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1. INTRODUCTION

a. Background

A previous study has addressed the identification of built-in-test

(BIT) techniques for the Military Computer Family (MCF) [4]. In that

study, appropriate BIT techniques were identified based upon an assumed

fault population. A model was developed to predict where in the system

these faults are most likely to occur. Based upon this model, a rationale

was developed for deploying built-in-test resources and a unified BIT

approach for MCF was recommended.

A later study focused on the identification of relevant BIT require-

ments for Military Computer Family form, fit and function (F3) specifica-

tions [5]. This study identified elements of the MCF F3 specifications

that could be modified to accommodate the BIT features identified and

recommended in the previous study. In addition to recommending the modifi-

cation of MCF specifications, a method for validating BIT performance in

vendor-supplied F3 hardware was proposed. This is a particularly diffi-

cult problem since a basic premise of the MCF program is that the internal

hardware and software modules procured under the F3 specifications cannot

be specified. The BIT performance specification and validation approach

recommended was the use of Instruction Set Processor (ISP) language

descriptions with a functional fault injection capability.

b. Present Study Objectives

The present study was concerned with extending the BIT performance

assessment methodology proposed in reference [5] for verifying MCF built-

in-test performance and the application of this methodology to a particular

member of the Military Computer Family.

c. Study Approach

* The recommended approach is to describe MCF functional modules using

ISP language descriptions. The PDP-11/70 member was selected as represen-

tative. The PDP-11/70 modules were verified to insure their proper func-

tional behavior and the previously recommended BIT approaches were

described in ISP and applied to these modules.



In order to validate BIT performance for modules, a functional fault

model was developed. The model developed in this study started with basic

fault occurrences at the loqic level and related these faults to their

functional-level manifestations. This fault model was then exercised and

the performance of the selected BIT approaches assessed.

d. Report Overview

This report presents the study results in five parts. Section 2

discusses hierarchical computer descriptions using ISP and points out some

differences between this version and previously used ISP descriptions.

Section 3 describes the development of a functional fault model for the

PDP-11/70. This functional fault model was then applied to the ISP

descriptions as described in Section 4. Section 5 discusses refinements

made to the functional fault model. Section 6 summarizes the results of

the study and recommends further work.

2



2. HIERARCHICAL COMPUTER DESCRIPTIONS USING ISP

a. Introduction

Instruction Set Processor (ISP) notation was first introduced by Bell

and Newell [1] as a formalism to describe the programming level in the

* hierarchy of digital system descriptions. This notation was used mainly

* for publication purposes. A subset of ISP was later introduced by Barbacci

[2] and used in design automation and architecture evaluation. ISPL was

I the tool used in the Computer Family Architecture (CFA) study [3]. ISPS,

which is the current version of ISP, has been used to study built-in-tests

(BIT) [4) and fault injection [5].

The ISP descriptions (for a single and a dual processor) discussed in

this report are provided as accurate models of the PDP-11/70 computer

architecture. They are used as test vehicles for research in digital sys-

tems and have been used to study built-in-tests (BIT) for the Military

Computer Family (MCF) [4]. Currently, they are being used as a means to

verify BIT and as a way to view the manifestations of functional faults at

the system level.

b. History

ISP was first used in 1977 for computer architecture evaluation in the

Computer Family Architecture (CFA) study [3]. From this study, several

computer architectures were described in ISP -- among them the PDP-11/70.
The PDP-11/70 description was in turn used by RTI as a model for studying

BIT methodology [4]. In July 1979, Carnegie-Mellon University (CMU)
released a new ISP description of the PDP-11/70 as an ongoing part of the

CFA study. This description was an improvement over the previous one due

to its clarity, modularity, structure and documentation. This CMU version

is the basis for the single and dual PDP-11/70 processor descriptions that

RTI is currently using and that are discussed in the following sections.



c. Differences Between the Research Triangle Institute and

Carnegie-Mellon University ISP Descriptions of the PDP-11/70

Although the RTI model of the PDP-11/70 is based upon the CMU model,

many differences exist. These differences stern from the point of view, or

level of abstraction, at which the computer architecture is studied.

The CMU model was written to describe the architecture of the

PDP-11/70 as seen by the machine-language programmer. CMU's definition of

computer architecture, taken from Amdahl, Blaauw and Brooks [6], states

that computer architecture is the attributes of a computer as seen by a

machine-language programmer. The definition includes the instruction set,

instruction format, operation codes, address modes, and all registers and

memory locations which may be directly manipulated or tested by a machine-

language program. This definition excludes the time or speed of any opera-

tion, bus structure, and electrical or physical organization.

RTI's model of the PDP-11/70 also describes the computer architecture

as defined by Amdahl, Blaauw, and Brooks. However, the description is

carried one step further; it includes the computer architecture based on a

canonical bus structure. (See Figure 1.) Why the difference? CMU's model

was written to evaluate a computer architecture, whereas RTI's model was

written to study built-in-tests and functional faults, both of which

require details concerning the bus structure. This does not mean that the

CMU model does not have a bus structure -- it does. However, CMU's bus

structure is not an explicitly stated part of the description, nor is it a

conscious part of the description design. Instead, the bus structure is

based, in an ad hoc manner, on the interconnection of the ISP entities. On

the other hand, RTI's bus structure is an explicit part of the description

and a very conscious part of the description design.

In order to understand some of the consequences of adding bus struc-

ture to the RTI computer architecture description, small segments of the

ISP code from the CMU model and the RTI model are compared below. A knowl-

edge of ISP for this comparison is helpful, but not necessary; a knowledge

of some PDP-11 assembly language is more useful [7].

4
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Several ISP entities (identifiers and routines) will be encountered in

some segments of the ISP code, some of which are common to both the CMU and

the RTI models. The PDP-11 condition code bits, ISP identifiers, are N

(negative result), V (overflow), Z (zero result) and C (carry). In the CMU

model the registers, TEMPI and TEMP2, are basically synonomous with the

A.LATCH and B.LATCH in the RTI model. SRC.OPN(reg, flag) and DST.OPN(reg,

flag) retrieve the source and destination operand, respectively, and put

each into a register, which is generally either A.REG or B.REG. Both

SRC.OPN and DST.OPN use the GET.OP (get operand) routine of the CMU model.

R[index] is the register file. The two operations presented below are the

Jump-to Subroutine (JSR reg,dst) and Compare (CMP src,dst). They are

compared in the RTI and CMU models.

The first operation is a Jump-to subroutine called, JSR reg,dst. (See

Figure 2.) The destination address is first evaluated (DST.ADDR) and

stored in a temporary hardware register. The contents of "reg" are pushed

onto the stack pointed at by the SP (stack pointer, register 6). "Reg" is

then loaded with the current PC (program counter), the return link, and

then the PC is set to the destination (subroutine) address being held in

the temporary hardware register. Comparing the ISP codes between the two

models, it is obvious that many more steps are required to perform this

operation in the RTI model than in the CMU model. However, in order to use

the extra level of detail (bus description) in the RTI model correctly and

completely, these steps are a must.

Figure 3 presents the CMU and RTI versions of the second operation,

the Compare operation. The CMU version retrieves the source and destina-

tion operands, putting them in TEMPI and TEMP2, respectively. The destina-

tion operand is subtracted from the source operand, with the result moving

to TEMP. The C and Z bits are set accordingly. A complicated maneuver is

performed to set the V and N bits, depending on whether the operation is a

byte or a word compare. In the RTI version, the source and destination

operands are retrieved and stored, respectively, in A.REG and B.REG, and

then latched to the A.LATCH and B.LATCH of the ALU. The ALU performs a

subtraction. The condition code mechanism (CC.SET) then sets N, Z, V and

C, depending on the result.

- - -- ---- -6



JSR: =IJump to subroutine, JSR opcode #004

BEGIN
TEMP = GET.OP.ADDRESS(DESMOD, DESREG, 2)next ! Temp<--destination addr
PUT.OP(#4, #6, V) = GET.OP(#0, SRCREG, 0)next ! SP<--push(reg)
PUT.OP(#0, SRCREG, ~)=R[7) next ! reg(--PC
R[7] = TEMP ! PC<--TEMP
END

A) CMU Version of Jump-To Subroutine.

JSR: =!Jump to subroutine, JSR opcode #004

BEGIN
DST.ADDR(PLACE.HOLDER) next B.REG(--PLACE.HOLDER next Idestination addr

A.LATCH = A.BUS(REGET.INDEX(CM,SRCREGfl) next !Contents(Reg)
ALU (TRNSF.A, 0) next
PUSH (ALU) next ! SP <-.- PUSH(reg)

B.LATCH <-- B.BUS(PC) next
ALU(TRNSF.B, 0)next
R[GET.INDEX(CM,SRCREG)) = C.BUS(ALU) next IREG <-- PC

B.LATCH = B.BUS(B.REG) next ! destination address
ALU (TRNSF.B, 0) next
PC =C.BUS(ALU) IPC <-- destination address

END

B) RTI Version of Jump-To Subroutine.

Figure 2. Jump-To Subroutine.



CMP: !Compare and Compare Byte
1 CMP opcode #02, CMPB opcode #12

BEGIN
TEMPI = GET.OP(SRCMOD, SRCREG, BYOP) next ! source opn
TEMP2 = GET.OP(DESMOD, DESREG, BYOP) next ! destination opn

C@TEMP = TEMP1-TEMP2 next ! source-destination

set condition codes

Z = TEMP EQL 9 next 1 result
DECODE BYOP

BEGIN
BEGIN
V = (TEMP<15> EQL TEMP2<15>) and (TEMP1(15> XOR TEMP2<15>);
N = TEMP<15>
END
BEGIN
V = TEMP<8> XOR TEMP<7>;
N - TEMP<7>
END

END
END$

A) CMU Version of Compare Operation.

CMP: ! Compare and Compare Byte
!CMP opcode #02, CMP opcode #12

BEGIN
SRC.OPN (A.REG, BYOP) next ! source opn
DST.OPN (B.REG, BYOP) next ! destination opn
A-LATCH <-- A.BUS(A.REG) ;B.LATCH <-- B.BUS(B.REG) next

ALU(SLJB., BYOP) next Isource-destination

CC.SET (NZVC, BYOP, CMP.) 1 set condition codes N, Z, V and C

END,

B) RTI Version of Compare Operation.

Figure 3. Compare Operation.

8



!

Considering the ISP code presented in Figure 3, it first appears that
the RTI Compare operation is shorter than the CMU version. It is not. To

understand the difference, it is necessary to examine the Compare operation

* more closely. DST.OPN and SRC.OPN both use GET.OP (retrieves the operand)

as set up in the CMU code. GET.OP calls on GET.OP.ADDRESS, which calcu-

lates the operand address.* GET.OP. ADDRESS uses the operand address mode

* I to index into a segment of code that performs the address calculation for

that address mode.

The code required to do index addressing (address mode #6) is pre-

sented below. In the instruction CLR 5(R2) the address to be cleared (EA)

is calculated as

EA = 5 + (contents of register 2).

The code in memory appears like this:

Relative Address Instruction

00002 005062 ; CLR

00004 000005 ; index

The index appears in the word immediately following the CLR instruction.

To see how this is done in both versions of the ISP code, see Figure 4. As

can be seen from the ISP code, there is a great deal more work involved in

the RTI version than in the CMU version to retrieve operand address. This

additional level of work is reflected throughout the RTI description.

Another difference in the Compare operation in the two versions occurs

in setting/clearing the condition codes. Within each segment of ISP code

for an instruction, the CMU model evaluates and then sets/clears the condi-

*tion code bits. The RTI version, on the other hand, uses a collection of

logic common to all the operations to set/clear the condition codes based

on the operation code (opcode). This is more realistic than the CMU

version.

*There are eight address modes in the PDP-11. See reference 6 for
additional information.

L9



6: =BEGIN lindex addressing
GET.OP.ADDRESS '1a@ R[7] next !address of index in I space
R[7] = R[7]+2 ;!point next instruction
SETMM1(2,7) next
GEr.OP.ADDRESS =(READ(CM,O,GET.OP.ADDRESS) + R[Get.Index]<15:O>
END,

A) CMU Version for Calculating an Indexed Address.

6: BEGIN lindex addressing
A.LATCH =A.BUS(CONST2); B.LATCH = B.BUS(PC) -next
VAR =I.SPACE@C.BUS(ALU(TRNSF.B,V)) next !Address of index
PC =C.BUS(ALU(ADD.,P)) next ! update PC
SETMM1(2,7) next
DR.IN = READ(CM,R) next ! get index
ALU.REG = C.BUS(DR.IN) next
A.LATCH = A.BUS(ALU.REG) ; B.LATCH = B.BUS(REGet.Index]) next
Result.Req = D.SPACE@C.BUS(ALU(ADD. ,9))
END,

B) RTI Version for Calculating an Indexed Address.

Figure 4. Index Addressing.

10
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By writing the ISP description in terms of functional units (i.e.,

A-BUS, ALU), parts of the description can be quickly modified without

affecting the descriptions of other functional units. One reason for this

approach is that load module size increases and simulation speed decreases

as more detail is added to the description. It is, therefore, desirable to

have the level of detail where it is needed and to use another higher level

of abstraction (less detail) where detail is of no importance. If the

description is written in terms of functional modules, the modules can then

be interchanged, depending upon the detail required for the experiment.

An example of this application is the memory management unit (MMU).

In the block diagram of Figure 1 the MMU is a functional module. MMU has

not played any role in the areas RTI is currently investigating; thus, a

detailed .ISP description of the MMU at this point would add an unnecessary

increase in load module size and decrease in simulation speed. For this

reason, the same code for the MMU in the CMU model is used in the RTI

model. If more detail is needed, another description can be written, with

the level of detail that is required, to replace the current, less detailed

description.

Another example of this application is the ALU. Both versions are

composed of several routines; the arithmetic/logic functions, performed by

a TI 74181 ALU chip; the shift/rotate/byte swap functions, performed by

extra logic; and the ISP code, used for injecting faults in the ALU module.

RTI has two versions of the ALU module, one to describe the operations of

the TI 74181 chip at the functional level; that is, in terms of arithmetic

and logic operations, and the other, to describe the TI 74181 chip at the

gate level [8]. The ISP code for the shift/rotate/byte swap functions

remains the same in both ALU versions, but the fault injection code is

different for each version. (Both versions are interchangeable in the

PDP-11/70 description.) The functional-level description is fast and small

in size but does not allow very detailed fault injection. The gate-level

description is considerably slower. Simulation speed increases by a factor

of 10 and is much larger in size, but any gate in the description can be

faulted.

*I
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d. Single and Dual Processor Models

Since the single processor model is the basis for the dual processor

model in RTI's ISP description, the discussion here will concentrate on the

single processor model. A short discussion concerning the changes for the

dual processor model is included.

Returning to Figure 1 and reviewing the ISP description in Appen-

dix A(1), it is obvious that the ALU is involved in almost every data

transfer or data manipulation activity. The ALU module is based on the TI

74181 chip, with a few non-TI 74181 functions included for shifting and

byte swapping operations. The TI 74181 chip was chosen for two reasons.

First, it is used in most PDP-11s. As a result and by studying DEC's

engineering drawings [9], it was possible to find the subset of the TI's

ALU functions used in the PDP-11/70. Second, the TI 74181 is one of the

few ALU chips for which the logic diagram of the chip is available. Using

this logic diagram, RTI wrote a simulator of the ALU chip which was used

for extensive fault investigations. The results from these investigations

were used to study functional faults and built-in tests in both the single

and dual processor models.

Table 1 lists the entire set of operations that the TI 74181 ALU can

perform, while Table 2 lists the subset of these operations used by the

PDP-11/70. Table 3 presents the binary and octal function codes and the

functions used in the RTI ALU modules. Note that the starred (*) functions

are not used in the RTI CPU and are only executed if either line M or n

is stuck-at-zero or stuck-at-one. For instance, if the ALU function code

is 458 (A plus B) and line Tn is stuck-at-zero, then function A plus 8

plus one is executed. In the functional ALU description, not all function

codes (26 or 64) are defined.

The ISP for the functional-level ALU is given in Figure 5. The ALU

has four distinct segments of code. The first segment of code describes

the TI functions to be used by the CPU (the non-starred functions). The

second segment of code consists of functions that will not be executed

unless line M or n is stuck-at-zero or stuck-at-one (the starred func-

tions). The third segment of code is used to simulate the manifestations

of certain gate-level faults at the output of the TI 74181 chip. The

fourth segment of code describes the shift/rotate and byte swap functions.

12
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Table 3. Function Codes and Operations.

*S 3 S2 S1 S0 M n Function F:

O 0 0 0 0 0 #0 F A+1
0 0 0 0 0 1 #1 F A

*0 0 0 0 1 X #02,03 F=A

0 01 1 0 0 #14 F 0 (zero)
0 0 1 1 0 1 #15 *F minusl1
0 0 1 1 1 X #16,17 F 0 (zero)

0 1 1 0 0 0 #30 F A minus B
0 1 1 0 0 1 #31 *F= A minus B minus 1
O 1 1 0 1 X #32.33 F A XOR B

0 1 1 1 00 #34 F A and not B
o 1 1 1 0 1 #35 *F Aand not Bminusl1
0 1 1 1 1 X #36,37 F A and notB8

1 0 0 1 0 0 #44 *F Aplus B plus one
1 0 0 1 0 1 #45 F A plus B
1 0 0 1 1 X #46,47 *F Not (A XOR B)

1 0 1 0 0 0 #50 *F = (A or not B) plus (A and B)
plus 1

1 0 1 0 0 1 #51 *F = (A or not B) plus (A and B)
1 0 1 0 1 X #52,53 F =B

1 0 1 0 00 #54 F =A and B
1 0 1 0 0 1 #55 *F = (A and B) minusi1
10 10 1 X #56,57 F =A and B

1 1 1 0 0 0 #70 *F =(A ornot B)plusl1
1 1 1 0 0 1 #71 *F =(A ornot) plus A
1 1 1 0 1 X #72,73 F =A or B

1 1 1 1 0 0 #74 F =A
1 1 1 1 0 1 #75 F =A minusl1
1 1 1 1 1 X #76,77 F =A

*Functions that are executed only if the control lines M and tC are
faulted.

X Do not care.
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ALU(FUNCT(5:O>,BYOP(>)<16:O>:= BIT 16 IS FOR THE CARRY BIT
BEGIN
**FAULT .DEF N**
FAULT(1:O>, ISPECIAL FAULT TYPE
MASK<15:O>, !CONSTANT MASK

MAIN ALU.ENTRY:=
BEGIN (TC)

ALU=ZEROS<16:0> NEXT ! CLEAN UP DETAIL
DECODE FUNOT 0>
BEGIN '

THIS SECTION OF CODE DESCRIBES THE SUBSET OF THE TI 74181 ALU CHIP
IUSED IN THE PDP11/70

OTHERWISE:= BEGIN
BEGIN

[#1,#74,#76,#77):= ALU=A.LATCH,
E#52,#533: = ALU=B. LATCH, i
E#14,#16,#17) := ALU=#0,

#30 DECODE BYOP 0>
BEGIN
END,
'1:= ALfJ<16)LALU<BYTE.SIZE>=A.LATCH<BYTE.SIZE>

+(NOT B.LATCH<BYTE.SIZE>)+'O1
END,

#45 DECODE BYOP =>

'0: = ALU=A.LATCH+B.LATCH,
'1: ALU<16>@ALU<BYTE.SIZE>=A.LATCH<BYTE.SIZE>+B.LATCH<BYTE.SIZE>

END,
#00 DECODE BYOP 0>

BEGIN
'0:- ALU=A.LATCH + #1,
1:= ALU<16>@ALU<BYTE.SIZE>=A.LATCH<BYTE.SIZE>+ #1<BYTE.SIZE>

END,
#75 DECODE BYOP =>

BEGIN
'0:- ALU=A. LATCH-#O1,
'1:= ALU<16>LALU<BYTE.SIZE>=A.LATCH<BYTE.SIZE>-#1<BYTE.SIZE>

END,

Figure 5. ALU Description Written at the Instruction Set Level.
(continued)
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[#54,#56,#57] ALU=A.LATCH AND B.LATCH,
[#72,#73] ALU=A.LATCH OR B.LATCH,
[#34,#36,#37]:=ALU= A.LATCH AND NOT B.LATCH,
C#02,#03] :=ALU=NOT A.LATCH,
[#32,#33) := ALU=A.LATCH XOR B.LATCH, ! EXCLUSIVE OR

! THESE FOLLOWING INSTRUCTIONS SHOULD NEVER BE USED BY THE CPU BUT
! IF THERE IS AN ERROR IN THE FUNCTION SOME OF THESE CAN BE EXECUTED

#15 ALU<='111, ! MINUS 1
#31 ALU= A.LATCH - B.LATCH -1,
#35 ALU= (A.LATCH AND NOT B.LATCH) - 1,
#44 ALU= (A.LATCH + B.LATCH) + 1,
[#46:#47] := ALU= NOT ( A.LATCH XOR B.LATCH),
#55 ALU= ( A.LATCH AND B.LATCH) - 1,
#71 ALU= (A.LATCH OR NOT B.LATCH) + A.LATCH,
#70 ALU= (A.LATCH OR NOT B.LATCH) + 1,
#51 ALU= (A.LATCH OR NOT B.LATCH) + (A.LATCH AND B.LATCH),
#50 ALU= (A.LATCH OR NOT B.LATCH) + (A.LATCH AND B.LATCH) + 1,

OTHERWISE:=STOP() TROUBLE UNDEFINED FUNCTION CODES

END NEXT
THIS CODE IS USED TO INJECT FUNCTIONAL FAULTS IN THE ALU OUTPUT
THESE SPECIFIC FAULTS WERE DERIVED tROM ANALYSIS DONE FROM SIMULATION

I DATA OF THE TI 74181 CHIP
DECODE FAULT =>
BEGIN

0:= NO.OP(),
1:= ALU<15:O>=ALU<15:0> XOR MASK,
2:= ALU<15:O>=ALU<15:0> + MASK,
3:= ALU<15:O>=ALU<15:0>- MASK

END

END,

Figure 5. ALU Description Written at the Instruction Set Level.
(continued)
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THIS CODE DESCRIBES THE SH IFT/ROTATE /SWAP MECHANISM IN THE ALU. THIS
IS NOT PART OF THE TI 74181 CHIP

ESWAB. ,ROR. ,ROL. ,ASR. ,ASL.]:=
DECODE FUNCT 0>
BEGIN

SWAB. ALU=A.LATCH<7:0>@A.LATCH(15:8>,
ROR. DECODE BYOP 0>

BEGIN
'O:= ALU=(B.LATCH<O>@A.LATCH) SRR 1,
Si1:=. ALU<16>@ALU<7:O>=(B.LATCH<O>@A.LATCH<7:O>) SRR 1
END,

ROL. DECODE BYOP 0>
BEGIN
'0: = ALU=A.LATCH@B.LATCH<O>,
'= ALU<16>@ALU<7:O>=A.LATCH<7:O>@B.LATCH<O>

END,
ASR. :=DECODE BYOP 0>

BEGIN
'O:=(ALU<15:O><=A.LATCH(15:1> ; ALU<16>=A.LATCH<O>),
'1:=(ALU<7:O> <=A.LATCH(7:1> ; ALU(16> =A.LATCH(O>)
END,

ASL. DECODE BYOP =>
BEGIN
O:= ALU=A.LATCH@'O,
'1:=( ALU<7:O>= A.LATCH<6:O>@'O; ALU<16>=A.LATCH<7>)
END

END
END
END,

Figure 5. ALU Description Written at Instruction Set Level.
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The segment of code used for injecting faults into the ALU module is

derived from extensive simulations of the TI 74181 chip. (See Section

3b(5) for more detail). As a result of these simulations, several fault

manifestations occurred. One of the fault manifestations consists of

either exclusive ORing a constant or adding/subtracting a constant to the

output of the TI chip. ISP code in the ALU module was written to do this.

These operations and constants are controlled by two global parameters in

the ALU module called MASK and FAULT.

As an adjunct to RTI's studies of functional faults, a gate-level ISP

description of the TI 74181 chip was written (See Appendix A(2)) to observe

the manifestation of gate-level faults at the system level. Note that this

added description decreases simulation speed. It takes approximately 10

times as long to run a simulation using the gate-level ALU as it takes to

run a simulation of the functional-level ALU.

Mother important functional unit in the PDP-11/70 is the register

file R. In the CMU version and earlier RTI versions [4], this register

file was simply an array indexed by a register number. This has been modi-

fied rather drastically for the purpose of studying functional faults. The

register file R in the current RTI version is based on a model (Figure 6)

defined by Abraham [10] and expanded by Joobbani in Section 3b(1) of this

report. The register decode functional faults simulated were: 1) no

register is selected, 2) the wrong register is selected, or 3) multiple

registers are selected. These three types of faults can be modeled by

failures in the decoder.

Figure 7 is a functional block diagram of an SN54154 4-to-16-line

decoder [8]. For the no-register-selected case, if the inputs are L, L, L,

H, then the active line, high (H), should be one. If a stuck-at-high

exists on the output of the NAND gate, none of the lines are active and the

result of reading the register file is whatever is in the buffer at the

time (wrong-register-selected fault). For the multiple-register-selected

case, several lines could be active at once. Consequently, several

registers would be read/written simultaneously. This register file model

is simulated by the ISP code given in Figure 8. The code has some hooks

(FAULT.SETTING), which allow all these functional faults to be simulated at

run time.
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Figure 6. Register File Model.
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R(INDX(3:O>,R.W<15:O>: =
BEGIN
**LOCAL.DEFN**
REG [15 :0) <1 5:0>,

FAULT.SETTING<11 :0>,
INCL<> :=FAULT.SETTING<11>, !INCL
MULT.SEL> :=FAULT.SETTING(1O>,
NO.SEL<> :=FAULT.SETTING(9>,
AND.OR<> :=FAULT.SETTING(8>, ! AND=1, 0R0O
R.S/SELECTED.REG<7:O> :=FAULT.SETTING<7:O>,

MACRO WRT: f 11
MACRO RD:1 1ii

MAIN REG.ENTRY:=
BEGIN

DECODE R.W =>
BEGIN

WRT:= DECODE FAULT.SETTING<1O:9> 0
BEGIN

'00:= REGCINDX]=R,
'01:z IF (R.S SRO INDX)<O> EQLU '0 0 REG[INDX)=R,
'10:= BEGIN

IF R.S<O> => REG[O]=R;
IF R.S<1> z> REG[1)=R;
IF R.S<2> 0 REG[2)=R;
IF R.S<3> => REGE3)=R;
IF R.S<4> => REGE4J=R;
IF R.S<5> => REG[5)=R;
IF R.S<6> 0 REG[6)=R;
IF R.S<7> => REG[7J=R NEXT
IF INCL 0> REG[INDX)=R

ENDO
'11:= STOP()

END,

RD:= DECODE FAULT.SETTING<1O:9> 0
BEGIN

'00:= R=REG[INDX),
'01:= IF (R.S SRO INDX)<0> EQLU '0 0 RREG[INDX),

Figure 8. Register File Description with Fault Injection.
(continued)
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'10:= DECODE AND.OR >
BEGIN

'O/OR:= BEGIN
R<='O NEXT
IF R.S<O> > R=R OR REG[O];
IF R.S<1> > R=R OR REGEI;
IF R.S<2> > R=R OR REG[2];
IF R.S<3> > R=R OR REG[3];
IF R.S<4> > R=R OR REG[4];
IF R.S<5> > R=R OR REG[5];

IF R.S<6> > R=R OR REG[6];

IF R.S<7> > R=R OR REG[7];
IF INCL => R=R OR REG[INDX]

END,
'1/AND: =BEGIN

R<='I NEXT
IF R.S<O> > R=R AND REG[O];
IF R.S<I> => R=R AND REG[1],
IF R.S<2> > R=R AND REG[2];
IF R.S<3> > R=R AND REG[3],
IF R.S<4> => R=R AND REG[4];
IF R.S<5> => R=R AND REG[5];
IF R.S<6> > R=R AND REG[6];
IF R.S<7> => R=R AND REG[7];
IF INCL => R=R AND REG[INDX]

END

END,
'11:= STOP()

END

END
END
END,

Figure 8. Register File Description with Fault Injection.
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The registers attached to the busses are just that, registers. The

only special ones are the Program Status register (PS) and the Instruc-

tion register (I), which have some combinational logic used to place cer-
tain subfields of these registers onto their respective busses. An example

of this is the macro IR.CC, which mimics the logic by placing the low-order

four bits of the Instruction register (I) onto BUS.A. These bits determine

which condition code bits in the Program Status register (PS) are set or

cleared. The busses, A.BUS, B.BUS, and C.BUS, are all currently imple-

mented as macros. If modification of these busses to include BIT is

desired, it can be done by replacing the macros with routines containing

the desired characteristics. Using macros now provides for a smaller load

module and a faster simulation time.

The dual-CPU model was built using a hierarchical structuring program

called PMS [11]. The PMS program is based upon the PMS notation introduced

by Bell and Newell [1] for describing the interconnection of processors

(P), memories (M), and switches (S). The dual-CPU configuration of Fig-

ure 9 uses two CPUs and shares a common memory. The major differences

between the single-CPU and dual-CPU descriptions are:

1. Each processor in the dual-CPU has been augmented by an explicitly
defined memory bus. A synchronizing flag called the bus ready
flag has also been defined.

2. Memory has been removed from the dual-CPU description and has been
made a distinct module. The memory module has also been given
some intelligence called the memory controller.

Three modules are connected together. Two of these are CPU modules with

each unit possessing its own processor, memory management unit, and I/O

memory. The third module is the memory module. The input to the PMS

program, which describes the interconnection of the modules, is seen in V
Figure 10.

The following is a description of how the dual CPU works. The syn- V
chronizing flag is set by one CPU, after it has put information on the

memory bus (i.e., address, data, control), to inform the memory controller

that it wishes to make a memory request. The CPU then goes into a WAIT

state until the synchronizing flag is cleared by the memory controller.

The CPU checks the error line on its bus to see if an error has occurred
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CPU CPU

FLAG LOCAL BUS LCLBUS FLAG

LI CONTROLLER !

MEMORY BUS

MEMORY

Figure 9. Dual CPU Model.
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MODULE PDP11:=
CPUA: 4EMP: PDP2.GDB
CPUB:=TEMP: PDP2.GDB
MEMORY: =TEMP:MEMORY.GDB

CONNECT CPUA(BUS.RDY.FLAG<>) :MEMORY(BUS.A.RDY<>)
CONNECT CPUA(BUS<41:O>) :=MEMORY(BUS.A<41:O>)
CONNECT CPUB(BUS.RDY.FLAG<>) :MEMORY(BUS.B.RDY<>)
CONNECT CPUB(BUS<41:O>) :=MEMORY(BUS.B<41:O>)

Figure 10. Interconnection Description of the Dual CPU Used
for Input to PMS.
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while accessing the memory. If an error has occurred, the CPU begins an

error-handling routine to decide what to do next. If no error his occur-

red, and if a read operation has been requested, then the CPU takes the

data off the bus and continues. Figures 11 and 12 show part of the ISP

code for requesting a memory read for both the single and dual processor.

The memory controller waits until both synchronizing flags are set by

their respective CPUs. Parity is checked for both busses for agreement,

bit by bit. If the parity is wrong, the request is suppressed and a parity

error is returned. If the busses are in agreement, a copy of the bus is

sent to memory to perform the requested operation. After the memory opera-

tion is performed, the busses are updated with data from a read operation

and/or error information operation. If a read operation occurs, the syn-

chronizing flags are cleared and control is returned to the CPUs. If the

busses are in disagreement, the memory operation is suppressed, and an

er*or line on both busses is set. The synchronizing flags are then cleared

and control returns to the CPUs. Appendix A(3) has the ISP code for the

memory centroller.

Two types of memory-related errors can occur. The first, the parity

error discussed above, can occur in transmission or in reading or writing

the memory. This can be handled by the CPUs in several standard ways. The

second type is called an out-of-sequence error (i.e., accesses to different

memory locations are requested), and it is much more serious than the first

type. If the CPUs are to proceed, then a common sequence must be asserted

for each CPU; for example, by using a rollback routine.

Currently, RTI is not investigating methods for handling out-of-

sequence errors, but is using the dual CPU as a BIT technique for detecting

and isolating faults. The data RTI generated from running programs on the

dual-CPU configuration will hopefully provide some useful information on

fault latency, and will produce information allowing for the comparison of

system-level fault manifestations as they occur in the single and dual

CPU.

