
AD0A093 680 TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA F/6 9/2
FAST METHODOLOGY A CASE STUDY. (U)
NOV GO F30602-79-C0073

U CL ASSSIFEERADC-TR-0-336 N

"IE"''-E'EE'EE'E

111.0.

f1.8
1jj.25 1-~I6

MICROCOPY RESOLUTION TEST CHART

NATIONAL B!J)RFAII I 7N) ll A

Final Technical Report

November 1980

FAST Methodology & Case Study
TRW Defense and Space Systems Group

TRW Defense and Space Systems Group

APPROVED FOR PUBLIC RELEASE; DISTRIBUTIONUNLIITD

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-80-336 has been reviewed and is approved for publication.

APPROVED:-

NATHAN B. CLARK, Capt, I)SAF
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, I1SAF
Chief, Information Sciences Division

FOR THE COMMANDER: Z-V J

JOHN P. HUSS

Acting Chief, Plans Office

if your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC.(ISCA) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

t'NCI ASS I VI III1)

2 UPr iTa i ApeA

2 ADi% r,,
- N/A

F A~~~ M328 63701 BOLGYhCS-SF 1o

RW D IUId n Seace CAsem 90278 t 1720 3205032 3

Pt k.TR W , A .'AMI NAM AN.) r)LP'FSEV
Rome~~ Ai I[ev Aomn Cte (1 SCA N e I ..

TRW~~~~~ ~ ~ ~ ~ D0 ('1S ;111 S5, L \ t M r u '7 8 6 7 1Onefis S ae P,, 1344
IS ~ ~ ~ ~ ~ ~ ~ ~ 5812 32050323~r'tLF-ff'~f*Y~e ,U,'

11 m 3'N C L A S S LII
[I.DF A E A D D R SS- ---

16 ritF'l3-is ATM N 14 1, Nm E":

17 MOWT3TC' STATEN, 0# I P RE ni' 1 A I hII,,_A Wp ,L

%7 DSPPL TI TAEMENT .. f1, .'. -1

RADC Pro ject Engineer: Capt Nathan B. Clark (ISCA)

19 K EY *ORS Cl', f ~ ,r II 0 ,, hI..A,- ,,
Compiuter Ar-hi tee tore
Hardware Software Tr(i&Oofifs

Design Met hodo logv
Enm it ion

Z 5 AE93TRACT 'r, -,,d,f-,11 1h, P:. A--

Tb i s report dIesc'r ibes work (fone, to imple men t anrd valIi date the F I x i hi
Arna I vs i s, Siru i t ion arid Test met hodo log'y dove 1 op~d by TWR'~ to perlorm
ha rdware sof tware t rid(IL'l'f analI vs is- for compuiter 5sst em decs i n . Th'le
methodology, part iall v d0VVeloped With TRWS IR&D tunds, Wais testkd bv ,I
case st ildy ariaIvs is us inrg th liePefenst, Mapping, A ',L'M'" Mlna11kemenTt
I riformaition Svs tom for P rocurrrement (PM IS / I) .-

DD 'jAZM7 1473 - "SI'NClASS I1 3I)

c~(R'~AS('~' ~ ALI',

U N CIA SS I F I F 1)UN I -. A F %I..,

UNCIASS I VI 1:)

W T LL.ssr Iv O A. tm

dam_

Table of Contents

Page

1.0 Introduction 1

2.0 Technical Background 4

2.1 Hardware/Software Tradeoffs and the Development Cycle 6

2.1.1 Total Systeln Development (TSD) Framework Overview 7

2.1.2 Identification Phase 10

2.1.3 Conceptualization Phase 14

2.1.4 Realization Phase 17

2.1.5 Binding Phase 22

2.1.6 Implementation: Software Design Phase 27

2.1.7 Implementation: Hardware Design Phase 30

2.1.8 Manufacturing: Coding Phase 32

2.1.9 Integration Phase 32

2.2 Functional/Performance Specifications 34

2.2.1 Functional Specifications 54

2.2.2 Performance Specifications 71

2.3 Hardware/Software Methodology Fundamental 71

2.3.1 Methodological Approach to Binding 77

2.3.2 Selection of Commercial Computer Systems 79

2.3.3 Selection of Customized and Custom-Made Machines 81

2.3.4 Electing Custom-Made (VLSI) Devices 84

3.0 FAST Methodology 84

3.1 FAST Definition 84

3.2 Methodological Steps of FAST 92

3.2.1 Identification of Distribution Units 92

3.2.2 Generation of Hardware/Software Partitioning Constraints 95

3.2.3 Selection of Hardware/Software Partitioning Options 96

3.2.4 Development of Hardware/Software Partitioning Rules 97

Page

3.2.5 Selection of Competing Candidates 97

3.2.5.1 Hardware/Software Partitioning 97

3.2.5.2 Logical Verification 98

3.2.5.3 Performance Checks 98

3.*.5.4 Qualitative Checks 9

3.2.5.5 Elimination of Incongruent Configurations 99

3.2.5.6 Binding of the Communications 99

3.2.5.7 Assignment of Cost Value Coefficients 99

3.2.5.8 Selection of Winning Candidate 100

3.2.5.9 Generation of Hardware/Software Documents 100

3.3 Discussion 101

4.0 A FAST Case Study 103

4.1 Objectives of the Case Study 106

4.2 DMAAC Organizational Model 108

4.2.1 Current DMIS/P System at DMAAC 114

4.2.2 Formal Specification of DMAAC 120

4.3 DMIS/P Design Specification 129

4.3.1 DMIS/P Informal Specifications 129

4.4 Performing Hardware/Software Tradeoffs 158

4.4.1 DMIS/P Performance Specifications 158

4.4.1.1 Relevant Performance Attributes 159

4.4.1.2 Performance Evaluation Model 160

4.4.1.3 Constraints 161

4.4.1.4 Formalization of Performance Specifications 161

4.4.2 Step by Step Application of FAST 188

4.4.2.1 Identification of Distribution Units 189

4.4.2.2 Generation of Hardware/Software Partitioning 189
Constraints

ii

Page

4.4.2.3 Selecting Hardware/Software Partitioning 189
Option

4.4.2.4 Development of Hardware/Software Partitioning 190
Rules

4.4.2.5 Selection of Competing Candidate Partitions 19

4.4.2.6 Candidate Evaluation 19C

4.4.2.7 Elimination of Incongruent Configurations 191

4.4.2.8 Communication Medium 192

4.4.2.9 Assignment of Cost/Value Coefficient 192

4.4.2.10 Selection of Winning Configurations 192

4.5 Discussion 193

5.0 Conclusion 199

6.0 References 203

Accession

, TS G"°

Ijjc~ t c -I,.

