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PREFACE

Procurement decisions regarding Department of Defense satellite
systems are usually based upon the assumption of a reliable and de-
pendable launch system. Attempts to relate disruptions of launch %
operations to numbers of satellites on-orbit often take the form of
discrete-event simulations (requiring significant numbers of data in-
puts and large amounts of computer time). The purpose of this Note
is to present an alternative method for evaluating how launch opera- i
tions affect orbital status. The method is an extension of a previous
modeling effort explained in Rand Note N-1295-AF, Cost-Effectiveness
Measures of Replenishment Strategies for Syst»ms of Orbital Spacecraft.

A distinct difference exists, however, between the present Note
and the previous one. Because variations in launch activities are likely
to be transient phenomena, the modeling approach adopted here must be
capable of reflecting the orbital status of a satellite system over
time. The transient-state-analysis approach that is adopted is a form
of continuous simulation (as opposed to discrete-event simulation),
an approach traditionally limited to the analysis of systems in the
physical sciences.

Extension of the continuous-simulation approach to operatiomal
phenomena ghould provide a whole new perspective to analysts dealing

f with functional systems and organizations. This wmethodology requires

] significantly fewer inputs than discrete-event simulations and can be
implemented on a programmable, hand-held calculator, saving expensive
computer and data-gathering time.

This work was dome uﬁder the Project AIR FORCE study effort "Space

Shuttle Issues.”

At the time this Note was prepared, the author was assigned by
the Air Porce Space Division to The Rand Corporation as a Research

Associaste. C)ggl age;cl
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SUMMARY

The successful operation of a space launch system, such as the
space shuttle, is vital to the maintenance and improvement of satellite
operations. This Rand Note demonstrates that a reasonable method
exists for quantifying this dependence relationship, laying the ground-
work for a cost-effectiveness analysis of alternative backup launch
systems.

The methodology employed is an extension of the approach described

ZF in the author's Note N-1295-AF, Cost-Effectiveness Measures of Replen-

ishment Strategies for Systems of Orbital Spacecraft, December 1979.

In that document, changes in the status of a satellite orbital con-~

; R figuration were represented by a system of ordinary, linear, differen-~

tial equations. These equations were then used to derive steady-state

cost-effectiveness measures. The present Note formulates the general-

ized version of these differential equations, gives examples of appro-

priate time-dependent equation coefficients, and shows how continuous
simulation (numerical integration) is employed to obtain useful compari-
sons from the equations. The analysis can now reflect a variety of
transient phenomena in the context of spacecraft and launch system
interaction. .

The methodology employed here has several benefits. As explained
within the text, very few pieces of data are required to reflect the
impact of transient phenomena, yielding high informational content.
Moreover, concepts of continuous simulation (normally applied to
physical mechanics problems) have been extended to the study of
behavioral/sociological (queueing) systems.

Specific examples include a comparison of the impact of power
cycling and the risks associated with failure to provide backup launch
systems to the space shuttle. In these examples, the appropriate dif-
ferential equation coefficients are explicated (as a function of
satellite and launch system operational characteristics), and the
appropriate data are employed in a continuous simulator. The actual
simulation code is documented in the Appendixes.
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1. INTRODUCTION

Satellites are placed in various orbits in space for a whole
range of functions, including communications, weather monitoring, etc.
When satellites on-orbit fail, they must be replenished. Even if this
replenishment is accomplished via an orbital spare, the requirement
for a reliable and dependable launch system cannot be avoided (even
the spare has to be launched). Thus, the existence and successful
operation of a space launch system is vital to the maintenance of an
orbital configuration of satellites. The goal of this Note is to
demonstrate that a reasonable method exists for quantifying this de-
pendence between satellite operations and launch operations.

In order to realistically evaluate the launch/orbital relation-
ships, the approach employed must be able to reflect the impact of
variations in operational activities. For instance, a satellite sys-
tem is often procured as a single-lot buy. After the initial pro-
curement is launched, no more launches occur. Thus, the relationship
between launches and orbital operations varies depending upon the
phase of the procurement process. During procurement, a launch sched-
ule dominates the relationship; after procurement, the fact that no
launches occur must be reflected. These transient phenomena are usually
implemented in the form of a discrete-event simulation [1].

However, a discrete-event simulator usually requires a large data
set, significant execution time, and disproportionate development
time. The approach employed here is significantly different. The
relationship between launches and orbital activities is represented
as a system of simultaneous differential equations. For a given set
of initial conditions, the equations can be numerically integrated
over time to reflect orbital status in response to transient launch
phenomena. In recent years, this numerical integration approach has
been applied to physical systems and is referred to as continuous sys-
tems simulation. As will be demonstrated, a variety of changes in
launch conditions and orbital considerations are handily modelled
through the appropriate choices of the coefficients in the differential

equations.




The appendixes to this Note contain the required user documenta- 1
tion for a continuous simulator of satellite systems. Some of the ap-
plications of this simulator appear in Sections 3 and 4. Moreover,
an example is presented which compares a closed form analysis to the
simulated results for a severely restricted case. An additional, use-
ful section demonstrates ways in which the simulator outputs may be

employed in making policy decisions regarding launch system procurement.

1.1 The Scenario for Launch System Operation

Space launch systems exist for the primary purpose of placing
satellites into an orbital plane. A space launch system is defined
as the set of operational systems required to place a satellite in
orbit, which includes the launch mechanism itself and all of its ground
support equipment. An assumption is made that launches occur on a
regularly scheduled basis so that summary performance characteristics
of rhe launch system may be defined.

Launch systems may be classified as reusable or expendable. For

reusable systems, one may define the turn-around-time (TAT) as the

average time from landing to relaunch. The performance of expendable
systems may be succinctly described by the minimum time to launch
(MTTL). The MTTL is defined as the average time required to prepare
and to launch assuming a lauach vehicle is available in inventory.
In either case, a series of launches (regardless of the vehicle
i source) may be summarized by the mean-time-between-launches (MTBL). h
In this case, the meaning is obvious.

The goal of operating a launch system focuses upon providing a
service to any satellite program. In most cases, the satellite pro-
gram desires to maintain a certain number of satellites on-orbit in
a certain orbit (in order to perform a specified mission). Thus, the
performance of the satellite system can be measured by the average
number of satellites on-orbit. An additional performance measure for
satellite systems is the availability of the system. A
satellite system is said to be available if a certain specified num-
ber of satellites is on-orbit. (This minimum number required varies 1

across satellite programs depending on the mission of the program.)
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Discussions below Indicate that both the average number of satellites
and the system availability are derived from the same set of probabil-
istic data. Thus, measuring one of the performance characteristics
necessarily implies knowledge of the others.

This Note relates the performance of satellite systems (as mea-
sured by the average number of satellites on-~orbit) to the perfor-
mance of launch systems (as measured by one of TAT, MITL, or MTBL).

The model developed is general enough to permit comparisons of the
impact of a variety of transient phenomena (launch disruptions, etc.).
The model is relatively easy to implement and to modify and requires
minimal amounts of data (relative to large-scale, discrete-event simu-

lators).

1.2 Some Measures of Satellite System Performance

In order to measure satellite effectiveness on a transient basis,
a few simple extensions of a previous work are necessary. In Rand
N~1295-AF [1], a state-space, Markov process approach was employed to
agsess the on-orbit availability of satellite systems. The logical
analogues of the Markov process performance measures are presented in
this section.

For purposes of this discussion, the following notation is de-
fined: '

n = number of operational satellites on-orbit;
M = maximum number of satellites on-orbit;

Xn(t) = expected failure rate per unit time of an individual
satellite, as a function of the number of satellites
on~orbit (n) and the specific time of the operational
cycle (t): .

un(t) = expected replenishment rate per unit time of an individu-
al satellite, as a function of the number of satellites
on-orbit (n) and the specific time of the operational

cycle (t);

VU T DA (S TR
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{ln(t)} = the set of all failure rates;
{un(t)} = the set of all replenishment rates;
; A(t) = availability of a satellite system at time t;
: Eln|t] = average number of satellites on-orbit at time t;
‘ Pn(t) = probability that n satellites are on-orbit at time t.

- The notations for failure and replenishment rates represent the most
general form and are meant to reflect the transient nature of various
operational concerns. In fact, a single member of {xn(t)} or
{un(t)} may itself be a set of functions. Specific examples are pre-

E sented in Sections 3 and 4.

The performance of the satellite system may now be measured as

follows:
( +p ()"
A(t).SPN t) + ... Mt)
M
E[n|t] = I oP_(t)
n=0
3 where
P (t) = £[{x (©)}; {u (©)}]
; and {un(t)} = g[TAT or MITL or MTBL]
(A ()} = h(mop*
3 Subsequent sections give examples of how f, g, h may be numerically or

i explicitly determined. Thus, the performance of the satellite system
” can be directly related to the performance of the launch system. More-
over, since the form of {un(t)} is general, a variety of launch operation-

al phenomena can be analyzed.

