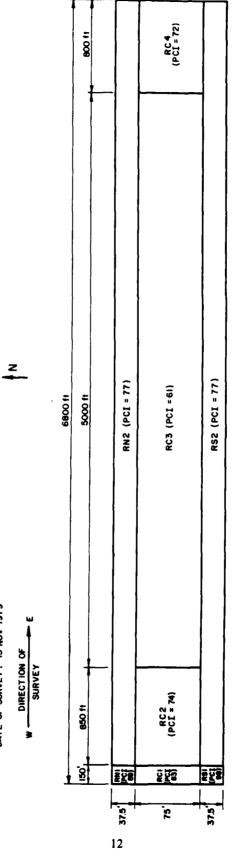
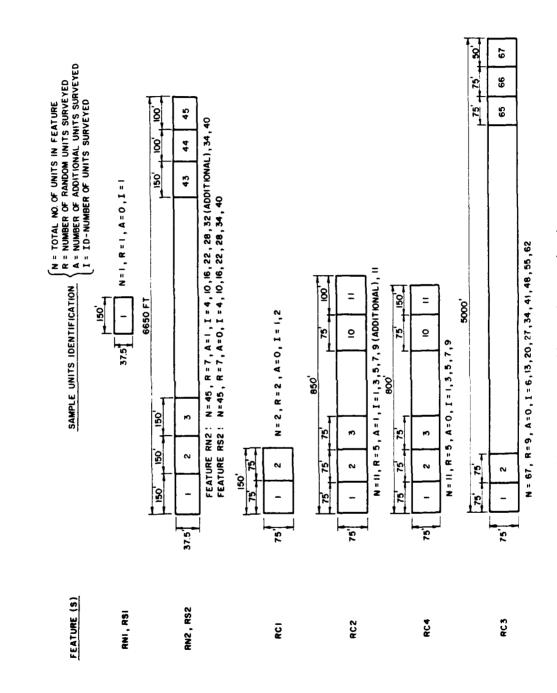



Figure 1. Layout and typical sections Amedee Army Airfield.


ł

DATE OF SURVEY : 15 NOV 1979

Section 200

ويعتب ويتكلف ويليله

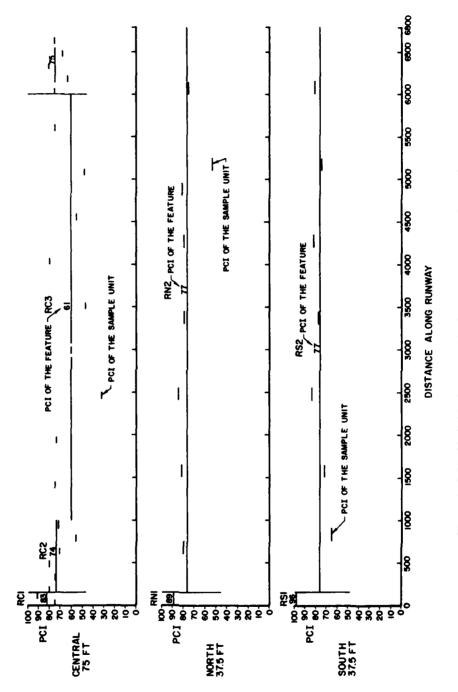
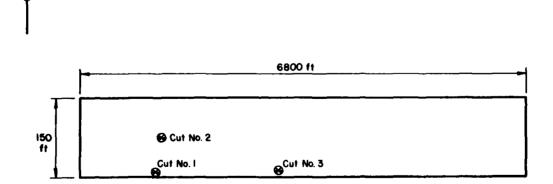
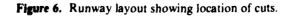


Figure 4. PCI of individual sample units for central. north, and south features.





N

ļ,

Figure 5. Photograph of Sierra Army Depot, Amedee Runway, showing primary type of distress (temperature cracking).

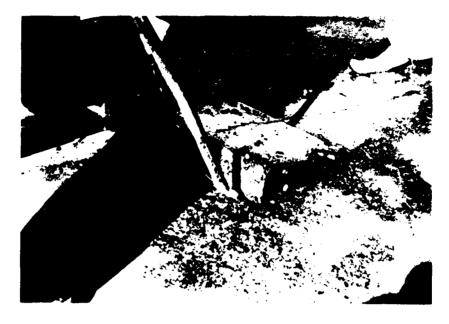
15 Million



(a) Pavement before cut showing 4-inch wide crack.

(b) Pavement after cut showing crack to extend through the full depth of the top AC surface.

Figure 7. Cut #1.



(a) Cut showing medium and low severity cracks.

(b) Bottom of pavement slab. Cracks were found to extend through the full depth of the top AC surface.

Figure 8. Cut #2.

(a) Pavement slab being carefully lifted after saw cutting.

h

(b) Top of slab showing 8-inch-long crack.

Figure 9. Cut #3.

ž

(c) Bottom of slab showing 3-inch crack propagated to bottom.

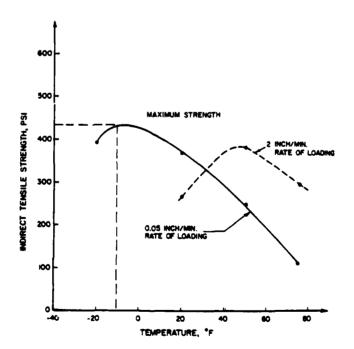


Figure 9. (continued)

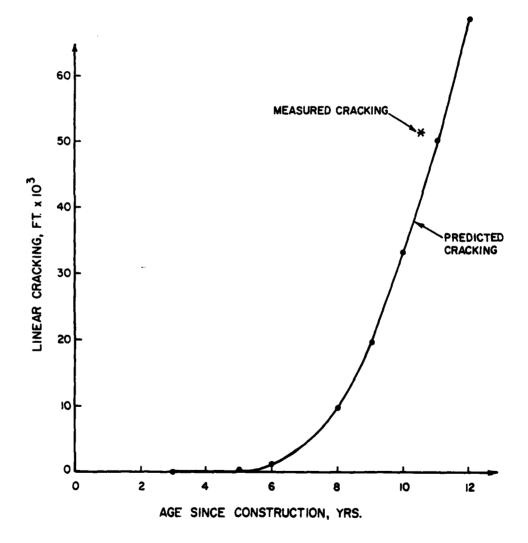
Figure 10. Tensile strength vs. temperature for AC surface top 1.5 inch.

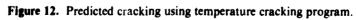
19

Sales and a state

1 PAU.SEC.NO. I SIERRA ARHY BASE

TINE	OF LOADII	IG ,SEC	•	3600.000	
		MONTH			
JULY	AUG.	SEPT.	OCT.	NOV.	DEC.
1	2	3	4	5	4
JAN. 2	FE B. A	HAR. 9	APR. 10	MAY. 11	JUNE 12
,	•	•	10	11	14
AMMILAI	AVERAGE RANGE	, 30	8.F 6.F		49.500 39.600
	RANGE		6.F		34.500
		,	•••	-	001300
				ECTING PA	
ANNUAL	AVE. SOLA	NK KAD↓L ND DAN ''	ANGLETS		455.000 730.000
JULI	AVE. SOLA AVE.UIND E ADSORDI For Calcu	IN NWD. 91 USI 20	HROLLIS M.	; =	6.300
SURFAC	F ARSORRT	UTTY		-	.950
DEPTH	FOR CALCI	IAI TTON. IN	_		
MIX.	CONDUCT	VITY .B	TU-FT-H	IR-F. =	.700
NIX.	SPECIFIC	HEAT .DT	U-LB-F.		.220
WIX.	DENSITY	,Ĺ B /	FT3	= IR-F. = = =	140.200
		ASPHA	LT PRAF	ERTIES	
OR16.	PENETRAT		HN-SSEC		90.
PEN.	TEST TEMP		EG.F		77.
ORIG.	PENETRATI TEST TENF SOFTENING	i point,Ďe	8.F	2	121.
THIN	FILM OVEN	TEST ,PCT	.ORIG.	en. =	72.090
		NIXTU	RE PROF	PERTIES	
PCT.	ASPHALT	, BY	WT.OF		7.527
ASPH.	SPECIFIC	GRAV.			1.023
A66.	SPECIFIC	GRAU.		*	2.669
HIX.	AIR VOIDS Vol. Cond	s ,PER	CENT	3	6.200
A98.	VOL. CONC	ENTRATION	-CALCI	ILATED =	.819
COEF.	OF CONTR	ACTION		F) A	LPH(10##5)
			-70.		1.000
			0. 70.		1.200
			210.		1.800
COEF.	OF VARIAN		PH		.100
HAX.	OF VARIAN TEN.STREN	ISTN .PS	1		
COEF.	OF VARIAT	ION OF NA	X.STREP		. 200
		INPLIT	FATIE	IE DATA	
	FATIQUE C	URVE		=A+(1.0/S	TRAIN)++B
		-			CONST.B
MIX.ST.	IF.(PS I)	CONS	(. A		
MIX_ST -10	IF.(P\$I) 00E+02	.10	005-01		3000E+01
MIX.ST .10 .50	IF.(PSI) 00E+02 00E+07 NG. 1	.10 .80		•	


Figure 11. Data used in temperature cracking program.


20

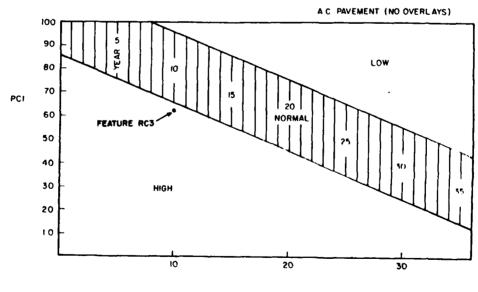
ALC: R. L. M. Z. M. L.