MI

EVALUATION

This effort has advanced the state of the art in computer

system design methodologies by implementing the FAST (Flexible

Analysis, Simulation and Test) methodology for performance of

hardware software tradeoffs. It also provides a case study analysis as a

method of demonstrating current capabilities end areas for further

impl ementati on.

NATHAN B. CLARK, Capt, USAFProject Engineer

iv

T ~~~-------------- --Z -/- ..,/-- .._- " . .,"

Summary

This paper describes work completed under contract to RADC,

F30602-79-C-0078, for the period 2 February 1979 to 29 August 1980. The

goal of the project, referred to as, FAST(Flexible, Analysis, Simulation

and Test); was to develop a hardware/software tradeoffs methodology. A

case study was used to test the potential use of the methodology. Tools

and techniques for its use are also identified.

1.0 INTRODUCTION

The design and acquisition of computer-based systems; such as

weapons embedded and distributed, continues to be a difficult task. A

major issue affecting the process is the need to make a

hardware/software tradeoff among system architectures.

In this paper we describe a methodology intended to be used when

there is a need to make decisions about what functions to allocate to

hardware and what functions to allocate to software. The goal of this

paper is to discuss the results of the FAST(Flexible, Analysis,

Simulation, and Test), project; which was designed to define and develop

the FAST methodology.

The project set out to accomplish the following specific

objectives:

(1) Define and document the FAST methtodology. The methodology

definition includes procedures, tools, reports and management

techniques necessary for conducting computer architectural

studies,

(2) Discuss a methodology critique, which identifies potential

problems and risks associated with implementing the FAST

methodology, and

(3) Demonstrate the use of applicable portions of FAST in a

selected case study.

Finally, the results are analyzed and synthesized in a cast study

analysis. Recommendations for future steps and additional work needed

for the full development and application in DoD computer acquisition and

system design activities is also given.

An underlying assumption of this effort is: A hardware/software

tradeoffs analysis is a small subset of a total system design framework.

Current research conducted at Rome Air Development Center and various

industries have found a need for a framework from which methodologies

can be developed. This framework, when fully implemented, will provide

the basis for developing methodologies with capabilities for validating

the design; and realizing functional elements prior to acquisition of

system hardware.

Such a framework is necessary if the development of complex

hardware/software systems is to be done at acceptable levels of risk. A

parallel effort, of which FAST is a part, was performed to address the

TSD concept. Under contract to RADC, F30602-78-C-0250 and in

collaboration with TRW, a TSD framework was defined. Section 2 of this

report gives an overview of the framework and the methodological steps

its proposes.

The FAST definition and the methodological steps needed to perform

the hardware/software tradeoffs analysis were discussed in the Interim

Technical Report (see reference 27, p. 3). Section 3 of this paper

summarizes the results of that portion of this project. Sections 3.1 to

3.2 presents a detailed view of FAST and explains how it relates to the

TSD.

2

Finally, the methodology is tested in a DMA (Defense Mapping

Agency) cast study. This activity is given in Section 4. Section 5

summarizes the results of the study and points outs its ultimate

potential.

3m

2.0 TECHNICAL BACKGROUND

The objective of this section is to place the results described in

Section 3 and 4 in proper perspective and to review the technical

knowledge that established the foundation for development of the FAST
Methodology and the performance of the FAST Case Study. These goals are

accomplished by considering first the role played by hardware/software

tradeoffs in the context of the entire system development cycle.

Secondly, the basic issues and philosophy behind a general systematic

approach to performing hardware/software tradeoffs are discussed.

Incidental to these efforts, both notation and terminology are

introduced and clarified, thus preparing the reader for subsequent

sections.

The overall presentation is organized top-down, from general to

particular, over several levels of abstraction. Section 2.1 considers

the entire system development from a highly abstract nonprocedural point

of view in order to identify the role of hardware/software tradeoffs and

the way in which they relate to other system development activities.

For this purpose, the concept of a methodological framework is

introduced as an abstraction of the current state-of-the-art in system

development methodologies.

Section 2.2 deals with issues pertinent to the functional and

performance specification of systems design and the requirements they

must satisfy to support systematic and potentially automatic performance

of hardware/software tradeoffs. A specification language believed to

meet some of the stated requirements is suggested for use in the case

study.

Finally, Section 2.3 focuses on the fundamentals of

hardware/software tradeoffs and proposes a general approach that all

4I

might share. The emphasis is on establishing the complexity of the

problems to be solved and the manner in which different constraints

affect the nature of the potential solutions. No commitments are made

to the use of one particular technique over another. Such instantiation

of the general problem solving method introduced here is postponed for

Section 3 where the FAST Methodology is outlined.

5t

2.1 HARDWARE/SOFTWARE TRADEOFFS AND THE DEVELOPMENT CYCLE

Note: The reader is directed to RADC Technical Report of

F30602-78-C-250 "Total System Development (TSD) Framework," author by G.

C. Roman of Washington University in St. Louis, for a more in-depth

coverage of this topic including an extensive reference list.

6

2.1.1 Total System Development (TSD) Framework Overview

Since 1968, the year when the term "software engineering" was born,

significant progress has been made in understanding and controlling the

software development cycle. A wealth of methodologies has evolved along

with design principles and techniques, specification languages, and so

on. However, the late seventies marked the emergence of two powerful

trends: distribution and VLSI. As a result, the software/hardware

relationship has grown more complex while, at the same time, systems

development has begun to demand a greater understanding of hardware

architectures and the impact they might have on a system's design and

characteristics.