* Assumes a minimum of N < M satellites are required for availability.
*%* MMD = Mean Mission Duration = Average measure of satellite lifetime
under the satellite reliability function.
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As described earlier, the above discussion demonstrates that both
availability and expected number on-orbit can be computed from knowledge
of the Pn(t). Thus, once the latter have been computed, one can pre-~
sent the information in either form. For the remainder of this Note,
the result of any analysis is presented in the form of E[n|t].

1.3 A General Model of Orbital/Launch Operations

Using the terminology described above, a set of conditions can be
described which characterizes the Pn(t). This set of conditions takes
the form of a system of ordinary differential equations with corre-

sponding boundary conditions. These equations with boundary conditions
form the general model of orbital/launch operations.

Using a state-space approach, as in [1], one can demonstrate that
the Pn(t), upon which satellite performance is measured, must satisfy
the following conditions:

dPo(t)
(1.1) qe = K (V)R (t) + A, (E)P, (b) n=20
dPn(t)
(1.2) g = [ (0) +u ()P (t) +u ()P _,(¢)
+ (n + l)ln+1(t)Pn+1(t) o<n<M
dPM(t)
(1.3) Fe = “MA(OR () + u,., (0P, (E) n=M
l]ifne=g
(1.4) Pn(O) -
0ifn+a

where a = number on-orbit when the system state is initialized.
This system of ordinary differential equations demonstrates how

the Pn(t) change over time, as a function of launch system operations--




reflected by the appearance of {un(t)} throughout the equations. A
close examination of the equations reveals that launches are condi-
tioned upon failures during previous time periods.

For example, in (1.2) the pairing of un_l(t) with Pn_l(t) says
that a failure must have occurred previously for a launch to occur.
Moreover, the pairing of An+1(t) with Pn+l(t) is an attempt to capture
the residual lifetime remaining at any time t. Thus, the general form
of ;he model effectively replicates the day~to-day activities of an
orbital system and its launch support system (on an infinitesimal
basis). The details for deriving (1.1) to (1.4) are a simple extension
of the approach employed in Section 2 of [1].

While the equations above do characterize the transient behavior
of the Pn(t), they need to be solved. The next section discusses a
variety of methods and conditions for finding solutions to this general

system of equations.

2. COMPUTATIONS FOR MEASURING THE IMPACT OF LAUNCH SYSTEMS
Solving the equations for the general model, as presented in

Section 1.3, is not a simple task. The inclusion of the parameter M
and the parameter sets {An(t)} and {u_(t)} severely inhibits the
obtaining of solutions to the equations. Several alternative ap-
proaches are discussed in this section. In certain restrictive situa-
tions, solutions are available. Techniques for obtaining these solu-
tions, examples, and discussions of the shortcomings of each situation
are presented.

The first example deals with finding a closed form solution. 1Im

this case, the Laplace Transform approach is used to solve the system
; of equations. A second approach is to employ a diffusion approxima-
| tion. The system of equations is replaced by a single partial-dif- i
ferential equation with border conditions. Finally, continuous simu-
lation employing simple numerical integration is accomplished. This

latter approach is the most general and a resultant simulation model
is presented. The remainder of this Note in Sections 3 and 4 deals
with the effective usage of the simulation model described. 1
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2.1 Closed Form Solutions*
As the first example, the system of equations is solved by Laplace

Transform. In order to obtain a closed form solution by this method,
several simplifying assumptions must be made.
Consider a satellite system consisting of a single satellite.

If an infinite inventory of satellites exists and an infinite number

of launch vehicles is available, then this case may be summarized by

(2.1) M=l
(2.2) A () == _1 ¥n,t
n )
C
(2.3) un(t) = W = L ¥n,t

where C = number satellites launched per launch vehicle,
MMD = mean mission duration = average lifetime of a satellite,
MIBL = mean time between launches.
Then, conditions (1.1) to (1.4) reduce to

dl’o(t)
(2.4) T -ul’o(t) + “1(‘)
drl(t)
(2.5) &5 " -(l)u’l(:) + upo(t)
1 n=0
(2.6) P (t) = .
0 n=1

Note that for this case, the differential equations are linear in
form. The solution process is significantly eased since only two

linear equations are required.

® At a first reading, Sections 2.1 and 2.2 may be skipped with-
out loss of continuity.

i
3
.4
!
A
1
L]
1
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The Laplace Transform of Pn(t) is defined to be the function
on(e) such that

NOX {,‘-et"n“"’t

Using integration by parts on the above expression yields

° -thpn(t)
ge —q¢ 9t~ Dn(O) - P (0)

Applying the transform operators defined above converts the simple
linear differential equations in (2.4) to (2.6) to the following:

2.7 (® + 1) (8) - A9, (0) = 1
(2.8) 1§, (8) + (8 + 1)8,(8) = 0

Solving these two equations simultaneously yields the Laplace Trans-~

forms in closed form:

0+
2.9) 00(9) TS )
(2.10) IOR Tor e

Note that the denominator of each is a polynomial of order 2 , {i.e.,
of order M + 1. In order to use the method of the residues to in-
vert these expressions, one must find the real roots of this (M + 1)st
order polynomial. For this example, one can easily determine that
there is one root (or pole) at 6 = 0 with order m = 1 and one pole at
® = -A-p with order m = 1.

e -
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According to the method of the residues, if a 1s a pole of
On(O) with order m, then the residue of on(e) at the pole 6 = a is
defined as

ot
DT [t T e

1 [d""l
and Pn(t) can be found by

Pn(t) - a-"gzpole" Ta

If the poles and orders above are inserted into the residuve equa~

tions, the resultant probabilities are

- A u =(u+r)t
(2.11) Po(t) Y + e

¥ __¥ ()t
(2.12) Pl(t) TS e

Assuming that the satellite is available if the single satellite is
on-orbit, and using the definitions for availability and expected
number on-orbit, one finds that

X B =(u+r)t
(2.13) A =B(B) =0 -7+ ®
(2.14) Eln|t] = OP_(t) + 1P (t) = P, (t) = A(t)

Recall that u = 1/MIBL so that, in this simple case, both availability
and number on-orbit are related to the performance of the launch sys-

tem (represented by MTBL).

Unfortunately, this simple example is not of great use because
of the inherent assumptions and simplicity. Firast, an infinite num
ber of satellites is not usually procured. The assumption regarding
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the launching of these satellites is that launches occur on a regu-
larly scheduled basis. Thus, this assumption eliminates any considera-
tion of transient phenomena in the launch process (one of the primary
goals of this Note). Moreover, solutions (2.13) and (2.14) are only
appropriate for a satellite system consisting of a single satellite.
Many satellite systems consist of procurements of size M > 1. Recall
that inverting the Laplace Transforms required finding the poles (or
roots of the denominator) of an (M + 1)st order polynomial. For

(M + 1) any larger than 2, the algebraic expressions for finding the
roots of a polynomial are either quite algebraically difficult or are
nonexistent [(M + 1) > 5]. Additionally, the results of applying
Laplace Transforms to {Xn(t)} and {vn(t)} are difficult to predict
since the latter represent general forms. Unless the actual forms
are known, one cannot ascertain the impact of applying the transform
operators. For these reasons, this example provides severely limited
information for the general approach.

2.2 The Diffusion Approximation Approach

Another somewhat successful approach is to approximate the
solution to (1.1) to (1.4) by replacing the system of equations with
a single partial differential equation. In order to use this |
approach, the discrete variable n (number of satellites on-orbit)

must be replaced by a continuous variable denoted by x. This tech-

i

nique is referred to by Gross and Harris [2] as a diffusion approxima-

tion. The solution to the single equation with boundary conditions

is extremely difficult to obtain. Thus, the solution is not pre-
sented below. However, the appropriate use of the solution is in-
dicated.

e e M g
i o " N

»

Assume that one can replace n by x in equation (1.2) and in the

parameter sets for failure and replenishment rates. Then, (1.2) can
be written in the following form (including boundary conditionms):

2.15) BB o pax, ©) +ulx, IR, O +ulx - 1, O - 1,0)

e

P ]

+ (x+DAa(x+1, t)P(x+ 1, t)
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(2.16) P(x, t) > 0
M

(2.17) I PGx, t)dx = 1

(2.18) lim P(x, t) = 0
£+0

(2.19) lm P(x, t) = 1im 285 &) _ 4 ¥t)
x+0 x+0 ot

(2.20) lim P(x, t) = 1mﬂ’%‘at—‘—’ =0 ®t)
XM M

The last two equations ensure that the resultant solution P(x, t)

contains all probability within the range 0 < X < M, (X=no. satellites),
If the solution to equation (2.15) with boundary conditioms

(2.16) to (2.20) can be found, the P(x, t) can be employed to approx-

imate the availability and the expected number of satellites on~

orbit over time. Since P(x, t) approximates the number on~orbit as a

continuous variable x, then the computations must be performed as

follows:
M

(2.21) A(t) = 5 P(x, t) dx
N
M

(2.22) Elx[t]) = s xP(x, t)dx
0 [

The actual solution P(x, t) is not presented here because the
forms of {An(x)} + {A(x, t))} and {un(t)} + {u(x, t)} must be known in
order to solve for P(x, t). Gross and Harris [1] give an example for
which u_(t) = u = g ¥n,t and A () = A = 3= ¥n,t and M+ =, 1If

an infinite number of satellites are procured by a program and all of




these are launched on a continuing, repetitive basis, then the solu-
tion for P(x, t) given by Gross and Harris (2] is applicable. Un-
fortunately, these assumptions are unrealistic and contradictory to
the goal of reflecting the impact of transient launch phenomena on
satellite performance. Therefore, this approach fails to have utility.

