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INTRODUCTION

In the MX trench basing mode concept, blast plugs are employed in the
trench to protect the transporter-erector-launcher from the severe environment
resulting from nuclear attack on the trench as a line target. The protection
offered by the plug is twofold: isolation from blast pressures as well as

isolation from the hot, radioactive gaseous products of the nuclear detonation.

Two separate studies of these facets of the tremch/plug system have
been made. The purpose of the first study was to determine the blast
loadings to which the plug would be subjected and for which it should
be designed. In particular, the study shows the effectiveness of the light
overburden and weak trench roof in allowing venting of the in-trench blast
environment subsequent to its stagnation at the plug. Imn this manner, the

trench design can limit the impulse loading on the blast plug.

The second study involves the possibility of leakage of upstream in-trench
gases beyond the blast plug through the gap formed between the trench
roof and the plug. The main result of this study is the determination of
the minimum length of blast plug required to prevent such leakage under various

circumstances.




2. VENTING OF TRENCH NEAR BLAST PLUG

This study involves the trench roof response in the vicinity of
the blast plug for the MX trench baseline configuration. The region of
computation for this study is shown in Fig. 1. The Brode overpressure
surface loading (Reference 1) together with the upstream boundary conditions
constitute the forcing functions for the analysis. The upstream in-trench
input is constructed on the basis of results obtained from other groups who
are studying the problem closer to ground zero, This input can be applied
in either of two ways: (a) on a Lagrangian boundary or (b) on an Eulerian
boundary. In the results presented here only option (a) has been used with

an applied boundary pressure.

The action of the trench roof and overburden is modeled simply, as
shown in Fig. 2. The initial rest configuration can be transformed into
either the venting mode or the collapse mode, as required by the flow
conditions in the trench. (It should be pointed out that the parameter 8,
which appears for the venting mode, merely aids in characterizing the area
tarough which venting occurs. It is not necessary to assume the venting

configuration shown in Fig. 2 to derive the equations used for venting.)

The governing equations in the analysis consist of the equation of

motion of the air in the trench,

O du 9
PGGetus) = - 3‘5

the equation of state of the air
p=(y-1) pe

the energy equation,

du
9x

de de
D(-a—g"'u-é;) = -p




;’ and the continuity equation

N 30,4 3 _ _p(gi + %)
In the above equations x is the (Eulerian) spatial coordinate, t is time,
fs Py u and e are the density, pressure, velocity and specific internal
energy of the air in the trench, respectively, and y is a constant (equal

to 1.4 in all the calculations reported here). The quantities Y and A are

related to the motion of the trench roof through

naz + 2as (t) sin ¢ for s > 0
A(t) =

ﬂaz + 2 as (t) sin § for s < O

[A + v(s-d) sin B] for s >d
Y(t) =
A for s <d

in which s is the upward displacement of the trench roof and overburden, a

M is the trench radius, a, B, and § are fixed parameters defined in Fig. 2,

v is the average velocity of air passing through the vent area, and d defines
the minimum displacement at which a free venting path is formed. The venting

is assumed to be Fanning, (frictional, steady, uniform-area) flow, i.e.,

v = J(p - po)(s-d) sin B cos B/fph for s > d

in whicii P, is the Brode overpressure at any space-time point, f is the
venting flow friction factor, and h is the overburden depth as defined in
Fig. 2. 1If the trench roof clears the ground surface, s > h, complete

3 = venting is assumed, i.e. p = P, -

The roof displacement s satisfies the equation of motiom

R

Ed

8 = [(p-p)+ ch]/p_%h
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in which Pq is the soil overburden density, £ is given by

{ 2 asinaif s >0

2 asin § if s <0

AL - e % g -1 e

and 0 is defined by
-pslg ifs >0

0if s<0Oands =0

4
n T, if s < 0 and s <0

~Tg if s <0 and s >0

\
where TS is the soil shear strength defined in Fig. 2 and g is the acceleration

of gravity.