A critical point has been reached where software development and

hardware selection and design must be brought together under the

umbrella of a unifying conceptual framework. Total System Development

(TSD) is put forth as a candidate framework particularly well suited for

this task. TSD is meant to establish the basis for an integrated

approach to computer systems development and to contribute to the

de-ielopment of new methodologies which treat systems as distributed

software/hardware aggregates, thus breaking the barrier between software

and hardware design.

As suggested earlier, TSD is based on the analysis of current

software system methodologies, hardware selection methods, and hardware

design approaches. TSD phases have been selected by grouping together

system development activities related to each other and sharing the use

of a common knowledge base (theory, techniques, skills, etc.), a

variation on the principle of separation of concerns. As a result, some

phases deal with issues of the application domain, others involve

computational structures, etc. Figure 2.1.1.-i contains a diagram

depicting the TSD phases and their fundamental interrelationships.

7

IDENTIF ICATION
PHASE

CONCEPTUALIZATION

PRASE

R REAL L Ar 1ON
PHA SE

BINDING

PHASE

T-lM?LEM1ENTATION PHASES izij 1
SGF4A-RE W/ ARAE

I DESIGN DESIGN

..-.NFACTURING PHASES

INTEGRATION
PHASE

PRODUCTION

Ficure 2.1.1.-l: Total System Development(TSD) Framework

7A

Short descriptions of each phase are included in the remainder of this

section. A phase by phase detailed presentation follows starting with

the next section.

The problem IDENTIFICATION phase is informal in nature and has an

exploratory flavor. It denotes the gathering of information about those

activities of the application domain which need to be supported by some

proposed system. A good understanding of the application domain is

essential for the successful completion of this phase.

During the CONCEPTUALIZATION phase, the information previously

gathered is organized as a formal model called a conceptual model. The

entire phase is application domain dependent and rests on the ability to

formalize the problem domain. The conceptual model becomes the basis

for the rest of the development process and, as such, there are good

reasons to propose it also as a foundation for all contractual

agreements.

The system REALIZATION phase moves the development process from the

application domain modeling into the computational domain. For the

first time, a realization of the system is proposed in terms of

processes, data, communication, and abstract processors (idealized

machines) to which data and processes are bound. Performance evaluation

plays an important role during this phase by helping in the selection

between alternate realizations. It ought to be stressed at this point

that the realization phase results in a technology independent solution

to the problem at hand. Considering the rapid technological changes

which have occurred during the last decade and continue to be manifest

today, it becomes necessary to separate the technology independent

aspects of the design from decisions which are technology dependent.

The criterion used in this document naturally separates these phases

which in many methodologies today are not yet differentiated.

B

I -

In contrast with the realization phase, BINDING is a heavily

technology dependent phase. It recognizes the unique characteristics of

hardware and software, but also the hardware/software duality. The role

of the binding phase is that of assigning processors to specific

hardware and, during this process, to optimize the system based on

performing hardware/software trade-offs. This process may take a

variety of forms from vendor selection (based on commercially available

hardware/software) to choosing custom hardware and software (in which

case software and hardware requirements need to be specified). During

the same phase, the characteristics of the communication medium are also

bound.

IMPLEMENTATION denotes two phases: SOFTWARE DESIGN and HARIWARE

DESIGN. They both deal with the selection of a particular

implementation (composition of functions or building blocks) for custom

built components. At the present time there exist significant

differences between hardware and software design procedures (despite the

duality principle), but it is conceivable that in the future the two

phases may resemble each other more and more as the two knowledge bases

converge.

Because of the software/hardware differences, MANUFACTURING denotes

two phases corresponding to two technological domains: CODING, which

refers to the process of materializing a particular software

implementation through the use of some programming language, and

FABRICATION, which is the process by which hardware components are built

based on solid state and electronics technologies.

The INTEGRATION phase deals with the assembly of the system from

component parts and the associated testing procedures. Subsequent to

integration the system is installed and put into production.

9

2.1.2 Identification Phase

Identification is the first phase of the TSD framework. It

encompasses activities whose goal is that of establishing the groundwork

required to start system development. This phase attempts to identify

why a system should be built, what it is supposed to do, how it relates

to the production environment, and what the constraints to be met by the

system are. The identification phase has a highly informal character

(formalization requires first an understanding of the application

domain, and requires careful consideration of the human factors involved

in the process of creating a good communication link between the

developer and the customer.

The output of the identification phase is a report detailing, in

some organized but informal way, the results of the developer's

explorations of the customer's world. It corresponds, in some sense, to

the experimental or field data used in disciplines like physics or

anthropology. As such, the viewpoint tends to be local, the level of

abstraction is low, and the correlations are few. The completeness and

accuracy of the data are the key issues facing the writer of the report.

The fundamental steps involved in the identification phase are:

(a) Exploration

(b) Report generation

(c) Report evaluation

The exploration step is meant to accomplish two highly interrelated

tasks: to create a communication link between developer and customer,

and, to establish the role played by the proposed system. The report

generation step must produce a complete and unambiguous description of

10

i-

-- - - -- 7

the issues revealed during the exploration step. The report evaluation

is an analytical step which attempts to determine the successful

completion of the identification phase.

Exploration

K Report Generation

Report Evaluation

Figure 2.1.2-1: Identification Phase

12

Typically, the identification phase of most system development

methodologies also includes steps which, while technically

non-essential, have great practical significance. They tend to be

oriented toward the generation of preliminary studies regarding

anticipated benefits or market value, cost estimation, development time

and needed resources, potential environmental, social, and legal

implications, etc. Such investigative work is important in assisting

decision making processes both in the developer and customer

organizations. Based on these studies, unwise system development may be

stopped before committing too much money and resources. However, one

must emphasize that the informal nature of the identification phase can

hardly support a formal study of complicated issues such as those

mentioned above. More definitive studies become possible only in the

conceptual izat ion phase.