2.3 Continuous Simulation of Satellite/Launch Operations

When closed form or analytic solutions do not exist, one usually
resorts to simulation. Since solutions to the original conditions on
Pn(t) {(1.1) to (1.4] do not readily admit to solution, the simula-
tion approach seems the best possible approach here also. In most
cases, discrete-event simulation is used. However, the simulation
approach advocated here is of a different type, referred to as con-
tinuous simulation. A brief comparison of the two simulation tech~
niques is described below in an attempt to show why continuous simu-
lation is preferred.

The typical discrete-event simulator generates sample events of
various activities drawn from the underlying stochastic processes
governing the behavior of the activities. The historical sequences
of activities are maintained, creating a large statistical data base.
Using this data base, one can generate a large variety of outputs.
Moreover, since individual events are being generated, the discrete
simulator can model interactions of events to significant detail.
Unfortunately, this attention to detail requires significant computer
execution time, extensive memory space, and a largely unjustified
amount of preparation and model construction time. If changes are
required in the model, extensive reprogramming, debugging, and testing
are usually necessary. The discrete approach is detailed but inflexible.

If continuous simulation is employed, the interactions of the
underlying processes are succinctly modelled as a single or a system
of differential equations with corresponding boundary conditions. The
technique of continuous simulation simply consists of numerically in-
tegrating the differential equations. The simplicity of this approach
has several distinct advantages. Very few inputs are required; sig-

nificantly less memory space and execution time are necessary.
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Variations in interactions of processes may be easily reflected by chang-
ing the coefficients of the differential equations--which may be limited
to a single subroutine if the simulator is constructed correctly. This
approach is so simple that the whole simulator can be fairly easily imple-~
mented on a medium-size programmable calculator with printing capability.
The key detriment to continuous simulation is the limitation on
obtainable outputs. Only variables dependent on Pn(t) (for this model)
can be computed. As shown above, both availability and average num-
ber on-orbit over time require knowledge of Pn(t). Thus, the con-
tinuous simulation approach provides maximum utility for the smallest
data input requirements and is the focus of the remainder of this
Note. For examples of discrete-event simulators used to analyze

satellite systems, see Reference [1].

2.4 The SPACE Model

Implementing the numerical integration process required by con-
tinuous simulation is itself a relatively simple task. However, the
specific usage of the computer model requires the ability to alter the
underlying models quite rapidly. For this reason, a modular con-

struction is employed. Each routine exists to perform a specific

task or activity. One main routine and five subroutines form a con-
tinuous simulation model called SPACE.

The MAIN routine is a few simple lines which call the other rou-
tines and establish the major logic of the model. The functions of
the other routines may be briefly described as follows: '

1. READ--reads the input data.

2, INTEG--performs the numerical integration process.

3. WRITE--writes the outputs [E[n|t], [Pn(t)], to the appropriate
disk files.

4. AVG--computes the average number at time t.

S. FNS--contains the implementation of equations (1.1) to (1.4)
which form the rates of change of the probabilities.

R T T RO S I 8N g o4 -1 .
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The exact software appears in Appendix C. As one can see, the portion
of the programming to be mndified is strictly confined to the subrou-
tine entitled FNS. Moreover, the latter routine is invoked at every
time instant during the integration process. This allows the im-
plementation of time-dependent coefficients {xn(:)} and {uu(t)}. Ex-
amples appear throughout Section 4.

2.4.1 Required Inputs
" The simplicity of the numerical integration approach dictates

only 10 inputs. Five of thea; deal with the basic parameters describ-
ing orbital and launch operations. Most of these will appear to be =
obvious in view of the discussion in previous sections. The remaining ;ﬁ
inputs specify the mechanics of the gsimulation process. In order to
use the SPACE Model, one needs to perform the steps described in Ap~ i
pendix A. Since the model operates interactively, execution must
occur under IBM's Time Sharing Option (TSO). In other words, the user t~
is prompted for the inputs during execution at a terminal.

Describing the basic parameters of launch/orbital operations re-

oy e

quires one to input the following variables:

1. P@--probability that a booster fails.

k. MMD--mean mission duration = average life of a satellite

;? (= 1/average number failures per unit time = 1/failure rate).

, 3. C—number satellites/launch vehicle.

ﬁ, 4., MU--average number launches/unit time = (1/Mean Time Between
Launches) : (1/MTBL) = launch rate.

5. M--maximum number of satellites on-orbit (i.e., number

f satellites procured).

In Section 4 examples are given which demonstrate that almost all
members of the sets {An(t)} and {un(t)} can be expressed as functions
of the above basic parameters.

Parameters for continuous simulation are significantly fewer in

number than required by discrete-event simulators. The simulation

parameters required are as follows:

e, ) Lo ST NP
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6. LT--length of the simulation time interval (in time units
consistent with MTBL and MMD above).
7. NS--number of subintervals within time interval LT, (NS>, 100).*
8. T@--the time for initialization of the simulation. 1If
™9 > @, a special integration step computes Pn(Tﬁ). é
9. PMIN--a stopping criterion which halts the simulation process
if Po(t) is smaller.
10. TMAX--another stopping criterion which is interpreted as the

maximum number of increments of size LT for simulating.

In some instances, these parameters may also be employed in deter-
mination of members of {An(t)} and {un(t)}. See Section 4 for
specific examples.

TR I T . o AR SR TN ey 1

2.4.2 The Algorithms Used
Equations (1.1) to (1.4) form a system of ordinary differential
ﬁf equations which are quite simple to integrate. For this reason, the
i scheme adopted for numerical integration is the most simple available--
Euler's Method.
In terms of the variables used im this Note, Euler's Method may be

- described in the following manner:

o o AR TR T AR e A O T P

3 dp(n),

: (2.23) P(n)t+D = P(n)t + T D ne=l, ..., M+1

b

: where

(2.24) P(@), =P _,(t) n=1, ... M+ 1
(2.25) D = (LT/NS) = length og one subinterval within LT

’ dB (n),
(2.26) TR determined from (1.1) to (1.4)

: —
3 Testing by the author revealed that using NS = 100 provided the
maximum trade between accuracy and computational time.
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Equation (2.23) is the basic form of Fuler's Mcthod expressed in
terms of the variables appropriate to this Note and is easily ver-
ified by any standard text on di{ferential equations. Since the
simulator is written in FORTIRAN, Po(t) cannot be recorded (zero sub-
scripts are not allowed). Tiwus, Equation (2.24) is necessary to trans-
late the program vector P(n)t into the state variable measure Pn(t).
The remaining equations are obvious.

The notation P(n)t is adopted because all probabilities values
over time are not permanently stored in main memory. (They are, how-
ever, stored in a disk file. See Appendix A regarding execution in-
structions and descriptions of disk files.) Only the current and
previous values--P(n)t+D and P(n)t--are stored.

From (2.23), the performance measures cited earlier are easily

computed:

2.27) A(t) - Mfl P(n)
: n=N+1 @),

M+l
(2.28) Eln|t] = ofp (@ - DP@),

Again, the FORTRAN vector subscripting problem results in slight vari-
ations in the formulas. In fact, (2.27) and (2.28) represent ap-
proximations of the values of A(t) and E{n|t]. A comparison of this
approximation with actual values (for a limited, special case) ap-
pears in Section 3.