At the start of each computation the trench roof is stationary at its
initial rest configuration and the air inside and outside the trench is at
ambient conditions (assumed to be 10° C and 1 bar). The Brode load and/or
upstream boundary input is then applied and the resulting flow allowed to
impinge on the blast plug (which is assumed to be rigid). In the computations
reported here, the in-trench inputs were constructed on the basis of informa-
tion obtained from System, Science and Software (S3) and Physics International
(P1) for the case of a ore megaton, on-line, surface burst 550 meters away from the
plug. A total of three inputs, applied at a range 100 meters upstream of

the blast plug were constructed on the basis of the following studies:

S3 - No loss
S3 - Expansion and ablation

PI - Expansion and venting
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A baseline set of model parameters values, given in Table I, was
assumed for this study. For these values, computations were performed for
the three boundary inputs. In addition, because venting was found to be
very important in determining the plug loads, the parameters associated with
venting were varied as indicated in Table I, and computations using the

new values (updating them one at a time) were run for the case of the S3

expansion and ablation input.




TABLE 1

VENTING AND COLLAPSE MODEL PARAMETERS

BASELINE VALUE VARIATIONS

2.5m
55°
45°
45°

Om Im

0.004,0.10
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3. RESULTS OF PLUG VENTING ANALYSIS

The results of the computational study are shown in the Appendix and
summarized in Table II. The figures state the input used and values of the
parameters B8, §, f, Tgs d. Each computation is represented by three figures.
The first of these figures shows the assumed upstream boundary input, the
pressure on the blast plus (labelled "plug load") and the Brode overpressure
at the plug. The second figure shows the impulse acting on the blast plug,
and the temperature and density of the air near the plug., Finally, the

third figure of each set shows the displacement and velocity of the trench

roof and overburden.

The results indicate that only the venting mode of trench behavior is
triggered in the situations studied here. The venting leads to a relative
insensitivity of plug impulse to the various assumptions made. Although there
exist great differences between the upstream inputs as a result of different
post-detonation assumptions (Table II), the resulting plug impulse is relatively in-
sensitive to these differences. It is significant that insensitivity is
also exhibited when the venting parameter values are varied over large
ranges. This implies that the plug impulse is not greatly dependent on the

details of the venting process as described by this model.

The results of the computations show that the high stagnation pressures
which arise when the flow impinges on the blast plug serve to lift the trench
roof and overburden, quickly leading to breaching and venting of the high
pressures in the trench. This effect appears to be a result of the small
amount of overburden and the weakened trench roof. The venting serves to limit
the time over which these pressures act and thereby limits the impulse to

which the blast plug is subjected.

-11~




ot e DA, et L e =T

81 v°1 ONILNAA QIAVI3A 002 ST 0
L1 €1 NOTIOT¥d LNIA HOIH 002 ST°0
11 1 NOIIOT¥d INFA MO 002 s1°0
_ 61 €°1 FTONV IN3A 0¥dZ 002 s1°0
9 T (1d4) IN4ANI NOISNVJIXI S ST
. (44 A (¢S) INANI SSOT ON 34 <1
€1 AR FNON 002 sT°0
(oes-aeg) | (91) 5n'1d NO (sw) XVO3d (a1) sTud
on1d NO FANSSTAd ANITASYE WO¥d NOILVINVA T
ASINdNI

xe

ity e

T ——"— - I
G R - s o e

XQALS ¥ALANVIVL 40 SIINSTA

I1 J1dvVl

=12~




It should be noted that the computations probably overestimate the
loading on the blast plug because the mitigating effects of ablation, wall
protuberances, wall friction and motion of the plug are all neglected in

the region of computation.
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4.

BLOW-BY

As shown above,the high stagnation pressures on the blast plug will

lift the trench immediately upstream of the plug due to expansion and

venting effects. This in turn can lead to the situation depicted in Fig. 3

in which the overburden and trench roof directly above the blast plug are

lifted to form a gap through which the hot gases upstream of the plug may

leak. This situation has been termed "blow-by".

In order to estimate the magnitude of blow-by effects, the model shown

3 in Fig. 3 was used. The trench and overburden are assumed to be at rest at

é the undisturbed (horizontal) position when, at t=0, the plug stagnation

pressure po is uniformly applied to the trench roof upstream of the blast plug.