13

2.1.3 Conceptualization Phase

The information obtained in the identification phase is formalized

during the conceptualization phase. The result is a conceptual model

which formally defines all aspects of the application domain to be

supported by the system under development. The conceptual model is

intended to play a multitude of roles: it defines the system's

functionality, boundaries, and interfaces to the application

environment; it forms the basis for analytical studies of a technical

(e.g., cost prediction) type; it established a firm foundation for all

contractual agreements; and it helps in understanding the customer's

problem representing the most important communication link between

developer and customer. Informal models can rarely satisfy all these

needs. The conceptual model must be precisely formulated in order to

provide concise means of expression and powerful notation.

Occassionally more than one conceptual model may be required for a

complete description of the problem.

Jumping directly from identification to realization is an important

factor in the failure of many systems being developed today. Informal

descriptions of the problems tend to be incomplete, self-contradictory.

hard to verify, and ambiguous. Furthermore, many fundamental problems

are obscurred by the verbosity of the reports and the simplicity of the

examples. Such issues can be resolved only by systematic formal

modeling and analyses.

The steps comprising the conceptualization phase are as follows:

(a) Formalism selection

(b) Formalism validation

14

ONE

(c) Conceptual model construction

(d) Conceptual model verification

(e) System boundaries selection

The conceptualization phase starts with the selection of a formalism

able to represent the problem. The formalism may be newly developed or

already available from some source. In either case, the selection needs

to be validated as being suitable for the task before too much effort is

invested in using it. Subsequent to validation, a conceptual model of

the problem is built and later made subject to systematic verification

by both developer and customer. Finally, the conceptual model may be

used to select, in agreement with the customer, the boundaries of the

system to be developed.

15

I _______

Formalism Selection

Formalism Validation

Conceptual Model
Construction

L Conceptual Model
Verification

System Boundaries
Selection

Figure 2.1.3.1: Conceptualization Phase

16

- ~ -

2.1.4 Realization Phase

System design activities start with the realization phase whose

main function is that of generating a technology independent system

specification called the processing model. Technology independence is

achieved by maintaining the design activities at a very high level of

abstraction. The processing model is conceived as the result of a

highly interactive sequence of synthetic and analytic steps. The

synthetic steps represent design activities aimed either at altering an

unsatisfactory design solution or at adding new details to the model.

The analytic steps establish, on one hand, the logical correctness of

the design and, on the other hand, conformity with given qualitative and

quantitative constraints which may have originated with the customer or

developer, or may represent generally accepted rules of the trade.

The processing model is defined in terms of data, messages, events,

processes, and processors. Data and messages are treated as primitive

entities. Events are defined as relevant changes in the state of the

system or its environment. The events materialize in terms of data

value modifications and message receiving or sending. Disjoint

sequences of events form processes. Both data and processes are

partitioned into classes. They establish units of distribution within

the system called processors. Processes are restricted to accessing

only data assigned to the same processor, but they may exchange messages

with processes bound to other processors.

The motivation behind developing the processing model is

three-fold. First, the model describes top level system design from the

point of view of functionality and behavior at an abstract enough level

so as to be independent of detailed technical considerations. Secondly,

theoretical solution to the data and process distribution problem and

communication protocol selection are proposed. Thirdly, the processing

17

model is envisioned to become the basis for both hardware/software

partitioning and hardware selection, which take place in the binding

phase. A.3 such, in addition t> the components described above, the

processing model should include performance related information such as

data volume, message rates, data access patterns, etc. This information

could originate, in part, in the conceptual model and among customer

provided constraints while the rest would have to be generated during

the performance checks to which the model is subjected in the

realization phase.

I

18

For every -- Elaboration

level of
abstraction

Logical
Verification

Partitioning

4
-6 ---Op Ccz-unication

Protocol Selection

Protocol
Verification

I
Performance

Checks

Qualitative

Checks

Figure 2.1.4-1: Realization Phase

19

The method employed in developing the processing model is outlined

below. (While trouble at one level may require redefinition of previous

levels, such feedback loops have been omitted for the sake of

simplicity.) The proposal is to separate the realization phase into

seven basic steps to be repeated a number of times, as necessary. These

steps are:

(a) Elaboration

(b) Logical verification

(c) Partitioning

(d) Communication protocol selection

(e) Protocol verification

(f) Performance check

(g) Qualitative check

The strategy is to start with an initial nondistributed solution and to

propose an acceptable distributed system by considering both explicit

and implicit customer originated constraints. There are minimum

distribution requirements, performance characteristics, survivability,

fault tolerance, reliability level, etc.

The elaboration step proceeds by establishing the set of events

relevant to the particular level of abstraction and group them into

parallel processes. A shared memory communication model is assumed at

this point. The resulting specification is then subject to logical

verification, which attempts to determine its consistency with respect

20

' ,.-

to the level above (or below) and with respect to the conceptual model.

During partitioning, processors are approximated in terms of the data

and the processes assigned to them. This is achieved by continuing to

employ the shared memory model while attaching different costs to

accessing data within the same processor and across processors. During

the next step, the communication protocol selection step, the model is

modified so as to include message passing and to restrict processes from

directly accessing data from a different processor. These activities

are followed by a new logical verification in the protocol verification

step. Subsequently, performance and qualitative checks are carried out

in order to evaluate the design's conformity to the set of realization

pertinent constraints.

Because of the size of the systems and the complexity of the

decisions involved in the realization phase, the same seven steps would

have to be repeated for each successive level of abstraction employed in

the processing model. Consequently, as the need for further

distribution is determined, one or more processors on level n may be

further distributed by employing the same procedure, thus generating

level (n 1). As an example, processors on level one may represent

network node while or- level two they may abstract single machines. The

level of detail at which the refinement and distribution activities

(i.e., the realization phase) are curtailed is a function of the ability

to assess compliance with all relevant constraints, however, failures in

being able to carry out the binding may require later resumption of this

phase.

21

2.1.5 Binding Phase

Determination of the hardware/software boundary and selection of

particular hardware components of the system are the goals of the

binding phase. All decisions taken during this phase are controlled by

market availability, technological state-of-the-art, and manufacturing

capabilities. The constraints imposed by these factors are manifest not

only in terms of sheer availability of hardware having certain given

qualities, but also in the cost of various existing components. Binding

and all subsequent phases are heavily technology dependent and are

expected to change as long as technological progress takes place. As

the cost structure of alternate options varies with time, the binding

techniques may change substantially. Such a phenomenom is actually

observable today in a trend away from the large mainframes and toward

distributed systems.