2.4.3 Modelling of Orbital/Launch Activities
Choosing the coefficients in (1.1) to (1.4) for the sets {An(t)}
and {un(t)} corresponds to modelling the day-to-day activities for the

interacting launch and orbital systems (on an infinite basis). These
time dependent coefficients are then computed at each time step of the
integration process described by (2.23) to (2.26). Updating of these
coefficients and the rates of change occurs in subroutine FNS.
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This subroutine consists of six distinct blocks. A heading
block identifies the beginning of the subroutine and consists of a
single line--SUBROUTINE FNS. The type declaration block specifies
both the type and dimension of each variable employed. Any version
of subroutine FNS must contain this block in the following form:

INTEGER M,NS

REAL P@,MMD,C,MU,LT,D,L.T1,PMIN, TMAX
REAL P(75),E(500),P1(75),T(500),T2,F,MUT
INTEGER I,J,K

The block or segment following the type declaration block is called
the COMMON block. This segment determines the variables passed be-

3 tween the program SPACE subroutines. This block is also mandatory and
must exactly follow the type declaration segment. Construction of
the COMMON block is as follows:

COMMON /INPUTS/M,P$,MMD,C,MU,NS,LT,D,T1,L,PMIN,TMAX
COMMON /OUTPUT/P,E,P1,T2,F,T,K,MUT,J,I

Descriptions of the variables in the type declaration and COMMON
blocks are found in Appendix B. |

The latter blocks deal with the mechanics of making software
] modules compatible. The final two blocks establish the modelling
E process. Block three computes the members of the parameter/coefficient
L sets {xn(t)} and {un(t)} while the fourth block updates the rates of
F change according to (1.1) to (1.4). In the current application, the
: coefficient set block is used to determine two variables representing
the current member of {ln(t)} and {un(t)}. The variables are degcribed

as follows:

(2.29) L=f0M) |[= An(t)]

(2.30 MUT = g(C, MU) [= u_(t)]

where MU = C/MTBL.
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Several other parameters may be of interest in determining the

form of f,g to Le used. These parameters are defined below:

1. Tl--the beginning of the current time interval of simulation.

2. D--the size of a time subinterval for which the rate of
change update is being computed.

3. J--a counter for the number of subintervals (with a single
time interval).

4, I--the number of satgllites on-orbit for which the proba-
bility 1is being updated.

5. T2--a temporary variable for computing current time of the
simulation.

For example, members of {An(t)} or {un(t)} which are dependent upon a
specific n must be related through software logic to the program
variable I. If a member of the above parameter set is time dependent,
then the software logic muét compute values of L or MUT dependent

upon the value of T2 computed by
(2.31) X=J
(2.32) T2 = T1 + (X - 1.0) - D

Examples of the uses of these values in computing members of
the parameter sets for modeling purposes appear in Section 4. The
typical modeler analyzing satellite systems will only have to modify
the coefficient set block to measure the impact of various launch or
orbital activities on satellite effectiveness.

The rate of change block updates the values of dP(n)t for a given
value of n (software variable I) and t (software variable Tl). These
equations are simply the implementation of (1.1) to (1.4) using the
current value of L and MUT as the appropriate value of xn(t) and
un(t). The rate of change is stored as program value F and is in-
serted into (2.23) which is implemented in subroutine INTEG. A

fe M R T RTREPREN WOim ORISR Y e T S NIRRT A MY ot TGRS AT 0 T
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tail block is necessary since this is a FORTRAN subroutine and con-
sists of separate RETURN and END statements. For an example of sub-
routine FNS with the blocks delineated, see Fig. 1.

Modelling the effects of transient phenomena of launch and satel-
lite operations is thus reduced to simple logic changes within the
coefficient set block of subroutine FNS. The next few sections demon-
strate how various phenomena can be modelled through manipulation of
these coefficients.

3. THE INFINITE INVENTORY CASE

Section 2.0 presented a variety of methods for solving equations
(1.1) to (1.4). The result was to adopt the method of continuous
simulation due to its flexibility in modelling a range of transient
phenomena. This section attempts to validate the continuous simula-
tion approach. A simple situation is formulated for which a closed
form solution exists. The simulation and closed form solutions are
then compared. Finally, the limitations of the simple situation are
explicated.

Consider a satellite system which maintains at most M satellites
on-orbit, Satellites have a lifetime distribution with an average
lifetime summarized by a number called Mean Mission Duration (MMD).
Replenishment occurs on a probabilistic basis with an average time
between launches characterized by a single number described as Mean
Time Between Launches (MTBL). Note that MTBL is a summary measure of
the performance of the launch system.

In fact, the satellite/launch system described above is the gen-
eral form of the system described in Section 1. The repetition of
satellite faillures and replenishment launches with no consideration
for number of satellites or launch vehfcles procured implies an in-
finite number of each being procured. Thus, this case is referred
to as the infinite inventory case. The surrealistic nature of this
case is described in Section 3.3,

ey T A B QTSI ST Y AR KT . a0
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ACTUAL CODE SEGMENT

SUBROUTINE FNS

INTEGER M,XS

REAL PO,MMD,C,MU,LT,D,L,T1,PMIN,TMAX
REAL P(75),E(500),P1(75),T(500),T2,F,MUT
INTEGER I,J,K

anOo oOOOOOO0n0

sfOOO

COMMON /INPUTS/M,PO,MMD,C,MU,NS,LT,D,T1,L,PMIN, TMAX

COMMON /OUTPUT/P,E,P1,T2,F,T,K,MUT,J,I

MAX NO. SAT = 75 ; MAX NO. TIME PERIODS = 500

COMPUTE TIME DEPENDENT PARAMETERS
X=J

T2=T14(X~-1.0)*D
IF(T2.6GT((M-C)/(C*MU))

STILL IN LAUNCH REPLENISHMENT PHASE
L= (1.0/MMD)

MUT=C* MU

GO TO 5

ALL REPLENISHMENTS DEPLOYED

L=1.0/MMD
MUT = 0

KOO O OO

CHECK TO SEE NO. ON ORBIT FOR WHICH PROB. IS
BEING UPDATED. THIS DETERMINES WHICH EQUATION IS
BEING COMPUTED.

IF (I.6T.1) GO T0 1

=-MUT*P1(I)+L*P1(I+1)

GO TO 3

IF (I.GE.C+1) GO TO 2

X=1

=« ((X-1.0)*L+MUT)*P1 (1)+X*L*P1(1+1)

GO TO 3

IF (1.EQ.M+1) GO TO 6

11=C

=1

F=-((X-1.0)*L+MUT)*P1 (I)+MUT*P1(I-11)+X*L*P1(I+1)
GO TO 3

11=C

X=I-1

F=-X*L*P1(I1)+MUT*P1(I-11)

CONTINUE

RETURN
END

Fig. 1--Basic blocks within subroutine FNS

BLOCK NAME

READING

TYPE DECLARATION

COMMON

COEFFICIENT SET

RATE OF CHANGE

TAIL
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3.1 Closed Form Solution
For the limited case described above, a convenient closed form

solution is available. In order to use the solution, the parameters
of the solution must be described in terms of the performance measures
MMD and MTBL.

Let the members of the parameter sets {xn(t)} and {un(t)} be
described by the relations:

(3.1) A (E) = A = 1/MD for all n, t
3.2) un(t) = y = C/MIBL for all n, t
(3.3) . a = number on~orbit at time t = 0

In this case, conditions (1.1) to (1.4) reduce to the following

equations:
dro(t)
(3.4) N T - -uPo(t) + XPl(t)
dPn(t) .
(3.5) —ge— = ~(aX + WP (6) + up (1)
+ (n+ 1)1?n+1(t) O<ncHM
dPu(t)
(3.6) - " -!m’n(c) + "Pu-l(t)
lifns=ga
(3.7 ?,(0)
0ifnéda

This set of equations has a closed form solution described by
Morse [3). For M > 0, a > 0, the solution to (3.4) to (3.7) is de-
scribed by




[ ]
~
+
r
[ L }e

1/2(n-a) » i
a A san s(a + 1w .
(3.8) R(®) = P+ T ef1 vy, [’in(u + 1) - 8:l“("M_+1‘_)]

(3i9) Y A+ ZJE;cos(M + 1 !

s

/

_ - j_1-p | n

(3.10) Pn (1 3 pM+1] P i

Ga)y e=¥s1 ;}

(3.12) forn=0, ..., M

Using (3.8) to (3.12), one can compute the required performance

measures as follows:

! M, 4

! (3.13) A(t]a) = oIy P (0 .
]

v .

I (3.14) Eln|t, a] = 2z, 0P (t)

In (3.13), N equals the minimum number of active satellites required
on-orbit to establish the avallability of the satellite system. Ad-
ditionally, Gross and Harris [2] give a solution to (3.8) to (3.12)
for the case in which M + », The latter is of no interest for satel-

lite systems, since this would allow an infinite number of satellites

? on-orbit.
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3.2 Comparison With SPACE Model
A typical satellite system requires relatively few satellites on-

orbit. Suppose a satellite system requires at most M = 3 gatellites
on-orbit. Generally, satellites have reasonably long lifetimes. This
prototype 1is assumed to have an MMD = gseven years = 84 months. A de-
sired goal is to achieve orbital configurations relatively quickly.
Therefore, an MIBL of one month is assumed (recall the assumption that
this pattern repeats indefinitely). Since the current launch mechanism
is by expendable wvehicle (Titan, Delta, etc.), only one satellite is
to be launched per launch vehicle. Finally, the counting process
(t = )) begins with no satellites on-orbit.