Both the single- and dual-CPU confiqurations were tested to demon-

strate that they had a PDP-11/70 architecture. This was done by running

diagnostic programs generated by the CFA project for verifying computer

descriptions. Appendix A(4) presents some of the results.
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READ(MODE<1:O>,BYTE.ACCESS<>)(WORD. SIZE>
BEGIN
IF VAR<O> AND NOT BYTE.ACCESS 0> ODDERR() NEXT
VIRT.PHY(MODE,VAR,O) NEXT
DECODE VIRT.PHY(21:18> EQLU #17 =>

BEGIN
0 DECODE BYTE.ACCESS 0>

BEGIN
READ=MW[VIRT. PHY),
READ(=MBEVIRT.PHY) SIGN EXTEND
END,

1 DECODE VIRT.PHY<17:O> 0
BEGIN

PSW.:= DECODE BYTE.ACCESS=>
BEGIN
READ=PS,
READ<=PS<BYTE. SIZE>
END,

GPREG DECODE BYTE.ACCESS 0>
BEGIN
READ=R.OUT(VIRT.PHY<3:O>),
READ<=R.OUT(VIRT.PHY<3:O> )<BYTE.SIZE>
END,

OTHERWISE:= DECODE BYTE.ACCESS =>
BEGIN
READ = MWIO[VIRT.PHY],
READ<= MBIOEVIRT.PHY]

END END

END
END$

Figure 11. Read Entity for the Single-Processor Configuration.
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READ(MODE<1:O>,BYTE.ACCESS<>)(WORD.SIZE>
* BEGIN

IF VAR<0> AND NOT BYTE.ACCESS => ODDERR() NEXT
VIRT.PHY(MODE,VAR,O) NEXT
DECODE VIRT.PHY<21:18> EQLU #17 0>

BEGIN
0 BEGIN

MEMORY. BUS=' OO@BYTE.ACCESS@ZEROS<1 5: O>@VIRT. PHY@RD NEXT
BUS.RDY.FLAG=TRUE NEXT

WAIT( NOT BUS.RDY.FLAG ) NEXT

IF MEMORY.BUS<MISMATCH> => ERROR. HANDLER NEXT
READMEMORY.BUS<DATA.LINES>
END,

1 DECODE VIRT.PHY<17:O> 0
BEGIN

PSW.:= DECODE BYTE.ACCESS>
BEGIN
READ=PS,
READ<=PS(BYTE .SIZE>
END,

GPREG :=DECODE BYTE.ACCESS =>
BEGIN
READ=R.OUT(VIRT.PHY<3:O>),
READ<=R.OUT(VIRT.PHY<3:0>)<BYTE.SIZE>
END,

OTHERWISE:= DECODE BYTE.ACCESS 0
BEGIN
READ = MWIOEVIRT.PHY],
READ<= MBIOEVIRT.PHY)
END

END
END

END,

Figure 12. Read Entity for the Dual-Processor Configuration.
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3. FUNCTIONAL FAULT MODELING

a. Introduction

With the advent of high-density integrated circuit technology, multi-

ple implementations of computer architectures have become available. The

use of gate-level logic to generate test programs for such architectures is

not practical because of the detailed information required to describe each

implementation. Recently, efforts have focused on functional testing [10,

13,14). An obvious advantage of functional testing is that test programs

which are generated for a given architecture can be used for testing each

implementation of that architecture, free from the detailed information

about each implementation.

The work described here addresses functional fault modeling. In this

discussion, functional fault modeling refers to the classification of

gate-level faults into functional faults. In other words, functional

faults are the manifestation of gate-level faults at a functional level.

To understand fault manifestations at a functional level, it is neces-

sary to start with the basic elements of a digital system. These basic

elements include the resistor and the transistor, henceforth referred to as

components. The occurrence of a fault at the component level ; e.g., a

resistor which is burned out or shorted, can result in a stuck-at-zero or

stuck-at-one condition at the gate level. This stuck-at condition is the

manifestation of a fault at the component level. On a higher level; e.g.,

the chip level, the occurrence of a fault at the gate level can manifest

itself as a chip pin being stuck-at-zero or stuck-at-one, or two pins

shorted together. With these types of occurrences in mind, it is possible

to understand how a gate-level fault can affect the functionality of a

system.

For example, a faulted gate used in a memory chip may cause one of the

memory bits in that chip to be in error. If there is a parity checker in

Jthe system, the gate-level fault (stuck-at-zero or stuck-at-one) manifests

itself as a parity error at the system level. If there is no parity

checker and the word of the memory that has the faulted gate contains an
instruction, a nonexistent instruction or an address error occurs. This,

again, is a gate-level fault manifested at the system or functional level.
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Figure 13 illustrates the concept of fault propagation in a digital

system. As shown, gate-level faults map into a higher level, the chip

level. Chip-level faults are represented by aj and gate-level faults are

represented by oi, such that a. = f(i i .). Theoretically, the
ill Oi2' Oim

C-space is much smaller than the G-space. In the same manner, the C-space

maps into the F-space (functional faults) by yk = g(a kl' k2' ..' Ikm

Again, the F-space is theoretically smaller than the C-space. The F-space

may be partitioned into functional modules. For example, if the F-space is

a CPU, then it can be partitioned into register decode, instruction decode,

data storage, data transfer, and data manipulation functions. Whether a

fault is classified as a functional fault depends on what is defined as a

function. For example, if an ALU adder is considered, a chip fault will be

a functional fault. The mapping of gate-level faults into functional

faults can potentially reduce the number of fault classes considerably.

This report is primarily concerned with functional fault modeling for

maintenance purposes. Initial testing of a computer architecture was not

considered, since it was assumed that the implementation had already been

successfully tested. RTI's objective is to understand better the func-

tional fault model, to see what relationships exist between physical faults

and functional faults. The model defined here is derived using the PDP-11

family. Except for the portion of the model used for instruction decode

and control functions, the model can be used with other computer architec-

tures.

b. Functional Fault Modeling for the PDP-11 Family

The work discussed here began with the methodology for microprocessor

functional testing proposed by Abraham [10,13]. Abraham's methodology was

extended to a PDP-11 and partitioned into the same functions. For each

function, appropriate classes of faults were defined. The same fault

classes used by Abraham for the register decode, data storage, and data

transfer functions wvere used in RTI's model. The fault class for the

instruction decode and control function was modified. Since Abraham did

not consider ALU faults, due to the variety and diversity of data
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manipulation functions, it was necessary to define a fault class for the

ALU module. The five functions of interest in the PDP-11 system are thus

summarized as follows:

1. register decode function,

2. instruction decode and control function,

3. data storage function,

4. data transfer function,

5. data manipulation (ALU) function.

(1) Register Decode Function

One or two registers may be associated with each instruction in the

PDP-11. The following types of functional faults may occur in decoding

these registers:

1. No register is selected.

2. The wrong register is selected.

3. More than one register is selected (inclusive or exclusive of the
correct register).

(2) Instruction Decode and Control Function

The PDP-11 instruction format £7] can be one-word long (CLR R )0
two-words long (ADD #2,Ro), or three-words long (ADD #2,A). The types of

functional faults that may occur in the instruction decode and control

function are:

Instead of executing instruction Ii, no instruction is exe-
cuted.

2. Ij/NONE

Since all of the codes in the PDP-11 family are not assigned to an
operation (instruction), it is possible that instead of executing
instruction Ii, a nonexistent instruction is selected.

3. 1j/undetermined

Instruction I Is incorrectly executed, not necessarily as
another singl9 instruction, but possibly as a combination of
instructions. This is primarily due to the microcode (if micro-
coded), not decoding. This is a very general case which can
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include any of the other mentioned cases. A system should be
designed so that there is not such an occurrence.

4. 1 /I k  (lenqth of Ij __length of Ik)

Instruction Ik is executed instead of I., For example:
A 3-word instruction is executed as another 1-word instruction.
A 1-word instruction is executed as a 2-word instruction.
A 1-word instruction is executed as a 3-word instruction.
A 2-word instruction is executed as another 2-word instruction.
A 2-word instruction is executed as a 3-word instruction.
A 3-word instruction is executed as another 3-word instruction.

5. 1./l +Ik

Instruction I. is executed but another instruction is also
executed. An example is the case in which a microsequencer fails
at the end of an instruction and the next instruction, Ik'
occurs immediately after the end of the current instruction,
I.

6. Ij/IM+IN (length of lj _ length of IM+length of IN)

In this case one instruction, which is 2- or 3-words long, is
executed as two or more instructions. A 2-word instruction may be
executed as two 1-word instructions, a 1-word and a 2-word
instruction, or as a 1-word and a 3-word instruction.

The following table shows some of the possible combinations that may

occur in this case:

2w 1---lw and 1w

1w and 2w

1w and 3w

1w and None

1w and 0

3w 1w and 1w and 1w

1w and 1w and 2w

1w and 1w and 3w

1w and 1w and None

1w and 1w and 0
2w and 1w

2w and 2w

I 2w and 3w

2w and None
2w and
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(3) Data Storage Function

Data storage is associated mostly with the registers in the machine.

The types of faults that may occur are the classical stuck-at faults; i.e.,

one or more bits of a register are stuck-at-zero or stuck-at-one.

(4) Data Transfer Function

Each instruction is associated with a number of data paths. The

faults that may occur are stuck-at faults.

(5) Data Manipulation Function (ALU)

The methodology used in this study was to make educated guesses about

the different classes of functional faults in an ALU. Beginning with

hypotheses for ALU faults that seem fairly reasonable, validation was

accomplished by simulating an ALU at the gate level and observing different

classes of faults. The remainder of this section discusses the hypotheses

considered, the simulation process used to validate these hypotheses, and

the results of the simulation.

(a) Hypotheses. Ten classes of functional faults were hypothesized

for the TI 74181 ALU [8].* They are presented below, along with examples

for each class.

1. No operation is performed. In this case the ALU is not opera-

tional; e.g., there is no power.

2. The wrong operation is performed. This class would appear to be a

general class to include all the other fault classes. However,

this is not true. What is included are the cases where an unknown

operation is performed; e.g., if it is not known if A plus B

changes to A minus B or if the results are all positive or nega-

tive. Usually, this is a class where the result is wrong and it

is an unknown wrong.

3. Part of the operation is performed. The operation A plus B is

performed, but the condition codes, such as the carry bit code and

the overflow bit code, are not set.

*For more detailed information on the 74181 ALU, refer to Appendix B. f
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4. The complement of the operation is performed. In this case, the

ALU may' subtract two numbers rather than add them, or instead of

rotating the operand to the right, it rotates the operand to

left.

5. The operation is performed on the complement of the operand.

Here, instead of adding B to A, the ALU adds -B to A.

6. The operation is performed with one variable always a constant.

One leg of the ALU is stuck at a constant value.

7. Only positive or negative results are obtained. The sign bit code

is stuck-at-zero or stuck-at-one.

8. A change from an arithmetic to a logical operation occurs or vice

versa. This can be a general case where one ALU function changes

to another. For example, A plus B changes to A 0 B or A plus 1

changes to A.

9. The result is + a constant. In this case the final result

(faulted result) is always equal to the correct result + a

constant.

10. Any number of output bits are stuck-at-zero or stuck-at-one. At

first appearance this class might also appear to be inclusive of

all the other classes discussed. However, this class includes

only those faults which have not been mentioned before, for which

one or more of the output bits are stuck at a value or are stuck

at different values.

In order to study the ten classes of faults presented here, a small

gate-level simulator was written and a 4-bit slice of a TI 74181 ALU was

simulated. Two types of gate-level faults were injected; namely, stuck-

at-zero and stuck-at-one.

The first simulation pass was not very detailed; only a handful of

gates were faulted. Two major groups of faults were identified, regular

and irregular. Regular faults are those which, for a specific function and

all combinations of inputs to the ALU, there is a unique relationship

* between the faulted result and the correct result or inputs to the ALU.
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With irregular faults, for a specific function and all combinations of

input to the ALU, there is no unique relationship between the faulted

result and the correct results or inputs.

(b) Experimental Approach. A more detailed simulation followed the

initial simulation. Faults were injected in each gate of the TI 74181 ALU,

both for the 30 instructions used in the PDP-11/70 (Table 2) and for all

combinations of inputs for a 4-bit slice of the ALU.

For any combination of inputs, a fault at the gate level (stuck-at

fault) generally manifests itself at a functional level, or it will not

manifest itself at all. In the latter case, the function is independent of

specific gate fault and is thus called a gate-independent function.

The relationship between a gate and a function is shown in Figure 14.

The definitions of the terms used in Figure 14 are as follows:

1. Gate-independent: The specific function is independent of a

specific gate; i.e., the specific function will not be in error if

the specific gate is either stuck-at-zero or stuck-at-one, for all

combinations of inputs.

2. Gate-dependent: The specific function is in error for at least

one combination of inputs when the specific gate is faulted: the

gate is either stuck-at-zero or stuck-at-one.

3. Zero- or one-sensitive: A specific function is zero-sensitive or

one-sensitive with respect to a specific gate. The specific

function is zero- (one-) sensitive if for at least one combination

of inputs, the function is in error when the specific gate is

stuck-at-zero (one), and if for all combinations of input, the

specific function is not in error when the specific gate is

stuck-at-one (zero).

4. Zero- and one-sensitive: A specific function is zero- and one-

sensitive with respect to a specific gate. The specific function

is zero- and one-sensitive if it satisfies the following two

conditions:
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Gate-function Relationship

Gate-dependent (fault) Gate-independent (no fault)

Zero- and One- Zero- or One-
Sensitive Sensitive

Complete Condi- Complete Condi-
Gate tional Gate tional

Dependency Gate Dependency Gate
Depen- Depen-
dency dency

Figure 14. The Relationship Between a Function and a Gate
in the TI 74181 ALU.
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1) The function is in error for at least one combination of inputs
when the gate is stuck-at-zero and the gate's true output value
should be one.

2) The function is in error for at least one combination of inputs
when the gate is stuck-at-one and the gate's true output value
should be zero. This input combination does not necessarily
have to be the same as 1).

5. Conditional gate dependency: For some, but not all, input

combinations the specific function will be in error if the

specific gate is stuck-at-zero (one) and the gate's true output

should be one (zero). The condition on this gate's dependency is

the input pattern. Notice that Figure 14 describes the relation-

ship between a specific function and a specific gate and not the

value that the gate is stuck at.

6. Complete gate dependency: The specific function will always be in

error if the specific gate is stuck-at-zero (one) and the gate's

true output should be one (zero).

If the gate fault manifests itself at the functional level (i.e., the

function is not gate-independent), then there is a functional fault. Simu-

lation of the TI 74181 ALU demonstrated the following general classes of

functional fault classes as illustrated in Figure 15. Initially, there

are two major classes of functional faults:

1. Functional Faults Independent of Inputs to the ALU: The specific
function will always be in error for all combinations of input
when a specific gate is stuck at a specific value.

2. Functional Faults Dependent on the Input to the ALU: The specific
function will be in error for some, but not all, combinations of
input when a specific gate is stuck at a specific value.

Notice that both of these classes apply to the gate number and the

stuck-at value of the gate; i.e., for cases in which a gate is only stuck-

at-zero or only stuck-at-one; not for cases in which a gate is stuck-at-

zero and stuck-at-one.
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Functional faults

data- data-
dependent independent

irregular regular irregular regular

,IN
directly directly directly directly
related related related related
output input output input

Figure 15. Classes of Faults in the TI 74181 ALU Simulation.
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Each of the two major classes of functional faults discussed above can

be further divided into two subclasses: namely. regular and irregular

faults.

1. Regular Faults: The regular subclass of faults is that for which,
given a speci ic function and a specific gate stuck at a specific
value, the final result (faulted result) has a consistent rela-
tionship with the correct result or the inputs to the ALU for all
combinations of inputs for which the specific function is in
error. For example, the faulted result is the correct result - 4
for all values of the inputs that fault the ALU, or the faulted
result is the result of a wrong operation on the inputs to the
ALU. In other words, A plus* B changes to A + B.

2. Irregular Faults: The irregular subclass of faults is that for
which, given a specific function and a specific gate stuck at a
specific value, there is no consistent relationship between the
faulted result and the correct result or the inputs to the ALU for
all combinations of inputs for which the specific function is in
error. For example, for one set of inputs the faulted result is
the correct result - 4: for another set of inputs the faulted
result is the correct result + 4. For one set of inputs A plus B
changes to A + B, and for another set. A plus B changes to
A .

To continue the breakdown of functional faults in Figure 15, the

regular class divides into two subclasses. These are directly related

input and directly related output faults.

1. Directly Related Input Faults: In this category of faults there
is no straightforward relationship between the faulted result and
the true result of a specific function when a specific gate is
stuck at a specific value, but there is a relationship between the
faulted result and the inputs to the ALU: e.g., A PLUS B changes
to A exclusive ORed B.

2. Directly Related Output Faults: In this category of faults there
is a straightforward relationship between the faulted result and
the correct result of a specific function when a specific gate is
stuck at a specific value: e.g., faulted result is equal to the
correct result exclusive ORed with a constant m.

*This notation is used by the TI ALU 74181 specification. Here, '+'
refers to the logical 'OR', 'plus' addition, etc. For additional informa-
tion, rpfer to Appendix B.
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In summation, it should be noted that the gate-function relationship

(Figure 14) is presented in a two-dimensional concept, gate and function;

it is a breakdown, in essence, of the types of ALU functions. The classi-

fication of faults in the ALU simulation (Figure 15) is presented as a node

of the fault tree (gate-dependent) in a three-dimensional space, gate,

function, and the stuck-at value. The fault tree is a breakdown of the

types of faults that can occur.

(c) Measurements. Several different measurements were performed

using the ALU simulator.

1. Fault populations. It should be noted that there are 62 gates, 30

functions, and 256 different combinations of inputs in the ALU. If for

every combination of inputs each fault caused each of the 30 functions to

be in error (i.e., if each function was completely gate-dependent), the

total number of faults possible would be 62*30*256 = 476,160. When any of

the gates is stuck-at-zero, one at a time, the total number of functional

(pin) faults is 141,046; when any of the gates is stuck-at-one, one at a

time, the total number of functional (pin) faults is 221,097. When any of

the gates is stuck-at-zero or stuck-at-one, one at a time, the total number

of faults is the sum of these two, or 362,143.

Measurements were completed for all combinations of inputs (i.e., 256

for a 4-bit slice of the TI 74181 ALU), with a qate-level fault manifestinq

as a functional fault if any of the 7 pins (i.e., C, , C, F3, F2, F1, FO)
were in error. The total number of faults that actually occurred were

362,143, which is 76% of the total possible faults.

One interesting point in these measurements is the difference between

the number of faults occurring when gates are stuck-at-zero (39% of the

total) and the number of faults occurring when gates are stuck-at-one (61%

of the total). This difference is due to the number of AND gates used in

the TI 74181 ALU. If a three-input AND gate is used with the probability

that each input has an equal chance to be zero as well as one, the prob-

ability of the output being one is 1/2*1/2*1/2 = 1/8, and the probability

of the output being zero is 1 - 1/8 = 7/8. It is obvious that stuck-at-one
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will hurt more than stuck-at-zero. The reverse is true for a circuit with

more OR gates than AND gates.

2. Effect of gate-level faults on ALU functions. Tables 4, 5, and 6

indicate what effect gate-level faults have on ALU functions. The fre-

quency with which a functional fault occurs and the percentage of the time

a fault occurs, with respect to the total number of functional faults, are

presented for cases when the gates are stuck-at-zero, stuck-at-one, or

stuck-at-zero or stuck-at-one. (The gate's value is always incorrect).

These tables are arranged according to the function affected most often.

Figure 16 is a histogram of the results sorted for all the gates stuck-at-

zero or stuck-at-one, one at a time. As indicated, there is little differ-

ence between the function most affected and the function least affected

(only 0.72%). Figures 17 and 18 show the corresponding histograms when all

the gates are stuck-at-zero or stuck-at-one, respectively, one at a time.

These two histograms are not arranged in descending order. Note that there

is little difference between the function most affected and the function

least affected for either case.

Even though there is little difference in the frequency with which

each instruction will be affected, the frequency with which an instruction

(ALU function) is used is a big factor in specifying which instruction will

be most affected. Table 7, extracted from Edward Snow's work [15], shows

the frequency of execution of some instructions in the PDP-11 family. The

probability that an instruction is in error is equal to the cross product

of the probability that that specific instruction gets executed and the

probability that there is a fault in executing that instruction. Table 8

presents calculations completed for some typical PDP-11 instructions. As

shown, the sequence of most likely instructions in error has changed.

Also, keep in mind that these results are obtained over all possible

combinations of inputs. The input data distribution is also an important

factor.

3. Frequency of occurrence of different types of functional faults.

The TI 74181 ALU simulation was exercised to measure the frequency of

regular and irregular faults (data-dependent and data-independent). For
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Table 4. Frequency and Percentage of Times a TI 74181 AIJJ Function Will
Be in Error When a Gate Is Stuck-at-Zero.

jPUP-11170 ALU- Number of Times Percent with ResPet fo-

Instruction Function In Error Total Number of Errors

Minus 1 (21s complement) 5376 1.*48

Aff minus 1 5133 1.41

SUB A minus 8 5095 1.40

BIS A48 5077 1.40

(A4W) plus A plus 1 5071 1.40

1 (logical) 5040 1.39

XOR A 0B 4995 1.37

AB minus 1 4877 1.34

MDV A 4848 1.33

DEC A minus 1 4848 1.33

MDv A 4848 1.33

(A ') plus AS plus 14839 1,33

sic f 4783 1.32

sic Aff 4783 1.32

A minus 8 minus 1 4771 1.31

A plus A plus 1 4752 1.31

MOV 64739 1.30

(A+M plus A 4645 1.28

A plus B pius 1 4583 1.26

BIT AB 4527 1.25

BIT AS 4527 1.25

(A4IM pilus AB 4515 1.24

A 0 4483 1.23

pINC A plus 1 4464 1.23

CO4 4432 1.22

CdR Zero 4352 1.20

CdR 0 C(logical) 4352 1.20

ADD A plusB8 4259 1.17

ASH A plus A 4144 1.14

MDV A 3888 1.07

TOTAL 141046 31.0%

*Note that there may be alternative ways to real Ize t-he PDP-1171 I nstruct Ion wi th the 74151.-
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Table 5. Frequency and Percentage of Times a TI 74181 ALU Function Will
Be in Error When a Gate is Stuck-at-One.

PDP-11/70 ALU Number of Times Percent with Re-spect to[
Instruction Function In Error Total Number of Errors

CC*4X 8224 2.27

XOR A 0 B 8197 2.26[

NOV B7941 2.19

CIR Zero 7936 2.19[

CLR 0 7936 2.19

I (logical) 7920 2.18

A plus A 7824 2.16

BIC A9 7761 2.14

Bic A 7761 2.14

BIS A+0 7760 2.14

rTT 7685 2.12 I
(AM) plus A 7568 2.06

BIT AS 7505 2.07

BIT AS 7505 2.07

SUB A minus B 7457 2.05

A minus B minus 1 7361 2.03

A plus A plus 1 7312 2.01

(M4W) plus A plus 1 7250 2.00

(A41) plus AS plus 1 7201 1.98

NOV A 7184 1.96

NOV A 7184 1.98

(A+W) plus AS 7105 1.96

DEC A minus 1 7088 1.95

A plus B plus 1 6945 1.91

ADO A plus 8 6849 1.89

AF minus 1 6863 1.89

INC A plus 1 6816 1.88

NOV A 6720 1.85

AS minus 1 6607 1.82

Minus 1 (20s complement) 5632 1.55

TOTAL 221097 69.0%
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Table 6. Frequency and Percentage of Times a TI 74181 ALU Function Will
Be in Error When a Gate is Either Stuck-at-Zero or One.

PoP-1I/70 ALU Number of Times Percent with Respect to
L Instruction Function In Error Total Number of Errors

XOR A O B 13192 3.64

I (logical) 12960 3.57

BIS At8 12837 3.54

mOV B 12680 3.50

CO" 12656 3.49

SUB A minus B 12552 3.46

sIC AT 12544 3.46

sIC Af" 12544 3.46

(A+D) plus A plus 1 12321 3.40

CLR Zero 12288 3.39

CUR 0 12288 3.39

(A4) plus A 12213 3.37

A 12168 3.35

A minus B minus 1 12132 3.35

A plus A plus 1 12064 3.33

(A+W) plus AB plus 1 12040 3.32

BIT AB 12032 3.32

BIT AS 12032 3.32

MOV A 12032 3.32

MOV A 12032 3.32

A minus 1 11996 3.31

A plus A 11968 3.30

DEC A minus 1 11936 3.29

(A41) plus AS 11620 3.20

A plus B plus 1 11528 3.18

AS minus 1 11484 3.17

INC A plus 1 11280 3.11

ADD A plus 8 11108 3,06

Minus 1 (21s complement) 11008 3.03

Nov A 10608 2.92

TOTAL 362143 100.0%

47



3.64%

2.92%

II

ALU Function No.

Figure 16. Frequency of an ALU Function in Error When Allthe Gates Are Stuck-at-Zero or Stuck-at-One,

One at a Time.
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Table 7. Some Typical Instruction Execution Frequencies.*

XOR <0.0005

COM <0.0005

BIS 0.0012

BIT 0.0041

CLR 0.0186

INC 0.0224

SUB 0.0274

BIC 0.0309

ADD 0.0524

DEC 0.0809

MOV 0.1517
* For typical PDP-11 instructions which use 74181.

Table 8. Frequency of Error for Typical PDP-11 Instructions.**
PDP-11 ALU Function

Instruction Probability of Error Used

COM 0.0349*0.0005 = 0.000017

XOR 0.0364*0.0005 = 0.000018 A 0 B

BIS 0.0354*0.0012 = 0.000042 A + B

BIT 0.0332*0.0041 = 0.000136 AB

INC 0.0311*0.0224 = 0.000606 A plus 1

CLR 0.0339*0.0186 = 0.000630 zero

SUB 0.0346*0.0274 = 0.000959 A minus B

BIC 0.0346*0.0309 = 0.001069 AF

ADD 0.0306*0.0542 = 0.001603 A plus B

{DEC 0.0329*0.0809 = 0.002661 A minus 1

MOV 0.0332*0.1517 = 0.005036 A
**Assume 4-bit ALU results directly extended to 16-bit ALU.
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all combinations of inputs to the ALU, there are 118,514 regular functional

faults for any gate stuck-at-zero. Of this number, 116,194 are directly

related output faults, 73,986 of which occur when the faulted result =

correct result * m = correct result + n. A total of 99,362 directly

related output faults occur when the faulted result = correct result + m;

this includes the previous category. Of the total 116,194 faults, 90,818

occur when the faulted result = correct result + n; this includes the first

class. An important result is that 70% of the faults (99,362/141,046) are

single-pin faults since m is usually a 4-bit binary number with only one

bit on. (This does not include faults in the X*, Y and I pins.) The meas-

urements also show that 84% of the faults (118,514/141,046) are regular

errors when all the gates are stuck-at-zero, one at a time.

Similar results are obtained when all the gates are stuck-at-one, one

at a time. There are 175,990 regular faults of which 174,950 are directly

related output faults. Of the directly related output faults, 109,510

occur where the faulted result = correct result + m = correct result + n.

A total of 156,006 faults occur when the faulted result = correct result

I m, including the first case. A total of 128,454 faults occur when the

faulted result = correct result + n, including the first case. Again, 70%

of the faults (156,006/221,097) are sinqle-pin faults and 79% (175,990/

221,097) are regular faults.

Perhaps a more accurate measurement can be considered in terms of

cross products of the gates and functions. There are 62 gates in the ALU

(not including the gate for equality). Thirty out of 48 functions are used

by the PDP-11/70. Therefore, 1860 (62*30) functional faults can occur when

a gate is stuck-at-zero or stuck-at-one. Eighteen of the 30 functions

available are independent of one or more gates stuck-at-zero or stuck-at-

one. Of the total functional faults (1860), 1049 faults occur when all of

the gates are stuck-at-zero, one at a time; 33 of which are irregular. The

remainder (1016) are regular faults. When all of the gates are stuck-at-

one, one at a time, a total of 1,255 faults occur. Of these, 74 are

irregular and 1,181 are regular. Figure 19 presents the exact breakdown

for these conditions.
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4. Refined functional fault model. At this point it is useful to

compare the hypotheses originally stated and the experimental results

concerning types of ALU faults. The results of the simulation produced the

following types of faults:

1) Faulted result = correct result * m
or

Faulted result = Correct result + n where m is a binary number

with one or more bits on.

In the case of the TI 74181 ALU one bit is generally on, and n is

an exponent of 2 (i.e., 21, 22, 23) for 4-bit slice. It should be

noted that the results obtained for a 4-bit slice are applicable

to cases other than a 4-bit ALU. The only interaction between

the 4 least significant bits and the next 4 bits is the carry bit

(or X and 7). This would only change the m and n numbers; in

other words, m will be a 16-bit number with more than 1 bit on,

and n will be a polynomial in the form a12k1 + a22k 2 + ... +

ak21.

2) Change of operation.

In this case, the logical operation changes to an arithmetic

operation or vice versa. Generally, any operation can change to

another operation.

3) Any of the output bits, including carry (C), carry generate (X),

and carry propagate (Y), can be stuck-at-zero, stuck-at-one or

flipped.

Comparing the ten classes of functional faults originally hypothesized with

the experimental results of the simulation, it is evident that fault types

in classes 1 and 6 are eliminated. Classes 2, 4, 5 and 8 fall into cate-

gory b of the experimental results. Fault types in classes 2, 7 and 10

fall into category c of the experimental results, while faults in class 9

fall into category a of the experimental results.
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*4. FUNCTIONAL FAULT INJECTION

*a. Introduction

This chapter is devoted to the injection of the functional faults

predicted in the previous chapter into the PDP-11/70 ISP description

described in Chapter 2.

Functional fault injection was performed on two different systems -- a

PDP-11/70 without any built-in tests (the single CPU discussed in Chap-

ter 2) and two PDP-11/70 CPUs (a dual CPU) functioning in parallel with

their memory busses compared upon each memory reference. Two main objec-

tives were involved in selecting these two systems. The first objective

was to observe the manifestation of functional faults at the system level;

i.e., system behavior in a faulty environment. Using this information, a

system with appropriate built-in tests can be designed to catch most of the

faults. The second objective was to study a system with a built-in test to

observe detection coverage and system behavior with a BIT present.

The rest of this chapter will discuss the programs selected for fault

injection, the different parameters measured, and the results obtained from

functional fault injection in each of the functional modules in the single-

and dual-CPU systems.

b. Strategy

The following sections describe the programs selected for functional

fault injection. Parameters to be measured are also explained.

(1) Program Selection

Two options were considered for program selection: writing a new set

of programs or choosing a set already written. Since a new set of programs

would have required a large expenditure of effort to choose the application

area and to write the programs, a set of programs were selected that had

already been written and tested for use in benchmarking the ISP descrip-

I. tions of the CFA [3,16] program.

Sixteen different program categories are available for selection.

They are listed in Table 9 [16]. (Each program was written by two dif-

ferent programmers.) Seven of these appeared applicable; the remainder
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used instructions such as floating point and extended instruction set,

which have not been implemented in the RTI version of the PDP-11/70 ISP

description.

As explained further in the next section, several measurements were

worth studying. However, after the initial phase of fault injection, it

was obvious that it was not possible to measure all of these parameters.

Depending on the environment, the fault latency would have varied signifi-

cantly. Therefore, it was not feasible to concentrate on the frequency and

latency of each class of errors. Instead, attention was directed to how

each class of faults manifested itself at the system level. Two programs

(12, 13) which use most of the PDP-11/70 instructions and used the most

frequently occurring instructions were chosen. These two programs are

presented in Appendix C(1).

Table 9. CFA Programs.

Interrupts and traps
(0) terminal input driver
(1) message buffering and transmission
(2) multiple priority interrupt handler
(3) virtual memory exchange

Miscellaneous
(4) scale vector display
(5) array manipulation-LU decomposition
(6) target tracking
(7) digital communications processing

Address manipulation
(8) hash table search
(9) linked list insertion
(10) presort (over a large address space) v
(11) autocorrelate (over a large address space)

Character and bit manipulation
(12) character search
(13) boolean matrix transpose
(14) record unpacking
(15) vector to scan line conversion I.

