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\ ‘ INTRODUCTION

\
Vo
ro /

'”*&be principles that form the basis of all quantum

¥

mechanics were first introduced in 1926 by Schroedinger.

Since that time these principles have been extended to
become the framework of the theory used today. Although
the simplicity of the theory cannot be questioned,
practical implementation of the basic concents has often
proven difficult., For certain applications, including
the hydrogen atom as well as other one electron systems,
the Schroedinger Theory allows exact analytic solution.
For larger systems, approximations are necessary.

The first approximation that is generally incorporated
into the Schroedinger Theory is known as the Born Oppen-
heimer Approximation.zl The use of this approximation
allows the separation of electronic and nuclear motions.
Further simplification can be achieved through a method
for dealing with the electron-electron interaction

potential‘ This approach was first suggested by

}

Hartree,3 and was subsequently extended by FocE“to

include exchange effects. 1In molecular orbital theory,
an electron orbital is replaced by a one-electron wave
function delocalized over the whole moIecu1§; This
concept, together with the Pauli principlegCand'the
work of Hartree and Fock allQﬁ the wavefunction to be

expressed in a single Slater6 determinant. In minimizing




the energy of the determinant through the Variation
Principle, a set of integrodifferential equations called
the Hartree-Fock equations are obtained. These equations
must be solved itérative1y, and the lowest energy single
determinant wavefunction that can be constructed is

known as the Self-Consistent Field (SCF) wavefunction.

The Roothaan equat‘ions7 provide the means of translating

the integrodifferential equatiorns into algebraic form. The
approach allows application of the SCF method to molecules
where linear combinations of atomic orbitals (LCAO) are
assumed to represent the molecular orbitals.

The difference between the Hartree-Fock energy for
a single determinant wave function and the true energy
is known as the correlation energy. The magnitude of
this energy can be quite large even for small molecules,
and the technique most commonly used to calculate the
correlation energy is Configuration Interaction (CI).
This method involves expanding the electronic wavefunction
to include a linear combination of all possible products
of Slater determinants. CI is best described as the cal-
culation of the optimum linear combination based on the

varjational approach of Ritz.8

Although the CI technique
can be used in principle for diverse chemical problems,
in practice full solution of the CI problem is severely
limited. Fortunately, it is possible to obtatin

relatively good accuracy by 1imiting the full problem
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to a subset of the full determinental basis. Indeed a
reasonable estimate of the significant corrections to
the SCF basis is possible if the space includes only
single and double excitations.9

Full solution of most problems at the double excita-
tion level is still prohibitive, and techniques for
further optimizing the choice of configurations must
be utilized, The CI method used in this work is based
on the fact that in any system, there will be a small
number of configurations which dominate the final wave-
function, These configurations are jdentified and all
other configurations are ranked according to their inter-
action with the small group of important configurations
using Raleigh Schroedinger Perturbation Theory. The
configurations that interact most strongly are treated
exactly while the remaining configurations are treated as
a perturbation, It is this technique of solving only a
subset of the entire problem exactly that makes CI cal-
culations on medium-sized molecules possible.

Chapter I of this work provides some detail on the
historical development of Configuration Interaction. The
specific method of CI used to obtain the results of the
applications presented here 1s described in Chapter II.

In Chapter III, theoretical and experimental consi-
derations central to the examination of compound states of

polar molecules are discussed. Compound states are formed




e

wher an incident electron interacts with a molecule.
The electron is temporarily captured in the neighborhood
of the molecules and the resulting complex is known as
a negative ion or resonance state. In the lower energy
region, polar molecules can form resonances that are
largely dipcle-supported. At somewhat higher energies,
traditional valence-type resonances occur. At still
higher energies, the incident electron occupies a
Rydberg orbital of the neutral excited molecule, giving
rise to a Feshbach state. 1In Chapter III, the general
background information on the various types of compound
states is presented. In addition, the theoretical
basis for the actval binding of an eleétron by a polar
molecule is considered.

In Chapter IV, the results of CI calculations on the
Tower energy (< 9 eV) negative ion states of HF are
presented. We find that the lowest HF state lies below
the ground state of HF at all internuclear distances and

is therefore capable of binding an electron. Because

the calculated binding energy is less than the error
inherent within the method used in the calculations, it
cannot be stated with certainty that there is a bound
state of HF", The minimum dipole concept indicates that
a stable negative ion state will be formed if the dipole
moment of the neutral molecule exceeds 1.625 ND. The HF

molecule, with an experimental dipole moment of 1.82 N,
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is thus expected to support a bound state. When nuclear
considerations are taken into account, the minimum dipole
moment for-binding an electron is increased slightly.
Our calculated dipole moment for HF is 2.01D, higher than
the experimental value by a few tenths of a Debye. The
fact that we find HF  to be slightly bound is not
unexpected, but is also not sufficient proof that the
lowest HF state is truly bound.

The results of the calculated potential curves for
four other HF™ states are also presented in Chapter IV,
The lowest three of these states are formed by occupying
a Rydberg orbital with the additional electron; the
extra electron occupies a valence orbital in the fourth
state. Since experimental evidence on these states of
HF™ is virtually nonexistence, it is not clear whether
or not they are resonances, Nevertheless, we present
qualitative arguments that support the assignment of
resonance character to all four states.

A detailed examination of the higher energy (9-14
eV) Feshbach states of HF  is presented in Chapter V.
We first discuss the results of CI calculations on the
excited states of the neutral molecule, HF., The results
of these calculations agree well with the available
experimental data. We have performed CI calculations on
the Feshbach states of HF which are formed by the

attachment of an additional electron to the excited states

- - et ek S
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of the netural molecule. We find evidence of one
dattractive state with features that agree well with the
experimental observations.

There is no doubt that the results of the studies
presented in Chapters IV and V clearly illustrate the
utility of the CI method for detailed examination of the
compound states of polar molecules. The work is also
significant for two further reasons. First, a good
explanation of the observed experimental features of the
HF™ negative ion states is provided. Second, the results
predict certain unobserved experimental features and
serve as a guide for both experimentalists and
theoreticians for further investigation of HF 1in

particular, and other polar molecules in general,.
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CHAPTER I
HISTORICAL BACKGROUND

The solution of virtually all chemical problems
involving atomic and molecular structure is based on the
Schrodinger Equation:.I

Hy = EV¥ (1.1)
H, the Hamiltonian operator, represents the total energy
of a system. It is specified by summing the contributions
to the Kinetic Energy {(T) and the Potential Energy (V).
Solutions are obtained in the form of eigenvalues
describing the energy of each state of the system. For
molecules consisting only of the lighter atoms, spin-orbit
coupling and relativistic effects can be reasonably
neglected. With this in mind, the Kinetic and Potential

> I » *
Energy Operators in atomic units <can be expressed as

2 2
v v
1-1_IA +Z__1=TN+TE (1.2)
A ZMA a 2
1,1 i ,
v = ¥ + ) = ] = (1.3) A
A>B TAB Ab  TAb a>b Tab )

In this system of units, B, the mass of the electron,
and the electronic charge are unity. The unit of length

is the bohr (1 bohr = ,52918 «x 1078 cm), while the unit
of energy is the hartree (1 hartree = 27,205 eV).
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where the Nuclear contributions are denoted as A, B and the

electronic contributions by a, b. MA is the mass of

N
represent the nuclear and electronic kinetic energy

nucleus A, "and ZA is the charge of nucleus A. T, and TE

respectively. VNN describes the repulsion between the
nuclei, VEE is the repulsion between electron pairs, and
VEN is the electrostatic attraction of all nuclei for
all electrons.

The Hamiltonian operator can thus be written

H = TN + TE + vNN + vEN + vEE (1.4)

Specifying the operator for a given system is straight-
forward. Solution of the eigenvalue problem of Equation
(1.1) is more difficult, and has been accomplished exactly
in only two instances, those of the hydrogen atom and

the hydrogen molecule ion. For systems with more than
one electron, adoption of the Born Oppenheimer Approxima-
tion2 leads to a simplification of the problem. This
approximation is based on the premise that the nuclei,
having mass far greater than that of the electrons,

move much more slowly “than the electrons. Thus, at any
instant, the motion of the electrons is the same as if
the nuclei were in a fixed position in space. When the
nuc}ei are in fixed positions, TN =0, VNN = constant,

and the Hamiltonian can be written

Hg = TE + vEN + vE + vNN (1.5)
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where HE now represents the electronic Hamiltonian.

Equation (1.5), in which the kinetic energy of the
nuclei has "been set equal to zero, is the electronic
Hamiltonian. It can be solved for any fixed geometry
of the nuclei, and when solutions are obtained for a

range of nuclear coordinates, a potential surface is

defined. The energy eigenvalues for each point on the
potential surface can then be used for solution of the ?
nuclear wave functions and the total energy.

For the remainder of this work, we will devote our
attention to the solution of equation (1.5). Although h
nuclear motion has indeed been found to piay an insignifi- !
cant part in some chemical problems, it is more important
in certain others., In the binding of electrons to polar

molecules, for example, it has been found that including

consideration of vibration does not alter the conclusions
on stability of negative ions.3 In contrast, the condi-
tions for binding an electron are altered slightly when

rotation is taken into account.4

The Born Oppenheimer Approximation considerably

simplifies the Schroedinger Equation. Nevertheless,

it is still too complex to allow complete solution of
most practical problems, and further approximation is
necessary. Over the years, Molecular Orbital Theory has
emerged as the most useful approximation for understanding

most molecular systems,
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5 states that if ¥ is any well

The Variation Principle
beha{ed function that satisfies the boundary conditions

of a problem, then
f
‘i‘*HE‘PdT > £ (1.6)

where Eo is the true value of the Towest energy eigenvalue
of HE. The "best” set of ¥'s for solving equation (1.6)
is that which provides the lowest energy. The true energy
can only be obtained by using the exact wavefunction,
¥, which would require an infinite set of functions. In
practice, it has been found that linear combinations of
atomic orbitals (LCAO) centered on each atom form a
reasonable approximation to the true wavefunction in
molecules. These one-electron functions are known as
Molecular Orbitals (MO's).

The simplest approximate wave function for an
N-electron system is the product of N one-electron basis

functions first introduced by Hartree.6

Y(1.N) = 601)0,(2).. .0y (N) (1.7)

The ¢(N) are products of a space component and a spin
component, o or 8.7 The additional requirement that the
product wave functions must be antisymmetric to the

exchange of any pair of electrons leads to the expression
8

of the wavefunction in the form of a Slater determinant.
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01(1)¢7(2) ... 0, (N)
. : 0,(1)05(2) . 0.iid,(N) (1.8)

¥ = —

/N1 : v :

oy (16, (2) . ..u oy (N)

This wave function, called the Hartree-Fock wave function,
is the "best" function that can be constructed by assigning
each electron to a separate orbital.

In minimizing the energy of equation (1.6), a set
g of integrodifferential equations called the Hartree-Fock
equations are derived. The true Hamiltonian and wave

function involve the coordinates of all N electrons, while

the Hartree-Fock Hamiltonian is a one electron operator,

The Hartree-Fock equations are
eff
1 1 = 1 1.9
R ( )¢p( ) ep¢p( ) (1.9)

where ep is the orbital energy. The Hartree-Fock

Hamiltonian can be written
2

v z
Heff=_2_a__ZL+XJi-zKi (1.10)
a 2 Ra r, i i

a
The first term is the operator for the kinetic energy of
each electron; the second term is the potential energy
operator for the attraction between each electron and
the nuclei., The Coulomb operator, Ji’ is the operator

representing the electrostatic repulsion between each
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electron and all other electrons. It has the form

. ) * ]
Ji¢J = ¢J!¢'I r—a—bd?,id‘l' (1.11)

The fourth term, Ki’ known as the Exchange Operator, has
no simple physical interpretation, but arises from the
requirement of antisymmetry of electrons to exchange.

It can be written

N T

The Hartree-Fock equations must be solved iteratively.
Generally, an initial guess provides a set of initial
wave functions, which in turn lead to an improved potential.
This improved potential is then used to obtain improved
wave functions. The process is repeated until the energy

reaches a reasonable stability. The Hartree-Fock energy is

Eyp = 2 g e - g § (2 Jij - Kij) (1.13)

The Hartree-Fock equations can be solved in closed
form only for a limited number of systems. Numerical
integration provides fairly accurate results for atoms,9
while for molecules, analytic basis functions are generally
employed. The self-consistent-field (SCF) wave function
is the Towest energy single determinant wave function that
can be constructed within a finite basis.

The analytic approach developed by Roothaan,]0

involves expanding the orbitals as a complete set of basis
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functions, fk‘ That is,

% =1 Cafy (1.14)
Substitution of this expression into equation (1.9) gives
eff _
E C_ik H fk = gy E cikfk {(1.15)
Multiplication by f; and subsequent integration leads to

eff

E cik (ij - € Sjk) =0 j=1,2,... (1.16)
where
SN LS Y (1.17)
and
*
Sjk = ffj fkdv (1.18)

Equations (1.16) are a set of simultaneous linear homo-
geneous equations in the unknown coefficients, Cik'
In order to obtain a nontrivial solution,

eff _
det (ij - Eisjk) =0 (1.19)

must be satisfied. Equations (1.16) must be solved
iteratively since H?{f depends on the orbitals ¢i’

which in turn depend on the coefficients cik' The advan-
tage of this approach is that it reduces the eigenvalue

problem to a matrix problem.

In molecular systems, the choice of a set of basis
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functions, the f,, of equation (1.14), is extremely
important. These basis functions are generally centered
on each atom, but effectively span the appropriate

molecular space. Exponential functions of the form

Ne"] e "7 (0,4) (1.20)

[ N is a normalization

are known as Slater-type orbitals.
constant, n is the principal quantum number, and a is
the screening parameter. Slater orbitals are useful for
many applications, but they do not possess the proper
number of radial nodes and therefore do not provide
a good representation of the inner part of the orbital.
In addition, for large molecular calculations, they are
not economically practical because of the difficulty in
solving the two electron integrals.

In contrast, these same integrals can be evaluated
relatively easily if Gaussian functions are used. These

functions are of the form

ab_c -Br2

Mx“y z"e (1.21)

where the x, y, z represent the angular dependence, and
a, b, and ¢ are integers. These functions are less
appropriate for describing molecular systems than

Slater type functions. Frequently, however, the descrip-
tion may be improved by contracting several Gaussians

together to act as one function. In spite of the fact

v NPTl LN i et SO R T e IR i g S Y
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that greater accuracy can almost universally be obtained
from.the use of Slater-type Orbitals, Gaussians have
received wide use because of the relative ease of the
two-electron integral evaluation.

The smallest basis set that can be used for any system
is a minimum basis set. In these cases, either Slater
type Orbitals or contractions of three Guassians are
generally employed. For the oxygen atom, for example,

a minimum basis set would include 1s, 2s, and 2p functions.
Since the calculated energies obtained from the minimum
basis sets are usually rather far above the Hartree-Fock
energies, larger basis sets are often utilized. One

type of basis set, the double zeta, contains twice as many
functions as the minimum basis. Any basis set larger than
the double zeta is an extended basis. Extended basis

sets comprised of primitive Gaussian functions can require
an often prohibitive amount of time for solution of the
SCF equations, and may not lead to convergence of the
energy. To ameliorate this problem, contracted
gaussians]2 or linear combinations of gauassians with
fixed coefficients are frequently used.

A further step for improvement in molecular
description can be obtained by inclusion of polarization
ﬂmctions.]3 These are functions of higher £ value than

required by any atom in the molecule. For the Hz

molecule, for example, a polarization function would be
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a p function. Many properties of chemical interest,
including dissociation energies and dipole moments, can
be reliably calculated only if polarization functions
are included.

Regardless of the size or type of basis set, the
Hartree-Fock approximation neglects an important contri-
bution to the total energy. The correlation energy, or
the energy of the instantaneous repulsions between pairs
of electrons, is the difference between the Hartree-Fock
and the exact energy of a system. 1In spite of the fact
that this energy represents only a smail percentage of
the total energy (less than 1 percent for lighter atoms]4)
its absclute magnitude may be as high as 10 eV. The
Hartree-Fock energy is particularly inadequate when
calculating potential curves of small molecules where the
correlation may vary considerably as the molecule is
stretched.