Because binding is what hardware/software tradeoffs (i.e. FAST) are

all about a comprehensive treatment of this phase is delayed until

Section 2.3.1 where a methodological approach to binding is proposed.

22

Identify Mlnimm Distribution4
Identify Clusters4

For every Select Binding Option
cluster I

Develop Candidate Selection Rules

Select Candidates

For every fGenerate Cluster/Candidate Map

candidate I-Perfr1-ianCg~

4Qualitative Check

4Accept Candidate Reject

j ,~Restructure Cl.usters

Review Cluster Binding Increase Distribution

\Consider New Option

Eliminate Incongruent Configurations

For every Bind the Communication
configuration I

Validate the Configuration 0 Reject

Assign Cost-Value Coefficient
14

Limit the Number of Configurations

4
Select Winning Configuration

4
Generate Hardware Requirements

I
Generate Software Requirements

FIGURE 2.1.5-1: Binding Phase

23

L ,L

I

2.1.6 Implementation: Software Design Phase

Each software system is specified by the corresponding requirements

definition generated during the binding phase. The requirements

definition specifies the functionality of the software system, the data

it controls, its interfaces to other software systems, the programming

language to be used during coding, all performance constraints to be met

by the software system, and the machine characteristics needed to

predict compliance with the stated constraints. The role of the

software design phase is to select, based on the requirements

definition, an effective software system design. The software system

design specification should identify all software modules, the

inter-module interfaces and the internal module design.

The software design phase follows, design phase follows. The

first step deals with the selection of an overall software system

architecture defined as a collection of modules that cooperate in

performing the various functions of the software system. Once an

overall architecture is chosen, the detail design of the module

*interfaces must be carried out in order to enable the logical

verification of the software system and the unambiguous design of the

component modules. The interfaces may vary considerably in nature.

They may take the form of in-core data-tables, files shared or passed

between modules, or a common database.

The design of the individual software modules is preceded by the

verification of the software architecture and an evaluation of potential

performance problems. The verification typically entails a convincing

demonstration of the well-formedness and self-consistency of the

specification, and its consistency with respect to the requirements

definition.

24

This activity is not fundamentally different from the corresponding

step of the realization phase. The performance check requires software

modeling or simulation in order to evaluate the software design against

the performance constraints. Qualitative checks of a nature similar to

those employed during the realization phase are also recommerded.

The issues related to individual module design are relatively

mundane (today), and the amount of literature written on this subject i5

excessively large. It deals primarily with the principles of structureo

programming.

Upon completion of the module designs, the entire software system

design may require reverification at a more detailed level and a

reevaluation of the performance check due to the availability of

additional information about the processing done by individual modules.

25

Selection of Overall Software Syste- Architecture

iI

Detailed Design of Module Interfaces

I
Software Architecture Verification

Performance Check

1I
Qualitative Check

For each Global Data Structures Selection
soft.are

module

For each L ev el
level of Design

abstraction
within
module

Level
Verification

I
Software System Design Verification

Perfor-ance Check Evaluation

Figure 2.1.6-1: Software Design Phase

26

2.1.7 Implementation: Hardware Design Phase

During the binding phase, special hardware devices or custom

machines may be identified as being needed in order to meet special

performance requirements. On such occasions, the output of the binding

phase would have to include the requirements definition of each

custom-made hardware unit. The requirements ought to provide a

functional specification of the unit, precise description of all

hardware interfaces, storage requirements, and all pertinent constraints

(performance, manufacturing, reliability, fault-tolerance, etc.).

The design of each hardware unit proceeds with the generation of a

hierarchy of design specifications, each representing a level closer to

the bottom line technology and each requiring a different specification

language. Five conceptual levels for describing, understanding,

analyzing, and designing hardware have been predicted. The levels are:

- Macro level, also called PMS (processor-memory-switch). It

consists of a macro view of the architecture of the hardware

unit.

- Register Transfer level. It includes the specification of

registers and functional transfers such as logical and

arithmetic operations. Register Transfer languages were

among the first to be developed.

- Switching Circuit level. It is separated into sequential and

combinatorial logic circuits. Switching theory forms the

basis for formulations at this level.

00663 - Electrical Circuit level. It brings the design effort

into the realm of electrical engineering by dealing with

27

electrical diagrams; their components are resistors,

inductors, capacitors, voltage sources, nonlinear devices,

etc.

Solid State level. It deals with the realization of the

electrical circuitry on single chips of semiconductor

material as chip layouts.

Upon completion of each level, a series of verification steps

need to be performed to assure the fact that the design meets the

requirements. Simulations based on the specification generated at

the particular level play a major part in the evaluation process.

By means of simulation the unit is "tested" long before any

manufacturing starts. The high cost of prototypes makes errors

unacceptable. Some simulation may be utilized in establishing

compliance with the performance constraints, sensitivity to

faults, etc.

28

SWITCHING CIRCUIT LEVEL

ELECTRICAL CIRCUIT LEVEL

SOLED STATE LEVEL

Figure 2.1.7-1: Hardware Design Hierarchy

29

I

2.1.8 Manufacturing: Coding Phase

Module designs materialize into programs during coding phase.

Three interrelated activities cooperate in the generation of each

program: code development, verification, and testing. These activities

are often carried out in this exact order, but an effective way to

proceed during the coding phase is to integrate the three activities and

perform them concurrently rather than sequentially.

Code development strategies fall into several basic categories:

top-down, bottom-up, and iterative growth. Since the module design

already exists and is assumed correct, the code development strategy

selection could be viewed as beig arbitrary. However, because

verification and testing need to be carried out concurrently, it is

advisable to select that strategy which minimizes the testing effort.

As a new program section is added, its correctness ought to be

established and a new series of tests performed. Although this is

apparently a time-consuming approach, experience has shown it to be much

safer and more economical than the debugging of programs that have been

coded in their entirety first.

Additional systematic verification and testing is required at the

time of program completion. Some tools are available to aid in testing

and debugging. With respect to the final verification, one has to

establish compliance with programming standards, correctness with

respect to the module design, effective coding of module data

structures, proper trade-off between efficiency and maintainability,

etc.