(2) Measurements

Initially, three types of parameters looked promising for observation

and measurement: 1) the classes of faults manifested at the system level,
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2) the frequency of occurrence of each of these classes, and 3) the detec-

tion latency of these faults. After the first phase of fault injection, it

was seen that almost all of the manifestations classified were interchange-

able, depending upon the program and the environment in which the program

was running. An accurate frequency of occurrence could not be measured

because any frequency of occurrence measured would have been for a specific

environment, a specific state, and a specific program. Furthermore, the

error latency could not be correctly measured because it also would have

referred to a specific environment,* a specific Program, and a specific

state.** Thus, the only parameter that could be measured after the first

phase of fault injection was the classification of faults at the system

level.

c. Single-CPU Fault Injection

In this section, functional fault injection for the single CPU is dis-

cussed in terms of each of the four function modules: register decode,

instruction decode, data storage, and data manipulation (ALU). Fault

injection for the data transfer function module is not discussed because

this class of fault injection is highly dependent upon the bus structure.

In addition, some of the manifestations for data transfer module will mani-

fest themselves when data storage modules are injected with faults. Func-

tional fault injections for all single-CPU functions generally manifest

themselves as stuck-at-zero and stuck-at-one faults. Consequently, the

results represent stuck-at-zero and stuck-at-one at the gate level. When-

ever possible, the ISP simulator was used for fault injection. In other

situations, fault injection was performed manually, or the ISP description

was modified to accommodate the necessary hooks for a better and faster

fault injection. These modifications will be discussed later.

*Environment refers to the location where the program is loaded into
memory, the operating system support, the content of the interrupt vector
locations (are they loaded or not), (interrupt handlers), and any other
user states.

**System states refers to the contents of various architectural
registers (used and unused by the program) and to the contents of various
implementation registers (not an architectural feature and not seen or used
by the programmer).

57



(1) Register Decode

Register files are a ubiquitous module in most modern computers; they

are most often directly visible at the microcode level. Generally, the

programmer will only see a register file at the instruction set level when

he uses register instructions. Since the microcode level is extremely

implementation dependent and since the RTI model is viewed basically at the

instruction set level, examples used will consist of injecting functional

faults into a register file at the instruction set level. It should be

noted that functional faults for the register file are the same, regardless

of the level of the register file in the particular machine.

RTI's functional fault model of the register file is based on the

functional block diagram presented in Figure 6. All data that is read or

written to the register file is first gated into the register file buffer.

The register to be read/written is selected by decoding the register index

which activates one (and only one) select line. The model is covered by

two fault classes, register decode and data storage. (See Section 4c(3))

Register decode functional faults are divided into three categories:

1) the wrong register is selected, 2) no register is selected, and 3) mul-

tiple registers are selected. Each category is discussed below in terms of

what the category means, how it is physically realizable, how it is

executed in the simulator, and what are the simulation results.

1) The wrong register is selected.

For this category a wrong select line is active, but only one select

line is active. As a result, a wrong register is selected. This may occur

if an input or select line is stuck-at or if one of the internal gates is

faulted. In the simulator, the fault injection mechanism of ISP [12] is

used to fault the input bits (i.e., the index to the register file) to the

decoder.

Table 10 tabulates the simulation results for this category. The

stuck-at-zero input bit faults all produced the same results. Why?

Generally, when a program is loaded into memory for execution, all the

general-purpose registers are set to zero (the initialization process of
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the ISP simulator) except the R7(PC), which points to the starting address

of the program. Under stuck-at-zero faults, R7 can never be accessed. Its

address is binary 111; thus, whenever another register is accessed in its

place (R6, R5 or R3), the contents of the second register will be used as

the next instruction address. If the contents of these registers are the

same, then the results will be the same.

Table 10. Wrong Register Is Selected.
Register File Index

Is Stuck-At Results Comments

XX0 data executed *Instruction address pointed
out of program bounds;

XOX " address was in system data
area. HALT executed.

oXX

XX1 data executed *Changes to SP modified PC.
PC pointed to program data.
WAIT executed.

XIX "*Changes to R5 modified PC
PC points to program data.

1XX " *MOV 11(r6),020760(r4) executed
causing odd address error.

1XI " *Same as XXI case.

liX odd address *Changes to RI modified PC
error making PC odd.

X =do not care

For the stuck-at-one cases the PC was modified, in an attempt to

modify another register and to point out of the instruction boundaries of

the program and resulted in data being executed. In one case the PC

modification resulted in an odd value, which caused an odd-address trap.

An example of the stuck-at-one case follows:

(
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Bit 2 of the register index is stuck-at-one; 1XX

NEWROW: ADD R4,RO => ADD R4,R4 ; RO is changed to R4
CMP RO,#TOPMASK => CMP R4,#TOPMASK ; RO CHANGED TO R4
BLT 1$ ; branch taken

1$ MOV R4,R5 ;no changes
MOV R2,R3 => MOV R6,R7 ; R2 changed to R6 and R3

; changed to R7

This caused R7 to point into the data segment of the program; as a result,

the data was executed. The data was interpreted as

MOV 11(R6),020760(RO).

When executed, this resulted in an odd-address error because the index of

11 is odd and the instruction is a word instruction.

2) No register is selected.

For this category none of the select lines are active for certain

input patterns. In this case, only the one select line is affected.

Physically, this can be realized by faulting a select line output gate to

the nonactive state. The question to be asked is what happens on a read/

write request to the register file if none of the select lines are active.

For the write request, the data to be written is loaded into the buffer and

the write operation is suppressed. The only change is to the buffer. To

read the file the contents of the buffer are used as the results of a read

request. Whatever was last read or written into the register file buffer

is taken as the data to be read. In the ISP simulator, this occurs by

setting the NO.SEL bit in the register file code and setting the appropri-

ate bit in REG.SEL which represents the no-register-selected case.

Table 11 tabulates the results of the no-register-selected case. Note

that some very interesting side effects occurred. An instruction has been

used as if it were data modified to be an entirely different, but leqiti-

mate, instruction that is executed. Trying to backtrack this type of error (J
is very difficult, since the program continues to execute long after the
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error occurs. Even with exccution traces, it took considerable time to

find out what had occurred.

Register Table 11. Register Is Not Selected.
! Register

Not Selected Results Comments

RO infinite *RO is put on the stack. Suppose to be the
* loop array offset but in actuality the address of

that instruction is put on the stack;
instruction @SP was executed which modified
the instruction from MOV (RO),-(SP) to CMP
-(R1),@R4. This was added to a loop counter
making it 25110. A very long loop. Once
loop is completed, the modified instruction
would be executed. But the program would
continue with a very messed up stack.

RI infinite *R1 counts number of arrays to be
loop transposed. When R1 is decremented by loop

counter : DEC R1 the value returned to be
decremented is the address of this
instruction which will remain constant.
Program will blow up when pointers to the
arrays get fouled up.

R2,R4 HALT correctly *Matrix transpose done in place. No change
to original matrix. Does not mean that some
other location in main memory was not
changed.

R3,R5 HALT correctly *Wrong result. The matrix was modified but

not completely or correctly.

R7 data executed *Executes instruction at whatever address

was last in the register file buffer.

R6 stack trap *In autodecrement mode SP is range checked
against the stack limit register. Whatever
was last in register file buffer is used as
contents of SP.

I
For several registers the program correctly terminated, but the

results of the computation were wrong. In two cases the transpose of the

matrix was the same as the original matrix. In this instance, a careful
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programmer might wonder if this transpose program were a subroutine called

as a subelement in a larger program and might rerun the computation or

check the results in some other manner. Two other programs that correctly

terminated with incorrect results gave as a result a matrix that was dif-

ferent from the original. Unless the results were known or an extra check

step was run, these wrong results might miss being detected.

These errors are very program dependent. If the program does not use

the faulty register, then the problem will not be detected. If the regis-

ter is used in an infrequently accessed segment of code, then again it

might not be detected. Due to the way faults in this category manifest

themselves, isolating the faults is extremely difficult. For this reason

the category of register decode faults appears to be the most dangerous of

all the faults.

In the following example, R6 will be the not-selected register. Remem-

ber in autodecrement and autodecrement-deferred addressing modes with SP as

the register, SP is limit-checked for stack underflow.

BMT: MOV RO,-(SP) ; Contents of register file buffer is used as SP,

; because SP is not selected. Buffer last changed when

RO was accessed so SP=contents of RO=1434.

MOV R1,-(SP) ; SP takes on register file buffer contents which is

; the contents of RO=1, at this time. SP is first

; decremented by two yielding a -1. This is checked

; against the stack limit register, causing a

; stack limit underflow trap.

3) Multiple registers are selected.

If multiple registers are selected, then multiple select lines must be

active simultaneously. This occurs if several select line output gates are

stuck-at-active. A number of questions arise in this case. What sort of

outputs occur when reading the register? Are the multiple register ANDed

or ORed together to produce a result? Is the desired register- chosen along
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with other undesired registers, or are only the unasked for registers

chosen? These questions require consideration of four subcases They are:

1) the registers are ORed together with the desired register, 2) the

registers are ANDed together with the desired register 3) the registers

are ORed together without the desired register, and 4) the registers are

ANDed together without the desired register. In the subcases lacking the

desired register, if the desired register is among the set of stuck-at-

active registers, then it will be used.

This category and its subcases are realized in the simulator by set-

ting MULT.SEL (multiple registers selected), AND.OR (to choose the tech-

nology), INCL.SW (to include/exclude the desired register), and the appro-

priate bits in REG.SEL, which indicates which registers have their select

lines permanently active.

Tables 12 and 13 tabulate the results when multiple registers are used

simultaneously. Table 12 presents the subcase of the desired register

being selected along with the registers that are always selected. For the

OR technology the program executed several instructions, while for the AND

technology only one instruction was executed. This again reflects the

state of the registers when the fault occurs. If the registers had some

previous values (nonzero), then several more instructions would have been

executed for the AND technology.

Table 13 is the subcase of only the registers with select lines

permanently active being used. Again, because the registers ire zero, the

PC is quickly forced out of the instruction bounds and it halts. In all

the examples where PC is not one of the selected registers, this same out-

come occurs. When PC is one of the active registers, it takes on whatever

value is written to the register file and uses that value as the next

instruction address. In RTI's experiment the PC took on the address meant

for the SP and as a result, the processor executed the data at which the SP

was pointing.

6
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Table 12. Desired Register Is Included.
TECIHNRLOY __ l1..

OR Register
Selected Results Comments

1,3,5 data executed *PC modified; HALT executed. V
2,4 ,6 I" i" " I t

5,7 to *PC forced to value of SP;
WAIT executed.

6 ,7 i" l fil oS IS

AND

1,3,5 data executed *PC modified forced to zero:
pointed at system data area.

2,4,6 " This occurred because the
contents of the registers were

5,7 " all set to zero when the
6,7 program was loaded.6,7 ",

Table 13. Desired Register Is Excluded.
TECHNOLOGY •__

OR Register 'A
Selected Results Comments

1,3,5 data executed *Contents of the reqisters were
all zero. Forced the PC to zero

2,4,6 " resultina in data in system
area beinq executed; HALT.

5,7 " PC was forced to the value of
the SP as in part (a) of this

6,7 " table. WAIT was executed.

AND L

1,3,5 data executed *Registers were all zeros. PCwas forced to zero; data from I2,4,6 " system was executed; HALT.

5,7 55 if

6,7 " "5
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An example follows showing what happens when R5 and R7 are multiply

7 selected. The technology is the OR type and the desired register is
4 included in the operation.

Address Instruction/Data

01272 MOV #STACK,SP ; #STACK is an address equal to 1424.

Putting address in SP also sets R5 and R7

; to 1424 because they are always selected.

01424 STACK: .WORD 1 ; Data is the number of matrices to

; transpose. R7 points here as a result

of the previous MOV instruction.

The data is executed as a WAIT

instruction. The program halts.

In conclusion, after studying the execution traces of these examples,

some general statements can be made. For the OR technology, registers

affected tend towards higher values (i.e., more ones), while the reverse is

true for the AND technology. This trend was demonstrated in the tables.

When the program stopped, the PC was generally pointing into the low-memory

locations for the AND technology and into the data segment of the program

for the OR technology. In most programs, data locations are generally

allocated after the instructions. In the PDP-11/70 the low-memory loca-

tions O-1000(octal) generally hold trap addresses and other system-related

data. Because no trap addresses or system information were stored in the

low-memory addresses, the program halted (HALT=O00000) when the processor

tried to execute the values found there.

To detect these types of problems as they occur, the decoder could be

designed to be self-testing. It could then signal an error if zero or more

than one select line were active. This would then detect the most poten-

tially dangerous fault, the one with the longest latency, the no-select

category. This scheme, unfortunately, does not detect errors in the case

where the wrong register is selected. To do that would require a duplicate

decoder and comparing circuitry. The self-testing method could easily be

incorporated into most existing register files. An additional line would

65



be required to signal when the self test failed. The duplicate decoder and

comparator would not require any more additional lines than the self-test

method, but it would require more chip real estate. However, both methods

could be easily incorporated into existing architectures without any major

changes.

Other methods would, in general, require changes to the architecture.

For example, data and instructions could be placed in separate memory

spaces. The instruction space could only be accessed while in the instruc-

tion fetch cycle, and the data space could only be accessed while in the

execute cycle. It would be illegal to write into the instruction space,

read only, and to execute data in the data space. These measures would

detect the manifestations of the faults injected into the register file.

(2) Instruction Decode

PDP-11/70 op-codes are of variable length; the instructions can be

one, two, or three words in length [7]. Op-codes can be from 4 bits to 16

bits long. Consequently, covering all possible cases of instruction

decode, functional fault injection can be tedious and time-consuming, and

it is essentially no more useful than selecting a set of representative

cases for each class of faults.

The following pattern was followed throughout instruction decode fault

injection. Since only permanent faults were of interest here, fault injec-

tion occurred for all instances of the same instruction whenever an

instruction was faulted. Generally, the faults were injected before the

program started; in other words, the faults were present throughout the

execution of the program. In special cases faults were injected in the

middle of program execution, and from that point on the fault existed.

During the fault injection process only one fault was injected at a

time; multiple faults were avoided. For example, in one program run only

instruction x was faulted; in another, instruction y, etc. In a 2- or 3-

word instruction, for the class of faults where an instruction faulted to a

no-operation instruction (NOP), only the first word was changed to a no-

operation instruction; the second and third words were executed as part of

the next instruction.
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Appendix C(2) lists all the instruction decode functional faults which

* were inserted in the two CFA programs. In general, there were four end

results from the simulations:

1) The program ends with the right result.

In this case, the faulted instruction is in a portion of the code

which is never executed, or is in a branch statement which is never satis-

fied. Consider the following portion of the code from 0412 (one of the CFA

programs for string search).

MATCH: DEC R5
BLE FOUND
CMPB (R4)+,(R3)+
BEQ MATCH
BR NOMATCH !never executed

For the specific data used, "BEQ MATCH" is always satisfied and

"BR NOMATCH" is never executed. It should be noted that there is no

other BR statement in this program.

2) The program ends with a wrong result.

It should be clarified that program ends, refers to the fact that the
program either stops at the point where it should have stopped in the no-

fault case or it stops at some random point. This is also referred to as

the halt case. For example, if a fault causes a branch instruction to

change to a no-operation instruction or to another branch instruction with

a different destination address, still within the boundary of the program,

the following (taken from program 0412) may occur:

CMP 0,12(SP)
* BNE NONZER
. CLR @2(SP)

RTS PC
NONZER:...1.

tDue to a fault, the BNE instruction changes to a no-operation instruction.

Consequently, instead of branching to NONZER and continuing the normal
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path, it continues with the next two instructions and the program is

terminated.
3) The program executes for an infinite time.

This is referred to as the infinite-loop case. These types of pro-

grams literally execute for an infinite time; they take more than an order

of magnitude greater the time they would normally take to run. Programs

that execute in less than an order of magnitude the time they would nor-

mally take are considered programs with wrong results. As an example,

consider the following excerpt from program 0613:

'i

BMT: MOV ROWPTR,-(SP)

RTS PC
START: MOV STACKSP

NEXT: MOV (RO)+,-(SP)

JSR PC,BMT

DEC RI
BNE NEXT
HALT

Assume that DEC is changed to TST. Register R1 is not changed durinq the

execution of subroutine BMT, since it is saved in the entrance to the sub-

routine and restored on returning. Also, it is not changed between the

statement labeled NEXT and the JSR instruction. In the beqinninq it con-

tains a value of one; this does not change. The TST RI instruction sets

the condition codes to nonzero. BNE NEXT always branches to NEXT and never

ends.

4) The program traps to one of the PDP-11 trap locations.

Since RTI's program was run on a PDP-11 simulator without any operat-

ing system support and without any trap handler, trapping to a trap
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location was treated as a termination point. Generally, this case chanqes

to one of the three cases mentioned before if the execution continues after

the trap or interrupt, even without any software support. An example case

is one in which an instruction changes to an illegal, or unused instruc-

tion. Another example is an odd-address trap, as may occur in the 0613

program. There are several occurrences of the instruction CLR -(SP) in a

subroutine. If this instruction changes to a no-operation instruction, the

stack pointer has a wrong value. Returning from the subroutine, the pro-
gram begins executing in the middle of the data. It executes one data word

as MOVE XI(SP),X2(R2), and since X1 is an odd value, the final result of

X1(SP) will be an odd address, which in turn causes an odd-address trap.

As discussed earlier in the measurement section (Section 3b(5)(c)),

there were several parameters of interest to measure. However, several

factors make those measurements invalid. -So, no attempt was made to mea-

sure them, because they have changed the class in which a faulted result

belonged. In other words, in one execution environment a fault might

belong to the infinite-loop class, whereas for another execution environ-

ment the same fault might belong to the trap class. The factors which

greatly determine to which of the four classes (manifestations at the

system level) a fault belongs are:

1) The content of the memory cells which are not used by the program

(i.e., the correct, nonfaulty program neither initializes nor uses these

cells at all). Consider a proqram in which a branch instruction has

changed to another branch, jump, or jump subroutine. Assume the destina-

tion (the PC after branching) is somewhere out of the program boundary.

(It points to an unused portion of the memory). Depending on what is in

that location and consecutive locations, different results might occur. If

the location jumped to contains a zero, the program will halt. In other

words, the program ends with a wrong result. If the location jumped to

contains data from other programs, the program might halt or it might cause

an illegal or unused instruction trap. If the location jumped to is at an

instruction boundary in the middle of another program, the program might

continue and end up with a wrong result, a trap or an infinite loop.
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2) The contents of the architectural registers (the registers seen by

the programmer) or implementation registers (the internal registers not

known to the proqrammer) at the start of the program. In the following

section of program 0613,

MOV BASE(SP),ROWADR !ROWADR=%2

TST (ROWADR)+ ,

assume that "MOV BASE(SP),ROWADR" is changed to a no-ooeration instruction.

If the original value of ROWADR is an even number, the orogram may end with

a wrong result. If the value is odd, it may trap to an odd address.

3) The location at which the program is loaded.

Some addresses used in the PDP-11 architecture are absolute addresses.

If they are executed as instructions, they may cause different results.

For example, if the ADD instruction in program 0613 is in location 000036

and the program is loaded from location 0000, then the content of locations

0 and 2 will be

LOCATION VALUE

0000 062700

0002 000232

If a program is loaded from this location, the first word is changed to NOP

(no-operation), and the second word is executed as an instruction. This,

in turn, executes a RTS instruction, which can result in any of the four

fault manifestations at the system level. If the program is loaded from

location 1000,

LOCATION VALUE

1000 062700

1002 001232
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then the same fault causes 001232 to be executed as a BNE, which can cause

a halt, a trap, or an infinite loop. If the proqram is loaded from loca-

tion 5000,

LOCATION VALUE

5000 062700

5002 005232

005232 is executed as an INC instruction and any of the four fault manifes-

tations may occur.

(3) Data Storage Function Fault Injection

Data storage functions consist of all the registers used in a digital

system. These registers can be architectural registers (registers seen and

used by the assembler programmer) or implementation registers (internal

registers of which the assembler programmer is not aware). The fault

classes that have been considered for functional fault modeling are the

classical stuck-at-zero or stuck-at-one faults. These faults manifest

themselves as one or more of the bits in a register stuck-at-zero or

stuck-at-one.

This section of the report concentrates on fault injection in the

instruction register. Fault injection in the general-purpose registers is

not discussed because the faults manifest themselves in the same manner as

they do for the register-decode function [Section 4c(1)].

The ISP fault in.jection mechanism is used for fault injection in the

instruction register. All 16 bits in the instruction register are stuck-

at-zero and stuck-at-one. The results of the fault injection are presented

in Appendix C(3). Remember that only single faults are injected, one at a

time; multiple faults are avoided.

Since instructions are of variable length, as are the op-codes, fault

injection in the instruction register implies the following. For a no-

operand instruction, such as HALT, RTI, etc., a fault injected results in

the execution of a wrong instruction. For a one-operand instruction, a

fault injected in the ten most significant bits results in a wrong

instruction; a fault injected in the six least significant bits results in
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a change in the address mode and reqister, and generally, a change in the

operand. For a two-operand instruction, fault injection in the four most

significant bits results in a change of operation; a fault injected in the

12 least significant bits results in a change in address mode and register,

and consequently, a change in the operand.

Four different manifestations were observed as the result of fault

injection in the instruction register. They are discussed below according

to the frequency of their occurrence, with the most frequent one discussed

first. The remaining three occur with relatively the same frequency, which

is far less than that of the first.

1) The program traps to one of the PDP-11/70 trap locations.

Two major types of trap are the odd-address trap and the red-stack

trap which are stack and stack pointer related traps, respectively. Since

no trap or interrupt vectors were loaded in the simulation runs and since

there was no trap handler, this case was treated as a termination point.

Had the program been continued beyond this point, an infinite loop or a

wrong result would have occurred.

An example of this case is illustrated as part of program 0613 below.

LOCATION VALUE VALUE LABEL INSTRUCTION
1272 012706 001424 START : MOV #STACK,SP
1276 012700 001424 MOV #TEST,RO
1302 012001 MOV (RO)+,R1
1304 012046 NEXT : MOV (RO)+,-(SP)
1306 012046 MOV (RO)+,-(SP)
1310 012046 MOV (RO)+,-(SP)
1312 004767 177462 JSR PC,BMT
1316 005301 DEC R1

Assume that bit number 1 (the second least significant bit) of the

instruction register is stuck-at-zero. The listing presents the instruc-

tion that would have actually executed had there been no fault, the

instruction that executed instead in the presence of the fault, the PC

(program counter), the SP (stack pointer), and the registers that were

affected. Initially, all the general-purpose registers (including SP) were

set to zero except PC, which was 1272 (the start location of the program).
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ACTUAL EXECUTED PC SP RO R1 R4K INSTRUCTION INSTRUCTION

012706 012704 1276 1424
012700 012700 1302 1424
012001 012001 1304 1426 0001
012046 012044 1306 1430 1422
012046 012044 1310 1432 1420
012046 012044 1312 1434 1416
004767 004765 1316 177776

As it is indicated above, the fault injected causes R4 (register four)

to be operated upon instead of SP (register six) in the first six instruc-

tions. In the seventh instruction, which is a JSR, SP is used for saving

the return address. However, since SP has an initial value of zero, when

it is decremented, it causes a stack overflow and, consequently, a red-

stack trap. Note that the outcome could have easily changed to an odd-

address trap, if the initial value of SP were an odd number.

2) The program ends with a wrong result.

Consider the program 0412. When bit 0 (the least significant bit) is

stuck-at-zero,

LOCATION VALUE VALUE VALUE LABEL INSTRUCTION
1000 012706 001446 START MOV #STACK,SP
1004 012746 001212 MOV #STR,-(SP)
1010 016746 000174 MOV STRLEN,-(SP)
1014 012746 001242 MOV #ARG,-(SP)
1020 016746 000214 MOV ARGLEN,-(SP)
1024 012746 001206 MOV #LOC,-(SP)
1030 004767 000002 JSR PC,CHRSRC
1034 000000 HALT
1036 022766 000000 000012 CHRSRC: CMP #0,12(SP)

and the program is executed as indicated.
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ACTUAL EXECUTED PC SP CONTENT OF LOCATION

INSTRUCTION INSTRUCTION WHERE SP IS POINTING TO

012706 012706 1004 1446 0000

012746 012746 1010 1444 1212

016746 016746 1014 1442 0026

012746 012746 1020 1440 1242

016746 016746 1024 1436 0003

012746 012746 1030 1434 1206

004767 004766 1034 1432 1034

1436

000003 000002 1440 1434

1034 1436

000000 000000 1036

Notice that the program execution continues in a normal fashion up to

location 1030, which has the "JSR PC.CHRSRC" (004767). At this point

and as a result of the fault injected, "JSR PC,CHRSRC" (004767) changes

to "JSR PC,X(SP)" (004766). The value of X (the index) is stored in

the location where PC (1032) is currently pointing (2). The destination

address is then calculated by adding the current value of SP (1434) to the

value of X (2), or 1434 + 2 = 1436. The current PC (1034) is saved on the

stack and the destination address (1436) is loaded into the PC: the program

then continues execution from location 1436. In location 1436, SP has a

value of 000003 which is a BPT instruction. However, because the fault is

injected, it executes the program as an RTI (000002) instruction, and

control returns back to the instruction after JSR. The next instruction

executed is a HALT instruction (location 1034).

3) The program is in an infinite loop.

As an example of an infinite loop manifestation, consider program 0613

when bit number 11 (the 12th least significant bit) of the instruction

register is stuck-at-zero. Part of the program is as follows.
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LOCATION VALUE VALUE LABEL INSTRUCTION
1272 012706 001424 START MOV #STACK.SP
1276 012700 001424 MOV #TEST,RO
1302 012001 MOV (RO)+,R1
1304 012046 NEXT MOV (RO)+,-(SP)
1306 012046 MOV (RO)+,-(SP)
1310 012046 MOV (RO)+,-(SP)
1312 004767 177462 JSR PCBMT
1316 005301 DEC R1

Execution of the program is as follows.

ACTUAL EXECUTED PC SP RO R1
INSTRUCTION INSTRUCTION

012706 012706 1276 1424
012700 012700 1302 1424
012001 012001 1304 1426 0001
012046 012046 1306 1422 1430
012046 012046 1310 1420 1432
012046 012046 1312 1416 1434
004767 000767 1272

As the listing shows, all instructions are executed correctly to the

point where "JSR PC,BMT" (4767) is fetched. At this point and as a

result of the fault, "JSR PC,BMT" (004767) changes to "BR X" (767).

Using the offset part of the branch instruction (the 8 least significant

bits of the instruction, 367), the new value of PC will be 1314+2*(-22)=

1272, which is the starting address of the program. This sequence

continues as an infinite operation.

4) The PDP-11/70 WAIT instruction is executed.

The only reason this case was included as a separate case is to demon-

strate ISP limitations. In the current version of the PDP-11/70 ISP

description, an ISP wait statement is executed whenever a PDP-11/70 WAIT

instruction is desired. However, since there is nothing for the ISP to

wait on, it will issue an error message and stop. In the actual PDP-11/70,

a WAIT instruction execution causes the CPU to relinquish the bus control

until an external event occurs. Then it continues execution. Regarding

the actual PDP-11/70 WAIT instruction execution, this manifestation will be

converted to one of the other three manifestations.
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An example of this case is the program 0412 execution when the bit

number zero (the least significant bit) of the instruction register is

stuck-at-one.

LOCATION VALUE VALUE LABEL INSTRUCTION ..

1000 012706 001446 START MOV #STACK,SP

1004 012746 001212 MOV #STR,-(SP)

The first instruction changes from 012706 to 012707 (MOV #STACK,PC).

As a result, the PC is loaded with 1446 (the address of the variable
STACK). Location 1446 is in the program boundary and has the value

000000. When the program tries to execute the 000000 instruction, the

instruction changes to 000001 as a result of the fault. The 000001

instruction is a WAIT instruction.

In summation, there are several results worth mentioning in data

storage functional fault injection.

1) Most of the manifestations were the PDP-11/70 trap, especially the
odd-address trap and the red-stack trap.

2) It was noted earlier that, if continued, the PDP-11/70 trap changes
to a wrong result or an infinite loop. This is not true for the
instruction register when one of its bits is stuck-at-one. No HALT
instruction can be executed because the HALT instruction op-code is
000000 and with a faulted instruction register, at least one bit is
on at all times. As a result, the PDP-11/70 trap, if continued,
will only change to an infinite loop.

3) The same factors affecting the instruction decode function outcome
will affect the data storage function outcome.

4) Fault manifestations are not dependent on the location of the bit
faulted in the instruction register.

(4) Data Manipulation

As stated earlier, the PDP-11/70 uses a TI 74181 ALU chip. Of the

48 functions available, 30 are used in the PDP-11/70. In this section,

functional fault modeling is applied to the data manipulation function of

the PDP-11/70 ALU.
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Section 3b(5)(c)4 states that the three major functional faults

(gate-level faults manifested at the chip level) are;

1) A constant operation in output. In other words, the output of the
ALU is exclusively ORed with a constant m, or the output is added/
subtracted with a constant n.

2) A change of operation. Instead of adding two numbers, they are
exclusively ORed, or they are subtracted.

3) An output bit stuck-at-zero or stuck-at-one. Note that this case
does not include the two previous cases.

In order to inject these three types of faults, the PDP-11/70 ISP

description required modification. The PDP-11/70 ALU is described as a

module with the control lines as the input to the module and the result as

the output of the module. For a change of operation the ISP fault injec-

tion was used to inject faults in the control lines. Two parameters were

added for the purpose of faulting the output with an exclusive OR or add/

subtract operations. These were FAULT<1:0> and MASK<15:O>. FAULT speci-

fies whether the output of the ALU should be faulted and, if so, what

operation should be performed. Table 14 shows the possible values of FAULT

and the meaning of each.

Table 14. Possible Values of Variable FAULT and the Action Taken.

FAULT Meaning

0 No fault

1 Final output = correct output G "MASK"

2 Final output = correct output + "MASK"

3 Final output = correct output - "MASK"

MASK is a 16-bit register which combines with the correct result of the ALU

to produce the faulted result.

The following method was used for all data manipulation fault injec-

tion. Faults were inserted before the program started and were present

throughout the program execution. During the fault injection process, only

one fault was injected at a time; multiple faults were avoided.
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Appendix C(4) lists all the data manipulation functional faults which

were injected in the ALU and their manifestations while the two CFA pro-

grams mentioned earlier (Section 4b(1)) were executing. There are four

resulting cases. These are:

1) The program being executed traps to one of the PDP-11 trap loca-

tions. 1.
Trap was considered as a termination point. This is due to the fact

that the programs being injected with faults were running in a PDP-11/70

simulator without the loading interrupt and trap vectors. Consequently,

there were no interrupt and trap handlers nor any operating system support. fl
Generally, this case would have changed to one of the other resulting

classes (a wrong result or an infinite loop). Stack and stack pointer

related traps and interrupts, such as stack overflow, were the most fre-

quent traps and interrupts that occurred.

An example of-a PDP-11 is the program 0613 when the output of the ALU

is exclusively ORed with 4. Part of the program is listed here for more

detailed study.

LOCATION VALUE VALUE LABEL INSTRUCTION OPERANDS
1272 012706 001424 START: MOV #STACK,SP
1276 012700 001424 MOV #TEST,RO
1302 012001 MOV (RO)+,R1

1304 012046 NEXT : MOV (RO)+,-(SP)
1306 012046 MOV (RO)+,-(SP)
1310 012046 MOV (RO)+,-(SP)
1312 004767 177462 JSR PC,BMT

1316 005301 DEC R1

Two things should be kept in mind to understand exactly what is hap-

pening. First, all the operations are performed through the ALU. For

example, to increment the PC by 2, the PC is passed through the ALU, or to

load any of the general-purpose registers from the memory data register,

the data is passed through the ALU. Secondly, to fetch an instruction, the

PC passed through the ALU and is loaded into a register called VAR (v~irtual

address register). The PC again passes through the ALU to be incremented,

to point to the next instruction or to the data portion of the current
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instruction. Keeping all of this in mind, the sequence of events affecting

the registers are as follows:

Initial value of PC = 1272
VAR PC SP RO R1 INSTRUCTION FETCHED

1 1276 1270 012700
2 1274 1276 1420

3 1272 1304 012706
4 1300 1302 1420
5 1306 1300 1412 1426 012046
6 1304 1306 1414 1434 012046
7 1302 1314 1432 1454 012001
8 1310 1312 1416 1430 012046
9 1316 1310 1443 005301
10 1314 1316 177462

In row 1, PC (1272) goes through the ALU to be loaded into the VAR and

becomes 1276. On the second pass through the ALU, PC is incremented by 2

and becomes (((1272 + 2) 0 4) = 1270). Using the VAR, the first instruc-

tion is fetched from location 1276, which is "MOV #TEST,RO." In row 2

the sane sequence is followed for fetching the second part of the instruc-

tion. Because of the fault injected, it is fetched from location 1274,

which, by chance, has the same value as the correct instruction. The
number fetched is 1424, but when passed through the ALU, it changes to 1420
and is loaded into register zero. This sequence continues and instructions

and data are fetched up until the tenth row. At this point, the address

of the instruction to be fetched is 1314 (content of VAR), which is point-

ing to the second word of a two-word instruction. The value of location

1314 is 177462, which represents a floating point instruction. Since

floating point instructions are not implemented in the current PDP-11/70

ISP description, an illegal instruction trap occurs.