The most frequently used technique for dealing with
the problem of electron correlation is Configuration
Interaction (CI). The eariiest calculations of this type

were performed in 1927,15

and were necessarily limited
to very small systems. With the advent of the computer,
the ability to handle larger systems, atoms and their
negative 1'ons,]6 as well as small molecu]es,l7 was
established. The advantage of the CI method lies in

jts simplicity and universal applicability. It can be

?
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used to calculate ground and excited state energies for
molecules, atoms, negative ions, or transition complexes.
In addition to the Hartree-Fock orbitals, there
are an infinite number of other orbitals that are eigen-
functions of Heff for any atom or molecule. These addi-
tional orbitals can be used to construct configurations
other than the Hartree-Fock configuration. With the
inclusion of all configurations -formed from an infinite
number of orbitals, the Schroedinger Equation can be
solved exactly. In practice, of course, a complete set
of these configurations cannot be used and the problem
is generally truncated at some reasonable level.

The C.I. wave function has the form
v = ch¢n (1.22)

where the ¢'s are an orthonormal set of n-electron configu-
rations. Equation (1.22) is a linear variation function,
and the coefficients Ci are determined to minimize the
energy. Application of the variation principle leads to

the determinantal equation
(§ - El)g = 0 (1.23)

where the E are the eigenvalues and the C's are the matrix
of eigenvectors. The matrix element H represents the

interaction between two determinants or configurations,

Dp and Dq
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Hoq = JDHD dT (1.24)

In a particular CI calculation, if N configurations are
included, the N energies or eigenvalues will be obtained
in the solution of equation (1.24). A set of coefficients,
Cn’ which define the CI wave function is associated with
each energy.

The solution of equation (1.24) is greatly simpli-
fied by the fact that the matrix elements Hpq between
two configurations p and q of different symmetry are
jdentically zero. Moreover, an additional simplification
results from the expression of these matrix elements as
the sum of integrals in the orthonormal one electron
basis. It can be written in terms of the one-electron
operator of the Hamiltonian,

h.: = f¢f(a) {- z; -3 EA—}¢.(a)dr (1.25)

iy ¢ K Taa d

and the two-electron Hamiltonian,
_ * _l_ * *
v.le] = f¢.| (b)¢J(b) {rab} ¢k(a)¢1(a)dTadTb (]-26)

The determinants of equation (1.24) may be equivalent
or they may differ in occupation by one or more spin
orbitals. In the case where the determinants are

jdentical, the matrix element between them is

0cC 0CL
SO 1 SO
Mam 1 itz ko Wiy - Vg 02D
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For the case where the determinants differ by the occupa-

tion of one spin orbital (i>j),

0ce
$0
Hom = Pys * E Wik = Vikks! (1.28)

Occupations which differ by two spin orbitals can be

represented as

Hon = Visk = Viakg! (1.29)

If the two determinants differ by more than two spin-
orbitals, equation (1.24) is identically zero, which
significantly reduces the potential size of the calcula-
tion. Nevertheless, within any basis set larger than a
minimum basis, CI calculations even for small molecules
can be extremely large. It is therefore important to
identify techniques for further simplifying the problem.
One traditional method for limiting the size of a
CI calculation is the frozen-core approximation. This
method involves freezing the occupation of the M.0.'s
that play a neglgible part in contributing to the energy
ot the desired property. For example, in calculating
the transition energy from the ground to an excited state

of the CO molecule, the 1s M.0.'s of carbon and oxygen

might be dropped from consideration. They contribute very

little to the energy difference, since they are basically

atomic in nature. In cases of this type, where the M.0.'s

- - P g N
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dropped from consideration have only a trivial effect on
the results, the frozen core approximation is justified.
Alternatively, attempts to separate the sigma and pi space
of certain molecules using this approximation have been

unsuccessful.]8

It has been found, for example, that the

correlation from the sigma space contributes unequally

to the pi states of some systems. Therefore, both parts

of the space must be included to obtain reasonable results.
Another method of limiting the CI problem is to

restrict the number of configurations. Generally, a

particular state is dominated by only a few main configura-

tions which together comprise more than 90 percent of the

final wavefunction. The only configurations which

interact directly with the dominant configurations are

those that differ by two or fewer occupations. Those

configurations differing by more than two occupations

interact directly with the corrections, but only

indirectly with the dominant configurations. In a study

of the BH3 molecu]e,9

only a few triple and quadruple
excitations from the ground state were found to contri-
bute to the final wave function. Indeed, it is common
practice in CI calculations to include only single and
double excitations from the dominant configurations.
Other techniques for reducing the size of the CI

problem focus on simplifying the construction and

diagonalization of the Hamiltonian matrix. One method
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that handles the problem indirectly is based on selection

of a-small subspace of the full matrix for diagonlization.?'0
The remaining space is treated as a perturbational sum.

The threshold for selection, based on the interaction

with a few dominant configurations, is varied. The total
energies obtained by varying the threshold can be extrapo-
lated to obtain the energy of the full space. A second
method for limiting the problem involves the direct
calculation of only the diagonal matrix elements and a

small strip of the full matrix.2!

Another technique for reducing the problem to
manageable proportions is described in the next chapter.
This method was used to obtain the results of the studies
presented in Chapters IV and V. It involves a partitioning
of the Hamiltonian so that direct diagonalization can be
avoided and, in addition, presents an efficient method
for calculating matrix elements. The full details of

this technique are presented in references 22 and 23.
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CHAPTER 11
METHOD

The construction and diagonalization of the matrices
necessary for the solution of the CI problem for small
and medium sized molecules (> 20 M.0.'s) is prohibitive.
Various techniques for truncating the space so that full
solution can be avoided have already been mentioned.

The purpose of this chapter is to describe one such
technique which has been used with considerable success
in numerous cases.

The method described here relies on the fact that
for most chemical systems of interest, there exists a
small set of configurations that together dominate the
Cl wavefunction. This set of configurations is called
the core. A1l remaining configurations, deemed the tail,
have a less significant contribution to the final wave-
function. The main configurations can be identified either
through a preliminary calculation or by scanning the
CI matrix diagonal for the terms of lowest energy.

These configurations can be gathered together to form

the nucleus of the calculation. The interaction of all
remaining configurations with those of the nucleus is then
tested using Raleigh Schroedinger Perturbation theory.

The configurations which interact strongly with the

nucleus are identified and grouped with the nucleus to
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complete the core., Other configurations which interact
less strongly are also qrouped together, in this case to

form the tail.

These basic concepts suggest a partitioning of the

matrix eigenvalue problem as first proposed by Lowdin.]
If the core is denoted by Haa and the tail by be, this
can be expressed

H H c c

aa ab a =w| @ (2.1)

Hpa  Hbo Ch Ch

where Ca and Cb represent the coefficients. This matrix
equation can be reformulated into two simultaneous

equations in two unknowns.

ﬂaa Ea * Eab Eb w Ea (2.2)
Hba Ca * HBuop & w Cp (2.3)

Solving for Cy in equation (2.3), and substitution of

the result into equation (2.2) leads to

H c

-1
~aa -~a Hab lol - Ebb] Hpa ©

~ba <a (2.4)

= wEa

where the term H . [wl - be]'] H, . corresponds to a

~ba
kind of optical potential.

Although equation (2.4) reduces the diagonalization
probTem to the size of the core block, Haa’ evaluation
of the inverse term is still at least as difficult as

the original diagonalization. The inverse matrix will




always exist and can be made diagonally dominant provided
that ‘all terms of be whose diagonal elements, hbb’ lie
close to w are placed in the core block, Haa' Assuming
this to be the case, the inverse can then be expressed

in the following manner.

1 -1 Tan-1an-1 cee

[wl - H, 27" = 07" + 070" + p-loo~ o0 +

where 0 represents the off-diagonal t-ims

0 = [Hpp - hppld (2.6)
and D™V is the inverse diagonal

D = [wl - hbbl] (2.7)

Substitution of equation (2.5) into equation (2.4) leads

to

M. C.+H.D 'H C,+H, 000", ¢ +1 0 Too "on" T C,+ e =wC

Caa-a  “ab” Tba-a a-a  ~ab- ~~ -+~ Iba<a & " " Wi
(2.8)

Although this expansion is energy dependent through
the terms in w, the dependence arises only in the
diagonal terms, D. Diagonalization of the Haa block can
provide an estimate, Wy of the true eigenvalue, w.

The diagonal can again be expanded, this time in terms
of the difference between the approximate and the true

eigenvalue, Aw. Thus,

07 (w) = 07 wy) I (07T (wg)aw)" (2.9)

n=0
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Substituting this result into equation (2.8) gives

: -1 -1 -1 “es
Haa * Hap[D (wg) + D77 (wg)0D " (ug) + Mya

+ ﬁab[g-z(wo)Aw + Q‘z(wo)ggfl(wo)Aw

+ 07 (0)00 2 (u Yo + oo Hy ¢ o duC, = uC,

(2.10)

The advantages of equation (2.10) are more readily

apparent if it is written in another way

©

[Eaa ¥ zo Yg:) dw"] Ca = G, (2.11)
n=

In equation (2.11), the dominant contributions to
the final wavefunction, and those terms that interact with
them strongly, together form Haa' This subspace can be
treated fully by exact diagonalization. A1l other terms,
which interact less significantly, can be treated simply
as a potential, V(w). Equation (2.11) could, in principal
be solved iteratively for a complete solution to the
problem. Fortunately, reasonable accuracy in the solution
of most problems can be attained without full solution
by truncation of the potential. Close examination of
equation (2.8).revea1s that the terms have a one-to-one
correspondence with successively higher Brillouin-Wigner
-1

Hbaca is

related to the second order Brillouin-Wigner perturbation

Perturbation corrections. The term, HabD
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correction; the next term is related to the third order
correction, and so on. Tests performed on small, medium,

and large matrices indicate that for most practical

problems, sufficient accuracy can be achieved by retention
of corrections through second order'.3 It is this result *
that makes the approach of value for the large scale CI
‘ calculations described in Chapters IV and V.
The method is pictorially described in Figure II-1
and can be summarized as follows. The configurations which
J ; are most important to a particular calculation are
| identified and gathered together in the upper left hand
i ' corner of the core block, H... The interaction of each

aa
of the configurations in the nucleus with allother con-

figurations is evaluated and becomes part of Hab' Using
Raleigh-Schroedinger Perturbation Theory, the most
important of the remaining configurations are gathered

together with the nucleus to complete Haa’ the core

block. The interaction of these configurations in the

core block with all other configurations forms the balance

- -—— -

r —— e —
e ednm———— * s TS S i o

of Hab' The remaining configurations form the tail,

~

be. The Haa block is then diagonalized to provide an
initial guess for the energy. The potential function is

evaluated, and finally, the full problem is solved through

-~

jteratiun. In addition to providing a unique solution

B P-4

for solving the eigenvalue problem, the method used in

this work also includes techniques for simplifying
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calculation of the matrix elements, the other time-

consuming step in a CI calculation. A complete descrip-

tion of the approach can be found in references 2

and 3.
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Haa Hab = Hba*
Core
Hbb
Tail
Hba ‘\\
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Fig. II-1--Partitioning of the Hamiltonian Matrix
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CHAPTER 111
RESONANCES OF POLAR MOLECULES

In recent years, the electron scattering and binding
properties of polar molecules have been the subject of
considerable interest. A number of interesting effects
result from the very long-range interaction between a
molecule with a permanent dipole moment and a charged
particle. The Configuration Interaction Method described
in the last chapter has been used with considerable
effectiveness to study the binding and scattering
characteristics of one such polar molecules. hydrogen
fluoride. The results of this study are presented in
Chapter IV for the lower energy region (< 9 eV) and
Chapter V for the higher energy range (9 to 14 eV).

i Before moving to this discussion, however, a basic under-
standing of the nature of compound states is useful. It
is the purpose of this chapter to provide some general
background on negative ion resonances.

A compound state is formed by the interaction of an

incident electron with a target molecule. The incident

- —

electron is temporarily captured within the neighborhood

- ——

of the molecule and a complex, called a temporary negative

i B s AN T

ion or a resonance, is formed. The term resonance implies

a definite energy, and sharp structure is observed in

the cross section. The first evidence on the existence

-y, ¥4
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of compound states appeared in 1921, but it was not until

the 1960's that the resonance model was applied to

molecules.l
Molecular compound states have lifetimes in the range

-10 -15

of 10 to 10 sec. The lifetime 1t can be described as

h
T (3.1)

T =

where T is the width. These states decay by the emission
of an electron into various final states where they can

be detected experimentally. The decay channels include
rotational, vibrational, and electronic excitation, elastic
scattering and dissociative attachment, to name a few.

A shape or single particle resonance is formed when
an electron is trapped in the potential or behind the
centrifugal barrier of the molecularstate. These types
of resonances occur at energies below about 10 eV and have
been observed in Hy, D,, 0,, HD, N,, NO, and €0.' Core
excited resonances, which occur at energies above 10 eV,
consist of a "hole" in one of the normally occupied
orbitals of the molecule and two "particles" in normally
unoccupied orbitals. The excited neutral molecule is
called the parent of the negative ion state, while the
positive ion is referred to as the grandparent. Core
excited resonances that lie below their parent are
entitled Feshbach resonances. They have lifetimes that

are long compared to a vibrational period and can

- - g e NS
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therefore give rise to band structure. The two outer
electrons are held in Rydberg orbitals which lie far from
the ion core and as a result, these bands exhibit vibra-

tional structure similar to the grandparent.

Single Particle Resonances

In recent years, low energy electron impact
experiments have revealed pronounced structure in the
vibrational excitation cross sections of polar mo]ecu]es.z"4
Within about 0.5 eV of threshold, the observed cross
sections are larger by 10 to 100 times than would be
predicted by the Born approximation. That is, these very
large c¢ross sections cannot be simply attributed to
collisional momentum transfer. The sharp peaks are rather
the result of pronounced distortion of the incident
electron by the potential well of the target molecule.

The resonances that arise from the interaction are domina-
ted by very few partial waves and the symmetry of the
resonant state is reflected in the angular dependence of
the cross section.

There has been considerable interest in the question
of whether or not a neutral polar molecule is capable of
binding an electron to form a stable negative ion state.
Several authorss'10 have shown that the electric dipole

field of such a molecule can bind an electron if the

dipole moment is greater than 1.625 D. To understand

e =

-
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this result we can consider the scattering of an electron
by a point dipole. In a polar molecule with electric
dipole moment u and an electron at distance r, the

potential is given by:

cos 8 (3.2)

<<
i
1
‘t‘b
ol

r

where 6 represents the angle between the vectors p and r.

‘Schroedinger's equation becomes

9 ?my [e cos ©
Ve o+ oz rz E p(r) =0 (3.3)

Setting

2 2m ek
k¢ = 29 (3.4)

h

and the dimensionless dipole moment,

o " - —5 (3.5)

where a, is the bohr radius, equation (3.3) takes the

simple form

M. Cos O
[Vz e S kz] ¥(r) = 0 (3.6)
:

Separation of equation (3.6) in terms of spherical

coordinates leads to equations in the three variables
R’ e, ¢.
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2
d 2 d 2 A
+ £& 4 ke 2 R(r) =0 (3.7)
[E:? r dr rz]
1 d . .d M2 .
- —— — sing— + 5 - M, COs 6 - A 8(6) = 0
sin 8 do de sin® o
(3.8)
and
2
[d—z 4 Mz] *(¢) = 0 (3.9)
d¢

where A is a separation constant and M, an integer. For

the limiting case, as E - 0, equation (3.7) becomes

2
d +Z.d_-A}R(r)=0 (3.10
[?5:7 r dr ;? )

A stationary solution of equation (3.10) takes the

form R(r) ~ rs.]z Substitution of this solution leads to

S(s+1) - A =0 (3.11)
Solutions with A < 1/4 have the form
(3.12)
where B is a constant. Solutions with A > % take the form
R(r) « r 12 o (A-l/ll)”2 log r (3.13)

It should be noted that equation (3.13) produces an
infinite number of zeros and thus an infinite number of

nodes, while equation (3.12) 1leads to only one node.




-38-

We now return to equation (3.8). For M = 0, the

solutions are

o(8) = ] c,P,(cos o) (3.14)
)

the Legendre Polynomials. Substitution of these solutions

into equation (3.8) leads to

L §2+1) -
{uo 77T Cea1 * C22(2+1) - Coh Mo T2ew3 Cz+{}' 0

(3.15)
where the 2 are integers > 0. When A = 1/4, equation

(3.15) can be written

1 241
[-(%]—)-bz_] + u—o‘(mz(ul)bz + sz + -EWH—;)%”] =0
(3.16)
where uo(MIN) is the minimum dipole moment. For this
case, and for A < 1/4, there are no negative energy levels

and therefore no bound states. Alternatively, when

A > 1/4, there are an infinite number of negative energy

levels, and thus an infinite number of bound states.
The implications of this result are interesting.