In terms of the parameters required for both the simulation and
closed form solutions, the preceding description may be summarized as

follows:

(3.15) M=3

(3.16) p = C/MIBL = 1/1 month = 1/month
(3.17) A =1/MMD = 1/84 months = .012/month
(3.18) a=0

(3.19) c = 1 satellite/launch

All of these parameters are used in both the closed form solution

(3. 8) to (3.12) and in the continuous simulation model SPACE. The
average number oun-orbit over time is computed based upon the appropri-
ate equations (for each approach) as described in earlier sections. The
results are graphically compared in Fig. 2.

Several observations can be made regarding these results. The
simulated and actual values are very close. In fact, the curves could be
made to exactly overlap through appropriate choice of simulation param-
eters such as NS (the number of subintervals within a single time
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interval). The slight difference is maintained here simply to amplify
the proximity between the simulated values and the actual values.

From the perspective of the satellite system, both approaches demon-
strate that the satellite system achieves its maximum quite rapidly
(within six to eight months, depending upon the approach) and then
settles down to a stable configuration. The time period prior to

this stabilization is referred to as a transient state period. The
remainder of the satellite system's operational cycle is quite stable
and is characterized by the tera steady state. Most satellite programs
are greatly concerned about this transient phase, since this period
determines the future success of the program.

The comparison is based upon a small number of satellites (M = 3)
for reasons of mathematical tractability. In the typical application,
the ratio of p = p/A is usually bounded by 0 < p < 1, allowing M to range
freely. The special characteristics of orbital/launch systems forces
¢ > 1, requiring M to be bounded. The exact bounding value of M depends

on the value of ¢ and 1s not presented here.

3.3 Limitations of the Simple Example

Many of the reasons for the nonrealistic nature of this example
have been discussed in Section 2.1. These are summarized and expand-
ed somewhat in this section. '
As demonstrated above, the transient phenomena are short-lived in
this example. This is due to the assumption of the constant faflure
and replenishment rates in (3.16) and (3.17). Practical experience
dictates that this may not be realistic, since the extent and range of
transient phenomena are often more elaborate. The additional assump-
tions regarding the availability of an infinite number of both launch
vehicles and spacecraft are totally inconsistent with traditionally
small procurements of satellite programs. The sole purpose of using
the closed form in this section is to allow a comparative evaluation
of the continuous simulation implemented in model SPACE. ;
The next section of this Note uses the SPACE model to extend the i
analysis of satellite systems to include nonconstant failure and re-
plenishment rates. Specific examples are presented demonstrating how
the choice of {An(t)} and {un(t)} may reflect a variety of transient .

phenomena.
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4. SPECIAL CASES

This section presents a series of examples which demonstrate the

appropriate choice of members of {An(t)} and {un(t)] for several real-
istic operational philosophies. The first example focuses upon using
a power cycling approach for operating a satellite in the context of
a single lot buy. Another relevant example appears in the second
section which investigates the imapct of disruptions in launch activ-
ities. Two cases are presented--one in which no backup launch system
is'available and a second case in which a backup system with lesser
capability is assumed to exist. Finally, a third section discusses
the use of the results in life-cycle cost analysis using some of the
outputs of the SPACE model. This last section also discusses (and
presents contrived examples of) some criteria for using the SPACE
model results in cost-effective policy decisions.

4.1 Satellite Power Cycling

In this section, two ﬁajor aspects of satellite/launch operations
are modelled. From the perspective of satellite orbital operationms,
the concept of power cycling is explored. Launch operations are
modelled under the assumption that a single procurement of satellites
is launched at a constant rate until all satellites are launched.
After that point, no more launches occur dictating decay in the number
of satellites on-orbit. The members of {Xn(t)} and {un(t)} are fully
described below and are all functions of parameters which are easily
recognized from earlier sections.

Power cycling is defined as using the satellite at full-power for
some fixed portion of time and then reducing power for another fixed
time period. The cycling aspect occurs because the high-low pattern
is repeated over the operational cycle of each individual satellite.
During the periods of lower power level, the failure rate should be
correspondingly lower. The failure rates (members of {xn(:)}) in the

example for this section assume the following form:




A, = /D TL < t < T1 + (1/30)LT; ¥n

(4.1) An(t) =

A, = .15(1/MD)  T1 + (1/30)LT < t < T1 + LT; ¥n
where MMD = Mean Mission Duration of a satellite,

Tl = time counter for tracking the last occurrence of a

simulation output report,

LT = the length of a simulation interval.
Appearance of the constant .15 assumes that failures occur during low
power at 15 percent of the active failure rate. Another assumption
is that a satellite is at a high power level for the first 1/30th of
a simulation interval and at low power for the remainder of the in-
terval. Since LT is assumed to be one month in the example below,
this assumption states that the satellite spends the first day of
each month at high power and the remaining 29 days at low power.

Description of the replenishment or launch rates is dependent

upon the belief that all satellites procured are launched, after which
no launches occur. The corresponding members of {un(t)} are described

as follows:

u; = C/MIBL = Cu  t ¢ {(4-C)/Cul; Vn

(4.2) un(t) =
u, = 0 (¢M-C)/Cu]l t: Vm

where C = number of satellites/launch vehicle,
MTBL = mean time between launches,
M = number of satellites procured,
¥ = average number satellites launched per time unit.
The time required to launch M satellites at a rate of Cu, conditioned
upon the lst launch occuring at time O is simply [(M-C)/Cu]. Thus,

the launch rate for this time period is simply Cu (which is the number of
satellites per launch divided by the mean time between launches). After
[(M-C/Cu] time has passed, no more launches occur; therefore, the replen-

ishment rate is reduced to zero.

e 1 v P N—
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Constructing the parameter set block of subroutine FNS 1s a
simple task. Once this routine has been appropriately modified, the
SPACE model is executed with the following inputs:

(4.3) MMD = 120 months
(4.4) C = 1/launch
(4.5) M= 10

(4.6) MTBL = 6 months

The same input data was used in a version of subroutine FNS in
which no cycling was allowed. In other words, the set'{ln(t)} was

represented as
4.7) A (t) =2 =<1 foralln,t
: n MMD ¢

The results of using both (4.1) and (4.7) appear in Fig. 3 and are
discussed in the next paragraph. Both models assume that one percent
of all launches fail to achieve orbit. Both systems obtain the peak
number on-orbit at approximately the same time. Some careful thought
reveals that these peaks appear when replenishments cease to occur--
at time [(M-C)/Cp]. Using the data from (4.3) to (4.6), u = C/MIBL = 1/6 4
per month so that the peaks occur at roughly time [(M~C)/Cu] = 54 months. ;
Figure 3 does indeed verify this number.

A comparison of the impacts of power cycling can now be made.

Cycling achieves a higher peak level of satellites on-orbit because
satellites are not failing as often. Moreover, satellites operated
on a power-cycling basis obtain more satellites on-orbit earlier than
full-power satellites and maintain more satellites on-orbit for a sig-
nificantly longer time period. Of course, the actual construction of

these curves is dependent upon the inputs in (4.3) to (4.6). However,
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intuition indicates that the relationships and conclusions will still
be the same regardless of the actual inputs; the magnitudes of the
differences between the curves in Fig. 2 would vary for different
inputs.

More importantly, Fig. 2 demonstrates that the modelling approach
employed in (1.1) to (1.4) and implemented through continuous simula-
tion is quite capable of representing the residual lifetimes of the
satellites on-orbit. In fact, the downward sloping portions of the
curves in Fig. 2 are simply the decaying lifetimes of the satellites
currently on~orbit, since no launches or replenishments occur. Having
effectively analyzed satellite operations, the next section approaches

the process of detailed analysis of launch operationms.

4.2 Disruptions in Launch Operations

Since the focus of this paper is specifically to relate launch
operations to satellite performance, this example contrasts two situa-
tions which reflect varying launch condicions. At first, a 36-month
launch disruption is assumed. After the 36 months have passed, a new
launch system becomes operational with significantly degraded capa-
bility. The analogue is to consider a complete failure of the shuttle
system with no operational backup system of expendables. In contrast,
the same analysis is performed under the assumption that a backup sys-
tem of expendables (with degraded capability) is immediately available.
Failure modes are of no particular interest in these two analyses.
Therefore, the following failure parameters are assumed throughout

this section:

(4.8) An(t) =) = 1/MMD ¥, t

In order to allow comparative statements regarding the impact of
differing launch scenarios, all other periods of operation are assumed
to be steady state. This translates to allowing an infinite number
of launches and to accepting an infinite inventory of satellites.

Thus, M 1s now interpreted as the maximum number of satellites allowed

T ane—
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on-orbit. The construction of equations (1.1) to (1.4) is such that
a launch 1is conditioned upon having less than M satellites on-~orbit,
and no launches are allowed if 10 are on-orbit.