2) The program ends with a wrong result.

(A wrong result here means that the program terminates at some point.

The termination point can either be the point where the program would

normally stop or any other point. This obviously happens when the machine

tries to execute instruction 000000, which is a halt instruction. An

example of the halt-instruction case is program 0412 which follows.
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LOCATION VALUE VALUE LABEL INSTRUCTION OPERANDS
1000 012706 001446 START MOV #STACK,SP
1004 012746 001212 MOV #STR,-(SP)
1010 016746 000174 MOV STRLEN,-(SP)
1014 012746 001242 MOV #ARG,-(SP)

The fault injected in the ALU causes the correct output of the ALU to be

incremented by two. The program proceeds as follows.

Initial PC value = 1000
VAR PC

1 1002 1004

2 1006 1010 _

In the row 1 the PC is incremented to 1004 and the instruction fetched is U
from location 1002. (Normally, these locations are 1002 and 1000, respec-

tively.) The fetched instruction (001446) is the second word of the actual

instruction (012706, 001446). The fetched instruction (001446) is a BEQ
instruction in which the condition for branching is not satisfied, due to

the initial state of the system. The PC is now incremented by four to

become 1010. The instruction to be fetched is from location 1006 which

again is the second word of a two-word instruction (001212). This two-word

instruction is a BNE instruction. This time, the condition for branching

is satisfied and the offset of the branch instruction causes PC to be

updated to 436. Since the program starts from location 1000 and since no

other user is running and no trap or interrupt vectors are loaded, loca-

tions 436, 440 contain zero and a halt occurs.

3) The program is in an infinite loop.

The same concept applied in the instruction decode case applies here.

An example of the program 0613 follows.

LOCATION VALUE VALUE LABEL INSTRUCTION OPERANDS
1270 100000 .WORD 100000
1272 012706 001424 START MOV #STACK,SP

1274 012700 001424 MOV #TESTS,RO
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Assume that the fault injected causes the final result of the ALU to be the

*actual result (result for a nonfaulty ALU) exculsively ORed with two.

Initially, PC is located in 1272. When PC passes through the ALU to

be loaded in the VAR, it changes to 1270. Consequently, the instruction is

fetched from location 1270, which is 100000. In the second pass through

the ALU and before instruction fetch, the PC changes to 1276 ((1272 + 2)

* 2). The instruction being fetched (100000) is a BPL instruction with 0

as the offset for branching, which forces PC to 1274 ((1276 + 2 * 0)

* 2). From this point the instruction in location 1276 is being fetched

and PC remains at 1274 ((1274 +2) 4 2). Consequently, the program execu-

tion is in an infinite loop.

In conclusion, several points are worth noting in the data manipula-

tion fault injection:

1) All the faults injected manifested themselves very quickly -- on
the average, in the first five or six instructions executed. The
reason was that almost every operation performed uses the ALU.

2) The same factors affecting the instruction decode function outcome
affected the ALU data manipulation outcome.

3) Most of the manifestations observed here were PDP-11/70 traps.
This was apparently due to the rapid change in PC and SP values as
a result of the ALU faults. As stated earlier, the PDP-11/70 trap
was viewed as a termination point because there was no operating
system support, no interrupt or trap vector was loaded, and there
was no interrupt handler.

(5) Results of the Overall Fault Injection

In Sections 4c(1) - 4c(4) faults were injected into the four func-

tional modules of a single CPU. The followinq observations can be made

concerning all four functional modules.

1) Injected faults manifest themselves in four different ways:

a) The program ends with a wrong result. The program can terminate

at the point where it would normally stop or it can terminate at
any random point.

b) The program causes a PDP-11/70 trap. This is usually caused by
executing a nonexistent instruction, a word instruction with an
odd address, or a stack overflow.
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c) The program execution lasts much longer than it would normally,
or the program execution is infinite . When the program takes
much longer than it normally should, different parts of the
program are executed at random. When program execution is
infinite, the program branches over a small group of instruc-
tions.

d) The program ends with a right result. The faulted part of the
program does not affect the program execution (e.g., an instruc-
tion which is faulted but never executed), a branch condition is
never satisfied, or a register is faulted but never used.

2) Several factors affect the fault manifestations. They are:

a) The content of memory cells which are not occupied by the
program. Execution of the program on a nonfaulty system will
never initialize or use these memory cells.

b) The content of architectural registers and internal registers.

c) The location where the program is loaded; i.e., the address of
the locations where the program and the corresponding data
reside.

3) The PDP-11 architecture trap mechanism is an effective tool for

detecting faults which manifest themselves as traps. It would be

very helpful if there were a simple way to distinquish between

user-introduced errors that cause the trap and hardware-failure

traps.

4) Faults manifest themselves relatively quickly after they become

effective; i.e., whenever they begin to cause a wrong result.

d. Dual-CPU Fault Injection

The dual-CPU configuration introduced in Section 2b was originally

designed as an aid to measure fault latency (the time from the original

occurrence of a fault in one CPU until the time a difference between the

memory busses of both CPUs occurs). As discovered in this study, fault

latency is very dependent on both the environment and the state of the

machine. (See Section 4c) Because of these two factors, RTI decided not

to measure fault latency.

Instead, the dual configuration was used as a BIT, albeit a very

high-level BIT. In this instance, a fault was injected into one CPU and

the simulation was halted whenever the memory busses of both CPUs differed.
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If the simulation stopped, this was an indication the BIT was working.

Whether the BIT was effective or not is another matter. If the simulation

ran into a system-level fault manifestation, then the BIT was not detecting

, the fault. The same fault classes are discussed in this application as

* with the single CPU.

(1) Register Decode

Faults injected in the dual CPU were the same as those injected in the

single CPU, thus allowing comparison of the results between these two

applications. These three classes of faults are discussed below as they

apply to the dual CPU.

1) The wrong register is selected.

As seen in Table 15, all the faults were detected by the BIT. They

were detected as soon as, or sooner than, the same faults in the single-CPU

configuration. Comparing fault XXO in Table 10 (single CPU) with that in

Table 15, note that, for the single CPU, data was executed and for the dual

CPU, the BIT stopped on an address disagreement. The address which caused

the disagreement is the address of the data that was executed by the single

CPU. The disagreement occurred in the instruction fetch cycle.

2) No register is selected.

Table 16 tabulates RTI's results for this category. Again, all the

faults were detected by the BIT. For this category the improvement in

fault latency was very good. A quick comparison with the single CPU in

Table 11 indicates that the single CPU program ran to completion in several

cases but produced wrong results, while for the dual CPU, the fault was

detected and no erroneous results were produced. The most significant

points to be made here are that 1) the fault latency is drastically reduced

* in many cases and 2) that all the faults were detected, which was not

always the case in the single-processor configuration.

*3) Multiple registers are selected.

This category is tabulated in Tables 17 and 18, and the results are

very similar to those for the previous category. All the faults were again

detected by the BIT, by noting differences in the address lines. These

addresses were all pointing out of the instruction bounds.
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Table 15. Wrong Register Is Selected.
Register File Index

is Stuck-At Results Comments

XXO BIT detected Address of stack put in R7.

11 IfxO x Address disagreement at checker.

oxx of to If It If Is

XX1 BIT detected Address of stack put in R7.

xix Data disagreement at checker.

1xx I1 11 11 1 I 11

Xli " Address of stack put in R7.

X do not care

Table 16. Register Is Not Selected.
Register

Not Selected Results Comments

RO BIT detected MOV (RO)+,RI: address disagreement.

RI " It MOV Rl,-(SP); data disaqreement.

R2 "o "

! R3 "i "

R43
R4 " t"

R5 " "

R6 "

R7 "
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Table 17. Desired Register Is Included.
TECHNOLOGY

OR Register

Selected Results Comments

1,3,5 BIT detected *PC modified;address difference

2,4,6 " " " " "

5,7 " *PC forced to value of SP;
address difference.

6 ,7 "t of it if Is

AND

1,3,5 BIT detected *PC modified forced to zero;
pointed at system data area.

2,4,6 This occurred because the
contents of the registers were

5,7 all set to zero when the
program was loaded. Address
difference detected.

Table 18. Desired Register Is Excluded.
TECHNOLOGY

OR Register
Selected Results Comments

1,3,5 BIT detected *Contents of the registers were
all zero. Forced the PC to zero.

2,4,6 Address difference detected.

5,7 PC was forced to the value of
the SP as in part (a) of this

6,7 table. Address difference
detected.

AND

1,3,5 data executed *Registers-ee-all zeros. PC
was forced to zero.

2,4,6 Address difference detected.

5 , 7 " " "

6,7 " " "
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In conclusion, the BIT appeared to work quite well for these classes

of functional faults. It was especially useful in the no-register-selected

category, where previously many faults went undetected. The BIT stopped

data corruption in the memory, but it did not stop the corruption of the

registers. This was due to the BIT itself, where it did its checking. The

BIT would be a more useful mechanism if it returned an error code indicat-

ing which set of lines on the bus (data lines, address lines, control

lines) caused the disagreement. This would allow the recovery process to

determine what should be done to recover from the fault.

(2) Instruction Decode

Fault injection in the instruction decode function in the dual CPU is

the same as that explained for the single CPU. The program is stopped

whenever a discrepancy between the memory busses of the CPUs occurs.

Using the dual CPU as a system with BIT, four classes of outcomes were

distinguished. They are presented below, along with examples. The fre-

quency of occurrence for the first outcome was much greater than for the

other three.

1) The dual CPU detects the faults.

The dual CPU was very effective in catching most faults -- on the

average, after five or six instruction executions from the point of fault

injection.

An example of this case is taken from program 0613. Assume that for
one of the CPUs, the JSR instruction has changed to an NOP (No-operation)

instruction. In other words, the faulty CPU (CPUA) tries to execute the

following line of code:

LOCATION VALUE INSTRUCTION

1312 000240 NOP

1314 177462 NON-EXISTENT INSTRUCTION

whereas the correct CPU (CPUB) tries to execute the following:
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LOCATION VALUE VALUE INSTRUCTION

1312 004767 177462 JSR PC,BMT

Now, both CPUs have fetched the content of location 1312. One sees the

content as an NOP. (Notice that the content of location 1312 in memory is

not changed, but it is changed in CPUA after the fetch cycle.) The other

sees it as JSR. Both CPUs return to fetch the content (177462) of location

1314, CPUA fetching 1314 as an instruction, CPUB as an operand. Since they

are both fetching the content of the same location, no discrepancy is

detected, even though the two CPUs are in different phases. After fetching

177462, CPUA decodes the content as an instruction; since it is a floating

point instruction ard it is not implemented, a nonexistent instruction trap

occurs. CPUA saves the content of PC and PSW in a temporary register and

puts the trap vector address (10) into its own virtual address register

(VAR) to fetch the new PC and PSW. In the meantime, CPUB wants to push the

return address (1316, current PC value) into the stack, so it decrements

the SP and puts it (1414) into its own virtual address register. The two

addresses are now different and the dual CPU checker raises an error flag.

2) The dual CPU does not detect the fault and the result is correct.

In this case, the faulted instruction is not executed or the condition

for a faulted branch instruction is never satisfied. Consider the part of

program 0412 listed below:

CHRSRC: CMP #0,12(SP)

BNE NONZER

CLR @2(SP)
RTS PC

NONZER: MOV RO,-(SP)

Assuming that CLR is faulted, "BNE NONZER" is satisfied, the program

control is transferred to the NONZER location, and "CLR @2(SP)" is

never executed. Remember that this is the only CLR instruction in the

program.
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3) The dual CPU does not detect the fault and program execution stops.

This case is mostly one of the ISP symptoms. In other words, if one

of the CPUs executes a HALT instruction which is directly translated into

an ISP stop statement, the whole simulation stops.

An example of this case is the program 0412 execution. Assume that

the injected fault causes all the CMP instructions to change to NOP

instructions. A line of the program is listed below for more detailed

study:

LOCATION VALUE VALUE VALUE LABEL INSTRUCTION

1036 022766 000000 000012 CHRSRC: CMP #0,23(SP)

Both CPUs fetch the instruction at location 1036 (022766). The faulty CPU

(CPUA) executes the instruction as an NOP, whereas the nonfaulty CPU (CPUB)

executes the instruction as a CMP. In the next cycle, CPUA fetches the

content of location 1036 (000000) as an instruction, which is a HALT

instruction. CPUB fetches the content as an operand. No error is detected

in either case because both of the CPUs are pointing to the same location,

although for different reasons. After CPUA executes the HALT instruction,

the entire simulation stops.

4) The dual CPU detects a fault which does not exist (a false alarm).

This is usually the result of unidentical system states at the start

of a simulation -- states which are largely due to the way the CFA programs

were written. Both of the test programs save the contents of the general-

purpose registers and, on return, they restore them. For example, RO in

one CPU may have a zero in it, whereas RO in the other may have a four. At

the start of the subroutine, these two registers will be saved somewhere in

memory (one location). In the process of saving them, the checker compares

the two values. Since they are different, the checker raises a flag, even

though the values might not be used at all.

In summation, several conclusions were obtained from using the dual

CPU as a system with BIT.
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1) Faults are usually detected and they are detected relatively
quickly. Fault latency can be improved by adding some type of
mechanism which not only checks the memory busses of the two CPUs,
but also checks the phases of the two CPUs. In a previous example
the two CPUs were fetching the same location (memory) word from the
CPU but for different purposes, one as an instruction and the other
as an operand. If an indicator had shown whether the two CPUs were
in the instruction fetch cycle, the operand fetch cycle, or
execution cycle, this error would have been detected sooner.

2) Correct operation of the checker and the rate of false alarms
depend on the state of the system at the beginning of program exe-
cution and after each fault is detected. In other words, the two
CPUs should be in an identical state at the beginning of program
execution.

3) Fault latency is strongly dependent on the programmimg style and
the algorithm used. In the dual CPU only memory accesses are
checked. If the contents of internal registers differ because of
the fault injected, it will not be detected until the registers are
used as a memory address or they are being stored in memory. For
example, assume that "DEC Ri" is executed in one CPU as an NOP
and as "DEC RI" in the second. The two Rls are different. If
the register is not saved or used immediately as a pointer to a
memory location, the fault will not be detected until R1 is used
later as an address or as data to be stored in memory.

(3) Data Storage Function Fault Injection in Dual CPU

Fault injection in the data storage module is handled in the same

manner in the dual CPU as in the single CPU. A single fault is injected,

only the instruction register is injected with a fault, and the fault

exists throughout the program execution. Since the instruction register is

used once in every instruction cycle, the fault manifests itself very

quickly and is in turn detected very quickly.

On the average, the faults manifested themselves in the first five or

six instructions. The dual CPU caught all of the faults injected in the

next one or two instructions. The longest time for a fault to become

effective was after 123 instructions that occurred when bit 15 of the

* instruction register was stuck-at-zero.

(4) Data Manipulation Function Fault Injection in Dual CPU

Again, fault injection in the data manipulation function in the dual

CPU is the same as in the single CPU. The discussion here concentrates on

the outcome of fault injection in the dual CPU. In general, there were

three outcomes.
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1) The fault is detected.

In this case, the dual CPU detected the fault and terminated program

execution. This was the most frequent occurrence. The fault was detected

very quickly, due to the fact that the ALU was used for every calculation.

As an example of this case, look at the execution of program 0613 when

the final result of the ALU was exculsively ORed with 2. At the beginning

of program execution both PCs are set to 1272. To fetch the instruction

at location 1272, both PCs pass through their resoective ALUs. The outcome

of the faulty ALU is 1270 (1272 0 2), whereas the outcome of the correct

ALU is 1272. Since these two numbers are compared and they do not agree,

an error flaq is raised and the program execution stops.

2) The fault is not detected and the program stops.

This is primarily due to the way the HALT instruction is executed. As

mentioned earlier, a HALT instruction causes an ISP stop statement to be

executed. This case can be easily changed to the previous outcome if there

is a time-out mechanism.

Consider the execution of program 0613 when an ALU fault causes all

the logical operations (M=L, see Appendix B(1)) to change to arithmetic

operations (M=H). At the beginning of program execution, the PCs in both

CPUs are initialized at 1272. The PCs are passed through the ALU to be

loaded into each corresponding VAR to fetch the instruction. Function B of

the TI 74181 is used for a straight PC move through the ALU. In the faulty

ALU this function changes to (A+B)PLUS AB PLUS 1 and causes the VAR of the

faulty CPU to be loaded with a very large number, which is pointing to the

I/O page. Since the I/O page accesses are not checked by the checker, the

faulty CPU fetches a word from the I/O page which has zero as its value.

In the meantime, the bus checker is waiting for the faulty CPU to load its

VAR and set the go flag. After fetching the zero from the I/O page, the

faulty CPU executes it and causes the simulation to terminate. The

addresses referencing the I/O page are not checked by the checker because

the I/O page has the general-purpose registers and other registers directly

accessible by the instructions; as such, we consider them part of the CPU.

3) Program executes infinitely.

Such a case occurs when the final result of the ALU is always an odd

number, or when the final result of the ALU is exclusively ORed or v
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added/subtracted by an odd number. When the PC is passed throuqh the ALU,

it has an odd value; as a result, an odd-address interrupt occurs. The ALU

is used to handle the interrupt and since its output is always odd, it in

turn causes another odd-address interrupt. This condition continues

indefinitely, while the bus checker continues to wait for the faulty CPU to

load its VAR and set the go flag.

To summarize, some of the results of data manipulation fault injection

are listed below:

1) Three types of outcomes occurred from injecting faults in the data
manipulation module of the dual CPU.

2) The dual CPU was able to catch most of the faults as soon as they
manifested themselves.

3) Although the last two outcomes occurred as a result of the ISP
description, they can easily occur in an actual system.

4) If a method such as time-out is used, the last two outcomes can be
changed to the first outcome.

(5) Results of the Overall Fault Injection in the Dual CPU

In general, the dual CPU BIT works relatively well in detecting and

catching most functional faults, despite the fact that it requires twice

the hardware and that both CPUs must be in the same initial state. Several

improvements can be made to increase BIT performance. These are:

1) Errors can be detected faster if the addresses, the data to and
from the memory, and the corresponding CPU phases are checked. In
every memory reference check, the phases of the two CPUs should
also be checked to see if they are the same and they are referenc-

* ing memory for the same purposes.

2). Fault latency can be reduced sharply if all the I/O page accesses
(including general-purpose register) are checked. In the current

*simulation the I/O page accesses were excluded from the checker.

3) A time-out mechanism can prevent one CPU from waiting for an
indefinite period of time for the second CPU. Such a case occurs
when one CPU halts or passes into an infinite loop.
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5. REFINED FUNCTIONAL FAULT MAPPING

a. Introduction

Early in the discussion on functional fault modeling, it was noted

4 that gate-level fault manifestations at the chip (pin) level or functional

level might be sharply reduced compared to the number of faults at the gate

level. This is true if we are only considering the number of different

manifestations. If one is concerned with fault injection at the functional

level, there is not much difference between the number of faults inserted

at the gate level and the number of faults inserted at the functional

level. It is possible that functional fault injection costs more than

gate-level fault injection.

To understand fault mapping from one space to another space, Figure

13 has been redrawn as Figure 20. Comparison of Figure 20 with Figure 13

shows that mapping of gate-level faults to chip-level faults is not a

one-to-one occurrence. In other words, one gate-level fault might map into

several chip-level manifestations. To clarify this point consider an ALU

that can perform six different functions (A, B, C, D, E, F) and assume that

the possible number of gate-level faults is eight (fault number 1, 2,

8). Figure 21 is drawn with respect to the functions performed by the

example ALU. Note that a gate-level fault might map into different mani-

festation classes, depending on the function. Also, for dependent and

irregular fault classes, one gate-level fault might map into different

manifestation classes, even within the same function. In addition, note

that one manifestation class (labeled M0, M1 , M2 , ...) is actually a

no-fault manifestation class (Mo).

A no-fault manifestation class, hence referred to as a no-

manifestation class, can be better understood if the following example is

examined. Refer to the OR gate shown in Figure 22 with inputs A, B, C and

output D. If the OR gate is stuck-at-one when all the inputs are zero, the

stuck-at-one manifests itself at the output D. When the gate is stuck-at-

one and at least one of the inputs is one, the stuck-at-one does not

manifest itself at the output because D should be one. This is a no-

manifestation class.
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Figure 21. Digital Systems Fault Propagation from Gate Level to the
Functional Level for Each Function.
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Figure 22. An OR Gate with Three Inputs.
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Notice that the union of manifestation classes for all the functions

is the universal set of internal faults manifested at the chip (pin)

level.

b. Functional Fault Simulation Versus Manifestation Simulation

Functional fault simulation is useful for two reasons. First, the

final result of gate-level fault manifestations at the functional level is

very small compared with the set of gate-level faults. The result is use-

ful if one is only concerned with manifestations, or if one is concerned

with undesired event handling, different gate-level fault manifestations at

the functional level, and the system or user level.

Second, fewer fault classes are required for fault injection at the

functional level. Unfortunately, this does not reduce the effort involved

for fault injection, and it may even require more effort.

For example, consider the example ALU mentioned earlier and assume

that all faults injected are independent of input and are regular. If the

M, manifestation is simulated (see Table 19), several gate-level faults

are occurring at one time. That is, when function A is executed, faults 1,

3 and 8 are injected; when function C is executed, faults 1 and 8 are

executed, and so forth. If function B is executed and the manifestation

M is still injected, then multiple gate-level faults are inserted to get

manifestation M1 , which does not appear in the row corresponding to func-

tion B. Remember that faults 1 through 8 are single stuck-at faults. The

number of faults to be injected collapses if two columns are exactly the

same; in this example, columns 1 and 8.

Table 19. Pin-Level Fault Manifestation for a Hypothetical ALU.
Fault

Function 1 2 3 4 5 6 7 8
A M1  M4  M1  M4  M0  M2  M3  M1

B M2  M5  M2  M3  M3  M2  M2  M2

C M1  M0  M3 M2  M4 M2 M0  M1
D M3  M2  M4  M1  M 4  M5 M4 M3

E M1 M1  M4 M5  M3  . 5  M0  M1

F M1 M3 M5 M0  M2  M4 M5 M1
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It should be noted that this pertains to the internal chip failures

and not to the external chip failures, such as pin faults. The difference

between external and internal faults is that external faults can be present

at all times. They are independent of inputs and control functions to the

chips, whereas internal fault manifestations at the chip level depend on

inputs and control functions. Simulating fault manifestations for every

function and for every input to the chip is not really an internal fault

simulation, but an external fault simulation. Internal faults manifest

themselves as pin faults at the chip level and not every pin fault is a

result of a single internal fault. Internal fault manifestations are a

subset of pin faults, and there is a high correlation between internal

faults and pin faults.

Part of Table 19 (for function A) is shown in Table 20 for the case in

which some of the fault manifestations depend on the input to the ALU and

are regular faults.

Table 20. Fault Manifestation for Dependent and Regular Faults.
Fault

Function 1 2 3 4 5 6 7 8
A M0  M0  M1  M4  M1  M0  M3  M1

M I  M 4  M 2

When fault 1 exists for some combination of inputs, manifestation M1

occurs, and for the remainder of the inputs, manifestation M0 occurs,

which is a no-manifestation fault class. If MI is injected when function

A is being executed, regardless of inputs to the ALU, in reality, multiple

fault injection is being simulated.

For the case of independent and irregular or dependent and irregular

faults, the number of entries in each of the row and column intersections

of Tables 19 and 20 will increase. For a 4-bit slice of the TI 74181 ALU,

the maximum number of manifestations in one column and row intersection

will be 28 = 256. Since there are 62 gates and two types of faults

(stuck-at-zero and stuck-at-one), there are 62*2 faults. Using the 30

functions used by the PDP-11/70, the fault breakdown in Figure 23 occurs.
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3
Note that about one-fifth of the faults are independent; the rest are

dependent. Assuming that all of the faults are regular, one can see that

there is still a large number of cases to be considered.

The number of faults to be injected are reduced if one is careful of

the way manifestation injection is used. That is, when a manifestation is

injected, one makes sure that only the functions which cause that manifes-

tation to occur are executed, not the others. Refer again to Table 19. If

manifestation M1 is simulated, only functions A, C, D, E and F are allowed

to be executed, not function B. Thus, fault injection is sharply reduced.

This method can be extended to the case in which specific functions and

specific inputs are to be considered.

c. More Detailed ALU Fault Injection

Generally, a chip fault is. caused by pin faults and die faults. Pin

faults are usually independent of the input to the chip; they exist all the

time. The functional fault injection explained in the previous section was

a pin-fault injection. Die faults that contribute to gate-level faults are

dependent upon the input to the chip. However, the only communication with

the outside world is through the pins; gate faults manifest themselves as

pin faults. This manifestation looks like a pattern-sensitive pin fault.

In order to predict correctly gate-level fault manifestations at the

functional and system level, the ALU was described at the gate level in

ISP. In other words, a 4-bit slice of the TI 74181 ALU was described at

the gate level and actually called upon four times to perform a 16-bit

operation. Classical stuck-at-zero and stuck-at-one faults were inserted

in the gates of the four slices, and three ISP variables were used for the

purpose of fault injection. These were 1) SLICE.NUMBER, which states which

slice number is to be faulted (0,1,2,3); 2) GATE.NUMBER, which states which

gate is to be faulted; and 3) STUCK.VALUE, which states at what value the

specific gate should be stuck. After the ISP description, the fault injec-

tion process was begun. Throughout fault injection, only single faults

were injected; multiple faults were avoided. Fault injection is done prior

to program execution and lasts until the end of the simulation.

Three different system-level manifestations occurred as the result of

)the fault injection: 1) the program terminated with a wrong result, 2) the
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program got a PDP-11/70 trap, and 3) the program executed for an indefinite

period of time. Examples of these three manifestations are listed below

according to their frequency of occurrence.

1) The program terminates with the wrong results.

This was the most frequently occurring manifestation. In contrast to

functional-level fault injection in which the program very rarely termi- L

nated at the normal termination point, more than 50 percent of these

program simulations terminated at the normal point. The fact that the

program ended with wrong results needs a careful study and a careful com-

parison with a simulation run without faults. Usually, the execution time V
for the faulty program was the same as that approximately for the correct

program.

Look at the example below excerpted from program 0412.

LOCATION VALUE VALUE LABEL INSTRUCTION
1000 012706 001446 START MOV #STACK,SP
1004 012746 001212 MOV #STR,-(SP)

Assume that gate 19 (see Appendix B) in the second slice is stuck-at-one

(i.e., change from a logical to an arithmetic operation). To fetch an

instruction, the PC is first put into the leg B and a constant (2) is put

into leg A. Leg B (PC) is loaded into VAR by using the ALU function F=B.

Then, using the function A+B, the PC is incremented by two to point to the

next word. The PC value is initially set to 1000. Since gate 19 is

stuck-at-one in the first pass through the ALU, F=B changes to F=(A+WT) PLUS

AB PLUS 1, and since it is the second-bit slice, the operation is

1000(8) = 001000000000(2)

Leg B for this second slice is now 0000. Leg A is two (for the PC incre-

ment), and the result of the second slice is

(A+f) PLUS AB PLUS 1 = (0000+1111) PLUS 0000 plus 1 = 0000.

Consequently, the result is 1000(8), which it should be.
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In the second pass the PC goes through the ALU, and since A PLUS B is

4 used for incrementing PC, no error occurs. (Remember all logical opera-

tions were changed to arithmetic operations, but not vice-versa). The

instruction from location 1000 is fetched and SP (the stack pointer) gets

the value of 1446. To fetch the second instruction, PC (now 1004) passes

through the ALU to be loaded into the VAR. Again, the second set of four

bits will be affected, or

1004 = 001000000100.

At this time the leg B for the second four bits is 0000(2), whereas

the leg A is 0002(8) = 000000000010, and because lC=H, then (A+F) PLUS AB -

(0000+1111)PLUS(O000.0000) = (1111)PLUS(000) = 1111 = 1111 which means VAR

= 001011110100 = 1364. The PC is incremented by two and becomes 1006. At

this point, location 1364 (the data part of the system) is zero. As a

result, the program executes a HALT and stops. An interesting point here

is the fact that if one only looked at the PC, one could not determine what

exactly happened, because PC was incremented the way it should be and at

the termination point was pointing to a valid instruction, which was not a

halt instruction. This is very important and it indicates the depcndency

of fault manifestation, fault detection, and fault analysis on the archi-

tecture implementation.

2) The program gets a PDP-11/70 trap.

This case generally changes to one of the other two manifestations if

the trap vectors are loaded and a trap handler is present. An unused

instruction trap occurs more often than any other type of trap, mainly

because the program attempts to execute the ddta part of a two- or three-

word instruction. Since the analysis of this case requires a detailed

study of the gate-level diagram and a large number of calculations, no

example is presented here. Instead, a part of the simulation (program

0412) is listed below, along with the sequence of events.
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LOCATION VALUE VALUE VALUE LABEL INSTRUCTION
1000 012706 001446 START : MOV #STACK,SP

1004 012746 001212 MOV #STR,(SP)
1010 016746 000174 MOV STRLEN,-(SP)
1014 012746 001242 MOV #ARG,-(SP)
1020 016746 000214 MOV ARGLEN,-(SP)
1024 012746 001206 MOV #LOC,-(SP)
1030 004767 000002 JSR PC,CHRSRC
1034 000000 HALT
1036 022766 000000 000012 CHRSRC: CMP 0,12(SP)
1044 001003 BNE NONZER

Assume that gate 49 of the ALU is stuck-at-one. Program execution is as

follows:

INITIAL VALUE OF PC =1000
PC VAR INSTRUCTION FETCHED SP

1006 1000 012706
1010 1442
1016 1010 016746
1020 1012 1440
1026 1020 016746
1030 1022 1436
1036 1030 004767
1040 1032 1430
1040
1042

1040 1042 000012

Note that the instructions at locations 1004, 1014, and 1024 are skipped

and JSR is not executed correctly. It branches to the middle of CMP and

tries to execute the data part of CMP as an instruction.

3) The program executes indefinitely.

In other words, the program execution literally lasts forever, or it

takes much longer than the time a normal program execution would take.

Refer to the execution of program 0412 below. The execution sequence is

listed with regard to the previous example.
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INITIAL PC = 1000
PC VAR INSTRUCTION FETCHED
1000 1002 001446
1000 1002 001446
1000 1002 001446

As in the case of functional-level fault injection, factors such as envi-

ronment and system state affect the outcome.

d. Results Compared to Functional-Level Fault Injection in

Chapter 4

The following are the comparisons between functional-level fault

injections as discussed in Chapter 4 and gate-level fault injections

presented in the previous chapters.

1) Both types of fault injection have the same classes of fault mani-
festation: 1) The program terminates with a wrong result, 2) the
program gets a PDP-11/70 trap, 3) the program is in an infinite
loop, or 4) the program ends with a right result. The last cate-
gory is not shown for gate-level fault injections, since only fault
injections for the ALU were performed.

2) The frequency of the manifestation classes are different for
functional-level fault injections and gate-level fault injections.
For example, the program with a wrong result at the functional
level very rarely stops at the normal termination point, whereas
for gate-level fault injections, the program stops at the normal
point about 50 percent of the time.

3) Functional-level fault injections are more visible and consistent,
and they affect almost every operation. Gate-level fault injec-
tions are not easily visible, they affect operations in a random
fashion (pattern-sensitive).

4) Functional-level fault injections simulate pin faults very closely,
f whereas gate-level fault injections simulate die faults more

accurately.

