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PREFACE

Procurement decisions regarding Department of Defense satellite

systems are usually based upon the assumption of a reliable and de-

pendable launch system. Attempts to relate disruptions of launch

operations to numbers of satellites on-orbit often take the form of

discrete-event simulations (requiring significant numbers of data in-

puts and large amounts of computer time). The purpose of this Note

is to present an alternative method for evaluating how launch opera-

tions affect orbital status. The method is an extension of a previous

modeling effort explained in Rand Note N-1295-AF, Cost-Effectiveness

Measures of Replenishment Strategies for ast-ms of Orbital Spacecraft.

A distinct difference exists, however, between the present Note

and the previous one. Because variations in launch activities are likely

to be transient phenomena, the modeling approach adopted here must be

capable of reflecting the orbital status of a satellite system over

time. The transient-state-analysis approach that is adopted is a form

of continuous simulation (as opposed to discrete-event simulation),

an approach traditionally limited to the analysis of systems in the

physical sciences.

Extension of the continuous-simulation approach to operational

phenomena should provide a whole new perspective to analysts dealing

with functional systems and organizations. This methodology requires

significantly fewer inputs than discrete-event simulations and can be

impl ented on a programable, hand-held calculator, saving expensive

computer and data-gathering time.

This work was done under the Project AIR FORCE study effort "Space

Shuttle Issues."

At the time this Note was prepared, the author was assigned by

the Air Force Space Division to The Rand Corporation as a Research

Associate.
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SUMMARY

The successful operation of a space launch system, such as the

space shuttle, is vital to the maintenance and improvement of satellite

operations. This Rand Note demonstrates that a reasonable method

exists for quantifying this dependence relationship, laying the ground-

work for a cost-effectiveness analysis of alternative backup launch

systems.

The methodology employed is an extension of the approach described

in the author's Note N-1295-AF, Cost-Effectiveness Measures of Replen-

ishment Strategies for Systems of Orbital Spacecraft, December 1979.

In that document, changes in the status of a satellite orbital con-

figuration were represented by a system of ordinary, linear, differen-4tial equations. These equations were then used to derive steady-state

cost-effectiveness measures. The present Note formulates the general-

ized version of these differential equations, gives examples of appro-

priate time-dependent equation coefficients, and shows how continuous

simulation (numerical integration) is employed to obtain useful compari-

sons from the equations. The analysis can now reflect a variety of

transient phenomena in the context of spacecraft and launch system

interaction.

The methodology employed here has several benefits. As explained

within the text, very few pieces of data are required to reflect the

impact of transient phenomena, yielding high informational content.

Moreover, concepts of continuous simulation (normally applied to

physical mechanics problems) have been extended to the study of

behavioral/sociological (queueing) systems.

Specific examples include a comparison of the impact of power

cycling and the risks associated with failure to provide backup launch

systems to the space shuttle. In these examples, the appropriate dif-

ferential equation coefficients are explicated (as a function of

satellite and launch system operational characteristics), and the

appropriate data are employed in a continuous simulator. The actual

simulation code is documented in the Appendixes.