For the no-backup case, consider that the space shuttle is the
primary launch mechanism. At time t = 25, the shuttle becomes dis-
abled. If immediate actions are taken, the Titan system becomes opera-
tional 36 months later. However, in general, the Titan carries a
lesser payload. The replenishment rates [members of {un(t)}] de-
scribing this no-backup case may be described by

B = C(1/MIBL) = Cu t < 25; ¥n
(4.9) un(t) =<u2 =0 25 <t < 61; ¥n
\u3 = ,50u 6l < t

where C = number satellites/launch,
MTBL = mean time between launches,

4 = average number of launches per unit time.

Recall that the new launch system must have a degraded capability.

For a 32,000 pound payload, the shuttle can carry two satellites per

launch while a Titan can launch only one satellite per vehicle. Thus,

the degraded capability in this example 1s o5 the shuttle capability
(hence, the appearance of the parameter ,5 in u3).

As an alternative, one could maintain a backup system of expend-
able vehicles (at a cost, naturally) so that the loss of the shuttle
system at time t = 25 results in an immediately degraded launch capa-
bility with no complete disruption in launches. For the backup case,

the appropriate coefficients are described as:

u, - C(1/MTBL) = &+ t < 25; ¥n
(4.10) un(t) =

u, = S0 25 < t; ¥n
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vhere C, MIBL, and y are described above. Justification for use of
the parameter .5 is the same as explained earlier.
After subroutine FNS was modified to reflect (4.9), the SPACE

model was executed using the following input set:

(4.11) MMD = 120 months
(4.12) C = two satellites/launch
(4.13) MTBL = one month between launches

The results appear in Fig. 4 labeled by the title "Without Backup."
Similar steps were taken for (4.10) uﬁd SPACE was executed again
using (4.11) to (4.13). These results also appear in Fig. 4 labeled
"With Backup."

The curves in Fig. 4 lead to several important conclusions. For
purposes of this discussion, assume that the operational goal is to
maintain nine active satellites on-orbit. In the no-backup case, the
disruption at t = 25 does not have an immediate impact due to the
residual lifetimes of the satellites. Orbital decay begins to degrade
the satellite configuration at t = 34, so that, on the average, this
system can sustain operations for about nine months without replenish-
ment. Moreover, while the new launch system is introduced at t = 61,
the orbital configuration is not fully recovered until t = 68 (seven
months later). Thus, the satellite system is "unavailable" or "down"
(assuming nine satellites are absolutely required) for 68 - 34 = 34
months. The down time is less than 36 months due to the slight com-
pensating effect of the residual lifetimes of the satellites.

Now, consider the case where the backup system was available.
Fig. 4 reveals that although the backup system introduced at t = 25
had only half the capability of the shuttle system, the immediate em-
ployment of the backup in combination with the satellite residual
lifetimes resulted in n0 loss of active satellites on-orbit. Note

also that prior to and subsequent to the launch activity variatioms,
both curves are identical. Moreover, the effective slope of the initial

|
|
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deployment activities (t = 0 to t = 11) is roughly twice the effective
slope in the no-backup case when the new launch system is introduced
(t = 61 to t = 68). This reflects the ,5 lesser capability of the

backup system.
As a result, one can say that if the backup system is procured

and available for immediate employment then the mission can be per-
formed with little or no time delay (remember, these curves represent
averages, so some probability exists that a delay does occur). The
final subsection deals with relating this information to cost-effec-
tive policy decisioms.

4.3 The SPACE Model and Cost-Effectiveness

The information throughout this Note can now be used to made cost-

effective policy decisions. In the last section, some conclusions
were made regarding a variety of launch scenarios. Measures of both
cost and effectiveness can be employed to evaluate the implications of
these conclusions. This section suggests an appropriate cost measure,
several possible effectiveness measures, and gives an example of a
cost-effectiveness comparison.

An extension of the life-cycle cost formula in (1] can now be
stated. This extension has the added attraction that discounting can
now be specifically included since the cost measure is now a time
profile (due to its dependence on Pn(t)). Life cycle costs for a
satellite system can now be approximated by

r -rt

M - M
(4.14) LCC(t) = RDTE + G B, P, ()u (t)e F4 gy B (0 (t)e

~rt -rt
+C P (e) U (t) - A ()] e s Cye

M
I n§0

with total expected, discounted life cycle costs easily computed as
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LC
(4.15) E(LCC) = Lo LCC(E)

0

where M = the maximum number of satellites,
{An(t)} = the set of failure rates,

—
=
o~
aJ
~
~
[

the set of replenishment rates,

= the infinitesimal discounting factor

= the discount rate

= the research, development, testing, and evaluation costs,

production cost/satellite,
launch cost/satellite,
inventory carrying cost/satellite/time unit,

backup launch system costs/time unit,

O'
Sf&ffguz
"

the 1life cycle of the satellite system.

Each term is a separate cost incurred for the various recognized
phases of the life cycle. Discounting may now be employed since costs
are a function of time through the factors Pn(t). The factor
un(t) - An(t) represents the rate at which inventory accumulates at
time t. An additional module can easily be added to the SPACE model
to compute and output the value for LCC(t) in (4.14) when Pn(t) is
outputted. The coding logic of this module must determine when and
how to add the various costs. For instance, if the backup system is
not operational, CB > 0. However, should the backup system become
operational, CB = 0 and CL should be modified to reflect the launch
costs of the new system. _

Effectiveness is easily measured through the satellite perform—
ance measures--availability [A(t)] or average number on-orbit
(E[nlt]). Using either of these, the operational goal is to maintain
a minimum number on-orbit over a time period T or to maintain a mini-
mum availability over time period T. (Recall, these two were shown to
be roughly equivalent, in the sense that both summarize the same in-
formation.)

However, two other effectiveness criteria may prove to be in-
teresting. Both of these criteria are based upon explicitly measuring
the risk associated with a launca/orbital strategy. First, one may

R " Y MO SR A PO S O
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desire to obtain a high rn(‘r) for some fixed number of satellites N
and some fixed time T. Another measure of risk is the down time as-
sociated with a satellite system. Down time may be defined as the
anount of time between the decay of an orbital configuration until
its restoration (measured relative to a requirement to maintain N

satellites on-orbit). For example, in the previous section, loss of
the shuttle system for 36 months resulted in a down time of 34 months. .
Both of the latter measures are, in essence, inverse images of the {
first two measures. Maintaining a large average number of satellites
on-orbit is equivalent to obtaining a significant ru(r) for N, T
fixed.

Proper usage of results from the SPACE model dictates that one
compare the impacts of variations in launch scenarios with the cor-
responding cost values. As an example, consider the chart in Table 1
below. This table represents the resnlts of cmuparing the backup '
and no-backup cases for the shuttle launch system. The measure 1’“'('1'),

for fixed N, T, is chosen as the appropriate effectiveness measure

for two reasons. Risk is assumed to be of primary importance (de-
pending upon the satellite mission). Moreover, a single value is
useful for comparison against the single, average value for E(LCC).
Recall that the previous example required nine satellites to ensure
mission performance. Risk is assessed at time t = 60 because this

is during the potential launch disruption when backup launch facilities
are most critical.

Table 1

COST~EFFECTIVENESS OF LAUNCH SYSTEM BACKUP

Scenario Py (60) E(LCC)
‘ Shuttle without backup .6 $400B

Shuttle with expendable backup .9 $1,000B8
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The costs in Table 1 are not accurate, but do reflect the higher
costs associated with maintaining an expendable backup system. The pro~
babilities were taken from actual computer runs. However, if the costs
were to prove accurate, one could ascertain that a high risk (very
low probability) is associated with having no backup launch system.

Of course, the actual decision made depends upon such subjective factors
as mission criticality, the actual cost magnitudes, and many individuals'
attitudes regarding risk. If the space mission of the United States

is highly critical for survival, then maintemance of the expandable
backup system is absolutely necessary to achieve the lower level of

risk (reflected by higher P9(60) in Table 1).

As explained, these figures are estimates only. The costs have
not been computed. In addition, more background is required concerning
the nature of the appropriate backup system alternatives—-their per-
formances relative to the shuttle and their respective yearly cost

expenditures. Finally, an appropriate effectiveness measure must be
chosen.

5. CONCLUSIONS

The conclusions section of reference [1] suggested several exten-
sions of that work. In this Note, the extensions have been accom-
plished with the addition of the explicit focus upon analysis of space
shuttle activities. A useful tool has been provided for analyzing
transient phenomena in the operation of space systems--both from the
orbital and launch perspectives. More importantly, measures have been
derived which allow the comparison of a variety of launch scenarios.

The continuous simulation tools described in this Note and its
Appendixes are simple to implement. They may be programmed on a
hand-held calculator and provide significant information based upon
a minimal amount of data. System state changes are easily wmodelled
by a system of differential equations. The most difficult task in
applying the tools to satellite systems is in the appropriate choice
of failure and replenishment rates--the members of {xn(t)} and
{uu(t)}, respectively.
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More importantly, this Note has demonstrated that an expendable
backup system for the space shuttle can have significant positive
effects upon the U.S. space posture. Reasonably exact measures of
risk and cost can be assessed with minimal effort, limited only by
the accuracy of the tools used. The utility of this kind of informa-
tion in making long-term policy decisions is high.

