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N ~I NTROD UCTIO0N

The principles that form the basis of all quantum

mechanics were first introduced in 1926 by Schroedingerl.

Since that time these principles have been extended to

become the framework of the theory used today. Although

the simplicity of the theory cannot be questioned,

practical implementation of the basic concepts has often

proven difficult. For certain applications, including

the hydrogen atom as well as other one electron systems,

the Schroedinger Theory allows exact analytic solution.

For larger systems, approximations are necessary.

The first approximation that is generally incorporated

into the Schroedinger Theory is known as the Born Oppen-

2'helmer Approximation. The use of this approximation

allows the separation of electronic and nuclear motions.

Further simplification can be achieved through a method

for dealing with the electron-electron interaction

potential, This approach was first suggested by

Hartree,3 and was subsequently extended by Fock to

include exchange effects. In molecular orbital theory,

an electron orbital is replaced by a one-electron wave

function delocalized over the whole molecule. This

concept, together with the Paull prlnciple-C4d -the
work of Hartree and Fock allow the wavefunction to be

expressed in a single Slater 6 determinant. In minimizing

F ... .



the energy of the determinant through the Variation

Principle, a set of integrodifferential equations called

the Hartree-Fock equations are obtained. These equations

must be solved iteratively, and the lowest energy single

determinant wavefunction that can be constructed is

known as the Self-Consistent Field (SCF) wavefunction.

7The Roothaan equations provide the means of translating

the integrodifferential equations into algebraic form. The

approach allows application of the SCF method to molecules

where linear combinations of atomic orbitals (LCAO) are

assumed to represent the molecular orbitals.

The difference between the Hartree-Fock energy for

a single determinant wave function and the true energy

is known as the correlation energy. The magnitude of

this energy can be quite large even for small molecules,

and the technique most commonly used to calculate the

correlation energy is Configuration Interaction (CI).

This method involves expanding the electronic wavefunction

to include a linear combination of all possible products

of Slater determinants. C1 is best described as the cal-

culation of the optimum linear combination based on the

Ritz. 8
variational approach of Although the CI technique

can be used in principle for diverse chemical problems,

U

in practice full solution of the CI problem is severely

limited. Fortunately, it is possible to obtain

relatively good accuracy by limiting the full problem

1~7



I

to a subset of the full determinental basis. Indeed a

reasonable estimate of the significant corrections to

the SCF basis is possible if the space includes only

single and double excitations.
9

Full solution of most problems at the double excita-

tion level is still prohibitive, and techniques for

further optimizing the choice of configurations must

be utilized. The CI method used in this work is based

on the fact that in any system, there will be a small

number of configurations which dominate the final wave-

function. These configurations are identified and all

other configurations are ranked according to their inter-

action with the small group of important configurations

using Raleigh Schroedinger Perturbation Theory. The

configurations that interact most strongly are treated

exactly while the remaining configurations are treated as

a perturbation. It is this technique of solving only a

subset of the entire problem exactly that makes CI cal-

culations on medium-sized molecules possible.

Chapter I of this work provides some detail on the

historical development of Configuration Interaction. The

specific method of CI used to obtain the results of the

applications presented here is described in Chapter II.
U

In Chapter III, theoretical and experimental consi-

derations central to the examination of compound states of

polar molecules are discussed. Compound states are formed

-t -
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when an incident electron interacts with a molecule.

The electron is temporarily captured in the neighborhood

of the molecules and the resulting complex is known as

a negative ion or resonance state. In the lower energy

region, polar molecules can form resonances that are

largely dipole-supported. At somewhat higher energies,

traditional valence-type resonances occur. At still

higher energies, the incident electron occupies a

Rydberg orbital of the neutral excited molecule, giving

rise to a Feshbach state. In Chapter III, the general

background information on the various types of compound

states is presented. In addition, the theoretical

basis for the actual binding of an electron by a polar

molecule is considered.

In Chapter IV, the results of CI calculations on the

lower energy (< 9 eV) negative ion states of HF are

presented. We find that the lowest HF state lies below

the ground state of HF at all internuclear distances and

is therefore capable of binding an electron. Because

V the calculated binding energy is less than the error

inherent within the method used in the calculations, it

cannot be stated with certainty that there is a bound

state of HF'. The minimum dipole concept indicates that

a stable negative ion state will be formed if the dipole

moment of the neutral molecule exceeds 1.625 n. The HF

molecule, with an experimental dipole moment of 1.82 I),

.-
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is thus expected to support a bound state. When nuclear

considerations are taken into account, the minimum dipole

moment for-binding an electron is increased slightly.

Our calculated dipole moment for HF is 2.01D, higher than

the experimental value by a few tenths of a Debye. The

fact that we find HF" to be slightly bound is not

unexpected, but is also not sufficient proof that the

lowest HF- state is truly bound.

The results of the calculated potential curves for

four other HF- states are also presented in Chapter IV.

The lowest three of these states are formed by occupying

a Rydberg orbital with the additional electron; the

extra electron occupies a valence orbital in the fourth

state. Since experimental evidence on these states of

HF" is virtually nonexistence, it is not clear whether

or not they are resonances. Nevertheless, we present

qualitative arguments that support the assignment of

resonance character to all four states.

A detailed examination of the higher energy (9-14

V eV) Feshbach states of HF" is presented in Chapter V.

We first discuss the results of CI calculations on the

excited states of the neutral molecule, HF. The results

&i of these calculdtions agree well with the available

experimental data. We have performed CI calculations on

the Feshbach states of HF which are formed by the

attachment of an additional electron to the excited states
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of the netural molecule. We find evidence of one

attractive state with features that agree well with the

experimental observations.

There is no doubt that the results of the studies

presented in Chapters IV and V clearly illustrate the

utility of the CI method for detailed examination of the

compound states of polar molecules. The work is also

significant for two further reasons. First, a good

explanation of the observed experimental features of the

HF" negative ion states is provided. Second, the results

predict certain unobserved experimental features and

serve as a guide for both experimentalists and

theoreticians for further investigation of HF" in

particular, and other polar molecules in general.

VI°

-*---' J'~j
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CHAPTER I

HISTORICAL BACKGROUND

The solution of virtually all chemical problems

involving atomic and molecular structure is based on the

Schrodinger Equation:1

HTl ETP(11

H, the Hamiltonian operator, represents the total energy

of a system. It is specified by summing the contributions

to the Kinetic Energy (T) and the Potential Energy (V).

Solutions are obtained in the form of eigenvalues

describing the energy of each state of the system. For

molecules consisting only of the lighter atoms, spin-orbit

coupling and relativistic effects can be reasonably

neglected. With this in mind, the Kinetic and Potential

Energy Operators in atomic units can be expressed as

T " + - T + T(1.2)
A 2MA  a 2

ZAZB ZA (1.3)

A>B AB Ab Ab a>b ab

SV + V + V
N EN EE

In this system of units, h, the mass of the electron,
and the electronic charge are unity. The unit of length

is the bohr (I bohr = .52918 x 10 - cm), while the unit
of energy Is the hartree (I hartree u 27.205 eV).
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where the Nuclear contributions are denoted as A, B and the

elect-ronic contributions by a, b. MA is the mass of

nucleus A,'and ZA is the charge of nucleus A. TN and TE

represent the nuclear and electronic kinetic energy

respectively. VNN describes the repulsion between the

nuclei, VEE is the repulsion between electron pairs, and

VEN is the electrostatic attraction of all nuclei for

all electrons.

The Hamiltonian operator can thus be written

H = TN + TE + VNN + VEN + VEE (1.4)

Specifying the operator for a given system is straight-

forward. Solution of the eigenvalue problem of Equation

(1.1) is more difficult, and has been accomplished exactly

in only two instances, those of the hydrogen atom and

the hydrogen molecule ion. For systems with more than

one electron, adoption of the Born Oppenheimer Approxima-

2tion leads to a simplification of the problem. This

approximation is based on the premise that the nuclei,

having mass far greater than that of the electrons,

move much more slowly *than the electrons. Thus, at any

instant, the motion of the electrons is the same as if

the nuclei were in a fixed position in space. When the

nuclei are in fixed positions, TN = 0, V N constant,

and the Hamiltonian can be written

HE = TE + VEN + VE + VNN (1.5)
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where HE now represents the electronic Hamiltonian.

Equation (1.5), in which the kinetic energy of the

nuclei has*been set equal to zero, is the electronic

Hamiltonian. It can be solved for any fixed geometry

of the nuclei, and when solutions are obtained for a

range of nuclear coordinates, a potential surface is

defined. The energy eigenvalues for each point on the

potential surface can then be used for solution of the

nuclear wave functions and the total energy.

For the remainder of this work, we will devote our

attention to the solution of equation (1.5). Although

nuclear motion has indeed been found to play an insignifi-

cant part in some chemical problems, it is more important

in certain others. In the binding of electrons to polar

molecules, for example, it has been found that including

consideration of vibration does not alter the conclusions
~3

on stability of negative ions. In contrast, the condi-

tions for binding an electron are altered slightly when

rotation is taken into account.4

The Born Oppenheimer Approximation considerably

simplifies the Schroedinger Equation. Nevertheless,

it is still too complex to allow complete solution of

most practical problems, and further approximation is

necessary. Over the years, Molecular Orbital Theory has

emerged as the most useful approximation for understanding

most molecular systems.

4 .." m l ' m l n l l i ...I i I l I ........ .... ..
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The Variation Principle 5 states that if T is any well

behaved function that satisfies the boundary conditions

of a problem, then

fT*HETdT > E°  (1.6)

where E0 is the true value of the lowest energy eigenvalue

of HE. The "best" set of T's for solving equation (1.6)

is that which provides the lowest energy. The true energy

can only be obtained by using the exact wavefunction,

T, which would require an infinite set of functions. In

practice, it has been found that linear combinations of

atomic orbitals (LCAO) centered on each atom form a

reasonable approximation to the true wavefunction in

molecules. These one-electron functions are known as

Molecular Orbitals (MO's).

The simplest approximate wave function for an

N-electron system is the product of N one-electron basis

functions first introduced by Hartree.6

'vT(0...N) = 1(1)¢ 2 (2)02 ''N(N) (1.7)

The O(N) are products of a space component and a spin

7component, a or 8. The additional requirement that theI, product wave functions must be antisymmetric to the

exchange of any pair of electrons leads to the expression

of the wavefunction in the form of a Slater determinant. 8

I__ _ _

............. .. . .....-- il- N m l i l| m ..
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i(I i(2 ... . € (N)

1 02(l)02(2) ..... 2 N) (1.8)

N( I @N ( 2 ) ..... 0N(N)

This wave function, called the Hartree-Fock wave function,

is the "best" function that can be constructed by assigning

each electron to a separate orbital.

In minimizing the energy of equation (1.6), a set

of integrodifferential equations called the Hartree-Fock

equations are derived. The true Hamiltonian and wave

function involve the coordinates of all N electrons, while

the Hartree-Fock Hamiltonian is a one electron operator.

The Hartree-Fock equations are

H eff(1M Op(1) = 0p (1) (1.9)

where e is the orbital energy. The Hartree-Fock

Hamiltonian can be written
2 ZHeff = V + -" (1.10)

a 2 Aa rAa i i

H The first term is the operator for the kinetic energy of

each electron; the second term is the potential energy

operator for the attraction between each electron and

the nuclei. The Coulomb oDerator, J1, is the operator

representing the electrostatic repulsion between each



-13-

electron and all other electrons. It has the form

ab(

The fourth term, Ki , known as the Exchange Operator, has

no !imple physical interpretation, but arises from the

requirement of antisymmetry of electrons to exchange.

It can be written

K if i ----' .dT (112)

1 r ab

The Hartree-Fock equations must be solved iteratively.

Generally, an initial guess provides a set of initial

wave functions, which in turn lead to an improved potential.

This improved potential is then used to obtain improved

wave functions. The process is repeated until the energy

reaches a reasonable stability. The Hartree-Fock energy is

EHF = 2 ei - (2 Ji " Kij) (1.13),F i j ii i

The Hartree-Fock equations can be solved in closed

form only for a limited number of systems. Numerical

integration provides fairly accurate results for atoms,
9

while for molecules, analytic basis functions are generally

employed. The self-consistent-field (SCF) wave function

A is the lowest energy single determinant wave function that

can be constructed within a finite basis.

The analytic approach developed by Roothaan, 1 0

involves expanding the orbitals as a complete set of basis
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functions, fk" That is,

i = Cikfk (1.14)

Substitution of this expression into equation (1.9) gives

Cik Hefffk = i Cikfk (.15)

Multiplication by f. and subsequent integration leads to

Z C (Heff  S.) = 0 j=l,2... (1.16)k ik jk " i,

where

heff *Hff
jk = f. Hefff dv (1.17)

and

Sjk = ff fkdv (1.18)

Equations (1.16) are a set of simultaneous linear homo-

geneous equations in the unknown coefficients, Cik.

In order to obtain a nontrivial solution,

det (HJk " i jk =

' i

must be satisfied. Equations (1.16) must be solved

iteratively since Heff depends on the orbitals €i'

which in turn depend on the coefficients Cik. The advan-

tage of this approach is that it reduces the eigenvalue

problem to a matrix problem.

In molecular systems, the ch-oice of a set of basis

-- (
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functions, the fk of equation (1.14), is extremely

important. These basis functions are generally centered

on each atbm, but effectively span the appropriate

molecular space. Exponential functions of the form

-l r m O^f
Nrn - 1 e Y£(O, 4 ) (1.20)

are known as Slater-type orbitals. 11 N is a normalization

constant, n is the principal quantum number, and a is

the screening parameter. Slater orbitals are useful for

many applications, but they do not possess the proper

number of radial nodes and therefore do not provide

a good representation of the inner part of the orbital.

In addition, for large molecular calculations, they are

not economically practical because of the difficulty in

solving the two electron integrals.

In contrast, these same integrals can be evaluated

relatively easily if Gaussian functions are used. These

functions are of the form

MxaybzCeBr 2

where the x, y, z represent the angular dependence, and

a, b, and c are integers. These functions are less4
i appropriate for describing molecular systems than

Slater type functions. Frequently, however, the descrip-

tion may be improved by contracting several Gaussians

together to act as one function. In spite of the fact
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that greater accuracy can almost universally be obtained

from.the use of Slater-type Orbitals, Gaussians have

received wide use because of the relative ease of the

two-electron integral evaluation.

The smallest basis set that can be used for any system

is a minimum basis set. In these cases, either Slater

type Orbitals or contractions of three Guassians are

generally employed. For the oxygen atom, for example,

a minimum basis set would include ls, 2s, and 2p functions.

Since the calculated energies obtained from the minimum

basis sets are usually rather far above the Hartree-Fock

energies, larger basis sets are often utilized. One

type of basis set, the double zeta, contains twice as many

functions as the minimum basis. Any basis set larger than

the double zeta is an extended basis. Extended basis

sets comprised of primitive Gaussian functions can require

K an often prohibitive amount of time for solution of the

SCF equations, and may not lead to convergence of the

energy. To ameliorate this problem, contracted

12gaussians or linear combinations of gauassians with

fixed coefficients are frequently used.

A further step for improvement in molecular

,, description can be obtained by inclusion of polarization
~13

functions. These are functions of higher 2 value than

required by any atom in the molecule. For the H2

molecule, for example, a polarization function would be
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a p function. Many properties of chemical interest,

inclu'ding dissociation energies and dipole moments,can

be reliably calculated only if polarization functions

are included.

Regardless of the size or type of basis set, the

Hartree-Fock approximation neglects an important contri-

bution to the total energy. The correlation energy, or

the energy of the instantaneous repulsions between pairs

of electrons, is the difference between the Hartree-Fock

and the exact energy of a system. In spite of the fact

that this energy represents only a small percentage of

the total energy (less than 1 percent for lighter atoms 4),

its absolute magnitude may be as high as 10 eV. The

Hartree-Fock energy is particularly inadequate when

calculating potential curves of small molecules where the

correlation may vary considerably as the molecule is

stretched.

The most frequently used technique for dealing with

the problem of electron correlation is Configuration

Interaction (CI). The earliest calculations of this type
15

were performed in 1927, and were necessarily limited

to very small systems. With the advent of the computer,

'K the ability to handle larger systems, atoms and their

16 17
*, negative ions, as well as small molecules, was

established. The advantage of the CI method lies in

its simplicity and universal appl'icability. It can be
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used to calculate ground and excited state energies for

molecules, atoms, negative ions, or transition complexes.