~-vii-

CONTENTS

~~~PREFACE ............. . . . . . .. . . . . .......... . ........ i

SUMMARY .............................. v

Section
1. INTRODUCTION .... . .................. 1

1.1 The Scenario for Launch System Operation ........ 2
1.2 Some Measures of Satellite System Performance .... 3
1.3 A General Model of Orbital/Launch Operations ..... 5

2. COMPUTATIONS FOR MEASURING THE IMPACT OF LAUNCH SYSTEMS ... 6
2.1 Closed Form Solutions ............. ....... 7
2.2 The Diffusion Approximation Approach .... .... 10
2.3 Continuous Simulation of Satellite/Launch

Operations .......................... 12
2.4 The SPACE Model ........................... 13

2.4.1 Required Inputs .......................... 14
2.4.2 The Algorithms Used .................. .... 15
2.4.3 Modeling of Orbital/Launch Activities ..... 16

3. THE INFINITE INVENTORY CASE ......... .............. 19
3.1 Closed Form Solution .............................. 21
3.2 Comparison with SPACE Model ........................ 23
3.3 Limitations of the Simple Example ................ 25

4. SPECIAL CASES ......... ............................... 26
4.1 Satellite Power Cycling ............. . ...... 26
4.2 Disruptions in Launch Operations ................... 30
4.3 The SPACE Model and Cost-Effectiveness ............. 34

5. CONCLUSIONS .... ...................... 37

Appendix
A. USER INSTRUCTIONS ............. ...................... 39
5. MODEL DOCUMENTATION .o................................... 40
C. "SPACE" MODEL SOFTWARE ................................. 42

REFERENCES ............................................... .. 61



1. INTRODUCTION

Satellites are placed in various orbits in space for a whole

range of functions, including comunications, weather monitoring, etc.

When satellites on-orbit fail, they must be replenished. Even if this

replenishment is accomplished via an orbital spare, the requirement

for a reliable and dependable launch system cannot be avoided (even

the spare has to be launched). Thus, the existence and successful

operation of a space launch system is vital to the maintenance of an

orbital configuration of satellites. The goal of this Note is to

demonstrate that a reasonable method exists for quantifying this de-

pendence between satellite operations and launch operations.

In order to realistically evaluate the launch/orbital relation-

ships, the approach employed must be able to reflect the impact of

variations in operational activities. For instance, a satellite sys-

tem is often procured as a single-lot buy. After the initial pro-

curement is launched, no more launches occur. Thus, the relationship

between launches and orbital operations varies depending upon the

phase of the procurement process. During procurement, a launch sched-

ule dominates the relationship; after procurement, the fact that no

launches occur must be reflected. These transient phenomena are usually

implemented in the form of a discrete-event simulation [1].

However, a discrete-event simulator usually requires a large data

set, significant execution time, and disproportionate development

time. The approach employed here is significantly different. The

relationship between launches and orbital activities is represented

as a system of simultaneous differential equations. For a given set

of initial conditions, the equations can be numerically integrated

over time to reflect orbital status in response to transient launch

phenomena. In recent years, this numerical integration approach has

been applied to physical systems and is referred to as continuous sys-

teas simulation. As will be demonstrated, a variety of changes in

launch conditions and orbital considerations are handily modelled

through the appropriate choices of the coefficients in the differential

equations.
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The appendixes to this Note contain the required user documenta-

tion for a continuous simulator of satellite systems. Some of the ap-

plications of this simulator appear in Sections 3 and 4. Moreover,

an example is presented which compares a closed form analysis to the

simulated results for a severely restricted case. An additional, use-

ful section demonstrates ways in which the simulator outputs may be

employed in making policy decisions regarding launch system procurement.

1.1 The Scenario for Launch System Operation

Space launch systems exist for the primary purpose of placing

satellites into an orbital plane. A space launch system is defined

as the set of operational systems required to place a satellite in

orbit, which includes the launch mechanism itself and all of its ground

support equipment. An assumption is made that launches occur on a

regularly scheduled basis so that summary performance characteristics

of t he launch system may be defined.

Launch systems may be classified as reusable or expendable. For

reusable systems, one may define the turn-around-time (TAT) as the

average time from landing to relaunch. The performance of expendable

systems may be succinctly described by the minimum time to launch

(MTTL). The MTTL is defined as the average time required to prepare

and to launch assuming a launch vehicle is available in inventory.

In either case, a series of launches (regardless of the vehicle

source) may be summarized by the mean-time-between-launches (MTBL).

In this case, the meaning is obvious.

The goal of operating a launch system focuses upon providing a

service to any satellite program. In most cases, the satellite pro-

gram desires to maintain a certain number of satellites on-orbit in

a certain orbit (in order to perform a specified mission). Thus, the

performance of the satellite system can be measured by the average

number of satellites on-orbit. An additional performance measure for

satellite systems is the availability of the system. A

satellite system is said to be available if a certain specified num-

ber of satellites is on-orbit. (This minimum number required varies

across satellite programs depending on the mission of the program.)
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Discussions below indicate that both the average number of satellites

and the system availability are derived from the same set of probabil-

istic data. Thus, measuring one of the performance characteristics

necessarily implies knowledge of the others.

This Note relates the performance of satellite systems (as mea-

sured by the average number of satellites on-orbit) to the perfor-

mance of launch systems (as measured by one of TAT, MTTL, or MTBL).

The model developed is general enough to permit comparisons of the

impact of a variety of transient phenomena (launch disruptions, etc.).

The model is relatively easy to implement and to modify and requires

minimal amounts of data (relative to large-scale, discrete-event simu-

lators).

1.2 Some Measures of Satellite System Performance

In order to measure satellite effectiveness on a transient basis,

a few simple extensions of a previous work are necessary. In Rand

N-1295-AF [1], a state-space, Markov process approach was employed to

assess the on-orbit availability of satellite systems. The logical

analogues of the Markov process performance measures are presented in

this section.

For purposes of this discussion, the following notation is de-

fined:

n - number of operational satellites on-orbit;

M - maximum number of satellites on-orbit;

X (t) - expected failure rate per unit time of an individual

satellite, as a function of the number of satellites

on-orbit (n) and the specific time of the operational

cycle (t);

ln(t) a expected replenishment rate per unit time of an individu-

al satellite, as a function of the number of satellites

on-orbit (n) and the specific time of the operational

cycle (t);
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{ (t)) - the set of all failure rates;

{n (t)} - the set of all replenishment rates;

A(t) - availability of a satellite system at time t;

E[nlt] - average number of satellites on-orbit at time t;

P (t) - probability that n satellites are on-orbit at time t.
n

The notations for failure and replenishment rates represent the most

general form and are meant to reflect the transient nature of various

operational concerns. In fact, a single member of {n (t)) or

it{i (t)} may itself be a set of functions. Specific examples are pre-

sented in Sections 3 and 4.

The performance of the satellite system may now be measured as

follows:

A(t).= PN(t) + ... + Pr(t)

E[nItl = Z nPn(t)
n0o

where

P(t) = f[{Yn(t)}; fpn(t))]

and {in (t)) = g[TAT or MTTL or MTBL]

n(A n(t)} = h[MMD]**

Subsequent sections give examples of how f, g, h may be numerically or

explicitly determined. Thus, the performance of the satellite system

can be directly related to the performance of the launch system. More-

over, since the form of {u n(t)} is general, a variety of launch operation-

al phenomena can be analyzed.

* Assumes a minimum of N < N satellites are required for availability.

** MKD - Mean Mission Duration - Average measure of satellite lifetime
under the satellite reliability function.
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As described earlier, the above discussion demonstrates that both

availability and expected number on-orbit can be computed from knowledge

uf the Pn(t). Thus, once the latter have been computed, one can pre-

sent the information in either form. For the remainder of this Note,

the result of any analysis is presented in the form of E[nit].

1.3 A General Model of Orbital/Launch Operations

Using the terminology described above, a set of conditions can be

described which characterizes the P (t). This set of conditions takesn
the form of a system of ordinary differential equations with corre-

sponding boundary conditions. These equations with boundary conditions

form the general model of orbital/launch operations.

Using a state-space approach, as in [1], one can demonstrate that