The case where A < 1/4, since it has no zeros, corresponds

T T

. , . — Ty -
e P e 0 D . - A ————— * PNt AFT M pncra o mea mo S

to the state with E=0, the lowest level. As E »+ 0, the
negative ion becomes degenerate with the neutral molecule,

and the state for the case where A = -1/4 has the minimum

dipole moment for binding. Both analytic and numerical

techniques have been employed to determine the value of

s ¥




uo(min)in equation (3.16). The solutions lead to the )

. conclusion that when the dipole moment is less than 1.625

D, there are no bound states, while for a dipole moment '

greater than this vaiue, an infinite number of bound states

exist.

Although the critical value of the dipole moment for

; binding an electron has the value 1.625 D in the conven- i
tional Born-Oppenheimer treatment, this result is modified
to some extent with the inclusion of the rotational degrees |
of freedom of the nuclei. To account for rotation, the |

Hamiltonian for a symmetric rigid rotor would contain the

: 272 ~
y term Ef%— where h2j2 is the operator for the square of

i the angular momentum and I is the moment of inertia. This
term does not contribute to the ground state energy of

the neutral system. However, when an extra electron is

o ———

present, the interaction of this electron with the added

term in the Hamiltonian acts to raise the energy of the
13

ground state of the ion relative to neutral system.

e i

This follows from the fact that the rotational angular

- - e
.

e ————— P
s e S e P-4 o

momentum of the dipole and the orbital angular momentum

of the incident electron are coupled to give the total

angular momentum which is conserved. The result is that

some or all of the bound states of the electron are moved

Te

L d
RO S

to the continuum. The exact value of the minimum dipole

for binding varies, depending on the values of I and the

S, ¥
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internuclear distance in the molecule. However, no
binding is found to occur for djpole moments less than
about 2D. "The stationary dipole has a véry small electron
affinity when the dipole is less than 2D. For dipole
moments in the range 6f about 2.1 to 2.3 D, the electron
affinity is much larger. When the effect of rotation
is included, only one bound state is supported for a
dipole moment of 2 D. For higher values of the dipole
moment, two or more bound states exist.

The effects of molecular vibration on the binding

of polar molecules have also been investigated..|4

As long
as the dipole moment of interest is the average of the
dipole moment over the ground state vibration, the minimum
dipole moment for binding is not altered, except in cases
where exothermic dissociative attachment canr occur.

There is some indication that induced dipole forces
are a very important contribution to the energy of the
weakly bound electron, even for systems with larger per-
manent dipole moments. Garrett suggests that a strongly
polar molecule with a dipole moment greater than about
4D will almost surely form a stable negative ion. For

molecules with dipole moments in the range of 2 to 3.5

D, a negative ion with binding energy greater than 0.01

eV will be formed if the polarizability is between 20
and 40 ao3 (3 and 6 33).]5
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As a test of the minimum dipole moment concept, ab
initio studies of the e]ectrqn affinities of polar mole-
cules with -various dipole moments have been performed.]6'18
One source of difficulty in calculations of this type is
the lack of accuracy in the computed dipole moments. Even
with wavefunctions of near Hartree-Fock quality, calcula-
ted dipole moments are generally higher than the experi-
mental values by several tenths of an eV, Because of
the strong dependence of the electron affinity on the
dipole moment when the dipole moment is close to the
critical value, it might be thought that calculations of
this type are not particularly useful. This, however,
is not the case. Ab initio techniques, while they cannot
provide completely accurate binding energies or predic-
tions of binding, can indeed serve as at least & qualita-
tive guide on the binding capabilities of o.lar molecules.

One group in particular has performed ab 1nitio
calculations on several polar molecules including LiH',”’]8

Nah™, 7018 Beo™ 17 LiFt, Y and Licat.16017

The results
of these theoretical studies were used, together with the
available experimental data, to assess the validity of
the simple fixed finite dipole model for predicting
binding. The technique used in these investigations is

straightforward. Hartree-Fock calculations were perfro-~rd

'for the negative ions listed above. Special attentio

.was paid to choosing an adequate basis set fcr e.. -

PSPPI
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particular anion. Diffuse functions with optimized expo-
nents were added to the electro-positive atom to permit
the extra electron to attach to the positive end of the
polar molecule. The difference between the Hartree-Fock
energies of the neutral molecule and the negative ion
give the electron affinity. The orbital energy for the
lowest unoccupied orbital (LUMO) for the neutral molecule
in the Hartree-Fock calculation can be used to estimate
the magnitude of the binding capability. A negative
orbital energy implies a stable negative anion will be
formed, while a positive orbital energy implies that the
neutral molecule is not capable of binding an electron.
This is simply Koopman's Theorem Approximation.

For LiH, BeO, NaH, and LiF with respective dipole
moments of 5,88D, 7.41D, 6.98D, and 6.33D, negative orbital
energies were obtained. This is not surprising, since
all of these molecules have dipole moment significantly
in excess of the minimum dipole moment for binding.
Unfortunately comparison of the ab initio results with
experiment is not possible since the energies for binding
an electron to these molecules have not yet been deter-
mined. One molecule for which the experimental binding

energy has been measured is LiC],.Ig

which has a dipole
moment of 7.13 D. The calculated binding energy for this
molecule of 0.54 eV]7 compares rather well with the

experimental value of 0.61 eV. From this example, the

o - e e S
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only case where an experimental binding energy is avail-
able,. we can conclude that ab initio studies are capable
of providing fairly accurate values for binding energies.

Jordan et al. discuss in detail the limitations of
their method for calculating exact binding energies.]7’]8
The Hartree-Fock calculations neglect two very important
contributions to the binding energy: orbital relaxation
and correlation corrections. 1In the calculations, the
electron affinity was calculated by taking the difference
between the Hartree-Fock energies of the neutral molecule
and the anion. The binding energy of 0.54 eV for LiCl
cited above was obtained in this manner.

To derive estimates of the contributions not included
in the Hartree-Fock technique, Jordan et al. utilized the
Equation of Motion (EOM) Method. In this method, electron
affinities are calculated directly without the need for
performing calculations on both the neutral molecule and
its anion. The electron affinity attained using this
method inherently includes the second order correlation
and orbital relaxation corrections as well as the third
and higher order corrections to the Koopman's Theorem
estimates."5 The difference between the orbital energy
of the LUMO of the neutral molecule in the Hartree-Fock

calculations and the electron affinities from the EOM

calculations is thus the orbital relaxation and correlation

corrections, For the molecules LiH, LiF, Be0, and Nali,




bt

the binding energies obtained through the EOM calculations P
indeed give a larger value for the binding energy than
those obtained through the Hartree-Fock calculations. For
LiCl, for example, the binding energy obtained through
the EOM method is higher by 0.13 eV than that obtained
from the Hartree-Fock calculations. {

17

Jordan et al. maintain that the orbital relaxation

and correlation effects would be expected to be small in
the case of LiC1. This follows from the fact that the
additional electron is located primarily behind the
electropositive atom in a molecular orbital that is
largely nonbonding in nature. This nonbonding MO does
not correlate strongly with the other electrons in the

molecule. The good agreement between the calculated

binding energy and the experimental data certainly support
this interpretation. The contributions not included in
the Hartree-Fock calculations are included in configura-

tion interaction calculations. As we shall see in

Chapter IV, CI techniques have been applied with

c .

i ——
B N —— e WAt e

considerable success to determine the binding energy of

veap-

HF. This molecule has a dipole moment of 1.82 D, only
slightly larger than the minimum dipole for binding and,

as such, is an excellent candidate for investigation.

The calculated resulits for LiCl suggest that rather

> .
KNG Nt -4

good agreement between ab initio studies and experiment

for binding energies is possible. The investigations on

LN




:
]
1
1
4
1

!

LiCl also provide the oportunity to evaluate the capabili- i
ties .of the fixed finite dipole model in predicting binding
energies. Jordan and Luken have examined the accuracy

18 For a molecutle

of the dipole model in some detail.
with a dipole moment of 7.2 D (the dipole moment of LiC1),
the model predicts a binding energy of 0.08 eV. This is
well below the experimental binding energy of 0.6 eV,

and poses serious questions about the app]itabi]ity ; 3

of the model. Jordan and Luken attribute at least part

of the discrepancy to what can be called penetration

' effects. In the Lithium atom, the 2s electron is "pulled
in". That is, the 2s electron penetrates the 1s shell
and is permitted to feel the nuclear charge of +3. The

fixed finite dipole model fails to account for this

behavior. If the ground state of the dipole modeil is i
correlated with the negative ions of molecules, incorrect ﬂ
nodal behavior is predicted. One must instead correlate
the negative ions with the first excited state of the
dipole model. Correlation with this state, however,

leads to an underestimate of the binding energy of a

'? real molecule. From the LiCl1 study, it can be concluded %
‘ that although the simple dipole model may be of some ;
qualitative use, its ability to predict binding energies ,
of real molecules appears somewhat limited. 1In Chapter %
-g IV, where we examine the binding capability of HF, this

Yy
i has important implications. The binding energy of HF
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as predicted by the dipole model is on the order of 10'5
eV, while our calculations indicate the binding energy

to be higher by several orders of magnitude.

Core-Excited Resonances

Core-excited resonances, as mentioned earlier, are
characterized by two electrons in normally unoccupied
MO's and a "hole" in a normally occubied MO. When these
negative ion resonances lie below the excited state of
trhe parent or neutral excited molecule, they are known
as Feshbach states and the parents are said to exhibit
a positive electron affinity. The binding energy of a
Feshbach state is defined as the difference in energy
between the positive ion state and the negative ion state
formed by adding two outer electrons to the positive ion
core.

The primary experimental means of detecting Feshbach
states is electron transmission spectroscopy. This
technique involves measurement of the unscattered trans-
mitted current as a function of electron energy when mono-
energetic electrons are accelerated into a collision cham-
ber filled with the target gas. Experimental results are
generally presented with the ordinate representing the
derivative of the transmitted current and the abscissa,
the electron energy. In many cases, sharp structure

which mimics the vibrational spacing of the ‘grandparent
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state is observed.

Core-excited resonances of atoms have been studied
extensively, particularly those of the rare gases.20
These resonances have also been detected in many diatomic
mo]ecules.Z] In principle, a core-excited state of a
molecule may consist of an electron temporarily bound
either to a valence or Rydberg excited state. Only the
Rydberg excited states, however, lead to negative ion
states that have a positive electron affinity for a fixed
internuclear separation in the Franck-Condon region. Thus
for Rydberg excited states, sharp resonances which lie
somewhat below the Rydberg excited states are expected.
The vibrational spacing of the resonances should be similar
to that of the grandparent, since the two excited
electrons reside rather far from the positive ion core
and therefore perturb it only slightly.

In many cases, vibrational progressions overlap
leading to confusion in identification. A further
complication is that the width of a core-excited resonance
can change due to the opening of a new decay channel. If,
for example, the new decay channel is a repulsive negative
jon state, vibrational progressions may be observed only
for a limited number of levels; that is, the vibrational
progression may partially predissociate. This situation
can arise from an avoided crossing between two states

of the same symmetry. As we shall see in Chapter V, this

o ‘. 4
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explanation may apply to an experimental observation where
only .one vibrational level is excited in a study of the

Feshbach states of HF .
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CHAPTER 1V !
CONFIGURATION INTERACTION CALCULATIONS ON
THE RESONANCE STATES OF HF~

i
b
Introduction !

In the last chapter, a review of the theory of
resonances of polar molecules was given. In this chapter,
we present the results of ab initic calculations on one
such molecule in the low energy region. Before describing
these results, however, it will be useful to summarize a
few pertinent concepts.

The electron scattering and electron binding proper-
ties of polar molecules have recently been the topic of
considerable experimental and theoretical attention. The
very long range interaction potential for a charged
particle and a molecule with a permanent dipole moment
leads to interesting effects. It has been demonstrated by
a number of 1"esearchers]'4 that the electric dipole field
can support an infinite number of bound states if the
dipole moment is greater than 1.625 D.5 For a dipole
moment less than this value, no bound states exist. Other 1
work has shown that if a molecular system is treated
dynamically by calculating non-Born-Oppenheimer rotational
degrees of freedom, the number of bound states is finite.6
For the non-stationary dipole, the critical dipole for

binding an electron is from 10-30% greater than 1,625 D.7
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There is also an indication that induced dipole forces
make very important contributions to the energies of
weakly bound electrons, even for systems with larger

permanent dipole moments. Garrett suggests that a strongly

polar molecule with a dipole greater than about 4 D will
, surely form a stable negative ion. For a molecule with a
dipole moment in the range of 2 to 3.5 D, a negative ion
with binding energy greater than 0.01 eV will be formed,
if the polarizability is from 20-40 az (3-6 23).8
Ab initio calculations have been performed on several
polar molecules. Based on the premise that the electron

affinity may be reliably estimated by the negative of the

orbital energy of the lowest unoccupied molecular orbital
(LUMO) of the neutral molecule, a series of ionic molecules
have been investigated. For LiH, LiF, LiCl, NaH, NaF,
NaCl, BeO, Mg0O, LiCN, LiNC, LiOH, and LiCH3 which have

K dipotes ranging from 4.6 to 9.5 D, the calculated

electron affinities were between 0.2 to 0.7 eV.9 Another

examination of the nonionic melecules, (HF)Z, HCN, HNO,,

d

CH3CN. H20, and HF indicates stable anions for the first

- -——
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four are formed, while they are not for H20 and HF.10

v~

Since the first four of these molecules have dipole moments

greater than about 3.5 D, they would be expected to form

 — - ——

stable negative ions. 1In spite of the fact that the

RN Tt S

calculated dipole moments of HF and Hzo are stated to be

too high by 0.5 D (and thus larger than the critical value
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by more than 0.8 D), the study finds no stable anion for
the two molecu]es.]0

The HF molecule has a dipole moment of 1.82 D,]] Jjust
slightly greater than that necessary to bind an electron.
Studies of the negative ion states of this molecule are
of importance both because of the minimum dipole concept,
and because of the recent interest in resonant states of
polar molecules in general. We have pertormed extensive
configuration interaction calculations on the lower energy
states of HF'. Although the molecule has not been widely
studied, the available experimental and theoretical data
are summarized below.

Experimental studies of HF have traditionally been
difficult because of the corrosive effect of the vapor
on the surfaces of optical components. Nevertheless, a
few relevant studies have been performed.

(a) Dissociative Attachment

e + HF -+ F~ + H

The onset for F~ formation is reported to have a threshold

of 1.88 eV and a maximum at 4 eV.]2

The dissociation
energy of HF is 6.1 eV'> (D_ = 5.84 + .01 eV) while the
electron affinity of F is 3.448 + ,005 eV.]4 The thermo-
dynamic limit, therefore, requires an appearance potential

of 2.65 eV. The observed threshold of 1.88 eV implies

that F~ is formed as soon as is thermodynamically possible.

bl e T
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(b) Associative Detachment

F" + H > HF (v,j) + e

This process is fast and occurs at a rate close to the

Langevin rate constant with no temperature dependence.

This implies little or not activation energy for the

process and an attractive potential energy cur've.]5
(c) vVvibrational Excitation

e + HF -+ e + HF (v,j)

15

In each final vibrational state, a large (10 cm2),

sharply peaked cross section is observed at threshold.‘6
A cross section of this magnitude was also observed for
HC1. The cross section of both molecules have a maximum
of much larger width which decreases monatonically there-
after. Since the cross sectionsare isotropic in the
regions of the peaks, they do not result from electron-
dipole long range interactions (direct vibrational excita-
tion). The spectra presented by Rohr and Linder indeed
indicate a very pronounced maximum for HC1 in the region
of about 2 to 3 eV. For HF, however, this second maximum
is hardly discernible. It is therefore questionable
whether these data support the existence of a broad
maximum in the case of HF, although they clearly do for
HC1.

Theoretical studies of HF  are rather more prevalent
than experimental investigations, but are nevertheless

far from complete. Two ab initio calculations on the
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ground state of HF(]E+) and the ground state of HF'(22+) b

find the HF™ state repulsive for all values of inter-

17,18

nuclear separation. Bondebey et al., however, point

out that the exclusion of diffuse functions from the basis
set necessarily leads to a "diabatic" potential curve.]8
Since diffuse functions were not empioyed in either cal-
culation, the fact that the negative ion state was found
to be repulsive is not surprising. Although the two

17

studies do agree qualitatively, one finds the crossing

of the HF'(22+) potential with that of the HF(]Z+) at 3.9

bohr, while the other claims it to occur at 2.7 bohr.]8

In contrast to this finding, two other studieslg’20
reach an alternative conclusion. Both of the latter
calculations find the HF'(22+) ground state bound for a
considerable range of R.