- - -

36 m

Fac	ility: Sierra Army Runway Feature:	R	<u>c3</u>
1.	Overall Condition Rating - PCI=61 -> M4		
Exc	ellent, Very Good, Good Fair, Poor, Very Poo		
2.	Variation of Condition Within Feature - PCI		
	a. Localized Random Variation b. Systematic Variation:	Yes,	No
3.	Rate of Deterioration of Condition - PCI		
	a. Long-term period (since ·construction) b. Short-term period (1 year) <i>Unknew</i>	Low, Low,	Normal, High Normal, High
4.	Distress Evaluation		
	a. Cause		
		1 percent	deduct values deduct values deduct values
	b. Moisture (Drainage) Effect on Distress	Minor.	Moderate, Major
5.	Load-Carrying Capacity Deficiency	No	Yes
6.	Surface Roughness	Minop	Moderate, Major
7.	Skid Resistance/Hydroplaning Unにnowの (runways only)	No hydr are exp	oplaning problems mected
	a. Mu-Meter		ional al for hydroplaning gh probability
	b. Stopping Distance Ratio	Potent Potent	oplaning anticipated al not well defined al for hydroplaning gh hydroplaning al
	c. Transverse Slope	Poor,	Fair, Good, Excellent
8.	Previous Maintenance	low.	Norma), High
9.	Effect on Mission (Comments): # Povenov adequate. However Alligater of A topol deduct is due to weak to climate caused Craets,	carking.	

ę


Figure 13. Airfield pavement condition evaluation summary.

22

1.1.1

M&R ZONE	PCI	RATING
	100	EXCELLENT
ROUTINE	85	VERY GOOD
ROUTINE, MAJOR,	70	6000
OVERALL,	55	Fair
MAJOR, OVERALL	40	POOR
OVERALL	25	VERY POOR
UVERALL	ю 0	FAILED

Figure 14. Correlation of M&R zones with PCI and condition rating.

ŀ

TIME SINCE CONSTRUCTION - YEARS

Figure 15. Rate of deterioration of AC pavements (no overlays).

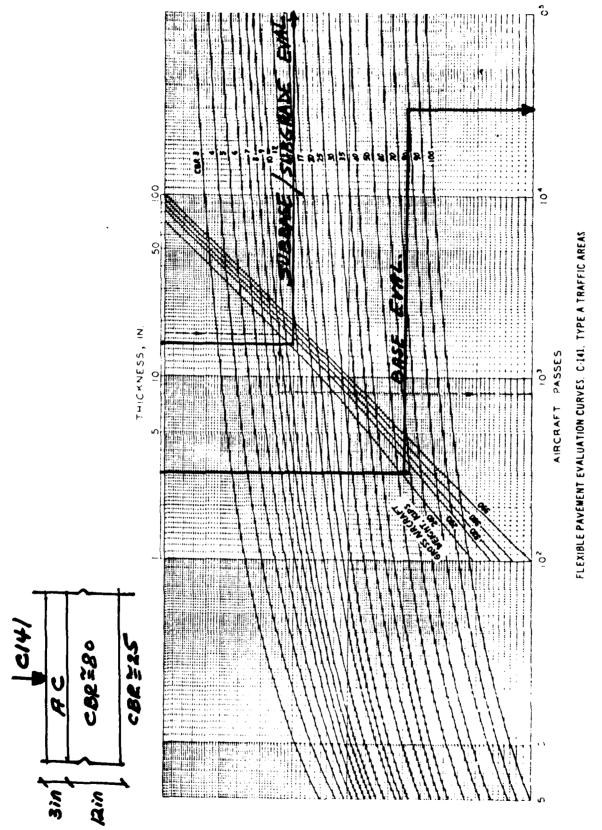


Figure 16. Evaluation of load carrying capacity.

-10

Ł

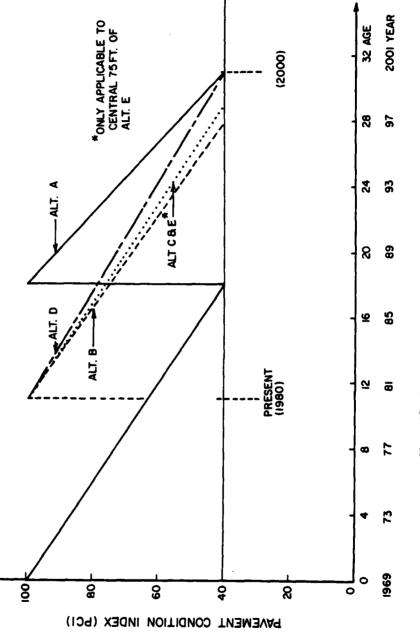
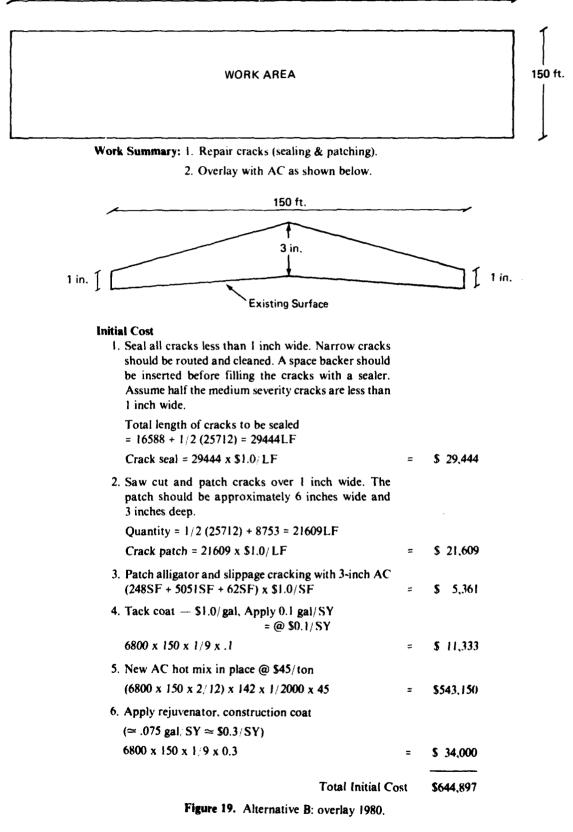


Figure 17. Expected PCI over time for each M&R alternative.


25

in the second

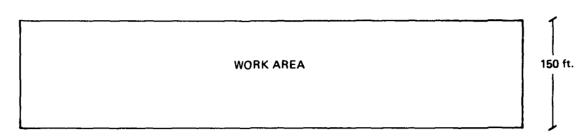
WORK AREA		
Work Summary: Continue to repair cracks as t Cracks less than 1 inch wide v 1 inch wide will be patched.		
nitial Cost		
1. Seal cracks less than 1 inch wide (See Est #1, Figure 19)	=	\$ 29,444
2. Patch cracks over 1 inch wide (See Est #2, Figure 19)	=	\$ 21,609
3. Patch alligator and slippage cracking (See Est #3, Figure 19)	=	\$ 5,361
 4. Apply rejuvenator (≈ 0.1 gal/SY, ≈ \$0.4/SY) 6800 x 150 x 1/9 x 0.4 	=	\$ 45,333
T .	al Initial Cost	\$101,747

Figure 18. Alternative A: continue crack seal to PCI=40 (1987), then overlay.

States and a

WORK AREA 150 ft.

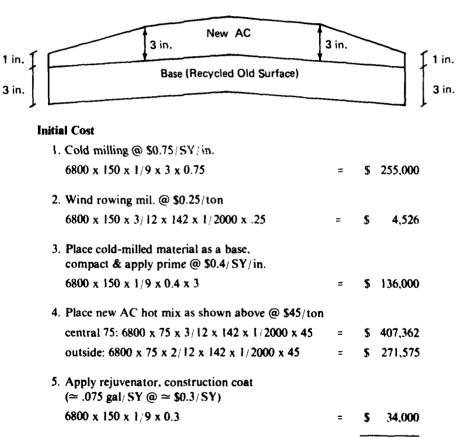
Work Summary: 1. Cold mill surface and store on base for future use. 2. Place new 3 inch hot AC.


Initial Cost

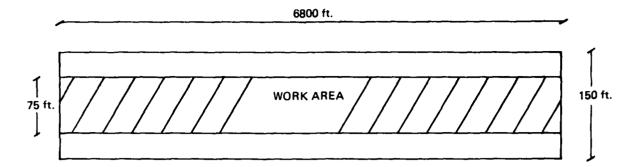
1. Cold mill AC surface @ \$0.75/SY/in.		
6800 x 150 x 1/9 x 3 x 0.75	=	\$ 255,000
2. Hauling and stockpiling cold-milled material Assume 1-mile haul @ \$0.5/ton mile		
6800 x 150 x 3/12 x 142 x 1/2000 x 0.5	=	\$ 9.053
3. Prime base course \$1.0/gal, Apply 0.2 gal/SY		
6800 x 150 x 1/9 x 0.2 x 1.0	=	\$ 22,667
4. New AC hot mix @ \$45.0/ton		
6800 x 150 x 3/12 x 142 x 1/2000 x 45	=	\$ 814,725
 Apply rejuvenator, construction coat (≈ .075 gal/SY ≈ \$0.3/SY) 		
6800 x 150 x 1/9 x .3	=	\$ 34,000
Total Initi	al Cost	\$ 1,135,445

Figure 20. Alternative C: replace surface — 3-inch deep.

5.3


123.0

Work Summary: 1. Cold mill 150 ft width.


2. Recycle cold milled material and reuse as stabilized base.

3. Place new AC hot mix as shown below.

Total Initial Cost \$1,108,463

Figure 21. Alternative D: recycle surface and use as base, add new surface.

Work Summary: 1. Cold mill central 75 ft - 3 in. depth and store on base for future use.

- 2. Place new 3 in. AC in central 75 ft.
- 3. Maintain cracks in outside edges.

Initial Cost

1. Cold mill central 75 ft - 3 inch @ \$0.75/SY/in.	
$6800 \times 75 \times 1/9 \times 3 \times .75 =$	\$127,500
2. Hauling and stockpiling cold-milled material assume 1 mile haul @ \$.05/ton mile	
6800 x 75 x 3/12 x 142 x 1/2000 x .5 =	\$ 4,526
3. Prime base course \$1.0/gai, Apply 0.2 gal/SY	
6800 x 75 x 1/9 x .2 x 1.0 =	\$ 11,333
4. New AC hot mix @ \$45.0/ton	
6800 x 75 x 3/12 x 142 x 1/2000 x 45 =	\$407,362
5. Repair cracks outside central 75 ft	
18906 LF of crack x \$1.0/ LF (See Table 4) =	\$ 18,906
 6. Apply rejuvenator, central 75 ft (≈ .075 gal/SY @ ≈ \$0.3/SY) 	
6800 x 75 x 1/9 x .3 =	\$ 17,000
 7. Apply rejuvenator, outside 75 ft (≈ 0.1 gal/SY @ ≈ \$0.4/SY) 	
6800 x 75 x 1/9 x .4 =	\$ 22,666
Total Initial Cost	\$609,293

Figure 22. Alternative E: replace surface central 75 feet, crack seal outside.