the P (t), upon which satellite performance is measured, must satisfy
n

the following conditions:

dPo(t)
(1.1) dt = -io(t)Po(t) + I1(t)Pl(t) n = 0

on(t)

(1.2) dt = -[nn(t) + In (t)]P (t) + Mnl(t)Pn-l(t)

+ (n + 1)An+l(t)Pn+l(t) o < n < M

dPM(t)
(1.3) dt -M 4(t)PM(t) + j 1 (t)ex-1 (t) nM-1

1 ifn a

(1.4) P (0).

0if n a

where a - number on-orbit when the system state is initialized.

This system of ordinary differential equations demonstrates how

the P n(t) change over time, as a function of launch system operations--
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reflected by the appearance of {V (t)) throughout the equations. A

close examination of the equations reveals that launches are condi-

tioned upon failures during previous time periods.

For example, in (1.2) the pairing of pn 1 (t) vith Pn-l(t) says

that a failure must have occurred previously for a launch to occur.

Moreover, the pairing of An+l(t) with Pn+1 (t) is an attempt to capture

the residual lifetime remaining at any time t. Thus, the general form

of the model effectively replicates the day-to-day activities of an

orbital system and its launch support system (on an infinitesimal

basis). The details for deriving (1.1) to (1.4) are a simple extension

of the approach employed in Section 2 of (1].

While the equations above do characterize the transient behavior

of the P n(t), they need to be solved. The next section discusses a

variety of methods and conditions for finding solutions to this general

system of equations.

2. COMPUTATIONS FOR HEASURING THE IMPACT OF LAUNCH SYSTDIS

Solving the equations for the general model, as presented in

Section 1.3, is not a simple task. The inclusion of the parameter M

and the parameter sets (X (t)} and (pn (t)) severely inhibits the
nn

obtaining of solutions to the equations. Several alternative ap-

proaches are discussed in this section. In certain restrictive situa-

tions, solutions are available. Techniques for obtaining these solu-

tions, examples, and discussions of the shortcomings of each situation

are presented.

The first example deals with finding a closed form solution. In

this case, the Laplace Transform approach is used to solve the system

of equations. A second approach is to employ a diffusion approxima-

tion. The system of equations is replaced by a single partial-dif-

ferential equation with border conditions. Finally, continuous simu-

lation employing simple numerical integration is accomplished. This

latter approach is the most general and a resultant simulation model

is presented. The remainder of this Note in Sections 3 and 4 deals

with the effective usage of the simulation model described.
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2.1 Closed Form Solutions*

As the first example, the system of equations is solved by Laplace

Transform. In order to obtain a closed form solution by this method,

several simplifying assumptions must be made.

Consider a satellite system consisting of a single satellite.

If an infinite inventory of satellites exists and an infinite number

of launch vehicles is available, then this case may be sumarized by

(2.1) M 1

(2.2) x n(t) X 1 Vn,t

C
(2.3) M(t) w p - h- Vn,t

where C - number satellites launched per launch vehicle,

MD - mean mission duration - average lifetime of a satellite,

TKBL - mean time between launches.

Then, conditions (1.1) to (1.4) reduce to

dl'o(t)

(2.4) d0t " -UP W(t) + (t)
dt 0 1

(2.5) dl(t) -(1)XP(t) + ipM(t)
dt10

1 n O
(2.6) Mnt

0 n-I

Note that for this case, the differential equations are linear in

form. The solution process is significantly eased since only two

linear equations are required.

At a first reading, Sections 2.1 and 2.2 may be skipped with-

out loss of continuity.



The Laplace Transform of P n(t) is defined to be the function

On(0) such that

f (8) - ;e-tP (t)dtn 0

Using integration by parts on the above expression yields

SetdP n(t)
- t dt - 0 () - Pn(O)

0 n

Applying the transform operators defined above converts the simple

linear differential equations in (2.4) to (2.6) to the following:

(2.7) (6 + )9O() - X01 (8) - 1

(2.8) -110 (6) + (6+ 1)0 () -0
01

Solving these two equations simultaneously yields the Laplace Trans-

forms in closed form:

(2.9) 0 ( e + X

(2.10) 0 (+)1-e  80 + I +)

Note that the denominator of each is a polynomial of order 2 , i.e.,

of order H + 1. In order to use the method of the residues to in-

vert these expressions, one must find the real roots of this (M + l)st

order polynomial. For this example, one can easily determine that

there is one root (or pole) at 0 - 0 with order m 1 and one pole at

6 -- u- with order m 1.

' .. ... .... , .....-' ...... .. . -................ ., , ., , .... ... .. .... . .. . II'm r ...... -: .. .: ... ... IfllS
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According to the method of the residues, if a is a pole of

0n(0) with order m, then the residue of 0 n() at the pole 6 - a is

defined as

iI

r - lii j--[(e - a)OMe t ]
a 1 w n~0O~e~

and Pn(t) can be found by

Pn(t) p e

an a pole"

If the poles and orders above are inserted into the residue equa-

tions, the resultant probabilities are

1 + -(p+1)t

i (2.11) Pl ) M + e

Assuming that the satellite is available if the single satellite is

on-orbit, and using the definitions for availability and expected

number on-orbit, one finds that

(2.13) 1~t V lt --- + A -U-- + A e(+

(2.14) E[njt] - OPo(t) + 1P1 (t) - PI(t) - A(t)

Recall that P - l/MTBL so that, in this simple case, both availability

and number on-orbit are related to the performance of the launch sys-

tem (represented by MTBL).

Unfortunately, this simple example is not of great use because

of the inherent assumptions and simplicity. First, an infinite num-

ber of satellites is not usually procured. The assumption regarding
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the launching of these satellites is that launches occur on a regu-

larly scheduled basis. Thus, this assumption eliminates any considera-

tion of transient phenomena in the launch process (one of the primary

goals of this Note). Moreover, solutions (2.13) and (2.14) are only

appropriate for a satellite system consisting of a single satellite.

Many satellite systems consist of procurements of size M > 1. Recall

that inverting the Laplace Transforms required finding the poles (or

roots of the denominator) of an (M + l)st order polynomial. For

(M + 1) any larger than 2, thV algebraic expressions for finding the

roots of a polynomial are either quite algebraically difficult or are

nonexistent [( + 1) > 5]. Additionally, the results of applying

Laplace Transforms to { n(t)} and (Pn (t)) are difficult to predict

since the latter represent general forms. Unless the actual forms

are known, one cannot ascertain the impact of applying the transform

operators. For these reasons, this example provides severely limited

information for the general approach.

2.2 The Diffusion Approximation Approach

Another somewhat successful approach is to approximate the

solution to (1.1) to (1.4) by replacing the system of equations with

a single partial differential equation. In order to use this

approach, the discrete variable n (number of satellites on-orbit)

must be replaced by a continuous variable denoted by x. This tech-

nique is referred to by Gross and Harris [2] as a diffusion approxima-

tion. The solution to the single equation with boundary conditions

is extremely difficult to obtain. Thus, the solution is not pre-

sented below. However, the appropriate use of the solution is in-

dicated.

Assume that one can replace n by x in equation (1.2) and in the

parameter sets for failure and replenishment rates. Then, (1.2) can

be written in the following form (including boundary conditions):

(2.15) ap(x.t - -[xx(x, t) + u(x, t)]P(x, t) + P(x - 1, t)P(x - lt)

at

+ (x + l)k(x + 1, t)P(x + 1, t)
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(2.16) P(x, t) > 0

H
(2.17) f P(x, t)dx - 1

0

(2.18) lia P(x, t) - 0
t-*O

(2.19) lim P(x, t) - aim - 0 (vt)X-*O X+O )

(2.20) lia P(x, t) a lira P t) - 0 (Vt)
X+1 X+ at

The last two equations ensure that the resultant solution P(x. t)

contains all probability within the range 0 < X < M, (XKno. satellites).

If the solution to equation (2.15) with boundary conditions

(2.16) to (2.20) can be found, the P(x, t) can be employed to approx-

imate the availability and the expected number of satellites on-

orbit over time. Since P(x, t) approximates the number on-orbit as a

continuous variable x, then the computations must be performed as

follows:

H
(2.21) A(t) r I P(x, t) dx

N

(2.22) EtlO - f xP(x, t)dx
0

The actual solution P(x, t) is not presented here because the

form of (n (x)) - {A(x. t)) and { n(t)) * {u(x. t)) nust be known in

order to solve for P(x, t). Gross and Harris [11 give an example for

which sn(t) - V - W- Vn,t and kn(t) - A = Vn,t and M . If

an infinite number of satellites are procured by a program and all of

ikJ
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these are launched on a continuing, repetitive basis, then the solu-

tion for P(%, t) given by Gross and Harris (2] to applicable. Un-

fortunately, these assumptions are unrealistic and contradictory to

the goal of reflecting the impact of transient launch phenomena on

-satellite performance. Therefore, this approach fails to have utility.

2.3 Continuous Simulation of Satellite/Launch Operations

When closed form or analytic solutions do not exist, one usually

resorts to simulation. Since solutions to the original conditions on

Pn(t) [(1.1) to (1.4] do not readily admit to solution, the simula-

tion approach seems the best possible approach here also. In most

cases, discrete-event simulation is used. However, the simulation

approach advocated here is of a different type, referred to as con-

tinuous simulation. A brief comparison of the two simulation tech-

niques is described below in an attempt to show why continuous simu-