The fundamental approach to the calculation of

resonances is the stabilization method.Z] Using square

integrable (Gaussian) functions and Configuration Inter-
action, we have performed extensive CI calculations on
the ground state of HF and the states of HF 1lying below
about 9 eV. Since the procedure involves representing
the 1imit of HF plus an electron at infinite separation
within a basis set of functions of finite extent, it is
necessary to establish each stable root as a resonance,
and not simply as an artifact of the calculation. The

results of this study provide an interpretation for the
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experimentally observed features and clearly resolve the ,

disagreement arising from the conclusions of previous

theoretical calculations. Certain of the results also

allow prediction of some characteristics not yet measured

experimentally.
Techniques like those employed here were used success-

; fully in an earlier study of HC].22

Although there are
similarities between the states of HC1  and HF , there
are also important differences, and throughout this
chapter we will refer to the previous work on HC1 for

.i comparison. We begin with a brief description of the

computational method, then present the results for all

T T R T Vo s o A 4 P, XA AT S b

' calculated states, discuss the evidence of resonance
character in the calculated negative ion states, and

finally, examine the capability of the HF molecule to

bind an electron.

R

Method

The atomic orbital basis set was chosen to be

sufficiently flexible to represent both HF and HF™ for »

e
il - Ll VPRSP SO

a range of internuclear distances. A Dunning basis the

23

(9S/5P) primitive gaussian basis of Huzinaga, contracted

to (3S/2P) proved adequate, while the hydrogen was repre-

24 In addition to these

sented by the Dunning (2S) basis.
functions, uncontracted Gaussian Rydbergs functions of

exponent 0.036 and 0.0066, and P functions of exponent
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0.074, 0.029 and 0.0054 were added to F. Finally, a P
type polarization function of exponent 0.9 was added to
hydrogen and a d type, of exponent 1.15, to fluorine.
The complete atomic orbital basis set is shown in Table
Iv-1.

The SCF wave functions and energy for HF were cal-
culated within this basis set. Of the 31 molecular
orbitals comprising the basis, only one, that of lowest
energy, was dropped from consideration in the CI calcula-
tions. Table IV-2 provides a list of the molecular
orbitals and their eigenvalues. In the second column of
this table, the M.0. identification system used in the
text is given. The total SCF energy of HF at its equili-
brium internuclear distance is -100.04905 a.u., which can
be compared with the near Hartree-Fock value of -100.0705
a.u.23

The SCF virtual orbitals of HF were assumed to form
an adequate tasis for CI calculations on HF . This is

justified by previous work on HC],Z2

which confirms the
accuracy of this assumption. The SCF virtual orbitals

of HF are eigenfunctions of the full n electron HF poten-
tial including its permanent dipole moment., Since, in

a case of this type, the scattering is long range, the
target molecule is relatively little perturbed by the

scattering event. Consequently, the HF virtual orbitals

are a good representation of the hatural orbitals of HF .
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Indeed, as we shall see later, this is generally verified
by the dominance in the final CI wave functions by a
single con%iguration.

Configuration Interaction calculations were performed
for the ground states of HF and HF , as well as the
excited states of HF . TherHF' states were described by
populating the appropriate HF virtual orbital with a single
electron. In general, one or more seed configurations
were selected to represent a given state of interest.

A1l single and double hole particle excitations relative
to these few seed configurations were then generated
to form the CI space. Solution of the CI problem was
accomplished by the partitioning technique which was

discussed in Chapter II.

Results and Discussion

Full CI calculations on HF and HF  were carried out

at a number of internuclear distances. Depending upon

the particular state, full calculations were performed

at more than one internuclear distance including 1.5 bohr,
1.732 bohr (equilibrium), 2.0 bohr, 2.5 bohr, 3.0 bohr,
4.0 bohr, 5.0 bohr, and 7.0 bohr. The potential curves
resulting from these calculations are displayed in Figure
IV-1, and their energies at the various internuclear
distances are presented in Table IV-3. We will first

describe the general procedure used in all cdlculations

- e S <~
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and then discuss the resuits for each specific state

separately.

General Procedure

In a study of this type, two important concepts must
be considered. First, at any particular point on the
potential surface, the HF and HF™ calculations must be
balanced with respect to one another. This will allow
reasonable interpretation of results involving the
relative location of the HF and the HF  states. Second,
the calculations must permit proper dissociation behavior

for the HF and the HF™ ground states, independent of one

another. This second consideration is important for
insuring confidence in the absolute results.
At the equilibrium internuclear distance, the HF

ground state is dominated by the configuration

2, 2 4

1620 3021n , while the dominant configuration of the

22023021n440. The higher

lowest HF  state (122+) is 1o

HF~ ¥ states result from promotion of the additional

- -
R

o, —— — ——
L~ arm—————— o

electron to the higher z* molecular orbitals. At 7.0 bohr,

P

which we use to represent the dissociation limit, the
molecular orbital picture has altered considerably. The

molecular orbital designated at 1m now falls lower in

s

Sowe o

energy than the 30 molecular orbital. Thus, at 7.0 bohr,

2 21n4302.

ey, 1V ST

the ordering of the occupied M.0.'s is 1020
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The 30 M.0., at this large distance, is composed of
contributions from the H 1s and the F Py atomic orbitals.
The 40 M.0: is simply the antibonding complement to the
30 M.0., and is only slightly higher in energy. The HF
molecule which dissociates to H(ZS) + F(ZP), is repre-

sented at 7.0 bohr by a linear combination of three elec-

tron configurations. The first is 1022021n4302, the

SCF base. The second, 1022021n43o40, contains one electron

each in the bonding and antibonding H-F M.0.'s. The third,

4, 2

2]
10220‘1n 407, has both electrons in the antibonding

H-F M.0. In the case of HF , one electron already

occupies the antibonding H-F M.0. Thus the 125% WE" state,

2

which dissociates to H(“P) + F'(]S), is represented simply

by a linear combination of the two configurations

10226%11%30%46 and 10220%17%30402.

2

A higher HF™ state,

the 5°57 given in Figure IV-3 is one of the states

leading to the limit H'(]s) + F(zp). This latter state

is presented by the same two electron configurations

2

as the 1°¢® HF™ state, this time, with opposite signs.

For the dissociation behavior of HF and HF™ to be
adequately represented, this picture must be taken into
account in the CI calculations. A proper calculation for
HF must include all single and double excitations generated

296210%302, the ScF

2021n43o4o and ]022021n4402, the two

from three configurational bases, lo
base, as well as 102

configurations representing the K-F bond. For both the

-
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125

% and the 52

Z+ states at 7.0 bohr, generation of all
single and double excitations from the two configuration

2202]n430240 and 1022021w430402 is adequate for

bases, 1o
decribing dissociation.

With the dissociation 1limit requirements in mind,
the structure of the calculations for shorter internuclear
separations is defined. At the equilibrium internuclear
distance, the dominant contribution to the wavefunction
is the SCF base. Although, at this point, the two
additional bases used to generate configurations do not
contribute as heavily to the wavefunction as at 7.0 bohr,
they must be included to insure balance across the
potential surface. Thus, at 1.732 bohr, the calculations
on HF consisted of all single and double excitations from

the SCF base in addition to two bases, 102202301n4100

and 1622621141002,

At this shorter distance, the 100
M.0. has essentially the same character as the 4o0 M.O.
at 7.0 bohr. For the lowest state of HF , the bases

included 1022023021ﬂ440 and 1022021n2401002.

At inter-
mediate points on the potential surface, the calculations
were performed in an analogous manner. Generally, in the
HF calculations, all single and double excitations were
generated from three bases, the SCF base, the base regpre-
senting the configuration contributing most strongly to

the wavefunction (a double excitation from the SCF base),

and one other base representing a sort of "cross term”

o . ———*~0J —d o~

LSO
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(a single excitation from the SCF base). For the lowest
HF™ state, two generating bases were used at each point.
The first was formed by placing the additional electron

in the lowest unoccupied molecular orbital of the SCF

base for HF. The second was the same doubly excited
configuration used in the HF calculations. Table IV-3
presents the configuration bases used at various distances
for HF and the lowest HF  state.

The higher states of HF were treated in the same
manner as the 122+ HF™ state, with the extra electron
simply occupying successively higher :¥ molecular orbitals.
The procelure resulted in a total space of about 8,400
configurations for the HF calculations. The HF calcula-
tions generally included between 11,000 and 13,000 total
configurations. This procedure resulted in a reasonable
balance in correlation energy between the HF ground state
and the HF~ Rydberg states. At the equilibrium inter-
nuclear separation, the correlation energy of the HF"
states should be slightly greater than that of the HF
ground state. The presence of the extra eiectron leads
to a small polarization contribution to the energy, in
addition to the correlation energy itself. We indeed
find the correlation energy of all HF  states to be
slightly greater than that of HF.

HF §1]£+). This state is described by the configura-

2, 2, 2, 4

tion 16720730 1w

which represents about 99% of the
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final wavefunction at the equilibrium internuclear
separation. It goes smoothly to the limits H(ZS) + F(ZP)
with a calculated dissociation energy of 6.02 eV which
can be compared to the experimental value for De of 6.1

eV.]3

- 2

HE™ (1 2y

Eil- The 1 state was generated through
occupation of M.0. 6, an S type Rydberg function. At the
equilibrium nuclear separation, this configuration repre-
sents 99% of the total wavefunction. 1[It has already been
mentioned that, at larger internuclear distances, this
HF state leads to the limit H(%s) + F ('s). The state
is clearly bound with respect to these limits, at least

qualitatively confirming the results of two previous

ca]culations,19’20 and refuting those of two others.”’20

This finding also agrees with the dissociative attachment
results which indicate the state to be attractive into
the autodetaching region. The calculated electron affinity
of HF at 7.0 bohr is 3.17 eV which agrees rather well with
the experimental electron affinity for F of 3.45 eV.'I4

It should be noted from Figure IV-1 and the values
of Table IV-3 that the 1°5* state of HF  appears to be
bound at all distances relative to the HF ground state,
implying a positive electron affinity of 0.010 eV for HF.
This is in contrast to the results of earlier study on
HC1, where the 1%5* state of HC1™ was found to lie about

0.12 eV above the HC1 ground state.22

The unbound nature
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of the HC1™ state is not unexpected, however, since the

dipole moment of HC1 (1.1 D) is.well below the critical
dipole moment for binding an electron. We return later
to a complete discussion of the bound or unbound nature

22+ HF~ after presenting the results of the other

of the 1
calculated HF  states.

HF ™ {222+). This state occurs at the equilibrium
internuclear distance through occupation of M.0. 9,
essentially a Po Rydberg function. This configuration
has a weight of 99% in the final CI wavefunction at 1.732
bohr. At this same distance, the state lies only 0.32

2

eV above the 1°:% HF” ground state and corresponds to

the 222+ mimic state of HC1.22

HF~ §322+). The 322+ state results from occupation
of M.0. 10, also a Po type Rydberg function at the
equilibrium internuclear distance. 1It, like the lower
HF™ states, comprises 99% of the final CI wavefunction.
This state lies about 1.7 eV above HF at equilibrium, and
corresponds to a state in HC1~, the A22+, that was not
considered to be a resonance.

HF~ 42Z+ . This state occurs at equilibrium through
occupation of M.0. 13, principally an S type Rydberg
function. It lies about 2.3 eV above the HF ground state.

2

This state, like the 3 z+ state just discussed, is

analogous in occupation te a second state of HC1™, the

822+, that was not considered to have resonance character.22
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HF™ (522+). The 522+ state results from the occupa-

tion of M.0. 14 at equilibrium, largely an S type function.

It is more ‘radially contracted than the lower energy

2:% State

M.0.'s and corresponds in character to the 3
of HC1™ which is responsible for the broad resonance
observed in the HC1 vibrational excitation spectrum.]6

At the equilibrium internuclear distance, this state lies

well above the ground state of HF, at about 6.7 eV. At

2

longer distances, it crosses the repulsive 7 Z+ HF™ state

which will be discussed shortly.

HF~ §622+). The 62£+ state occurs at the equilibrium
internuclear distance through occupation of M.0. 17 a po
type M.0. which is valence in character. At short
distances, this state also crosses the repulsive 722+
state. We have indicated only a portion of this curve

in Figure IV-1.

HF~ §722+}. This state is one of the Feshbach states

of HF™ and is considered in more detail in the next

22+ at about 9.7 eV and the

t* at approximately 7.3 eV. At 7.0 bohr, the 7%¢*

2

chapter. It crosses the 6
52
state (which has now become the 5°¢' state) leads,
together with the 42, state discussed below, to the limit
H'(]S) + F(2P). We have indicated the adiabatic curves

in Figure IV-1 for the crossings of this state with the

522+; for its crossing with the 622+ state we show the

et 2

diabats. From the crossing of the 7°% and the 5 £+ states
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we would predict H™ production to have a vertical onset

with a maximum about 7.3 eV above the HF ground state.
In HCT™, the situation is somewhat different.

In this case, H production, which occurs at about 6.9

22+

eV, results from a crossing of two states, only one

of which corresponds in electron configuration to the
two HF™ states.2? The ascending state of HC1™ is a

ot state lying above the broad resonance state in energy.

22+ is the state that would

The ascending state of HF , the 5
lead to experimental observation of a broad resonance.
The broad resonance in HF 1lies much higher in energy
than the broad resonance in HC1™ by some 3.7 eV. It is
therefore reasonable to assume that the 522+ HF™ state
is responsible for H™ production.

HF™ (32n). This state occurs at the equilibrium
internuclear distance through occupation of the m M.0.'s
15 and 16. It is shown in Figure IV-2 simply because it
crosses the 4%y state. There are two m states that lie
lower in energy than the 32n formed by occupation of
M.0.'s 7 and 8 (1%1) and M.0.'s 11 and 12 (2%r). Although
we have not performed full CI calculations on these states,
initial single configuration calculations indicate that

the ]2 2 2 2

m lies between the 1%z and the 2°:% and the 2%

2£+ and the 422+.

lies tetween the 3
HF~ (42 ). This state, together with the 725t state,

leads to the limit H'(]S) + F(2P) at 7.0 bohr, It, like the

. e - e e S




-67-

72

ttoHET state, is a Feshbach state of HF~ . It has an
avoided crossing with the 32n state at shorter internuclear
distances, "indicated adiabatically in Figure IV-1.

The 42

n HF™ state corresponds in electron configura-

tion to the Zw state of HC1™ shown in Figure II of

reference 22. In the dissociative attachment of HC1 ™,

the 2n state produces a second overlapping, gaussian

22

shaped peak at 9.2 eV. In HF ™, the 42y state could

lead to a similar peak that would 1ie at about 10.2 eV.

Table IV-5 summarizes the results of the calculations
and also presents the existing experimental data for
comparison. We also show our estimates of certain

experimental parameters and suggest the type of experi-

mental investigation that might be used to determine them.

Limits

| In this study, we have performed fulil CI calculations

on the states leading to three limits: H(zs) + F'(]S),

'l

._ _
P T e e . -

H(Zs) + F(%P), and H™('S) + F(2P). With the aid of a

simple MO picture, it is clear that the limits are pro-

- -

duced by the states so indicated.
22+

= ——

One state, the 1 state, leads to the limit

o —
L7 ¥ S,

H(ZS) + F'(]S). At 7.0 bohr, the final wavefunction

of this state is dominated by two electron configurations,

2, 2, 4, 2 2, 2. 4 2

10°20°17 3040 and 10°20°1n7 '3040° with signs that are

in-phase with one another. At the true limit, these

Pl W Ay S
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configurations would have exactly equal weighting. At
large distances, the 3o M.0. is the bonding combination
of the H 1s A0 and the F po AD; the 40 is essentially

its antibonding complement. The linear combination

of the two configurations in terms of the F po A0 and the
H 1s A0 leads to equal weighting of (H]s + Fpo)2

(Hls - ch) and (Hls + ch) (Hls - Fpo)z. Upon expansion
and summation of the two terms, we obtain H; F;c, which
simply represents an H atom and an F~ atom.