5) Fault injections at the functional level require only a functional
level simulator. It is a higher level of abstraction, and the
simulation time is relatively short. Gate-level simulations
require a two-level simulator, and the simulation time increases
considerably and is detailed.
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6. RESULTS, SUMMARY, AND FURTHER WORK

a. Instructions As Fault Detectors

Simulation results indicate that an ALU instruction with a specific

input detects, on the average, about 30 faulted gates stuck-at-one and 22

faulted gates stuck-at-zero. Further simulations show that for two spe-

cific ALU instructions and specific inputs for each of these functions, one

can detect stuck-at-one faults for all but one of the gates. Similarly,

stuck-at-zero faults will be detected for approximately 50 percent of the

gates. The remaining 50 percent appear to be detectable by 2, 3 or, at

most, 4 additional functions with specific inputs.

b. Fault Detection Circuit Considerations

Looking at the 70 percent of the total errors that are single-pin

faults, one logically thinks parity is the error-detection scheme. The

problem is that parity is not preserved under all the arithmetic/logic

operations. To calculate what percentage of the total error is really

caught by parity, the following solution is suggested. Consider a PLA with

14 inputs and 1 output in which six of the inputs are the ALU control

lines, 4 are the A input to the ALU, and 4 are the B input to the ALU. The

output of the PLA will be the parity-generated for the 4-bit output of the

ALU. Using this scheme, there is a possible total of 362,143 errors. Of

these, 311,656 are errors in the 4-bit output result of the ALU, and 50,487

are errors in X, 7 and . The total number of errors detected by the

parity checker is 280,824, which is 78 percent (280824/362143) of total

errors.

The next step is to generate parity for all 7 output bits from the ALU

chip (i.e., 4-bit output result, 1, 7 and T). In this case, the total

number of errors detected is 272,534, or 272534/362143 = 75%. There are

several reasons why detection decreases. First, when parity is generated

for 7 bits instead of 4 bits, the number of states in which an error can

occur increases, but the parity of correct and faulted results are the

same. Assume we are generating even parity. In the 4-bit case errors with

the same parity can occur if the output has one or three bits on. In the

7-bit case the number of states with the same parity will be an output with
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1, 3, 5 and 7 bits on. This increases the chance of missing an error. The

second problem is that adding Y, Y7 and C bits will increase the probability

of missing the errors since -C, X and Y will be in error in pairs most of

the time; and can cause double-bit errors, which are undetectable.

Table 21 shows the result of generating parity for different combina-

tions of output bits and the percentage of errors each can detect.

Table 21. Results of Generating Parity for Different
Combinations of Output Bits.

Total
Bits No. of Errors % Error Detected

FoF1F2F3  280824 78

F0 FI F2 F3t 302583 83

FoFIF2 F3  288435 80

F FF 2 F3 C 7 292342 80

FoFIF2 F3T T V 272534 75

FoF1F2F3  261016 72

F0 F1 F2 F3 7 288259 79

F F2 F31 257285 71

F F2F3 _C 249518 68

FoF1 F2 F3(X or T or C) 282222 77

FoF1 F2 F3 ( r or 277536 76

F0 F1 F2 F3 (Y or C) 283263 78

FoF1 F2F3"C (7 or T) 294213 81

The table shows that the maximum percentage of errors (83) detected occurs

by generating parity for FoF1F2F3C.

If we choose a 14 by 2 PLA; i.e., generate parity for two sets of bits

(i.e., FoFIF 2 F3 C and 'C, 7 or 7), the total percentage increases to 319296/

362145 = 88%. Even more than that, as Table 22 demonstrates.
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Table 22. Total Percentage Increase When Generating Parity
for Two Sets of Bits.

Total
Bits No. of Errors % Error Detected

F0F1F2 F3- & T X Y 319296 88

FO IF2F3C& F3CXV 341390 94

FOF 1F2F3 & F 2 337864 93

With 2 parity bits one is able to detect more than 94 percent of the

errors. The remaining five or six percent can be detected by using the

four, five, or, at most, six special ALU functions mentioned before. This

can be done by periodically executing those special functions after each n

instruction. Notice that the special function tests can be applied to all

the 16 bits, whereas the parity checking is economical only if it is done

for the 4 bits and then time-multiplexed for the other 4-bit slices, or if

it is used in a round robin fashion for each 4-bit slice of ALU.

c. Level of BIT Verification

The availability of multiple implementations of a particular digital

computer architecture makes it important to verify the system being used on

a functional level without any real need for gate-level verification.

RTI's approach to this problem was to use functional fault modeling and

functional-level fault injection to predict accurately system-level mani-

festations of the faults. In addition, functional-level fault injection

was used to represent pin faults if the fault continually exists throughout

the program execution. In order to use functional-level fault injection

* for die (internal) faults, a very elaborite table is required which

explains different manifestation dependencies in the input to the chip.

(See Section 5b)

Fault injection itself is difficult because faults should only be

injected for those inputs which cause the manifestation. Preparing the

table and the way faults should be injected makes the functional-level

fault injection unattractive. There is still a big problem associated with

)the functional-level fault injection related to the new technology. With
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the advent of high-density, integrated circuits, manufacturers tend to put

more BIT on a chip. If the purpose of functional-level fault injection is

for BIT performance verification, one is completely ignoring the BIT on a

chip. To understand this problem better, consider the following. Assume

that C represents the set of chip faults, P represents the set of pin

faults, and I represents the set of die or internal faults. Ignoring the

effect of environmental transient faults and considering only the permanent

faults C = P U I, assume that BIT is able to detect the B subset of the I

set. Figure 24 shows that the only faults that are not detected are

PU(Ifnl). Now, since the functional-level fault injection is inserted at

the functional and chip level, they are ignoring the effect of BIT because

there is no actual fault for BIT to detect, whereas the manifestation of

the fault exists at the functional level. From this discussion one can .
conclude that the BIT verification should be done at the level that the BIT

is implemented. For example, if the BIT is implemented at the gate level,

one should use the gate-level simulation or a two-level simulator (func-

tional level with the capability of describing the modules at the gate

level). If the BIT is implemented at the chip/module level, such as dupli-

cate chip/module, one should use the chip/module-level simulation, etc.

d. Further Work

A great many complex issues pertaining to the use of machine-

descriptive languages such as described in this report remain to be

resolved. For example, the generality of the present case study needs to

be determined. It is recommended that the proposed BIT performance verifi-

cation approach be applied to the 32-bit architecture being evolved for

MCF. As a part of such a study, it is proposed that special instructions

be identified and developed for use in fault detection and isolation in

future MCF embodiments.
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Figure 24. Functional Faults to Be Injected in the
Presence of BIT.
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APPENDIX A

(1) PDP-11/70 ISP Description

POP 11:=
BEGIN

**PDP11 .70.PROCESSOR**
* MACRO TRUE l i

MACRO FALSE '0 )
MACRO ON '1
MACRO OFF t
MACRO SET : 11
MACRO DONT.SET I'01
MACRO IN :=I 1~
MACRO OUT :=t 10O1,

MACRO WORD.SIZE 15:0
MACRO BYTE.SIZE := 7:0

MACRO READ.CNTRL:1 '04iJ
MACRO WRITE.CNTRL:= 'i10
MACRO DATA.LOW: 7:1
MACRO DATA.HIGH:j 15:

MACRO EQLU : EQL(US] , ! UNSIGNED EQUAL OP
MACRO NEQU : NEQ(USJ]
MACRO LSSU : LSS(US]] , UNSIGNED LSS OP
MACRO LEQU :=LEQ(US]]
MACRO GEQU :=GEQ(US]]
MACRO GTRU :=GTR(US]Jl
**MP.STATE**
MACRO DEFINITIONS TO ALLOW EASY CHANGE OF MEMORY CONFIGURATION.
THE 11/70 ALLOWS ADDRESSING UP TO 2M * 2 BYTES A SMALLER
MEMORY IS DECLARED FOR SIMULATOR SPACE EFFICIENCY.

* MACRO MAX.BYTE := 1#1677771. (28K * 2 BYTES)
MB[MAX.BYTE:O](7:0>, !THE ADDRESSING SPACE
MWEMAX.BYTE:O](15:0>(INCREMENT:2]]:=MB[MAX.BYTE:O]<7:0>,
MBIO[#17777777:#1776OOOO]<7:O>. 1 THE I/O PAGE (4K)
MWIO[#17777777:#17760000]<15:O>( INCREMENT:2]]:=MBIO[#17777777:#177600001<7:O>,

* **PC.STATE**
!R/REGISTER[15:OJ<15:O>, ! REGISTER FILE INCLUDING TWO SETS OF GENERAL

1 REGISTERS- RO-R5 (ADDRESS 0000-0101, 1000-1101),
IONE PROGRAM COUNTER (ADDRESS 0111), AND THREE
ISTACK POINTERS (ADDRESS 0110,1110,1111)

THE MAPPING IS AS FOLLOWS:



CMODE (MODE) RS (REG SET) SRCREG OR DESREG INDEX

XX 0 000 0000
XX 0 001 0001
XX 0 010 0010
XX 0 011 0011
XX 0 100 0100
XX 0 101 0101

XX 1 000 1000
XX 1 001 1001

iXX 1 010 1010
!XX 1 011 1011
!XX 1 100 1100
!XX 1 101 1101

i00 X 110 0110
i01 X 110 1110
11 X 110 1111

XX X ill 0111

X MEANS DOES NOT MATTER
MACRO PSW:=j S
PS<15:0>, !:= MBIO[#17777777:#17777776]<7:0>, PSW

CM/CURRENT.MODE<1:0> PS(15:14>, ! CURRENT ADDRESS SPACE
!(KERNEL/SUPERVISOR/USER)

PM/PREVIOUS.MODE<1:0> PS<13:12>, ! PREVIOUS ADDRESS SPACE
P/PRIORITY<2:0> PS(7:5>, 1 CURRENT PROCESS PRIORITY
RS/REGISTER.SET<> PS<11>,
T/TRACE<> PS(4>,
CC/CONDITION.CODES<3:0> PS<3:0>,

N/NEGATIVE(> CC<3>,
Z/ZERO<> CC<2>,
V/OVERFLOW<> CC<1>,
C/CARRY<> CC<O>,

SLR./STACK. LIMIT.REG<15:0> MBI6[#17777775:#17777774]<7 :0>,
SL/STACK.LIMIT.FIELD<7:O> := SLR.<15:8>,

PIR/PROGRAM.INTERRUPT.REQUEST<15:0> :=MBIO[#17777773:#17777712]<7:0>,
PIA<2:0> := PIR<3:1>,

INT.REQ.VEC[1 :7]<15:0>, !EXTERNAL INTERRUPT REQUEST VECTORS
ERRREG/CPU.ERROR.REGISTER<15:0> MBIOE#17777767:#17177766)(7:0>,

ILLHLT/ILLEGAL. HALT<>: ERRREG<7>,
ODDADD/ODD.ADDRESS<>: ERRREG<6>,
NOMEM/NON.EXISTENT.MEMORY<> : ERRREG<5>,
TIMEOUT/UNIBUS.TIME.OUT<> ERRREG<4>,
YELLOW/YELLOW.ZONE.STACK.LIMIT<>:= ERRREG<3>,
RED/RED.ZONE.STACK.LIMIT(>: ERRREG<2>,
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MACRO KERNEL (CM EQL '00),
MACRO SUPER (CM EQL '01),
MACRO USER : (CM EQL '11),
TRAP VECTOR ADDRESSES: THE ASSOCIATED ERROR CONDITIONS CAUSE EXECUTION
1TO SWITCH TO THE PC AND PS SORED IN THE TWO WORDS AT THE TRAP ADDRESS.

MACRO CPU.ERRORS TRAP.VECTOR.ROM[O]
MACRO ILL.INSTR TRAP.VECTOR.ROM[l)
MACRO RES.INSTR TRAP.VECTOR.ROME1]
MACRO BPT.TRAP :=TRAP.VECTOR.ROM[2J
MACRO IOT.TRAP TRAP.VECTOR.ROM[3)
MACRO POWER.FAIL :=TRAP.VECTOR.ROM[4)
MACRO EMT.TRAP TRAP.VECTOR-ROM[5)
MACRO TRAP.TRAP TRAP.VECTOR.ROM[6)
MACRO PARITY TRAP.VECTOR.ROM[7)
MACRO PIR.TRAP TRAP.VECTOR.ROM[8]
MACRO FLT.TRAP/FLOATING.POI T :=ITRAP.VECTOR'.ROM[9JI
MACRO MMt.TRAP/MEMORY.MANAGEMENT :=ITRAP.VECTOR.ROM[10)
**MEMORY.MANAGEMENT**

PAGE ADDRESS REGISTERS USED FOR ADDRESS MAPPING.
USEPAR/USER. PAGE.ADDRESS.REGISTER[15:O)<15: 0>

:=MBIOE#17777677:#17777640]<7 :0>,
KERPAR/KERNEL.PAGE.ADDRESS. REGISTER[15:0]Y15:O>

=MBIO[#17772377 :#1 7772340]<7 :0>,
SUPPAR/SUPER. PAGE.ADDRESS.REGISTER[15:O)<15:O>

:=MBIO[#17772277: #17772240]<7 :0>,
! PAGE DESCRIPTION REGISTERS CONTAIN CONTROL INFORMATION ABOUT THE
! ADDRESS MAPPING.
USEPOR/USER. PAGE. DESCRIPTION.REGISTER[15: O]<15:0>

:=MBIO[#17777637:#17777600]<7:0>,
KERPDR/KERNEL.PAGE.DESCRIPTION.REGISTER[15:0)<15:0>

:=MBIO[#17772337:#17772300]<7: 0>,
SUPPDR/SUPER.PAGE.DESCRIPTION.REGISTERE15:0)<15:0>

:=MBIO[#17772237:#17772200]<7:O>,
VALID BITS IN THE PAGE ADDRESS REGISTER.

MACRO PAF/PAGE.ADDRESS.FIELD :=15:1
MACRO ACF/ACCESS.CONTROL.FIELD :=2:1
MACRO ED/EXPANSION.DIRECTION :

MACRO WBIT/WRITTEN.BIT I:
MACRO PLF/PAGE. LENGTH. FIELD :=14:1
MACRO AIB/ACCESS.INFO.BITS :=7:4
MACRO ABIT/MET.ACF.CONDITIONS : 7
WRO/STATUS.REGISTER.0<15:0> :=MgIO[#17777573:#17777572]<7:O>,

ANR/ABORT. NONRESIDENT. FLAG<> : MMRO<15>,
APLE/ABORT.PAGE.LENGTH.FLAG<> :=MMRO<14>,
ARO/ABORT.READ.ONLY. FLAG<> : MMRO<13>,
TMM/TRAP.MEMORY.MANAGEMENT<> : MMRO<12>,
EMMT/ENABLE.MM.TRAPSC> MMRO<9>,
MDM/MAINTENANCE.DEST.MODE<> : MMRO<8>,
C IC/INSTRUCTION. COMPLETE<>0 MMRO<7>,
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AM/ABORT.MODE<1 :0> -MMRO(6-5>,

PAS/PAGE.ADDRESS.SPACE. I.D<> MMtRO<4>,
APN/ABORT.PAGE. NUMBER<2:0> :MMRO<3: 1>,
EMM/ENABLE.MEMORY.MANAGEMENTO> : MI4RO<O>,

MMR1/STATUS.REGISTER.1<15:O> MBIOE#17777575:#17777574]<7:O>,
ACHG2/AMOUNT.CHANGED.2<4:O> :=MMR1<15:11>,
REGNO2/REGISTER.NUMBER.2<2:O> MMR1<1O:8>,
ACHGl/Af4OUNT.CHANGED.1<4:O> :=MR1<7:3>,
REGNO1/REGISTER.NUMBER.1<2:O> :=MMR1(2:O>,

MMR2/STATUS.REGISTER.2(15:O> : MBIO[#17777577:#I7777576J<7:O>,
MMR3/STATUS.REGISTER.3<15:O> :3MBIO[#17772517:#17772516)<7:O>,

EUM/ENABLE.UNIBUS.MAP<> MMR3(5>,
E22M/ENABLE.22.BIT.MAPPING0> : MMR3<4>,
EKDSvNABLE.KERNEL.D.SPACE0> : MMR3<2>,
ESDS/ENABLE. SUPER.D. SPACE(> MMR3<1>,
EUDS/ENABLE.USER.D.SPACE<> : MMR3<O>,

**IMPLEMENTATION-DECLARATIONS**
A.REG<WORD.SIZE>, 1REGISTER FIXED TO A-BUS, HOLDS OPERANDS
B.REG<WORD.SIZE>, 1 REGISTER FIXED TO B.BUS, HOLDS ALU OPN

PLACE.HOLDER<16:O>, ! HOLDS (REF]] DATA FROM DST.ADDR, LENGTH MISMATCH

A.LATCII<WORD.SIZE>, ! REGISTER LATCH FOR THE ALU WHICH HOLDS A OPN

B.LATCI-RWORD.SIZE>, 1REGISTER LATCH THE ALU WHICH HOLDS B OPN

ZEROS<63:0>, IZERO FIELD

PWRF.SET<>, I POWER FAIL TRAP SET
FINT.SET<>, ! FLOATING POINT TRAP SET
BUS.REQUEST.VECTOR[7:4)<15:O>, ! BUS REQUEST INTERRUPT VECTORS

! ADDRESS OF PC, PS INTERRUPT PAIR.

VAR/VIRTUAL.ADDRESS.REG(16:O>,

DR. IN/DATA. REGISTER. IN(WORD.SIZE>,
DR.OUT/DATA.REGISTER.OUT<WORD. SIZE>,-

CONSTANT.ROMED:5J<WORD.SIZE>, !CONSTANTS 0,1,2,4,#31 AND ADDR. OF SLR

TRAP.VECTOR.ROMEO:15J<WORD.SIZE>, 1 TRAP ADDRESSES
TRAP.VECTOR<WORD.SIZE>, !OUTPUT REGISTER OF TRAP.VECTOR.ROM

**INSTRUCT ION FORMAT**
I /INSTRUCTION<15: 0>,
BOP/BINARY.OPERATION<2:0> I<14:12>,
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S/SOURCE.FIELD<5:O> I<11:6>, 1SOURCE ADDRESS INFORMATION
SRCMOD/SOIJRCE.MODE<2:O> S<5:3>,
SRCREG/SOURCE.REG<2:O> S<2:0>,

D/DESTINATION.FIELD<5:0> 1<5:0>, !DESTINATION ADDRESS INFO.
DESMOD/DESTINATION.MODE<2: 0> D<5:3>,
DESREG/DESTINATION.REG<2:0> D<2:0>,

INSTRUCTION DECODING FIELDS.
UOP/UNARY.OPERATION(2:O> I= <8:6>,
OFFSET<7:0> :=10:0,
ROP/REGISTER.OPERATION<1:O> I= <7:6>,
JETOP/JSR.EMULATOR.TRAP.OP0> : 1<15>,
BYOP/BYTE.OPERATION<> I=<15>,
ETOP/EMULATOR.TRAP.OP<> I=<8>,
CONCOP/CONDITION.CODE.OP<1O:O> I= 115:5>,
CPUOP/CPU.CONTROL.OP<2:0> I= <2:0>,
CONTOP/CPU.CONTROL.CLASS.OP<2:O>:= I<5:3>,
BROP/BRANCH.OP.CODE<2:O> I= <10:8>,
INTOP/EXTENDED.INTEGER.OP<2:O> I= <11:9>,
TYPEOP/CLASS.OP.CODE.BITS<1:O> I< 110:9>,
RESOP/RESERVE.OP<> := <11>,
CCOP/CONDITION.CODE.SECOND.OP<> I< 14>,

**DEFINITION.MACROS**

MACRO PSW. := #777777:#7777761, ADDRESS OF THE PSW
MACRO PC.IN := R(#f7, 0OMACRO PC.OUT: zl R(#7, ,1) ~
MACRO CONSTO := CONSTANT.ROM O)
MACRO CONSTi CONSTANT.ROM I1

MACR COST2 CONSTANT. ROME3]1
MACRO CONST2 CONSTANT.ROM[2)

MACRO CONST31 : CONSTANT.ROM[4)
MACRO SLR.ADDR := CONSTANT.ROM[5) 1 THE ADDRESS OF SLR IN I/0 PAGE
MACRO SYSREG : #777774:#777740 ,!SYSTEM REGISTERS
MACRO GPREG : #777700:#777717
MACRO USERPR : #777600:#777677 ,IUSER PAGES
MACRO MMR2. : #777576:#777577
MACRO MMR1. : #777574:#777575
MACRO MMRO. : #777572:#777573
MACRO MMR3. : #772516:#772517
MACRO KERPR : #772300:#772377 ! KERNAL PAGES
MACRO SUPR := #772200:#772277 ! SUPERVISOR PAGES

ITHESE MACROS ARE THE FUNCTIONS THAT THE ALU (74-181) WILL PERFORM,
ACTUALLY ONLY A SUBSET OF ALL THE FUNCTIONS. THE NUMBERS ARE THE ACTUAL
INPUTS NEEDED BY THE ALU TO DECODE TO THE PROPER FUNCTION.

MACRO TRNSF.,A:l #74 ,MACRO TRNSF.B: #54 ,MACRO CLR.:t #14
MACRO SUB.:j #3 t6,?ARO ADD.: #41 MACRO INC.: #01 MACRO DEC.: I#71MACRO BIT.: 1 #54 ,MACRO BIC:1 #341 ,MACRO BIS.:j #7q ,MACRO COM.: #0
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THESE MACROS ARE JUST ARBITRARILY CHOSEN NUMBERS, CHOSEN SO THAT THEY
DON'T USE ANY OF THE CURRENT ALU FUNCTION VALUES OR ANY OF THE OTHER
ALU FUNCTION VALUES THAT WE MAY WANT TO USE LATER ON.

MACRO MOV.:= #1 ,MACRO CMP.: #1 ,MACRO NEG.: #1 ,MACRO ADC.:- #1A
MACRO SBC.:= #2 MACRO TEST.:i #24 ,MACRO SWAB..: #24 ,MACRO ROR..:= #2
MACRO ROL.:= #2 ,MACRO ASR.: #2 ,MACRO ASL.: #2 ,MACRO MFP.:= #21 ,
MACRO MTP.: #0 ,MACRO SXT.:l #0 ,MACRO XOR.: #3

**IMPLEMENTATION.MACROS**

MACRO IR.D:= I ZEROS@D@'O , ! SHIFT D FIELD IN INSTR.REG LEFT FOR MARK INSTR
MACRO IR.CC:=I ZEROS@I<3:0> , ! EXTRACTS CONDIT.CODES TO BE SET/CLEARED
MACRO IR.CPUOP:=l 'OOOOOO@CPUOP@'OOOOOj , ! PRIORITY BITS FOR SPL
MACRO IR.OFFSET:=I OFFSET@'O I, ! BRANCH OFFSET, WITH SHIFT

MACRO SPL.PSW:= IPS<15:8>@'OOO@PS<4:O , !CHANGE THE PRIORITY LEVELS
MACRO RTI.RTT.PSW:= IPS<15:5>@'0000,

MACRO POP.STACK:=I GET.OP(DR.IN,#2,#6,) I , ! POPS THE STACK, POINTED TO BY SP
MACRO PUSH( DATA ):= I PUT.OP(DATA,#4,#6,O) *I, PUSH DATA ONTO STACK

MACRO SRC.OPN(REG,BYTE.OPN):= IGET.OP(REG,SRCMOD,SRCREG,BYTE.OPN)
MACRO DST.OPN(REG,BYTE.OPN):= GET.OP(REG,DESMOD,DESREG,BYTE.OPN),
MACRO DST.ADDR(REG):= I GET.OP.ADDRESS(REG,DESMOD,DESREG,2),
MACRO R.IN(INDX):=| R(INDX,'O)
MACRO R.OUT(INDX):l R(INDX, 1)

DEFINE FIELDS FOR SETTING APPROPRIATE CONDITION CODE BITS

MACRO NZVC:= 11111 1 SET/CLEAR ALL CC BITS
MACRO NZV := 1110 , SET/CLEAR N,ZV, BITS DON'T MODIFY C
MACRO NZ := '1100 , SET/CLEAR N AND Z, DON'T MODIFY V OR C
MACRO ZV := '0110 !SET/CLEAR Z AND V, DON'T MODIFY N OR C
MACRO NVC := 1011 [i
MACRO NZC := 1101
MACRO CV := 0011
MACRO VS '0010
MACRO NS '1000MACRO ZS := 0100 ,

I MACRO USED TO CHECK THE VALIDITY OF THE INFORMATION PUT ON THE BUSSES
I THESE MACROS WILL BE EXPANDED IN THE FUTURE

MACRO DATA.ERROR(SOURCE):-j FALSE 1, JUST A TEMPORARY MACRO
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* MACRO SET.ERROR.REGISTERS:= INO.OP() , 1 JUST A TEMPORARY

* MACRO CHECK.BUS.AND.HANDLE.ERRORS:=
SI IF DATA.ERROR( SOURCE ) =>

BEGIN
SET.ERROR.REGISTERS NEXT
DECODE ICYCLE =>

BEGIN
'O/NOT.ICYCLE : RESTART SERVICE, ! WERE IN SERVICE WHEN ERROR OCCURRED
'1/ICYCLE.ACT : BEGIN ! YOU WERE IN THE ICYCLE

ICYCLE OFF NEXT ! TURN OFF CYCLE SWITCH
LEAVE TCYCLE ! GO TO SERVICE AND DEAL WITH ERROR

END
ENDEND|

**INITILIZAI6N.OF.ROMS**

INITIALIZE.ROMS:=
BEGIN
TRAP.VECTOR.ROM[O] #004; TRAP.VECTOR.ROM[1] #010; TRAP.VECTOR.ROM[2] #14;
TRAP.VECTOR.ROM[3?-#20; TRAP.VECTOR.ROM[4]j24; TRAP.VECTOR.ROM[5] #TO;
TRAP.VECTOR.ROM[67-#34; TRAP.VECTOR.ROM[7-#114; TRAP.VECTOR.ROM[8_#240;
TRAP.VECTOR.ROM[9]F#244; TRAP.VECTOR.ROM[1U0_#250;

* CONSTANT.ROM[O] #0; CONSTANT.ROM[1] #1; CONSTANT.ROM[2J #2;
CONSTANT.ROM[3]?#4; CONSTANT.ROM[41-#16037; CONSTANT.R1[5]#1177774

END,

**DATA. PATHS**
THIS SECTION DEFINES THE DATA PATHS AND HOW THEY WORK.

I WORK IN THE SENSETHAT EVENTUALLY THESE PATHS WILL BE DEFINED
! WITH SOME FORM OF A CHECKER TO CHECK THEMSELVES.
FOR NOW THE PATHS ARE MACROS, IN THIS WAY WE CAN REDUCE THE

I CODE GENERATED BY SIMPLE SUBSTITUTION.

MACRO A.BUS(SRC):=I SRC
MACRO B.BUS (SRC) := SRC ,
MACRO C.BUS(SRC): SRC

**MORE.ROUTINES**

I THIS IS A COLLECTION OF SUNDRY ROUTINES

I CC.SET SETS THE CONDITION CODE BITS IN THE PSW. TWO INPUTS A FOUR
BIT FIELD EACH BIT REPRESENTS ONE CONDITION CODE BIT, IF THE CORRESPONDING

! BIT IS SET THEN THE CONDITION CODE BIT IS SET OR CLEARED DEPENDING ON
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1THE STATE OR THE C.BUS. THE SECOND INPUT SAYS WHETHER THIS IS A BYTE
OR WORD ORIENTED INSTRUCTION. THIS IS USED BY THE CONDITION CODE
GENERATOR FOR GENERATING THE NEW CC'S.AND THE THIRD INPU IS THE INSTRUCTION

CC.SET(BIT.SET<3:O>,BYTE<>,INSTR<5:O>):
BEGIN
**LOCAL .MACROS**
MACRO N.BIT: BIT.SET<3)I
MACRO Z.BIT:= BIT.SET<2>f
MACRO V.BIT:= BIT.SET<1)j
MACRO C.BIT:= BIT.SET<O>

MAIN ENTRY.POINT:=
BEGIN

IF N.BIT => 1
DECODE INSTR =>
BEGIN

[MOV. ,BIT. ,BIC. ,BIS. .ADD. ,SUB. ,COM. ,TEST.,
CMP.,INC.,DEC.,NEG..ADC.,SBC.,ROL.,ASL.,ASR.]:=

DECODE BYTE =>
BEGIN
0:= N=ALU(15>,
1:= NALU<7>
END,

MFP.: DECODE BYTE =>
BEGIN
0:= N=ALU(15>,
1:= N=DR.IN<15>
END,

ROR.: N=B.LATCH<O>, !PREVIOUS C
SWAB.: N=ALU<7>,
MTP.:= N=DR.IN<15>t

END NEXT

IF Z.BIT =>
DECODE INSTR =>
BEGIN

[MOV.,CMP.,BIT.,BIC.,BIS.,ADD.,SUB.,COM.,INC.,DEC.,NEG.,ADC.,SBC.,
TEST.,ROR.,ROL.,SXT. ,CLR.,ASL.,ASR.]:=

DECODE BYTE =>
BEGIN
O:= Z=ALU<15:O> EQLU 0,
1:- Z-ALU(7:O> EQLU 0
END,

MFP.: DECODE BYTE z>
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BEGIN
0:= Z=ALU<15:O> EQLU 0,
1:z Z=DR.IN(15:O> EQLU 0
END,

SWAB.:= Z=ALU<7:O> EQLU 0,
tMTP.:= Z= DR.IN(15:O> EQLU 0

END NEXT

IF C.BIT 0>
DECODE INSTR 0>
BEGIN

* E~CMP. ,ADD. ,SUB. ,ADC. ,SBC. ,ASL. ,ASR. ,ROR. ,ROL.): =
C= ALU<16>,

COM.:= C1l,
NEG.:= C= NOT Z

END NEXT

* IF M.IT 0>
DECODE INSTR 0>
BEGIN

[R0R.,R0L.,ASR.,ASL.]:=
V=N XOR C,

DEC.:= DECODE BYTE 0>
BEGIN
0:= V=A.LATCH EQLU #100000,
1:= VA.LATCH<BYTE.SIZE> EQLU #200
END,

* NEG.:= DECODE BYTE 0>
BEGIN
0:= V=B.LATCH EQLU #100000,
1:= V8B.LATCH<BYTE.SIZE> EQLU #200
END,

CMP.:=
DECODE BYTE 0>
BEGIN
O:= Vr=(ALU<15> EQV B.LATCH<15>) AND(A.LATCH(15> XOR B.LATCH(15>),
1:= V.(ALU<7> EQV B.LATCH<7>) AND (A.LATCH<7> XOR B.LATCH<7>)
END,

ADD.:- Vx(A.LATCH<15> EQV B.LATCH<15>) AND (A.LATCH<15> XOR ALU<15>),

SUB.:- V-(ALU<15> EQV B.LATCH(15>) AND ( A.LATCH<15> XOR B.LATCH(15>),

* IINC.:- DECODE BYTE 0>
BEGIN
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0:= V=ALU<15:O> EQLU #100000,
1:= V=ALU<7:0> EQLU #200 .