lation is preferred.

The typical discrete-event simulator generates sample events of

various activities drawn from the underlying stochastic processes

governing the behavior of the activities. The historical sequences

of activities are maintained, creating a large statistical data base.

Using this data base, one can generate a large variety of outputs.

Moreover, since individual events are being generated, the discrete

simulator can model interactions of events to significant detail.

Unfortunately, this attention to detail requires significant computer

execution time, extensive memory space, and a largely unjustified

amount of preparation and model construction time. If changes are

required in the model, extensive reprogramming, debugging, and testing

are usually necessary. The discrete approach is detailed but inflexible.

If continuous simulation is employed, the interactions of the

underlying processes are succinctly modelled as a single or a system

of differential equations with corresponding boundary conditions. The

technique of continuous simulation simply consists of numerically in-

tegrating the differential equations. The simplicity of this approach

has several distinct advantages. Very few inputs are required; sig-

nificantly less memory space and execution time are necessary.
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Variations in interactions of processes may be easily reflected by chang-

ing the coefficients of the differential equations--which may be limited

to a single subroutine if the simulator is constructed correctly. This

approach is so simple that the whole silmlator can be fairly easily imple-

mented on a medium-size programmable calculator with printing capability.

The key detriment to continuous simulation is the limitation on

obtainable outputs. Only variables dependent on P (t) (for this model)

can be computed. As shown above, both availability and average num-

ber on-orbit over time require knowledge of Pn(t). Thus, the con-

tinuous simulation approach provides maximum utility for the smallest

data input requirements and is the focus of the remainder of this

Note. For examples of discrete-event simulators used to analyze

satellite systems, see Reference [1].

2.4 The SPACE Model

Implementing the numerical integration process required by con-

tinuous simulation is itself a relatively simple task. However, the

specific usage of the computer model requires the ability to alter the

underlying models quite rapidly. For this reason, a modular con-

struction is employed. Each routine exists to perform a specific

task or activity. One main routine and five subroutines form a con-

tinuous simulation model called SPACE.

The MAIN routine is a few simple lines which call the other rou-

tines and establish the major logic of the model. The functions of

the other routines may be briefly described as follows:

1. READ--reads the input data.

2. INTEG--performs the numerical integration process.

3. WRITE--writes the outputs [E[nlt], [Pn(t)], to the appropriate

disk files.

4. AVG--computes the average number at time t.

5. FNS--contains the implementation of equations (1.1) to (1.4)

which form the rates of change of the probabilities.
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The exact software appesis in Arpendix C. As one can see, the portion

of the programming to be modified is strictly confined to the subrou-

tine entitled FNS. Moreover, the latter routine is invoked at every

time instant during the integration process. This allows the Im-

plementation of time-dependent coefficients (In (t)} and (pn (t)}. Ex-

amples appear throughout Section 4.

2.4.1 Required Inputs

The simplicity of the numerical integration approach dictates

only 10 inputs. Five of these deal with the basic parameters describ-

ing orbital and launch operations. Most of these will appear to be

obvious in view of the discussion in previous sections. The remaining

inputs specify the mechanics of the simulation process. In order to

use the SPACE Model, one needs to perform the steps described in Ap-

pendix A. Since the model operates interactively, execution must

occur under IBM's Time Sharing Option (TSO). In other words, the user

is prompted for the inputs during execution at a terminal.

Describing the basic parameters of launch/orbital operations re-

quires one to input the following variables:

1. P0--probability that a booster fails.

2. M4D--mean mission duration - average life of a satellite

(= 1/average number failures per unit time - 1/failure rate).

3. C-number satellites/launch vehicle.

4. MU-average number launches/unit time = (1/Mean Time Between

Launches):(1/MTBL) - launch rate.

5. M--maximum number of satellites on-orbit (i.e., number

satellites procured).

In Section 4 examples are given which demonstrate thdt almost all

members of the sets {Xn(t)) and (un (t)) can be expressed as functions

of the above basic parameters.

Parameters for continuous simulation are significantly fewer in

number than required by discrete-event simulators. The simulation

parameters required are as follows:
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6. LT--length of the simulation time interval (in time units

consistent with HTBL and MHD above).

7. NS--nmber of subintervals within time interval LT, (NS>, 100).

8. TO--the time for initialization of the simulation. If

TO > 0, a special integration step computes Pn (TO).

9. PMIN--a stopping criterion which halts the simulation process

if P (t) is smaller.

10. ThAX--another stopping criterion which is interpreted as the

maximum number of increments of size LT for simulating.

In some instances, these parameters may also be employed in deter-

mination of members of (A (t)) and (p (t)). See Section 4 for

specific examples.

2.4.2 The Algorithms Used

Equations (1.1) to (1.4) form a system of ordinary differential

equations which are quite simple to integrate. For this reason, the

scheme adopted for numerical integration is the most simple available--

Euler's Method.

In terms of the variables used in this Note, Euler's Method may be
described in the following manner:

(2.23) P(n) t P(n) + t D1 n - 1, ... M H+ 1

t+D t dt

where

(2.24) P(n)t = Pnl(t) n 1, ... M +

(2.25) D = (LT/NS) = length of one subinterval within LT

dP (n) t
(2.26) d = determined from (1.1) to (1.4)

dt

Testing by the author revealed that using NS - 100 provided the
maximum trade between accuracy and computational time.



-16-

Equation (2.23) is the basic form of Euler's YqtLhod expressed in

terms of the variables appropriate to this Note and is easily ver-

ified by any standard text on differential equations. Since the

simulator is written in FORI"\N, P (t) cannot be recorded (zero sub-0

scripts are not allowed). Thus, Equation (2.24) is necessary to trans-
late the program vector P(n)t into the state variable measure P n(t).

The remaining equations are obvious.

The notation P(n)t is adopted because all probabilities values

over time are not permanently stored in main memory. (They are, how-

ever, stored in a disk file. See Appendix A regarding execution in-

structions and descriptions of disk files.) Only the current and

previous values--P(n) t+D and P(n) t--are stored.

From (2.23), the performance measures cited earlier are easily

computed:

M+1
(2.27) A(t)-- E P(n)

M+1

(2.28) E[nlt] nil (n - 1)P(n)t

Again, the FORTRAN vector subscripting problem results in slight vari-

ations in the formulas. In fact, (2.27) and (2.28) represent ap-

proximations of the values of A(t) and E[nlt]. A comparison of this

approximation with actual values (for a limited, special case) ap-

pears in Section 3.

2.4.3 Modellins of Orbital/Launch Activities

Choosing the coefficients in (1.1) to (1.4) for the sets {An(t)}n
and (pn (t)) corresponds to modelling the day-to-day activities for the

interacting launch and orbital systems (on an infinite basis). These

time dependent coefficients are then computed at each time step of the

integration process described by (2.23) to (2.26). Updating of these

coefficients and the rates of change occurs in subroutine FNS.
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This subroutine consists of six distinct blocks. A heading

block identifies the beginning of the subroutine and consists of a

single line--SUBROUTINE FNS. The type declaration block specifies

both the type and dimension of each variable employed. Any version

of subroutine FNS must contain this block in the following form:

INTEGER MNS

REAL PMMD,C,MU, LT,D,L.TI,PMIN,TMAX

REAL P(75) ,E(500) ,Pl(75) ,T(500) ,T2,F,MUT

INTEGER I,J,K

The block or segment following the type declaration block is called

the COMMON block. This segment determines the variables passed be-

tween the program SPACE subroutines. This block is also mandatory and

must exactly follow the type declaration segment. Construction of

the COMMON block is as follows:

COMMON /INPUTS/M,P0,MMD,C,MU,NS,LT,D,T1,L,PMINTMAX

COMON /OUTPUT/P,E,P1,T2,F,T,K,MUT,J,I

Descriptions of the variables in the type declaration and COMON

blocks are found in Appendix B.

The latter blocks deal with the mechanics of making software

modules compatible. The final two blocks establish the modelling

process. Block three computes the members of the parameter/coefficient

sets (Xn (t)) and { n (t)) while the fourth block updates the rates of

change according to (1.1) to (1.4). In the current application, the

coefficient set block is used to determine two variables representing

the current member of (A (t)) and {u (t)). The variables are described
n n

as follows:

(2.29) L - f(MM) I- A (t)n

(2.30 MUT - s(C, MU) [- un(t)]

where NU - C/KrBL.
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Several other parameters may be of interest ill determining the

form of f,g to be used. These parameters are defined below:

1. Tl--the beginning of the current time interval of simulation.