Two states, the 522+ and the 32n, lead to the limit
H'(ZS) + F(ZP) at 7.0 bohr. The 52):+ at long internuclear
distances is largely composed of two configurations,
]022021n430402 and 1022021u43024o. These are the same
two configurations as those representing the 122+ state.
In this case, however, the configurations have signs

that are out-of-plase with one another. Expansion of the

configurations in terms of the A.0.'s leads to the occupa-
tion H

The 32

1s Fpo which represents an H atom and an F atom.
m state, at large internuclear separations is

dominated by the configuration 102202]w3302402. Expansion

of this configuration in terms of the A.0.'s also leads
to the occupation H;S Fpo. From this simple M.0. picture,
it is reasonable to assume that the 427 and the 7%:* HF°

states indeed lead to the limit H'(]S) + F(2P).

The H(zs) + F(2P) 1imit §s produced by two states.
One of these states is the HF(‘E*) ground state discussed
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earlier. The other, a ]n state, is an excited state of

HF considered in detail in the next chapter.

Other States

In initial single cxcitation calculations we observe
three states, A, B and C,which fall between the lim.ts
H(%S) + F ('s) and H(%s) + F(%P) at 7.0 bohr. Two other
states, the.522+ and the 32n, as already indicated, also
fall within this energy region and lead to the limit
H'(]S) + F(ZP). The simple M.0. picture presented
earlier supports the fact that these two states indeed
lead to the H'('s) + F(%P) limit. Of the three other
states falling within the same energy region two, A and
B, are gt states, while the third, C, is a m state.

The electron configurations contributing to the

A and B states are 102202]n4

3ag4on6, where n > 5., When
n >5, the no M.0.'s are dominated by A.0. contributions
either from Fp0 or Fs‘ Formulation of these electron
configurations in terms of the A.0.'s leads to
(Hls + Fpo) (Hls - Fpo) F*, where F* represents an excited
Fpo or FS A0O. Expansion of the configurations produges
terms in F°~. To our knowledge, F-~ is not known to
exist and we can only conclude that the states leading
to the F°~ limits also do not exist.

A similar situation arises in the case of the ¢Zn

state. A full CI calculation at 7.0 bohr places this
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state between the H'(]S) + F(ZP) and the H(ZS) + F(ZP)
limits in energy. The state is dominated by the electron
configuration 1022021n43o402n. Expansion of this

configuration in terms of the AOs again yields terms in

F™. MWe therefore feel that all three states are not

real. A1l other states lie above the H(ZS)-¥F(2P) limit

in energy and can probably be assumed to be real.

Comparison with HC1~

In 1light of the current HF™ study, we have reviewed

-22

the results of the earlier study on HCI for comparative

purposes. Several points are of particular interest.

First, the 1%5% state of HF™ is found to be bound by

2

some 0.01 eV, while the 1°z¥ state of HC1™ lies above

the HC1 ground state. The unbound nature of the lowest
HC1™ state is reasonable, given that the dipole moment

of HC1 is much less than that required for binding an

P L

electron.

The second point of interest involves the higher

2y states of HC1™ and HF™. In the HC! study, only

~ap- -

- e -
e N R e . e

those states that could be experimentally reported were

calculated. Two states of HC1™, the A(22+) and B(2£+),

that lie in energy between the reported 222+ and 322+

states were therefore not investigated. The states of

HF™ corresponding to these two HC1  states are the 322+

2

and the 4 Z+. On the basis of the appearance of plots
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of the density functional against distance from the HC)

molecule, the two HC1 states were not considered to be

resonances.‘22 We now question this conclusion. The plots

of these states, when compared with those of the 322+

and
422+ HF~ states, do not seem to differ significantly.
In the next section we return to this general point with
a discussion of the difficulty of distinguishing those
HF™ states that have resonance character from those which
are simply continuum functions.

The final issue of importance in the comparison of

2 22+ HC1 ™ states and

2

HF™ and HC1™ involves the 2°:' and 3

2

their counterparts, the 2 st and the 5°:% states of HF™

In the work on HC1™, these states were stated to merge

with the continuum at longer internuclear distances. From
the results of a series of single configuration CI calcula-
tions, it now appears that these states can still be
followed at very large separations after an intermediate

region of confusion. This is gratifying since the 222+,

2.+ 2.+ 2

3"z, 4"z, and 5 Z+ HF™ states also remain relatively

pure in calculations of this type to 7.0 bohr. This
suggests that the behavior of the 25% states of HC1™ and
those of HF™ is similar.

One further difference should be noted. The 322+
HC1™ valence state responsible for the broad resonance

observed in the vibrational excitation spectrum has a

minimum approximately 2.3 eV above the ground state of

—_ Y,
N

AU
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HCl. According to Domcke and Cederbaum, the half width

of this state is 2.3 eV. In HF , the state corresponding

2 2Z+ which lies about 6 eV

to the 3°z¥ HC1™ state is the §
above the HF ground state. This is far higher in energy
than the HC1™ state. The HF™ state was not observed

in the vibrational excitation experiment of Rohr and]
Linder.]6 This is not surprising, however, since the
reported energy range extended only to about 3 eV. The
results of Domcke and Cederbaum in the case of HF would
require the state to have a half width of about 6 eV,

. . 30
which seems excessive.

Proof of Resonance Character

A resonance or a temporary negative ion state is
formed by the interaction of a target molecule with an
incident electron. The electron is temporarily captured
within the neighborhood of the molecule. The attachment
of the electron can occur at a definite energy in which
case, sharp structure is observed in the cross secticn.

-10

These states have a lifetime, 1, of between 10 and

10715 sec where 1 = h/r with T representing the width

of the state. Experimental study of these states is
possible when they decay into inelastic channels (rota-
tional and vibrational excitation, electronic excitation,

dissociative attachment, and so on). When the cross

section is dominated by inelastic. processes, then the

e o S




resonance contribution can be observed without inter-
ference from the direct scattering mechanism.

In addition to examining the energy dependence of
the cross section, experimentalists can also observe the
angular dependence of the cross section for the purpose
of studying resonances. In studies of this type, the
angular distribution can be uniquely determined through
comparison of symmetries of the initial, resonant, and
final state. When the resonant state is expanded in
terms of spherical harmonics, the contribution from the
lowest allowed value of 2 predominates. In heteronuclear
diatomic molecules, mixtures of these waves, called partial

waves, are possible. It has been demonstrated3]

that pure
partial waves of po or pm symmetry exhibit characteristic
p wave shapes leading to a minimum in the cross section
at 90° Pure waves of do, dm, or d§ symmetry alternatively
produce a maximum at 90°. Mixtures of partial waves are
also possible in heteronuclear molecules.

Theoretical methods for determining whether or not
a state is a resonance have also been developed. In the

original stabilization method,21

frequently used for this
purpose, heavy weights of a single or few configurations
were used as a criterion to identify stable roots. These
calculations, however, were genera.ly performed on mole-

cules without permanent dipole moments, so that no dominant

fields were present. It is our experience, in the case
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of molecules with permanent dipole moments22

that purity
of the vector is not particularly useful for establishing
stability. In Configuration Interaction calculations

on the negative ion states of these molecules, all states
seem to give relatively pure Cl vectors which represent
successive Rydberg states in the field of a dipole.

One study on the states of LiF~ utilizes orbital
amplitude plots for quaiitative speculation on the
character and width of states thought to be resonances.32
In our earlier work on HC1™, resonance character was
attributed by the appearance of "stability" with the
addition of very diffuse functions to the original basis

set.22

This approach was based on the assumption that

the relative purity of the CI vectors indicates that the
MO occupied by the scattered electron is a fair approxima-
tion to the natural orbital of the electron. A graph

of the density functional of this MO plotted against
distance for each state with and without addition of the
diffuse functions provided qualitative "proof" of resonance
character. States that are attempting to place the
scattered electron at infinity appear increasingly
sinusoidal with increasing flexibility of the basis set.
Alternatively, those states possessing resonance character
seem to show a high probability of the electron in the
areca of the target with sinusoidal behaviour at longer

distance.
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33 which is also based on the

Another recent study,
assumption that calculated energy values for stable
resonances will show only small changes with basis set
variation, has adopted a somewhat different approach.
Rather than enlarging the basis set, the study rather
recommends varying the basis set continuously. This
invoives, for example, going from an original basis,

_ i i+l

a. = o 6
0

j For a stable

to a shifted basis, a; = aoé
eigenvalue, avoided crossings will appear.

Based on the previous work, we employed basically
two general techniques for investigating the resonance
character of each particular HF™ state. It was assumed
throughout that the M.0. produced in an SCF calculation
is a good representation of the natural orbital of the
scattered electron. Thus MOs 6, 9, 10, 13 and 14 are
reprsentative of the 122+, 222+, 322+, 422+ and 522+ HF™
states respectively. The first technique simply involves
comparison of the SCF energy and the M.0. eigenvalues
in an altered bases set to those in the original basis
set. If an M.0. indeed represents a resonant state,
then the energy (eigenvalue) would be expected to remain
relatively constant. The second technique consists of
adding basis functions to the original basis set and

visually observing the density of the M.0. This was

accomplished by plotting, in confocal elliptical

croordinates, the variation of the density functional with

[EE—.
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distance from the two-center target molecule. We plot
wz(uz—vz) 03/8, where p and v are functions of two
coordinates x and y against the coordinate along the
internuclear axis, x. The F atom lies at x=0 and the H
atom is located a distance D(1.732 bohr) from the F atom
in the positive x direction. The five variations of the
original basis set which were considered are described
in Table IV-6.

Table IV-7 presents the SCF eigenvalues for the M.0.'s
of ¢t symmetry resulting from the original basis set
(basis set #1) and the varied basis sets (basis set #2
through basis set #5). The first variation we will con-
sider is the addition of very diffuse functions. In
basis set #2, an s function with exponent 0.001 was added
to fluorine. 1In basis set 3#, this function and an
additional p function with the same exponent were added
to fluorine. Since the added functions are much more
diffuse than any contained within the original basis set,
it would be expected that new M.0.'s would appear, with
eigenvalues lower than those of the M.0.'s in the original
basis set. The results of the SCF calculations indeed
verify this. In basis set #2, the new M.0. falls much
lower in energy and is dominated by the added function.
Adding both S and P functions, as in basis set #3, creates

two new M.0.'s of &' symmetry which also fall below the

energy of the M.0.'s in the original basis set.
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From the data for basis sets #2 and #3 in Table IV-6
and IV-7, we clearly observe the stability of the SCF
energy and of the energy of the individual M.0.'s in
the original basis set. For example, the eigenvalue of
M.0. 6 in the original basis set changes by only about
0.002 A.U. (0.06 eV) in basis set #2, and by only
slightly more, 0.003 (0.08 eV), in basis set #3. The
change in eigenvalue for M.0. 6 on moving to the augmented
basis sets is, in fact, the largest change in eigenvalue 1
for any of the M.0.'s. This is to be expected since the
added diffuse functions interact most strongly with the

lowest lying M.0. These data indicate strongly that,

since the energy of any given M.0. varies by at most,
0.08 eV, energy stability of all states considered here
is preserved upon variation of the basis set.
In addition to the energy stability criteria, we have

22 for

also made use of a technique used previously
examining the change in appearance of the M.0.'s on I

moving to the augmented basis set. A graph of the

density functiona1.of the M.0. with distance along the
internuclear axis provides an adequate two dimensional
picture of each state. Figures IV-2 through IV-6 present
these plots for M.0.'s 6, 9, 10, 13 and 14 respectively. gl
Each state is shown for the original and the two augmented
basis sets. The change in scale on the ordinate for the

various M.0.'s should be noted. Figure IV-7 presents the
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one additional £' M.0. created in basis set #2 and
Figures IV-8 and IV-9 show the two additional M.0.'s
formed in basis set #3. In each of these plots, the
fluorine atom is at the zero point of the abcissa with
the hydrogen 1.73 bohrs in the positive direction.
The character of the M.0.'s of the original basis
set changes very little upon addition of the very diffuse
functions, as illustrated by the plots. For an M.0. which
is attempting to place the scattered electron at infinity,
the density plots should show the electron density moving
to further distances from the molecule. 1In none of the
plots presented here, does this seem to occur. Rather,
the addition of the more flexible functions appears to
tighten the main peaks in each case. Comparison of the
density plots of the states considered to be resonances
with those for the M.0.'s formed with the addition of the
more flexible functions points to an important difference.
The newly formed M.0.'s appear to be a clear attempt to place
the electron at infinity, since they show the bulk of their
eleciron density at very large distance from the target.
The second variation we consider is the addition
of diffuse functions to the original basis set. In basis
set #4, two s and two p functions with exponents 0.003
and 0.006 were added, this time to the hydrogen atom.
This addition resulted in three new I M.0.'s between

M.0. 6 and M.0. 14, and one new 2* M.0. below M.0. 6 in
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M.0. 14, and one new rt M.0. below M.0. 6 in energy.
Upon addition of these functions, the SCF energy was lowered
by only 0.00005 a.u. (.001 eV). The largest variation
in ecigenvalue is observed for M.0. 13 for which the
energy increased by about 0.03 a.u. (0.85 eV). Basis set
#5 represents the addition of both very diffuse and diffuse
functions to the original basis sets. The SCF energy,
in this case, was lower by 0.00008 a.u. (.002 eV) than
the SCF energy of the original basis set. The M.0. that
was again most affected by the changes was M.0. #13.
The eigeavalue of this M.0. changed by some 0.04 a.u.
(1.12 ev).

The density plots for the M.0.'s of basis sets #4
and #5 are presented in Figures IV-10 through IV-14
together with those of the original basis set for
comparison.

In both basis set #4 and basic set #5, the new
M.C.'s fall below M.0. 10 in energy. We should therefore
expect that the M.0.'s most perturbed by the augmentation
would be M.0. 6 and M.0. 9. Figures IV-10 through IV-14
indeed show this to be the case. The curves of
Figure IV-10 illustrate that M.0. 6 may not be a resonance.
Addition of diffuse functions causes the main peak to
move much farther from the molecule, behavior that is not
expected in a resonance., We have considered the possi-

bility that these M.0.'s of basis sets #4 and #5 thought

e e - .- _.._-.o,/...__.J*'.»/
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to be the same as M.0. 6 in the original basis set have
not been correctly assigned. If, instead the M.0.'s
with eigenvalue 0.01225 a.u., of basis set #4 and eigen-
value of 0.00967 a.u. of basis set #5 in Table IV-7
are assigned, we obtain the density functionals of Figure
IV-15. This alternative assignment supports the attribu-
tion of resonance character to M.0. 6. In basis sets
#4 and #5, the main peak is in approximately the same
location as it was in basis set #1. Although in the two
altered basis sets, density is building at longer range,
this is not unexpected for a resonance when diffuse
functions are introduced. M.0.'s 9, 10, 13, and 14
as shown in Figure IV-11 through IV-14 also changed
minimally upon introduction of the additional functions.
We have examined numerous other basis set additions
that are not presented here. New functions of both
diffuse and valence character were added to both H and F.
In all cases, the M.0.'s of the original basis set
with which the added functions interacted strongly were
the most affected by the additions. This suggests that
altering the basis set and observing little change in
the appearance of the M.0, is not a sufficient criterion
for judging resonance character, Our experience indicates
that the appearance of any M.0. can be changed
considerably simply by judicious choice of additional

functions. Further studies of this type on molecules

]
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with known resonances are necessary to establish defini-

tive criteria for assignments of resonance character.

The Bound State

Because the bound or unbound nature of the lowest
HF state is a subject of much debate, we sought to better
understand the results of our calculations by further
investigation. The resonances of HF- that result from
the addition of one electron to a Rydberg orbital of HF
arise primarily from the permanent and induced dipolar
forces. The 122+ HF™ state is one such resonance, as
mentioned earlier. In the HF molecule, for which the
permanent dipole moment is only slightly greater than
that necessary for binding an electron, the binding energy
is undoubtedly extremely small. In C.I. calculations
of the type described here, the error in energy may be
as high as 0.1 eV, This is a factor of 10 larger than
the binding energy we calculate (0.01 eV). Because this
is so, our results do not show unequivocally that HF is
capable of binding an electron.

One method of investigating the reliability of the
calcuiated results is to consider the forces contributing
to the bound nature of a state. One of these forces is
the permanent dipole moment, A calculation performed for
HF at the equilibrium internuclear distance at the CI

level yielded a value of 2.01 D for the dipole moment which
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is well above the experimental value of 1,82 D. The other
factor contributing to the forces generated in the mole-
cule is the polarizability. The experimental value of
this variable for HF is about 16.6 ao3 (2.5 33).29
According to reference 8, a molecule with a permanent
dipole moment as low as 2D and an average molecular
polarizability of between 20 and 40 a°3 should have the
capability to bind an electron by 0.01 eV. This result
also allows rotation of the molecule which contributes
positively to the energy of the negative ion. The CI

calculations used in this work do not include the effects

of rotation. Our calculated dipole moment of 2.01 D,

3

together with the experimental polarizability of 16.6 a,

implies that our calculations should find HF bound by
something less than 0.01 eV. OQur calculated electron
affinity (0.01 eV), given the inherent inaccuracy of the
method, seems to be at least of the proper order of
magnitude. Unfortunately, because the value obtained for
the electron affinity is so close to zero, it cannot be
stated with certainty from the results of the calculations
that the HF™ state is bound.