1
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Appendix A
USER INSTRUCTIONS ?
1
1. Decide the forms required for {un(t)), {xn(t)l. s
2, Under TSO, use the editor to modify the coefficient set :
block of subroutine FRS. The whole SPACE model is stored '
in the partitioned data set member named CSIMLIB.SPACE.FORT
(BUNCH) .
3. Compile CSIMLIB.SPACE.FORT(BUNCH) into CSIMLIB.SPACE,OBJ(BUNCH).
4, Create two output files:
a. CSIMLIB.SPACE.OUT(SUMRY): lists the expected number on-
orbit over time.
b. CSIMLIB.SPACE.OUT(DETAIL): lists the P_(t) and cumulatives | 3
3 over time. ‘
{j 5. To execute, type the following:
ALLOC F(FT@9FPP1) DA(CSIMLIB.SPACE.OUT(SUMRY))
ALLOC F(FT1¢F@¢1) DA(CSIMLIB.SPACE.OUT (DETAIL)
] LOADGO CSIMLIB.SPACE.OBJ (BUNCH)
f 6. The computer will prompt you for the inputs, as follows:
3 INPUT M, P§, MMD, C, MU
7 (10, .01, 120, 1, 1] USER INPUTS VALUES
i INPUT NO. SUBINT AND LENGTH OF TIME INTERVAL
? USER INPUTS VALUES
3 INPUT T1, PMIN, TMAX .
4 ? USER INPUTS VALUES
% (Some time passes during execution; time intervals printed
’ on CRT.) ;
INPUT 1 FOR TITLES AND DETAILED INFO
? USER TYPES 1 TO ECHO INPUT VALUES '
: 7. Outputs are now stored in dataset members described in 4)

I above. Send copy to line printer or use plotter to prepare

graphs.

»
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Appendix B

MODEL DOCUMENTATION

A. Subroutine descriptions

1.
2’
3.

4.
S.

READ--reads the input data.

INTEG~-performs the numerical integration process.
WRITE--writes the outputs [E[nlt], Pn(t)] to the appropriate
disk files.

AVG--computes the average number at time t.

FNS--contains the implementation of equations (1.1) to (1.4)
which form the rates of change of the probabilities.

B. Input variables

1.
2.

7.
8.

9.

10.

P@--probability that a booster fails.

MMD--mean mission duration = average life of a satellite

(= 1/average number failures per unit time = 1/fafilure rate).
C-~number satellites/launch vehicle.

MU--average number launches/unit time = (1/Mean Tine Between
Launches) : (1/MTBL) = launch rate.

M-—maximum number of satellites on-orbit (i.e., number satel-
lites procured).

LT--length of the simulation time interval (in time units
consistent with 1/MU and MMD above).

NS--number of subintervals within time interval LT.

T@--the time for initialization of the simulation. If

T @, a special integration step computes Pn(Tﬁ).

PMIN--a stopping criterion which halts the simulation process
if Po(t) is smaller.

TMAX--another stopping criterion which is interpreted as the

maximum number of increments of size LT for simulating.

o
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Output variables

1.
2.

3.

4.

10.

11.

12.
13.

D = length of a subinterval = LT/NS

Tl = time counter for endpoints of simulation intervals

(time at which simulation measures are output).

L = failure rate (computed in FNS as a function of MMD,

n, t).

MUT = replenishment rate (computed in FNS as a function of
MTBL, n, t).

J = program subinterval counter within an integration interval.
F = program counter for number on-orbit (I = 1 is equivalent
to n = 0).

T2 = temporary variable for storage of actual time associated
with subinterval J,

F = value for dPn(t)/dt, evaluated within subroutine FNS.

P(I) = probability that (I-1) satellites are on-orbit at a
given time T1.

CP(I) = cumulative probability that less than or equal to
(I-1) satellites are on-orbit at a given time T1.

P1(I) = updated probability that (I-1) satellites are on-orbit
at a given time T2,

E(K) = expected number on-orbit at Kth time point.
T(K) = the time at Kth time point.
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Appendix C
"SPACE" MODEL SOFTWARE

INTEGER M,NS

REAL Po,mMD,C,MU,LT,D,L,T1,PMIN,TMAX

REAL P(75),E(500),P1(75),T(500),T2,F,MUT

INTEGER I,J,K

COMMON /INPUTS/M,PO,MMD,C,MU,NS,LT,D,T1,L,PMIN,TMAX
COMMON /OUTPUT/P,E,P1,T2,F,T,K,MUT,J,I

MAX NO. SAT = 75 ; MAX NO. TIME PERIODS = 500

CALL READ

CALL INTEG

CALL WRITE

STOP




SUBROUTINE AVG

INTEGER M,NS

REAL pO,MMD,C,MU,LT,D,L,T1,PMIN,TMAX

REAL P(75),E(500),P1(75),T(500),T2,F,MUT

INTEGER I,J,K

COMMON /INPUTS/M,PO,MMD,C,MU,NS,LT,D,T1,L,PMIN, TMAX

COMMON /OUTPUT/P,E,P1,T2,F,T,K,MUT,J,I

c
c MAX NO. SAT = 75 ; MAX NO. TIME PERIODS = 500 !
c s
!
c
c COMPUTE THE AVERAGE NO. ON ORBIT AT TIME T1 "
: |
c E
: c COMPUTE THE UPPER LIMIT OF THE DO-LOOP
7:[ c i
1 |
i JJ=M+1 .
¥ '
i c COMPUTE THE AVERAGE
c
DO 1 I1=1,JJ
; 1 E(K)=E(K)+(I1-1)*P(I1)
c
' RETURN
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SUBROUTINE READ

INTEGER M,NS

REAL PO,MMD,C,MU,LT,D,L,T1,PMIN, TMAX

REAL P(75),E(500),P1(75),T(500),T2,F,MUT

INTEGER I,J,K

REAL LT1,NS1

COMMON /INPUTS/M,PO,MMD,C,MU,NS,LT,D,T1,L,PMIN, TMAX
COMMON /OUTPUT/P,E,P1,T2,F,T,K,MUT,J, I

MAX NO. SAT = 75 ; MAX NO. TIME PERIODS = 500

WRITE(6,1)

FORMAT (1X,'INPUT M, PO, MMD, C, MU ' )

READ(5,*) M,P0,MMD,C,MU

WRITE(6,2)

FORMAT(1X, ' INPUT NO. SUBINT AND LENGTH OF TIME INTERVAL')
READ(5,*)NS, LT

WRITE(6,7)

FORMAT(1X, 'INPUT T1 , PMIN , TMAX ')

READ(5,*) T1,PMIN,TMAX

CHECK TO SEE IF NO. SUBINTERVALS >= 100
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c
IF (NS.GE.100) GO TO 5
WRITE(6,6)
6 FORMAT(1X,'NS < 100 . TRY AGAIN')
STOP
c
c CHECK TO MAKE SURE C*MU < NS/LT FOR INTEGRATION TO HOLD
c
5 IF (C*MU.LT.NS/LT) GO TO 3
WRITE(6,4)
4 FORMAT (1X, ' C*MU NOT < NS/LT AS REQUIRED FOR INTEGRATION'/)
1 STOP
c
c COMPUTE NO. OF SUBINTERVALS PER TIME INTERVAL
c
i 3 LT1=LT
, NS1=NS
.j : D=LT1/NS1
1 c
c
RETURN
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SUBROUTINE WRITE

INTEGER IE(500)

INTEGER M,NS

REAL pO,MMD,C,MU,LT,D,L,T1,PMIN,TMAX

REAL P(75),E(500),P1(75),T(500),T2,F,MUT

INTEGER I,J,K

COMMON /INPUTS/M,PO,MMD,C,MU,NS,LT,D,T1,L,PMIN,TMAX

COMMON /OUTPUT/P,E,P1,T2,F,T,K,MUT,J,I

MAX NO. SAT = 75 ; MAX NO. TIME PERIODS = 500

WRITE(6,15)
FORMAT(/1X, 'INPUT 1 FOR TITLES AND DETAILED INFO'/)
READ(5,*)IS
IF(IS.NE.1) GO TO 16
WRITE (9,13)M
FORMAT(/1X,'MAX. NO. SATELLITES = ',I5)
WRITE (9,9)PO
FORMAT(/1X, 'PROB. OF BOOSTER FAILURE = ',F6.3)
WRITE (9,10)MMD

FORMAT(/1X, 'MEAN MISSION DURATION = ',F7.2)
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WRITE(9,11)C