2. D--the size of a time subinterval for which the rate of

change update is being computed.

3. J--a counter for the number of subintervals (with a single

time interval).

4. I--the number of satellites on-orbit for which the proba-

bility is being updated.

5. T2--a temporary variable for computing current time of the

simulation.

For example, members of U(n(t)} or {Pn(t)) which are dependent upon a

specific n must be related through software logic to the program

variable I. If a member of the above parameter set is time dependent,

then the software logic must compute values of L or MUT dependent

upon the value of T2 computed by

(2.31) X = J

(2.32) T2 = TI + (X - 1.0) D

Examples of the uses of these values in computing members of

the parameter sets for modeling purposes appear in Section 4. The

typical modeler analyzing satellite systems will onZy have to modify

the coefficient set block to measure the impact of various launch or

orbital activities on satellite effectiveness.

The rate of change block updates the values of dP(n)t for a given

value of n (software variable I) and t (software variable Tl). These

equations are simply the implementation of (1.1) to (1.4) using the

current value of L and MUT as the appropriate value of X n(t) and

Pn (t). The rate of change is stored as program value F and is in-

serted into (.2.23) which is implemented in subroutine INTEG. A
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tail block is necessary since this is a FORTRAN subroutine and con-

sists of separate RETURN and END statements. For an example of sub-

routine FNS with the blocks delineated, see Fig. 1.

Modelling the effects of transient phenomena of launch and satel-

lite operations is thus reduced to simple logic changes within the

coefficient set block of subroutine FNS. The next few sections demon-

strate how various phenomena can be modelled through manipulation of

these coefficients.

3. THE INFINITE INVENTORY CASE

Section 2.0 presented a variety of methods for solving equations

(1.1) to (1.4). The result was to adopt the method of continuous

simulation due to its flexibility in modelling a range of transient

phenomena. This section attempts to validate the continuous simula-

tion approach. A simple situation is formulated for which a closed

form solution exists. The simulation and closed form solutions are

then compared. Finally, the limitations of the simple situation are

explicated.

Consider a satellite system which maintains at most M satellites

on-orbit. Satellites have a lifetime distribution with an average

lifetime summarized by a number called Mean Mission Duration (MMD).

Replenishment occurs on a probabilistic basis with an average time

between launches characterized by a single number described as Mean

Time Between Launches (MTBL). Note that MTBL is a summary measure of

the performance of the launch system.

In fact, the satellite/launch system described above is the gen-

eral form of the system described in Section 1. The repetition of

satellite failures and replenishment launches with no consideration

for number of satellites or launch vehfcles procured implies an in-

finite number of each being procured. Thus, this case is referred

to as the infinite inventory case. The surrealistic nature of this

case is described in Section 3.3.

14
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ACTJAL CODE SEGMENT BLOCK NAHE

SUBROUTINE FNS HEADING

INTEGER M,NS
REAL PO,MMD,C,MU,LT,D,L,T1,PMINTMAX
REAL P(75),E(500),P1(75),T(500),T2,F,MUT TYPE DECLARATION
INTEGER IIJK
COMMON /INPUTS/HPOMMD,C,MU,NS,LT,DT1,LPMIN,TMAX COmMON
COMMON /OUTPUT/P.E Pl.T2.FT.K.MUT.JI ]

CC MAX NO. SAT = 75 ; MAX NO. TIME PERIODS =500

C
C
c
C COMPUTE TIME DEPENDENT PARAMETERS
C

X=J
T2=Tl+(X-1 . 0)*D
IF(T2.GT((M-C) / (C*MU))

C
C STILL IN LAUNCH REPLENISHMENT PHASE COEFFICIENT SET

C
L= (1.O/MMD)
MUTfC* MU
GO TO 5

C
C ALL REPLENISHMENTS DEPLOYED
C
4 L=I.O/MMD

HUT = 0
C
C CHECK TO SEE NO. ON ORBIT FOR WHICH PROB. IS
C BEING UPDATED. THIS DETERMINES WHICH EQUATION IS
C BEING COMPUTED.
C
5 IF (I.GT.1) GO TO 1

F=-MUT*P1 (I)+L*P1(I+l)
GO TO 3

1 IF (I.GE.C+I) GO TO 2
X=I
F- ((X-1 .O)*L+MUT)*PI(I)+X*L*PI(I+1)
GO TO 3

2 IF (I.EQ.M+I) GO TO 6
I 1=C
X=I

F=-((X-1.0)*L+MUT)*PI(1)+MUT*PI(I-II)+X*L*PI(I+I) RATE OF CHANGE
GO TO 3

6 I1=C
x--I-1

F=--X*L*P1(I) +UT*P1(I'I1)
3 CONTINUE

RETURN TAIL
END

Fig. 1--Basic blocks within subroutine FNS
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3.1 Closed Form Solution

For the limited case described above, a convenient closed form

solution Is available. In order to use the solution, the parameters

of the solution must be described in terms of the performance measures

MM and MTBL.

Let the members of the parameter sets {X (t)} and { (t)) ben n
described by the relations:

(3.1) xn(t) - x - l/MD for all n, t

(3.2) 1Un(t) - u - C/HTBL for all n, t

(3.3) a - number on-orbit at time t = 0

In this case, conditions (1.1) to (1.4) reduce to the following

equations:

dPo(t)
(3.4) dt -PP0 (t) + XP1 (t)

dP (t)
n -

(3.5) dt -- (n), + u)P n(t) + pn-l(t)

0 N+ (n + 1lXn+l(t)0< <N

(3.6) -=-me(t) + )

(3.73 Pn(O)

0If a a

This set of equations has a closed form solution described by

Morse [3). For N > 0, a > 0, the solution to (3.4) to (3.7) is de-

scribed by
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(3.8) aN - Pn + A sin (a - sin s +

n -nsi M a

(3.9 y5 mA~u2i~cos(A!+

n 'H~l

(3.11) p 1

(3.12) for n 0, ... , M

Using (3.8) to (3.12), one can compute the required performance

measures as follows:

M a~t

(3.13) A(tla) - nN Pa(t)

(3.14) E[nlt, a] = n a(

In (3.13), N equals the minimum number of active satellites required

on-orbit to establish the availability of the satellite system. Ad-

ditionally, Gross and Harris [2] give a solution to (3.8) to (3.12)

for the case in which M . The latter is of no interest for satel-

lite systems, since this would allow an infinite number of satellites

on-orbit.
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3.2 Comparison With SPACE Model

A typical satellite system requires relatively few satellites on-

orbit. Suppose a satellite system requires at most X - 3 satellites

on-orbit. Generally, satellites have reasonably long lifetimes. This

prototype is assumed to have an NMD - seven years - 84 months. A de-

sired goal is to achieve orbital configurations relatively quickly.

Therefore, an ITBL of one month is assumed (recall the assumption that

this pattern repeats indefinitely). Since the current launch mechanism

is by expendable vehicle (Titan, Delta, etc.), only one satellite Is

to be launched per launch vehicle. Finally, the counting process

(t = )) begins with no satellites on-orbit.

In terms of the parameters required for both the simulation and

closed form solutions, the preceding description may be summarized as

follows:

(3.15) H- 3

(3.16) - C/MTBL = 1/1 month - 1/month

(3.17) A - l/MHD = 1/84 months = .012/month

(3.18) a - 0

(3.19) c = 1 satellite/launch

All of these parameters are used in both the closed form solution

(3. 8) to (3.12) and in the continuous simulation model SPACE. The

average number on-orbit over time is computed based upon the appropri-

ate equations (for each approach) as described in earlier sections, The

results are graphically compared in Fig. 2.

Several observations can be made regarding these results. The

simulated and actual values are very close. In fact. the curves could be

made to exactly overlap through appropriate choice of simulation param-

eters such as HS (the number of subintervals within a single time
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Fig. 2--Comparison of simulated and actual values
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interval). The slight difference is maintained here simply to amplify

the proximity between the simulated values and the actual value.

From the perspective of the satellite system, both approaches demon-

strate that the satellite system achieves its maximum quite rapidly

(within six to eight months, depending upon the approach) snd then

settles down to a stable configuration. The time period prior to

this stabilization is referred to as a transient state period. The

remainder of the satellite system's operational cycle is quite stable

and is characterized by the term steady state. Most satellite prosram

are greatly concerned about this transient phase, since this period

determines the future success of the program.

The comparison is based upon a small number of satellites (M - 3)

for reasons of mathematical tractability. In the typical application,

the ratio of p - U/X is usually bounded by 0 < P < 1, allowing 1 to range

freely. The special characteristics of orbital/launch systemn forces

p > 1, requiring M to be bounded. The exact bounding value of M depends

on the value of P and is not presented here.

3.3 Limitations of the Simple Example

Many of the reasons for the nonrealistic nature of this example

have been discussed in Section 2.1. These are summarized and expand-

ed somewhat in this section.

As demonstrated above, the transient phenomena are short-lived in

this example. This is due to the assumption of the constant failure

and replenishment rates in (3.16) and (3.17). Practical experience

dictates that this may not be realistic, since the extent and range of

transient phenomena are often more elaborate. The additional assump-

tions regarding the availability of an infinite number of both launch

vehicles and spacecraft are totally inconsistent with traditionally

small procurements of satellite programs. The sole purpose of using

the closed form in this section is to allow a comparative evaluation

of the continuous simulation implemented in model SPACE.

The next section of this Note uses the SPACE model to extend the

analysis of satellite system to include nonconstant failure and re-

plenishment rates. Specific examples are presented demonstrating how