30

 $\lambda \gamma_{2}$

REPORT BATE - 80/08/08.

Dra -

CONPARISON OF HAR ALTERNATIVES SIERRA SECTION RU

		INFLATION RATE	10.00 PERCENT
ANALYSIS PERIOD	- 20 YEARS	INTEREST RATE	10.00 PERCENT
ALTERNATIVE	DESCRIPTION	NET	PRESENT COST
3	OVERLAY-1980		965363.
E	REPLACE SURFACE CENTERAL 75 FT.C	RK SEAL OUTSIDE	1007500.
A	CONT CRK SEAL TO PCI=40(1987)THE	N OVERLAY	1044139.
)	RECYCLE SURFACE AND USE AS BASE,	ADD NEW SURFACE	1169796.
С	REPLACE SURFACE-3 INCH DEEP		1267111.

DETAILED CONPARISON OF MAR ALTERNATIVES

	*	ALT	•		ALT								• AL	FΕ	,
			PRES			PRES			PRES	٠		PRES	*	PRES	; ;
YEAR		COST	COST		COST				COST				e cost	COST	
	. *			٠			۰			٠			•		
0 (FY 80)		101747	101747		644897	644897		135445	1135445		1108463	1108463	• 409293	699293	j
1 (FY81)		0	Q	*	0	0		0	9	٠	0	9	e Q	0	ŀ.
2 (FY\$2)	. *	41403	41402		10000	10000	۰	0	0	٠	0	•	 17473 	17473	j
3 (FY83)		0	0		0	0		0	0		0	0	* 0	0	ļ
4 (FY84)		43213	43212		20000	20000	۰	0	0		0	•	• 21392	21392	
5 (FY85)		0	0	٠	٥	0	٠	0	0	*	0	•	• 0	0)
- 6 (FY86)		83740	83960		30000	29999	۰	0	0	٠	0	0	* 37002	37001	
7 (FY87)	٠	588483	588482		0	ð		0	0	٠	0	0	• 0	0) .
8 (FY88)		0	0		75333	75333	۰	46333	46333		0	0	* 77819	77819	1
9 (FY89)		10000	9999		0	0		0	. 0	٠	0	0	* 0	0)
10 (FY90)		0	0		20000	20000		0	0		46333	44332	• 27447	29448	ļ
11 (FY91)		20000	20000		0	0		0	0		0	0	• 0	0)
12 (FY92)		0	0		30000	29999		5000	5099		0	0	+ 44925	44725	, ·
13 (FY93)		30000	29999		0	0		0	0		0	0	• 0	0	
14 (FY94)		0	0		30000	30000		10000	10000		5000	5000	. 38103	38103	, .
15 (FY95)		75333	75333		0	0		0	0		•	0	• 0	0	
16 (FY96)		0	0		75333	75333	٠	60333	40333		0	0	. 82566	82566	, 1
17 (FY97)		20000	20000		0	0	٠	0	0		0	0	• 0	0	
18 (FY98)		0	0		30000	30000	۰	10000	9999		10000	7779	47478	47477	,
19 (FY99)	٠	30000	30000		0	0	٠	0	0		0	0	• •	0	1
20 (FY00)		0	0		0	0	٠	0	0		0	0	• 0	0	1
TOTAL	*												•		1
IVINL		1944137	144138		700083	783363	- F I	44/111	120/111		1167/76	1107/76	• 1007 500	1961266	
SALVAGE		0	0		0	0	•	0	0		0	•	• •	0	•
PRES VORTH			1044138										•		1
THES WURIN			1444128	*		765563			120/111			1169796	•	1007500	

Figure 23. Life cycle costing of M&R alternatives.

31

-

.....

Feature 1D	Low	Sev.	Med.	Sev.	High	Sev.	Total Crk.		
	Quant. L.F	Dens. %	Quant. LF	Dens. %	Quant. LF	Dens. %	Quant. LF	Dens %	
RN1	215	3.82	44	.78			259	4.6	
RN2	1348	.54	6506	2.6	2473	.99	10327	4.13	
RSI	.37	.65					37	0.65	
RS2	3274	E31	2666	1.06	2343	0.93	8283	3.33	
RCI	.328	2.91	329	2.92			657	5.83	
RC2	1571	2.46	1030	1.61	800	1.25	3401	5.32	
RC3	7711	2.05	12762	3.4	3074	.81	23547	6.26	
RC4	2104	3.50	2375	3.95	63	0.1	4542	7.55	
Total									
Crk. &	16588	1.63	25712	2.52	8753	0.86	51053	5.01	
Overall									
Dens.									

	Table 1	
Summary of Linear	Cracking for	Entire Runway

1 ow Severity Cracking, e_i of Total Cracking = (16588–51053) x 100 = 32.5 e_i Med. Severity Cracking, e_i of Total Cracking = (25712–51053) x 100 = 50.4 e_i High Severity Cracking, e_i of Total Cracking = (8753–51053) x 100 = 17.1 e_i

Table 2
Summary of Distresses Other Than Linear Cracking

Feature ID	Distress	Low Sev.		Med.	Sev.	High	Sev.	Total Crk.		
	Туре	Quant.	Dens.	Quant.	Dens.	Quant.	Dens.	Quant.	Dens	
RC2	Slippage* Cracking							248SF	0.38	
RC3	Alligator Cracking	,348	.09	3681	0.98	1022	.27	5051SF	1.34	
RC4	Alligator Cracking			62	0.1			6281	. I	

*Slippage cracking has no severity levels.

Age Years	Year	Total Cracks, LF	Cracks to be Sealed, LF	Cracks to be Resealed, LF	Cost of Crack Repair (@ \$1.0/LF)
tt	80	51053	51053	0	51053
13	82	92456	41403	0	41403
15	84	135669	43213	0	43213
17	86	168576	32907	51053	83960
19	88	186863	18287	41403	59690
21	90	194291	7428	43213	50641
23	92	196498	2207	83960	86167
25	94	196971	473	59690	60163
27	96	197030	59	50641	5070 0
29	98	197050	20	86167	86187
31	00	197050	0	60163	60163

 Table 3

 Predicted Cracks and Repair Costs for Entire Runway

\$673,340

. .

Table 4						
Summary of Linear Cracking Outside the Central 75 Ft						

Feature Low S ID Quant. LF	Sev.	Med.	Sev.	High	Sev.	Total	Crk.	
	Dens. %	Quant. LF	Dens. %	Quant. LF	Dens. %	Quant. LF	Dens %	
RNI	215	3.82	44	.78			259	4.6
RN2	1348	.54	6506	2.6	2473	.99	10327	4.13
RSI	37	.65					37	.65
RS2	3274	1.31	2666	1.06	2343	.93	8283	3.33
Total	·····	·····						
Crk. &	4874	0.96	9216	1.81	4816	0.94	18906	3.71
Overall								
Dens.								

Low Severity Cracking, % of Total Cracking = (4874/18906) = 25.8 Med. Severity Cracking, % of Total Cracking = (9216/18906) = 48.7 High Severity Cracking, % of Total Cracking = (4816/18906) = 25.5

.

Age Years	Year	Total Cracks, LF	Cracks to be Sealed, LF	Cracks to be Reseated, LF	Cost of Crack Repair (@ \$1.0/LF)
П	80	18906	18906	0	18906
13	82	36379	17473	0	17473
15	84	57771	21392	0	21392
17	86	77867	20096	18906	39002
19	88	92381	14514	17473	31987
21	90	100438	8057	21392	29449
23	92	103861	3423	39002	42425
25	94	104977	[116	31987	33103
27	96	105262	285	29449	29734
29	98	105315	53	42425	42478
31	00	105325	10	33103	33113

 Table 5

 Predicted Cracks and Repair Cost for Outside the Central 75 Ft

\$339,062

ar)

 Table 6

 Comparison of \$/Unit Performance for Each M&R Alternative

Net Present Alternative Cost		Area Between PCI & Min. PCI			S/Unit Performance
A	1,044,138	(63 - 40) x 7/2 + (100 - 40) x 13/2	=	470.5	2219
в	965,563	$(100 - 40) \times 13^{12}$ $(100 - 40) \times 17/2 + 0$	-	470.5 510	1893
C	1,267,111	(100 40) x 18/2 + 0	-	<u>540</u>	2346
D	1,169,796	(100 - 40) x 20/2		600	1950
E*	1,007,500	(100 - 40) x 18 2	-	540	1866

*Only applicable to the central 75 ft.

The second s

Ν

ł

APPENDIX A: PCI COMPUTER OUTPUT

0

0

ť.

FEATURE IDENTIFICATION = RN1 SIERRA AFB CA 11/14/79. FLEXIBLE PAVENENT. DATE SURVEYED FEATURE SIZE = 00005625 SF TOTAL NO OF SAMPLE UNIT = 1 ALLOWABLE ERROR WITH 95% CONFIDENCE = 5 SAMPLE UNIT ID = 1 AREA OF SAMPLE, SF = 5625 DENSITY Z DEDUCT VALUE SEVERITY **DISTRESS-TYPE** QUANTITY 08 LOU 215 3.82 11.5 62 NEDIUN 44 0.78 10.0 PCI = 87 NO. OF RANDON SAMPLE = 1 NO. OF ADDITIONAL SAMPLE = ٥ PCI OF FEATURE -- RN1 SIERRA AFB CA RATING = EXCELLENT = 89 RECOMMEND EVERY SAMPLE UNITS TO BE SURVEYED. ESTIMATED DISTRESS FOR FEATURE = RN1 SIERRA AFD CA DISTRESS-TYPE SEVERITY QUANTITY DENSITY X DEDUCT VALUE LOV 08 215 3.82 11.5 08 HEDIUN 44 0.78 10.0