-—va -.h_.',._,«._f\M-' S NP

After the initial pressure is applied, it is allowed

to vary with time and axial position along the trench as a result of

adiabatic expansion (until venting) of the gases in the trench. The venting

is assumed to occur only after the trench roof and overburden have been

displaced one full trench radius above the ground surface, i.e., s = a + h.

This assumption of delayed venting is conservative because it leads to high

in-trench pressures for lift-off at late times, thereby increasing the size

of the blow-by gap. After venting is initiated the in-trench pressure decays

exponentially with time with decay constant of tv .

Two limiting geometries are considered to bound the lift-off process.

These are axisymmetric and vertical. The former is valid at early times

and represents the cylindrical expansion of the trench walls before the ground

surface becomes important. The vertical lift-off is more representative of

the situation at late times, especially during venting.

A Wt R T
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Finally, a composite material model is assumed to represent the trench
roof and overburden. The material is assumed to be a von Mises material in
shear with a failure strength Te and a shear modulus G. In compression the
material is assumed to be perfectly locking, with a locking strain (porosity)
of Eo . In other words, point a in Fig. 3 is allowed to move upward while
point b remains stationary until the compaction strain in the overburden

is Eo . Then points a and b move together as a rigid body.

The baseline set of model parameters is given in Tabel III together

S RSO

with variations assumed for the stagnation pressure in order to account for

the large uncertainties in the in-trench environment.
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TABLE III i

BLOW-BY MODEL PARAMETERS

PARAMETER BASELINE VALUE VARIATIONS
Po 1 kb 10 kb, 0.1 kb ;
i
t 2 ms -
vo
1 Te 3 bars -
o 2000 kg/m> -
G 300 m/s -
€ .05 -
o
a 2.5m -
h 2.0m -
D 10m -
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5. RESULTS OF BLOW-BY ANALYSIS

Six blow-by computations were performed, involving three values of
the stagnation pressure Po together with the two geometries of axisymmetric
and vertical lift-off. The output consists of the gap formed as a function

of time and locations along the length of the blast plug. l

Typical results for the baseline calculations (Po = 1 kb) are shown in
Figs. 4a and 4b which show the blow-by gap plotted as a function of distance
from the plug face at several times (which are given together with the corresponding
in-trench pressure at that time). It can be seen that the large gaps formed

near the plug face decay very rapidly along the length of the blast plug.

At a distance of 6 m. there is essentially no gap formed.

Figure 5 shows the blow-by gaps as a function of distance along the
blast plug for all six computations at a time when the in-trench pressure
has fallen to 0.1 bar. Note that, because of impulse-momentum considerations,
the lowest stagnationpressure results in the strongest blow-by effects. It
can be seen in all cases that a 10m long blast plug will be sufficient to

resist blow-by.

-17-




6. CONCLUSIONS

Two separate studies with simple models have been performed to

study MX trench/plug venting and blow-by effects. By means of parameter

variations many of the uncertainties in the in-trench blast environment
were taken into account. In the first study it was found that the impulse
loading on the blast plug was limited primarily by lack of containment

of the trench pressures due to the light overburden and weak trench roof.
In the second study it was found that a 10m long blast plug is sufficient

to withstand expected blow-by effects.
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APPENDIX

Computational results for the MX Trench blast plug loading and the

trench roof and overburden response in the vicinity of the plug.

IMP Impulse on plug
TMP = Temperature of air at plug
DAIR = Demnsity of air at plug
Note: The factors on the curves labeled "TMP", "DAIR" and "ROOF D", and on
the axis labels for the plots in this appendix are to be multiplied
by the numbers shown on the axes. As an example, the point labeled

"1.00" on the axis marked "TIME (MS) x 102" represents a time of

1.00 x 102 ms, or 100 ms. Further, the ordinate "1.00"” on the axis
4

labeled "x 10" for the curve listed as "DAIR (kg/m3) x .01" represents

an air density of 1.00 x 104 x .01 kg/m3 = 100 kg/m3.
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