Another method of testing the bound or unbound nature
of the state was employed. This technique involved
augmenting the original basis set with a diffuse s
function of exponent .001 on the H atom. In the SCF

calculation, the new gt molecular orbital fell energetically

T
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below the molecular orbital occupied by the single electron ,

in the original 122+ HF™ state. Table IV-8 presents the
eigenvalues and total SCF energy for the original and
altered basis set at 1.732 bohr, CI calculations were thed
performed for HF at the equilibrium internuclear separa-

tion within the new basis set. In the first calculation,

the additional electron occupied the original M.0. i
(the LUMO + 1), 1In the second calculation, the additional

electron occupied the new 5t M.0. (the LUMO). In the

third calculation, the HF ground state was calculated

within the new basis set. Table IV-9 gives the results

of these calculations and, for comparison, the results

of the Cl calculations in the original basis set.

In the altered basis, the HF ground state falls
below the original HF ground state by 0.005 eV. The HF
state with the extra electron occupying the new ol M.0.
lies below the new HF ground state by 0.168 eV. The HF"
state with the extra electron occupying the original Z+
M.0. now lies above the new HF ground state by 0.046 eV,
Since the original and new HF ground state energies differ
by only 0.005 eV, the HF™ 125% state remained constant
in energy to within 0.051 eV,

The implications of this exercise are important,

It may be that the functions necessary for properly
describing the HF™ ground state were not included in the

original basis set. The additional flexibility of the
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bac<is set achieved through the addition of a diffuse

function may in fact provide the true picture of an
unbound HF™ ground state. The results are simply not
definitive regarding the bound nature of the 125 WE
state. It could be that, since the energy of the
original state rose above the HF ground state after
augmentation of the basis set, the state is not bound.
Indeed, this is probably so. Whether or not the HF mole-
cule can, in reality, bind an electron is not in question,
Theory has shown that it is certainly possible. Our
calculated dipole moment exceeds the experimental value
by some 0.2 D. This fact makes it more likely that the
results of our calculations will lead to a bound HF”
state. That we find a bound state within our original
basis set is therefore not surprising. Although our
results do not allow an unequivocal conclusion on the
bound or unbound nature of HF, they are significant

for at least two other reasons. First, we have
fllustrated through extensive CI calculations that, within
a basis set that includes diffuse functions, the HF mole-
cule can probably bind an electron if the calculated
dipole moment is as high as 2.0 D. We cannot speculate
on what the results would be if the dipole moment were
lower. The second reason for the importance of these
calculations lies in the fact that they provide guidance

for other ab initio studies. Polar molecules with
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permanent dipole moments slightly in excess of HF should

certainly be the subject of further investigation.

Conclusions

The calculated potential curves presented in this
work are in good agreement with the existing experimental

data. Moreover, some of the results of the study are

useful for guidance in future experimental investigations.

It appears that the computational techniques employed in
this study are effective for theoretical study of the
negative ion states of polar molecules.

The presence of a permanent dipole moment in HF
gives rise to presumed resonances that cannot be intuited
from the separated atom limits. That all the states
described here are in fact resonances cannot be proven
definitively. Nevertheless, the technique we have
utilized for probing the problem providesat least a
strong indication that the states of HF" indeed possess
resonance character,

254 HF™ state is bound also

Whether or not the 1
cannot be unequivocally determined from this study. We
find this state bound by only 0.010 eV, a value which is
small compared with the accuraﬁy of the calculational
procedure. We can only conclude with certainty that the

2£+ state of HF  lics extremely close in energy to the

1
HF ground state and is therefore either slightly bound

or slightly unbound.
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Table IV-1

Gaussian Basis Set

Fluorine Hydrogen
Es [5s] Zs [2s]
9995.0 0.001166 13.36 0.032828
1506.0 0.008870 2.013 0.231204
350.3 0.042380 0.4538 0.817226
104.1 0.142929
34.84 0.355372 0.1233 1.000000
12.22 0.462085
4,369 0.1408348 Lipl
12.22 -0.148452 1.000000 1.000000
1.208 1.05527
0.3634 1.000000
0.036 1.000000
0.0066 1.000000
ip [5p]
44,36 0.020876
10.08 0.130107
2.996 0.396166
£.9383 0.620404
0.2733 1.000000
0.074 1.000000
0.029 1.000000
0.0054 1.000000
£d [1d]
1.15 1.000000
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Table IV-2

SCF Results for HF (R = 1,732 bohr)

M.0 Text Notation Symmetry Eigenvalue (a.u.)
1 o rt -26.,29879
2 20 gt -1.60169
3 30 5 -0.76886
4 I m -0.65063
5 ™ -0.65063
6 4o gt 0.00696
7 - ™ 0.01335
8 T 0.01335
9 50 gt 0.0151

10 6o gt 0.06850
N 3 n 0.07965
12 n 0.07965
13 70 gt 0.09187
14 80 ot 0.26703
15 o n 0.30504
16 ™ 0.30504
17 90 gt 0.32973
18 100 gt 0.92540
19 Mo gt 1.33003
20 & ™ 1.34772
21 - 1.34772
22 120 gt 1.71036
23 6n m 1.84189
24 n 1.84189
25 130 gt 2.75878
26 A A 2.91399
27 A 2.91399




Table IV-2 (continued)

M.0. Text Notation Eigenvalue (a.u.)
28 - n 3.35095
29 - 3.35095
30 140 ot 4.17831
3 150 st 5.65648

Total Energy:
Nuclear Repulsion Energy = 5.19630 a.u,
Total Electronic Energy = -105.24535 a.u.

-100.04905 a.u.

I 4 e s
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| Table IV-4

Configuration Bases for the Ground States of HF and HF~

R (bohr) HF HF™
10220230211r4 1022023021n44o
| 1.5 1622623011100 162202 11%40100%
1022621041007
{
16220%3621% 1022023621140
1.732 10220230]ﬁ4100 1022021n44o1002
; 102é021n41002
A
1022023021n4 102202302]n440
‘ 2.0 1622623011780 162262174 40802
' 1022021n4802
‘ 10220230211r4 102202302]n44o
.% 2.5 102202301ﬂ460 1022021n440602
‘} 102202]n4602
i
;bl‘ 102202]174302 10‘2202] 11’430240
¥ 3.0 1622671113040 16726811 3040
'
!
} 102202]n4302 ]02202]W430240
y 5.0 1622641143044 1622621130842
‘2 1022021 n43o
0“3

T
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Table IV-4 (continued)

R (bohr)
162262174302 16%26211%30%40
7.0 1022021n43o4o ;022021n430402
1022021n4402
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Table IV-5

Summary of Observed and Calculated Results

Observed Calculated

Suggested Experiment

WF~ 1%t > 1.88 -0.01
HF~ 557 -- 5.87
HE~ 52 -- 7.3
HF~ 42n - 10.2
F" +H -- 2.9
F + H- - - 7-3
Electron Affinity F 3.45 3.17
Dissociation Energy HF 6.1 6.02

Vibrational
Excitation

Electron Impact

Dissociative
Attachment

-

; - f ot




Table IV-6

Original and Altered Basis Set Description

Variation

SCF Total
Energy (au)

-100.04905

Very Diffuse

Original + Z

Original + %

-100.04905

-100.04906

Original + £

-100.04911

Diffuse +
Very Diffuse

Original + €
.006, .003 H(p)

e

-100.04913
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Table 1V-7

! ‘|
|
t Z+ M.0. SCF Eigenvalues for Original and Altered Basis Sets

|

Basis Set
M.0. # 1 2 3 4 5

] -26.29879  -26.29880  -26.29881  -26.29709 -26.29788

? 2 -1.60169  -1.60170  -1.60171  -1.60113  -1.60143

1 3 -0.76886  -0.76887  -0.76887  -0.76834  -0.76858

0.00093 0.00077

0.00121 0.00274 0.00217  0.00337

; 6 0.00696 0.00924 0.00977 0.00615  0.00647
. 3

0.01225  0.00967

| 0.01978
]

| 9 0.01511 0.01592 0.01735 0.02001 0.02196

0.02161 0.02242

| 0.03603  0.04617

: 10 0.06850 0.06967 0.07051 0.08117  0.08168

'% 13 0.09187 0.09396 0.09437 0.12321 0.13316

i 14 0.26703 0.26782 0.26847 0.27758  0.27779
.
!
¥
Y
I
'
¢
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Table IV-8

SCF Energy and Eigenvalues for Original and Altered Basis Sets (au)

Original Basis Set Altered Basis Set
SCF Energy -100.04905 -100.04905
Eigenvalues
New M.0. -- +0.00114
Original M.O. +0.00696 +0.00936

v d Thgr il & aiTAe s
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Table IV-9

CI Energy within the Original and Altered Basis Set (eV)

Original Basis Set

Altered Basis Set

HF Ground State
Energy

HF™ State Energy
(New M.0.)

HF™ State Energy
(Original M.0.)

-2727.430

-2727.440

-2727.435

-2727.603

-2727.389

I SRR S
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CHAPTER V
CONFIGURATION INTERACTION CALCULATIONS ON THE RYDBERG

STATES OF HF AND THE FESHBACH STATES OF HF~

Introduction

In Chapter III, a background discussion of the nature
1 of tore-excited resonances was presented. Before descri-

bing our work in this area, we briefly review the relevant
concepts. Resonances in electron scattering can be
classified into two general categories. The first type
of resonance, called either a temporary negative ion or
simply a resonance, is formed when an incident electron
is temporarily captured in the region of a target molecule. ]

The second type of resonance, referred to as a core-excited

resonance, is characterized by a "hole" in a normally

) occupied orbital and two "particles" in normally unoccupied

1

l orbitals. The neutral Rydberg electronic state associated

with a particular resonance is cailed the parent state,

while the positive ion core is called the grandparent

S - e
.

state. The second type of resonance, commonly known as a

>

Feshbach state is the subject of this chapter.
Core-excited resonances can lie either above or below
the parent. Feshbach Type I resonances, with which we

are concerned here lie below the parent state and thus

R ——
Nl Tl W e VL

T, W

exhibit a positive electron affinity. . These resonances

have lifetimes that are long compared to a vibrational
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period. This characteristic is manifested through bands
with vibrational structure similar to the grandparent.
Since the ftwo electrons trapped by the ion core reside
in Rydberg orbitals located far from the core, it is not
unreasonable to expect the negative ion and the positive
ion to show similar vibrational progressions.

Resonance spectra in the rare gases have been studied
in great detai].2 Feshbach states have also been detected
and examined for various diatomic molecules, including
H2, Co, N
in electron scattering from polar diatomic molecules,

99 NO, and 02.2 Because of the general interest

experimental investigations on the Feshbach states of HF~

have recently been performed.3’4
The purpose of this chapter is to present the results

of configuration interaction calculations on the Rydberg

states of HF and the Feshbach resonances of HF . Before

discussing the results of the study, we briefly review

the pertinent experimental data on this subject and give

a description of the methods employed in our calculational

procedure.

Background
HF.

In spite of the corrosive nature of the vapor, the
excited states of the HF molecule have been the subject

of somc experimental investigations. The lowest energy

R e
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1

excited state of HF, the so-called B ol state, has been

studied the most widely. Johns and Barrow first found
evidence of the state in 1959 through a vacuum ultra-
violet absorption experiment.5 Through observation of
the first six vibrational levels, values for wg of 0.145

eV, and ro of 2.09 A (3.95 bohr) were determined.

1

DiLonardo and Douglas later reexamined the B Z+ state

6,7

both through absorption6 and emission, and detected

vibrational structure through about v=73. The v=0 Tevel

was found to lie 83,305 cm™ ' (10.33 eV) above the HF 'g*

ground state. According to DiLonardo and Douglas, the

vibrational levels are well behaved up to v=26, which lies

1

at an energy of 103,880 cm ' {(12.9 eV). Above v=26,

severe perturbations are observed as the bands of the

B state become mixed with other Rydberg bands. DilLonardo

3 1

and Douglas have detected a “n-X ¥ band in the region

1

of the v=27 level of the B'z’ state which they hypothesize

as being responsible for the perturbations. They also
suggest the possibility of perturbations beginning as low
as v=24, and speculate that lower unobserved vibrational

levels of the 3

1

m state may be the cause.

gt state has also been observed through electron
8

The B
energy loss. In this study, Salama and Hasted place the
v=5 vibrational level at 11.3 eV, the v=11 level at
12.2 eV, and report an We of 0.15 eV. This is in dis-

agreement with the data of DilLonardo and Douglas which
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shows v=5 at about 11.0 eV.

Other excited states of HF have also been observed
below about 14 eV. Salama and Hasted identified two Ryd-
berg series superimposed upon a dissociation continuum

which commences at 11.15 eV.8

The first series,assigned
as an s Rydberg series, is reported to originate at
11.72 eV with the 3s member. An w, of 0.35 eV and an
e of 1.207 R (2.28 bohr) for this member were determined.
The second series, tentatively classified as a p series,
is reported to originate at 12.82 eV with the 3p member.
The quantum defect of this state is rather high for a p
series (0.95), and Salama and Hasted do not rule out an
alternative assignment as an s series. The We for this
series was determined to be 0.30 eV.

DiLonardo and Douglas have also observed three
singlet Rydberg states which 1ie above a continuum in the
1400 A (8.9 eV) region.7 Between about 12.9 and 14.4 eV,

they find evidence of two strong ]Z+-X]Z+ bands as well

]n-X]Z+ system.6 Although

as a strong well-behaved
these states have not been analyzed in detail, the ]n
state is reported to originate at 13.03 eV with vibra-
tional spacing of 2656 cm'](0.33 eV).7

The B]Z+ state of HF appears to be well characterized,
and there is good agreement in all respects among the
reported experimental results. This does not hold true

for the Rydberg excited states of HF. There is clear
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disagreement between Salama and Hasted, who report two
series commencing at 11.72 eV and 12.82 eV, and Dilonardo
and Douglas who observe no Rydberg states below 12.9 eV.
The results of our calculations, which are discussed
shortly, clearly support the findings of DiLonardo and
Douglas and put into question those of Salamar and Hasted.
HE? .
The characteristics of the positive ion states of
HF are important in the study of the negative ion Feshbach
resonances. The nature of the core excited HF states
can be better understood by identification with their
grandparent HF+ states. Two ionization potentials of HF
have been identified, both through photoelectron spectro-

scopy.

The lTowest energy ionjzation potential is the HFt 2"

9,10

which is observed at about 16 eV, The Yo and re of

this state are reported by Berkowitz to be 3016 e

(0.37 eVv) and 1.026 A (1.94 bohr) reSpectively.]0
There appears to be some disagreement regarding the loca-

tion of the second ionization potential, a 22+ T

state. Lempka et al. place its origin at 18.6 eV,]0

while Berkowitz reports it to originate at 19.1 eV.g

22+ state is 1550 cm"

9

The vibrational spacing of the
(0.19 eV), about half that of the 2 HF' state.

Berkowitz reports a value of 1.20 A (2.3 bohr) for re.lo

e — v e L S
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HE”,

The Feshbach states of HF™ have been the subject of
two experimental studies, both of which utilized the
technique of electron transmission spectroscopy. Spence
and Noguchi find evidence ot a Feshbach state originating

at 12.825 eV.3 Four vibrational levels with a spacing

of 0.355 eV are analyzed. Because of the excel™ ' * ac
ment of the vibrational spacings with those - t. .
zn jonization potential, the state is assign « ¢. . ”n.

Spence and Noguchi also report a severe perturbation on

the first vibrational level of this state and prcvide two
alternative explanations for the cause. First, depending
upon the probabilities for {ransition, they speculate that

IZ+ state of HF may occur frou

perferential decay to the B
one or more of the vibrational levels of the coved L
state. Indeed, this explanation appears to be reasanab’

in light of the perturbations detected in the HF P]E+

state spectrum discussed earlier. The seco: i explanati- :
put forth is that the state may be crossed by a -« !
negative ion state. The interaction of the two stat s
would persumably cause a perturbation in the transwissic.
spectrum. Although Spence and Noguchi analyzed the
spectrum from about 11.5 to 15.5 eV, they found no evidenc»
of any other HF~ Feshbach states.