FEATURE IDENTIFICATION	= RN2 S	JERRA AFB CA		
DATE SURVEYED 11	/14/79.	FLEXIBLE	PAVENENT.	
FEATURE SIZE =		00249375	BF	
TOTAL NO OF SAMPLE UNI	IT = 45			
ALLOWABLE ERROR WITH 9	5% CONFIDENCE	* 5		
SAMPLE UNIT ID = Area of Sample, SF				
DISTRESS-TYPE 08	SEVERITY NEDIUN	QUANTITY 170	BENSITY Z 3.02	DEDUCT VALUE 19.8
			PCI = 80	
SAMPLE UNIT ID = Area of Sample,Sf				
DISTRESS-TYPE 08	SEVERITY NEDIUN	QUANTITY 150	DENSITY Z 2.66	DEDUCT VALUE 18.5
			PCI = 82	
SAMPLE UNIT 1D = Area of Sample,Si				
DISTRESS-TYPE 08 08	SEVERITY LOU NEDIUN	QUANTITY 123 96	2.18	DEDUCT VALUE 8.3 15.0
Va	nçpiun	7•	PCI = 85	
SAMPLE UNIT ID = Area of Sample,Si				
DISTRESS-TYPE 08 08		QUANTITY 49 110		DEDUCT VALUE 4.9 16.0
			PCI = 79	
SAMPLE UNIT IB = Area of sample,s				
DISTRESS-TYPE OB OB	SEVERITY LOW NEDIUN	QUANTITY 25 113	DENSITY Z 0.44 2.00	DEDUCT VALUE 3.6 14.3
v	11 2 4 4 9 11		PC1 - 90	

PCI = 80

SAMPLE UNIT ID ∓ AREA OF SAMPLE,SF		ADDITIONAL+		
DISTRESS-TYPE 08 08 08 08	SEVERITY LOW HEDIUN HIGH	QUANTITY 110 37 47	DENSITY Z 1.95 0.65 0.83	DEDUCT VALUE 7.8 9.1 18.3
			PCI = 82	
SAMPLE UNIT ID = Area of sample,sf				
DISTRESS-TYPE 08 08 08 08	SEVERITY LOW NEDIUN HIGH	QUANTITY 3 138 392	DENSITY X 0.05 2.45 6.96	DEDUCT VALUE 1.2 17.8 46.3
			PCI = 54	
SAMPLE UNIT ID = Area of Sample,SF	40 = 5625			
DISTRESS-TYPE 08	SEVERITY NEDIUN	QUANTITY 268	DENSITY X 4.76	DEDUCT VALUE 24.3
			PCI = 76	
NO. OF RANDOM SAMPLE =		7		
NO. OF ADDITIONAL SAMP	E =	1		
PCI OF FEATURE -RN2 S	LERRA AFB C	A = 77	RATING =	V. 600D
RECOMMENDED MINIMUM OF	17 RANDO	N SANPLE UNITS 1	O BE SURVEYE	D.
STANDARD DEVIATION OF I	CI BETWEEN	RANDON UNITS SU	IRVEYED= 10.	3
ESTINATED DISTRESS F	DR FEATURE	= RN2 SIERRA A	FB CA	
DISTRESS-TYPE 08 08 08 08	SEVERITY Lon Nediun High	QUANTITY 1348 6506 2473	DENSITY Z 0.54 2.60 0.99	DEDUCT VALUE 3.9 18.3 19.9

0

FEATURE IDENTIFICATION - RS1 SIERRA AFB CA DATE SURVEYED 11/14/79. FLEXIBLE PAVENENT. FEATURE SIZE = 00005625 SF TOTAL NO OF SAMPLE UNIT = 1 ALLOVABLE ERROR WITH 95% CONFIDENCE = 5 SAMPLE UNIT ID = 1 AREA OF SAMPLE, SF = 5625 DISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE LOW 08 37 0.65 4.2 PCI = 96 NO. OF RANDOM SAMPLE = 1 NO. OF ADDITIONAL SAMPLE = PCI OF FEATURE -RS1 SIERRA AFB CA *** 96** RATING = EXCELLENT RECOMMEND EVERY SAMPLE UNITS TO BE SURVEYED. ESTIMATED DISTRESS FOR FEATURE = RS1 SIERRA AFB CA BISTRESS-TYPE SEVERITY QUANTITY DENSITY I DEDUCT VALUE 80 LOV 37 0.65 4.2

FEATURE IDENTIFICATI	IDN = R52	BIERRA AFB CA		
DATE SURVEYED	11/14/79.	FLEXIBLE	PAVENENT.	
FEATURE SIZE =		00249375	SF	
TOTAL NO OF SAMPLE U	INIT = 4	5		
ALLOUABLE ERROR WITH	952 CONFIDENCI	E = 5		
SANPLE UNIT ID Area of Sample,				
DISTRESS-TYPE 08 08 08 08	SEVERITY LOU MEDIUN HIBH	QUANTITY 2 6 126	DENSITY X 0.03 0.10 2.24 PCI = 66	0.7
SANPLE UNIT ID Area of Sanple,				
BISTRESS-TYPE 08 08	SEVERITY LOW HIGH	QUANTITY 26 74	DENSITY 2 0.46 1.35	3.7
SAMPLE UNIT ID Area of Sample,			PCI = 73	
DISTRESS-TYPE 08 08	SEVERITY LOV NEDIUN	QUANTITY 73 106	1.29	BEBUCT VALUE 6.0 15.7
SAMPLE UNIT ID Area of Sample,			1 WA - W7	
DISTRESS-TYPE 08 08 08	SEVERITY LOW MEDIUM HIGH	QUANTITY 196 B8 38	DENSITY X 3.40 1.56 0.67	DEDUCT VALUE 10.9 14.4 16.6
			PCI = 78	

39

. T

SAMPLE UNIT ID = AREA OF SAMPLE,S				
DISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY Z	DEDUCT VALUE
08	LOW	46	0.81	4.7
08	NEDIUN	37	0.65	9.1
08	HIGH	37	0.65	16.3
			PCI = 83	
SANPLE UNIT ID =	34			
AREA OF SAMPLE, S				
DISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY X	DEDUCT VALUE
08	LOU	3	0.05	1.2
08	MEDIUM	147	2.61	18.3
08	HIGH	55	0.9 7	19.7
			PCI = 76	
SAMPLE UNIT ID =	40			
AREA OF SAMPLE,S				
BISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY X	DEDUCT VALUE
08	LOW	171	3.04	10.0
08	NEDIUM	37	0.65	9.t
98	hich	38	0.67	16.6
			PCI = 82	
NG. OF RANDON SAMPLE	•	7		
NG. OF ABDITIONAL SAN	PLE =	0		
PCI OF FEATURE -RS2	SIERRA AFB CA	= 73	7 RATING =	V. 6003
RECOMMENDED MINIMUM O	F 9 RANBON	SANPLE UNITS	TO BE SURVEYE	D.
STANDARD DEVIATION OF	PCI BETWEEN	RANDON UNITS (BURVEYEDZ 4.	4
ESTINATED DISTRESS	FOR FEATURE	* RS2 SIERRA	AFB CA	
DISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY I	DEDUCT VALUE
08	LON	3274	1.31	6.1
08	NEDIUM	2666	1.96	11.8
80	NIGH	2343	0.93	19.3

- 1

FEATURE IDENTIFICATION = RC1 SIERRA AFB CA DAT SURVEYED 11/14/79. FLEXIBLE PAVEHENT. FEATURE SIZE X 00011250 SF 2 TOTAL NO OF SAMPLE UNIT I ALLOWABLE ERROR WITH 75% CONFIDENCE = 5 SAMPLE UNIT IB = 1 AREA OF SAMPLE, SF = 5625 QUANTITY DENSITY Z DEDUCT VALUE DISTRESS-TYPE SEVERITY LOW 3.25 10.4 80 183 80 289 25.2 NEDIUN 5.13 PCI = 75SAMPLE UNIT ID = 2 AREA OF SAMPLE, SF = 5625 GUANTITY DENSITY I DEDUCT VALUE DISTRESS-TYPE SEVERITY LON 145 2.57 9.1 08 9.5 08 REDIUN 40 0.71 PCI = 91NO. OF RANDON SAMPLE = 2 NO. OF ADDITIONAL SAMPLE = A PCI OF FEATURE -RC1 SIERRA AFB CA = 83 RATING = V. GOOD RECONNEND EVERY SANPLE UNITS TO BE SURVEYED. ESTIMATED DISTRESS FOR FEATURE = RC1 SIERRA AFB CA DISTRESS-TYPE **SEVERITY** QUANTITY DENSITY Z DEDUCT VALUE 2.91 LOU 328 9.8 80 329 80 HEBIUN 2.92 19.5

0

FEATURE IDENTIFICATIO	DN = RC2 (SIERRA AFD CA		
BATE SURVEYED	11/14/79.	FLEXIBLE	PAVENENT.	
FEATURE SIZE %		00063750	8 F	
TOTAL NO OF SAMPLE U	NIT Z 1	I		
ALLOVABLE ERROR WITH	952 CONFIDENCE	E * 5		
SAMPLE UNIT ID AREA OF SAMPLE,				
BISTRESS-TYPE OS OS	SEVERITY LOU NEDIUN	QUANTITY 363 97	BENSITY X 6.45 1.72	
			PCI = 81 -	
SAMPLE UNIT ID Area of Sample,				
BISTRESS-TYPE OB OB OB	SEVERITY Low Nediun High	QUANTITY 95 64 88	1.68 1.13 1.56	DEDUCT VALUE 7.0 12.2 24.6
SANPLE UNIT ID Area of Sample,			PCI = 75	
BISTRESS-TYPE 08 08 08	SEVERITY LOW MEDIUM NIBH	QUANTITY 145 102 30	2.57	9.1 15.5
			···· ···	

3

10° ° 1

. 47.9

SAMPLE UNIT ID - Area of Sample, S				
DISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY Z	DEDUCT VALUE
08	LOW	44	0.78	4.6
08	NEDIUN	93	1.65	14.8
08	HIGH	94	1.47	25.4
			PCI = 71	
SANPLE UNIT ID =		DDITIONAL+		
AREA OF SAMPLE,S	F = 3623			
DISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY Z	DEDUCT VALUE
08	LOU	23	0.40	3.5
08	NEDIUN	114	2.02	14.3
08	HIGH	142	2.52	30.5
15		132	2.34	21.9
			PCI = 56	
SAMPLE UNIT ID = Area of Sample,S				
DISTREBS-TYPE	SEVERITY	QUANTITY		DEDUCT VALUE
08	LOW	152	2.02	8.0
8 0	NEDIUN	117	1.56	14.4
08	HIGH	128	1.70	25.6
15		60	0.80	10.5
			PCI = 72	
NO. OF RANDON SAMPLE		5		
NO. OF ADDITIONAL SAN	PLE =	1		
PCI OF FEATURE -RC2	SIERRA AFB CA	= 74	N RATING = V	. GOOD
RECOMMENDED MINIMUM O	F 005 RANDON	SANPLE UNITS	TO BE SURVEYED	•
STANDARD DEVIATION OF	PCI DETUEEN	RANDON UNITS S	BURVEYEDZ 4.5	
ESTINATED DISTRESS	FOR FEATURE	= RC2 SIERRA	AFB CA	
DISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY Z	DEDUCT VALUE
08	LOW	1571	2.46	
08	NEDIUN	1030	1.61	14.6
08	HIGH	800	1.25	22.1
15	** * ** 11	248	0.38	7.3