2.1.9 Manufacturing: Fabrication Phase

This title is included only as a reminder to the reader. The

30

• ,dl1~ -
.. -.- ' .. ,,

activities involved in manufacturing chips, circuit boards, devices,

etc. is out5ie the scope of this undertaking.

31

2.1.10 Integration Phase

The integration phase includes all activities related to coupling

together separately developed hardware and/or software components. The

strategies employed are heavily system dependent, but the success (i.e.,

low number of coupling errors) rests on the quality of the interfaces'

design. In other words, integration is trivial if no design or

manufacturing errors occurred. As such, all efforts need to be

concentrated in the other phases to make sure that easy integration is

possible. Errors discovered during the testing procedures of the

integration phase may trigger very expensive backtracking.

An elaboration of the integration phase is not needed for the

purpose of this report.

32

2.2 FUNCTIONAL/PERFORMANCE SPECIFICATIONS

The hardware/software tradeoffs analysis carried out during the

binding phase (Section 2.3) presupposes the existence of a

functional/performance specification of the system, i.e., the processing

model generated by the realization phase. This section illustrates one

way in which the processing model could be described, in terms of a

formal functional/performance specification language. While the

language development was motivated primarily by the needs of the case

study, it also offered an excellent opportunity to investigate:

o The nature of the input to the binding phase,

o The relationship between functional and performance

specifications,

" Ways of extending existing specification languages (such as

RSL) to better support hardware/software tradeoffs analysis.

33

_ .__J1

2.2.1 Functional Specifications

The approach chosen for describing distributed systems is based on

a hierarchical structure where a process at one level is refined, on the

next level, as a net of communicating non-deterministic processes.

2.2.1.1 Process Definition

The definition of a process has been influenced by earlier work on

the specification of abstract data types by Guttag (12], on the use of

abstraction mechanisms in CLU (Liskov and al [4)) and Alphard (Wolf and

al [5]), on the verification of hierarchical specifications using SRI

modules (Robinson and Levitt [2]), and on event ordering (Greif [10]).

Each process is described by the data entities it controls and their

invariant properties, a set of procedures acting upon the data above,

message sending and receiving procedures associated with appropriate

input and output ports, and a set of rules controlling the process

behavior.

DEFINITION:

A process p is defined as

p = (D(p), T(p), R(p), S(p), B(p))

where

D(p) = (Q(p), H(p))

with Q(p) denoting a set of entities controlled by p and H(p)

representing a predicate called the data invariant. It

describes the invariant properties of Q(p). The fact that

34

H(p) is satisfied or not may be determined strictly by

examining the entities in Q(p). D(p) is called a simple data

abstraction.

T(p) = {t(pi) :: (A'(pi), A"(pi). V(pi)) for i:1 ...

defines a set of transformational procedures over the data

described by D(p). Each procedure is given in terms of three

predicates: an input assertion and an output assertion over

the data entities in Q(p) and a set of supplied parameters,

and a third predicate describing the value returned by the

procedure.

R(p) = {r(pi) :: (true, true, V(pi)) for i=1

identifies a set of message receiving procedures. V(pi)

establishes the required properties of the incoming message

which is made available as the return value of the procedure.

S(p) = {s(pi) :: (A'(pi), A'(pi), true) for i:1

identifies a set of message sending procedures.

B(p) <(T(p) U R(p) U S(p))*

represents the process behavior given in terms of possible

sequence of events. Any procedure invocation is treated as a

single indivisible event. The manner in which B(p) is

specified is discussed later.

The notion of a simple data abstraction, D(p), is new only in name

but not in essence. It is present in Alphard [5] where the data

invariant H(p) is called an "abstract invariant" and may often be seen

35

r9

in the database literature taking the form of "internal consistency

criteria". The key about the definition of H(p) is the fact that its

validity may be checked statically, i.e., regardless of the history or

the events (procedure invocations) that might have occurred. This

particular attribute may help simplify process analysis by contributing

to breaking proofs into simpler, more manageable steps.

The transformational procedures are procedural abstractions similar

to those employed in the definition of abstract data types [12].

Assertions have been suggested for the description of the

transformational procedures due to their nonprocedural quality and

because they are needed in later proofs. Nevertheless, equivalent

operational specifications may be preferred under certain circumstances.

For reason of unity and uniformity, message sending and receiving

are treated as procedure invocations. Neither sending nor receiving

procedures affect the data entities under the process' control. Sending

procedures accept as a parameter a value to be sent, while the receiving

procedures return a value each time they are being invoked. The

semantics of the communication is not part of the process definition but

they are included in the description of the net to which the process

belongs, if any. This is why, as far as the process is concerned

sending and receiving are simple local operations.

The description of a process is incomplete if its behavior, B(p),

is not specified. In sequential programming the behavior is given by

the flow of control defined by means of predetermined control

abstractions called constructs (IF-THEN-ELSE, WHILE-DOetc.).

Concurrency, however, requires more sophisticated approaches. The most

straightforward approach is to assume each process to be a sequential

program (thus using the ordinary flow of control constructs) but to

augment it with several communication primitives (e.g., send, receive)

whose semantics establish the rules for interaction between concurrent

36

processes. PLITS [14] 3nd Hoare's proposal for communicating parallel

processes (15) are relevant examples falling in this category. Hoare's

ideas are particularly important because of the inclusion of

nondeterminism (guarded commands) which, in our opinion, is fundamental

to the ability of modeling distributed systems. One problem regarding

this particular approach to behavior specification is its highly

procedural nature which makes it inadequate particularly for use in

hierarchical specifications.

Less procedural methods have been proposed: path expressions

controlling access to monitors in Path-Pascal (6), event expressions

specifying the desirable behavior in DREAM (7], flow expression (16),

event ordering [10), etc. Among them Greif's partial orders over events

has been judged to be the most appropriate because of its power of

expression, conceptual simplicity and non-procedural nature. A version

thereof has been adopted for the purpose of describing the process

behavior and, as direct consequence, the behavioral constraints over the

net resulting from the refinement of the process. The process behavior

B(p) is specified as a set of expressions called behavior formulas

defined below.