the choice of {An(t)) and zn (t)) may reflect a variety of transient

phenomena.
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4. SPECIAL CASES

This section presents a series of examples which demonstrate the

appropriate choice of members of { n(t)) and ( U(t)) for several real-

istic operational philosophies. The first example focuses upon using

a power cycling approach for operating a satellite in the context of

a single lot buy. Another relevant example appears in the second

section which investigates the imapct of disruptions in launch activ-

ities. Two cases are presented--one in which no backup launch system

is available and a second case in which a backup system with lesser

capability is assumed to exist. Finally, a third section discusses

the use of the results in life-cycle cost analysis using some of the

outputs of the SPACE model. This last section also discusses (and

presents contrived examples of) some criteria for using the SPACE

model results in cost-effective policy decisions.

4.1 Satellite Power Cycling

In this section, two major aspects of satellite/launch operations

are modelled. From the perspective of satellite orbital operations,

the concept of power cycling is explored. Launch operations are

modelled under the assumption that a single procurement of satellites

is launched at a constant rate until all satellites are launched.

After that point, no more launches occur dictating decay in the number

of satellites on-orbit. The members of fn (t)} and {n (t)} are fully

described below and are all functions of parameters which are easily

recognized from earlier sections.

Power cycling is defined as using the satellite at full-power for

some fixed portion of time and then reducing power for another fixed

time period. The cycling aspect occurs because the high-low pattern

is repeated over the operational cycle of each individual satellite.

During the periods of lower power level, the failure rate should be

correspondingly lower. The failure rates (members of {X (t))) in the
n

example for this section assume the following form:
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X- 1/MD TI < t < Tl + (i/30)LT; Vn

(4.1) X(t) -

- .15(1/HM0f) T1 + (/30)LT < t < T1 + LT; Vn

where NMIU - Mean Mission Duration of a satellite,

T1 - time counter for tracking the last occurrence of a

simulation output report,

LT - the length of a simulation interval.

Appearance of the constant .15 assumes that failures occur during low

power at 15 percent of the active failure rate. Another assumption

is that a satellite is at a high power level for the first 1/30th of

a simulation interval and at low power for the remainder of the in-

terval. Since LT is assumed to be one month in the example below,

this assumption states that the satellite spends the first day of

each month at high power and the remaining 29 days at low power.

Description of the replenishment or launch rates is dependent

upon the belief that all satellites procured are launched, after which

no launches occur. The corresponding members of (v(t)) are described

as follows:

U1 - C/MTBL - Cp t < {(,-C)/Cul; Vn

(4.2) n (t) |
U2 - 0 [(M-C)/CwI] t: Vn

where C = number of satellites/launch vehicle,

MTBL - mean time between launches,

M - number of satellites procure4,

p - average number satellites launched per time unit.

The time required to launch M satellites at a rate of CU, conditioned

upon the Ist launch occuring at time 0 is simply [(M-C)/Cv]. Thus,

the launch rate for this time period is simply CP (which is the number of

satellites per launch divided by the mean time between launches). After

[(M-C/Cp] time has passed, no more launches occur; therefore, the replen-

ishment rate is reduced to zero.



-28-

Constructing the parameter set block of subroutine FNS is a

simple task. Once this routine has been appropriately modified, the

SPACE model is executed with the following inputs:

(4.3) M4D - 120 months

(4.4) C = l/launch

(4.5) M - 10

(4.6) MTBL = 6 months

The same input data was used in a version of subroutine FNS in

which no cycling was allowed. In other words, the set {A n(t)} was

represented as

(4.7) An ) A for all n, t

The results of using both (4.1) and (4.7) appear in Fig. 3 and are

discussed in the next paragraph. Both models assume that one percent

of all launches fail to achieve orbit. Both systems obtain the peak

number on-orbit at approximately the same time. Some careful thought

reveals that these peaks appear when replenishments cease to occur-

at time [(M-CI/Cp]. Using the data from (4.3) to (4.6), v - C/MTBL - 1/6

per month so that the peaks occur at roughly time I(M-CI/Cm] - 54 months.

Figure 3 does indeed verify this number.

A comparison of the impacts of power cycling can now be made.

Cycling achieves a higher peak level of satellites on-orbit because

satellites are not failing as often. Moreover, satellites operated

on a power-cycling basis obtain more satellites on-orbit earlier than

full-power satellites and maintain more satellites on-orbit for a sig-

nificantly longer time period. Of course, the actual construction of

these curves is dependent upon the inputs in (4.3) to (4.6). However,
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intuition indicates that the relationships and conclusions will still

be the same regardless of the actual inputs; the magnitudes of the

differences between the curves in Fig. 2 would vary for different

inputs.

More importantly, Fig. 2 demonstrates that the modelling approach

employed in (1.1) to (1.4) and implemented through continuous simula-

tion is quite capable of representing the residual lifetimes of the

satellites on-orbit. In fact, the downward sloping portions of the

curves in Fig. 2 are simply the decaying lifetimes of the satellites

currently on-orbit, since no launches or replenishments occur. Having

effectively analyzed satellite operations, the next section approaches

the process of detailed analysis of launch operations.

4.2 Disruptions in Launch Operations

Since the focus of this paper is specifically to relate launch

operations to satellite performance, this example contrasts two situa-

tions which reflect varying launch condicions. At first, a 36-month

launch disruption is assumed. After the 36 months have passed, a new

launch system becomes operational with significantly degraded capa-

bility. The analogue is to consider a complete failure of the shuttle

system with no operational backup system of expendables. In contrast,

the same analysis is performed under the assumption that a backup sys-

tem of expendables (with degraded capability) is immediately available.

Failure modes are of no particular interest in these two analyses.

Therefore, the following failure parameters are assumed throughout

this section:

(4.8) n(t) - X - l/MV Vn, t

In order to allow comparative statements regarding the impact of

differing launch scenarios, all other periods of operation are assumed

to be steady state. This translates to allowing an infinite number

of launches and to accepting an infinite inventory of satellites.

Thus, M is now interpreted as the mexiumm number of satellites allowed
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on-orbit. The construction of equations (1.1) to (1.4) is such that

a launch is conditioned upon having less than M satellites on-orbit,

and no launches are allowed if 10 are on-orbit.

For the no-backup case, consider that the space shuttle is the

primary launch mechanism. At time t = 25, the shuttle becomes dis-

abled. If immediate actions are taken, the Titan system becomes opera-

tional 36 months later. However, in general, the Titan carries a

lesser payload. The replenishment rates [members of (vn (t))] de-

scribing this no-backup case may be described by

Il l C(1/MTBL) =C t < 25; Vn

(4.9) Pn(t) iP2 - 0 25 < t < 61; Vn

IP 3 = .5C W61 < t

where C - number satellites/launch,

MTBL - mean time between launches,

V - average number of launches per unit time.

Recall that the new launch system must have a degraded capability.

For a 32,000 pound payload, the shuttle can carry two satellites per

launch while a Titan can launch only one satellite per vehicle. Tbus,

the degraded capability in this example is 95 the shuttle capability

(hence, the appearance of the parameter ,5 in 13 ).

As an alternative, one could maintain a backup system of expend-

able vehicles (at a cost, naturally) so that the loss of the shuttle

system at time t - 25 results in an immediately degraded launch capa-

bility with no complete disruption in launches. For the backup case,

the appropriate coefficients are described as:

n1 C(l/MTBL) 0 0, t < 25; Vn

(P2 M .50 
25 < t; Vn
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where C, MTBL, and V are described above. Justification for use of

the parameter .5 is the same as explained earlier.

After subroutine FNS was modified to reflect (4.9), the SPACE

model was executed using the following input set:

(4.11) M - 120 months

(4.12) C - two satellites/launch

(4.13) XMWL - one month between launches

The results appear in Fig. 4 labeled by the title '"ithout Backup."

Similar steps were taken for (4.10) and SPACE was executed again

using (4.11) to (4.13). These results also appear in Fig. 4 labeled

'"ith Backup."

The curves in Fig. 4 lead to several important conclusions. For

purposes of this discussion, assume that the operational goal is to

maintain nine active satellites on-orbit. In the no-backup case, the

disruption at t - 25 does not have an Immediate impact due to the

residual lifetimes of the satellites. Orbital decay begins to degrade

the satellite configuration at t - 34, so that, on the average, this

system can sustain operations for about nine months without replenish-

ment. Moreover, while the new launch system is introduced at t - 61,

the orbital configuration is not fully recovered until t - 68 (seven

months later). Thus, the satellite system is "unavailable" or "down"