FEATURE IDENTIFICATION	t = RC3	SIERRA AFB CA		
BATE SURVEYED	/14/79.	FLEXIBLE	PAVENENT.	
FEATURE SIZE Z		00375000	SF	
TOTAL NO OF SAMPLE UN	тх 4	57		
ALLOWABLE ERROR WITH	757 CONFIDEN	Æ = 5		
SAMPLE UNIT ID = Area of Sample,Si	-			
DISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY Z	
08	LOW	152 78	2.70 1.38	9.4 13.5
08 08	NEDIUN Nigh	78	1.36	23.0
	11441		1.54	
			PCI = 75	
SANPLE UNIT ID = Area of Sanple,S				
DISTRESS-TYPE		QUANTITY		DEBUCT VALUE
08	LOU	140	2.48	8.9
08	NEDIUN	74	1.31	13.1
08	nich	95	1.68	25.4
			PCI = 74	
SAMPLE UNIT ID = Area of Sample,S				
DISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY X	BEBUCT VALUE
08	LOU	182	3.23	10.4
08	NEDIUN	206	3.66	21.5
08	HIGH	76	1.35	22.9
01	LOU	18	0.32	11.1
01	NEBIUN	225	4.00	44.0
01	H18H	24	0.42	28.3
			PCI = 33	

4 ALANS

SAMPLE UNIT ID = AREA OF SAMPLE, SI				
DISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY Z	DEDUCT VALUE
08	LOW	55	0.97	5.3
08	NEDIUN	183	3.25	20.4
08	high	76	1.35	22.9
01	NEDIUN	17	0.30	18.5
01	HIGH	3	0.05	8.0
			PCI = 61	
SANPLE UNIT ID =	•••			
AREA OF SAMPLE, SI	F = 5625			
DISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY Z	BEBUCT VALUE
80	LOW	81	1.44	6.3
08	HEDIUN	271	4.81	24.5
08	HIGM	69	1.22	21.8
01	LOW	10	0.17	8.1
01	NEDIUN	5	0.08	8.0
01	HIGH	45	0.8 0	34.3
			PCI = 47	
SAMPLE UNIT ID =	41			
AREA OF SAMPLE, SI	F = 5625			
DISTREBS-TYPE	SEVERITY	QUANTITY	DENSITY Z	DEDUCT VALUE
08	LOW	150	2.66	9.3
08	NEBIUN	182	3.23	20.3
08	NICH	10	0.17	9.0
			PCI = 80	
SAMPLE UNIT ID =				
AREA OF SAMPLE, SI	3023			
DISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY Z	DEDUCT VALUE
08	LOW	57	1.01	5.5
08	HEDIUN	174	3.09	20.0
01	NEDIUN	240	4.26	44.7

Contraction of the second

SANPLE UNIT ID -55 AREA OF SAMPLE.SF = 5625 DISTRESS-TYPE DENSITY Z DEDUCT VALUE SEVERITY QUANTITY 08 LOU 10.4 182 3.23 08 NEDIUN 262 4.45 24.0 01 LOU 0.33 19 11.3 01 NEDIUN 10 0.17 13.8 01 HIGH 30.5 66 1.17 PCI = 49SAMPLE UNIT ID = 62 AREA OF SAMPLE, SF = 5625 DISTRESS-TYPE SEVERITY QUANTITY DENSITY Z DEDUCT VALUE 80 LOU 42 0.74 4.4 80 NEDIUN 293 5.20 25.4 80 HIGH 12 9.21 10.0 PCI = 75 NO. OF RANDOM SAMPLE = NO. OF ADDITIONAL SAMPLE = = 61 PCI OF FEATURE -RC3 SIERRA AFB CA RATING = SOOD RECOMMENDED MINIMUM OF 31 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI DETWEEN RANDON UNITS SURVEYEDX 16.1 ESTINATED DISTRESS FOR FEATURE = RC3 SIERRA AFD CA ----------

T VALUE
6.3
29.2
24.2
8.1
20.8
18.1

Ì,

FEATURE IDENTIFICATI	ION = RC4	SIERRA AFB CA		
DATE SURVEYED	11/13/79.	FLEXIBLE	PAVENENT.	
FEATURE SIZE Z		00066000	SF	
TOTAL NO OF SAMPLE I	I X TIR	1		
ALLOWABLE ERROR WITH	1 95% CONFIDENC	E = 5		
SAMPLE UNIT ID Area of Sample				
BISTRESS-TYPE 08 08 01	SEVERITY LOW NEDIUM NEDIUM	QUANTITY 120 219 12	2.13 3.89	DEBUCT VALUE 8.2 22.1 15.4
SANPLE UNIT ID Area of Sanple				
DISTRESS-TYPE 09 08 01	SEVERITY LOU NEDIUN MEDIUN	QUANTITY 233 291 35	DENSITY 2 4.14 5.17 0.62	25.3
SAMPLE UNIT ID Area of Sample			PCI = 43	
DISTRESS-TYPE 08 08	SEVERITY LOW NEDIUN	QUANTITY 221 157	3.92 2.79	
			PCI = 81	

1.2

-

SAMPLE UNIT ID = 7 AREA OF SAMPLE, SF = 5625

DISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY Z	BEBUCT VALUE
68	LOW	45	1.15	5.8
08	NEDIUN	190	3.37	20.7
08	HIGH	63	1.12	21.0
01	MEDIUM	15	0.26	17.3

PCI = 68

١.

S. Contractor

SAMPLE UNIT ID = 9 AREA OF SAMPLE, SF = 5625

DISTRESS-TYPE 08	BEVERITY LOU	QUANTITY 219	DENSITY Z 3.89	DEDUCT V	ALUE
98	NEDIUN	280	4.97	2	4.9

PCI = 75

NO. OF RANDON SAMPLE = 5 NQ. OF ADDITIONAL SANPLE = 0 PCI OF FEATURE -RC4 SIERRA AFB CA = 72 RATING = V. 6003 RECONNENDED MINIMUM OF 7 RANDON SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI DETWEEN RANDON UNITS SURVEYEDZ 4.9 ESTINATED DISTRESS FOR FEATURE = RC4 SIERRA AFB CA BISTRESS-TYPE SEVERITY QUANTITY DENSITY Z DEDUCT VALUE 0,22 01 NEDIUM 132 15.8

08	LOW	1830	3.05	10.0
08	NEDIUM	2425	4.04	22.5
08	high	134	Q.22	19.2

FEATURE	PCI	RATING
RCJ SIERRA AFB CA	61	600D
RC4 SIERRA AFB CA	72	V. 800D
RC2 SIERRA AFB CA	74	V. 600D
RN2 SIERRA AFD CA	77	V. 600D
R82 SIERRA AFD CA	77	V. 800D
RC1 SIERRA AFB CA	83	V. GOOD
RN1 BIERRA AFB CA	87	EXCELLENT
RS1 SIERRA AFB CA Encountered.	96	EXCELLENT

Harden -

E01 E C>

1

「「「ないとう」という

•

ţ

and the second

ġ,

APPENDIX B: RESULTS OF AC LABORATORY TESTING

SOURCE_

Table B1

Bituminous Mix Analysis

PROJECT Sierra Army Depot _____ JOB NO.____

SAMPLED BY_____ DATE REC'D_

DATE 20 May 1980

DESCRIPTION OF MATERIALS _ Asphalt Cement Slabs

ABORATORY NO.	FPL 5864				T	
					······	
THER IDENTIFIC			- Top La	yer	Bottom	Layer
) PSI TIRE PRE			1		1	
	SPECIFIED	FORMULA (APPROVED)	Laboratory Samples*	Field Samples	Laboratory Samples*	Field Samples
1 INCH						
3/4 INCH			100.0		100.0	
1/2 INCH			94.3		93.7	
3/8 INCH			85.2		82.6	
NO. 4		ll	71.6		63.8	
NQ. 8		11	56.6		48.2	
NO. 16		ll	41.0		35.2	
NO. 30			30.1		26.2	
NO. 50		<u> </u>	21.6		19.0	
NO. 100		ll	14.3		12.6	
NO. 200		<u> </u>	8.6		7.6	
PERCENT			7.0	7.0	5.5	5.5
GRADE BITUMEN						
STABILITY (MARSHALL) LOS			5466		5153	
FLOW			16		17	
PERCENT VOIDS			4.9	6.2	8.9	10.4
PERCENT VOIDS			75.8	70.6	57.3	52.8
DENSITY - LOS/CU	JFT		142.4	140.2	140.6	138.0
THEO DENSITY - L		1	149.7		154.3	
STRIPPING, %		1				
SWELL, "			2.66	<u>├ `</u>	2.69	+
AGG - SP GR AGG - % WATER A		┼┼──────	1.6		2.0	<u> </u>

Penetration Softening Pt. ^O C Viscosity	Poises	140°F	15 71.2°c 113,038	13 75.0°C 268,884
	CST	225 ⁰ F	20,321	27,535
	CST	275 ⁰ F	2,230	3,451

TESTED BY:____

1

*Gyratory compaction at 200 psi, one degree, and 30 revolutions which is equivalent to 75 blows Marshall compaction effort

WES FORM NO. 1008

all compaction ellort

1

6*

A R

11

ł

Sample No.	Maximum Load (lb)	Vertical Deformation (in.)	Temp (°F)	Load Rate (in./min)
	1950	0.080	75	2.0
l−1 top l∝1 bottom	2400	0.095	75	2.0
I-2 top	2550	0.055	50	2.0
I-2 bottom	3000	0.048	50	2.0
	2800	0.045	20	2.0
I-3 top	2200	0.065	20	2.0
1-3 bottom	1025	0.095	75	0.05
2 I top	900	0.120	75	0.05
2-1 bottom	2470	0.080	50	0.05
2-2 top	1990	0.065	50	0.05
2-2 bottom	3650	0.055	20	0.05
2-3 top 2-3 bottom	3450	0.042	20	0.05
Additional ton	4020	0.042	-20°ŀ	0.05
Additional top Additional bottom	4025	0.040	-20°F	0.05