In addition to the Hartree-Fock orbitals, there

are an infinite number of other orbitals that are eigen-

functions of Heff for any atom or molecule. These addi-

tional orbitals can be used to construct configurations

other than the Hartree-Fock configuration. With the

inclusion of all configurations tformed from an infinite

number of orbitals, the Schroedinger Equation can be

solved exactly. In practice, of course, a complete set

of these configurations cannot be used and the problem

is generally truncated at some reasonable level.

The C.I. wave function has the form

= oCn (1.22)

n

where the O's are an orthonormal set of n-electron configu-

rations. Equation (1.22) is a linear variation function,

and the coefficients Ci are determined to minimize the

energy. Application of the variation principle leads to

the determinantal equation

(H - El)C : 0 (1.23)

.4 where the E are the eigenvalues and the C's are the matrix

of eigenvectors. The matrix element H represents the

interaction between two determinants or configurations,

D and Dq

P q,

q ti
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Hpq = DpHDqdT (1.24)

In a particular CI calculation, if N configurations are

included, the N energies or eigenvalues will be obtained

in the solution of equation (1.24). A set of coefficients,

Cn , which define the CI wave function is associated with

each energy.

The solution of equation (1.24) is greatly simpli-

fied by the fact that the matrix elements H betweenPq

two configurations p and q of different symmetry are

identically zero. Moreover, an additional simplification

results from the expression of these matrix elements as

the sum of integrals in the orthonormal one electron

basis. It can be written in terms of the one-electron

operator of the Hamiltonian,

V2Zh* ( { - _- I A j14 (a)du (1.25)

'3 1 A aA

and the two-electron Hamiltonian,

V (b)oj(b){r } (a) (a)dT d b  (1.26)ijkl 'i .j ra k a) 1 ada b

The determinants of equation (1.24) may be equivalent

or they may differ in occupation by one or more spin

, orbitals. In the case where the determinants are

identical, the matrix element between them is

. .i. OCC OCL

so so
Hnm h + 7 (V.... - v ) .27)
m i -. . . i-i"
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For the case where the determinants differ by the occupa-

tion -of one spin orbital (i>j),

OCC
SO

Hmm = hij + I (Vijkk - Vikkj) (1.28)
13 k

Occupations which differ by two spin orbitals can be

represented as

Hmn = (V ijkl - Vilki) (1.29)

If the two determinants differ by more than two spin-

orbitals, equation (1.24) is identically zero, which

significantly reduces the potential size of the calcula-

tion. Nevertheless, within any basis set larger than a

minimum basis, CI calculations even for small molecules

can be extremely large. It is therefore important to

identify techniques for further simplifying the problem.

One traditional method for limiting the size of a

CI calculation is the frozen-core approximation. This

method involves freezing the occupation of the M.O.'s

that play a neglgible part in contributing to the energy

ot the desired property. For example, in calculating

the transition energy from the ground to an excited state

of the CO molecule, the Is M.O.'s of carbon and oxygen

might be dropped from consideration. They contribute very

little to the energy difference, since they are basically

atomic in nature. In cases of this type, where the M.O.'s
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dropped from consideration have only a trivial effect on

the results, the frozen core approximation is justified.

Alternatively, attempts to separate the sigma and pi space

of certain molecules using this approximation have been

unsuccessful. 18  It has been found, for example, that the

correlation from the sigma space contributes unequally

to the pi states of some systems. Therefore, both parts

of the space must be included to obtain reasonable results.

Another method of limiting the CI problem is to

restrict the number of configurations. Generally, a

particular state is dominated by only a few main configura-

tions which together comprise more than 90 percent of the

final wavefunction. The only configurations which

interact directly with the dominant configurations are

those that differ by two or fewer occupations. Those

configurations differing by more than two occupations

interact directly with the corrections, but only

indirectly with the dominant configurations. In a study

* i 9of the BH3 molecule, only a few triple and quadruple

excitations from the ground state were found to contri-

bute to the final wave function. Indeed, it is common

practice in CI calculations to include only single and

double excitations from the dominant configurations.

Other techniques for reducing the size of the CI*g *)

problem focus on simplifying the construction and

diagonalization of the Hamiltonian matrix. One method

- ft...... '..JSI
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that handles the problem indirectly is based on selection
20

of a-small subspace of the full matrix for diagonlization.

The remaining space is treated as a perturbational sum.

The threshold for selection, based on the interaction

with a few dominant configurations, is varied. The total

energies obtained by varying the threshold can be extrapo-

lated to obtain the energy of the full space. A second

method for limiting the problem involves the direct

calculation of only the diagonal matrix elements and a

small strip of the full matrix.21

Another technique for reducing the problem to

manageable proportions is described in the next chapter.

This method was used to obtain the results of the studies

presented in Chapters IV and V. It involves a partitioning

of the Hamiltonian so that direct diagonalization can be

avoided and, in addition, presents an efficient method

for calculating matrix elements. The full details of

this technique are presented in references 22 and 23.

i - -
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CHAPTER II

METHOD

The construction and diagonalization of the matrices

necessary for the solution of the CI problem for small

and medium sized molecules (> 20 M.O.'s) is prohibitive.

Various techniques for truncating the space so that full

solution can be avoided have already been mentioned.

The purpose of this chapter is to describe one such

technique which has been used with considerable success

in numerous cases.

The method described here relies on the fact that

for most chemical systems of interest., there exists a

small set of configurations that together dominate the

CI wavefunction. This set of configurations is called

the core. All remaining configurations, deemed the tail,

have a less significant contribution to the final wave-

function. The main configurations can be identified either

through a preliminary calculation or by scanning the

CI matrix diagonal for the terms of lowest energy.

These configurations can be gathered together to form

the nucleus of the calculation. The interaction of all

'4 remaining configurations with those of the nucleus is then

tested using Raleigh Schroedinger Perturbation theory.

The configurations which interact strongly with the

nucleus are identified and grouped with the nucleus to
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complete the core. Other configurations which interact

less strongly are also grouped together, in this case to

form the tail.

These basic concepts suggest a partitioning of the

matrix eigenvalue problem as first proposed by Lowdin.

If the core is denoted by Haa and the tail by Hbb, this

can be expressed

;ab a w a (2.1)

Hba Hbb Cb Cb

where Ca and Cb represent the coefficients. This matrix

equation can be reformulated into two simultaneous

equations in two unknowns.

H, C (2.H-aa -a -ab Lb = Ca (2.2)
Uba La + Hbb Lb = -Lb (2.3)

Solving for Cb in equation (2.3), and substitution of

the result into equation (2.2) leads to

H C H [I - 1 C=WC (2.4)-aa .a + Hab - Hbb ]  H ba -a =  a

where the term ba corresponds to a

kind of optical potential.

Although equation (2.4) reduces the diagonalization

problem to the size of the core block, H , evaluation

of the inverse term is still at least as difficult as

the original diagonalizatlon. The inverse matrix will
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always exist and can be made diagonally dominant provided

that all terms of Hbb whose diagonal elements, hbb, lie

close to w are placed in the core block, H aa. Assuming

this to be the case, the inverse can then be expressed

in the following manner.

[WI - Hbb - = + D'1 oD 1 + D-1oD'1oD'I +

where 0 represents the off-diagonal t,.ms

0 = [H bb - hbbl] (2.6)

and D-1 is the inverse diagonal

D = - hbb!] (2.7)

Substitution of equation (2.5) into equation (2.4) leads

to

H1 C CH D+ H r'D-1 _IH C + H D 1 OD_ 01 H C OD.= _
-aa-a -ab - ba-a -ab- -- ba-a -ab-'..'-- 'ba-a -a

(2.8)

Although this expansion is energy dependent through

W the terms in w, the dependence arises only in the

diagonal terms, D. Diagonalization of the Haa block can

provide an estimate, w0 , of the true eigenvalue, w.

The diagonal can again be expanded, this time in terms

of the difference between the approximate and the true

eigenvalue, Aw. Thus,

DI(w) = D'I( o ) Z (D-l(wo)Aw)n (2.9)0 n=O 0
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Substituting this result into equation (2.8) gives

"{aa +  Ha [D-1(oW ) + DI(0)0 '1 (Wo) + ---]H

+ H ab[D-_2 (W 0)A + D_ 2 (W0)D I( A~"'~"~+- (wo)OD- 1 U~

+ D_ 1 (Wo)D0V 2 (W )Aw + "''3 b] a + ""}Wa : WC
0 0 b +- -a

(2.10)

The advantages of equation (2.10) are more readily

apparent if it is written in another way

[H + I (n) Awn] C =W (2.11)~ n=0 ~aa -a -a

In equation (2.11), the dominant contributions to

the final wavefunction, and those terms that interact with

them strongly, together form H aa* This subspace can be

treated fully by exact diagonalization. All other terms,

which interact less significantly, can be treated simply

as a potential, V(w). Equation (2.11) could, in principal

be solved iteratively for a complete solution to the

problem. Fortunately, reasonable accuracy in the solution

of most problems can be attained without full solution

by truncation of the potential. Close examination of

equation (2.8) reveals that the terms have a one-to-one

correspondence with successively higher Brillouin-Wigner

Perturbation corrections. The term, HabD' H ba Ca is

related to the second order Brillouin-Wigner perturbation
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correction; the next term is related to the third order

correction, and so on. Tests performed on small, medium,

and large matrices indicate that for most practical

problems, sufficient accuracy can be achieved by retention

of corrections through second order. 3  It is this result

that makes the approach of value for the large scale CI

calculations described in Chapters IV and V.

The method is pictorially described in Figure II-1

and can be summarized as follows. The configurations which

are most important to a particular calculation are

identified and gathered together in the upper left hand

corner of the core block, Haa* The interaction of each

of the configurations in the nucleus with allother con-

figurations is evaluated and becomes part of Hab* Using

Raleigh-Schroedinger Perturbation Theory, the most

important of the remaining configurations are gathered

together with the nucleus to complete Haa, the core

block. The interaction of these configurations in the

*core block with all other configurations forms the balance

of Hab. The remaining configurations form the tail,

Hbb. The H block is then diagonalized to provide an
*aa

initial guess for the energy. The potential function is

evaluated, and finally, the full problem is solved through

iteratiun. In addition to providing a unique solution

for solving the eigenvalue problem, the method used in

this work also includes techniques for simplifying

-* -- *-a I
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calculation of the matrix elements, the other time-

consuming step in a CI calculation. A complete descrip-

tion of the approach can be found in references 2 and 3.

y

V

I



! -31-

References

1. P..O. Lowden, Adv. Chem. Phys. 2, 207 (1959).

2. G.A. Segal and R.W. Wetmore, Chem. Phys. Lett. 36,

478 (1975).

3. G.A. Segal, R.W. Wetmore and K. Wolf, Chem. Phys. 30,

296 (1978).

I

'p
''5

' - -I



-32-

Haa Hab Hba+
Core

50

Hbb
Tail

Hba I

Ful
Space
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CHAPTER III

RESONANCES OF POLAR MOLECULES

In recent years, the electron scattering and binding

properties of polar molecules have been the subject of

considerable interest. A number of interesting effects

result from the very long-range interaction between a

molecule with a permanent dipole moment and a charged

particle. The Configuration Interaction Method described

in the last chapter has been used with considerable

effectiveness to study the binding and scattering

characteristics of one such polar molecule,, hydrogen

fluoride. The results of this study are presented in

Chapter IV for the lower energy region (< 9 eV) and

Chapter V for the higher energy range (9 to 14 eV).

Before moving to this discussion, however, a basic under-

standing of the nature of compound states is useful. It

is the purpose of this chapter to provide some general

V! background on negative ion resonances.

A compound state is formed by the interaction of an

incident electron with a target molecule. The incident

electron is temporarily captured within the neighborhood

of the molecule and a complex, called a temporary negative

ion or a resonance, is formed. The term resonance implies

a definite energy, and sharp structure is observed in

the cross section. The first evidence on the existence

! - - J4 ~ . . b ..
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of compound states appeared in 1921, but it was not until

the 1960's that the resonance model was applied to

molecules.
1

Molecular compound states have lifetimes in the range

of l- 10 to I0"15 sec. The lifetime T can be described as

T r(3.1)

where r is the width. These states decay by the emission

of an electron into various final states where they can

be detected experimentally. The decay channels include

rotational, vibrational, and electronic excitation, elastic

scattering and dissociative attachment, to name a few.

A shape or single particle resonance is formed when

an electron is trapped in the potential or behind the

centrifugal barrier of the molecular state. These types

of resonances occur at energies below about 10 eV and have

been observed in H2, D2, 02, HD, N2 , NO, and CO. Core

excited resonances, which occur at energies above 10 eV,

consist of a "hole" in one of the normally occupied

orbitals of the molecule and two "particles" in normally

unoccupied orbitals. The excited neutral molecule is

called the parent of the negative ion state, while the

positive ion is referred to as the grandparent. Core

excited resonances that lie below their parent are

entitled Feshbach resonances. They have lifetimes that

are long compared to a vibrational period and can
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therefore give rise to band structure. The two outer

electrons are held in Rydberg orbitals which lie far from

the ion core and as a result, these bands exhibit vibra-

tional structure similar to the grandparent.

Single Particle Resonances

In recent years, low energy electron impact

experiments have revealed pronounced structure in the
2-4

vibrational excitation cross sections of polar molecules.

Within about 0.5 eV of threshold, the observed cross

sections are larger by 10 to 100 times than would be

predicted by the Born approximation. That is, these very

large cross sections cannot be simply attributed to

collisional momentum transfer. The sharp peaks are rather

the result of pronounced distortion of the incident

electron by the potential well of the target molecule.

The resonances that arise from the interaction are domina-

ted by very few partial waves and the symmetry of the

resonant state is reflected in the angular dependence of

the cross section.

There has been considerable interest in the question

of whether or not a neutral polar molecule is capable of

binding an electron to form a stable negative ion state.

Several authors s -l  have shown that the electric dipole

field of such a molecule can bind an electron if the

dipole moment is greater than 1.625 D. To understand

~i.u __ . - . .. , - I i . . .. .
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this result we can consider the scattering of an electron

by a *point dipole. In a polar molecule with electric

dipole moment V and an electron at distance r, the

potential is given by:

er Cos 0 (3.2)
V2

r

where 0 represents the angle between the vectors p and r.

Schroedinger's equation becomes

[ ?me ( e rcos E

V2 + 2  )E] (r) 0 (3.3)Ir

Setting

2 m eE
k2  (3.4)

h

and the dimensionless dipole moment,

, !2 2 meui 11 eo-- - - (3.5)
' ea
.i 0

where a is the bohr radius, equation (3.3) takes the

simple form

[V2 + 0 2 + k21 0 (3.6)

Separation of equation (3.6) in terms of spherical

coordinates leads to equations in the three variables

SR, 0, .
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+ - - + k 2] R(r) =0 (3.7)

dr r dr r

I d sinod + 2 0 Cos - A]e(e) 0
sin e do do sin 2 0

(3.8)

and

+ M 21() = 0 (3.9)

where A is a separation constant and M, an integer. For

the limiting case, as E - 0, equation (3.7) becomes

+ R(r)= 0 (3.10)
r dr rJ

A stationary solution of equation (3.10) takes the

form R(r) - rS.12 Substitution of this solution leads to

s(s+1) - A = 0 (3.11)

Solutions with A < 1/4 have the form

= B
R(r) B -(3.12)

r f

where B is a constant. Solutions with A > 1 take the form

R(r) r -1/2 cos (A-1/4)1/ 2 log r (3.13)

It should be noted that equation (3.13) produces an

infinite number of zeros and thus an infinite number of

nodes, while equation (3.12) leads to only one node.

i~110 44 ...
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We now return to equation (3.8). For M = 0, the

solutions are

@(e) = Y cP (cos 6) (3.14)

the Legendre Polynomials. Substitution of these solutions

into equation (3.8) leads to

C + C- CA + 01o 2+3) C2+ = 0

0~ Z - 2o 1  + i t Z0 2Z) C A.

(3.15)

where the Z are integers > 0. When A = 1/4, equation

(3.15) can be written

S2-2. -l)b44  l 1 (2 +l) l

[ + (2--l)b + b + b =0
2 + (MIN ) 4I o(MIN) 2 .  (2Z+3 9'+11

(3.16)

where p 0(MIN) is the minimum dipole moment. For this

case, and for A < 1/4, there are no negative energy levels

and therefore no bound states. Alternatively, when

, iA > 1/4, there are an infinite number of negative energy

levels, and thus an infinite number of bound states.