ADC.:= DECODE BYTE =>
BEGI N
0:= V=ALU<15> AND NOT A.LATCH<15>,
1:= VALU(7> AND NOT A.LATCH(7>
END,

SBC.:= DECODE BYTE =>
BEGIN
0:= V=A.LATCH(15> AND NOT ALU<15>,
1:= VA.LATCH<7> AND NOT ALU(7>
END

END

END
END,

CC.CLR(BIT.CLR<3:O>):=
BEGIN U
**LOCAL.MACROS**
MACRO N.BIT:z BIT.CLR<3
MACRO Z.BIT:z BIT.CLR(2)
MACRO V.BIT:c BIT.CLR(1
MACRO C.BIT:z BIT.CLR<O0t

MAIN ENTRY.POINTS:=
BEGIN
IF N.BIT => N=0; IF Z.BI 0 Z=i
IF Z.BIT => C=O;

IF V.BIT => V=O
END i

GET.INOEX(CM<1:O>,REG<2:0>)<3:O>Il
BEGIN

DECODE REG 0>

BEGIN

[0:5):- GET.INDEXRS@REG,

7:- GET.INDEX_'0111,

6 :DECODE CM 0>

BEGIN
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'00:= GET.INDEX '0110,
'01:= GET.INDEX'111O,
' 10:= STOPO, T ILLEGAL CM
11:= GET.INOEX_ '1111
E ND

END

END,

BEGIN
**LOCAL.DEFN**
REGl [150) <1 5:0

FAULT.SETTING<11:O>,
INCL<> :=FAULT.SETTING<11>, IINCL
MULT.SEL> :=FAULT.SETTING<1O>,
NO.SEL<> :=FAULT. SETTING<9>,
AND.OR<> :=FAULT.SETTING<8>, ! AND1l, 0R0O
R.S/SELECTED.REG<7:O> : =FAULT.SETTING<7:0>,

MACRO WRT: ' Ol
MACRO RD: 'if

MAIN REG.ENTRY:=
BEGIN

DECODE R.W 0>
BEGIN

WRT:= DECODE FAULT.SETTING<1O:9> =>
BEGIN

00:= REG[INDX]=R,
'01:= IF (R.S SRO INDX)(O> EQLU '0 0 REGEINDX]=R,
10:= BEGIN

IF R.S(O> 0 REG[O)=R;
IF R.S<1> 0 REG[1k=R;
IF R.S(2> 0 REGE2)=R;
IF R.S<3> => REG[3)=R;
IF R.S<4> => REG[4]=R;
IF R.S<5> => RtEG[5)=R;
IF R.S<6> 0 REGE6)=R;
IF R.S(7> 0> REG[7)=R NEXT
IF INCL 0> REGEINDX)=R

END,
'11:= STOP()

END,

RD:- DECODE FAULT.SETTING(1O:9> 0
BEGIN

'OO:- R-REG[INDXJ,
'01:- IF (R.S SRO INDX)<O> EQLU '0 0> RREG[INDX),
'10:- DECODE AND.OR 0)
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BEGIN
'O/OR:= BEGIN

R<='O NEXT
IF R.S<O> > R=R OR REG[O];
IF R.S<1> => R=R OR REG[1],
IF R.S<2> > R=R OR REG[2];
IF R.S<3> > R=R OR REG[3];2
IF R.S<4> > R=R OR REG[4];
IF R.S<5> > R=R OR REG[5];
IF R.S<6> > R=R OR REG[6];
IF R.S<7> > R=R OR REG[7];
IF INCL => R=R OR REG[INDX]

END,
'1/AND: =BEGIN

R<='I NEXT
IF R.S<O> > R=R AND REG[O];
IF R.S<I> > R=R AND REG[I];
IF R.S<2> > R=R AND REG[2J;
IF R.S<3> > R=R AND REG[3];
IF R.S<4> > R=R AND REG[4];
IF R.S<5> > R=R AND REG[5];
IF R.S<6> > R=R AND REG[6];
IF R.S<7> > R=R AND REG[7];
IF INCL => R=R AND REG[INDX)

END

END,
'11:= STOP

END
END

END
END$

I GET.OP.ADDRESS COMPUTES MEMORY OPERAND ADDRESSES. IT CALLS
I READ TO COMPUTE INDEX AND DEFERRED ADDRESSES. ROUTINE SETMMI IS CALLED
IF A REGISTER IS INCR/DECR DURING ADDRESS CALCULATIONS TO SET MMRI.

I CHECK.STACK() IS ALSO CALLED IF THE REGISTER THAT IS INCR/DECR WAS THE SP
I GET.OP.ADDRESS IS MOSTLY CALLED BY GET.OP AND PUT.OP ALTHOUGH SOME
1 INSTRUCTIONS USE IT DIRECTLY.
I A 17 BIT VIRTUAL ADDRESS IS COMPUTED WITH THE HIGH ORDER BIT BEING A
I SET TO ZERO FOR D SPACE AND A ONE FOR I SPACE.
I IF RESULT.REG IS NOT 17 BITS WIDE LIKE THE VAR THEN THE HIGH ORDER BIT
! IS LOST. ALSO THE RESULT.REG MUST BE A DIRECT SINK OF THE C.BUS
THE PARAMETERS ARE THE SAME AS GET.OP.

GET.OP.ADDRESS(RESULT.REG<16:0>(REF]],AtIODE<2:0>,REG<2:0>,INCR<4:0>)
BEGIN M
**LOCAL. MACRO**

MACRO FORCE.WORD.INCR I INCR=INCR +(US]] INCR<O>,
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MACRO WHAT.SPACE REG EQL #71 1 SPACE IF REG=7
* MACRO D.SPACE ID SPACE
*MACRO I.SPACE '1, 1 SPACE

* MAIN ENTRY
BEGIN
GET.INDEX(CM,REG) NEXT

DECODE ANODE=>
BEGIN

0:= (TRAP.VECTOR=ILL.INSTR NEXT
INSTR.TRAP())O REGISTERS HAVE NO ADRESE

1:= BEGIN
A.LATCH A.BUS(R.OUT(GET. INDEX)) NEXT
RESULT.ffEGD.SPACE@C.BUS( ALU(TRNSF.A,O))
END,

2:= BEGIN !AIJTOINCREMENT
DECODE REG 0>

BEGIN
6:= FORCE.WORD.INCR, ISP EVEN INCREMENTS
7:= INCR=2 -i PC
OTHERWISE:= NO.OP()

END NEXT
A.LATCHA.BUS(CONSTANT.ROM[lNCRJ); B.LATCH_8.BUS(R.OUT(GET. INDEX))

NEXT
RESULT.REG C.BUS( ALU(TRNSF.B,O) );RESULT.REG<16>_WHAT.SPACE NEXT
R.IN(GET.ITffDEX) C.BUS( ALU(ADD.,O) )NEXT
SETMM1(INCR,REGT ! SET MMR1 BY AMOUNT ADDED TO REG

END$

3:= BEGIN IAUTOINCREMENT DEFFERRED
A.LATCHA.BUS(CONST2);B.LATCHB.BUS(R.OUT(GET.INDEX))

NEXT
VAR IC.BUS( ALU(TRNSF.B,O) ) ;VAR(16> WHAT.SPACE NEXT
R.Iff(GET.INDEX)_ C.BUS( ALU(ADD.,O) )-NEXT
SETMM1(2,REG); DR.INREAD(CM,O) NEXT
RESULT.REGC.BUS( DR.IN)
END,

4:z BEGIN IAUTODECREMENT
DECODE REG 0>

BEGIN
6:- FORCE.WORD. INCR,
7:= UNDEFINEDO,
OTHERWISE:- NO.OP()

END NEXT
B.LATCH-B.BUS(CONSTANT.ROMEINCR);A.LATCIIA.BUS(R.OUT(GET. INDEX))
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NEXT
RESULT.REG R.IN(GET.INDEX)_C.BUS( ALU(SUB.,O) )NEXT
SETMM1(-IN-CR,REG) NEXT
IF REG EQL #6 => CHECK.STACK()

END,

5:= BEGIN !AUTODECREMENT DEFFERRED
NEXT

R.IN(GET. INDEX)_VAR D.SPACE@C.BUS( ALU(SUB.,O) )
NEXT

DR.IN READ(CM,O) NEXT
SETMM'T(-2,REG) NEXT
IF REG EQL #6 => CHECK.STACK() NEXT
RESULT.REGD.SPACE@C.BUS( DR.IN)
END,

6:= BEGIN !INDEX

A.LATCHA.BUS(CONST2);B.LATCHB.BUS(PC.OUT)
NEXT

VAR I.SPACE@C.BUS( ALU(TRNSF.B,O) )NEXT
PC.TN C.BUS( ALU(ADD.,O) )
SETMMT(2,7) NEXT
DR.IN READ(CM,O)NEXT
RESULT.REG C.BUS( DR.IN )NEXT
A.LATCHA.ThJS(RESULT.REG);B.LATCHB.BUS(R.OUT(GET.INDEX))

NEXT
RESULT.REGD.SPACE@C.BUS( ALU(ADD.,O))
END,

7:= BEGIN !INDEX DEFFERRED
A.LATCHA.BUS(CONST2);B.LATCHB.BUS(PC.OUT)

N EXT
VAR I.SPACE@C.BUS( ALU(TRNSF.B,O) )NEXT
DR.TN READ(CM,O); PC.IN C.BUS( ALU(ADD.,O) )NEXT
SEThMT(2,7); RESULT.REtf-C.BUS( DR.IN ) NEXT
A.LATCHA.BUS(RESULT.REG);B.LATCHB.BUS(R.OUT(GET.INDEX))

N EXT
VAR D.SPACE@C.BUS( ALU(ADD.,O) )NEXT
DR.TN READ(CM,O)NEXT
RESULT.REGD.SPACE@C.BUS( DR.IN)

END
END

END
END,
ACCESS MEMORY OPERANDS. PARAMETERS ARE:

SINK REGISTER FOR THE C.BUS (REF]]
ADDRESS MODE (0:7)
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REGISTER SPECIFIER (0:7)
OPERAND SIZE (BYTE OR WORD)

ITHE BULK OF THE WORK IS DONE BY GET.OP.ADDRESS
GET.OP (RESULT.REG<15:O>(REF]] ,AMODE<2:O>,REG<2:O>,BYTE<>)

BEGIN
DECODE ANODE 0>

BEGIN
0 (A.LATCH IA.BUS(R.OUT(GET.INDEX(CM,REG))) NEXT

RESULT.REGC.BUS(ALU( TRNSF.A,O)) )
OTHERWISE :

BEGIN
QET.OP.ADDRESS(VAR,AMODEREG,2-(US)) BYTE) NEXT

DR.IN READ(CM,BYTE) NEXT
DECODE EYTE =>
BEGIN
'O:= RESULT.REGC.BUS(DR.IN),
u1:= RESULT.REGZEROS<BYTE.SIZE>@C.BUS(DR.IN)<BYTE.SIZE>
END
END

END
END,

!PUT.OP STORES REGISTER OR MEMORY OPERANDS. IT INVOKES WRITE TO
!STORE MEMORY OPERANDS. PARAMETERS ARE:

ADDRESS MODE (0:7)
* SOURCE REGISTER FOR THE C.BUS

REGISTER SPECIFIER (0:7)
* OPERAND SIZE (BYTE OR WORD)

ITHE BULK OF rHE WORK IS DONE BY GET.OP.ADDRESS
PUT.OP(OUTPUT.REG<15:O>,AMODE(2:0>,REG<2:0>,BYTE<>)

BEGIN
DECODE ANODE =>

BEGIN
0 := BEGIN

R.OUT(GET.INDEX(CM,REG)) NEXT ! KLUDGE FOR BYTE OP
DECODE BYTE =>

BEGIN
R.IN(GET.INDEX) = C.BUS( OUTPUT.REG )
R.IN(GET.INDEX)(BYTE.SIZE> =C.BUS( OUTPUT.REG)
END

END,
OTHERWISE

BEGIN
DR.OIJT C.BUS( OUTPUT.REG )NEXT
GET.OP:.ADDRESS(VAR,AMODE,REG,2-(US))BYTE) NEXT
WRITE (CM,BYTE)
END

END
END,

REP.OP REPLACES REGISTER OR MEMORY OPERANDS. IT INVOKES WRITE TO
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I STORE MEMORY OPERANDS. PARAMETERS ARE:
SOURCE REGISTER FOR C.BUS
ADDRESS MODE (0:7)

i REGISTER SPECIFIER (0:7)
OPERAND SIZE (BYTE OR WORD)

IT DIFFERS FROM PUT.OP IN THAT IT DOES NOT COMPUTE THE ADDRESS (AND
ITS SIDE EFFECTS). IT USES THE CARRIER OF GET.OP.ADDRESS DIRECTLY

REP.OP(OUTPUT.REG<15:O>,AMODE<2:O>,REG<2:O>,BYTE<>)
BEGIN
DECODE AMODE =>

BEGIN
0 := BEGIN

R.OUT(GET.INDEX(CM,REG)) NEXT I KLUDGE FOR BYTE OP
DECODE BYTE =>

BEGIN
R.IN(GET.INDEX) = C.BUS( OUTPUT.REG ),
R.IN(GET.INDEX)<BYTE.SIZE> = C.BUS( OUTPUT.REG )
END

END,
OTHERWISE

BEGIN
DR.OUT C.BUS( OUTPUT.REG ) NEXT
WRITE(TM,BYTE)
END

END
END,

**SERVICE.FACILITIES**
CHECK.STACK>:

BEGIN
CHECK.STACK 0 NEXT
IF KERNEL =>

DECODE R.OUT(6)<15:5> TST SL@#7 =>
BEGIN

BEGIN !RED VIOLATION
TRAP.RED = RED = 1;
A.LATCH A.BUS(CONST4) NEXT
R.IN(6)-C.BUS( ALU(TRNSF.A,O) ) NEXT
RESTART-O'IN

END,
CHECK.STACK = TRAP.YELLOW = YELLOW = 1, !YELLOW VIOLATION
NO.OP()

END

END,
ODDERR/ODD.ADDRESS.ERROR

BEGIN
TRAP.CPU.ERR = ODDADD = I NEXT
RESTART RUN
END,

THIS FUNCTION SETS MEMORY MANAGEMENT REGISTER 1 WHEN AN AUTO
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I
! INCREMENT OR DECREMENT OF A REGISTER IS DONE. THE INCR/DECR
! OF THE REGISTER IS PASSED IN CHANGE, AND THE REGISTER

I NUMBER IS PASSED IN BY REGNUM.
SETMM1(CHANGE<4:O>,REGNUM<2:0>) :=

BEGIN
IF MMRO<15:12> EQL 0 =>

BEGIN
DECODE MMR1<7:0> EQL 0 =>

BEGIN
0 (MMR1<15:11> = CHANGE; MMRI<1O:8> = REGNUM),
1 := (MMR1<7:3> = CHANGE; MMR1<2:0> = REGNUM)
END

END
END,

SETMM2(VECTOR<15:0>)
! THIS FUNCTION SETS MEMORY MANAGEMENT REGISTER 2 IF IT IS NOT
! LOCKED UP BY A PREVIOUS MEMORY MANAGEMENT ERROR CONDITION.
! IT IS CALLED FROM SERVICE.

BEGIN
IF MMRO<15:12> EQL 0 => MMR2 = VECTOR; CIC = 0
END,

PRIORITY(REQVEC<7:1>)<2:0> ! IRETURN BIT NUMBER OF HIGHEST PRIORITY
BEGIN
DECODE REQVEC =>

BEGIN
'1?????? .= PRIORITY = 7,
'01????? .= PRIORITY = 6,
1001???? := PRIORITY = 5,
'0001??? := PRIORITY = 4,
'00001?? := PRIORITY = 3,
'000001? PRIORITY = 2,
'0000001 := PRIORITY = 1,
OTHERWISE := PRIORITY = 0
END

END,
!VIRT.PHY PERFORMS THE MAPPING OF VIRTUAL ADDRESSES INTO PHYSICAL ADDRESSES
!AND THE SEGREGATION OF PHYSICAL ADDRESSES INTO MEMORY AND I/O BUS ADDRESSES.
!INPUTS ARE:

MODE - KERNEL, SUPERVISOR,USER TO BE USED IN MAPPING
ADDRESS- A 17 BIT VIRTUAL ADDRESS. THE TOP BIT IS 1 FOR I SPACE

AND 0 FOR D SPACE
I ! WRITE- A FLAG SET TO 1 IF THE ACCESS IS A WRITE
ITHE VALUE OF VIRT.PHY IS A 22 BIT PHYSICAL ADDRESS IN ALL CASES. ALL
!ADDRESSES GEQ #17000000 ARE I/O BUS ACCESSES TO THE BUS ADDRESS CONTAINED

j !IN THE LEAST SIGNIFICANT 18 BITS.
VIRT.PHY(MODE<1:0>,ADDRESS<16:O>,WRITE<>)<21:0> :-

BEGIN(USJJ
!THE DEFINITIONS BELOW ALLOW THE PAGE DESCRIPTOR REGISTERS
!AND THE PAGE ADDRESS REGISTERS TO BE REFERENCED AS A SINGLE

131



!REGISTER FILE DESPITE THE FACT THAT THE USER MODE REGISTERS
!ARE ASSIGNED TO A SEPARATE AREA OF THE I/O ADDRESS SPACE
** LOCAL.DEFINITIONS **
PDR[#2617:0](15:O> MBI0[#17777637 :#17772200]<7:O>,
PAR[#2617:0]<15:0> MBIO[#17777677:#17772240](7:O>,
MACRO EDS/ENABLE.DATA.SPACE :

I (MMR3(2:O> SLD MODE)<21,
MACRO KERNEL.BASE #4c1 , BASE ADDRESSES
MACRO SUPERV.BASE
MACRO USER.BASE 1 #260c1,
PR. INDX<1O:O>,

ABORT(ERROR(2:O>,PAGE<3:O>) !MEMORY MANAGEMENT ABORT FUNCTION
BEGIN
IF MMRO(15:13> EQL 0 =>

BEGIN
AM =CM;
APN =PAGE;
PAS =PAGE<3>;
MMRO(15:13> =MMRO<15:13> OR ERROR
END NEXT

TRAP.MM = 1;
RESTART RUN !ABORT THE INSTRUCTION
END,

MAIN ENTRY
BEGIN
DECODE EMM => !CHECK MAPPING ENABLED

BEGIN
VIRT.PHY (=(TC]) (ADDRESS(15:13> EQL #7)@ADDRESS(15:O>,
BEGIN !MAP THE ADDRESS

DECODE EDS => !CHECK D SPACE ENABLED
BEGIN

PR.INDX = ADDRESS<15:13>, !I SPACE ONLY
PR.INDX = (NOT ADDRESS<16>)@ADDRESS<15:13> HI AND D SPACE

END NEXT
DECODE MODE =>

BEGIN
PR.INDX = PR.INDX + KERNEL.BASE,
PR.INDX = PR.INDX + SUPERV.BASE,
ABORT(#6,PR. INDX), !RESERVED
PR.INDX = PR.INDX + USER.BASE

END NEXT
!CHECK PAGE LENGTH

IF (PDR[PR.INDX)<PLF> TST ADDRESS(12:6>) EQL
PDR[PR.INDX)<ED>@'O => ABORT(#2,PR.INDX) NEXT-

!CHECK ACCESS TYPE
DECODE WRITE =>
BEGIN

DECODE PDR[PR.INDX](ACF> 0> !READ OPERATION

BEGIN
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IF

[0,3,7) ABORT(#4,PR.INDX),
[1,4] (TRAP.MM = TMM = EMMT; PDR[PR.INDX]<ABIT> =1),

OTHERWISE NO.OP()
END,

DECODE PDR[PR.INDX)<ACF> 0> !WRITE OPERATION
BEGIN

[0,3,7) := ABORT(#4,PR.INDX)o
[1,2] ABORT(#1,PR.INDX),
[4,5) : (TRAP.MM = TMM = EMMT; PDR[PR.INDX)<ABIT:WBIT> '11),

OTHERWISE PDR[PR.INDX)<WBIT> = 1
END

END NEXT
*!PERFORM THE MAPPING

VIRT.PHY = (PAR[PR.INDX) + ADDRESS<12:6>)@ADDRESS<5:O> NEXT
!DEAL WITH 18 BIT MAPPING

IF NOT E22M 0> VIRT.PHY<21:18> <(TC)) VIRT.PHY(17:13> EQL(US)) #37
END

END
END

END,
READ(MODE<1:O>,BYTE.ACCESS<>)<WORD.SIZE>

BEGIN
IF VAR<O> AND NOT BYTE.ACCESS 0> ODDERR() NEXT
VIRT.PHY(MODE,VAR,O) NEXT
DECODE VIRT.PHY<21:18> EQLU #17 0

BEGIN
O0: DECODE BYTE.ACCESS 0

BEGIN
READ=MW[VIRT.PHY),
READ<=MB[VIRT. PHY)
END,

1 DECODE VIRT.PHY<17:O> =>
BEGIN

PSW.:= DECODE BYTE.ACCESS>
BEGIN
READ=PS,
READ<=PS<BYTE. SIZE>
END,

GPREG DECODE BYTE.ACCESS 0>
BEGIN
READ=R.OUT(VIRT.PHY(3 :0>),
READ<=R.OUT(VIRT.PHY<3:0>)<BYTE.SIZE>
END,

OTHERWISE:= DECODE BYTE.ACCESS 0
BEGIN
READ - MWIO[VIRT.PHYJ,
READ<- MBIO[VIRT.PHYJ

END END
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END
END,

WRITE(MODE<1 :O>,BYTE.ACCESS0>)-
BEGIN
IF VAR<O> AND NOT BYTE.ACCESS 0> ODDERR() NEXT
VIRT.PHY(MODE,VAR,l) NEXT
DECODE VIRT.PHY<21:18> EQLU #17 0

BEGIN
0 DECODE BYTE.ACCESS 0>

BEGIN
MWEVIRT. PHY)=DR.OUT,
MBEVIRT.PHIY=DR.OUT
END,

1 BEGIN
DECODE VIRT.PIIY<17:0> 0 IM.AGE

BEGIN I
PSW.:= DECODE BYTE.ACCESS=>

BEGIN
PS=DR.OUT,
PS<BYTE.SIZE>=DR.OUT<BYTE. SIZE>
ENDS

GPREG:= DECODE BYTE.ACCESS 0
BEGIN
R. IN(VIRT.PHY(3:O>)=DR.OUT,
R.IN(VIRT.PHY(3:0>)<BYTE.SIZE>=DR.OUT
END, j

EUSERPR ,KERPR,SUPRJ: BEGIN
DECODE BYTE.ACCESS 0>
BEGIN

MWIO[VIRT.PHYJ=DR.OUT,
MBIO[VIRT.PHY)=DR.OUT

END NEXT
VIRT.PHY<O>=VIRT.PHY<O> AND

NOT BYTE-ACCESS;
VIRT.PHY<5>=O NEXT
MBIO[VIRT. PHY)<AIB>=O I
END,

#777772:=BEGIN ! PIR
DECODE BYTE.ACCESS 0>
BEGIN
MWIO[VIRT.PHYJ=DR.OUT9
MBIO[VIRT.PHY)=DR.OUT

END NEXT
PIR<7: 5>uPIR<3: 1>-PRIORITY(PIR(15: 9>)
END,

OTHERWISE:- DECODE BYTE.ACCESS 0 >
BEGIN
MWIO[VIRT. PHYJ=DR.OUT,
MBIO[VIRT.PHYJ=DR.OUT
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ENDI
a END

END
END

END,
BRANCH(CONDITION(>)

BEGIN
IF CONDITION =>

BEGIN
A.LATCH<=A.BUS(IR.OFFSET); B.LATCHB.BUS(PC.OUT) NEXT
ALU( ADD.,O ) NEXT
PC.INC.BUS( ALU)

END
END

IINTERRUPT SERVICE ROUTINES
BUS.RESET :=(NO.OPo)

SETMM2 IS A FLAG TO SET THE MM2 REG
I MtR2 IS SET IF NOT LOCKED UP BY A PREVIOUS MEMORY
MANAGEMENT ERROR CONDITION.

INTVEC(CHK<>,SETMM2<>) !TRAP VECTOR SETUP
BEGIN
**INTERRUPT. RTNS**
OLD.CM<1:O>:= ( OLD.CM=CM )
NEW.PM:= (PM=OLD.CM )
MAIN INTRPT:=

BEGIN
!SAVE OLD PS AND PC IN TEMPORARIES
B.LATCH B.BUS( PC.OUT )NEXT
A.REG CBUS( ALU( TRNSF.B,O)) NEXT IA.REG=OLD.PC
B.LATHB.BUS( PS ); OLD.CM() NEXT
B.REGC.BUS( ALU( TRNSF.B,O ) ) NEXT ! B.REG=OLD.PSW

GET NEW.PC, NEW.PSW POINTED AT BY TRAP.VECTOR
B.LATCH B.BUS(TRAP.VECTOR) NEXT
VAR C.BIJS( ALU(TRNSF.BO0) ) NEXT
DR.TN READ(O,O) NEXT

PC. IN-C.BUS(DR. IN);
B.LATCH B. BUS (TRAP.VECTOR); A.LATCH A. BUS(CONST2) NEXT
VAR C.BS( ALU(ADD.,O) )NEXT ! ADOR. OF NEW.PSW
DR.TN READ(O,O) NEXT !PSW
PSC.RUS( DR.IN ) NEXT NEW.PM() NEXT

PUSH OLD.PSW,OLD.PC ON THE STACK
rB.LATCH -B.BUS( B.REG ) NEXT
j DR.OUTC.BUS( ALU(TRNSF.B,O) ) NEXT
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A.LATCH A.BUS(R.OUT(GET.INDEX(CM,6))); B.LATCHB.BUS(CONST2) NEXT
R.IN(GET.INDEX) -VAR -C.BUS( ALU(SUB.,O) ) NEXTL
WRITE(CMO) NEXT ! PUSH(OLD.PSW)

B.LATCHB.BUS( CONST2 ); A.LATCHA.BUS( R.OUT(GET.INDEX) ) NEXT
R.IN(GET.INDEX) VAR C.BUS( ALU(s~uB.,o)) NEXT ! SP-2

A-LATCHA.BUTA.RIEG) NEXT
DR.OUT C.BUS( ALU(TRNSF.A,O) ) NEXT
WRITE(CM,O) NEXT ! PUSH( OLD.PC )
IF CHK 0> CHECK.STACK() NEXT ISEE IF WE EXCEEDED THE

STACK LIMIT WITH THESE 2 PUSHESV

IF SETMM2 0>
BEGIN
IF 14R0<15:12> EQLU 0 => MMR2=TRAP.VECTOR;

CIC=O
END NEXT

IF CHK AND CHECK.STACK 0> RESTART RUN ! HANDLE OVERFLOW IMMEDIATELY

END
END,
INSTR.TRAP() RESERVED AND ILLEGAL

BEGIN IOPCODE SERVICE -

INTVEC(1,DONT.SET) NEXT
ICYCLE OFF NEXT
LEAVE TCYCLE
ENDS

TRAP.RED<> SERVICE<14>,
TRAP.CPU.ERR<>0 SERVICE(13>,
TRAP.PARITY<> SERVICE<12>,
TRAP.MM<> SERVICE<11>, 1
TRAP.YELLOW<> SERVICE<10>,
TRAP.PF<> SERVICE<9>,
rRAP.FP<>: SERVICE<8>,
TRAP.TRACE<>0 SERVICE<7>,
INT.REQ[1:7J<0 : SERVICE<6:O>,
SERVICE<14:O> :*IINTERRUPT FLAGS AND SERVICE ROUTINE

BEGIN
DECODE (SERVICE Oft PIR(15:9>) AND ("FFFF SLO P) 0> !MASK REQUESTS BY PROCESSOR PRIC

BEGIN
10 :NO.OPO,

* 1??????????????:- BEGIN !RED STACK VIOLATION
TRAP.RED - 0 NEXT
TRAP.VECTOR CPU.ERRORS NEXTE
INTVEC(o,DONT.SET)
ENO,

'01?????????????:- BEGIN !CPU ERROR

TRAP. CPIJ.ERR _0 NEXT
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TRAP.VECTOR CPU.ERRORS NEXT
INTVEC(1,DOWJ.SET)

END,
'OO1????????????:= BEGIN !PARITY ERROR

TRAP.PARITY 0 NEXT
TRAP. VECTOR PAR ITY NEXT
INTVEC(1,SET)

END,
'OOO1???????????:= BEGIN !MEMORY MANAGEMENT

TRAP.MM 0 NEXT
TRAP.VECTOR MM.TRAP NEXT
INTVEC(1,DOT.SET)

END,
'0001??????????:- BEGIN !YELLOW STACK VIOLATION

TRAP.YELLOW-0 NEXT
TRAP.VECTORCPU. ERRORS NEXT
INTVEC (O,DONT. SET)

END,
OOOOO01?????????:= BEGIN !POWER FAIL

TRAP.PF 0 NEXT
TRAP.VE~cTOR POWER.FAIL NEXT
INTVEC(1,DONT.SET)

END,
'0000001????????:- BEGIN !FLOATING POINT

TRAP.FP 0 NEXT
rRAP.VETTOR FLT.TRAP NEXT
INTVEC(1,DO-RT.SET)

END,
'OOOOOOO1???????:= BEGIN !TRACE TRAP

TRAP.TRACE 0 NEXT
TRAP.VECTOR BPT.TRAP NEXT
INTVEC(1 ,DONqT.SET)
END,

; BEGINNING OF MASKABLE INTERRUPTS

OTHERWISE:= BEGIN IMASKABLE INTERRUPTS
DECODE PRIORITY(SERVICE<6:O>) GTRU PIR(3:1> =>

BEGIN
BEGIN !PROGRAM INTERRUPT REQUEST

TRAP.VECTOR PIR.TRAP NEXT

END, INTVEC(1 ,SET)
BEGIN !EXTERNAL INTERRUPT

INT.REQ[PRIORITY) 0 NEXT
TRAP.VECTOR INT.R!EQ.VECEPRIORITYJ NEXT
INTVEC(1,SET)

END
END
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END
END

END,

THIS ROUTINE DEFINES THE ALU AND ITS FUNCTIONS:
TWO PARAMETERS: FUNCT= THE FUNCTION TO BE PERFORMED,

BYOP= IS THE OPERATION BYTE/WORD.
THE ALU LATCHS A.LATCH AND B.LATCH ARE DEFINED OUTSIDE OF THE ALU
DESCRIPTION. THE ALU IS IN TWO PARTS, THE FIRST PART IS DEFINED FROM

I THE 74181 SERIES OF ALUS AND DOES THE ARITHMETIC AND LOGIC OPERATIONS
WE WILL ONLY USE THE SEGMENT OF THESE OPERATIONS THAT THE PDP11/70

1 USES. THE OTHER PART OF THE ALU IS THE SHIFT/ROTATE/SWAP WHICH WILL
BE IMPLEMENTED IN SOME OTHER MANNER.
THE ARITHMETIC OPERATIONS ARE DEFINED FOR BOTH BYTE AND WORD SIZE
ARITHMETIC OPERATIONS. THIS CAN BE DONE IN A 4-BIT SLICED ALU BY
DEACTIVATING THE TWO HIGH ORDER SLICES AND RECONNECTING THE CARRY
BIT. I DIDN'T BOTHER DOING THIS TO THE OTHER OPERATIONS SINCE ONLY
THE ARITHMETIC OPERATIONS ARE CONCERNED WITH THE SIGN BIT AND WHERE
IT IS. ON THE OTHER OPERATIONS THE HIGH BYTE WILL BE ELEMINATED WHEN
THE RESULT IS STORED, THOUGH CONCEPTUALLY ALL THE OPERATIONS SHOULD

I BE DONE ON ONLY THE BYTE.