Table B2 Indirect Tensile Results

Table B3 Sample Size

Sample No.	Average Height (in.)	Average Diameter (in.)
 Fop I-1	1.064	3.951 3.957
I-2 1-3	1.066 1.690	3.960
Top 2-1	1.485	3.960
2-2	1.587	3.966
2-3	1.587	3.955
Bottom 1 - 1	1.462	3,959
1 - 2	1.460	3,962
1 - 3	1.491	3,959
Bottom 2-1	1.601	3,962
2-2	1.561	3,949
2-3	1.577	3,957
Top-Additional	1.665	3,938
Bottom-Additional	1.723	3,917

51

States

Table B4 Computation of Indirect Tensile Strength

2 in./ mir	n. $S = \frac{2}{\pi g}$				
Temp	Sample ID	2	d	P, ibs	S,Psi
75°F	Top 1-1	1.064	3.951	1950	295.30
50° F	Top 1-2	1.066	3.957	2550	384.86
20° F	Top 1-3	1.69	3.96	2800	266.352
75°F	Bottom 1-1	1.462	3.959	2400	263.93
50° F	Bottom 1-2	1.460	3.962	3000	330.17
20°F	Bottom 1-3	1.491	3.959	2200	237.27
: .05 in./m	in.				
: .05 in./m 	in. Sample ID	<u> </u>	d	P, ibs	S
,		<u> </u>	d 3.96	P, lbs 1025	
Temp	Sample ID				110.96
Temp 75°F	Sample ID Top 2-1	1.485	3.96	1025	110.96
Temp 75°F 50°F	Sample ID Top 2-1 Top 2-2	1.485 1.587	3.96 3.966	1025 2470	110.96 249.83 370.2
Temp 75°F 50°F 20°F	Sample 1D Top 2-1 Top 2-2 Top 2-3	1.485 1.587 1.587	3.96 3.966 3.955	1025 2470 3650	110.96 249.83 370.2 390.32
Temp 75°F 50°F 20°F -20°F	Sample ID Top 2-1 Top 2-2 Top 2-3 Top-additional	1.485 1.587 1.587 1.665	3.96 3.966 3.955 3.938	1025 2470 3650 4020	110.96 249.83 370.2 390.32 90.33
Temp 75°F 50°F 20°F -20°F 75°F	Sample 1D Top 2-1 Top 2-2 Top 2-3 Top-additional Bottom 2-1	1.485 1.587 1.587 1.665 1.601	3.96 3.966 3.955 3.938 3.962	1025 2470 3650 4020 500	110.96

Contraction of the second

APPENDIX C: PROGRAM OUTPUT OF PCI PREDICTION FOR EACH M&R ALTERNATIVE

Alternative A. Overlay in 1987 - 2 inch average thickness.

SIERRA

C141 AIRCRAFT ID 0.0 AGE BETWEEN ORIGINAL CONSTRUCTION AND LAST OVERLAY 3.0 TOTAL AC THICKNESS IN INCHES INCLUDING OVERLAYS 15.0 TOTAL PAVEMENT THICKNESS ABOVE SUBGRADE 80.0 CBR OF BASE 25.0 CBR OF SUBGRADE

18.0 YEARS TO OVERLAY FROM LAST CONST/OVERLAY 2.0 THICKNESS OF OVERLAY

AGE SINCE OVERLAY	PCI
0.0	100.0
5.0	77.2
10.0	54.4
13.0	40.8

Alternative B. Overlay 1980 - 2-inch AC average thickness.

SIERRA

B

C141 AIRCRAFT ID 0.0 AGE BETWEEN ORIGINAL CONSTRUCTION AND LAST OVERLAY 3.0 TOTAL AC THICKNESS IN INCHES INCLUDING OVERLAYS 15.0 TOTAL PAVENENT THICKNESS ABOVE SUBGRADE 80.0 CBR OF BASE 25.0 CBR OF SUBGRADE

11.0 YEARS TO OVERLAY FROM LAST CONST/OVERLAY 2.0 THICKNESS OF OVERLAY

AGE SINCE OVER	LAY PCI
0.0	100.0
5.0	82.2
10.0	64.5
15.0	46.7
20.0	28.9

Alternatives C & E. Replace entire surface.

SIERRA

```
C141 AIRCRAFT ID
0.0 AGE BETWEEN ORIGINAL CONSTRUCTION AND LAST OVERLAY
3.0 TOTAL AC THICKNESS IN INCHES INCLUDING OVERLAYS
15.0 TOTAL PAVENENT THICKNESS ADOVE SUDGRADE
80.0 CDR OF BASE
25.0 CDR OF SUBGRADE
```

AGE SINCE LAST CONST/OVERLAY	PCI

0.0	100.0
5.0	83.3
11.0	63.3
20.0	33.4
25.0	16.7
31.0	0.0

Alternative D. Reuse surface as base and add new 3 inch AC.

SIERRA

C141 AIRCRAFT IB 0.0 AGE DETUEEN ORIGINAL CONSTRUCTION AND LAST OVERLAY 3.0 TOTAL AC THICKNESS IN INCHES INCLUDING OVERLAYS 18.0 TOTAL PAVENENT THICKNESS ADOVE SUBGRADE 100.0 CDR OF BASE 25.0 CDR OF SUBGRADE

AGE SINCE LAST CONST/OVERLAY	PCI
0.0	109.0
5.0	85.0
10.0	70.0
15.0	54.9
20.0	39.9

54

-

in all

APPENDIX D: PROGRAM OUTPUTS FOR PREDICTING FUTURE CRACKING

DISTRESS INPUT DATA

DISTRESS	TYPE		8.			
AGE		11.00	YEARS			
L		8.43				
N	=	13.03				
H	=	4.45				
EARLIEST	DIST	RESS ST	ARTING TIN	E =	0.0	YEARS
LATEST D	ISTRE	SS STAR	TING TIME		10.0	YEARS
DISTRESS	AT I	AITIAL	TINE = .	0100		
EARLIEST	TINE	FRON L	TO N		0.0	YEARS
LATEST T	INE F	ROM L T	0 1		6.0	YEARS
EARLIEST	TINE	FROM N	TO H	=	9.0	YEARS
LATEST T	INE F	RON N 1	10 M	=	6.0	YEARS
HAXINUN	PRENI	CTION A	RF	=	30.0	YEARS

OPTINUN VALUES	
INITIAL TINE =	0.0 YEARS
TINE FROM L TO H =	1 YEARS
TINE FROM M TO H =	3 YEARS
NEAN	= 13.2719 YEARS
STANDARD DEVIAT	ION = 3.5158 YEARS

YEAR	L+N+N	L	н	Н
0	.01	.01	0.00	0.00
1	.03	.02	.01	0.00
2	-07	.94	.03	0.00
3	.18	-11	.07	0.00
4	.42	.24	.17	.01
5	.93	.51	.39	.03
6	1.93	1.00	.86	.07
7	3.72	1.79	1.76	.18
8	6.69	2.97	3.30	.42
9	11.22	4.53	5.76	.93
10	17.60	6.38	9.29	1.93
11	25.91	8.30	13,00	3.72
12	35.89	9.97	19,22	6.69
13	44.92	11.04	24.66	11.22
14	58.20	11.28	29.32	17.60
15	64.85	10.65	32.29	25.91
16	78.11	7.26	32.97	35.88
17	85.55	7.44	31.19	46.92
19	91.06	5.51	27.35	58.20
19	94.83	3.77	22.22	68.85
20	97.21	2.38	16.73	78.11
21	78.60	1.39	11.47	\$5.55
22	99.35	.75	7.54	91.06
23	99.72	. 37	4,51	94.83
24	99.88	.17	2.50	97.21
25	99.96	.07	1,28	78.40
26	77.98	.03	.61	99.33
27	77.77	.01	.27	99.72
28	100.00	.00	.11	99.88
29	100.00	.00	.04	99.94
30	100.00	.00	.01	97.98
			-	

CRACK PREDICTION FOR ENTIRE RUNWAY WIDTH (NOTE 100% = 197050 LINEAR FEET OF CRK)

.

DISTRESS INPUT DATA

DISTRESS	TYPE		8.			
AGE		11.00	YEARS			
L	-	4.63				
N		8.75				
H		4.57				
EARLIEST	DIST	RESS ST	ARTING TIM	E =	0.0	YEARS
LATEST D	ISTRE	SS STAR	TING TINE		9.0	YEARS
DISTRESS	AT I	HITIAL	TIME = .(0100		
EARLIEST	TINE	FROM L	. TO H		0.0	YEARS
LATEST T	INE F	RON L 1	0 H	=	4.0	YEARS
EARLIEST	TINE	FROM N	TON		0.0	YEARS
LATEST T	LHE F	ROM IL T	10 H		4.0	YEARS
NAXIMUN	PREDI	CTION A	6E		30.0	YEARS

0	PTINUN VALUES			
	INITIAL TINE		0.0 YEARS	
	TINE FROM L TO		1 YEARS	
	TINE FROM N TO	3 H =	2 YEARS	
	NEAN	REVIATIO	= 14.5310 H = 3.8494	YEARS Years
	3 I ARDAKJ	REATHITO	4 = 3.8474	TEARS
YEAR	L+N+N	L	M	H
0	.01	.01	0.00	0.00
1	.02	.01	.01	0.00
2	.04	.03	.02	0.00
3	.14	.08	.05	.01
4	.31	.17	.11	.02
5	-67	.35	.25	. \$6
6	1.34	.47	.53	.14
-7	2.52	1.19	1.02	.31
	4.49	1.97	1.86	. 47
•	7.54	3.05	3.15	1.34
10	11.96	4.42	5.02	2.52
11	17.95	5.99	7.47	4.49
12	25.54	7.59	10.41	7.54
13	34.54	9.00	13.58	11.76
14	44.52	9.97	16.57	17.95
15	54.85	10.33	18.97	25.54
14	64.86	10.01	20.30	34.54
17	73.93	9.07	20.35	44.52
18	81.42	7.69	17.07	54.85
19	87.71	6.07	14.76	64.86
20	92.23	4,51	13.78	73.93
21	75.36	3,13	10.41	\$1.42
22	97.38	2.03	7.64	87.71
23	98.41	1.23	5.15	92.23
24	77.30	.70	3.25	75.36
25	99.47	. 37	1.92	97.30
26	77.85	.18	1.06	78.61
27	77.74	.00	.55	77.30
28	99.97	.04	.27	99.47
29	99.99	.01	.12	77.85
30	100.00	.01	.05	99.94
CDAC			ITSINE 75	FFFT ONLY