The implications of this result are interesting.

The case where A < 1/4, since it has no zeros, corresponds

to the state with E=O, the lowest level. As E - 0, the

negative ion becomes degenerate with the neutral molecule,

and the state for the case where A = -1/4 has the minimum

dipole moment for binding. Both analytic and numerical

techniques have been employed to determine the value of

-ii . .........rt .. . l . .. -.. . , ....l i i ...." " i i I I I I I I I
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o (min)in equation (3.16). The solutions lead to the

conclusion that when the dipole moment is less than 1.625

D, there are no bound states, while for a dipole moment

greater than this value, an infinite number of bound states

exist.

Although the critical value of the dipole moment for

binding an electron has the value 1.625 D in the conven-

tional Born-Oppenheimer treatment, this result is modified

to some extent with the inclusion of the rotational degrees

of freedom of the nuclei. To account for rotation, the

Hamiltonian for a symmetric rigid rotor would contain the

term 21 where h2 j2 is the operator for the square of

the angular momentum and I is the moment of inertia. This

term does not contribute to the ground state energy of

the neutral system. However, when an extra electron is

present, the interaction of this electron with the added

term in the Hamiltonian acts to raise the energy of the

ground state of the ion relative to neutral system.13

1$ This follows from the fact that the rotational angular

momentum of the dipole and the orbital angular momentum

of the incident electron are coupled to give the total

angular momentum which is conserved. The result is that

some or all of the bound states of the electron are moved

to the continuum. The exact value of the minimum dipole

for binding varies, depending on the values of I and the

I. . _T ;,i: 4 .. ,, ;- ,_ , 2 i " :..
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internuclear distance in the molecule. However, no

binding is found to occur for dipole moments less than

about 2D. *The stationary dipole has a very small electron

affinity when the dipole is less than 2D. For dipole

moments in the range of about 2.1 to 2.3 D, the electron

affinity is much larger. When the effect of rotation

is included, only one bound state is supported for a

dipole moment of 2 D. For higher values of the dipole

moment, two or more bound states exist.

The effects of molecular vibration on the binding

of polar molecules have also been investigated. 14 As long

as the dipole moment of interest is the average of the

dipole moment over the ground state vibration, the minimum

dipole moment for binding is not altered, except in cases

where exothermic dissociative attachment can occur.

There is some indication that induced dipole forces

are a very important contribution to the energy of the

weakly bound electron, even for systems with larger per-

manent dipole moments. Garrett suggests that a strongly

polar molecule with a dipole moment greater than about

4D will almost surely form a stable negative ion. For

molecules with dipole moments in the range of 2 to 3.5

D, a negative ion with binding energy greater than 0.01

eV will be formed if the polarizability is between 20

and 40 a0
3 (3 and 6 A3 ).15

... .. . . .. .... . I0
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As a test of the minimum dipole moment concept, ab

initio studies of the electron affinities of polar mole-

cules with-various dipole moments have been performed. 1 6 1 8

One source of difficulty in calculations of this type is

the lack of accuracy in the computed dipole moments. Even

with wavefunctions of near Hartree-Fock quality, calcula-

ted dipole moments are generally higher than the experi-

mental values by several tenths of an eV. Because of

the strong dependence of the electron affinity on the

dipole moment when the dipole moment is close to the

critical value, it might be thought that calculations of

this type are not particularly useful. This, however,

is not the case. Ab initio techniques, while they cannot

provide completely accurate binding energies or prejic-

tions of binding, can indeed serve as at least & qualita-

tive guide on the binding capabilities of ,>_lar molfcule..
One group in particular has performed ab initio

calculations on several polar molecules including LiH-, 17,18

17,18 - 17 - 17 - 16,17
NaH, BeO LiF, and LiCl . The results

of these theoretical studies were used, together with the

available experimental data, to assess the validity of

the simple fixed finite dipole model for predicting

4 binding. The technique used in these investigations is

straightforward. Hartree-Fock calculations were perfv'--Pd

'for the negative ions listed above. Special attentio,

.was paid to choosing an adequate basis set ft,, c ,
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particular anion. Diffuse functions with optimized expo-

nents were added to the electro-positive atom to permit

the extra electron to attach to the positive end of the

polar molecule. The difference between the Hartree-Fock

energies of the neutral molecule and the negative ion

give the electron affinity. The orbital energy for the

lowest unoccupied orbital (LUMO) for the neutral molecule

in the Hartree-Fock calculation can be used to estimate

the magnitude of the binding capability. A negative

orbital energy implies a stable negative anion will be

formed, while a positive orbital energy implies that the

neutral molecule is not capable of binding an electron.

This is simply Koopman's Theorem Approximation.

For LiH, BeO, NaH, and LiF with respective dipole

moments of 5.88D, 7.41D, 6.98D, and 6.33D, negative orbital

energies were obtained. This is not surprising, since

all of these molecules have dipole moment significantly

in excess of the minimum dipole moment for binding.

Unfortunately comparison of the ab initio results with

experiment is not possible since the energies for binding

an electron to these molecules have not yet been deter-

mined. One molecule for which the experimental binding

energy has been measured is LiCl,19 which has a dipole

moment of 7.13 D. The calculated binding energy for this

' molecule of 0.54 eV17 compares rather well with the

experimental value of 0.61 eV. From this example, the



-43-

only case where an experimental binding energy is avail-

able,, we can conclude that ab initio studies are capable

of providing fairly accurate values for binding energies.

Jordan et al. discuss in detail the limitations of
17,18

their method for calculating exact binding energies.

The Hartree-Fock calculations neglect two very important

contributions to the binding energy: orbital relaxation

and correlation corrections. In the calculations, the

electron affinity was calculated by taking the difference

between the Hartree-Fock energies of the neutral molecule

and the anion. The binding energy of 0.54 eV for LiCl

cited above was obtained in this manner.

To derive estimates of the contributions not inclided

in the Hartree-Fock technique, Jordan et al. utilized the

Equation of Motion (EOM) Method. In this method, electron

affinities are calculated directly without the need for

performing calculations on both the neutral molecule and

its anion. The electron affinity attained using this

method inherently includes the second order correlation

and orbital relaxation corrections as well as the third

and higher order corrections to the Koopman's Theorem

15
estimates. The difference between the orbital energy

of the LUMO of the neutral molecule in the Hartree-Fock

V) calculations and the electron affinities from the EOM

calculations is thus the orbital relaxation and correlation

corrections. For the molecules LiH, LiF, BeO, and Nail,

•I
• -- .... .... I I I I i i iI I
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the binding energies obtained through the EOM calculations

indeed give a larger value for the binding energy than

those obtained through the Hartree-Fock calculations. For

LiCl, for example, the binding energy obtained through

the EOM method is higher by 0.13 eV than that obtained

from the Hartree-Fock calculations.

Jordan et al. 1 7 maintain that the orbital relaxation

and correlation effects would be expected to be small in

the case of LiCl. This follows from the fact that the

additional electron is located primarily behind the

electropositive atom in a molecular orbital that is

largely nonbonding in nature. This nonbonding MO does

not correlate strongly with the other electrons i-n the

molecule. The good agreement between the calculated

binding energy and the experimental data certainly support

this interpretation. The contributions not included in

the Hartree-Fock calculations are included in configura-

tion interaction calculations. As we shall see in

v Chapter IV, CI techniques have been applied with

considerable success to determine the binding energy of

HF. This molecule has a dipole moment of 1.82 D, only

slightly larger than the minimum dipole for binding and,

as such, is an excellent candidate for investigation.

The calculated results for LiCl suggest that rather

good agreement between ab initio studies and experiment

for binding energies is possible. The investigations on

•
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LiCl also provide the oportunity to evaluate the capabili-

ties .of the fixed finite dipole model in predicting binding

energies. Jordan and Luken have examined the accuracy
18

of the dipole model in some detail. For a molecule

with a dipole moment of 7.2 D (the dipole moment of LiCl),

the model predicts a binding energy of 0.08 eV. This is

well below the experimental binding energy of 0.6 eV,

and poses serious questions about the applicability

of the model. Jordan and Luken attribute at least part

of the discrepancy to what can be called penetration

effects. In the Lithium atom, the 2s electron is "pulled

in". That is, the 2s electron penetrates the Is shell

and is permitted to feel the nuclear charge of +3. The

fixed finite dipole model fails to account for this

behavior. If the ground state of the dipole model is

correlated with the negative ions of molecules, incorrect

nodal behavior is predicted. One must instead correlate

the negative ions with the first excited state of the

dipole model. Correlation with this state, however,

Vleads to an underestimate of the binding energy of a

real molecule. From the LiCl study, it can be concluded

that although the simple dipole model may be of some

qualitative use, its ability to predict binding energies

it. of real molecules appears somewhat limited. In Chapter

e IV, where we examine the binding capability of HF, this

has important implications. The binding energy of 11F

I I I I I|11 ll I I |
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as predicted by the dipole model is on the order of lO 5

eV, while our calculations indicate the binding energy

to be higher by several orders of magnitude.

Core-Excited Resonances

Core-excited resonances, as mentioned earlier, are

characterized by two electrons in normally unoccupied

MO's and a "hole" in a normally occupied MO. When these

negative ion resonances lie below the excited state of

the parent or neutral excited molecule, they are known

as Feshbach states and the parents are said to exhibit

a positive electron affinity. The binding energy of a

Feshbach state is defined as the difference in energy

between the positive ion state and the negative ion state

formed by adding two outer electrons to the positive ion

core.

The primary experimental means of detecting Feshbach

states is electron transmission spectroscopy. This

technique involves measurement of the unscattered trans-

mitted current as a function of electron energy when mono-

energetic electrons are accelerated into a collision cham-

* ber filled with the target gas. Experimental results are

* generally presented with the ordinate representing the

derivative of the transmitted current and the abscissa,

the electron energy. In many cases, sharp structure

which mimics the vibrational spacing of the 'grandparent

V!

i I .
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state is observed.

Core-excited resonances of atoms have been studied
20

extensivel], particularly those of the rare gases.

These resonances have also been detected in many diatomic
21

molecules. In principle, a core-excited state of a

molecule may consist of an electron temporarily bound

either to a valence or Rydberg excited state. Only the

Rydberg excited states, however, lead to negative ion

states that have a positive electron affinity for a fixed

internuclear separation in the Franck-Condon region. Thus

for Rydberg excited states, sharp resonances which lie

somewhat below the Rydberg excited states are expected.

The vibrational spacing of the resonances should be similar

to that of the grandparent, since the two excited

electrons reside rather far from the positive ion core

and therefore perturb it only slightly.

In many cases, vibrational progressions overlap

leading to confusion in identification. A further

complication is that the width of a core-excited resonance

can change due to the opening of a new decay channel. If,
for example, the new decay channel is a repulsive negative

ion state, vibrational progressions may be observed only

for a limited number of levels; that is, the vibrational

progression may partially predissociate. This situation

can arise from an avoided crossing between two states

of the same symmetry. As we shall see in Chapter V, this
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explanation may apply to an experimental observation where

only.one vibrational level is excited in a study of the

Feshbach states of HF-.

! .
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CHAPTER IV

CONFIGURATION INTERACTION rALCULATIONS ON

THE RESONANCE STATES OF HF

Introduction

In the last chapter, a review of the theory of

resonances of polar molecules was given. In this chapter,

we present the results of ab initic calculations on one

such molecule in the low energy region. Before describing

these results, however, it will be useful to summarize a

few pertinent concepts.

The electron scattering and electron binding proper-

ties of polar molecules have recently been the topic of

considerable experimental and theoretical attention. The

very long range interaction potential for a charged

particle and a molecule with a permanent dipole moment

leads to interesting effects. It has been demonstrated by

1-4
a number of researchers that the electric dipole field

ti can support an infinite number of bound states if the

5
dipole moment is greater than 1.625 D . For a dipole

moment less than this value, no bound states exist. Other

work has shown that if a molecular system is treated

dynamically by calculating non-Born-Oppenheimer rotational
{) 6

degrees of freedom, the number of bound states is finite.

For the non-stationary dipole, the critical dipole for

binding an electron is from 10-30% greater than 1.625 D.

. ... . .. ...t _ _ .
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There is also an indication that induced dipole forces

make Very important contributions to the energies of

weakly bound electrons, even for systems with larger

permanent dipole moments. Garrett suggests that a strongly

polar molecule with a dipole greater than about 4 D will

surely form a stable negative ion. For a molecule with a

dipole moment in the range of 2 to 3.5 D, a negative ion

with binding energy greater than 0.01 eV will be formed,

if the polarizability is from 20-40 a3  (3-6 A3).0

Ab initio calculations have been performed on several

polar molecules. Based on the premise that the electron

.affinity may be reliably estimated by the negative of the

orbital energy of the lowest unoccupied molecular orbital

(LUMO) of the neutral molecule, a series of ionic molecules

have been investigated. For LiH, LiF, LiCl, NaH, NaF,

NaCl, BeO, MgO, LiCN, LiNC, LiOH, and LiCH 3 which have

dipoles ranging from 4.6 to 9.5 D, the calculated

9electron affinities were between 0.2 to 0.7 eV. Another

examination of the nonionic molecules, (HF) 2 , HCN, HNO 3,

CH3 CN, H2 0, and HF indicates stable anions for the first

10
four are formed, while they are not for H2 0 and HF.

Since the first four of these molecules have dipole moments

greater than about 3.5 D, they would be expected to form

stable negative ions. In spite of the fact that the

calculated dipole moments of HF and H2 0 are stated to be

too high by 0.5 D (and thus larger than the critical value
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by more than 0.8 D), the study finds no stable anion for

the two molecules.10

The HF molecule has a dipole moment of 1.82 D, just

slightly greater than that necessary to bind an electron.

Studies of the negative ion states of this molecule are

of importance both because of the minimum dipole concept,

and because of the recent interest in resonant states of

polar molecules in general. We have performed extensive

configuration interaction calculations on the lower energy

states of HF. Although the molecule has not been widely

studied, the available experimental and theoretical data

are summarized below.

Experimental studies of HF have traditionally been

difficult because of the corrosive effect of the vapor

on the surfaces of optical components. Nevertheless, a

few relevant studies have been performed.

(a) Dissociative Attachment

e + HF F" + H

The onset for F" formation is reported to have a threshold

of 1.88 eV and a maximum at 4 eV.12 The dissociation

energy of HF is 6.1 eV1 3 (Do = 5.84 ± .01 eV) while the

electron affinity of F is 3.448 ± .005 eV. 14 The thermo-

4 dynamic limit, therefore, requires an appearance potential

of 2.65 eV. The observed threshold of 1.88 eV implies

that F" is formed as soon ds is thermodynamically possible.
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(b) Associative Detachment

F" + H - HF (v,j) + e"

This process is fast and occurs at a rate close to the

Langevin rate constant with no temperature dependence.

This implies little or not activation energy for the
15

process and an attractive potential energy curve.

(c) Vibrational Excitation

e" + HF - e" + HF ( ,j)

In each final vibrational state, a large (10-15 cm 2),

sharply peaked cross section is observed at threshold.
1 6

A cross section of this magnitude was also observed for

HCl. The cross section of both molecules have a maximum

of much larger width which decreases monatonically there-

after. Since the cross sectionsare isotropic in the

regions of the peaks, they do not result from electron-

dipole long range interactions (direct vibrational excita-

tion). The spectra presented by Rohr and Linder indeed

indicate a very pronounced maximum for HCl in the region

of about 2 to 3 eV. For HF, however, this second maximum

is hardly discernible. It is therefore questionable

whether these data support the existence of a broad

maximum in the case of HF, although they clearly do for

HCI.

Theoretical studies of HF are rather more prevalent

than experimental investigations, but are nevertheless

far from complete. Two ab initio calculations on the

r' , l . . . . . . • i li ii .. . . . ... . . .. -. . . . . . - . . . . . . .
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1+2+
ground state of HF( E ) and the ground state of HF-(2Z

find the HF- state repulsive for all values of inter-

nuclear separation.'1718 Bondebey et al., however, point

out that the exclusion of diffuse functions from the basis

set necessarily leads to a "diabatic" potential curve. 18

Since diffuse functions were not employed in either cal-

culation, the fact that the negative ion state was found

to be repulsive is not surprising. Although the two

studies do agree qualitatively, one 1 7 finds the crossing

of the HF-(2 E ) potential with that of the HF( I Z+ ) at 3.9

bohr, while the other claims it to occur at 2.7 bohr.1 8

In contrast to this finding, two other studies
1 9' 2 0

reach an alternative conclusion. Both of the latter

calculations find the HF-( 2 + ) ground state bound for a

considerable range of R.