In a second experimental study, Mathur and Hasted

observe a sharp dip in the transmission spectirum
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4

10.05 eV. Although no vibrational structure is apparent,

it is. tentatively classified as a 2£+ state. According
to Mathur and Hasted, the lack of vibrational structure
can possibly be explained by an avoided crossing between
two states of the same symmetry. The vibrational progres-
sion would end after one level with the opening of a new
channel, that of a repulsive negative ion state.

Mathur and Hasted also report a distinct Feshbach

resonance at higher energy. This state originates at

12.388 eV, and based on an analysis of five vibrational

levels is stated to have an w, of 0.132 eV. Mathur and
Hasted discuss the fact that the vibrational spacing does

not agree well with that of the first ionization potential,
the 2“ HF+ state. Although it is not mentioned, neither

does the spacing agree with the spacing of the first
22+ HF' state. Neverthe-

less, the state is tentatively classified as a 22+ HF~

excited ionization potential, the

Feshbach state.

Mathur and Hasted discuss the disagreement of their
results with those of Spence and Noguchi. Mathur and
Hasted, who performed their measurements at a later date,
analyzed the spectrum in the region between 12.8 and 13.5
eV. They found it only marginally pcssible to detect
structure in spite of the fact that Spence and Noguchi
find clear evidence of a resonance in that energy range.

Alternatively, in Spence and Noguchi's investigation,
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performed earlier, no structure is reported between 12.3
and 12.8 eV, the region in which Mathur and Hasted detect
a Feshbach state.

In 1ight of the experimental data, we have attempted
to provide some insights on the interpretation of the
experimental observations between 9 and 14 eV through
configuration interaction calculations on the excited
states of HF and the Feshbach states of HF . Before
describing our results and comparing them with the experi-
mental observations, we provide a brief summary of the :

method used in our calculations.

Method

Although some aspects of the method used in the cal-
culations described here are the same as those given in
i Chapter IV, they will be repeated for convenience. The

i§ atomic orbital basis set was chosen to be sufficiently

flexible to represent both HF and HF~ for a range of

internuclear distances. A Dunning basis, the (9s/5p)
11

- ey

primitive gaussian basis of Huzinaga, contracted to

- -

(3S/2p)]2 was adopted, while the hydrogen was repre-

sented by the Dunning (2s) basis.]z In addition to these

, —— —
e —— G, WA e

functions, uncontracted Gaussian Rydberg s functions of

exponent 0,036 and 0.0066, and p functions of exponent

At el - -

0.074, 0.029 and 0.0054 vere added to F. Finally, a p

type polarization function of exponent 0.9 was added to

——re
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hydrogen and a d type, of exponent 1.15, to F. The com-
plete atomic orbital basis set is shown in Table V-1.

The SCGF wavefunction and energy for HF were calculated
within this basis set. Of the 30 molecular orbitals com-
prising the basis, only one, that of lowest energy, was
dropped from consideration in the CI calculations. Table
V-2 provides a list of the molecular orbitals and their
eigenvalues as well as the energy of HF at its equilibrium
internuclear distance. The SCF total energy of
-100.04905 a.u. can be compared with the near Hartree Fock
energy of -100.0705 a.u.]3

The SCF virtual orbitals of HF were assumed to form
an adequate basis for performing CI calculations on HF .

13 confirms that this assumption is

Previous work on HCI
Justified. The SCF virtual orbitals of HF are eigen-
functions of the full n electron HF potential including
its permanent dipole moment. Since, in a case of this
type, the scattering is long range, the target molecule is
relatively little perturbed by the scattering event.
Consequently, the HF virtual orbitals are assumed to be
a good representation of the natural orbitals of HF™,
Configuration Interaction calculations were performed
on the ground state of HF, the excited states of HF, the
Zn positive ion state, and the core-excited states of HF .

The latter states were derived by populating the appro-

priate HF virtual orbital with two electrons. 1In general,

e A e F
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a few seed configuration were selected to represent the
given. state of interest. Then all single and double

hole particle excitations relative to those few seed
configurations were generated to form the total CI space.
Solution of the CI problem was accomplished by the parti-
tioning technique which was discussed in Chapter II

and e’lsewhere.]s']7

Results and Discussion i

Full CI calculations on the states of HF and HF~
lying between about 9 and 14 eV were performed at a number

of internuclear distances. The equilibrium internuclear

separation of the HF molecule is 1.732 bohr, and we con-
sider 7.0 bohr as representative of the dissociation

limit. Before providing the results of our calculations,
we present a brief description of our M.0. notation system,
which should considerably simplify the discussion that
follows.

The values of the second column in Table V-2 number
the M.0.'s of the same symmetry sequentially, and each
degenerate pair of n and A M.0.'s is assigned one number.
We will refer, in the following discussicen, for example,
to M.0. number 3 as the 30 and M.0.'s number 4 and
5 as the 2n. Although the M.0.'s have the order shown
in Table V-2 at the equilibrium internuclear separation,

at distances larger than 2.5 bohr the order has altered.

N rdliE X G A R 4=
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Table V-3 presents the M.0. notation system for two separa-
tions, 1.732 bohr (equilibrium), and 4.0 bohr, for
reference purposes. In the CI calculations, all single-
and double-hole particle excitations were generated from
more than one base. In each case, these generating bases
were identified by their strong contribution to the final
wavefunction. For each state, we will present the occupa-
tions of the bases in the notation described above.

HF.

Table V-4 provides the details of the calculated
potential curves for the HF ground and excited states.
Figure V-1 displays these data pictorially. The generating
bases for each HF state considered here, together with the
weighting of the configuration in the final wavefunction
for a few appropriate internuclear separations are pre-
sented in Table V-5. We will discuss the characteristics
of each HF state in turn.

The potential curve for the 1]2+ HF ground state
is identical to that presented in Chapter IV. We will
therefore not repeat the analysis except to reiterate that
the calculated dissociation energy of 6.02 eV compares
well with the experimental value for De of 6.1 ev.il8

The 2'z* state indicated in Figure V-1 is the so-
called B state of HF. Its minimum, at 3.96 bohr is
calculated to lie approximately 10.62 eV above the ground

state of HF, This is only slightly higher than the
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experimental value for Te of 10.51 eV.5 Through a
parabola fit, we obtain an We of 0.15 eV which also agrees

well with the experimental value of 0.14 eV.7

At long
internuclear distances, near the equilibrium distance
for this state, the 2]Z+ B state is clearly valence in

character. In this region, it is apparently quite ionic

in nature and lies close in energy to the HY 4+ F~ 1imit

7

of 16.07 eV. At shorter distances, however, the state

is Rydberg in character and represents the first member

“ ; of an s Rydbera series leading to the first excited ioniza-
tion limit HF+(22+) at 19.1 eV. This change in nature

can be understood more easily by referring to the data

of Table V-5, The configurations contributing most
strongly at 2.3 bohr are those representing a positive

ion core with one electron populating successively

higher, Z+ M.0.'s. At 4.0 bohr, the dominant configuration

296%17%3040. At this longer distance, the 4o M.0.

1z+

is lo
has become valence in character. The fact that the 2
kv B state is the first member of a Rydberg series leading

to the 22+ jonization 1imit at shorter internuclear dis-

" tances raises the question of the higher members. In
exploratory CI calculations, we do identify higher members.

: Since all lie well above 14 eV in energy in the Franck

Condon region, we have not investigated them further.

The 3!

rt state is a Rydberg state leading to the

HF*(%n*) jonization 1imit. As Table V-5 indicates, it is

PR, 1V SEFRE W
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represented by the zn positive ion core plus an electron
occupying successively higher Rydberg m M.0.'s. 1Its
minimum lies 13.75 eV above the HF ground state at about

2.0 bohr separation. This state is likely to be one of

the ]z+ states observed by DiLonardo and Douglas between

12.9 and 14.4 eV. Although the perturbations observed in

]Z+ state may be

a result of the interaction of the B state with the 312+,

the higher vibrational levels of the B 1

it is unlikely that this could be the case. Figure V-1

1.+ ]X+

shows the crossing of the 1" and the 3 to occur at

about 13.7 eV. This is significantly higher than the
energy where the perturbations begin (12.9 eV). Even
assuming the calculated potential curves to be too high

by a few tenths of an eV, it does not seem reasonable that

the 3E+is responsible for the perturbations in the region

1

of the v=27 level of the B z+ state.

The 1!

1

A HF state is identical in orbital occupation

gt state just discussed. The two states parallel
1

to the 3

one another and the minimum of the 1°A at 13.66 eV s

]Z+ state. To our

only slightly lower than that of the 3
knowledge, this state has not yet been detected experi-
mentally.

According to Figure V-1, the 11w HF state is
repulsive. This state cerresponds to the dissociation
continuum reported by DilLonardo and Douglas to occur in

the region of about 1400 K (8.9 eV).6 At short

— o ' . ——“
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internuclear distances, the 1]n is the first member of an
s Rydberg series leading to the ionization limit HF+(2n).
The energy of this state at its minimum, together with the
location of the ionization Timit,leadsto a quantum defect

of 1.55,which seems reasonable for an s Rydberg series.

1

At longer distances, this state, like the B 2 Z+ state,

becomes valence in character. The 1]

1

n, together with the
1'5% W ground state leads to the limit H(ZS) + F(ZP).

The Z]n js probably the first member of a p Rydberg
series leading to the ionization potential HFY(%n). The
minimum energy of this state given the minimum energy of
the ionization limit results in a quantum defect of 0.74,

a value not unexpected for a p Rydberg series. Its
dominant contributions again come from configurations
representing an T core and one electron occupying higher
energy ¥ M.0.'s. The minimum of this state lies at 1.978
bohr, 13.40 eV above the HF ground state. We calculate

an w, of 0.26 eV. DilLonardo and Douglas speculate that the
cause of the perturbations above tne v=26 vibrational level

in the B

gt state are due to a crossing of the B state by
a 3n state. They observe this perturbation at 12.9 eV.
The resultsof our calculations support Dilonardo and
Douglas' interpretation. the 2]n crosses the B state at
about 13.4 eV according to Figure V-1. Assuming the 3n
state lies a few tenths of an eV below the 2]n, it would

indeed be in the proper energy range to explain the

o S
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perturbations. Indeed, there appear to be no singlet
states in the energy region of the perturbations. Our
calculated curve for the 2! state lies about 0.25 eV
above the experimental value for Te of 13,15 eV.6

The Z]n state might also be the state observed by
Salama and Hasted at 12.82 eV.8 Since our ab initio
procedure generally produces results that are too high by
a few tenths of an eV when compared with experimental
values, this is certainly possible. The location of our
calculated state, however, seems to agree more closely
with the experimental data of Dilonardo and Douglas who
placed the observed m state slightly higher in energy.

The 3]ﬂ state is probably the second member of the
s Rydberg series leading to the HF+(2n) jonization limit.
Its dominant contributions to the final wavefunction
illustrate this fact. At the calculated minimum of 1.977
bohr, the state lies 13.96 eV above the ground state of
HF. Through a three point parabola fit, we calculate an
wg of 0.37 eV. This state has apparently not been
observed experimentally,

We have calculated the potential curves for the
ground state and six excited states of HF below 14 eV,

The l]n, and the 3]

m in the Frank Condon Region are likely
to be successively higher members of a Rydberg s series
leading to the first fonization limit HF'(%n). The 2'x

is probably the first member of a p Rydberg series leading
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]z+ state at short internuclear

to the same limit. The 2
distances is the first member of a Rydberg s series
leading to-the excited ionization limit HF+(22+). At
longer internuclear separations, this state is valence
in character and leads to the limit H' + F*. The 3's*
and the ]A states are each the first member of a Rydberg
p n series leading to the ionization limit HF+(2n).

OQur calculated potential curves agree in all major
respects with the experimental results of DiLonardo and

Doug]ass’7

and find some disagreement with the results

of Salama and Hasted.® We are convinced that no states
other than those we have claculated lie within the

energy range of about 11 to 14 eV. We do not find the
Rydberg series reported by Salama and Hasted at 11.72 eV.

HE',

In the course of this study, we found it useful to
perform what are probably the first configuration inter-
action calculations on the HF+(2n) state. We find its
minimum at 1.92 bohr at an energy 16.05 eV above the
ground state of HF (11Z+). We calculate an w, of 3211
em™ ! (0.398 eV) through a three point fit to a parabola.
These calculated data agree exceptionally well with the
experimental data which place the state at 16.05 eV
with r = 1.94 bohr, with an w, of 3016 cm™' (0.37 ev).'®
HE™.

For convenience, we will present the results of the
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results of HF potential curves for two separate energy
regions: 9 to 12 eV, and 12 to 14 eV, First, however,
! a few general comments on the HF™ state calculations

will be useful.

Each of the HF states has a parent HF excited state i:
: and a grandparent HFt state. The grandparent state is
readily identified by the “hole” in the normally occupied
M.0.'s. Although in the discussion of the states of HF,
we presented results only for singlet states we can
presume that each has a corresponding triplet state where
the electrons occupy the same spatial M.0.'s but have
unpaired spins. By adding‘an extra electron to one
of the other M.0.'s of each HF state, we can produce an

HF- Feshbach state. Thus each singlet HF state is the

parent of one HF state, and each triplet HF state is the
parent of one HF state. For every singlet state con-
sidered in the last section, there are therefore two

corresponding HF™ states, one of which has a singlet HF

parent and one of which has a triplet HF parent. Because

i

of this "doublying" effect, the spectrum of the HF states

- -——
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is extremely dense in the region of 9 to 14 eV, In addi-
tion, most of the HF™ states that lie in this energy

range are repulsive at all internuclear distances. This

is not unexpected, particularly at lower energies, where

the binding energy to the grandparent positive ion core is

i - very large.,

s, W4
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We have calculated the potential curves of all HF~
Feshbach states between 9 and 14 eV that are formed when
an extra electron is added to the calculated singlet HF
excited states and their corresponding triplet states.

We do not presént the detailed potential curves of- the
states that are repulsive except where they are important
to the interpretation of the experimental data.

9-12 eV.

Table V-6 presents the calculated energy results for
the HF™ potential curves that are displayed in Figure
V-2 for this energy range. Table V-7 lists the configura-
tions used as bases in the calculations for excitation
generation together with their final percentage weighting
in the wavefunction for various pertinent internuclear

distances.

2 2 2

The 7 z+, the 8°z% and the 9%t HF™ states are all

2

repulsive Feshbach states. The 6°Z% HF™ state which

crosses these repulsive 22+ states is a resonance HF~

state comprised of a fully occupied HF core with the

extra electron occupying a valence 2+ M.0. The states

in this energy region are of interest solely because of

the dip observed at 10.05 eV in the transmission experiment

of Mathur and Hasted.4
The 625 HF™ valence state is formed by occupation

of the HF core with the extra electron in M.0. #17. We

have not attempted to examine the characteristics of this
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state further since it is important only because it

crosses the other 22+ Feshbach states.

22+ HF™ state is formed by adding two electrons

22+ HF+ core.

The 7
to the normally unoccupied 2+ M.0.'s of the
At longer distances this state crosses the 522+ state
which leads, together with an HF~ 2ﬂ state to the limit.

H(Ys) + F(%)). A detailed discussion of the 5 and 7

22+ states was presented in Chapter IV. At short inter-

2g* HF~ state descends rapidly

and crosses the 8 and 9 22+ states at about 2 bohr. These

nuclear distances, the 7

latter states are formed by theadditionof two electrons

to the normally unoccupied n M.C.s of the zn HEY core.

The parent of the 72x+ state is the triplet corresponding

1

in orbital occupation to the B 2 z¥ HF state. The

2

parent of the 8 t¥ state is the triplet corresponding

to the 312+ HF state while the parent of the 922+ HF~

state is the §Z+ state of HF. The grandparent of all

three states is the 2“ HF+ jonization limit.

The left hand side of Table V-6 displays the diabatic

curves for the four 2x* HF™ states. On the right hand

side, the adiabats that might produce the observed dip

in transmission are illustrated. We have shown the

82 2

£¥ state to cross the 9 and 7°z* states diabatically

at about 2.0 bohr. At approximately 2.2 bohr, the
822+ state begins to interact with the 62£+. It follows

the 62):+ state curve for a short distance, then dissociates

-~ ————--J —




- -

- A—‘.

Lo e ey YT W

[

i B s T B e > et ——————— * . PO e

rams W

-135-

2

and adiabatically follows the curve of the 8 Z+ state.