DEFINITION:

A behavior formula is a sentence generated through the use of the

following rules:

<behavior-formula> ::= <behavior-formula> ^ <behavior-formula>

<behavior-formula> ?? <behavior-formula>

- <behavior-formula>

<quantifier> <event-var> : <behavior-formula>

<event-order>

<event-var> = <event>

<event-order> ::= <event> < <event>

37

Mob

::<event> << <event>

(<condition>) <event>

(<condition>) <event> < <event>

(<condition>) <event> << <event>

<condition> <condition> and <condition>

<condition> or <condition>

<condition>

<quantifier> <value> : <condition>

<message-receiving-procedure>?

:rn <predicate-over-value-designators>

<event> <list-of-new-value-designators> =

<transformational-procedure>

(<list-of-val ue-designators>)

<message-receiving-procedure> ?

<list-of-new-val ue-designators>

<message-sending-procedure>

<list-of-value-designators>

<value designator> <letter> <string-of-letters-and-numbers>

Events correspond to instances of procedure invocations. Their

returned values receive unique names, value designators, to be used for

further reference in expressing conditions or as parameters to other

procedures. Here are three sample events:

z = TRANSFORMATION (xy)

RECEIVE ? u

SEND (vw)

Conditions such as

(x:y and RECEIVE?)

are predicates over returned value but also allow for determining the

38

existence of potential messages pending at a particular port. They play

a role similar to the conditions of a SELECT construct. For instance,

the formula

(x~y and RECEIVE?) RECEIVE ? z

indicates that some message z is read in whenever x and y denote the

same value and there is a message pending on the receiving port.

Event ordering is denoted by the symbol '(' which when placed

between two events, El and E2, ought to be understood to mean "event El

is followed immediately by event E2". A formula such as El << E2,

however, should be read as El is followed by E2". Conditions preceding

an event ordering apply to the ordering and not to the event present on

the left hand side of the order symbol. Therefore.

(x~y) El

means El may occur if x and y denote the same value, while

(xy) El < E2

states that E2 immediately follows El whenever El occurs but only if x

and y denote the same value.

The description of the process behavior most often involves many

formulas. Value designators used across formulas are assumed to refer

to the same value. Consequently attention must be paid to the fact that

the use of a particular value, under all circumstances, ought to be

preceded by its generation. With these short explanations, the meaning

of the behavior formulas ought to be easily grasped. On occasion short

forms of the formulas will be used. For this reason the reader needs to

keep in mind the following simple conventions: (1) value designators are

39

omitted where superflows, (2) all procedure names appear in capital

letters and on occasion may include lower case subscripts, (3) all value

designators use lower case letters, (4) formulas of the type El < E2 and

E2 < E3 may be combined giving El < E2 < E3, and (5) superscripts denote

distinct instances of the same entity. Using these rules, one version

of the reader/writers problem for a process that accepts read and write

requests from k other processes may be expressed by means of three

behavior formulas:

Vij with 1<i,j<k

READ.REQ(i)! READ.REQ(i) < BEGIN.READ(i) << READ(?) <<..<<

Read(?) << SEND.DATA(i)

WRITE.REQ(j)! WRITE.REQ(j) < BEGIN.WRITE(j) < WRITE(?) <...<

WRITEC?) <END.WRITE(j)

?WRITE(j) (BEGIN.READ(i) << WRITE(j) <<SEND.DATA(i))

The design of a device performing real-time hidden surface

elimination will be used for exemplification purposes. This example

illustrates the basic ideas on a real life sophisticated problem

involving very severe and also diverse performance constraints. The

example is separated into several parts. The first part deals with the

functional description of a proposed real-time hidden surface

elimination device [17). The device assumes objects to be represented

as selections of colored planar triangles in some three-dimensional

environment, a cube of some predetermined size 2k. Objects may be

subject to various real-time transformations (e.g., rotation, scaling,

translation). The screen is assumed to contain m x n pixels, i.e.,

image elements. The image appearing on the screen is that seen by an

observer through a window of size m x n placed on the center of one of

the environment cube's faces. For simplicity only, the viewpoint is

~40
.. _ - -o

assumed fixed at infinity (orthonormal view).

The device is presumed to contain a description of all the objects

in the environment. Furthermore, it has three ports: one for receiving

commands specifying object transformations (GETCMND); the second for

receiving signals telling the device which pixel ought to be considered

next (GETPIXEL); and the third (SENDPIXEL) for sending to the screen trie

coordinates of the pixel, the ID of the visible object (for being able

to point to objects through the use of a light-pen), the depth of the

displayed point, and its color. A formal definition of the device is

given below where the device is treated as a single process called VIE5.

41

PROCESS VIEW.

DATA.

ENTITIES: triangles(i) = (id(i), p1(i), p2Ci), P3(i), c(i)) for

i=1, 2.., N

INVARIANT: id(i) in IDSET

p1(i). p2(i), p3(i) in (-k. +k]C3)

c(i) in COLORSET

PROCEDURES.

OBJTRANS

INTERFACE: OBJTRANS(objectid, transformation)

INPUT-ASSERTION: objectid in IDSET function(transformation) T1' in T where T is the set of all possible object

OUTPUT-ASSERTION: for every i:

id(i)=objectid=>triangle(i):(id(i),t(pl(i),p2(

p3(i) c(i))

RETURN-VALUE: none.

VISIBLE.

INTERFACE: (id. z-coord, color)=VISIBLE(current-x-coord,

142

cur rent-y-coord)

INPUT-ASSERTION: 1 < current-x-coord < m

1 < current-y-coord < n

O UT PUT-A SSE RT ION: true

RETURN-VALUE: id =id(i)

color =c(i)

z =intersect (triangle(i), current-x-coord,

current-y-coord)

where ?(j): z~intersect (triangle(j),

current-x-coord. current-y-coord)

GETCMND.

INTERFACE: GETCMND ? (objectid, transformation)

INPUT-ASSERTION: true

OUTPUT-ASSERTION: true

RETURN-VALUE: objectid ? IDSET

function(transformation) t ? T

where T is the set of all possible object

transformations and t: (-k, +k](3) ? (-k,

+k3 (3)

43

GETPIXEL.