11 FORMAT (/1X, 'NO. SATELLITES PER LAUNCH = ',F6.0)
WRITE (9,12)MU

12 FORMAT(/1X,'NO. LAUNCHES PER UNIT TIME = ',F6.2//)

c

c
WRITE(9,1)

1 FORMAT (1X,'EXPECTED NO. ON ORBIT AS A FUNCTION OF TIME')
WRITE(9,2)

2 FORMAT(//1X,'TIME' ,5X, 'EXPECTED NO.'//)

16 CONTINUE

DO 3 I=1,K
IE(I)=E(I)
3 WRITE(9,4) T(I),IE(I)
4 FORMAT(1X,F6.2,6X,18)

IF(IS.NE.1) GO TO 17

WRITE(9,5) T(K)

5 FORMAT(//1X, 'PROB. DIST. OF NO. ON ORBIT AT TIME ',F10.2)
WRITE(9,8) .

8 FORMAT(//1X, 'NUMBER' ,5X, ' PROBABILITY',/)
JJI=M+1

DO 6 1=1,JJ

e




17

‘JI1=I-1

WRITE(9,7) JJ1,P(1)
FORMAT(2X, 14,9X,F6.4)
CONTINUE

RETURN

END
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SUBROUTINE INTEG
INTEGER M,NS
REAL CP(75)

REAL Po,MMD,C,MU,LT,D,L,T1,PMIN,TMAX

REAL P(75),E(500),P1(75),T(500),T2,F,MUT

INTEGER I,J,K

REAL NS1,C0,MUO,MO

COMMON /INPUTS/M,PO,MMD,C,MU,NS,LT,D,T1,L,PMIN,TMAX
COMMON /OUTPUT/P,E,P1,T2,F,T,K,MUT,J,1

MAX NO. SAT = 75 ; MAX NO. TIME PERIODS = 500

REDUCE MAGNITUDE FOR EASE OF COMPUTATION

FR=-1.0
IF (C.EQ.1.0.AND.MU.EQ.1.0) GO TO 14

STORE C,MU,M INTO TEMPORARY STORAGE LOCATIONS
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MO=M

C=1.0

MU=1.0

R6=M/ (CO*MUO)
M=Ré6

FR=R6-M

CHECK FOR SPARSENESS OF DATA

IF (M.LE.75) GO TO 15

WRITE(6,16)

FORMAT(1X, 'T0O0 LITTLE DATA FOR SUCH LARGE NUMBERS')

sTOP

INITIALIZE UPPER LIMIT ON DO LOOPS

JI=i+1

INITIALIZE THE PROBABILITIRS

THE INITIALIZATION SCHEME BELOW ASSUMES THAT TIME
ZERO IS EQUIVALENT TO THE TIME OF THE FIRST LAUNCH
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IN THE SYSTEM.

DO 2 I=1,JJ

IF (I.EQ.C+1) P(I)=1-PO

IF (I.NE.C+1) P(I1)=0.0

CONTINUE

INITIALIZE COUNTER FOR NO. OF TIME INCREMENTS EVALUATED

K=0

BEGIN THE TIME ITERATION PROCESS

IF T1 GT O THEN TREAT 0 TO T1 AS FIRST TIME INTERVAL

J1=1

IF (T1.EQ.0) GO TO 1

Ji1=0

RECORD TIME SUBINTERVAL D INTO TEMPORARY STORAGE D1

D1

n
o
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D2=NS

COMPUTE SPECIAL D FOR INTERVAL FROM 0 TO T1 > 0

NS1=5000.0
NS=NS1
D=T1 / NS1
GO TO 7

T1=T1 + LT
K=K+1

SINCE TIME INCREMENTS MAY NOT BE INTEGRAL, CREATE A VECTOR
TO STORE TIME VALUES. INITIALIZE EXPECTED NO. ON ORBIT
FOR A GIVEN TIME LOCATION.

T(K)=T1
E(K)=0.0

BEGIN THE INTEGRATION BY STORING PROB. AT TIME T1 INTO
A TEMPORARY STORAGE VECTOR.

Sirun N Y VRAWR - T ey % irs e g
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Do 3 I=1,JJ

P1(I)=P(I)

UPDATE THE TEMPORARY PROBABILITIES BY NUMERICALLY INTEGRATING
THROUGH A SINGLE TIME INCREMENT. SIMPLE EULER METHOD OF
NUMERICAL INTEGRATION IS USED.

DO 4 J=1,NS

DO 4 I=1,JJ
CALL FNS
P1(1)=P1(I1)+D*F

RESTORE INTEGRATED RESULTS FROM TEMPORARY PROB. VECTOR P1
TO PERMANENT PROB. VECTOR P TO CONINUE THE INTEGRATION
OVER THE NEXT TIME INTERVAL.

DO 5 I=1,JJ
P(1)=P1(I)

THE PROBABILITIES AS A FUNCTION OF TIME ARE NOT PERMANENTLY
STORED AFTER USE IN CALCULATING THE MEAN BELOW. THUS, IF
THE ACTUAL PROBABILITIES ARE DESIRED, THIS IS THE PLACE
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TO STORE OR OUTPUT THE PROBABILITIES.

CALL AVG

IF THIS WAS SPECIAL CASE WHEN T1 > O RESTORE SUBINTERVAL
LENGTH FROM TEMPORARY STORAGE D1 TO ACTUAL VARIABLE D

IF (J1.6T.0) GO TO 8
J1=1

D=D1

NS=D2

CONTINUE

COMPUTE CUMULATIVES FOR OUTPUT

DO 20 I=1,JJ
CP(1)=0.0
CP(1)=P(1)

DO 21 I=2,JJ
CP(1)=CP(I-1)+P(I)
GO TO 100

e et RN
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C OUTPUT PROBABILITIES

c

T2=T1-LT

ﬁRITE(10,9) T2
: 9 FORMAT(/1X, 'PROB. VECTOR AT TIME ',F7.2//)
i WRITE (10,*) (P(I),I=1,JJ)

WRITE(10,*) (CP(1),I=1,JJ)
100 CONTINUE

ks it

oty 28]
Q

OUTPUT MESSAGE TO TERMINAL FOR STATUS REPORT TO PROGRAMMER

P T A e

WRITE(6,12)T1

A

12 FORMAT(1X,'TIME = ',F7.2)

Adse Mot dnw. i,

c CHECK TO SEE IF MAX NO. OF TIME INTERVALS HAVE BEEN EVALUATED

IF (K.GT.TMAX) GO TO 6

c CONTINUE INTEGRATION FOR NEXT TIME INCREMENT
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CHECK TO SEE IF EXPECTED NO. ON ORBIT HAS REACHED ZERO

IF (P(1).GT.PMIN.OR.E(K).LT.1.0) GO TO 6
GO TO 1
CONTINUE

RESTORE SCALE OF MAGNITUDE, IF NECESSARY

IF(FR.LT.0.0) GO TO 18

C=Co
MU=MUO
M=MO

RESTORE SCALE TO EXPECTED VALUES

Do 17 I=1,K
E(I)=CAMU* (E (I)+FR)
CONTINUE

RETURN

END
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SUBROUTINE FNS
INTEGER M,NS

REAL PO,MMD,C,MU,LT,D,L,T1,PMIN,TMAX

REAL P(75),E(500),P1(75),T(500),T2,F,MUT

INTEGER I,J,K

COMMON /INPUTS/M,PO,MMD,C,MU,NS,LT,D,T1,L,PMIN, TMAX
COMMON /OUTPUT/P,E,P1,T2,F,T,K,MUT,J,I

MAX NO. SAT = 75 ; MAX NO. TIME PERIODS = 500

COMPUTE TIME DEPENDENT PARAMETERS
X=J

T2=T1+(X~1.0)*D

IF( T2.GT((M-C) /C*MU))) GO TO &

STILL IN LAUNCH REPLENISHMENT PHASE

L= (1.0/MMD)
MUT=C* MU

TR VR




M koo padilio

o e e T i T e A L 5 =

S O 6o

w O o 0O O 6

IF (I.GT.1) GO TO 1
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ALL REPLENISHMENTS DEPLOYED

L=1.0/MD

MUT =0

CHECK TO SEE NO. ON ORBIT FOR WHICH PROB. IS
BEING UPDATED. THIS DETERMINES WHICH EQUATION IS
BEING COMPUTED.

F=-MUT*P1(I)+L*P1(I+1)
GO TO0 3
IF (I.GE.C+1) GO TO 2

xR T SR T oy e A OIS

X=1
F=-((X-1.0)*L+MUT)*P1(I)+X*L*P1(I+1)
GO TO0 3

IF (I.EQ.M+1) GO TO 6

I1=C

X=1
== ((X=1.0)*L+MUT)*P1(I)+MUT*P1(I-I1)+X*L*P1(1+1)
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GO TO 3
6 I1=C
X=1-1
F=-X*L*P1(1)+MUT*P1(I-11)
3 CONTINUE
RETURN
END
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