Whether or not the complex adiabatic interaction of
the four 2£+ states actually occurs must remain specula-
tive. The calculated energy where the interaction occurs

agrees with the experimental value of 10.05 eV.4

It also
appears from the adiabats of Figure Y-6 that only one
vibrational level is excited before the dissociative
channel is open, which also confirms the experimental
data. Although this type of interaction might explain

the dip in transmission observed by Mathur and Hasted,
there is at least one strong reason for it to be unlikely.
The main problem with the assignment of this avoided
crossing as the experimentally observed feature is that

it would occur at about 2.2 bohr. This is well outside
the Franck Condon region, and it seems reasonable to assume
that it would therefore not be detected in a transmission
experiment. Thus, although we do not believe the crossing
to correspond to the experimental data, we have raised the
possibility here for completeness.

12 to 14 eV,

In Table V-8, we present data for three potential
curves shown in Figure V-3 for the HF™ states within this
energy range. Table V-9 lists the gecnerating configuration
bases and their percentage weightings in the final wave-
funtion at 1.732, 2,0, and 2.5 bohr. As discussed earlier,

there are numerous HF™ states in this energy region.
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It is noteworthy indeed, that only one of these states,

the 62n, appears to be bound, and only two other states,
the 5 and 72w cross it. The details of most of the other
states are not presented since they complicate the spec-
trum and are not relevant to the explanation of the
experimental data.

The 5, 6, and 7 2 HE" states of Figure V-3 are
formed by adding two electrons to higher energy £t M.0.'s
of the HF' (Zn) core. The grandparent of the three =«

states is therefore the 2" HF+ ionization limit. The

20 is the 3

2

parent of the 5 m HF state shown in Figure

2

V-1; the parents of the 6°n and 7°nm states are a singlet

and a triplet state of HF lying at about 15 eV. Although
the singlet HF state is not shown in Figure V-1, it is
the 5]n state of HF. Table V-10 gives the energy and

weighting of the configurations contributing most

2

strongly to the final wavefunction of the 5°7m HF  state

1

and its parent, the 3'm HF state. Table V-11 provides

2

the same information for the 6 and 7w HF~ states and the

]n HF state.

72n parent, the 5
Identification and assignment of the HF~ Feshbach
states is an extremely complicated exercise for two
primary reasons. First, it is frequently difficult to
follow a negative ion state from point to point across

the potential curve because of the density of states of

the same symmetry. Second, parentage assignment is often
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not straightforward both because we have only obtained
results for the singlét HF states and because these HF
states are themse]vés interacting with other neutral
excited states across the surface. Given the information
of Tables V-10 and V-11, however, we will attempt to
clarify the techniques we used for identification. We
emphasize that these methods are somewhat qualitative
in nature.

The 5%n HF™ state described in Table V-10 is one
3 of the two HF ™ states that crosses the bound 621 HF”
g state. At all three internuclear distances, its largest
contribution to the final wave function arises from the

confiquration 1022023021n3402.

This contribution, however,
diminishes as we move to longer internuclear distances.

Alternatively, at the equilibrium internucliear distance,

the contribution from the last 1isted configuration,
22 2 3
(0}

e e e Tae -

lo 3024n 8c is minimal, but becomes singificant at

2.5 bohr. We thus conclude that the state is losing the

character of the first configuration and picking up the

- g
S P ) ST

character of the last configuration as we move across the

R

surface.

o —

i B o P . o e metistmt e

One of the methods we use to "recognize" this state |

e

at the three distqnces is by noting its largest contri- !

buting contributions. We have just seen, however, that ‘

the large contributions change somewhat from point to

point. The other method we use to identify the state at

), W
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each point is by the constancy in the signs of the

spin functions of the configurations. From 1.732 bohr
to 2.0 bohr, the signs of the third configuration and
one spin function of the fifth configuration of the
52y HF™ state have changed. It may be that the first

spin function of the third configuration has "gone through
zero" between the calculated points. It is more obvious
that the second spin functions of the third and fifth
configurations have indeed "gone through zero". These
become larger and opposite in sign between 1.732 and 2.0
bohr.

1

At 1.732 bohr, the 3 'nm HF state has its largest

235240340, At

2
contribution from the configuration lo 20
longer distances, the weight of this configuration
diminishes while the contribution of the configuration

2, 2.3 1

10220 30 1m%70 increases. The 3'wm HF state interacts

strongly with another state, the Z]n HF state shown in
Figure V-1. The largest contribution to this latter
state at 1.732 bohr is the configuration that attains

increasing weight in the 32

m HF state.

Parentage assignment of Feshbach states is extremely
qualitative in nature. It is important to emphasize here
that the HF parent state and the corresponding HF state
need not retain identical character across the potential

surface. One must keep in mind that the HF states inter-

act with other HF states, while the HF~ states interact
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with other HF™ states of different character. The
parentage assignment is based largely on the character
of the states of 1.732 bohr. In addition, there is one
other important identifying characteristic. The signs
of the spin functions of a particular HF states are
either in phase or out of phase within a'particular
spin function and should ideally mimic those of the parent
HF state at all internuclear distances. 1In conjunction
with this observation, it should be kept in mind that the
sign of the first spin function of a particular state is
arbitrary and it is only the signs of the other configura-
tions relative to the sign of the first confiquration that
is important.

We observe that the largest contributions to the

wavefunction of the 52

22023021ﬂ340 no, where n > 4. The parent state of the

m HF™ state are the configurations

lo

Szn state should thus be expected to have a large contri-

2, 2,3

bution from the configuration 10220 30°17740. Indeed,

we note that the 3]n HF state fulfills this requirement.

It is primarily on this basis that we believe the 3]n

2

HF state to be the parent of the 5% HF™ state.

In Table V-11, we shov the energy and the contribution

to the final wavefunction of the 62

2

m HF™ state, the bound
state, and the 7°m HF  state which crosses it. We
illustrate the same data for the assigned parent S]n

HF state. We think it probable that the parent of the
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Gzn HF™ state is the triplet counterpart to the Sln HF
state simply because triplet states genevrally lie lower

in energy.

At the equilibrium internuclear distance, the 51"

230241r380.

HF state is dominated by the configuration 10220
The same configuration, with the extra electron occupying
the 40 M.0. also dominates the two HF™ states. We note
also that the relative signs of the spin functions of the
HF~ states mimic those of the parent 5]n HF state
reasonably well. Because of the heavy mixing among the

5, 6, and 72n states, however, this recquirement does not
hold exactly. Another significant observation is that

the relative signs of the spin function within a particular

2

configuration are in phase for the 6°n HF™ state and out

2

of phase for the 7°n HF™ state. 1In our experience, this

is the expected behavior for two HF™ states arising from
the same singlet and triplet parent HF state.

It was already noted that the character of the 52n
HF™ state shown in Table V-10 changes between 1.732 bohr

and 2.0 bohr. The contribution of the first confiquration

decreases while that of the last configuration

1022023024n4080 increases. Exactly the reverse behavior

is observed for the 6 and 72n HF™ states. This can be

understood readily with the aid of Figure V-3. Both the

2 2

5 and 7°m states cross the 6°m bound HF ™ state just beyond

2.0 bohr. It is therefore expected that all three states,

e [ --“-J —_—— .
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which are of the same symmetry, begin to interact strongly
at 2.0 bohr. This is indeed the reason for the change

in character of all three HF™ states between 1.732 and

2.0 bohr.

The Feshbach state observed experimentally by Spence
and Noguchi at 12.825 eV3 clearly corresponds to the 62n
state of HF  which has a calculated energy of 12.795 eV
at 2.0 bohr., The reported perturbation on the first vibra-
tional level of the bound state is undoubtedly due to the
interaction of the 6%n HF™ state with the 6 and 727 HF~
states. At 2.0 bohr, the 52n and 72n states 1ie about
0.2 and 0.4 eV above the 62n states respectively. The
vibrational spacing of the state observed by Spence and

Noguchi is reported to be 0.355 eV.3

It is therefore

reasonable to assume that one or both of the interacting

states are responsible for the perturbation. Through a i
three-point parabola fit, we have calculated a vibrational

spacing of 0.61 eV for the 621 HF™ state. This is much

~e

larger than the experimental value of 0.355 EV. We believe

- -—
Ve

e, B e A T D B ct—— =

che poor agreement with experiment to result from the
wide spacing of the three calculated points., The good

agreement with experimental obtained for some of the HF

o~ WP

states could be because the calculated energy points were

N

more closely space; it might also be that the agreement

was simply fortuitous. 1In any case, we do not believe

2

that the 6°n HF state is the Feshbach state observed by

= myy

- _ ot —
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Mathur and Hasted at 12.388 ev.]4 The authors themselves

admit that the vibrational spacing of the state,
0.132 eV, does not agree with the vibrational spacing of
the grandparent et (zﬂ) state. Our calculated spacing is
much higher than 0,132 eV, and at least is closer to the
experimental value reported by Spence and Noguchi.

In summary, we find ourselves in good agreement
with the HF  experimental rcsults of Spence and Noguchi,
but in disagreement with those of Mathur and Hasted.
We do not believe the complicated set of adiabats displayed
in Figure V-2 explains the resonance observed by Mathur
and Hasted at 10.05 eV, We do not find the attractive
state reported to orcur at 12,388 eV. On the other hand,
we do find an attractive state in the region of 12.8 eV
with characteristics tnat agree in all major respects with
the results of Spence and Noguchi, It should be noted that
we also find disagreement with the HF results of Salama
and Hasted which were apparently obtained in the same
laboratory as the HF results of Mathur and hasted.

Binding Energies.

As discussed earlier, the binding energy of a negative
ion state is defined as the difference between the experi-
mentally observed energy of the negative ion state and

the energy of the positive ion state, or the ionization

Jimit. The binding energics of two 350g electrons to
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the positive ion core have been determined for several

diatomic molecules. They have all been found to be

about 4 eV. The binding energy of the 62n HF™ state
given in Figure V-3 is approximately 3.3 eV, calculated
at the energy minimum. This binding energy is lower than

}
that of any of the resonances of the diatomic molecules J

given by Schulz in reference 19. This implies that the
two outer electrons in our calculated state are held less
strongly to the positive ion core than they are in the
other diatomic molecules that have been investigated.
The3sog M.0. in these diatomic molecules corresponds
to the 40 M.0. in HF™ at short internuclear distances.
In HF™, one of the configurations contributing to the
final wavefunction is certainly that of the position ion
core with two electrons occupying the 40 M.0.. However,
the contributions to the final wavefunction also include
other configurations. The parent state of the HF~ 62n
Feshbach state is the third member of an s Rydberg series
(n=5) leading to the zn HFY ionization potential. We
can therefore assume that, on average, at least one of
the additional electrons in the HF™ state occupies an
M.0. for which n=5. That this electron is held more
loosely to the core than would be an electron in a 3so

9
M.0. is reasonable. We thus expect the binding energy

to be less than for the diatomic molecules reported by

Schulz.
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The electron affinity of a detected resonance can

be calculated by taking the difference in energy of the
HF~ state and the corresponding HF parent state. The

2 3

parent of the 6“w HF™ state is the 5

m HF state which we
did not calculate. However, asuming the tviplet to be

a few tenths of an eV below the corresponding singlet
state, we would expect an electron affinity of about

2 eV at 2.0 bohr.

Conclusions

We have reported the potential curves for the ground
state of HF, several excited states of HF, and some of
the Feshbach states of HF . Our calculated potential
curves for the states of HF, though slightly high in energy,
give good agreement with the experimental observations

of Dilonardo and Douglasﬁ’7

8

and poor agreement with those

of Salama and Hasted.

The results of the HF™ calculations clearly illustrate
the utility of applying ab initio techniques to the
study of negative ion states. We identify a complicated
set of adiabats in the region of 10 eV which could
conceivably be the cause of an observed dip in transmission
observed by Mathur and Hasted.4 Because of the location
of the crossing of the states on the potential curves
(> 2.0 bohr), however, we believe that the interaction

is too far from the Franck Condon.Region to be detected.
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Neither do we find an attractive HF state in the energy
range of 12.388 eV also reported by Mathur and Hasted.4

In contrast, we do identify a Feshbach state at 12.8 eV

with characteristics that agree in all major respects

with a state detected by Spence and Noguchi.3
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Table V-1

Gaussian Basis Set

Fluorine Hydrogen
fs [5s] Zs [2s])
? 9995.0 0.001166 13.36 0.032828
= 1506.0 0.008870 2.013 0.231024
! 350.3 0.042380 0.4538 0.817226
‘ 104.1 0.142929
34.84 0.355372 0.1233 1.000000
12.22 0.462085
4.369 0.140848 (1p]
12.22 -0.148452 1.000000 1.000000
‘ 1.208 1.05527
0.3634 1.000000
‘ 0.03€ 1.000000
0.0066 1.000000
2 p [5p]
3 44.36 0.020876
; 10.08 0.130107
! 2.996 0.396166
E 0.9383 0.620404
: 0.2733 1.000000
M 0.074 1.000000
|
&% 0.029 1.000000
‘
¥ 0.0054 1.000000
! % d [1d]
13 1.15 1.000000
1
K
i
]
T

At
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f
C .
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Table V-2

e e e e WA

SCF Results for HF (R = 1,732 bohr)

M.0 Text Notation Symmetry Eigenvalue (a.u.)
+
, 1 1o 5 -26.29879
: 2 20 t -1.60169
| 3 3o rt -0.76886
! 4 : m -0.65063
m
5 m -0.65063
6 4c ot 0.00696
7 ’ . 0.01335
™
; 8 - 0.01335
9 50 gt 0.01511
10 60 gt 0.06850
| n 3 - 0.07965
ki3
: 12 n 0.07965
13 70 ot 0.09187
14 8g gt 0.26703
! 15 4 m 0.30504
) v
5 16 - 0.30504
I 17 % zt 0.32973
’E 18 100 ot 0.92540
N 19 o st 1.33003
‘f 20 a 1.34772
i 5n
Lf 21 ™ 1.34772
" 22 125 gt 1.71036
! 23 6 - 1.84189
| ™
y 24 n 1.84189
*j 25 130 gt 2.75879
¢ 26 " A 2.91399
“% 27 A 2.91399

R, Y,

LTI
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Table V-2 (continued)

M.0. Text Notation Symmetry Eigenvalue (a.u.)
28 7 s 3.35095%
m
29 b 3.35095
! 30 l4o gt 4.17831
i 31 150 gt 5.65648

Total Energy: -100,04905 a.u.
Nuclear Repulsion Energy = 5.19630 a.u.
.i Total Electronic Energy = -105.24535 a.u.
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: Table V-3
z
SCF Molecular Orbital Designation
M.0. # . 1.732 4.000
o Order Symmetry Order Symmetry
‘; 1 1o gt 16 5t
2 20 Z+ 20 E+
3 30 Z+ 1 T
T
4 n 1r
1 kis
5 m 30 5t
6 4c gt 4o ot
+
7 o T 50 )
8 n 'n
2n
9 50 Z+ T
10 60 gt 60 5t
n 30 T 3 1
12 i m
12 70 ot 7o 5t
14 80 st 80 st
15 4 v 4 m
16 w e
17 90 gt 9o gt
18 100 gt 100 £t
+ +
19 Mo z 1o z
20 5n i 5 ™
21 1r ™
22 120 gt 120 ot
23 63 m 6n m
24 Ui s
25 13¢ gt 130 gt
26 12 4 7n T
27 A ™
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Table V-3 (continued)

M.0.

1.732 4.000
Order Symme try Order Symme try
+
28 - b 140 z
29 1; 1A A
30 140 pX A
31 15 gt 150 ol
-——n—-—# ——d ™S
i it
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Table V-6

Energy Points for HF™ -- 9 to 12 eV 2

Internuclear Distance (bohr)

State 1.732 2.0 2.5 4.0
2+

61 -- 8.811 10.324 -
2.+

7°t 13.601 11.328 8.716 5.809
2.+

8°Z 11.887 11.258 9.379 6.362
2.+ a

9°r 12.657 11.521 9.923 6.506

Relative to HF at equilibrium, E = -2727.430.
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Table V-8
Calculated CI Energy Points for HF- -- 12 to 14 eV @

Internuclear Distance (bohr)

State 1.732 2.0 2.5

HE™ 5%n 13.418 13.016 12.642
HF™ 6%n 14.203 12.795 14.722
HF~ 7%n 14.498 13.229 11.994

3 Relative to HF at equilibrium, E = -2727.430 eV.
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