The fundamental approach to the calculation of

21resonances is the stabilization method. Using square

integrable (Gaussian) functions and Configuration Inter-

II action, we have performed extensive CI calculations on

the ground state of HF and the states of HF" lying below

about 9 eV. Since the procedure involves representing
the limit of HF plus an electron at infinite separation

within a basis set of functions of finite extent, it is

necessary to esttblish each stable root as a resonance,

'4 and not simply as an artifact of the calculation. The

resul.ts of this study provide an interpretation for the

. ~ , ... . . . . . . . .. .. . .. -__ . I
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experimentally observed features and clearly resolve the

disagreement arising from the conclusions of previous

theoretical calculations. Certain of the results also

allow prediction of some characteristics not yet measured

experimentally.

Techniques like those employed here were used success-

fully in an earlier study of HC1. 2 2 Although there are

similarities between the states of HCl and HF, there

are also important differences, and throughout this

chapter we will refer to the previous work on HCI for

comparison. We begin with a brief description of the

computational me.thod, then present the results for all

calculated states, discuss the evidence of resonance

character in the calculated negative ion states, and

finally, examine the capability of the HF molecule to

bind an electron.

Method

The atomic orbital basis set was chosen to be

sufficiently flexible to represent bothHF and HF" for

a range of internuclear distances. A Dunning basis the

(9S/5P) primitive gaussian basis of Huzinaga, 23 contracted

to (3S/2P) proved adequate, while the hydrogen was repre-

sented by the Dunning (2S) basis. 24 In addition to these

functions, uncon-tracted Gaussian Rydbergs functions of

exponent 0.036 and 0.0066, and P functions of exponent

iO
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0.074, 0.029 and 0.0054 were added to F. Finally, a P

type polarization function of exponent 0.9 was added to

hydrogen and a d type, of exponent 1.15, to fluorine.

The complete atomic orbital basis set is shown in Table

IV-l.

The SCF wave functions and energy for HF were cal-

culated within this basis set. Of the 31 molecular

orbitals comprising the basis, only one, that of lowest

energy, was dropped from consideration in the CI calcula-

tions. Table IV-2 provides a list of the molecular

orbitals and their eigenvalues. In the second column of

this table, the M.O. identification system used in the

text is given. The total SCF energy of HF at its equili-

brium internuclear distance is -100.04905 a.u., which can

be compared with the near Hartree-Fock value of -100.0705
' 25

The SCF virtual orbitals of HF were assumed to form

an adequate basis for CI calculations on HF-. This is

justified by previous work on HC, 22 which confirms the

accuracy of this assumption. The SCF virtual orbitals

of HF are eigenfunctions of the full n electron HF poten-

tial including its permanent dipole moment. Since, in

a case of this type, the scattering is long range, the

target molecule is relatively little perturbed by the
scattering event. Consequently, the HF virtual orbitals

are a good representation of the natural orbitals of HF_.

~. i
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Indeed, as we shall see later, this is generally verified

by the dominance in the final CI wave functions by a

single configuration.

Configuration Interaction calculations were performed

for the ground states of HF and HF, as well as the

excited states of HF'. The HF" states were described by

populating the appropriate HF virtual orbital with a single

electron. In general, one or more seed configurations

were selected to represent a given state of interest.

All single and double hole particle excitations relative

to these few seed configurations were then generated

to form the CI space. Solution of the CI problem was

accomplished by the partitioning technique which was

discussed in Chapter II.

Results and Discussion

Full CI calculations on HF and HF" were carried out

at a number of internuclear distances. Depending upon

v the particular state, full calculations were performed

at more than one internuclear distance including 1.5 bohr,

1.732 bohr (equilibrium), 2.0 bohr, 2.5 bohr, 3.0 bohr,

4.0 bohr, 5.0 bohr, and 7.0 bohr. The potential curves

resulting from these calculations are displayed in Figure

IV-l, and their energies at the various internuclear

distances are presented in Table IV-3. We will first

describe the general procedure used in all c.lculations
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and then discuss the results for each specific state

separately.

General Procedure

In a study of this type, two important concepts must

be considered. First, at any particular point on the

potential surface, the HF and HF- calculations must be

balanced with respect to one another. This will allow

reasonable interpretation of results involving the

relative location of the HF and the HF- states. Second,

the calculations must permit proper dissociation behavior

for the HF and the HF- ground states, independent of one

another. This second consideration is important for

insuring confidence in the absolute results.

At the equilibrium internuclear distance, the HF

ground state is dominated by the configuration

I022 2 3a2 14Tr, while the dominant configuration of the

lowest HF- state (l2 +) is 102 223a2 lTr4o. The higher

HF" E+ states result from promotion of the additional

J electron to the higher E molecular orbitals. At 7.0 bohr,

which we use to represent the dissociation limit, the

molecular orbital picture has altered considerably. The

molecular orbital designated at lT now falls lower in

a, energy than the 3o molecular orbital. Thus, at 7.0 bohr,

the ordering of the occupied M.O.'s is 1o2o1l 43 2 .
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The 3(y M.0., at this large distance, is composed of

contributions from the H Is and the F p0a atomic orbitals.

The 4a M.0: is simply the antibonding complement to the

3a M.O., and is only slightly higher in energy. The HF

molecule which dissociates to H( 2S) + F( 2P), is repre-

sented at 7.0 bohr by a linear combination of three elec-

tron configurations. The first is la 2a21713a , the

SCE base. The second, lu 2 2(a ITT 3o4a, contains one electron

each in the bonding and antibonding H-F M.O. 's. The third,

10 2a 171T 4a , has both electrons in the antibonding

H-F M.O. In the case of HF , one electron already

occupies the antibonding H-F M.O. Thus the 1 27+ HF_ state,

which dissociates to H( 2P) + F( 1 ), is represented simply

by a linear combination of the two configurations

10 2a 21rr43a24a and la2a hr 3a4a .A higher HF state,
52+

the 5 given in Figure IV-3 is one of the states

leading to the limit H_( 1s) + F( 2p). This latter state

is presented by the same two electron configurations

as the I E HF state, this time, with opposite signs.

I

For the dissociation behavior of HF and HF_ to be

adequately represented, this picture must be taken into

account in the CI calculations. A proper calculation for

HF must include all single and double excitations generated

from three configurational bases, lo 2atmi3a, the SCF

224 2 2 base, as well as lay ligt 3o4 and la 20 IT 0g , the two

configurations representing the H-F bond. For both the

SCF bse. he scond Io2214J. ,cntison'leto
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and the 52E states at 7.0 bohr, generation of all

single and double excitations from the two configuration

bases, la 2 o21r4 3ay24a and la22a2ln 43a4a 2 is adequate for

decribing dissociation.

With the dissociation limit requirements in mind,

the structure of the calculations for shorter internuclear

separations is defined. At the equilibrium internuclear

distance, the dominant contribution to the wavefunction

is the SCF base. Although, at this point, the two

additional bases used to generate configurations do not

contribute as heavily to the wavefunction as at 7.0 bohr,

they must be included to insure balance across the

potential surface. thus, at 1.732 bohr, the calculations

on HF consisted of all single and double excitations from

the SCF base in addition to two bases, la22c, 23alir4 Oa

and la22a 21I4 lOG2  At this shorter distance, the lOa

M.O. has essentially the same character as the 4o M.O.

at 7.0 bohr. For the lowest state of HF-, the bases

included la22023a21744a and la 2202 -24alO At inter-

mediate points on the potential surface, the calculations

were performed in an analogous manner. Generally, in the

HF calculations, all single and double excitations were

generated from three bases, the SCF base, the base repre-

senting the configuration contributing most strongly to

the wavefunction (a double excitation from the SCF base),

and one other base representing a sort of "cross term"
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(a single excitation from the SCF base). For the lowest

HF- state, two generating bases were used at each point.

The first Vias formed by placing the additional electron

in the lowest unoccupied molecular orbital of the SCF

base for HF. The second was the same doubly excited

configuration used in the HF calculations. Table IV-3

presents the configuration bases used at various distances

for HF and the lowest HF state.

The higher states of HF were treated in the same

manner as the 12E+ HF- state, with the extra electron

simply occupying successively higher Z + molecular orbitals.

The procelure resulted in a total space of about 8,400

configurations for the HF calculations. The HF" calcula-

tions generally included between 11,000 and 13,000 total

configurations. This procedure resulted in a reasonable

balance in correlation energy between the HF ground state

and the HF Rydberg states. At the equilibrium inter-

nuclear separation, the correlation energy of the HF"

states should be slightly greater than that of the HF

ground state. The presence of the extra electron leads

to a small polarization contribution to the energy, in

addition to the correlation energy itself. We indeed

find the correlation energy of all HF- states to be

slightly greater than that of HF.

HF (ll+). This state is described by the configura-

, tion l 22o2 3a2 1 4 which represents about 99% of the

F
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final wavefunction at the equilibrium internuclear

separation. It goes smoothly to the limits H( S) + F( P)

with a calculated dissociation energy of 6.02 eV which

can be compared to the experimental value for De of 6.1

eV. 1

HF (l2F+). The 12 + state was generated through

occupation of M.O. 6, an S type Rydberg function. At the

equilibrium nuclear separation, this configuration repre-

sents 99% of the total wavefunction. It has already been

mentioned that, at larger internuclear distances, this

HF- state leads to the limit H(2S) + F-(IS). The state

is clearly bound with respect to these limits, at least

qualitatively confirming the results of two previous

19,20 otes 17'20calculations, and refuting those of two others.

This finding also agrees with the dissociative attachment

results which indicate the state to be attractive into

the autodetaching region. The calculated electron affinity

of HF at 7.0 bohr is 3.17 eV which agrees rather well with

the experimental electron affinity for F of 3.45 eV.

It should be noted from Figure IV-l and the values

of Table IV-3 that the 1 state of HF" appears to be

bound at all distances relative to the HF ground state,

implying a positive electron affinity of 0.010 eV for HF.

This is in contrast to the results of earlier study on

HCl, where the 12E+ state of HCl" was found to lie about

22
0.12 eV above the HCl ground state. The unbound nature

- - t . .. . . .. .. _ _ _ _ _ _ , -
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of the HCl" state is not unexpected, however, since the

dipole moment of HC (1.1 D) is.well below the critical

dipole moment for binding an electron. We return later

to a complete discussion of the bound or unbound nature

2+of the 1 E HF after presenting the results of the other

calculated HF- states.

HF- (22E+). This state occurs at the equilibrium

internuclear distance through occupation of M.O. 9,

essentially a Pa Rydberg function. This configuration

A has a weight of 99% in the final CI wavefunction at 1.732

bohr. At this same distance, the state lies only 0.32

eV above the 12E+ HF- ground state and corresponds to

the 22E + mimic state of HCl. 2 2

HF- (32E+). The 32Z+ state results from occupation

of M.O. 10, also a Pa type Rydberg function at the

equilibrium internuclear distance. It, like the lower

HF- states, comprises 99% of the final CI wavefunction.

This state lies about 1.7 eV above HF at equilibrium, and

corresponds to a state in HCI-, the A2 E+ , that was not

considered to be a resonance.

HF- (42ZE). This state occurs at equilibrium through

occupation of M.O. 13, principally an S type Rydberg

function. It lies about 2.3 eV above the HF ground state.

This state, like the 3 E state just discussed, is

analogous in occupation to a second state of HCl, the

B2E + ,that was not considered to have resonance character.22

- t -. .. .. . .. .. . - " -
*
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22+HF- (52+). The 52 + state results from the occupa-

tion of M.O. 14 at equilibrium, largely an S type function.

It is more radially contracted than the lower energy

M.O.'s and corresponds in character to the 32F+ state

of HCl- which is responsible for the broad resonance

observed in the HCl vibrational excitation spectrum.1 6

At the equilibrium internuclear distance, this state lies

well above the ground state of HF, at about 6.7 eV. At

longer distances, it crosses the repulsive 7 2E+ HF- state

which will be discussed shortly.

HF-62+. The 6 E state occurs at the equilibrium

internuclear distance through occupation of M.O. 17 a pa

type M.O. which is valence in character. At short

distances, this state also crosses the repulsive 7 2 +

state. We have indicated only a portion of this curve

in Figure IV-l.

HF" (72 ). This state is one of the Feshbach states

of HF- and is considered in more detail in the next

chapter. It crosses the 62E+ at about 9.7 eV and the

5 2 at approximately 7.3 eV. At 7.0 bohr, the 72+

52 2+
state (which has now become the 5 E state) leads,

together with the 42 state discussed below, to the limit

H( IS) + F(2 P). We have indicated the adiabatic curves

in Figure IV-l for the crossings of this state with the

5 2 52+ ; for its crossing with the 62z+ state we show the

2 + 2 +diabats. From the crossing of the 7 F and the 5 E states
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we would predict H- production to have a vertical onset

with a maximum about 7.3 eV above the HF ground state.

In HCI'-, the situation is somewhat different.

In this case, H- production, which occurs at about 6.9

eV, results from a crossing of two 2E+ states, only one

of which corresponds in electron configuration to the

two HF- states.22 The ascending state of HCl" is a

E+ state lying above the broad resonance state in energy.

The ascending state of HF-, the 52E+ is the state that would

lead to experimental observation of a broad resonance.

The broad resonance in HF- lies much higher in energy

than the broad resonance in HCl by some 3.7 eV. It is

therefore reasonable to assume that the 52E+ HF- state

is responsible for H production.

HF" (32 ). This state occurs at the equilibrium

internuclear distance through occupation of the n M.O.'s

15 and 16. It is shown in Figure IV-2 simply because it

crosses the 42 state. There are two n states that lie

32lower in energy than the 327 formed by occupation of

2 2M.O.'s 7 and 8 (1 2R) and M.O.'s 11 and 12 (2 2 ). Although

we have not performed full CI calculations on these states,

initial single configuration calculations indicate that

the 12 n lies between the 12+ and the 22+ and the 22ndte2 +n 2h +

lies between the 32 + and the 42E+

HF- (42T). This state, together with the 72 F state,

leads to the limit H-(IS) + F(2P) at 7.0 bohr1  It, like the

. -- i - . .. . . . .. ... . . . -. . l I J I . . .. .. . . . . .. . . .
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2 + -

7 E HF state, is a Feshbach state of HF'. It has an

avoided crossing with the 32 state at shorter internuclear

distances,'indicated adiabatically in Figure IV-l.

The 4 2 n HF- state corresponds in electron configura-

tion to the 2 state of HCI" shown in Figure II of

reference 22. In the dissociative attachment of HCl

2the 27 state produces a second overlapping, gaussian

shaped peak at 9.2 eV. 2 2  In HF-, the 4 2 7 state could

lead to a similar peak that would lie at about 10.2 eV.

Table IV-5 summarizes the results of the calculations

and also presents the existing experimental data for

comparison. We also show our estimates of certain

experimental parameters and suggest the type of experi-

mental investigation that might be used to determine them.

Limits

In this study, we have performed full CI calculations

on the states leading to three limits: H(2 S) + F'( S),

H(2S) + F(2P), and H-(IS) + F(2P). With the aid of a

simple MO picture, it is clear that the limits are pro-

duced by the states so indicated.

One state, the I2E + state, leads to the limit

,, H(2S) + FO( S). At 7.0 bohr, the final wavefunction

of this state is dominated by two electron configurations,

• 1. lC22a2 1 43o24o and l022a2 1 43402 with signs that are

In-phase with one another. At the true limit, these
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configurations would have exactly equal weighting. At

large distances, the 3a M.O. is the bonding combination

of the H ls AO and the F pC AO; the 4a is essentially

its antibonding complement. The linear combination

of the two configurations in terms of the F pa AO and the

H Is AO leads to equal weighting of (His + F )2

(H - F PC and (His + FPC) (H - F PC Upon expansion

and summation of the two terms, we obtain His Fpo, which

simply represents an H atom and an F atom.

Two states, the 52E + and the 32n, lead to the limit

Hf( 2 + F( 2 at 7.0 bohr. The at long internuclear

*distances is largely composed of two configurations,
1022a2 1n43a4a 2 and 1a22 214 3 24o. These are the same

two configurations as those representing the 12 E+ state.

In this case, however, the configurations have signs

that are out-of-plase with one another. Expansion of the

configurations in terms of the A.O.'s leads to the occupa-

tion Hls F which represents an H atom and an F atom.