(assuming nine satellites are absolutely required) for 68 - 34 = 34

months. The down time is less than 36 months due to the slight com-

pensating effect of the residual lifetimes of the satellites.

Now, consider the case where the backup system was available.

Fig. 4 reveals that although the backup system introduced at t - 25

had only half the capability of the shuttle system, the immediate em-

ployment of the backup in combination with the satellite residual

lifetimes resulted in no Les of active satellites on-orbit. Note

also that prior to and subsequent to the launch activity variations,

both curves are identical. Moreover, the effective slope of the initial
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deployment activities (t = 0 to t - 11) is roughly twice the effective

slope in the no-backup case when the new launch system is introduced

(t - 61 to t - 68). This reflects the .5 lesser capability of the

backup system.

As a result, one can say that if the backup system is procured

and available for immediate employment then the mission can be per-

formed with little or no time delay (remember, these curves represent

averages, so some probability exists that a delay does occur). The

final subsection deals with relating this information to cost-effec-

tive policy decisions.

4.3 The SPACE Model and Cost-Effectiveness

The information throughout this Note can now be used to made cost-

effective policy decisions. In the last section, some conclusions

were made regarding a variety of launch scenarios. Measures of both

cost and effectiveness can be employed to evaluate the implications of

these conclusions. This section suggests an appropriate cost measure,

several possible effectiveness measures, and gives an example of a

cost-effectiveness comparison.

An extension of the life-cycle cost formula in (1] can now be

stated. This extension has the added attraction that discounting can

now be specifically included since the cost measure is now a time

profile (due to its dependence on P n(t)). Life cycle costs for a

satellite system can now be approximated by

(4.14) LCC(t) - RDT + C N -rt + ( ( t ) e -rt
p JO Pn(t)Un(t)e +CL JO0 Pnt nt~

+ C n-O Pt)] e - r t  e 
-e

- r t

n n

with total expected, discounted life cycle costs easily computed as
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LC

(4.15) E(LC) - t0 LCC(t)

where M - the maximum number of satellites,

{X (t) - the set of failure rates,
n

{Pn(t)) - the set of replenishment rates,
-rt-th
e infinitesimal discouuting factor

r - the discount rate

RDTE - the research, development, testing, and evaluation costs,

- production cost/satellite,

CL - launch cost/satellite,

C - inventory carrying cost/satellite/tine unit,

- backup launch system costs/time unit,

LC - the life cycle of the satellite system.

Each term is a separate cost incurred for the various recognized

phases of the life cycle. Discounting may now be employed since costs

are a function of time through the factors Pn(t). The factor

n (t) - n (t) represents the rate at which inventory accumulates at

time t. An additional module can easily be added to the SPACE model

to compute and output the value for LCC(t) in (4.14) when P n(t) is

outputted. The coding logic of this module must determine when and

how to add the various costs. For instance, if the backup system is

not operational, CB > 0. However, should the backup system become

operational, CB = 0 and CL should be modified to reflect the launch

costs of the new system.

Effectiveness is easily measured through the satellite perform-

ance measures--availability [A(t)] or average number on-orbit

(Etnlt]). Using either of these, the operational goal is to maintain

a minimum number on-orbit over a time period T or to maintain a mini-

mum availability over time period T. (Recall, these two were shown to

be roughly equivalent, in the sense that both summarize the same in-

formation.)

However, two other effectiveness criteria may prove to be in-

teresting. Both of these criteria are based upon explicitly measuring

the risk associated with a launci/orbital strategy. First, one may



-36-

desire to obtain a high PN(T) for some fixed number of satellites N

and some fixed time T. Another measure of risk is the down time as-

sociated with a satellite system. Down time may be defined as the

mount of time between the decay of an orbital configuration until

its restoration (measured relative to a requirement to maintain N

satellites on-orbit). For example, in the previous section, loss of

the shuttle system for 36 months resulted in a down time of 34 months.

Both of the latter measures are, in essence, inverse Images of the

first two measures. Maintaining a large average number of satellites

on-orbit is equivalent to obtaining a significant PN(T) for N, T

fixed.

Proper usage of results from the SPACE model dictates that one

compare the impacts of variations in launch scenarios with the cor-

responding cost values. As an example, consider the chart in Table I

below. This table represents the remnlts of comparing the backup

and no-backup cases for the shuttle launch system. The measure PN(T),

for fixed N, T, is chosen as the appropriate effectiveness measure

for two reasons. Risk is assumed to be of primary Importance (de-

pending upon the satellite mission). Moreover, a single value is

useful for comparison against the single, average value for E(LCC).

Recall that the previous example required nine satellites to ensure

mission performance. Risk is assessed at tine t - 60 because this

Is during the potential launch disruption when backup launch facilities

are most critical.

Table 1

COST-EFFECTIVENESS OF LAUNCH SYSTIM BACKUP

Scenario P 9 (60) I(LC)

Shuttle without backup .6 $400
Shuttle with expendable backup .9 $1,0003
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The costs in Table I are not accurate, but do reflect the higher

costs associated with maintaining an expendable backup system. The pro-

babilites were taken from actual computer runs. However, if the costs

were to prove accurate, one could ascertain that a high risk (very

low probability) is associated with having no backup launch system.

Of course, the actual decision made depends upon such subjective factors

as mission criticality, the actual cost magnitudes, and many individuals'

attitudes regarding risk. If the space mission of the United States

is highly critical for survival, then maintenance of the expandable

backup system is absolutely necessary to achieve the lower level of

risk (reflected by higher P9(60) in Table 1).

As explained, these figures are estimates only. The costs have

not been computed. In addition, more background is required concerning

the nature of the appropriate backup system alternatives-their per-

formances relative to the shuttle and their respective yearly cost

expenditures. Finally, an appropriate effectiveness measure must be

chosen.

5. CONCLUSIONS

The conclusions section of reference [1] suggested several exten-

sions of that work. In this Note, the extensions have been accom-

plished with the addition of the explicit focus upon analysis of space

shuttle activities. A useful tool has been provided for analyzing

transient phenomena in the operation of space systems-both from the

orbital and launch perspectives.' More importantly, measures have been

derived which allow the comparison of a variety of launch scenarios.

The continuous simulation tools described in this Note and its

Appendixes are simple to implement. They may be programmed on a

hand-held calculator and provide significant information based upon

a minimal amount of data. System state changes are easily modelled

by a system of differential equations. The most difficult task in

applying the tools to satellite systems is in the appropriate choice

of failure and replenishment rates-the members of (n (t)) and

"iP (t) , respectively.

nI
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More importantly, this Note has demonstrated that an expendable

backup system for the space shuttle can have significant positive

effects upon the U.S. space posture. Reasonably exact measures of

risk and cost can be assessed with minimal effort, limited only by

the accuracy of the tools used. The utility of this kind of informa-

tion in making long-term policy decisions is high.
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Appendix A

USER INSTRUCTIONS

1. Decide the forms required for {"n(t)), {n(t).
2. Under TSO, use the editor to modify the coefficient set

block of subroutine YNS. The whole SPACE model is stored

in the partitioned data set amber named CSIMLIB.SPACE.FORT

(BUNCH).

3. Compile CSIHLIB.SPACE.FORT(BUNCH) into CSIMLIB.SPACE,OBJ(BUNCH).

4. Create two output files:

a. CSIMLIB.SPACE.OUT(SUMRY): lists the expected number on-

orbit over time.

b. CSIMLIB.SPACE.OUT(DETAIL): lists the P (t) and cumulativesn
over time.

5. To execute, type the following:

ALLOC F (FTO9F0l) DA(CSIMLIB. SPACE. OUT (SUMY))

ALLOC F(FT1FO0l) DA(CSIMLIB. SPACE.OUT (DETAIL)

LOADGO CSIMLIB. SPACE.OBJ (BUNCH)

6. The computer will prompt you for the inputs, as follows:

INPUT M, PO, MMD, C, MU

? 10, .01, 120, 1, 1 USER INPUTS VALUES

INPUT NO. SUBINT AND LENGTH OF TIM INTERVAL

? 10 1 - USER INPUTS VALUES

INPUT Tl, PNIN, TMAX.

? 10 .9 300 USER INPUTS VALUES

(Some time passes during execution; time intervals printed

on CRT.)

INPUT 1 FOR TITLES AND DETAILED INFO

? [D USER TYPES 1 TO ECHO INPUT VALUES

7. Outputs are now stored in dataset members described in 4)

above. Send copy to line printer or use plotter to prepare

graphs.
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Appendix B

MODEL DOCUMENTATION

A. Subroutine descriptions

1. READ-reads the input data.

2. INTEG--performs the numerical integration process.

3. WRITE-writes the outputs [E[nlt], Pn(t)] to the appropriate

disk files.

4. AVG-computes the average number at time t.