CRACK PREDICTION FOR OUTSIDE 75 FEET ONLY (NOTE 100% = 105325 LINEAR FEET OF CRK)

N. AR

APPENDIX E: FUTURE M&R COSTS FOR EACH M&R ALTERNATIVE

-

10

20.36

(A) MAR ALTERNATIVE CONTINUE GRACK SEALING AND PATCHING TO A PCI = 40 (1987) THEN OVERLAY 20___ YEARS INTEREST RATE_ ANALYSIS PERIOD 2 INFLATION RATE PRESENT YEAR M&R WORK DESCRIPTION COST 🗯 f WORTH B SEAL & PATCH CRACKS 80 51,053 80 PATCH ALLIGATOR CRACKING 5,361 45,333 80 APPLY REJUVENATOR 82 SEAL & PATCH CRACKS 41,403 84 43,213 SEAL & PATCH CRACKS SEAL & PATCH CRACKS 86 83,960 87 TACK COAT 11,333 87 543,150 OVERLAY 87 34,000 APPLY REJ. CONST. COAT 10,000 * 89 SEAL & PATCH CRACKS 20,000 * 91 SEAL & PATCH CRACKS 30,000 * 93 SEAL & PATCH CRACKS 95 30,000 * SEAL & PATCH CRACKS 95 APPLY REJUVENATOR 45,333 20,000 * 97 SEAL & PATCH CRACKS 99 30,000 * SEAL & PATCH CRACKS TOTAL ٦. SALVAGE VALUE = PRESENT WORTH = \$_ *ESTIMATED ASSUMING REFLECTION CRACKING

58

1. 19 M

B					
MB	R ALTERNATIVE PCI = 4	<u>ач іл 1980</u> О (Авоит		•	
ANA	LYSIS PERIOD YEAR	• · _			
		INFLATI	ON RI	ATE	
YEAR	M&R WORK DESCRIPTION	COST 🖸	f	PRESENT WORTH	
80	SEAL & PATCH CRACKS	51,053			
80	PATCH ALLIGATOR CRACKS	5,361			
80	TACK COAT	11,333			
80	OVERLAY	543,150			
80	APPLY REJ. CONST. COAT	34.000			
82	SEAL & PATCH CRACKS	10,000*			
<u>84</u>	SEAL EPATCH CRACKS	20,000 *			
86	SEAL EPATCH CRACKS	30,000 *			
88	SEAL É PATCH CRACKS	30,000*			
88	APPLY REJUVENATOR				
90	SEAL & PATCH CRACKS				
92	SEAL & PATCH CRACKS				
94	SEAL & PATCH CRACKS			L	
96	SEAL & PATCH CRACKS	30,000 *			
96	APPLY REJUVENATOR				
98	SEAL È PATCH CRACKS	30,000 *			
				<u> </u>	
				·	
·				+	
			<u> </u>	4	
				<u> </u>	
	·····	<i>TOT</i>	AL	\$	
SALV	AGE VALUE = _ = ;	f			
	PRESENT WORTH = \$_				
FEST	MATED ASSUMING REFLECT	ION CRAT	KINI		

.4 1

いわん

	R ALTERNATIVE <u>REPLAC</u>		<u> </u>	
AIVA	LISIS PERIOD IEA	INFLATIO		
YEAR	M&R WORK DESCRIPTION	COST #	f	PRESENT WORTH
80	COLD MILL SURFACE	255,000		1
80	HAULING MILLED MATERIAL	9,053		
80	PRIME BASE	22,667		
80	NEW BINCH AC	814,725		
80	APPLY REJ. CONST. COAT	34,000		
88	SEAL & PATCH CRACKS	1,000 #		
88	APPLY REJUVENATOR	45,333		
92	SEAL & PATCH CRACKS	5,000*		
94	SEAL & PATCH CRACKS	10,000*		
96	SEAL & PATCH CRACKS	15,000 *		
96	APPLY REJUVENATOR	45,333		
98	SEAL & PATCH CRACKS	10,000 *		
	_	ļ		
		{ }		
		dd		
		<u> </u>		
		∔∔	<u> </u>	
	+			
				<u> </u>
		╉─────┤		+
		╂─────┤		+
	+	╂─────┫	·	+
		τοτ	AL	\$
SALI	AGE VALUE = = = PRESENT WORTH = \$	\$		

ł

r V

FESTIMATED ASSUMING REFLECTION CRACKING

. .

	R ALTERNATIVE <u>Recycl</u> BASE - APP NEW SURP		E_A	NO USE
ANA	LYSIS PERIOD <u>20</u> YEAI			ATE ATE
EAR	MAR WORK DESCRIPTION	COST 🛔	f	PRESENT WORTH
80	COLD MILL	255,000		
80	WIND ROWING MILLED MATL	4.526		
80	PLACE MILLED MATL. AS			
	BASE & COMPACT & PRIME	136,000		
80	NEW AC SURFALE			
	- CENTRAL 75 FT.	407, 362		
	- OUTSIDE 75 FT.	271,575		
<u>B0</u>	APPLY REJ. CONST. COAT	34,000		
90	SEAL & PATCH CRACKS	1,000#		
90	APPLY REJUVENATOR			
94_	SEAL & PATCH CRKS.	5,000*		
<u>98</u>	SEAL EPATCH CRACKS	10,000 #		
				1
				
		ļ ļ		
	+			
		<u> </u>		+
	1	TOT	4L	\$
SAL	/AGE VALUE = ;	t		

* ESTIMATED ASSUMING REFLECTION CRACKING

ł		TINUE PATCH OUTSIDE	RS INTERE		-
			INFLATI	ON R	47E
YE	EAR	MAR WORK DESCRIPTION	COST 🖸	f	PRESENT WORTH
	30	COLD MILL 75 FT.	127,500		
	80	HAULING MILLED MATL.	4.526		
	80	PRIME BASE	11,333		
2	30	NEW AC SURFACE	407,362		
	80	SEAL & PATCH OUTSIDE CEKS	18,906		L
	80_	APPLY REJ. CONST. COAT (75)	22,666		
	<u>B0</u>	APPLY REJ. OUTSIDE	17,000		
	88	SEAL & PATCH CRACKS	500*		<u></u>
	88	APPLY REJUVENATOR	ZZ,666		4
	<u>92</u>	SEAL & PATCH CRACKS	2,500 *		
°5 ₽7. }`	94_	SEAL & PATCH CRACKS	5,000 *		
	<u>96</u>	SEAL & PATCH CRACKS	7.500 *		+
	96	APPLY REJUVENATOR	22,666	<u> </u>	+
	98	SEAL & PATCH CRACKS	5,000 *		
	82	SEAL & PATCH CRACKS	17,473		+
	84	SEAL & PATCH CRACKS	Z1,392		+
	84 86	SEAL & PATCH CRACKS	39,002		+
—	8B	SEAL & PATCH CRACKS	31,987		1
	88	APPLY REJUVENATOR			<u>† </u>
	90	SEAL & PATCH CRACKS	29,449		
	92	SEAL & PATCH CRACKS	42,425		I
	94	SEAL & PATCH CRACKS			
	96	SEAL & PATCH CRACKS APPLY REJUVENATOR	z9,734		
	96		22,666		
- V 4	98	SEAL & PATCH CRACKS	42,478 TOT	AL	5

^{*} ESTIMATED ASSUMING REFLECTION CRACKING

CERL DISTRIBUTION

Chief of Engineers ATTN: Tech Monitor ATTN: DAEM-ASI-L (2) ATTN: DAEM-CCP ATTN: DAEM-CUP ATTN: DAEM-CUM-R ATTN: DAEM-CUM-R ATTN: DAEM-CUM-R ATTN: DAEM-CUP ATTN: DAEM-CUP ATTN: DAEM-CUP DAEN-MPC DAEN-MPC DAEN-MPC ATTN: ATTN: ATTN-DAEN_MPR-A DAEN-RD DAEN-RD DAEN-RDC DAEN-RDM ATTN: ATTN: ATTN DAEN-RM DAEN-ZC DAEN-ZCE DAEN-ZCE DAEN-ZCI ATTN: ATTN: ATTN: ATTN ATTN: DAEN-ZCM US Army Engineer Districts ATTN: Library Alaska Al Batin Albuquerque Baltimore Buffalo Charleston Chicago Detroit Far East Fort Worth Galveston Huntington Jacksonville Japan Japan Kansas City Little Rock Los Angeles Louisville Memphis Mobile Hashville Nashville New Orleans New York Norfolk Omaha Philadelphia Pittsburgh Portland Riyadh Rock Island Sacramento San Francisco Savannah Seattle Seattle St. Louis St. Paul Tulsa VickSburg Walla Walla Wilmington US Army Engineer Divisions ATTN: Library Europe Huntsville Lower Hississippi Valley Lower Mississippi \ Middle East Middle East (Rear) Missouri River New England North Atlantic North Central North Actific Onio River Gastific Genera Pacific Ocean South Atlantic South Pacific Southwestern Waterways Experiment Station ATTN: Library Cold Regions Research Engineering Lab ATTN: Library US Government Printing Office Receiving Section/Depository Copies (2)

2

Defense Technical Information Canter ATTN: DDA (12)