The 32w state, at large internuclear separations is

dominated by the configuration 1a22o2 l 3324a2. Expansion

of this configuration in terms of the A.O.'s also leads

to the occupation Hs Fp. From this simple M.O. picture,

it is reasonable to assume that the 42n and the 72Z + HF"

states indeed lead to the limit H-(IS) + F(2 P).

The H( 2S) + F(2 P) limit is produced by two states.

One of these states is the HF( 1 +) ground state discussed

grun
*
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1

earlier. The other, a 7 state, is an excited state of

HF considered in detail in the next chapter.

Other States

In initial single excitation calculations we observe

three states, A, B and C, which fall between the limts

2 2 2H(2S) + F-( S) and H(2 S) + F( P) at 7.0 bohr. Two other

states, the 52Z+ and the 321, as already indicated, also

fall within this energy region and lead to the limit

H-(1s) + F(2P). The simple M.O. picture presented

earlier supports the fact that these two states indeed

lead to the H-(IS) + F(2P) limit. Of the three other

states falling within the same energy region two, A and

B, are E states, while the third, C, is a n state.

The electron configurations contributing to the

A and B states are la 2o 214 3o4on6, where n > 5. When

n > 5, the no M.O.'s are dominated by A.O. contributions

either from F or Fs . Formulation of these electron

configurations in terms of the A.O.'s leads to

(H is+ FPC) (H1  - F P) F*, where F* represents an excited

F or F AO. Expansion of the configurations produces

terms in F'. To our knowledge, F'" is not known to

exist and we can only conclude that the states leading

to the F-" limits also do not exist.

A similar situation arises in the case of the c2U

state. A full CI calculation at 7.0 bohr places this

-~ -. , ... -----
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state between the H-{IS) F( 2P) and the H(2S) + F(2P)

limits in energy. The state is dominated by the electron

configuratfon lo22a2 1 4 3o4a27r. Expansion of this

configuration in terms of the AOs again yields terms in

F-'. We therefore feel that all three states are not

real. All other states lie above the H(2 S) + F( 2P) limit

in energy and can probably be assumed to be real.

Comparison with HCl-

In light of the current HF- study, we have reviewed

the results of the earlier study on HC1 - 22 for comparative

purposes. Several points are of particular interest.

First, the I2 + state of HF- is found to be bound by

some 0.01 eV, while the 12 + state of HCl lies above

the HCl ground state. The unbound nature of the lowest

HCl state is reasonable, given that the dipole moment

of HCI is much less than that required for binding an

electron.

The second point of interest involves the higher

2+
E states of HCl and IF. In the HCl study, only

those states that could be experimentally reported were

calculated. Two states of HCI , the A(2 E) and B

that lie in energy between the reported 22 + and 32z

states were therefore not investigated. The states of

HF- corresponding to these two HCI" states are the 32E+

and the 42 + On the basis of the appearance of plots

... .. . . .. .... ... -_ ,' ,
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of the density functional against distance from the HCl

molecule, the two HC1 states were not considered to be

resonances."22 We now question this conclusion. The plots

of these states, when compared with those of the 32Z + and

4 2 + HF- states, do not seem to differ significantly.

In the next section we return to this general point with

a discussion of the difficulty of distinguishing those

HF" states that have resonance character from those which

are simply continuum functions.

The final issue of importance in the comparison of

HF- and HCI- involves the 22E+ and 32Z+ HCl states and

their counterparts, the 22E+ and the 52E+ states of HF

In the work on HCW, these states were stated to merge

with the continuum at longer internuclear distances. From

the results of a series of single configuration CI calcula-

tions, it now appears that these states can still be

followed at very large separations after an intermediate

region of confusion. This is gratifying since the 22+

32 + 42 + ~ 2 + stesrmi
3 E2+ , 42 + , and 52E HF states also remain relatively

pure in calculations of this type to 7.0 bohr. This

suggests that the behavior of the 2E+ states of HCl" and

those of HF" is similar.

One further difference should be noted. The 32E+

HCl" valence state responsible for the broad resonance

observed in the vibrational excitation spectrum has a

minimum approximately 2.3 eV above- the ground state of

- t -- W' . ..
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~30
HCl. According to Domcke and Cederbaum, the half width

of this state is 2.3 eV. In HF-, the state corresponding

32+ 2+
to the 32z HCI state is the 5 E which lies about 6 eV

above the HF ground state. This is far higher in energy

than the HCl- state. The HF~ state was not observed

in the vibrational excitation experiment of Rohr and]
16

Linder. This is not surprising, however, since the

reported energy range extended only to about 3 eV. The

results of Domcke and Cederbaum in the case of HF- would

require the state to have a half width of about 6 eV,

30
which seems excessive.

Proof of Resonance Character

A resonance or a temporary negative ion state is

formed by the interaction of a target molecule with an

incident electron. The electron is temporarily captured

within the neighborhood of the molecule. The attachment

of the electron can occur at a definite energy in which

case, sharp structure is observed in the cross section.

These states have a lifetime, T, of between 10-10 and

1015 sec where T h/r with r representing the width

of the state. Experimental study of these states is

possible when they decay into inelastic channels (rota-

tional and vibrational excitation, electronic excitation,

dissociative attachment, and so ot,). When the cross

section is dominated by inelastic, processes, then the
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resonance contribution can be observed without inter-

ference from the direct scattering mechanism.

In addition to examining the energy dependence of

the cross section, experimentalists can also observe the

angular dependence of the cross section for the purpose

of studying resonances. In studies of this type, the

angular distribution can be uniquely determined through

comparison of symmetries of the initial, resonant, and

final state. When the resonant state is expanded in

terms of spherical harmonics, the contribution from the

lowest allowed value of k predominates. In heteronuclear

diatomic molecules, mixtures of these waves, called partial

waves, are possible. It has been demonstrated31 that pure

partial waves of pa or pT symmetry exhibit characteristic

p wave shapes leading to a minimum in the cross section

at 900 Pure waves of do, dir, or d6 symmetry alternatively

produce a maximum at 900. Mixtures of partial waves are

also possible in heteronuclear molecules.

Theoretical methods for determining whether or not

*i a state is a resonance have also been developed. In the

21
original stabilization method, frequently used for this

purpose, heavy weights of a single or few configurations

were used as a criterion to identify stable roots. These

calculations, however, were generaly performed on mole-

cules without permanent dipole moments, so that no dominant

fields were present. It is our experience, in the case

A

-' -
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of molecules with permanent dipole moments 2 2 that purity

of the vector is not particularly useful for establishing

stability. In Configuration Interaction calculations

on the negative ion states of these molecules, all states

seem to give relatively pure CI vectors which represent

successive Rydberg states in the field of a dipole.

One study on the states of LiF- utilizes orbital

amplitude plots for qualitative speculation on the

character and width of states thought to be resonances. 32

In our earlier work on HCI-, resonance character was

attributed by the appearance of "stability" with the

addition of very diffuse functions to the original basis
22

set. This approach was based on the assumption that

the relative purity of the CI vectors indicates that the

MO occupied by the scattered electron is a fair approxima-

tion to the natural orbital of the electron. A graph

of the density functional of this MO plotted against

distance for each state with and without addition of the

diffuse functions proviaed qualitative "proof" of resonance

character. States that are attempting to place the

scattered electron at infinity appear increasingly

sinusoidal with increasing flexibility of the basis set.

i Alternatively, those states possessing resonance character

seem to show a high probab;lity of the electron in the

area of the target with sinusoidal behaviour at longer

distance.

I
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Another recent study,33 which is also based on the

assumption that calculated energy values for stable

resonances will show only small changes with basis set

variation, has adopted a somewhat different approach.

Rather than enlarging the basis set, the study rather

recommends varying the basis set continuously. This

involves, for example, going from an original basis,

a i = L0 6 to a shifted basis, ai = o 6 i+ l  For a stable

eigenvalue, avoided crossings will appear.

Based on the previous work, we employed basically

two general techniques for investigating the resonance

character of each particular HF- state. It was assumed

throughout that the M.O. produced in an SCF calculation

is a good representation of the natural orbital of the

scattered electron. Thus MOs 6, 9, 10, 13 and 14 are

reprsentative of the 12 + 22E 32E+ 42+ and 52E HF

states respectively. The first technique simply involves

comparison of the SCF energy and the M.O. eigenvalues

in an altered bases set to those in the original basis

set. If an M.O. indeed represents a resonant state,

then the energy (eigenvalue) would be expected to remain

relatively constant. The second technique consists of

adding basis functions to the original basis set and

v'sually observing the density of the M.O. This was

accomplished by plotting, in confocal elliptical

rr',(,'dinates, the variation of the density functional with
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distance from the two-center target molecule. We plot
2(112-v2 D3/8, where P and v are functions of two

coordinate x and y against the coordinate along the

internuclear axis, x. The F atom lies at x=O and the H

atom is located a distance D(I.732 bohr) from the F atom

in the positive x direction. The five variations of the

original basis set which were considered are described

in Table IV-6.

Table IV-7 presents the SCF eigenvalues for the M.O.'s

of E+ symmetry resulting from the original basis set

(basis set #1) and the varied basis sets (basis set #2

through basis set #5). The first variation we will con-

sider is the addition of very diffuse functions. In

basis set #2, an s function with exponent 0.001 was added

to fluorine. In basis set 3#, this function and an

additional p function with the same exponent were added

to fluorine. Since the added functions are much more

diffuse than any contained within the original basis set,

it would be expected that new M.O.'s would appear, with

eigenvalues lower than those of the M.O.'s in the original

basis set. The results of the SCF calculations indeed

verify this. In basis set #2, the new M.O. falls much

lower in energy and is dominated by the added function.

Adding both S and P functions, as in basis set #3, creates

two new M.O.'s of E+ symmetry which also fall below the

energy of the M.O.'s in the original basis sei.



-77-

From the data for basis sets #2 and #3 in Table IV-6

and IV-7, we clearly observe the stability of the SCF

energy and of the energy of the individual M.O.'s in

the original basis set. For example, the eigenvalue of

M.O. 6 in the original basis set changes by only about

0.002 A.U. (0.06 eV) in basis set #2, and by only

slightly more, 0.003 (0.08 eV), in basis set #3. The

change in eigenvalue for M.O. 6 on moving to the augmented

basis sets is, in fact, the largest change in eigenvalue

for any of the M.O.'s. This is to be expected since the

added diffuse functions interact most strongly with the

lowest lying M.O. These data indicate strongly that,

since the energy of any given M.O. varies by at most,

0.08 eV, energy stability of all states considered here

is preserved upon variation of the basis set.

In addition to the energy stability criteria, we have

also made use of a technique used previously 2 2 for

examining the change in appearance of the M.O.'s on

moving to the augmented basis set. A graph of the

density functional of the M.O. with distance along the

internuclear axis provides an adequate two dimensional

picture of each state. Figures IV-2 through IV-6 present

'A these plots for M.O.'s 6, 9, 10, 13 and 14 respectively.

Each state is shown for the original and the two augmented

'basis sets. The change in scale on the ordinate for the

various M.O.'s should be noted. Figure IV-7 presents the

i r - .~.
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+
one additional E M.O. created in basis set #2 and

Figures IV-8 and IV-9 show the two additional M.O.'s

formed in basis set #3. In each of these plots, the

fluorine atom is at the zero point of the abcissa with

the hydrogen 1.73 bohrs in the positive direction.

The character of the M.O.'s of the original basis

set changes very little upon addition of the very diffuse

functions, as illustrated by the plots. For an M.O. which

is attempting to place the scattered electron at infinity,

the density plots should show the electron density moving

to further distances from the molecule. In none of the

plots presented here, does this seem to occur. Rather,

the addition of the more flexible functions appears to

tighten the main peaks in each case. Comparison of the

density plots of the states considered to be resonances

with those for the M.O.'s formed with the addition of the

more flexible functions points to an important difference.

The newly formed M.O. 's appear to be a clear attempt to place

the electron at infinity, since they show the bulk of their

electron density at very large distance from the target.

The second variation we consider is the addition

of diffuse functions to the original basis set. In basis

set #4, two s and two p functions with exponents 0.003

and 0.006 were added, this time to the hydrogen atom.

This addition resulted in three new E+ M.O.'s between

M.O. 6 and M.O. 14, and one new E M.O. below M.O. 6 in

+l

- ~ -
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+
M.O. 14, and one new E M.O. below M.O. 6 in energy.

Upon addition of these functions, the SCF energy was lowered

by only 0.00005 a.u. (.001 eV). The largest variation

in eigenvalue is observed for M.O. 13 for which the

energy increased by about 0.03 a.u. (0.85 eV). Basis set

#5 represents the addition of both very diffuse and diffuse

functions to the original basis sets. The SCF energy,

in this case, was lower by 0.00008 a.u. (.002 eV) than

the SCF energy of the original basis set. The M.O. that

was again most affected by the changes was M.O. #13.

The eigenvalue of this M.O. changed by some 0.04 a.u.

(1 .12 eV).

The density plots for the M.O.'s of basis sets #4

and #5 are presented in Figures IV-10 through IV-14

together with those of the original basis set for

comparison.

In both basis set #4 ani basic set #5, the new

M.O.s fall below M.O. 10 in energy. We should therefore

9' expect that the M.O.'s most perturbed by the augmentation

would be M.0. 6 and M.O. 9. Figures IV-l0 through IV-14

indeed show this to be the case. The curves of

Figure IV-lO illustrate that M.O. 6 may not be a resonance.

Addition of diffuse functions causes the main peak to

move much farther from the molecule, behavior that is not

expected in a resonance. We have considered the possi-

bility that these M.O.'s of basis sets #4 and #5 thought

-- ------
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to be the same as M.O. 6 in the original basis set have

not been correctly assigned. If, instead the M.O.'s

with eigenValue 0.01225 a.u. of basis set #4 and eigen-

value of 0.00967 a.u. of basis set #5 in Table IV-7

are assigned, we obtain the density functionals of Figure

IV-15. This alternative assignment supports the attribu-

tion of resonance character to M.O. 6. In basis sets

#4 and #5, the main peak is in approximately the same

location as it was in basis set #1. Although in the two

altered basis sets, density is building at longer range,

this is not unexpected for a resonance when diffuse

functions are introduced. M.O.'s 9, 10, 13, and 14

as shown in Figure IV-ll through IV-14 also changed

minimally upon introduction of the additional functions.

We have examined numerous other basis set additions

that are not presented here. New functions of both

V diffuse and valence character were added to both H and F.

In all cases, the M.O.'s of the original basis set

with which the added functions interacted strongly were

the most affected by the additions. This suggests that

altering the basis set and observing little change in

the appearance of the M.O. is not a sufficient criterion

for judging resonance character. Our experience indicates

that the appearance of any M.O. can be changed

considerably simply by judicious choice of additional

functions. Further studies of this type on molecules
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with known resonances are necessary to establish defini-

tive criteria for assignments of resonance character.

The Bound State

Because the bound or unbound nature of the lowest

HF state is a subject of much debate, we sought to better

understand the results of our calculations by further

investigation. The resonances of HF- that result from

the addition of one electron to a Rydberg orbital of HF

arise primarily from the permanent and induced dipolar

forces. The 1 2 + HF state is one such resonance, as

mentioned earlier. In the HF molecule, for which the

permanent dipole moment is only slightly greater than

that necessary for binding an electron, the binding energy

is undoubtedly extremely small. In C.I. calculations

of the type described here, the error in energy may be

as high as 0.1 eV. This is a factor of 10 larger than

the binding energy we calculate (0.01 eV). Because this

is so, our results do not show unequivocally that HF is

capable of binding an electron.

One method of investigating the reliability of the

calculated results is to consider the forces contributing

to the bound nature of a state. One of these forces is

the permanent dipole moment. A calculation performed for

HF at the equilibrium internuclear distance at the CI

level yielded a value of 2.01 D for the dipole moment which

--4. _. -- ..-" "--.- - ~ ~ ~ ~1 -. S "-"- -- .. -
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is well above the experimental value of 1.82 D. The other

factor contributing to the forces generated in the mole-

cule is the polarizability. The experimental value of

3 03 29
this variable fo.r HF is about 16.6 a0 (2.5 A).