ALU(FUNCT<5:O>,BYOP<>)<16:0>:= I BIT 16 IS FOR THE CARRY BIT
BEGIN
**FAULT.DEFN**
FAULT<1:0>, ! SPECIAL FAULT TYPE
MASK<15:O>, I CONSTANT MASK

MAIN ALU.ENTRY:=
BEGIN (TC]]

ALU=ZEROS<16:0> NEXT I CLEAN UP DETAIL
DECODE FUNCT >

BEGIN
(#1,#74,#76,#77j:= ALU=A.LATCH,
#52,#53]:= ALU=B.LATCH,
#14,#16,#17] := ALU=#O,

#30 DECODE BYOP >
BEGIN
'0:= ALU=A.LATCH-B.LATCH,
'1:= ALU<16>@ALU<BYTE.SIZE>=A.LATCH<BYTE.SIZE>-B.LATCH<BYTE.SIZE>
END,

#45 DECODE BYOP >
BEGIN
'O:= ALU=A.LATCH+B.LATCH,
'1:= ALU<16>@ALU<BYTE.SIZE>=A.LATCH<BYTE.SIZE>+B.LATCH<BYTE.SIZE>
END,

#00 DECODE BYOP >
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BEGI N
'O:= ALU=A.LATCH + #1,
'1:= ALU<16>@ALU<BYTE.SIZE>=A.LATCH(BYTE.SlZE>+ #1<BYTE.SIZE>

END,
#75 DECODE BYOP 0>

BEGIN
'0:= ALU=A.LATCH-#O1,
'1:= ALU<16>@ALU<BYTE.SIZE>=A.LATCH<BYTE.SIZE>-#1<BYTE.SIZE>
ENDS

[#54,#56,#571 :=ALU=A.LATCH AND B.LATCH,
E#72,#73) : ALU=A.LATCH OR B.LATCH,
[#34,#36,#37):=ALU= NOT A.LATCH AND B.LATCH,
#02 :uALU=NOT A. LATCH,
E#32,#33] : ALU=A.LATCH XOR B.LATCH, ! EXCLUSIVE OR

SWAB. ALU=A.LATCH<7:0>@A.LATCH<15:8>,
ROR. DECODE BYOP 0>

BEGIN
O:= ALU=(B.LATCH<O>@A.LATCH) SRR 1,
'1:= ALU<16>@ALU<7:O>=(B.LATCH<O>@A.LATCH(7:0>) SRR 1
END,

ROL. DECODE BYOP 0>
BEGIN
'0: = ALU=A. LATCH@B. LATCH<O>,
1: = ALU(16>@ALU<7:0>=A.LATCH<7:0>@B.LATCH<O>

END,
ASR. :=DECODE BYOP 0>

BEGIN
'O:=(ALU<15:O><=A.LATCH(15:1> ; ALU<16>-A.LATCH<O>),

* '1:=(ALU<7:O> <=A.LATCH<7:1> ; ALU<16> =A.LATCH<0>)
END,

k ASL. DECODE BYOP =>
BEGIN
'0:= ALU=A.LATCH@'O,
'1:=( ALU<7:O>= A.LATCH<6:O>@'O; ALU<16>=A.LATCH<7>)
END,

THESE FOLLOWING INSTRUCTIONS SHOULD NEVER BE USED BY THE CPU BUT
IF THERE IS AN ERROR IN THE FUNCTION SOME OF THESE CAN BE EXECUTED

#15 ALU<'111, ! MINUS 1
#31 :=ALUn A.LATCH - B.LATCH -1,
#35 ALUn (A.LATCH AND NOT B.LATCH) - 1,

*#44 :ALU= (A.LATCH + B.LATCH) +1,
[#46:#47] : ALU- NOT ( A.LATCH XOR B.LATCH),
#55 :ALU- ( A.LATCH AND B.LATCH) - 1,
#71 :ALU- (A.LATCH OR NOT B.LATCH) + A.LATCH,
#70 :ALU= (A.LATCH OR NOT B.LATCH) + 1,
#51 :=ALUr (A.LATCH OR NOT B.LATCH) + (A.LATCH AND B.LATCH),

139



#50 ALU= (A.LATCH OR NOT B.LATCH) + (A.LATCH AND B.LATCH) + 1

END NEXT
DECODE FAULT =>
BEGIN

0:= NO.OP(,
1:= ALU<15:O>=ALU<15:0> XOR MASK,
2:= ALU<15:O>=ALU<15:0> + MASK,
3:= ALU<15:O>=ALU<15:0>- MASK

END

END
END,
**INSTRUCTION. EXECUTION**
! INITIALIZATION SEQUENCE

MAIN START

BEGIN

INITIALIZE.ROMS( ;

SL=O; I CLEAR STACK LIMIT
PIR=O; ! CLEAR PROGRAM INTERRUPT REG
MMRO=MMR3=O; ! TURN MEMORY MANAGEMENT OFF
ERRREG=O; ! CLEAR ALL CPU ERRRORS
ZEROS=O;
RUN()
END,

MAIN RUN CYCLE OF THE ISP

RUN/INSTRUCTION. INTERPRETATION =
BEGIN
SERVICE0 NEXT
ICYCLE() NEXT
RESTART RUN
END,

ICYCLE<> :-
BEGIN
ICYCLE ON; ! ICYCLE SWITCH INDICATOR
TRAP.1TRACE - T;
B.LATCH B.BUS(PC.OUT); A.LATCH A.BUS(CONST2) NEXT
VAR C.7US( ALU( TRNSF.B,O ) );-VAR<16>,_' NEXT

IF MMRO<15:12> EQL 0 *>
( MMR2 - VAR<15:0>; MMR1"CIC=O ) NEXT
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DR.IN READ(CM,O); PC.IN C.BUS( ALU( ADD.,O ) ) NEXT
I C.BUS( DR.IN ) NEXT
EXEC() NEXT
ICYCLEOFF
END,

EXEC/INSTRUCTION.EXECUTION :=
BEGIN
DECODE BOP =>

BEGIN
#0 RESEROPO, RESERVED OP CODE
#1 MOV(), ! MOVE INSTRUCTION
#2 CMP(, 1 COMPARE INSTRUCTION
#3 BITO, ! BIT TEST INSTRUCTION
#4 BICO, 1 BIT CLEAR INSTRUCTION
#5 BIS), I BIT SET INSTRUCTION
#6 : BEGIN ! ADD AND SUBTRACT

DECODE BYOP =>
BEGIN
'0 ADDO,
'1 SUB()
END

END,
#7 BEGIN ! EIS AND FP

TRAP.VECTOR=RES.INSTR NEXT
INSTR.TRAP()

END
END NEXT
IF MMRO<15:12> EQL 0 =>

DECODE I =>
BEGIN I BPT, lOT, EMT, AND TRP DO NOT SET CIC
[3,4,#104000:#104777: NO.OP(,
OTHERWISE CIC = 1
END

END,
RESEROP/RESERVE.OP.CODE :

BEGIN
DECODE RESOP =>

BEGIN
0 := BRANOPO,
1 CLASSOP()
END

END,
BRANOP/BRANCH.OP.CODES =

BEGIN
DECODE (JETOP @ BROP)<3:0> >

BEGIN
#00 := REGOPO, 1 REGISTER INSTRUCTION
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#01 BRANCH('1), BRANCH (BR OP #00004)
#02 BNE BRANCH(NOT Z), ! BRANCH IF NOT EQUAL
#03 BEQ BRANCH(Z), I BRANCH IF EQUAL
#04 BGE BRANCH(N EQV V), ! BRANCH IF GTR OR EQUAL
#05 BLT BRANCH(N XOR V), ! BRANCH IF LESS THAN
#06 :=BGT :=BRANCH(NOT(Z OR (N XOR V))),! BRANCH IF GREATER THAN
#07 BLE BRANCH(Z OR (N XOR V)),! BRANCH IF LESS OR EQUAL
#10 BPL BRANCH(NOT N), ! BRANCH IF PLUS
#11 BMI BRANCH(N), I BRANCH IF MINUS
#12 BHI BRANCH(NOT (C OR Z)), I BRANCH IF HIGH
#13 BLOS BRANCH(C OR Z), I BRANCH IF LOWER OR SAME
#14 BVC BRANCH(NOT V), I BRANCH IF OVERFLOW CLEAR
#15 BVS BRANCH(V), 1 BRANCH IF OVERFLOW SET
#16 BCC BRANCH(NOT C), I BRANCH IF CARRY CLEAR
#17 BCS BRANCH(C) I BRANCH IF CARRY SET
END

END,
REGOP/REGISTER.OPERATIONS

BEGIN
DECODE ROP =>

BEGIN
0 BEGIN

DECODE CONTOP =>
BEGIN

O:= BEGIN
DECODE CPUOP =>

BEGIN
#0 HALTO, HALT
#1 := WAIT.(), I WAIT FOR INTERRUPT
#2 RTI.RTT(), RETURN FROM INTERRUPT
#3 : BPT(), I BREAKPOINT TRAP
#4 := IOT(, I INPUT/OUTPUT TRAP
#5 RESET(), I RESET EXTERNAL BUS
#6 RTI.RTT(), I RETURN FROM TRAP
#7 (TRAP.VECTOR=RES.INSTR NEXT

INSTR.TRAP()) ! UNUSED OP
END

END,
OTHERWISE:= BEGIN

TRAP.VECTOR=RES.INSTR NEXT
INSTR.TRAP()

END
END

END,
1 := JMP(), I JUMP
2 BEGIN

DECODE CONTOP =>
BEGIN
#0 RTS(), ! RETURN FROM SUBROUTINE
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#1:#2 :=(TRAP.VECTOR=RES.INSTR NEXT
INSTR.TRAP() ),

#3 := SPLO, ! SET PRIORITY LEVEL
#4:#7 := CCO() ! CONDITION CODE OPS
END

END,
3 SWAB() ! SWAP BYTES
END

END,
CLASSOP/SECONDARY.DECODE.INTO.CLASSES

BEGIN
DECODE INTOP =>

BEGIN
#4:= SUBEMTO, ! SUBROUTINE/EMULATOR TRAP
#5:= SINGLOP(), ! SINGLE OPERAND CLASS
#6:= SHIFTOP(), ! SHIFT OPERATORS
#7:= (TRAP.VECTOR=RES.INSTR NEXT INSTR.TRAPO),

#0:#3:= STOP() ! FUCK UP, THESE SHOULD HAVE BEEN DONE BEFORE
END

END,

SUBEMT/SUBROUTINE.EMULATOR.TRAP.AND.TRAP.INSTRUCTIONS
BEGIN
DECODE JETOP =>

BEGIN
0 JSRO, ! JUMP TO SUBROUTINE
1 BEGIN

DECODE I<8> => ! EMT OR TRAP
BEGIN
0 EMTO,
1 TRAP()
END

END
END

END,
SINGLOP/SINGLE.OPERAND.INSTRUCTIONS

BEGIN
DECODE UOP =>

BEGIN
#0 CLRO, I CLEAR/BYTE
#1 := COMO), ! COMPLEMENT/BYTE
#2 INC(, ! INCREMENT/BYTE
#3 DECO, ! DECREMENT/BYTE
#4 NEG ! NEGATE/BYTE
#5 ADC ! ADD CARRY/BYTE
#6 SBCO, 1 SUBTRACT CARRY/BYTE
#7 : TEST() ! TEST/BYTE
END

END,
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SHIFTOP/SHIFT. INSTRUCTIONS
BEGIN
DECODE UOP =>

BEGIN
#0 ROR ), 1 ROTATE RIGHT/BYTE
#1 ROL, ! ROTATE LEFT/BYTE
#2 ASRO, 1 ARITHMETIC SHIFT RIGHT/BYTE
#3 ASLO, 1 ARITHMETIC SHIFT LEFT/BYTE
#4 MARK(), ! MARK
#5 MFPo, I MOVE FROM PREVIOUS INSTRUCTION
#6 MTPo, ! MOVE TO PREVIOUS INSTRUCTION
#7 SXT() I SIGN EXTEND
END

END,
MOV : MOVE AND MOVE BYTE

! MOV OPCODE #01, MOVB OP CODE #11
BEGIN
SRC.OPN(A.REGBYOP) NEXT A.LATCHA.BUS(A.REG) NEXT
ALU( TRNSF.A,BYOP ) NEXT
CC.SET(NZ,BYOP,MOV.); CC.CLR(VS) NEXT

DECODE DESMOD =>
BEGIN
'O:= ( IF BYOP EQLU '1 => ALU<15:8><=ALU<7> NEXT

PUT.OP(ALU,DESMOD,DESREG,'O) ),
OTHERWISE:= PUT.OP(ALU,DESMOD,DESREG,BYOP)
END

END,
CMP : COMPARE AND COMPARE BYTE

B CMP OP CODE #02,! CMPB OP CODE #12
BEGIN

SRC.OPN(A.REG,BYOP) NEXT DST.OPN(B.REG,BYOP) NEXT
A.LATCH A.BUS(A.REG); B.LATCH B.BUS(B.REG) NEXT
ALU(SUF.,BYOP) NEXT ! A-B
CC.SET(NZVC,BYOP,CMP.)
END,

BIT : BIT TEST AND BIT TEST BYTE
BIT OP CODE #03, BITB OP CODE #13

BEGIN
SRC.OPN(A.REG,BYOP) NEXT DST.OPN(B.REG,BYOP) NEXT
A.LATCH A.BUS(A.REG); B.LATCHB.BUS(B.REG) NEXT
ALU(BIT.,BYOP) NEXT
CC.SET(NZ,BYOP,BIT.); CC.CLR(VS)
END,

BIC : BIT CLEAR AND BIT CLEAR BYTE
I BIC OP CODE #04, BICB OP CODE #14

BEGIN
SRC.OPN(A.REG,BYOP) NEXT DST.OPN(B.REGBYOP) NEXT
A.LATCH A.BUS(A.REG); B.LATCHB.BUS(B.REG) NEXT
ALU( BIC.,BYOP ) NEXT
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CC.SET(NZ,BYOP,BIC.);CC.CLR(VS) NEXTI REP.OP(ALU,DESMOD,DESREG,BYOP)
END,

BIS !BIT SET AND BIT SET BYTE
! 815 OP CODE #05, BISB OP CODE #15

BEGIN
SRC.OPN(A.REG,BYOP) NEXT DST.OPN(B.REG,BYOP) NEXT
A.LATCHA.BUS(A.REG); B.LATCHB.BUS(B.REG) NEXT
ALU( BIS.,BYOP ) NEXT
CC.SET(NZ,BYOP,BIS. );CC.CLR(VS) NEXT
REP. OP(ALU,DESMOD,DESREG,BYOP)
END,

ADD !ADD, ADD OP CODE #06
BEGIN
SRC.OPN(A.REG,O) NEXT DST.OPN(B.REG,O) NEXT
A.LATCHA.BUS(A.REG); B.LATCHB.BUS(B.REG) NEXT
ALU( ADDf.,O ) NEXT
REP.OP(ALU,DESMOD,DESREG,O); CC.SET(NZVC,O,ADD.)
END,

SUB 1 SUBTRACT, SUB OP CODE # 16, B.LATCH-A.LATCH
BEGIN
SRC.OPN(B.REG,O) NEXT DST.OPN(A.REG,O) NEXT
A.LATrCHA.BUS(A.REG); B.LATCHB.BUS(B.REG) NEXT
ALU( SUB.,O ) NEXT
REP.OP(ALU,DESt4OD,DESREG,O); CC.SET(NZVC,O,SUB.)
END,

ISUBROUTINE, EMULATOR TRAP, AND TRAP INSTRUCTION EXECUTION
JSR ! JUMP TO SUBROUTINE, JMP OP CODE #004

BEGIN
DST.ADDR(PLACE.HOLDER) NEXT B.REGPLACE.HOLDER NEXT

A.LATCH A.BUS(R.OUT(GET.INDEX(CM,SRCREG))) NEXT !SP_ PUSH(REG)
ALU(TRNSF.A,O) NEXT
PUSH(ALU) NEXT

B.LATCH B.BUS(PC.OUT) NEXT ! REGPC
ALU(TRN3SF.B,O) NEXT
R.IN(GET.INDEX(CM,SRCREG))=C.BUS(ALU) NEXT

BMATCHB.BUS(B.REG) NEXT ! PCB.REG
ALU(TRNSF.B,O) NEXT
PC.INC.BUS( ALU)

END,
EMT IEMULATOR TRAP OP CODES, EMT OP CODE #104000:#104377

BEGIN
TRAP. VECTOR=EMT. TRAP NEXT
INTVEC(1 ,DONT.SET)
END,
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TRAP ! TRAP OP CODES, TRAP OP CODE #104400:#104777
BEGIN
TRAP.VECTOR=TRAP.TRAP NEXT
INTVEC(1,DONT.SET)
END,

SINGLE OPERAND INSTRUCTION EXECUTION
CLR : CLEAR AND CLEAR BYTE,

CLR OP CODE #0050, CLRB OP CODE #1050
BEGIN
ALU(CLR.,BYOP) NEXT
CC.SET(ZS,BYOP,CLR.);CC.CLR(NVC) NEXT
PUT.OP(ALU,DESMOD,DESREG,BYOP)
END,

COM ! COMPLEMENT AND COMPLEMENT BYTE,
COM OP CODE #0051, COMB OP CODE #1051

BEGIN
DST.OPN(A.REG,BYOP) NEXT A.LATCHA.BUS(A.REG) NEXT
ALU( COM.,BYOP ) NEXT
CC.SET(NZC,BYOP,COM.); CC.CLR(VS) NEXT
REP.OP(ALU,DESMOD,DESREG,BYOP)
END,

INC : INCREMENT AND INCREMENT BYTE,
INC OP CODE #0052, INCB OP CODE #1052

BEGIN
DST.OPN(A.REG,BYOP) NEXT A.LATCHA.BUS(A.REG) NEXT
ALU( INC.,BYOP ) NEXT
CC.SET(NZV,BYOP,INC.) NEXT
REP.OP(ALU,DESMOD,DESREG,BYOP)
END,

DEC : DECREMENT AND DECREMENT BYTE,
! DEC OP CODE #0053, DECB OP CODE #1053

BEGIN
DST.OPN(A.REG,BYOP) NEXT
A.LATCH A.BUS(A.REG) NEXT
ALU( DE C.,BYOP ) NEXT
REP.OP(ALU,DESMOD,DESREG,BYOP); CC.SET(NZV,BYOP,DEC.)

END,
NEG I NEGATE AND NEGATE BYTE

NEG OP CODE #0054, NEGB OP CODE #1054
BEGIN
DST.OPN(B.REGBYOP) NEXT
A.LATCH A.BUS(CONSTO); B.LATCHB.BUS(B.REG) NEXT
ALU( SU-B.,BYOP ) NEXT
CC.SET(NZVC,BYOP,NEG.) NEXT
REP.OP(ALU,DESMOD,DESREGBYOP)
END,

I SINGLE OPERAND INSTRUCTION EXECUTION (CONTINUED)
ADC := ! ADD CARRY AND ADD CARRY BYTE,

I ADC OP CODE #0055, ADCB OP CODE #1055

146



BEGIN
DST.OPN(A.REG,BYOP) NEXT
A.LATCH A.BUS(A.REG) NEXT B.LATCH B.BUS( C ) NEXT
ALU( ADD.,BYOP ) NEXT
CC.SET(NZVC,BYOPADC.) NEXT
REP.OP(ALU,DESMOD,DESREG,BYOP)
END,

SBC : ! SUBTRACT AND SUBTRACT CARRY BYTE,
SBC OP CODE #0056, SBCB OP CODE #1056

BEGIN
DST.OPN(A.REG,BYOP) NEXT
A.LATCH A.BUS(A.REG) NEXT B.LATCHB.BUS( C ) NEXT
ALU( SUB.,BYOP ) NEXT
CC.SET(NZVC,BYOP,SBC.) NEXT
REP.OP(ALU,DESMOD,DESREG,BYOP)
END,

TEST = TEST AND TEST BYTE,
! TST OP CODE #0057, TSTB OP CODE #1057

BEGIN
DST.OPN(A.REG,BYOP) NEXT
A.LATCH A.BUS(A.REG) NEXT
ALU(TRNSF.A,BYOP) NEXT
CC.SET(NZ,BYOP,TEST.); CC.CLR(CV)
END,

I JUMP, SWAB EXECUTION AND REGISTER OPERATION DECODE
JMP = JUMP, JUMP OP CODE #0001

BEGINDST.ADDR(PLACE.HOLBER) NEXT PC.INPLACE.HOLDER

END,

SWAB : SWAP BYTES, SWAB OP CODE #0003
BEGIN
DST.OPN(A.REG,BYOP) NEXT
A.LATCH A.BUS(A.REG) NEXT
ALU( SWAB.,O ) NEXT
REP.OP(ALU,DESMOD,DESREG,O);
CC.SET(NZ,1,SWAB.); ! MAKE A BYTE TO CHECK ONLY <7> AND <7:0>
CC.CLR(CV)
END,

ROR : ROTATE RIGHT AND ROTATE RIGHT BYTE,
1 ROR OP CODE #0060, RORB OP CODE #1060

BEGIN
DST.OPN(A.REG,BYOP) NEXT
A.LATCH A.BUS(A.REG); B.LATCHB.BUS( C ) NEXT
ALU( RO.,BYOP ) NEXT
REP.OP(ALU,DESMOD,DESREG,BYOP);
CC.SEr(NZVCBYOP,ROR.)
END,

ROL : 1 ROTATE LEFT AND ROTATE LEFT BYTE,
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ROL OP CODE #0061, ROLB OP CODE #1061
BEGIN
DST.OPN(A.REG,BYOP) NEXT
A.LATCH A.BUS(A.REG); B.LATCHB.BUS( C ) NEXT
ALU( R0L.,BYOP ) NEXT
REP.OP(ALU,DESMOD,DESREG,BYOP);
CC.SET(NZVC,BYOP,ROL.)
END,

ASR 1 ARITHMETIC SHIFT RIGHT AND ARITHMETIC SHIFT RIGHT BYTE,
IASR OP CODE #0062, ASRB OP CODE #1062

BEGIN
DST.OPN(A.REG,BYOP) NEXT
A.LATCH A.BUS(A.REG) NEXT
ALU( APR.,BYOP ) NEXT
REP.OP(ALU,DESMOD,DESREG,BYOP);
CC.SET(NZVC,BYOP,ASR.)
END,

ASL !ARITHMETIC SHIFT LEFT AND ARITHMETIC SHIFT LEFT BYTE,
!ASL OP CODE #0063, ASLB OP CODE #1063

BEGIN
DST.OPN(A.REG,BYOP) NEXT
A.LATCH A.BUS(A.REG) ; 8.LATCHB.BUS( C )NEXT
ALU( A5L.,BYOP ) NEXT
REP.OP(ALU, DESMOD, DESREG,BYOP);
CC.SET(NZVC,BYOP,ASL.)
END,

MARK 1 MARK AND UNUSED OP CODES, MARK OP CODE #0064
BEGIN
DECODE JETOP =>

BEGIN
O:=BEGIN
A.LATCHA.BUS( IR.D );!IR.D SHIFT LEFT 1

4 B.LATCH7B.BUS( PC.OUT )NEXT
ALU(ADD.,O) NEXT
B.REG VAR C.BUS( ALU ) NEXT
DR.IN-REAff(CM,O); A.LATCHA.BUS(R.OUT(GET.INDEX(CM,5))) NEXT
PC.INC.BUS( ALU(TRNSF.A,O) ) NEXT
R.IN(-GET.INDEX) C.BUS( DR.IN )NEXT
8.LATCH B.BUS(B:REG); A.LATCHA.BUS(CONST2) NEXT
R.IN(GET.INDEX(CM,6))_C.BUS( ALU( ADD.,O )
END,

1:= (TRAP.VECTOR=RES.INSTR NEXT INSTR.TRAP()
END

END,
MFP IMOVE FROM PREVIOUS INSTRUCTION AND DATA SPACE,

MFPI OP CODE #0065, MFPD OP CODE #1065
BEGI N
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DECODE DESMOD NEQ 0 =
* BEGIN

O:=BEGIN
A.LATCH A.BUS(R.OUT(GET.INDEX(PM,DESREG))) NEXT ISP_ PUSH(DESREG)
ALU( TWRNSF.A,BYOP ) NEXT
CC.SET(NZO,MFP.) NEXT
PUSH (ALU)
END,

1:=BEGIN
DST.ADDR( VAR ); VAR<16>_NOT BYOP NEXT 1 VARDESTINATION
DR.IN READ(PM,O) NEXT
CC.SET(NZ,1,MFP.) NEXT
PUSH(DR. IN) ISPPUSH( CEDESTINATION])
END

END NEXT
CC. CLR (VS )
END,

MTP IMOVE TO PREVIOUS INSTRUCTION AND DATA SPACE,
!MTPI OP CODE #0066, MTPD OP CODE #1066

BEGIN
DECODE DESMOD NEQ 0 =

BEGIN
0: :BEGIN
POP.STACK NEXT
R.IN(GET.INDEX(PM,DESREG)) C.BUS(DR.IN);
CC.SET(NZ,O,MTP.); CC.CLR (VS)
END,-

1:=BEGIN
POP.STACK NEXT
CC.SET(NZ,1,MTP.); CC.CLR(VS) NEXT
DR.OUT'C.BUS(DR.IN) NEXT
DST.ADDR( VAR ); VAR<16> NOT BYOP NEXT i VARDESTINATION
WRITE (PM, 0)_
END

END
END,

SXT ISIGN EXTEND AND UNUSED OP CODE,
!SXT OP CODE #0067

BEGIN
DECODE JETOP 0>

BEGIN
O0: BEGIN

B.LATCH B.BUS( N ); A.LATCHA.BUS(CONSTO) NEXT
ALUC SUlf.,O ) NEXT
PUT.OP(ALIJ,DESMOD,DESREG.O)
CC.SET(ZS,O,SXT.); CC.CLR(VS)
ENDO

1 :- (TRAP.VECTOR=RES.INSTR NEXT INSTR.TRAP()
END
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END,
CCO :=
! CONDITION CODE OPERATORS. SELECTIVELY CLEARS OR SETS THE SPECIFIED
! CONDITION CODE. THE ASSEMBLER RECOGNIZES THE MNEMONICS CLC, CLV, CLZ,
! CLN, CCC (FOR CLEAR ALL CONDITION CODES), SEC, SEV, SEZ, SEN, AND SCC.
! COMPOUND SETTING OR CLEARING IS ACCOMPLISHED BY ORING.

BEGIN
A.LATCH A.BUS( IR.CC ); B.LATCHB.BUS(PSW) NEXT
DECODE CCOP =>

BEGIN
0 := ALU(BIC.,O), I NOT I<3:0> AND PSW.CC
1 ALU( BIS.,O ), ! PSW.CC OR I<3:0>
END NEXT

PSW C.BUS( ALU )
END',

1 CPU CONTROL INSTRUCTION EXECUTION
HALT ! ! HALT, HALT OP CODE #000000

BEGIN
DECODE CM =>

BEGIN
'00 := STOP(, KERNEL
OTHERWISE := TRAP.CPU.ERR = ILLHLT = 1
END

END,
WAIT. : ! WAIT FOR INTERRUPT, WAIT OP CODE #000001

BEGIN
WAIT((SERVICE OR PIR<15:9>) SRO P)
END,

CPU CONTROL INSTRUCTION EXECUTION (CONTINUED)
BPT : I BREAKPOINT TRAP, BPT OP CODE #000003

BEGIN
TRAP.VECTOR=BPT.TRAP NEXT
INTVEC(1,DONT.SET)
END,

lOT := ! INPUT/OUTPUT TRAP, lOT OP CODE #000004
BEGIN
TRAP.VECTOR=IOT.TRAP NEXT
INTVEC(1,DONT.SET)
END,

RESET := ! RESET EXTERNAL BUS, RESET OP CODE #000005
BEGIN
IF CM EQL '00 =>
BEGIN
A. LATCH A.BUS(SLR.ADDR) NEXT
VAR C.BUS(ALU( TRNSF.A,O )) NEXT
DR.OUT C.BUS(ALU(CLR.,O)) NEXT
WRITE(RM,O)

END
END,

1
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(2) ALU Described in ISP at Gat e Level

ALU(FUNCT(5:O>,BYOP<>)<16:O>:
BEGIN

* **FUNKADELIC**
SLICE.NUMBER<2:O>,
GATE. NUMBER<6:0>,
STUCK.VALUE<>.
FUNK<5:O>,

NOT. CARRY<> : =FUNK<O>,
* FAULT<>.

LOGIC(funk'Z5:O>(ref) ,A<3:O>,B(3:O>,NUM<2:O>)<6:O>:=
BEGIN
**DECLS**
G[15:77]0>,
S2.M<>,

S3<> :=FUNK<5>, A3<0 :=A<3>, B30> :=B<3>,
S20> :=FUNK<4>, A20> :=A<2>, B2<> :=B<2>,
S10> :=FUNK(3>, A10> :=A<1>, B10> :=B<1>,

P S0O :=FUNK<2>, AO<> :=A(O>, BOO> :=B<0>1,
MO> :=FUNK(1>,
NOT.CN> :=FUNK<0>,
NOT.COUT(>:=FUNK<O>,
MACRO M.NOT: G[19]1

YO> :=LOGIC<6>,
W< :=LOGIC<5>,
EQ(> :=LOGIC<4>,
F30> :LOGIC<3>,
F20> :LOGIC(2>,
F10> :LOGIC<1>,
FO<> :=LOGIC(O>,

MAIN LOGIC..ENTRY:=
BEGIN

! THIS THE SLICE TO FAULT

FAULT='O NEXT ! NO FAULT THE SLICE
IF NUM EQL SLICE.NUMBER m> FAULT='1 NEXT

1 LEVEL 1 GATES
GE15]=NOT 63;
GE16]=NOT 82;
G 171mNOT 61;
G 1 =NOT 60;
G *9 NOT M NEXT
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IF FAULT => GCGATE.NUMBER]=STUCK.VALUE NEXT

I LEVEL 2 GATES
GC2O]=A3 AND S3 AND B3;
GE21J.A3 AND S2 AND G[151;
GE22]=S1 AND G[15J;
G[23)=S0 AND 83;
G[24)=A3;
G[25J'B2 AND S3 AND A2;
G[26]rA2 AND S2 AND G[16J;
G[27]=S1 AND G[161;
G[28]=S0 AND B2;
G[29]=A2;
G[3OJ=B1 AND S3 AND Al;
G[:31]=A1 AND S2 AND G[17];
G[32J=Sl AND G[171;
G[33)=SO AND BI;
G[34J=A1;
GC35]=BO AND S3 AND AO;
G[36J=A0 AND S2 AND G[18);
G[37]=Sl AND G[181;
G[38)=SO AND 80;
GE39]=AO NEXT

IF FAULT => G[GATE.NUMBER]=STUCK.VALUE NEXT

1LEVEL 3 GATES
G[40]-NOT(G[20) OR G[21));
G[41]=NOT(G[22) OR G[231 OR G[24)9
G[42)=NOT(G[25) OR G[263);
G[43J=NOT(GE27) OR G[28) OR G[29));
G[44J=NOT (G[30) OR G[31J);
G[45]=NOT (G[32) OR G(33J OR G[34));
GC46J=NOT(G[35) OR G[36J);
G[47JuNOT(G[37] OR G[381 OR G[39)) NEXT

IF FAULT 0> G[GATE.NUMBERJ=STUCK.VALUE NEXT

1 LEVEL 4 GATES
G[48J=GC40J XOR G[41);
G[49JuGE42) XOR GE43J;
G[50]uG[44] XOR G[451;
G[51)-GE46J XOR G[47) NEXT

IF FAULT 0> G[GATE.NUMBER)=STUCK.VALUE NEXT

I LEVEL 5 GATES

MC-M.NOT AND NOT.CN NEXT
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G[58]=MC AND G[46) AND G[44) AND G[42);
GC59)=M.NOT AND G[47) AND G[42) AND G[44J;
GC6OJ=M.NOT AND G[45] AND G[42];
GE61]=M.NOT AND G[43);
GE62]=MC AND G[46] AND G[44J;
GE63]=G[47) AND M.NOT AND G[44];
G[64J=M.NOT AND G[451;
G[65)=MC AND G[46);
GE66)=M.NOT AND G[47J;
G[67)=NOT (MC) NEXT

IF FAULT 0> GEGATE.NUMBERJ=STUCK.VALUE NEXT

1 LEVEL 6 GATES
G[69]=NOT(G[5B) OR G[591 OR G[60) OR G[61));
GE70)=NOT(G[62) OR G[63] OR G[64]);
GE71J=NOT(GC65J OR G[66J) NEXT

IF FAULT 0> G[GATE.NUMBER)=STUCK.VALUE NEXT

1 LEVEL 7 GATES
G[73)-G1148) XOR G[691;

I G[14]=G[49J XOR G[701;
G[75J=G[50) XOR G[71J;
G[76)=G[51) XOR G[671 NEXT

IF FAULT => G[GATE.NUMBER)=STUCK.VALUE NEXT

LEVEL 8
GC77J=G[73J AND G[74) AND GE75) AND G[761 NEXT

IF FAULT 0> G[GATE.NUMBER)=STUCK.VALUE NEXT

I CARRIES
G[52J"'GC41];
G[53]=G[40] AND G[43J;
GC54J=G[40J AND G[421 AND G[45J;
G[55 JG[40] AND G[421 AND G[44) AND G[47);
G[561=.NOT(GE40J AND G[421 AND G[441 AND G[461 AND NOT.CN);
G[57)-NOT(GC4OJ AND G[421 AND G[441 AND G[46J) NEXT

IF FAULT 0> G[GATE.NUMBER)=STUCK.VALUE NEXT

G[68)uNOT(G[52) OR G[53J OR G[54J OR G[551) NEXT
IF FAULT 0> G[GATE.NUMBER]=STUCK.VALUE NEXT

G(72]u(NOT G[56]) OR (NOT G[68)) NEXT) IF FAULT 0> G[GATE.NUMBERI-STUCK.VALJE NEXT
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-G [68);
X=G[57J;
EQ=G[77);
F3=G[73];
F2=G[74);
FI =G[75)1;
FO=G[76);

NOT. COUT=G[72)

END

END,

1 ALU

MAIN ALU.ENTRY:=
BEGIN
ALU<='O NEXT
DECODE FUNCT 0>
BEGIN
SWAB. :=ALU=A. LATCH<7: O>@A. LATCH<1 5:8>,
ROR. :=DECODE BYOP 0

BEGIN
'0:= ALIJ=(B.LATCH<O>@A.LATCH) SRR 1,
'1:= ALU<16>@ALU<7:O>=(B.LATCH<O>@A.LATCH(7:O>) SRR 1
END,

ROL. :=DECODE BYOP =>
BEGIN
'= ALU=A.LATCH$DB$U.LATCH<O>,
1:= ALU<16>@ALU(7:O>=A.LATCH<7:O>@B.LATCH<O>,

END,
ASR. :=DECODE BYOP 0

BEGIN
'O:=(ALU<15:0><=A.LATCH(15:1>;ALU<16>=A.LATCH<O>),
1:=(ALU<7:O> <=A.LATCH<7:1> ;ALU(16>=A.LATCH<O>)

END,
ASL. :DECODE BYOP 0>

BEGIN
'O:z ALU=A.LATCH$D'$UO,
1:=(ALU<7:O>=A.LATCH<6:O>@O; ALU<16>=A.LATCH<7>)

END,

OTHERWISE: =
BEGIN

FUNK-FUNCT NEXT I USING FUNK TO RETURN THE CARRY OUT TO NEXT STAGE
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ALIJ<3: O>=LOGIC(FUNK,A.LATCH<3: O>,B.LATCH<3: O>,l)(3: 0> NEXT
ALU<7:4>=LOGIC(FUNK,A.LATCH<7:4>,B.LATCH<7:4>,2) <3:0> NEXT

IF BYOP =>(ALU<16>=NOT NOT.CARRY NEXT LEAVE ALU) NEXT

* L ALU<11:8>=LQGIC(FUNK,A.LATCH<11:8>,B.LATCH<11:8>,3)(3:O> NEXT
ALU<15:12>=LOGIC(FUNK,A.LATCH<15: 12>,B.LATCH<15:12>,4)<3:O> NEXT

ALU(16>=NOT NOT.CARRY 1 CARRY OUT
END
END
END
END,
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(3) ISP Description of the Memory Controller for the Dual-CPU Configuration

MEMORY.CONTROL(BUS.A<41:O>,BUS.A.RDY<>,BUS.B<41:O>,BUS.B.RDY<>):=
BEGIN
**MEMORY.BUS.AND.MACROS**

REQUIRE.ISP I MACRO.MCF[X361JC40],
MACRO MATCH.ERROR:= I 411

ERROR.RTN:=( NO.OP() ),

1 CHECKER IS THE INTERFACE BETWEEN THE REPLICATED CPUS AND THE MEMORY.
1 CHECKER FIRST CHECKS THE BUSSES FROM CPU.A AND CPU.B FOR EQUALITY
! IF THEY ARE NOT EQUAL, BITWISE, THEN A MATCH ERROR HAS OCCURRED.
! THE CPUS ARE NOT DOING THE SAME THING THIS IS REPRESENTED BY THE STATE
! OF THE BUS. IF THE BUSSES ARE EQUAL THEN CHECKER MOVES A COPY TO
! MEMORY.BUS AND THEN REQUESTS MEMORY TO PROCESS THE BUS. AFTER
! THE BUS HAS BEEN PROCESS AND ITS STATE CHANGED THEN CHECKER REPLICATES
! THE STATE OF MEMORY.BUS ONTO BOTH THE BUSSES FOR CPU.A AND CPU.B.
! THE BUS.RDY FLAGS ARE USED TO INDICATE WHEN A CPU HAS LOAD ITS
1 BUS WITH SOME COMMAND AND INFORMATION FOR MEMORY. CHECKER WAITS FOR
BOTH BUSSES TO RAISE THEIR FLAG THEN IT DOES ITS JOB.