5. INS-contains the implementation of equations (1.1) to (1.4)

which form the rates of change of the probabilities.

B. Input variables
1. PO--probability that a booster fails.
2. MKD--mean mission duration - average life of a satellite

( l/average number failures per unit time - 1/failure rate).

3. C-number satellites/launch vehicle.
4. MU--average number launches/unit time - (1/Mean Tine Between

Launches):(l/MTEL) - launch rate.

5. M-maximum number of satellites on-orbit (i.e., number satel-

lites procured).

6. LT-length of the simulation time interval (in time units

consistent with 1/U and NOI above).

7. NS-number of subintervals within time interval LT.

8. T--the time for initialization of the simulation. If

TO 0, a special integration step computes P n(TO).

9. PM-I-a stopping criterion which halts the simulation process

if P(t) is smaller.

10. TMAX--another stopping criterion which is interpreted as the

maximum number of increments of size LT for simulating.
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C. Output variables

1. D - length of a subinterval = LT/NS

2. Ti - time counter for endpoints of simulation intervals

(time at which simulation measures are output).

3. L - failure rate (computed in FNS as a function of *W,

n, t).

4. HUT - replenishment rate (computed in FNS as a function of

MTBL, n, t).

5. J - program subinterval counter within an integration interval.

6. F - program counter for number on-orbit (I - 1 is equivalent

to n - 0).

7. T2 - temporary variable for storage of actual time associated

with subinterval J.

8. F - value for dPn (t)/dt, evaluated within subroutine FNS.

9. P(I) - probability that (I-1) satellites are on-orbit at a
given time Ti.

10. CP(I) - cumulative probability that less than or equal to

(I-1) satellites are on-orbit at a given time Ti.

11. Pl(I) - updated probability that (1-1) satellites are on-orbit

at a given time T2.

12. EK) - expected number on-orbit at Kth time point.

13. T(K) - the time at Kth time point.

AL
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Appendix C

"SPACE" 1MDDEL SOFTWARE

INTEGER M,NS

REAL PO,MMD,C,MU,LT,D,L,T1,PIIN,TMAX

REAL P(75) ,E(500) ,P1(75) ,T(500) ,T2,F,MUT

INTEGER I,J,K

COMMON /INPUTS/M,P0,MMD,C,MU,NS,LT,D,T1,L,PMIN,TMAX

COMMON /OUTPUT/P,E,P1,T2,F,T,K,MUT,J,I

C

C MAX NO. SAT =75 ;MAX NO.-TIME PERIODS =500

C

CALL READ

C

CALL INTEG

C

CALL WRITE

C

STOP

END
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SUBROUTINE AVG

INTEGER M,NS

REAL PO,MMDC,MU,LT,D,L,TI,PNIN,TMAX

REAL P(75),E(500),Pl(75),T(500),T2,F,HUT

INTEGER I,J,K

COMMON /INPUTS/M,PO,MMD,C,MU,NS,LTD,T1,LPMIN,THAX

COMMON /OUTPUT/P,E,P1,T2,F,T,K,MUT,J,I

C

C MAX NO. SAT 75 ;MAX NO. TIME PERIODS =500

C

C

C COMPUTE THE AVERAGE NO. ON ORBIT AT TIME Ti

C

C

C COMPUTE THE UPPER LIMIT OF THE DO-LOOP

C

JJ=M+1

C

C COMPUTE THE AVERAGE

C

DO 1 I1=1,JJ

I E(K)=E(K)+(Il-l)*P(I1)

C

RETURN

END
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SUBROUTINE READ

INTEGER M,NS

REAL PO,?M,CMU,LT,D,L,T1,PMIN,TMAX

REAL P(75) ,E(500) ,P1 (75) ,T(500) ,T2,F,MUT

INTEGER I,J,K

REAL LT1,NSl

COMMON /INPUTS/M,PO,MMD,C,MU,NS,LT,D,T1,L,PMiIN,TMAX

COMMON /OUTPUT/P,E,P1,T2,F,T,K,MUT,J,I

C

C MAX NO. SAT = 75 ; MAX NO. TIME PERIODS =500

C

WRITE(6,1)

1 FORMAT (1X,'INPUT M, P0, MMD, C, MU')

READ(5,*) M,PO,MMDC,MU

WRITE (6,2)

2 FORMAT(1X,'INPUT NO. SUBINT AND LENGTH OF TIME INTERVAL')

READ(5 ,*)NS ,LT

WRITE(6,7)

7 FORMAT(1X,'INPUr Ti , PMIN , TMAX '

READ(5,*) T1,PMIN,TMAX

C

C CHECK TO SEE IF NO. SUBINTERVALS >= 100
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C

IF (NS.GI.100) GO TO 5

WRITE(6,6)

6 FORHAT(1X,'NS < 100 .TRY AGAIN')

STOP

C

C CHECK TO MAKE SURE C*MU < NS/LT FOR INTEGRATION TO HOLD

C

5 IF (C*MU.LT.NS/LT) GO TO 3

WRITE(6,4)

4 FORMAT(IX,'C*HU NOT < NS/LT AS REQUIRED FOR INTEGRATION'/)

STOP

C

C COMPUTE NO. OF SUBINTERVALS PER TIME INTERVAL

C

3 LT1=LT

NS 1=NS

D=LTI INS 1

C

C

RETURN

END
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SUBROUTINE WRITE

INTEGER IE(500)

INTEGER M,NS

REAL PO,MMD,C,MU,LT,D,L,T1,PMIN,TMAX

REAL P(75),E(500),P1(75),T(500),T2,F,MUT

INTEGER IJ,K

COMMON /INPUTS/M,PO,MMD,CMU,NS,LT,D,T1,L,PMIN,TMAX

COMMON /OUTPUT/P,E,P1,T2,F,T,K,MUT,J,I

C

C MAX NO. SAT =75 ;MAX NO. TIME PERIODS =500

C

C

WRITE(6, 15)

15 FORMAT(/1X,'INPUT 1 FOR TITLES AND DETAILED INFO'/)

READ(5,*)IS

IF(IS.NE.1) GO TO 16

WRITE (9, 13)M

13 FORMAT(/1X,'MAX. NO. SATELLITES 1 ,15)

WRITE(9 ,9)PO

9 FORMAT(/1X,'PROB. OF BOOSTER FAILURE =',F6.3)

WRITE (9, 1O)MMD

10 FORMAT(/1X,'MEAN MISSION DURATION = ,F7.2)
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WRITE(9,11)C

11 FORNAT(/1X,'NO. SATELLITES PER LAUNCH =',F6.0)

WRITE (9, 12)HU

12 FORMAT(/1X,'NO. LAUNCHES PER UNIT TIME 1 ,F6.2//)

C

C

WRITE(9,I)

1 FORMAT (1X,'EXPECTED NO. ON ORBIT AS A FUNCTION OF TIMVt)

WRITE(9 ,2)

2 FORHAT(//lX,'TIME',5X,'EXPECTED NO.'//)

16 CONTINUE

DO 3 I=1,K

IE(I)=E(I)

3 WRITE(9,4) T(I),IE(I

4 FORHAT(1X,F6.2,6X,18)

IF(IS.NE.1) GO TO 17

WRITE(9 ,5) T(K)

5 FORMAT(//1X,'PROB. DIST. OF NO. ON ORBIT AT TIME ',F1O.2)

WRITE(9 ,8)

8 FORMAT(//1X, 'NUMBER' ,5X, 'PROBABILITY' ,/)

JJ=M+1

DO 6 I=1,JJ
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JJ1=I- 1

6 WRITE(9,7) JJI,P(I)

7 FORKAT(2X,14,9XF6.4)

17 CONTINUE

RETURN

'MID
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SUBROUTINE INTLG

INTEGER M,NS

REAL CP(75)

REAL POMMD,C,NO,LT,D,L,T1,PNINTNAX

REAL P(75) ,E(500) ,Pl(75) ,T(500) ,T2,F,IIU

INTEGER I,4,K

REAL NSl,CO,MUO,MO

COMMON /INPUTS/N,POMHD,CNU,NS,LT,DT1,L,PHIN,THAX

COMMON /OUTPUT/P,E,P1,T2,FT,K,MUTJtI

C

C MAX NO. SAT = 75 ; MAX NO. TIME PERIODS = 500

C

C

C REDUCE MAGNITUDE FOR LASE OF COMPUTATION

C

FR=- 1.0

IF (C.EQ.1.O.AND.MU.EQ.1.0) GO TO 14

C

C STORE C ,MU,M INTO TEMRARY STORAGE LOCATIONS

C

CO--c

MUO=MU
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MO=M

C=1. 0

MU=1.0

R6=M/(CO*MUO)

&R6

FR=R6-H

C

C CHECK FOR SPARSENESS OF DATA

C

14 IF (M.LE.75) GO TO 15

16 FORAT(1X,'TOO LITTLE DATA FOR SUCH LARGE NUMBERS')

STOP

C

C INITIALIZE UPPER LIMIT ON DO LOOPS

C

15 JJ=ltl

C

C INITIALIZE THE PROBABILITIES

C

C THE INITIALIZATION SCUM SUM ASSUMES THAT TIE

C ZEO Is QuIVAwI To TE TIME OF T7E FIRST LAUNCH
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C IN THE SYSTEM.

C

DO 2 I=IJJ

IF (I.EQ.C+l) P(I)=1-PO

IF (I.NE.C+1) P(I)=O.O

2 CONTINUE

C

C INITIAIZE COUNTER FOR NO. OF TIME INCREHEMT EVALUATED

C

K-0

C

C BEGIN THE TIME ITERATION PROCESS

C

C IF TI OT 0 THEN TREAT 0 TO TI AS FIRST TINE INTERVAL

C

J1=1

IF (T1.EQ.o) GO TO 1

J1=0

C

C RECORD TIME SUBINTERVAL D INTO TEMPORARY STORAGE I

C

DI =D
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D2=NS

C

C COMPUTE SPECIAL D FOR INTERVAL FROM 0 TO TI > 0

C

NS1=5000 .0

NS=NSI

D=Ti / NSI

GO TO 7

C

I T1=T +LIT

7 K-K+ I

C

C SINCE TIME INCREMENTS MIAY NOT BE INTEGRAL, CREATE A VECTOR

C TO STORK TIME VALUES. INITIALIZE EXPECTED NO. ON ORBIT

C FOR A GIVEN TINE LOCATION.

T(K)z-TI

£ ().O.0

C

C BEGIN THE INTEGRATION BY STORING PROB. AT TINE Ti INTO

C A TEMPORARY STORAGE VICTOR.

C
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DO 3 11I,JJ

3 P1 (I)=P (I)

C UPDATE THE TEMPORARY PROBABILITIES BY NUMERICALLY INTEGRATING

C THROUGH A SINGLE TIME INCREMENT. SIMPLE EULER METHOD OF

C NUMERICAL INTEGRATION IS USED.

C

DO 4 J=1,NS

DO 4 I=1,JJ

CALL FNS

4 PI(I)=P1(I).f*F

C

C RESTORE INTEGRATED RESULTS FROM TEMPORARY PROD. VECTOR PI

C TO PERMANENT PROB. VECTOR P TO CONINUE TIME INTEGRATION

C OVER THlE NEXTf TIME INTERVAL.

C

DO 5 I=1,JJ

5 P(I)=P1((I)

C

C THE PROBABILITIES AS A FUNCTION OF TIME ARE NOT PERMANENTLY

C STORED AFTER USE IN CALCULATING THE MEAN BELOW. THUS, IF

C THE ACTUAL PROBABILITIES ARE DESIRED, THIS IS THE PLACE
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C TO STORE OR OUTPUT THE PROBABILITIES.

C

CALL AVG

C

C IF THIS WAS SPECIAL CASE WHEN TI> 0 RESTORE SUBINTERVAL

C LENGTH FROM TEMPORARY STORAGE Ill TO ACTUAL VARIABLE D

C

IF (J1.GT.O) GO TO 8

J1=1

D=Dl

NS=D2

8 CONTINUE

C

C COMPUTE CUNULATIVES FOR OUTPUT

F C

DO 20 l=1,JJ

20 CP(I)=O.0

CP( 1)=P( 1)

DO 21 I=2,JJ

21 CP(I)=CP(I-1)+P(I)

G0 TO 100

C
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C OUTPUT PROBABILITIES

C

T2--T1-LT

WRITE(10,9) T2

9 FORMAT(/IX,'PROB. VECTOR AT TIME ',F7.2//)

WRITE(10,*) (P(I),I=I,JJ)

WRITE(10,*) (CP(I),I=I,JJ)

100 CONTINUE

C

C

C OUTPUT MESSAGE TO TERMINAL FOR STATUS REPORT TO PROGRAMMER

C

WRITE(6,12)T1

12 FORAT(IX,'TIE = ',F7.2)

C

C

C

C CHECK TO SEE IF MAX NO. OF TIME INTERVALS HAVE BEEN EVALUATED

C

IF (K.GT.TMAX) GO TO 6

C

C CONTINUE INTEGRATION FOR NEXT TIME INCREMENT

L
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C CHECK TO SEE IF EXPECTED NO. ON ORBIT HAS REACHED ZERO

C

IF (P(l).GT.PMIN.OR.E(K).LT.1.O) GO TO 6

GO TO 1

6 CONTINUE

C

C RESTORE SCALE OF MAGNITUDE, IF NECESSARY

C

IF(FR.LT.O.O) GO TO 18

C

WHO

C

C RESTORE SCALE TO EXPECTED VALUES

C

DO 17 I=1,K

17 5(,I)inC*NK*(E (1)+FR)

18 CONTINUE

RETURN
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SUBROUTINE FNS

INTEGER M,NS

REAL POMD,C,MU,LT,D,L,T1,PMIN,TMAX

REAL P(75),E(500),PI(75),T(500),T2,F,MUT

INTEGER I,J,K

COMMON /INPUTS/M,PO,MMD,C,MUNS,LT,DT1,L,PMINTMAX

COMMON /OUTPUT/P,EPI,T2,F,TI,NUTJ,I

C

C MAX NO. SAT =75 ;MAX NO. TIME PERIODS =500

C

C

C

C COMPUTE TIME DEPENDNT PARAMETERS

C

x=J

T2=-Tl+(X-1 .O)*D

IF(T2.GT((M-C)/C*MU))) GO TO 4

C

C STILL IN LAUNCH REPLENISHMENT PHASE

C

L=- (l.O/mmD)

wrT-C* MU



GO TO 5

C

C ALL REPLENISHI NT S DEPLOYED

C

4 L=1.O/?IID

HUT = 0

C

C CHECK TO SEE NO. ON ORBHIT FOR WHICH MROB. IS

C BEING UPDATED. TIS DETERMINES WHICH EQUATION IS

C BEING COMPUTED.

C

5 IF (I.GT.1) GO TO I

G0 TO 3

1 IF (I.GE.C+1) GO TO 2

1=1

GO TO 3

2 IF (I.EQ.Nf+l) GO TO 6

I 1C

z X - .o*1m*i()mnp - )xLp ii



GO TO 3

6 II=C

x=I-I

F=-X*L*P1 (I)+MUT*P1 (I-Il)

3 CONTINUE

RETURN

END
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