According to reference 8, a molecule with a permanent

dipole moment as low as 2D and an average molecular

polarizability of between 20 and 40 a should have the
0

capability to bind an electron by 0.01 eV. This result

also allows rotation of the molecule which contributes

A positively to the energy of the negative ion. The CI

calculations used in this work do not include the effects

of rotation. Our calculated dipole moment of 2.01 D,

together with the experimental polarizability of 16.6 a0
3

implies that our calculations should find HF bound by

something less than 0.01 eV. Our calculated electron

Vaffinity (0.01 eV), given the inherent inaccuracy of the

method, seems to be at least of the proper order of

magnitude. Unfortunately, because the value obtained for

the electron affinity is so close to zero, it cannot be

stated with certainty from the results of the calculations

that the HF- state is bound.

Another method of testing the bound or unbound nature

of the state was employed. This technique involved

augmenting the original basis set with a diffuse s

function of exponent .001 on the H atom. In the SCFI calculation, the new E+ molecular orbital fell energetically

- - .- .. '
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below the molecular orbital occupied by the single electron

2'+
in the original 1 E HF- state. Table IV-8 presents the

eigenvalues and total SCF energy for the original and

altered basis set at 1.732 bohr. CI calculations were then

performed for HF at the equilibrium internuclear separa-

tion within the new basis set. In the first calculation,

the additional electron occupied the original M.O.

(the LUMO + 1). In the second calculation, the additional

electron occupied the new E + M.O. (the LUMO). In the

third calculation, the HF ground state was calculated

within the new basis set. Table IV-9 gives the results

of these calculations and, for comparison, the results

of the CI calculations in the original basis set.

In the altered basis, the HF ground state falls

below the original 11F ground state by 0.005 eV. The HF-

state with the extra electron occupying the new E + M.O.

lies below the new HF ground state by 0.168 eV. The HF"

state with the extra electron occupying the original E

M.O. now lies above the new HF ground state by 0.046 eV.

Since the original and new HF ground state energies differ

by only 0.005 eV, the HF" 1 2 Z+ state remained constant

in energy to within 0.051 eV.

The implications of this exercise are important.

It may be that the functions necessary for properly

describing the HF" ground state were not included in the

original basis set. The additional flexibility of the

.. . . .. .. .. .. ..... . . ... ~ ~ ---- ---a ---a . . .. . . . . .
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bacis set achieved through the addition of a diffuse

function may in fact provide the true picture of an

unbound HF ground state. The results are simply not

definitive regarding the bound nature of the l 2 E + HF

state. It could be that, since the energy of the

original state rose above the HF ground state after

augmentation of the basis set, the state is not bound.

Indeed, this is probably so. Whether or not the HF mole-

cule can, in reality, bind an electron is not in question.

Theory has shown that it is certainly possible. Our

calculated dipole moment exceeds the experimental value

by some 0.2 D. This fact makes it more likely that the

results of our calculations will lead to a bound HF"

state. That we find a bound state within our original

basis set is therefore not surprising. Although our

results do not allow an unequivocal conclusion on the

bound or unbound nature of HF, they are significant

for at least two other reasons. First, we have

illustrated through extensive CI calculations that, within

a basis set that includes diffuse functions, the HF mole.-

cule can probably bind an electron if the calculated

dipole moment is as high as 2.0 D. We cannot speculate

on what the results would be if the dipole moment were

lower. The second reason for the importance of these.1 calculations lies in the fact that they provide guidance

for other ab initio studies. Polar molecules with

|din
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permanent dipole moments slightly in excess of HF should

certainly be the subject of further investigation.

Concl us ions

The calculated potential curves presented in this

work are in good agreement with the existing experimental

data. Moreover, some of the results of the study are

useful for guidance in future experimental investigations.

It appears that the computational techniques employed in

this study are effective for theoretical study of the

negative ion states of polar molecules.

The presence of a permanent dipole moment in HF

gives rise to presumed resonances that cannot be intuited

from the separated atom limits. That all the states

described here are in fact resonances cannot be proven

definitively. Nevertheless, the technique we have

utilized for probing the problem providesat least a

strong indication that the states of HF" indeed possess

it resonance character.

Whether or not the I2 E HF" state is bound also

cannot be unequivocally determined from this study. We

find this state bound by only 0.010 eV, a value which is

small compared with the accuracy of the calculational

procedure. We can only conclude with certainty that the

"(I 12E state of HF lies extremely close in energy to the

HF ground state and is therefore either slightly bound

or slightly unbound.
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Table IV-1

Gaussian Basis Set

Fluorine Hydrogen

ts [5s] s (2s]

9995.0 0.001166 13.36 0.032828
1506.0 0.008870 2.013 0.231204
350.3 0.042380 0.4538 0.817226
104.1 0.142929
34.84 0.355372 0.1233 1.000000
12.22 0.462085
4.369 0.140848 LipJ

12.22 -0.148452 1.000000 1.000000
1.208 1.05527

0.3634 1.000000

0.036 1.000000

0.0066 1.000000

p [5p]
44.36 0.020876
10.08 0.130107
2.996 0.396166
0.9383 0.620404

0.2733 1.000000

0.074 1.000000

0.029 1.000000

0.0054 1.000000

id [id]

1.15 1.000000
Va

u1.__



-90-

Table IV-2

SCF Results for HF (R = 1.732 bohr)

M.0. Text Notation Symmetry Eigenvalue (a.u.)

I Ic E+ -26.29879

2 2a E+  -1.60169
3 3c E+ -0.76886

4 1 7r -0.65063

5 iT -0.65063

6 4+ 0.00696

7 2t 0.01335

8 IT 0.01335

9 5a E+ 0.01511

10 6a E+  0.06850

11 3- Ti 0.07965

12 71 0.07965

13 7a E+  0.09187

14 8a E+  0.26703

15 4T 0.30504

16 4T 0.30504

17 90 E+ 0.32973

18 100 E 0.92540

19 Ila 1.33003

20 S T 1.34772

21 i 1.34772

22 12a E 1.71036

23 6 7t 1.84189
24 iT 1.84189
25 13a E 2.75878

26 A 2.91399

27 A 2.91399
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Table IV-2 (continued)

M.O. Text Notation Symmetry Eigenvalue (a.u.)

28 7 7T 3.35095

29 iT 3.35095

30 14a 4.17831

31 15a E+ 5.65648

Total Energy: -100.04905 a.u.

Nuclear Repulsion Energy = 5.19630 a.u.

Total Electronic Energy = -105.24535 a.u.

II

4

- -
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Table IV-4

Configuration Bases for the Ground States of HF and HF-

R (bohr) HF HF"

122o23o217 4  l02 2 23o1 44a

1512 2 2 ' o 102c~7o040 c1.5 Io22o23olit4]0ol221440 2

1022a21 7T 4102

1o22o23o2 1 4  Io22o23A21I44o

1.732 10220230114100 IG22a2 744cI O2

2' 2 4 2
lo 2a14 10c2

I22 4 la22423a2] 44a

4 2.0 1c2 223cyr4 8a 1cy 22cyrl 4cy8a2

1022c21n48cr2

Io22y23j2 1 7T4  1o22a23cf21 4 4a
l2 2 4li 2 2 2

i2.5 la 22o23cyiT46a Icy2a 21 44oy6 2

la2 2 2 4 ~c~ l 42
2 2 4 22 4624 2

2.5 1cr 221 3a a3 6 72r 424

I3.0 1022(721 r4 3a4a la 22a 21 -a4 3o4o 2
' ji1c r22or21rr44c2

22 2242

ica 2a 1lit 4cr

1 2221 N 43c2  102221c I 43c24

a5.0 1 220 21it43r4a 10o22c021n43a4 2

Icy 2or In 3ar
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Table IV-4 (continued)

R (bohr)

1A2n 21i"4302  1 22 21 r43o24o

7.0 1o22o211n43o4a ;022 21n4 3042

10222I42

.
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Table IV-5

Summary of Observed and Calculated Results

Observed Calculated Suggested Experiment

HF" 12 E+  > 1.88 -0.01

HF- 52 + -- 5.87 Vibrational
Excitation

HF" 5 2 E+  7.3
Electron Impact

HF" 42 - 10.2

F+H -- 2.9

F + H" - 7.3 Dissociative
! Attachment

Electron Affinity F 3.45 3.17

Dissociation Energy HF 6.1 6.02

11i
"4l
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Table IV-6

Original and Altered Basis Set Description

Basis SCF Total
Set # Variation Energy (au)

1 Original -100.04905

Very Diffuse

2 Original + = .001

F(s) -100.04905

3 Original + = .001

F(s,p) -100.04906

Diffuse

4 Original + = .006, .003

H(s,p) -100.04911

Diffuse +
Very Diffuse

5 Original + =.006, .003, .002, .001

H(s) + .006, .003 H(p) -100.04913

'I
'9
'9~
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Table IV-7

E+ M.O. SCF Eigenvalues for Original and Altered Basis Sets

Basis Set

M.O. # 1 2 3 4 5

1 -26.29879 -26.29880 -26.29881 -26.29709 -26.29788

2 -1.60169 -1.60170 -1.60171 -1.60113 -1.60143

3 -0.76886 -0.76887 -0.76887 -0.76834 -0.76858

0.00093 0.00077

0.00121 0.00274 0.00217 0.00337

6 0.00696 0.00924 0.00977 0.00615 0.00647

0.01 225 0.00967

0.01 978

9 0.01511 0.01592 0.01735 0.02001 0.02196

0.02161 0.02242

0.03603 0.04617

10 0.06850 0.06967 0.07051 0.08117 0.08168
13 0.09187 0.09396 0.09437 0.12321 0.13316

14 0.26703 0.26782 0.26847 0.27758 0.27779

I!
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Table IV-8

SCF Energy and Eigenvalues for Original and Altered Basis Sets (au)

Original Basis Set Altered Basis Set

SCF Energy -100.04905 -100.04905

Eigenvalues

New M.O. -- +0.00114

Original M.O. +0.00696 +0.00936

V

I

'V

.4
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Table IV-9

CI Energy within the Original and Altered Basis Set (eV)

Original Basis Set Altered Basis Set

HF Ground State

Energy -2727.430 -2727.435

HF- State Energy

(New M.O.) --- 2727.603

HF- State Energy

(Original M.O.) -2727.440 -2727.389
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CHAPTER V

CONFIGURATION INTERACTION CALCULATIONS ON THE RYDBERG

STATES OF HF AND THE FESHBACH STATES OF HF"

Introduction

In Chapter !II, a background discussion of the nature

of tore-excited resonances was presented. Before descri-

bing our work in this area, we briefly review the relevant

concepts. Resonances in electron scattering can be

classified into two general categories. The first type

of resonance, called either a temporary negative ion or

simply a resonance, is formed when an incident electron

is temporarily captured in the region of a target molecule.

The second type of resonance, referred to as a core-excited

resonance, is characterized by a "hole" in a normally

occupied orbital and two "particles" in normally unoccupied

orbitals. I The neutral Rydberg electronic state associated

with a particular resonance is called the parent state,

while the positive ion core is called the grandparent

state. The second type of resonance, commonly known as a

Feshbach state is the subject of this chapter.

Core-excited resonances can lie either above or below

the parent. Feshbach Type I resonances, with which we

are concerned here lie below the parent state and thus

exhibit a positive electron affinity.. These resonances

have lifetimes that are long compared to a vibrational



period. This characteristic is manifested through bands

with vibrational structure similar to the grandparent.

Since the two electrons trapped by the ion core reside

in Rydberg orbitals located far from the core, it is not

unreasonable to expect the negative ion and the positive

ion to show similar vibrational progressions.

Resonance spectra in the rare gases have been studied

in great detail. 2  Feshbach states have also been detected

and examined for various diatomic molecules, including
2

H2, CO, N2, NO, and 02. Because of the general interest

in electron scattering from polar diatomic molecules,

experimental investigations on the Feshbach states of HF"

have recently been performed.3 '4

The purpose of this chapter is to present the results

of configuration interaction calculations on the Rydberg

states of HF and the Feshbach resonances of HF-. Before

Vdiscussing the results of the study, we briefly review

the pertinent experimental data on this subject and give

a description of the methods employed in our calculational

procedure.

Background

HF.

In spite of the corrosive nature of the vapor, the
.4

excited states of the HF molecule have been the subject

of some experimental investigations. The lowest energy

-,v€-
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excited state of HF, the so-called B Z+ state has been

studied the most widely. Johns and Barrow first found

evidence of the state in 1959 through a vacuum ultra-
5

violet absorption experiment. Through observation of

the first six vibrational levels, values for we of 0.145
0

eV, and re of 2.09 A (3.95 bohr) were determined.

DiLonardo and Douglas later reexamined the B1E+ state

6 6,7both through absorption and emission, and detected

vibrational structure through about v=73. The v=O level

was found to lie 83,305 cm-  (10.33 eV) above the HF 1E+

ground state. According to DiLonardo and Douglas, the

vibrational levels are well behaved up to v=26, which lies

at an energy of 103,880 cm "1 (12.9 eV). Above v=26,

severe perturbations are observed as the bands of the

B state become mixed with other Rydberg bands. DiLonardo

and Douglas have detected a 3 r-X E+ band in the region

of the v=27 level of the B IZ+ state which they hypothesize

as being responsible for the perturbations. They also

suggest the possibility of perturbations beginning as low

as v=24, and speculate that lower unobserved vibrational

levels of the 3r state may be the cause.

The B1 E state has also been observed through electron

• energy loss.8 In this study, Salama and Hasted place the

v=5 vibrational level at 11.3 eV, the v=ll level at

4 12.2 eV, and report an we of 0.15 eV. This is in dis-

agreement with the data of DiLona'rdo and Douglas which

. _____._ ll I I |il ..
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shows v=5 at about 11.0 eV.

Other excited states of HF have also been observed

below about 14 eV. Salama and Hasted identified two Ryd-

berg series superimposed upon a dissociation continuum

which commences at 11.15 eV. 8 The first series,assigned

as an s Rydberg series, is reported to originate at

11.72 eV with the 3s member. An we of 0.35 eV and an

re of 1.207 A (2.28 bohr) for this member were determined.

The second series, tentatively classified as a p series,

is reported to origina.te at 12.82 eV with the 3 p member.

The quantum defect of this state is rather high for a p

series (0.95), and Salama and Hasted do not rule out an

alternative assignment as an s series. The we for this

series was determined to be 0.30 eV.

DiLonardo and Douglas have also observed three

singlet Rydberg states which lie above a continuum in the

1400 A (8.9 eV) region. 7 Between about 12.9 and 14.4 eV,

they find evidence of two strong E+-XIE bands as well

as a strong well-behaved 1 T-XIE+ system. 6 Although

these states have not been analyzed in detail, the

state is reported to originate at 13.03 eV with vibra-

tional spacing of 2656 cm 1 (0.33 eV). 7

The BIE + state of HF appears to be well characterized,

and there is good agreement in all respects among the

reported experimental results. This does not hold true

for the Rydberg excited states of HF. There is clear

- f . ... ..- -
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disagreement between Salama and Hasted, who report two

series commencing at 11.72 eY and 12.82 eV, and DiLonardo

and Douglas who observe no Rydberg states below 12.9 eV.

The results of our calculations, which are discussed

shortly, clearly support the findings of DiLonardo and

Douglas and put into question those of Salamar and Hasted.

HF_.

The characteristics of the positive ion states of

HF are important in the study of the negative ion Feshbach

resonances. The nature of the core excited HF- states

can be better understood by identification with their

grandparent HF+ states. Two ionization potentials of HF

have been identified, both through photoelectron spectro-

scopy.

The lowest energy ionization potential is the HF+ 2

9,10which is observed at about 16 eV. The ue and r ofJ e e

K this state are reported by Berkowitz to be 3016 cm
01

(0.37 eV) and 1.026 A (1.94 bohr) respectively.10

There appears to be some disagreement regarding the l'oca-
2 2+ +

tion of the second ionization potential, a E HF

state. Lempka et al. place its origin at 18.6 eV, 1

while Berkowitz reports it to originate at 19.1 eV. 9

The vibrational spacing of the 2E + state is 1550 cm 1

(0.19 eV), about half that of the 2 HF
+ state.9

° 10

"l Berkowitz reports a value of 1.20 A (2.3 bohr) for re.

ii i . . . . .1 i- . . . ,.. , i , ,
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HF-.

The Feshbach states of HF" have been the subject of

two experimental studies, both of which utilized tho

technique of electron transmission spectroscopy. Spence

and Noguchi find evidence of a Feshbach state originating

3at 12.825 eV. Four vibrational levels with a spacing

of 0.355 eV are analyzed. Because of the excel-,' a

ment of the vibrational spacings with those t-,

2 ionization potential, the state is assigr, , .