Engineering Societies Library New York, NY FESA, ATTN: Library ETL. ATTN: Library Engr. Studies Center, ATTN: Library Inst. for Water Res., ATTN: Library Army Insti. and Major Activities (CONUS) DARCOM - Dir., Inst., & Svcs. ATTN: Facilities Engineer Con - Diri, Inst., e Stis. Th: Facilities Engineer ARRADCOM Abcrdeen Proving Ground Army Matls, and Mechanics Res. Ctr. Corpus Christi Army Depot Narry Diamond Laboratories Duguay Proving Ground Jefferson Proving Ground Fort Monmouth Letterkenny Army Depot Natick Research and Dev. Ctr. New Comberland Army Depot Red River Army Depot Redstone Arsenal Rock Island Arsenal Savanna Army Depot Sharpe Army Depot Tobynanna Army Depot Tobele Army Depot Watervilet Arsenal Yume Proving Ground White Sands Hissile Range FORSCOM ORSCOM FORSCOM Engineer, ATTN: AFEN-FE ATTR: Facilities Engineers Fort Buchanan Fort Bragg Fort Campbell Fort Carson Fort Carson Fort Devens Fort Drum Fort Hood Fort Indiantown Gap Fort Indiantown Fort Indiantown Gap Fort Inwin Fort Sam Houston Fort Lewis Fort HCCoy Fort McPherson Fort George G. Meade Fort Ord Fort Polk Fort Polk Fort Polk Fort Richardson Fort Riley Presidio of San Francisco Fort Stewart Fort Stewart Fort Hainwright Vancouver Bks. TRADOC HQ, TRADOC, ATTN: ATEN-FE ATTN: Facilities Engineer Fort Belvoir Fort Bilss Carlisle Barracks Fort Chaffee Fort Dix Fort Gordon Fort Gordon Fort Gordon Fort Benjamin Herrison Fort Jackson Fort Leavenworth rort KNOX Fort Leavenworth Fort Lee Fort McClellan Fort Monroe Fort Mucker Fort Sill Fort Leonard Mood INSCOM - Ch. Instl. Div. ATTN: Facilities Engineer Vint Hill Farms Station Arlington Hall Station MESTCOM ATTN: Facilities Engineer Fort Shafter

Compron Station Fort Lesley J. McNair Fort Myer NSC HQIJSAHSC, ATTN. HSLO-F ATTN: Facilities Engineer Fitzsimons Army Medical Center Walter Reed Army Medical Center USACC uu TTN: Facilities Engineer Fort Huachuca Fort Ritchie ATTN NTHO HQ, ATTN: HTHC-SA ATTN: Facilities Engineer Oakland Army Base Bayonne MOT Sunny Point MOT US Military Academy ATTR: Facilities Engineer ATTR: Dept of Geography & Computer Science USAES, Fort Belvoir, VA ATTN - ATZA-DTE-EM ATTN - ATZA-DTE-SU ATTN : Engr. Library Chief Inst. Div., I&SA, Rock Island. USA ARRCOM, ATTN: Dir., Instl & Svc USA ARREOM, ATTN: DIF., TARCOM, Fac. DIV. TECOM, ATTN: DRSTE-LG-F TSARCOM, ATTN: STSAS-F NARAD COM, ATTN: DRDNA-F AMMRC, ATTN: DRXMR-WE HQ, XVIII Airborne Corps and Ft. Bragg ATTN: AFZA-FE-EE HQ, 7th Army Training Command ATTN: AETTG-DEH (5) HQ USAREUR and 7th Army ODCS/Engineer ATTN: AEAEN-EH (4) Y Corps ATTN: AETVDEH (5) VII Corps ATTN: AETSDEN (5) 21st Support Com ATTN: AEREH (5) US Army Berlin ATTN: AEBA-EN (2) US Army Southern European Task Force ATTN: AESE-ENG (5) US Army Installation Support Activity Europe ATTN: AEUES-RP Bth USA, Koree ATTN: EAFE Cdr. Fac Engr Act (8) AFE, 20 Inf Div AFE, 20 Inf Div AFE, Area II Spt Det AFE, Cp Humphreys AFE, Pusan AFE, Taegu DLA ATTN: DLA-WI USA Japan (USARJ) Ch. FE Div, AJEN-FE Fac Engr (Honshu) Fac Engr (Okinawa) ROK/US Combined Forces Com ATTN: EUSA-HHC-CFC/Engr

M ATTN- Facilities Engineer

416th Engineer Command ATTN: Facilities Engineering

Norton AFB ATTN: AFRCE-HR/DEE

MC Team Distribution

SA ARRADCOM STTN: DRDAR-LCA-OK Director of Facilities Engineering Ft, Richardson, AK 99505 Miami, FL 34004 **USA Liaison Detachment** ATTN: Library New York, NY 10007 West Point, NY 10996 ATTN: Dept of Mechanics ATTN: Library HQDA (SGRD-EDE) Chief of Engineers ATTN: DAEN-MPO-B ATTN. DAEN-MPZ-A ATTN: DAEN-MPR (2) DAEN-ROL ATTN: ATTN: DAEN-ZCP National Defense Headquarters Director General of Construction Ottawa, Ontario, Canada KIA OK2 Division of Building Research National Research Council Ottawa, Ontario, Canada KIA OR6 Airports and Const Services Dir Technical Info Reference Center Ottawa, Ontario, Canada KIA ON8 Ft. Belvoir, VA 22060 ATTM: ATSE-TD-TL (2) AITN: Learning Resource Center ATTN: Kingman Bldg, Library ATTM: Canadian Liaison Officer (2) ATTN: British Liaison Officer (5) US Army Foreign Science and Tech Center ATTN: Charlottesville, VA 22901 ATTN: Far East Office t. Leavenworth, KS 66027 ATTN: ATZLCA-SA Ft. Monroe, VA 23651 ATTN: ATEN-AD (3) ATTN: ATEN-FE-ME ATTN: ATEN-FE-BG (2) Ft. McPherson, GA 30330 ATTN: AFEN-CD Ft. Lee, VA 23801 ATTN: DRXMC-D (2) USA-WES ATTN: C/Structures ATTN: Soils & Pavements Lab 6th US Army ATTN: AFKC-EN 7th US Army ATTN: AETTM-HRD-EHD HQ, Combined Field Army (ROK/US) ATTN: CFAR-EN APO San Francisco 96358 US Army Engineer District New York ATTN: Chief, Design Br. Pittsburgh ATTN: Chief, ORPCD ATTN: Chief, Engr Div Philadelphia ATTN: Chief, NAPEN-D

US Army Engineer District Baltimore ATTN: Chief, Engr Div Norfolk ATTN: Chief, NADEN-M ATTN: Chief, NAOEN-D Huntington ATTN: Chief, ORHED-F Wilmington ATTN: Chief, SAWCO-C ATTN: Chief, SAWEN-D Charleston ATTN: Chief, Engr Div Savannah ATTN: Chief, SASAS-L Jacksonville ATTN: Const Div Mobile ATTN: Chief, SAMEN-D ATTN: Chief, SAMEN-F ATTN: Chief, SAMEN-F Nashville ATTN: Chief, ORNED-F Memphis ATTN: Chief, Const Div ATTN: Chief, LMMED-D Vicksburg ATTN: Chief, Engr Div Louisville ATTN: Chief, Engr Div Detroit ATTN: Ghief, NCEED-T St. Paul ATTN: Chief, ED-D ATTN: Chief, ED-F Chicago ATTN: Chief, NCCCO-C ATTN: Chief, NCCED-F Rock Island ATTN: Chief, Engr Div ATTN: Chief, NCRED-F St. Louis ATTN: Chief, ED-D Kansas City ATTN: Chief, Engr Div Omaha ATTN: Chief, Engr Div New Orleans ATTN: Chief, LMNED-DG Little Rock ATTN: Chief, Engr Div Fort Worth ATTN: Chief, SWFED-D ATTN: Chief, SWFED-F ATTN: Chief, SWGAS-L ATTN: Chief, SWGAS-L ATTN: Chief, SWGCO-C ATTN: Chief, SWGED-DC Albuquerque ATTN: Chief, Engr Div Los Angeles ATTN: Chief, SPLED-F San Francisco ATTN: Chief, Engr Div Sacramento ATTN: Chief, SPKED-D ATTN: Chief, SPKCO-C Far East ATTN: Chief, Engr Div Portland ATTN: Chief, DB-6 ATTN: Chief, FM-1 ATTN: Chief, FM-2 Seattle ATTN: Chief, NPSCO ATTN: Chief, NPSEN-FM ATTN: Chief, EN-DB-ST Walla Walla ATTN: Chief, Engr Div Alaska ATTN: Chief, NPASA-R

US Army Engineer Division New England ATTN: Chief, NEDED-T ATTN: Laboratory ATTN: Chief, NEDCD Middle East (Rear) ATTN: Chief, MEDED-T North Atlantic ATTN: Chief, NADEN South Atlantic ATTN: Laboratory ATTN: Chief, SADEN-TC Chief, SADEN-TS ATTN: Huntsville ATTN: Chief, HNDED-CS ATTN: Chief, HNDED-M ATTN: Chief, HNDED-SR Lower Mississippi ATTN: Chief, LMVED-G Ohio River ATTN: Laboratory ATTN: Chief, Engr Div Missouri River ATTN: Chief, MRDED-G ATTN: Laboratory Southwestern ATTN: Laboratory ATTN: Chief, SWDED-MA ATTN: Chief, SWDED-TG South Pacific ATTN: Laboratory Pacific Ocean ATTN: Chief, Engr Div ATTN: FM&S Branch Chief, PODED-D ATTN: North Pacific ATTN: Laboratory ATTN: Chief, Engr Div Facilities Engineer Ft. Benning, GA 31905 ATTN: ATZB-FE-EP ATTN: ATZB-FE-BG AF/PREEU Bolling AFB, DC 20332 AFESC/PRT Tyndall AFB, FL 32403 Tinker AFB, OK 73145 2854 ABG/DEEE Patrick AF8, FL 32925 ATTN: XRQ McClellan AFB, CA 95652 2852 APG/DE Little Rock AFB ATTN: 314/DEEE Naval Facilities Engr Command ATTN: Code 04 ATTN: Code 2013 C Alexandria, VA 22332 Port Hueneme, CA 93043 ATTN: Library (Code LOBA) ATTN: Morell Library Commander (Code 2636) Naval Weapons Center China Lake, CA 93555 Washington, DC ATTN: Bldg Research Advisory Board ATTN: Bldg Research Advisory Board ATTN: Library of Congress (2) ATTN: Federal Aviation Administration ATTN: Dept of Transportation Library ATTN: Transportation Research Board Rock Island Arsenal (12) DRCIS-RI-IB/M. Flaherty Sierra Army Depot (12) ATTN: FE/M. Balerviez

.

Shahin, Mohamed Y. Pavement evaluation and repair recommendation, Sierra Army Depot, Amedee Air Strip. -- Champaign, IL : Construction Engineering Research Laboratory ; Springfield, VA : available from NTIS, 1980. 62 p. (Technical report ; M-283)

Sierra Army Depot, C. 2. Air bases -- runways. 3. Pavements --maintenance and repair. I. Title. II. Series: U.S. Army Construction Engineering Research Laboratory. Technical report; N-283.

~