MAIN CHECKER:=
BEGIN

WAIT(BUS.A.RDY AND BUS.B.RDY) NEXT
IF BUS.A EQLU BUS.8 =>

BEGIN
MEM.BUS=BUS.A NEXT

MEMORY.ACCESS() NEXT ! GO TO MEMORY AND PROCESS
BUS.A=BUS.B=MEM.BUS NEXT ! REPLICATE THE MEMORY.BUS
BUS.A.RDY=BUS.B.RDY=FALSE NEXT ! TURN OFF THE FLAGS
RESTART CHECKER ! WAIT FOR NEXT MEMORY REQUEST

END NEXT
IF THE BUSSES AREN'T THE SAME THEN AN ERROR HAS OCCURRED
ERROR.RTN() NEXT
BUS.A<MATCH.ERROR>=BUS.B<MATCH.ERROR>=TRUE NEXT
BUS.A.RDY=BUS.B.RDY=FALSE NEXT
RESTART CHECKER

END,
MEMORY.ACCESS:=
BEGIN **MEMORY.AND.MEMORY.REGISTERS**
MACRO MAX.BYTE:= #167777 1, 28K*2 BYTES

MB[MAX.BYTE:O]<7:0>, I THE ADDRESSING SPACE
MWCMAX.BYTE:O]<15:O>(INCREMENT:2]]:=MB[MAX.BYTE:O]<7:0>,

MBR<15:0>,
BMBR<7 :0> :=MBR<7:0>,

MAR<21:0>,
ERROR.REG<,
R.W<1:0>, ! INDICATES WHETHER READ OR WRITE CYCLE
BYTE.ADDR0, ! READ/WRITE A BYTE OR A WORD
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MAIN MEMORY.ROUTINES:=

BGNERROR.REG$DB$UYTE.ADDR$DM$UBR$DM$UAR$DR$U.W MEM.BUS<41:O> NEXT
DECODE R.W => ! DEPENDING ON READ/WRITE BTT

BEGIN
[110,11]:= DECODE BYTE.ADDR => ! WRITE BYTE OR WORD 1

BEGIN
IN/WORD:= MW[MAR] MBR,
I1/BYTE:= MB[MAR]-BMBR
END,

['00,101]:= DECODE BYTE.ADDR =>
BEGIN
O/WORD:=MBR MW[MAR],
'1/BYTE :=MBRZ=MB[MAR]

END
END NEXT

ED MEM.BUSERROR.REG$DB$UYTE.ADDR$DM$UBR$DM$UAR$DR$U.W !WRITE ON BUS

EDEND
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(4) Execution of Some of the PDP-11/70 Diagnostics

C-MU BATCH VERSION 6B(425)-5 STREAM 1 AT 07 34-30 ON THURSDAY. 3 APR 80
DOING DSKB:VERIFY.LOG[X361JC4O]_DSKB:VERIFY.CTL[X361JC401 UNDER [X361JC40]
MAXIMUM RUNTIME 01:10:00
ERROR LIMIT IS 99999

OTHER JOBS SAME PPN: 6
0734 03-APR-80 THUR
.SET TIME 4201
.SET WATCH DAY,RUN
.SET HPQ 1
.SET DSKPRI -1
.RUN TEMP:SIM
[7:34:35]
ISP SIMULATOR V10.1
GDB:A;ISPS COMPILER V5B(3)-7;DSK:PDP11S.ISP[X361JC40]; 2 APR 80;13:28:09;

SEQUENTIAL SIMULATION? [YES): YES
TYPE HELP FOR HELP
TYPE CC TO INTERRUPT SIMULATION LOOPS
LATEST NEWS: 4 JAN 80

DO V R%REG[7]$HALT
READ TESTi
!NORMAL END: PC=1422
>DECHO
27 LINES READ
START

R%REG[ 7]= 001422

SIMULATION COMPLETED
RUN TIME(MILLISECONDS)=36017
RTM OPS EXECUTED=28405

READ TEST2
!NORMAL END: PC=1716

>DECHO
42 LINES READ
START

R%REG[ 7]= 001716

SIMULATION COMPLETED
RUN TIME(MILLISECONDS)=320867
RTM OPS EXECUTED=258700

READ TEST3
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NORMAL END: PC=1256
>DECHO
18 LINES READ
START

R%REG[ 7)= 001256

SIMULATION COMPLETED
RUN TIME (MILLISECONDS)-22400
RTM OPS EXECUTED=21073

READ TEST4
!NORML END: PC=1314

>DECHO
21 LINES READ
START

R%REGE 7)= 001314

SIMULATION COMPLETED
RUN TIME(MILLISECONDS)-26300
RTM OPS EXECUTED=24647

READ TEST5
!NORMAL END: PC=1216

>DECHO
16 LINES READ
START

R%REGE 7J= 001216

SIMULATION COMPLETED
RUN TIME(MILLISECONDS)=19217
RTM OPS EXECUTED=18188

READ TEST6
!NORMAL END: PC-1216

>DECHO
16 LINES READ
START

R%REGE 71 001216

SIMULATION COMPLETED
RUN TIME(MILLISECONDS)=20434
RTM OPS EXECUTED-19242
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READ TEST7
1 NORMAL END: PC=1256

>DECHO
18 LINES READ
START

R%REG[ 7)= 001256

SIMULATION COMPLETED
RUN TIME(MILLISECONDS)=2O417
RTM OPS EXECUTED=19224
EXIT ~

EXIT
[:08:23 )
.TIME
0.01
:08:23
KI LO-CORE-SEC=361 21
.SET TIME 30
*DEASS IGN
.KJOGB/F
OTHER JOBS SAME PPN: 6
JOB 8, USER [X361JC4O) LOGGED OFF TTY121 0743 3-APR-80
ANOTHER JOB STILL LOGGED IN UNDER [X361JC40J
RUNTIME 8 MIN, 23.74 SEC; KILOCORE SEC: 36127
TOTAL OF 242 DISK BLOCKS READ, 6 WRITTEN
CONNECT TIME 0 HR, 9 MIN, 3 SEC; TOTAL CHARGE: $72.94
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II

APPENDIX B - TI 74181 ALU

i The modeling of the ALU functional fault is based upon a 74181 4-bit

slice ALU. The reason for using this device is the easily accessible

gate-level diagram for it, and also it is used in the PDP-11 family. This

ALU has 6 control lines and two 4-bit inputs. The output of the ALU are

4-bit results, the carry bit and Y and Y (carry generate and carry propa-

gate). There are 48 different functions the TI 74181 ALU is able to

perform. Figure B1 and Table BI show the gate-level diagram and the

functions performed by the TI 74181 ALU.
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TYPES SN54181. SN54LS181. SN54S181. SN74181, SN74LS181. SN74SI91
ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS
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APPENDIX C

(1) The Two CFA Candidate Programs

1 PROGRAM 0613

2 ;TEST PROGRAM #13, PROGRAMMER #6, MACHINE: PDP 11/70.
3
4 SIZE: 206 BYTES = 186 (CODE) + 20 (STACK)
5
6 COMPLETED: 28-JUL-79
7
8 000000 ROWPTR = %0 ; INDEX INTO MASKS FOR CURRENT ROW BIT
9 000001 COLPTR = %1 ; INDEX INTO MASKS FOR CURRENT COL BIT
10 000002 ROWADR = %2 ; ADDRESS OF CURRENT MATRIX ROW WORD
11 000003 COLADR = %3 ; ADDRESS OF CURRENT MATRIX COL WORD
12 000004 I = %4 ; CURRENT SUB-MATRIX COUNTER
13 000005 J = %5 ; CURRENT ROW/COL INDEX COUNTER
14 000006 SP = %6
15 000007 PC = %7
17 000022 ORDER = 22 ; STACK OFFSETS FOR PARAMETERS
18 000022 BASE = 22
19 000020 OFFSET = 20

21 000040 MAXPTR = 40 ; INDEX LIMIT INTO MASK VECTOR
22 000272' TOPMASK = MASK + MAXPTR
23 .GLOBL BMT
24 000000' 010046 BMT: MOV ROWPTR,-(SP) ; SAVE REGISTERS
25 000002' 010146 MOV COLPTR,-(SP)
26 000004' 010246 MOV ROWADR,-(SP)
27 000006' 010346 MOV COLADR,-(SP)
28 000010' 010446 MOV I,-(SP)
29 000012' 010546 MOV J,-(SP)

31 000014' 016646 000022 MOV ORDER(SP),-(SP) FETCH PARAMETERS
32 000020' 006316 ASL @SP ; KEEP 2*ORDER BECAUSE MASK

INDICES ARE IN WORDS
33 000022' 016602 000022 MOV BASE(SP),ROWADR ADDRESS OF FIRST

MATRIX WORD
34 000026' 016600 000020 MOV OFFSET(SP),ROWPTR : OFFSET OF FIRST

; BIT IN MATRIX

36 000034' 006300 ASL ROWPTR
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37 000036' 062700 000232' ADD #MASK,ROWPTR

39 000042' 005004 CLR I . INITIAL SUB-MATRIX COUNTER
40 000044' 000457 BR BEGIN ; START TRANSPOSITION

42 000046' 060400 NEWROW: ADD I,ROWPTR ; ADVANCE TO TOP-LEFT OF

SUB-MATRIX
43 000050' 020027 000272' 13$: CMP ROWPTR,#TOPMASK
44 000054' 002404 BLT 1$
45 000056' 162700 000040 SUB #MAXPTR,ROWPTR ; ADVANCE TO NEXT

WORD OF BITS
46 000062' 005722 TST (ROWADR)+
47 000064' 000771 BR 13$ ; CYCLE IN CASE INCREMENT

LARGER THAN ONE WORD
48 000066' 010405 1$: MOV I,J ; SET UP INNER LOOP.
49 000070' 010203 MOV ROWADR,COLADR
50 000072' 010001 MOV ROWPTR,COLPTR

52 000074' 005720 DOBIT: TST (ROWPTR)+ ; ADVANCE TO NEXT BIT IN ROW
53 000076' 020027 000272' CMP ROWPTR,#TOPMASK
54 000102' 002403 BLT 2$
55 000104' 012700 000232' MOV #MASK,ROWPTR ; ADVANCE TO NEXT WORD

,OF BITS
56 000110' 005722 TST (ROWADR)+
57 000112' 061601 2$: ADD @SP,COLPTR
58 000114' 020127 000272' 3$: CMP COLPTR,#TOPMASK
59 000120' 002404 BLT 4$
60 000122' 162701 000040 SUB #MAXPTR,COLPTR ; ADVANCE TO NEXT WORD

OF BITS
61 000126' 005723 TST (COLADR)+
62 000130' 000771 BR 3$ : CYCLE IN CASE ORDER GEATER

THAN WORDLENGTH
63 000132' 005046 4$: CLR -(SP) ; GET ROW BIT
64 000134' 031012 BIT @ROWPTR,@ROWADR
65 000136' 001401 BEQ 5$
66 000140' 005 16 INC @SP ; WAS SET
67 000142' 005046 5$: CLR -(SP) ; GET COLUMN BIT
68 000144' 031113 BIT @COLPTR,@COLADR
69 000146' 001401 BEQ 6$
70 000150' 005216 INC @SP ; WAS SET
71 000152' 005726 6$: TST (SP)+ ; STORE COLUMN BIT IN ROW

72 000154' 001002 BNE 7$ POSITION

73 000156' 041012 BIC @ROWPTR,@ROWADR
74 000160' 000401 BR 10$
75 000162' 051012 7$: BIS @ROWPTR,@ROWADR
76 000164' 005726 10$: TST (SP)+ ; STORE ROW BIT IN COLUMN

POSITION
77 000166' 001002 BNE 11$
78 000170' 041113 BIC @COLPTR,@COLADR

168



1.

1.
79 000172' 000401 BR 12$
80 000174' 051113 11$: BIS @COLPTR,@COLADR

82 000176' 005725 12$: TST (J)+ ; ADVANCE DOWN ROW/COL
83 000200' 020516 CMP J,@SP
84 000202' 002734 BLT DOBIT
85 000204' 005724 BEGIN: TST (I)+ ; ADVANCE TO NEXT SUB-MATRIX
86 000206' 020416 CMP I,@SP
87 000210' 002716 BLT NEWROW

89 000212' 005726 TST (SP)+ ; REMOVE LOCAL 'ORDER' VARIABLE

* 1 91 000214' 012605 MOV (SP)+,J ; RESTORE REGISTERS
92 000216' 012604 MOV (SP)+,I
93 000220' 012603 MOV (SP)+,COLADR
94 000222' 012602 MOV (SP)+,ROWADR
95 000224' 012601 MOV (S) +,COLPTR
96 000226' 012600 MOV (SP)+,ROWPTR

* 97 000230' 000207 RTS PC ; SIGH! ALL DONE.

99 ------ BIT MASKS ------

101 000232' 000001 000002 000004 MASK: .WORD 000001,000002,000004
*4102 000240' 000010 000020 000040 .WORD 000010,000020,000040

103 000246' 000100 000200 000400 .WORD 000100,000200,000400
104 000254' 001000 002000 004000 .WORD 001000,002000,004000
105 000262' 010000 020000 040000 .WORD 010000,020000,040000
106 000270' 100000 .WORD 100000
108109 TEST PROGRAM SCAFFOLDING
110
ill 000000 RO = %0

112 000001 RI a %1
113 000272' 012706 000424' START: MOV #STACK,SP
114 000276' 012700 000424' MOV #TESTS,RO

116 000302' 012001 MOV (RO)+,R1

118 000304' 012046 NEXT: MOV (RO)+,-(SP)
119 000306' 012046 MOV RO)+,-(SP)
120 000310' 012046 MOV RO)+,-(SP)
121 000312' 004767 177462 JSR PC,BMT
122 000316' 005301 DEC Ri123 000320' 001371 BNE NEXT

124 000322' 000000 HALT

126 000324' 000040 .BLKW 40
127 000424' STACK:
129
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130 TEST DATA
131
132 000424' 000003 TESTS: .WORD 3 ; 3 TESTS ONLY

134 TEST #1 (MEDIUM SIZED)

136 000426' 000004 .WORD 4 ; DIMENSION
137 000430' 000450' .WORD ARRAY1 ; ARRAY ADDRESS
138 000432' 000004 .WORD 4 ; OFFSET INTO FIRST

WORD

140 TEST #2 (BIG TEST)

142 000434' 000011 WORD 11 ; DIMENSION
143 000436' 000460' .WORD ARRAY2 ; ARRAY ADDRESS
144 000440' 000000- WORD 0 ;OFFSET INTO FIRST

:WORD

146 TEST #3 (BOUNDARY TEST)

148 000442' 000001 .WORD 1 : DIMENSION
149 000444' 000510' .WORD ARRAY3 ; ARRAY ADDRESS
150 000446' 000004 .WORD 4 ; OFFSET INTO FIRST

;WORD

152 ------. BIT MATRICES -----

154 000450' 016660 000011 ARRAYl: .WORD 016660,000011
155 000454' 020760 000013 WANTI: .WORD 020760,000013

157 .RADIX 2
158 000460' 151624 ARRAY2: .WORD 1101001110010100
159 000462' 071035 .WORD 0111001000011101
160 000464' 101672 .WORD 1000001110111010
161 000466' 073516 .WORD 0111011101001110
162 000470' 174520 .WORD 1111100101010000
163 000472' 000000 .WORD 0

165 000474' 034526 WANT2: .WORD 0011100101010110
166 000476' 150664 .WORD 1101000110110100
167 000500' 053432 .WORD 0101011100011010
168 000502' 155266 .WORD 1101101010110110
169 000504' 044743 .WORD 0100100111100011
170 000506' 000000 .WORD 0

172 .RADIX 8

174 000510' 000120 ARRAY3: .WORD 000120

176 000272' .END START
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PROGRAM 0412

1 000000 RO = %0
2 000001 RI - %I
3 000002 R2 = %2
4 000003 R3 = %3
5 000004 R4 = %4
6 000005 R5 = %5
7 000006 SP = %6
8 000007 PC = %7
9 000000' .CSECT MAINP
10 000000' 012706 000446' START: MOV #STACK,SP
11 000004' 012746 000212' MOV #STR,-(SP)
12 000010' 016746 000174 MOV STRLEN,-(SP)
13 000014' 012746 000242' mOV #ARG,-(SP)
14 000020' 016746 000214 MOV ARGLEN,-(SP)
15 000024' 012746 000206' MOV #LOC,-(SP)
16 000030' 004767 000002 JSR PC,CHRSRC
17 000034' 000000 HALT
18 000036' 022766 000000 000012 CHRSRC: CMP #0,12(SP)
19 000044' 001003 BNE NONZER
20 000046' 005076 000002 CLR @2(SP)
21 000052' 000207 RTS PC
22 000054' 010046 NONZER: MOV RO,-(SP)
23 000056' 010146 MOV R1,-(SP)
24 000060' 010246 MOV R2,-(SP)
25 000062' 010346 MOV R3,-(SP)
26 000064' 010446 MOV R4,-(SP)
27 000066' 010546 MOV R5,-(SP)
28 000070' 016600 000024 MOV 24(SP),RO
29 000074' 166600 000020 SUB 20(SP),RO
30 000100' 016601 000026 MOV 26(SP),Rl
31 000104' 016602 000022 MOV 22(SP),R2
32 000110' 005200 INC RO
33 000112' 005300 NOMTCH: DEC RO
34 000114' 002414 BLT NOTFNO
35 000116' 121221 CMPB (R2),(R1)+
36 000120' 001374 BNE NOMTCH
37 000122' 010103 MOV RI,R3
38 000124' 010204 NOV R2,R4
39 000126' 005204 INC R4

* 40 000130' 016605 000020 MOV 20(SP),R5
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41 000134' 005305 MATCH: DEC R5
42 000136' 003407 BLE FOUND
43 000140' 122423 CMPB (R4)+,(R3)+
44 000142' 001774 BEQ MATCH
45 000144' 000762 BR NOMTCH
46 000146' 012776 177777 000016 NOTFND: MOV #-1,@16(SP)
47 000154' 000405 BR EXIT
48 000156' 005301 FOUND: DEC Ri
49 000160' 166601 000026 SUB 26(SP),R1
50 000164' 010176 000016 MOV R1,@16(SP)
51 000170' 012605 EXIT: MOV (SP)+,R5
52 000172' 012604 MOV (SP)+,R4
53 000174' 012603 MOV (SP)+,R3
54 000176' 012602 MOV (SP)+,R2.
55 000200' 012601 MOV (SP)+,R1
56 000202' 012600 MOV (SP)+,RO
57 000204' 000207 RTS PC
58 000206' 177777 LOC: .WORD -1
59 000210' 000026 STRLEN: .WORD 26
60 000212' 115 157 156 STR: .ASCII /MONDAY, JUNE 7TH, 1976/

000215' 144 141 171
000220' 054 040 112
000223' 165 156 145
000226' 040 067 164
000231' 150 054 040
000234' 061 071 067
000237' 066

61 000240' 000003 ARGLEN: .WORD 3
62 000242' 144 141 171 ARG: .ASCII /DAY/
63 000245' 000100 .BLKW 100
64 000446' .EVEN
65 000446' 000000 STACK: .WORD 0
66 000000' .END START
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(2) Functional Fault Injection in the Instruction Decode and Control
Functional Module

PROGRAM FAULT RESULT COMMENTS

0613 DEC--NOP INFINITE LOOP THE LOOP CONTROL PARAMETER
DOES NOT CHANGE

0613 ADD--NOP HALT 2W--NOP,BR
STOPS AT THE END OF THE
PROGRAM

0613 SUB--NOP TRAP 2W--NOP,NONE
UNUSED INSTRUCTION TRAP

0613 CLR--NOP TRAP 1W--NOP
ODD ADDRESS TRAP

0613 BIT--NOP INFINITE LOOP 1W--NOP

0613 JSR--NOP TRAP 2W--NOP,NONE
UNUSED INSTRUCTION TRAP

0613 CMP--NOP HALT 2W--NOP,1W
WRONG RESULT, ENDS FASTER

0613 ASL--NOP TRAP IW--NOP
ODD ADDRESS TRAP

0613 BR--NOP TNFINITE LOOP 1W--NOP
HAS NOT FINISHED FOR A
WHILE

0613 BLT--NOP INFINITE LOOP 1W--NOP
HAS NOT FINISHED FOR A
WHILE

0613 TST--NOP TRAP 1W--NOP
ODD ADDRESS

0412 JSR--NOP TRAP 2W--NOP,1W
FLOATING POINT INSTRUCTION
TRAP

0412 CMP--NOP HALT 3W--NOP,IW,1W
ENDS IN THE MIDDLE OF
PROGRAM

0412 BNE--NOP HALT 1W--NOP
ENDS IN THE MIDDLE OF PROGRAM

0412 RTS--NOP TRAP 1W--NOP
FLOATING POINT INSTRUCTION
TRAP
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PROGRAM FAULT RESULT COMMENTS

0412 SUB--NOP TRAP 2W--NOP,1W
UNUSED INSTRUCTION TRAP

0412 INC--NOP HALT 1W--NOP
ENDS WITH WRONG RESULT

0412 DEC--NOP HALT 1W--NOP
ENDS WITH WRONG RESULT

0412 BLT--NOP HALT 1W--NOP
ENDS WITH WRONG RESULT

0412 CMPB--NOP HALT IW--NOP
ENDS WITH WRONG RESULT

0412 BLE--NOP HALT 1W--NOP
ENDS WITH WRONG RESULT

0412 BEQ--NOP HALT 1W--NOP
ENDS WITH WRONG RESULT

0412 BR--NOP HALT 1W--NOP
ENDS WITH RIGHT RESULTS

0412 MOV--NOP HALT 2W--NOP,1W
ENDS WITH WRONG RESULT

0613 ADD--BIC HALT 2W--2W,1W--1W
ENDS WITH WRONG RESULT

0613 ADD--CMP HALT 2W--2W,1W--1W
ENDS WITH WRONG RESULT

0613 ADD--SUB HALT 2W--2W,1W--1W
ENDS WITH WRONG RESULT

0613 CMP--BR TRAP lW--lW
UNUSED INSTRUCTION TRAP

0613 CMP--BIT HALT lW--lW
ENDS WITH WRONG RESULT

0613 CMP--ADD HALT 1W--1W
ENDS WITH WRONG RESULT

0613 CMP--CMPB HALT 2W--2W,1W--1W
END SWITH WRONG RESULT

0613 DEC--INC INFINITE LOOP lW--lW
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IT FINALLY ENDS BUT IT TAKES VERY LONG.

PROGRAM FAULT RESULT COMMENTS

0613 DEC--TST INFINITE LOOP lW--lW
NEVER ENDS

0613 DEC--COM INFINITE LOOP lW--IW

0613 DEC--JSR TRAP lW--lW
UNUSED INSTRUCTION TRAP

0613 DEC--NONE TRAP 1W--NONE
UNUSED INSTRUCTION TRAP

0613 DEC--BNE HALT lW--lW
WRONG RESULT

0613 DEC--MOV HALT 1W--1W

WRONG RESULT

0613 DEC--CMP TRAP lW--lW
ODD ADDRESS TRAP
CAN CHANGE TO INFINITE LOOP

0613 DEC--BIC TRAP 1W--lW
ODD ADDRESS TRAP
CAN CHANGE TO EITHER WRONG
RESULT OR INFINITE LOOP

0613 BR--BR HALT lW--1W
ENDS WITH WRONG RESULT

0613 BR--BR HALT 1W--lW
ENDS WITH WRONG RESULT

0613 BR--NONE TRAP lW--lW
UNUSED INSTRUCTION TRAP

0613 BR--BEQ HALT lW--lW
ENDS WITH WRONG RESULT

0613 BR--BLT HALT lW--lW
ENDS WITH WRONG RESULT

0613 BR--JSR TRAP lW--lW
ODD ADDRESS TRAP

0613 BR--MOV TRAP 1W-- W
ODD ADDRESS TRAP
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PROGRAM FAULT RESULT COMMENTS

0613 BR--CMP TRAP 1W-- 1W £
ODD ADDRESS TRAP

0613 BR--BIC TRAP lW--lW
ODD ADDRESS TRAP

0613 BR--BMI HALT lW--lW
ENDS WITH WRONG RESULT

'
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(3) Functional Fault Injection in the Instruction Register

PROGRAM FAULT RESULT COMMENTS

0613 I BIT 0 S-A-i WAIT
0613 I BIT 0 S-A-O TRAP ODD ADDRESS TRAP
0613 I BIT 1 S-A-1 TRAP ODD ADDRESS TRAP
0613 I BIT 1 S-A-1 INFINITE LOOP
0613 I BIT 1 S-A-O TRAP RED STACK TRAP
0613 1 BIT 2 S-A-1 TRAP RED STACK TRAP
0613 I BIT 2 S-A-O TRAP RED STACK TRAP
0613 I BIT 3 S-A-1 TRAP UNUSED INSTRUCTION TRAP
0613 I BIT 3 S-A-O TRAP ODD ADDRESS TRAP
0613 I BIT 4 S-A-1 TRAP ODD ADDRESS TRAP
0613 I BIT 4 S-A-O TRAP ODD ADDRESS TRAP
0613 I BIT 5 S-A-1 TRAP ODD ADDRESS TRAP
0613 I BIT 5 S-A-1 TRAP RED STACK TRAP
0613 I BIT 5 S-A-O TRAP RED STACK TRAP
0613 I BIT 6 S-A-1 TRAP ODD ADDRESS TRAP
0613 I BIT 6 S-A-O TRAP ODD ADDRESS TRAP
0613 I BIT 7 S-A-1 INFINITE LOOP
0613 I BIT 7 S-A-O HALT WRONG RESULT
0613 I BIT 8 S-A-1 TRAP ODD ADDRESS TRAP
0613 1 BIT 8 S-A-0 TRAP RED STACK TRAP
0613 I BIT 9 S-A-1 TRAP ODD ADDRESS TRAP
0613 I BIT 9 S-A-O TRAP UNUSED INSTRUCTION TRAP
0613 I BIT 10 S-A-1 INFINITE LOOP
0613 I BIT 10 S-A-O TRAP UNUSED INSTRUCTION TRAP
0613 I BIT 11 S-A-1 TRAP RED STACK TRAP
0613 I BIT 11 S-A-O INFINITE LOOP
0613 I BIT 12 S-A-i TRAP ODD ADDRESS TRAP
0613 I BIT 12 S-A-O WAIT
0613 I BIT 13 S-A-1 TRAP ODD ADDRESS TRAP
0613 I BIT 13 S-A-O TRAP UNUSED INSTRUCTION TRAP
0613 I BIT 14 S-A-1 TRAP ODD ADDRESS TRAP
0613 1 BIT 14 S-A-O HALT ENDS WITH WRONG RESULT
0613 I BIT 15 S-A-1 TRAP RED STACK TRAP
0613 1 BIT 15 S-A-O INFINITE LOOP
0412 I BIT 0 S-A-1 WAIT
0412 I BIT 0 S-A-O HALT WRONG RESULT
0412 I BIT 1 S-A-1 TRAP ODD ADDRESS TRAP
0412 I BIT 1S-A-O TRAP ODD ADDRESS TRAP

, 0412 1 BIT 2 S-A-I TRAP UNUSED INSTRUCTION TRAP
0412 I BIT 2 S-A-O TRAP RED STACK TRAP
0412 I BIT 3 S-A-1 TRAP RED STACK TRAP
0412 I BIT 3 S-A-0 TRAP UNUSED INSTRUCTION TRAP
0412 I BIT 4 S-A-1 TRAP UNUSED INSTRUCTION TRAP
0412 1 BIT 4 S-A-O INFINITE LOOP
0412 I BIT 5 5-A-1 TRAP UNUSED INSTRUCTION TRAP
0412 I BIT 5 S-A-O HALT END S WITH WRONG RESULT

I
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PROGRAM FAULT RESULT COMMENTS

0412 I BIT 12 S-A-i TRAP UNUSED INSTRUCTION TRAP
0412 I BIT 12 S-A-0 TRAP ODD ADDRESS TRAP
0412 I BIT 13 S-A-i TRAP ODD ADDRESS TRAP
0412 I BIT 13 S-A-O HALT ENDS WITH WRONG RESULT
0412 I BIT 14 S-A-I TRAP ODD ADDRESS TRAP
0412 I BIT 14 S-A-O HALT ENDS WITH WRONG RESULT
0412 I BIT 15 S-A-I TRAP RED STACK TRAP j

NOTEl: I REPRESENTS THE INSTRUCTION REGISTER
NOTE2: S-A-1(O) IS THE ABBREVIATION FOR STUCK-AT-1(O)
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I

11 (4) Functional Fault Injection in the Data Manipulation Functional Module

I PROGRAM FAULT RESULT COMMENTS

0613 ALUl1 TRAP ODD ADDRESS TRAP
0613 ALU+2 TRAP RED STACK TRAP
0613 ALU+4 TRAP RED STACK TRAP

* 0412 ALU0i TRAP ODD ADDRESS TRAP
i 0412 ALU@2 TRAP RED STACK TRAP

0412 ALU04 TRAP RED STACK TRAP
0412 ALU68 TRAP RED STACK TRAP
0412 ALUM16 TRAP RED STACK TRAP
0412 ALU+2 HALT ENDS WITH WRONG RESULT
0412 ALU+4 TRAP RED STACK TRAP
0412 ALU-2 TRAP UNUSED INSTRUCTION TRAP
0613 ALU64 TRAP UNUSED INSTRUCTION TRAP
0613 ALU12 INFINITE LOOP EVER LASTING INFINITE LOOP

OVER ONLY ONE INSTRUCTION
0613 ALU93 TRAP ODD ADDRESS TRAP
0613 ALU+I TRAP ODD ADDRESS TRAP
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