Spence and Noguchi also report a severe perturbation on

the first vibrational level of this state and provide two

alternative explanations for the cause. First, depending

upon the probabilities for transition, they speculate that

perferential decay to the B1E + state of HF may occur froi;i

one or more of the vibrational levels of tho . vC ,

state. Indeed, this explanation appears to be reas,,tod,

in light of the perturbations detected in the HF P

state spectrum discussed earlier. The seco!:1 explanati'

put forth is that the state may be crossed by a ..:

negative ion state. The interaction of the two stat

would persumably cause a perturbation in the transwi si.

spectrum. Although Spence and Noguchi analyzed the

spectrum from about 11.5 to 15.5 eV, they found no evidenc2

of any other HF Feshbach states.

In a second experimental study, Mathur and Hasted

observe a sharp dip in the transmission spectrum

<1
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10.05 eV.4 Although no vibrational structure is apparent,

it is. tentatively classified as a 2E+ state. According

to Mathur and Hasted, the lack of vibrational structure

can possibly be explained by an avoided crossing between

two states of the same symmetry. The vibrational progres-

sion would end after one level with the opening of a new

channel, that of a repulsive negative ion state.

Mathur and Hasted also report a distinct Feshbach

resonance at higher energy. This state originates at

12.388 eV, and based on an analysis of five vibrational

levels is stated to have an we of 0.132 eV. Mathur and

Hasted discuss the fact that the vibrational spacing does

not agree well with that of the first ionization potential,

the 2Tr HF+ state. Although it is not mentioned, neither

does the spacing agree with the spacing of the first

excited ionization potential, the 2E+ HF+ state. Neverthe-

2 + -less, the state is tentatively classified as a E HF-

Feshbach state.

Mathur and Hasted discuss the disagreement of their

results with those of Spence and Noguchi. Mathur and

Hasted, who performed their measurements at a later date,

analyzed the spectrum in the region between 12.8 and 13.5

eV. They found it only marginally possible to detect

structure in spite of the fact that Spence and Noguchi

"I find clear evidence of a resonance in that energy range.

Alternatively, in Spence and Noguchi's investigation,

-9 -- - ---- ~. -- - ~- J
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performed earlier, no structure is reported between 12.3

and 12.8 eV, the region in which Mathur and Hasted detect

a Feshbach state.

In light of the experimental data, we have attempted

to provide some insights on the interpretation of the

experimental observations between 9 and 14 eV through

configuration interaction calculations on the excited

states of HF and the Feshbach states of HF'. Before

describing our results and comparing them with the exoeri-

mental observations, we provide a brief summary of the

method used in our calculations.

Method

Although some aspects of the method used in the cal-

culations described here are the same as those given in

Chapter IV, they will be repeated for convenience. The

atomic orbital basis set was chosen to be sufficiently

flexible to represent both HF and HF" for a range of

ti) internuclear distances. A Dunning basis, the (9s/5p)

primitive gaussian basis of Huzinaga 11 contracted to• 12

(3s/2p) was adopted, while the hydrogen was repre-

12
sented by the Dunning (2s) basis. In addition to these

functions, uncontracted Gaussian Rydberg s functions of

exponent 0.036 and 0.0066, and p functions of exponent

0.074, 0.029 and 0.0054 were added to F. Finally, a p

type polarization function of exponent 0.9 was added to
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hydrogen and a d type, of exponent 1.15, to F. The com-

plete. atomic orbital basis set is shown in Table V-1.

The SCF wavefunction and energy for HF were calculated

within this basis set. Of the 30 molecular orbitals com-

prising the basis, only one, that of lowest energy, was

dropped from consideration in the CI calculations. Table

V-2 provides a list of the molecular orbitals and their

eigenvalues as well as the energy of HF at its equilibrium

internuclear distance. The SCF total energy of

-100.04905 a.u. can be compared with the near Hartree Fock

energy of -100.0705 a.u. 1 3

The SCF virtual orbitals of HF were assumed to form

an adequate basis for performing CI calculations on HF-.

Previous work on HC1 1 3 confirms that this assumption is

justified. The SCF virtual orbitals of HF are eigen-

functions of the full n electron HF potential including

its permanent dipole moment. Since, in a case of this

type, the scattering is long range, the target molecule is

relatively little perturbed by the scattering event.

Consequently, the HF virtual orbitals are assumed to be

a good representation of the natural orbitals of HF'.

Configuration Interaction calculations were performed

,U on the ground state of HF, the excited states of HF, the
~2 2 r positive ion state, and the core-excited states of HF'.

The latter states were derived by populating the appro-

priate HF virtual orbital with two electrons. In general,

- _V -Jo
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a few seed configuration were selected to represent the

given, state of interest. Then all single and double

hole particle excitations relative to those few seed

configurations were generated to form the total CI space.

Solution of the CI problem was accomplished by the parti-

tioning technique which was discussed in Chapter II

and elsewhere.
15 17

Results and Discussion

Full CI calculations on the states of HF and HF-

lying between about 9 and 14 eV were performed at a number

of internuclear distances. The equilibrium internuclear

separation of the HF molecule is 1.732 bohr, and we con-

sider 7.0 bohr as representative of the dissociation

limit. Before providing the results of our calculations,

we present a brief description of our M.O. notation system,

which should considerably simplify the discussion that

follows.

The values of the second column in Table V-2 number

the M.O.'s of the same symmetry sequentially, and each

degenerate pair of n and A M.O.'s is assigned one number.
We will refer, in the following discussion, for example,

to M.O. number 3 as the 3a and M.O.'s number 4 and.1
5 as the 2n. Although the M.O.'s have the order shown

in Table V-2 at the equilibrium internuclear separation,

at distances larger than 2.5 bohr the order has altered.

- i i mm~lmnamm~l N WI
u m m a

nm tnmnw- - -,.m - -n--mnm -
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Table V-3 presents the M.O. notation system for two separa-

tions, 1.732 bohr (equilibrium), and 4.0 bohr, for

reference purposes. In the CI calculations, all single-

and double-hole particle excitations were generated from

more than one base. In each case, these generating bases

were identified by their strong contribution to the final

wavefunction. For each state, we will present the occupa-

tions of the bases in the notation described above.

HF.

Table V-4 provides the details of the calculated

potential curves for the HF ground and excited states.

Figure V-1 displays these data pictorially. The generating

bases for each HF state considered here, together with the

weighting of the configuration in the final wavefunction

for a few appropriate internuclear separations are pre-

sented in Table V-5. We will discuss the characteristics

of each HF state in turn.

1 +
The potential curve for the 1 E HF ground state

is identical to that presented in Chapter IV. We will

therefore not repeat the analysis except to reiterate that

the calculated dissociation energy of 6.02 eV compares

well with the experimental value for De of 6.1 eV

1+L The 2 .+ state indicated in Figure V-l is the so-

called B state of HF. Its minimum, at 3.96 bohr is

calculated to lie approximately 10.62 eV above the ground

state of HF. This is only slightly higher than the

.. .....---- m mlllmImmll lmmmmm ..
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experimental value for Te of 10.51 eV. 5 Through a

parab.ola fit, we obtain an we of 0.15 eV which also agrees

well with the experimental value of 0.14 eV. At long

internuclear distances, near the equilibrium distance

for this state, the 2 1E+ B state is clearly valence in

character. In this region, it is apparently quite ionic

in nature and lies close in energy to the H+ + F- limit

of 16.07 eV. 7 At shorter distances, however, the state

is Rydberg in character and represents the first member

of an s Rydbera series leading to the first excited ioniza-

tion limit HF+( 2E+ ) at 19.1 eV. This change in nature

can be understood more easily by referring to the data

of Table V-5. The configurations contributing most

strongly at 2.3 bohr are those representing a positive

ion core with one electron populating successively

higher, E+ M.O.'s. At 4.0 bohr, the dominant configuration

is 1022a2!n4 3o4a. At this longer distance, the 4o M.O.

has become valence in character. The fact that the 21E+

B state is the first member of a Rydberg series leading

to the E ionization limit at shorter internuclear dis-

tances raises the question of the higher members. In

exploratory CI calculations, we do identify higher members.

Since all lie well above 14 eV in energy in the Franck

Condon region, we have not investigated them further.

It I The 31E+ state is a Rydberg state leading to the

HF+ ( 2 + ) ionization limit. As Table V-5 indicates, it is
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represented by the 2 positive ion core plus an electron

occupying successively higher Rydberg ff M.O.'s. Its

minimum lies 13.75 eV above the HF ground state at about

2.0 bohr separation. This state is likely to be one of

the I states observed by DiLonardo and Douglas between

12.9 and 14.4 eV. Although the perturbations observed in

the higher vibrational levels of the B 1I + state may be

I+a result of the interaction of the B state with the 3 ,

it is unlikely that this could be the case. Figure V-1

shows the crossing of the 11z+ and the 31E+ to occur at

about 13.7 eV. This is significantly higher than the

energy where the perturbations begin (12.9 eV). Even

assuming the calculated potential curves to be too high

by a few tenths of an eV, it does not seem reasonable that

the 31E+is responsible for the perturbations in the region

of the v=27 level of the BIE + state.
1

The 1 A HF state is identical in orbital occupation

to the 31E+ state just discussed. The two states parallel

one another and the minimum of the 11 A at 13.66 eV is

only slightly lower than that of the 31 + state. To our

knowledge, this state has not yet been detected experi-

mentally.

According to Figure V-l, the 11iT HF state is

repulsive. This state corresponds to the dissociation

continuum reported by DiLonardo and Douglas to occur in

A6the region of about 1400 (8.9 eV) . At short
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internuclear distances, the I1T is the first member of an

+ 2
s Rydberg series leading to the ionization limit HF ( 7r).

The energy'of this state at its minimum, together with the

location of the ionization limit,leadsto a quantum defect

of 1.55,which seems reasonable for an s Rydberg series.

At longer distances, this state, like the B 21E + state,

becomes valence in character. The 11I1, together with the

ll+ HF ground state leads to the limit H(2 S) + F( 2P).

The 21 7 is probably the first member of a p Rydberg

series leading to the ionization potential HF+( 2 r). The

minimum energy of this state given the minimum energy of

the ionization limit results in a quantum defect of 0.74,

a value not unexpected for a p Rydberg series. Its

dominant contributions again come from configurations

representing an HF + core and one electron occupying higher
+

energy M.O.'s. The minimum of this state lies at 1.978

bohr, 13.40 eV above the HF ground state. We calculate

an We of 0.26 eV. DiLonardo and Douglas speculate that the
Ve

cause of the perturbations above the v=26 vibrational level

in the B1 E+ state are due to a crossing of the B state by

a ir state. They observe this perturbation at 12.9 eV.

The resultsof our calculations support DiLonardo and

Douglas' interpretation, the 21 n crosses the B state at

3
about 13.4 eV according to Figure V-1. Assuming the n

state lies a few tenths of an eV below the 21 n, it would

indeed be in the proper energy range to explain the

-f --I 1 . .. - - J - . . . . . . .in I B i i i ---
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perturbations. Indeed, there appear to be no singlet

states in the energy region of the perturbations. Our

calculated curve for the 21 state lies about 0.25 eV

above the experimental value for Te of 13.15 eV. 6

The 21 state might also be the 'state observed by

Salama and Hasted at 12.82 eV. 8 Since our ab initio

procedure generally produces results that are too high by

a few tenths of an eV when compared with experimental

values, this is certainly possible. The location of our

calculated state, however, seems to agree more closely

with the experimental data of DiLonardo and Douglas who

placed the observed n state slightly higher in energy.

The 3 1i state is probably the second member of the

s Rydberg series leading to the HF+(2 it) ionization limit.

Its dominant contributions to the final wavefunction

illustrate this fact. At the calculated minimum of 1.977

bohr, the state lies 13.96 eV dbove the ground state of

HF. Through a three point parabola fit, we calculate an

We of 0.37 eV. This state has apparently not been
e

observed experimentally.

We have calculated the potential curves for the

ground state and six excited states of HF below 14 eV.

The 117r, and the 3 t in the Frank Condon Region are likely

to be successively higher members of a Rydberg s series

leading to the first ionization limit HF+ ( 2 ). The 21i

is probably the first member of a p Rydberg series leading

I- / -
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to the same limit. The 21z + state at short internuclear

distances is the first member of a Rydberg s series

leading to-the excited ionization limit HF+ (2+). At

longer internuclear separations, this state is valence

in character and leads to the limit H+ + F-. The 31E+

I
and the A states are each the first member of a Rydberg

p iT series leading to the ionization limit HF +( 2 ).

Our calculated potential curves agree in all major

respects with the experimental results of DiLonardo and

Douglas 6'7 and find some disagreement with the results

of Salama and Hasted.8 We are convinced that no states

other than those we have claculated lie within the

energy range of about 11 to 14 eV. We do not find the

Rydberg series reported by Salama and Hasted at 11.72 eV.

!In the course of this study, we found it useful to

perform what are probably the first configuration inter-
,+2

action calculations on the HF+ ( 2) state. We find its

V minimum at 1.92 bohr at an energy 16.05 eV above the

ground state of HF (l1lE). We calculate an we of 3211

cm'1 (0.398 eV) through a three point fit to a parabola.

These calculated data agree exceptionally well with the

iexperimental data which place the state at 16.05 eV

with re= 1.94 bohr, with an toe of 3016 cm (0.37 W.

HF_.

For convenience, we will present the results of the
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results of HF potential curves for two separate energy

regions: 9 to 12 eV, and 12 to 14 eV. First, however,

a few general comments on the HF" state calculations

will be useful.

Each of the HF" states has a parent HF excited state

and a grandparent HF+ state. The grandparent state is

readily identified by the "hole" in the normally occupied

M.O.'s. Although in the discussion of the states of HF,

we presented results only for singlet states we can

presume that each has a corresponding triplet state where

the electrons occupy the same spatial M.O.'s but have

unpaired spins. By adding an extra electron to one

of the other M.O.'s of each HF state, we can produce an

HF Feshbach state. Thus each singlet HF state is the

parent of one HF state, and each triplet HF state is the

parent of one HF state. For every singlet state con-

sidered in the last section, there are therefore two

corresponding HF" states, one of which has a singlet HF

parent and one of which has a triplet HF parent. Because

of this "doublying" effect, the spectrum of the HF" states

is extremely dense in the region of 9 to 14 eV. In addi-

tion, most of the HF" states that lie in this energy

range are repulsive at all internuclear distances. This

is not unexpected, particularly at lower energies, where

the binding energy to the grandparent positive ion core is

very large.

V -----------. ~ , -
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We have calculated the potential curves of all HF"

Feshbach states between 9 and 14 eV that are formed when

an extra electron is added to the calculated singlet HF

excited states and their corresponding triplet states.

We do not present the detailed potential curves of the

states that are repulsive except where they are important

to the interpretation of the experimental data.

9-12 eV.

Table V-6 presents the calculated energy results for

the HF- potential curves that are displayed in Figure

V-2 for this energy range. Table V-7 lists the configura-

tions used as bases in the calculations for excitation

generation together with their final percentage weighting

in the wavefunction for various pertinent internuclear

distances.

2 + 2 + 2 +
The 7 E , the 8 E and the 9 Z HF states are all

repulsive Feshbach states. The 62E+ HF" state which

2 +crosses these repulsive E states is a resonance HF-

state comprised of a fully occupied HF core with the
+ !+

extra electron occupying a valence E M.O. The states

in this energy region are of interest solely because of

the dip observed at 10.05 eV in the transmission experiment

of Mathur and Hasted. 41 The 62E+ HF" valence state is formed by occupation

of the HF core with the extra electron in M.O. #17. We

have not attempted to examine the characteristics of this

I. =_ __



-134-

state further since it is important only because it

2 +
crosses the other E Feshbach states.

The 72E + HF- state is formed by adding two electrons

to the normally unoccupied E + M.O.'s of the 2Z+ HF+

• core.

At longer distances this state crosses the 52E+ state

which leads, together with an HF- 2 state to the limit-

H-(1 s) + F(2 p). A detailed discussion of the 5 and 7

2E+ states was presented in Chapter IV. At short inter-

nuclear distances, the 72E+ HF- state descends rapidly

and crosses the 8 and 9 2E+ states at about 2 bohr. These

latter states are formed by the addition-of two electrons

to the normally unoccupied v M.O.s of the 2 HF+ core.

The parent of the 7 2Y+ state is the triplet corresponding

in orbital occupation to the B 21E HF state. The

parent of the 82E+ state is the triplet corresponding

* to the 31E HF state while the parent of the 92 + HF-

state is the 3Z + state of HF. The grandparent of all

three states is the 2v HF ionization limit.

The left hand side of Table V-6 displays the diabatic

curves for the four 2 E+ HF" states. On the right hand

side, the adiabats that might produce the observed dip

in transmission are illustrated. We have shown the

82E + state to cross the 9 and 7 2 + states diabatically

Ui at about 2.0 bohr. At approximately 2.2 bohr, the

82 + state begins to interact with the 62Z +. It follows

t 62 s'4the 62 + state curve for a short distance, then dissociates
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and adiabatically follows the curve of the 8 2 + state.

Whether or not the complex adiabatic interaction of
2 +

the four + states actually occurs must remain specula-

tive. The calculated energy where the interaction occurs

agrees with the experimental value of 10.05 eV. 4  It also

appears from the adiabats of Figure V-6 that only one

vibrational level is excited before the dissociative

channel is open, which also confirms the experimental

data. Although this type of interaction might explain

the dip in transmission observed by tlathur and Hasted,

there is at least one strong reason for it to be unlikely.

The main problem with the assignment of this avoided

crossing as the experimentally observed feature is that

it would occur at about 2.2 bohr. This is well outside

the Franck Condon region, and it seems reasonable to assume

that it would therefore not be detected in a transmission

'i experiment. Thus, although we do not believe the crossing

to correspond to the experimental data, we have raised the

'I possibility here for completeness.

12 to 14 eV.

In Table V-8, we present data for three potential

curves shown in Figure V-3 for the 11F states within this

energy range. Table V-9 lists the generating configuration

bases and their percentage weightings in the final wave-

""i funtion at 1.732, 2.0, and 2.5 bohr. As discussed earlier,

there are numerous HF" states in this energy region.
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It is noteworthy indeed, that only one of these states,

72
the 62u, appears to be bound, and only two other states,

the 5 and 72w cross it. The details of most of the other

states are not presented since they complicate the spec-

trum and are not relevant to the explanation of the

experimental data.

The 5, 6, and 7 2i HF" states of Figure V-3 are

formed by adding two electrons to higher energy Z+ M.O.'s

of the HF+ ( 2) core. The grandparent of the three n

states is therefore the 2 HF+ ionization limit. The

parent of the 52 it is the 311n HF state shown in Figure

V-l; the parents of the 621 and 72 w states are a singlet

and a triplet state of HF lying at about 15 eV. Although

the singlet HF state is not shown in Figure V-1, it is

the 51 T state of HF. Table V-10 gives the energy and

weighting of the configurations contributing most

strongly to the final wavefunction of the 521. HF" state

and its parent, the 3 i HF state. Table V-1l provides

the same information for the 6 and 72n HF" states and the

72 n parent, the 51n HF state.

Identification and assignment of the HFr Feshbach

states is an extremely complicated exercise for two

primary reasons. First, it is frequently difficult to

follow a negative ion state from point to point across

the potential curve because of the density of states of

the same symmetry. Second, parentage assignment is often
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not straightforward both because we have only obtained

results for the singlet HF states and because these HF

states are themselves interacting with other neutral

excited states across the surface. Given the information

of Tables V-1O and V-11, however, we will attempt to

clarify the techniques we used for identification. We

emphasize that these methods are somewhat qualitative

in nature.

The 52 HF- state described in Table V-lO is one

of the two HF- states that crosses the bound 6 2n HF"

state. At all three internuclear distances, its largest

contribution to the final wave function arises from the

configuration Io 2a 2 13 42 This contribution, however,

diminishes as we move to longer internuclear distances.

Alternatively, at the equilibrium internuclear distance,

the contribution from the last listed configuration,

J la 22 2 3a2 4r38a is minimal, but becomes singificant at

2.5 bohr. We thus conclude that the state is losing the

character of the first configuration and picking up the

character of the last configuration as we move across the

surface.

One of the methods we use to "recognize" this state

'1 at the three distqnces is by noting its largest contri-

buting contributions. We have just seen, however, that

the large contributions change somewhat from point to

point. The other method we use to identify the state at
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each point is by the constancy in the signs of the

spin functions of the configurations. From 1.732 bohr

to 2.0 boh, the signs of the third configuration and

one spin function of the fifth configuration of the

527 HF- state have changed. It may be that the first

spin function of the third configuration has "gone through

zero" between the calculated points. It is more obvious

that the second spin functions of the third and fifth

configurations have indeed "gone through zero". These

become larger and opposite in sign between 1.732 and 2.0

bohr.

At 1.732 bohr, the 3 1n HF state has its largest

contribution from the configuration lo2 2a23a24Tr34o. At

longer distances, the weight of this configuration

diminishes while the contribution of the configuration

1022023 21 3 7o increases. The 31  HF state interacts

strongly with another state, the 21Tr HF state shown in

I- Figure V-1. The largest contribution to this latter

* I state at 1.732 bohr is the configuration that attains

L. 32increasing weight in the 327 HF state.

Parentage assignment of Feshbach states is extremely

qualitative in nature. It is important to emphasize here

that the HF parent state and the corresponding HF" state

need not retain identical character across the potential

surface. One must keep in mind that the HF states inter-

act with other HF states, while the HF" states interact

4 . .. ..
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with other HF states of different character. The

parentage assignment is based largely on the character

of the states of 1.732 bohr. In addition, there is one

other important identifying characteristic. The signs

of the spin functions of a particular HF" states are

either in phase or out of phase within a particular

spin function and should ideally mimic those of the parent

HF state at all internuclear distances. In conjunction

with this observation, it should be kept in mind that the

sign of the first spin function of a particular state is

arbitrary and it is only the signs of the other configura-

tions relative to the sign of the first configuration that

is important.

We observe that the largest contributions to the

52wavefunction of the 52n HF- state are the configurations

IG2 2a23o2IT34o no, where n > 4. The parent state of the

52 7state should thus be expected to have a large contri-

bution from the configuration 2a 223o 2I3 4a. Indeed,
(1

we note that the 3r1 HF state fulfills this requirement.

It is primarily on this basis that we believe the 31ir

HF state to be the parent of the 52 HF- state.

In Table V-1l, we sho ,, the energy and the contribution

to the final wavefunction of the 6 2 HF" state, the bound

state, and the 72n HF" state which crosses it. We

" illustrate the same data for the assigned parent 5 IT

HF state. We think it probable that the parent of the
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627 HF- state is the triplet counterpart to the 51 T HF

state simply because triplet states generally lie lower

in energy.

At the equilibrium internuclear distance, the 51 I

HF state is dominated by the configuration lo2o 23a2 413 o.

The same configuration, with the extra electron occupying

the 4a M.O. also dominates the two HF states. We note

also that the relative signs of the spin functions of the

HF- states mimic those of the parent 517 HF state

reasonably well. Because of the heavy mixing among the

5, 6, and 72n states, however, this requirement does not

hold exactly. Another significant observation is that

the relative signs of the spin function within a particular

configuration are in phase for the 62n HF- state and out

of phase for the 72- HF- state. In our experience, this

is the expected behavior for two HF- states arising from

the same singlet and triplet parent HF state.

It was already noted that the character of the 52T

HF- state shown in Table V-10 changes between 1.732 bohr

and 2.0 bohr. The contribution of the first confiquration

decreases while that of the last configuration

lo22o23o244o8a increases. Exactly the reverse behavior

is observed for the 6 and 72n HF" states. This can be

understood readily with the aid of Figure V-3. Both the

72 25 and 7iT states cross the 6 2 bound HF state just beyond

2.0 bohr. It is therefore expected that all three states,
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which are of the same symmetry, begin to interact strongly

at 2.0 bohr. This is indeed thp reason for the change

in character of all three HF- states between 1.732 and

2.0 bohr.

The Feshbach state observed experimentally by Spence

and Noguchi at 12.825 eV3  clearly corresponds to the 621

state of HF- which has a calculated energy of 12.795 eV

at 2.0 bohr. The reported perturbation on the first vibra-

tional level of the bound state is undoubtedly due to the

interaction of the 62 1 HFr state with the 6 and 72TT HF °

states. At 2.0 bohr, the 52 and 72T states lie about

0.2 and 0.4 eV above the 62m states respectively. The

vibrational spacing of the state observed by Spence and

Noguchi is reported to be 0.355 eV. 3  It is therefore

reasonable to assume that one or both of the interacting

states are responsible for the perturbation. Through a

three-point parabola fit, we have calculated a vibrational

spacing of 0.61 eV for the 621 HF" state. This is much

larger than the experimental value of 0.355 EV. We believe

che poor agreement with experiment to result from the

wide spacing of the three calculated points. The good

agreement with experimental obtained for some of the HF

states could be because the calculated energy points were

more closely space; it might also be that the agreement

was simply fortuitous. In any case, we do not believe

that the 62 r HF- state is the Feshbach state observed by
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14

Mathur and Hasted at 12.388 eV. The authors themselves

admit that the vibrational spacing of the state,

0.132 eV, does not agree with the vibrational spacing of

the grandparent HF + ( 2R) state. Our calculated spacing is

much higher than 0.132 eV, and at least is closer to the

experimental value reported by Spence and Noguchi.

In summary, we find ourselves in good agreement

with the HF- experimental results of Spence and Noguchi,

but in disagreement with those of Mathur and Hasted.

We do not believe the complicated set of adiabats displayed

in Figure V-2 explains the resonance observed by Mathur

and Hasted at 10.05 eV, We do not find the attractive

state reported to occur at 12.388 eV. On the other hand,

we do find an attractive state in the region of 12.8 eV

with characteristics that agree in all major respects with

the results of Spence and foguchi. It should be noted that

we also find disagreement with the HF results of Salama

and Hasted which were apparently obtained in the same

laboratory as the HF- results of Mathur and Hasted.

Binding Energies.

As discussed earlier, the binding energy of a negative

ion state is defined as the difference between the experi-

mentally observed energy of the negative ion state and

the energy of the positive ion state, or the ionization

limit. The binding energies of two 3so electrons to
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the positive ion core have been determined for several

diatomic molecules. They have all been found to be

about 4 eV. The binding energy of the 6 2r HF- state

given in Figure V-3 is approximately 3.3 eV, calculated

at the energy minimum. This binding energy is lower than

that of any of the resonances of the diatomic molecules

given by Schulz in reference 19. This implies that the

two outer electrons in our calculated state are held less

strongly to the positive ion core than they are in the

other diatomic molecules that have been investigated.

The3sa M.O. in these diatomic molecules corresponds
g

to the 4o M.O. in HF- at short internuclear distances.

In HF-, one of the configurations contributing to the

final wavefunction is certainly that of the position ion

core with two electrons occupying the 4a M.O. However,

the contributions to the final wavefunction also include

other configurations. The parent state of the HF- 62r

Feshbach state is the third member of an s Rydberg series

(n=5) leading to the 2 HF+ ionization potential. We

can therefore assume that, on average, at least one of

the additional electrons in the HF" state occupies an

M.O. for which n=5. That this electron is held more

. loosely to the core than would be an electron in a 3Sg

M.O. is reasonable. We thus expect the binding energy

to be less than for the diatomic molecules reported by

Schulz.

- k , ..... ... .. ... . --J " '
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The electron affinity of a detected resonance can

be calculated by taking the difference in energy of the

HF- state and the corresponding HF parent state. The

parent of the 62 r HF- state is the 5 3R HF state which we

did not calculate. However, asuming the triplet to be

a few tenths of an eV below the corresponding singlet

state, we would expect an electron affinity of about

2 eV at 2.0 bohr.

Conclusions

We have reported the potential curves for the ground

state of HF, several excited states of HF, and some of

the Feshbach states of HF-. Our calculated potential

curves for the states of HF, though slightly high in energy,

give good agreement with the experimental observations

of DiLonardo and Douglas6 '7 and poor agreement with those

of Salama and Hasted.
8

The results of the HF- calculations clearly illustrate

the utility of applying ab initio techniques to the

*study of negative ion states. We identify a complicated

set of adiabats in the region of 10 eV which could

conceivably be the cause of an observed dip in transmission

observed by Mathur and Hasted. 4 Because of the location

of the crossing of the states on the potential curves

(> 2.0 bohr), however, we believe that the interaction

is too far from the Franck Condon.Region to be detected.

--- Ii
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Neither do we find an attractive HF- state in the energjy
4

range of 12.388 eV also reported by Mathur and Hasted.

In contrast, we do identify a Feshbach state at 12.8 eV

with characteristics that agree in all major respects

with a state detected by Spence and Noguchi.
3

j

%6
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Table V-1

Gaussian Basis Set

Fluorine Hydrogen

ss [5s] s [2s]

9995.0 0.001166 13.36 0.032828
1506.0 0.008870 2.013 0.231024
350.3 0.042380 0.4538 0.817226
104.1 0.142929
34.84 0.355372 0.1233 1.000000
12.22 0.462085
4.369 0.140848 Dp]

12.22 -0.148452 1.000000 1.000000

1.208 1.05527

0.3634 1.000000

0.036 1.000000

0.0066 1.000000
p [5p]

44.36 0.020876
10.08 0.130107
2.996 0.396166

* 0.9383 0.620404

0.2733 1.000000

0.074 1.000000

0.029 1.000000

0.0054 1.000000

Jd [Id]

1.15 1.0000005

4. " .. . . .. .... ... .. . ... .. . ... . .. .. ... . . .. . ..



-149-

Table V-2

SCF Results for HF (R = 1.732 bohr)

M.O. Text Notation Symmetry Eigenvalue (a.u.)

1 ]a -26.29879

2 2(y -1.60169

3 3a E -0.76886

4 Ir -0.65063

5 Ii -0.65063

6 4o E 0.00696

7 2r Tr 0.01335

8 IT 0.01335

9 5a Eo+ 0.01511

10 6a .+ .06850

11 Tr 0.07965~37
12 r 0.07965

13 7a E + 0.09187
14 80 0.26703

15 41 r 0.30504

16 IT 0.30504

17 9o 0.32973i T+
18 lOo 0.92540

19 11 1.33003
U 20 57 IT 1.34772

21 T 1.34772
22 12a E 1.71036

23 6 1.84189

24 Tr 1.84189
25 13o +  2.75879

26 1A 2.91399

27 2.91399

Ii

- , .. ...... _ _._ ., ., ._ _ , - , ,.



-150-

Table V-2 (continued)

M.O. Text Notation Symmretry Eigenvalue (a.u.) *

28 77 iT 3.35095

29 7r 3.35095

30 l4a 4.17831

31 15(y 5.65648

Total Energy: -100.04905 a.u.

Nuclear Repulsion Energy =5.19630 a.u.

Total Electronic Energy =-105.24535 a.u.
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Table V-3

SCF Molecular Orbital Designation

M.O. # 1.732 4.000

Order Symmetry Order Symmetry

1 la l0

2 2a + 2a +

3 3a 17
4 IT
5 n 3a

6 4a E+ 4a +

7 T 5a
8 71 IT

+ 2Tr
9 5a

10 6a + 6o

11 31 IT 3T i
12 71 7T

13 7 +  7a +

, 7+  +
14 8a 80

15 471 IT 4n

16 71 IT

17 9a 9a +

18 1o0 +  10 +

19 11 + 11 +

20 5w I 5 7 IT1

21 IT IT

22 12q E+ 12a E+

23 6i t 6I

24 IT 71

4 25 13+ 13a
26 1I , A 7 7r

27 A IT
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Table V-3 (continued)

M.0. # 1.732 4.000

Order Symmetry Order Symmetry

28 7 7T 14a

29 A

30 14a A
+31 15 +1 5crZ

°.,i
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Table V-6

Calculated Ci Energy Points for HF- -- 9 to 1t' eV a

Internuclear Distance (bohr)

State 1.732 2.0 2.5 4.0

62 E+ -- 8.811 10.324 --

72 E+ 13.601 11.328 8.716 5.809

82Z 11.887 11.258 9.379 6.362

92 E+ 12.657 11.521 9.923 6.506

a Relative to HF at equilibrium, E -2727.430.
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Table V-8

Calculated CI Energy Points for HF - 12 to 14 eV a

Internuclear Distance (bohr)

State 1.732 2.0 2.5

HF- 52 7T13.418 13.016 12.642

HF- 6 2 7 14.203 12.795 14.722

HF- 72 T 14.498 13.229 11.994

a Relative to HF at equilibrium, E =-2727.430 eV.
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