INTERFACE: GETPIXEL ? (currerit-x-coord. current-y-coord)

INPUT-ASSERTION: true

OUTflPUT-ASSERTION: true

RETURN-VALUE: 1 < current-x-coord < m

1 < current-y-coord < n

SEND PIXEL.

INTERFACE: SENDPIXEL ! (id. x-coord, y-coord, z-coord,

color)

INPUT-ASSERTION: id ? IDSET

1 < x-coord < m

1 < y-coord < n

-K < z-coord < +k

color ? COLORSET

OUTPUT-ASSERTION: true

RETURN-VALUE: none.

BEHAVIOR.

414

(GETPIXEL ?) GETPIXEL ?(x.y)«C(id ,z,c)=VISIBLE(x,y)(<

SEND PIXEL!(id ,x Iy,z,c

(GETCMND ?) GETCMND ?(obj~t)

(x~y:1)GETCMND?(Obj ,t)(<OBJTRANS(Obj~t)

(xq:1l)OBJTRANS(obij,t)((VISIBLE(x~y)

45

2.2.1.2 Net Definition

Several processes communicating among each other form a net. It

represents an accurate model of a system whose data and processing are

both distributed. Furthermore, by decomposing component processes into

respective nets, a hierarchical description of the system may be

constructed. This, in turn, allows the designer to systematically

evaluate distinct levels of distribution: geographic, local, etc.

The approach described here differs from other such as, RSL [8],

DREAM (7), and PLITS (14] in two fundamental ways. Firstly, it is the

very strong emphasis on the separation of concerns principles as

reflected by the process definition and also manifest in the definition

of the net. Secondly, it is the flexibility to choose, within a net,

any communication scheme deemed appropriate for representing the system

at hand.

DEFINITION:

A net is defined as:

n = (P, G, C)

where

P is a finite set of processes.

G is an interconnection graph which maps each receiving port of

some process from P to at most one sending port of some other

process in P.

C is a communication model establishing the order relationship

46

between send type events and receive type events. Behavior

expressions are used to aefine C in a manner similar to the

process behavior. Events that may De used to define C are the

send and receive events of processes from P and also additional

events required to achieve specific communication protocols.

By using the behavior expressions, the communication protocol used

by Hoare in [15] could be simply written as follows:

send.to.b! (x) < receive.from.a? (y) with y=x

A less restrictive protocol could allow the sending process to continue

before the actual receipt occurs, if it ever does;

send.to.b! (x) << receive.from.a? (y) with y=x

(Note that proper ordering of receipts is not guaranted).

It is now possible to present a distributed version of the hidden

surface elimination device.

The distributed solution assumes the existence of n processes, (1 <

i < n), one for each triangle, forming a unidirectional pipeline.

Messages flowing along the pipe (from i to i+1) contain either commands

or the coordinates of the current pixel P(xy) along with the depth,

color, and object name associated with that pixel, so far. For each

pixel P(xy), a process i checks the line segment starting from the

viewpoint and passing through the point (x,y) on the screen for

intersection against the triangle it controls. Whenever one or more

intersections are detected, the depth and color of the intersection

closest to the viewer are computed and compared with the data received

from the left neighbor. The data sent to the right neighbor is adjusted

accordingly. While i computes the depth and color of the i'th triangle

"7

relative to pixel P(xy), its left neighbor, i-1, is already considering

the (i-1)'th triangle against the pixel following P(xy). Thus, at the

end of the pipe, each pixel's minimum depth, corresponding color, and

object affiliation arrive at regular intervals and are placed in the

buffer of some display processor.

48

F"

Example (Part 2)

NET VIEW.

PROCESSES.

PROCESS UNITi.

DATA.

ENTITIES: triangle (id, pl, p2, P3, C)

INVARIANT: id ? IDSET

pl, p2, P3 ? [-k. k](3)

c ? COLORSET

PROCEDURES.

TRANS.

INTERFACE: TRANS (transformation)

INPUT-ASSERTION: function (transformation) t t?T where T is

the set of all possible transformations, and t:

[-k, +k3(3) ? [-k, +k3(3)

OUTPUT-ASSERTION: triangle = (id, t(pl, p2, P3), c)

RETURN-VALUE: none

49

DE PTH.

INTERFACE: z DEPTH (current-x, current-y)

INPUT-ASSERTION: 1 < current-x < m

I < current-y < n

OUTPUT-ASSERTION: true

RETURN-VALUE: z = intersect (triangle, current-x, current-y)

GETCMND.

INTERFACE: GETCMND? (objectid, transformation)

INPUT-ASSERTION: true

OUTPUT-ASSERTION: true

RETURN-VALUE: objectid ? IDSET

function (transformation) = t

t?T where T is same as above

PASCMND.

INTERFACE: PASSCMND! (objectid, transformation)

INPUT-ASSERTION: objectid ? IDSET

function (tranformation) t

50

t?T where T is same as above

OUTPUT-ASSERTION: true

RETURN-VALUE: none

GE TPI XEL.

INTERFACE: GETPI XEL? (current-x-coord, current-y-coord)

INPUT-ASSERTION: true

OUTPUT-ASSERTION: true

RETURN-VALUE: 1 < current-x-coord < mn

1 < current-y-coord < n

SENDPIXEL.

INTERFACE: SENDPIXELI (id, x-coord, y-coord, z-coord,

color)

INPUT-ASSERTION: id ? IDSET

1 < x-coord < mn

1 < y-coord < n

-k < z-coord < +k

color ? COLORSET

51

OUTPUT-ASSERTION: true

RETURN-VALUE: none

COMPARE.

INTERFACE: (new.id, new.z, new.c) ssCOMPARE (c.id, c.z,

c.c, Z)

INPUT-ASSERTION: c.id ? ID6ET

-k < c.z < +ok

-k < z< +ok

c.c ? COLORSET

OUTPUT-ASSERTION: true

RETURN-VALUE: new.id =c.id

flCw.0 c.c if z < 0.a

new.z = ca

new.id id

new.c a if z <0ca

new.z z

BEHAVIOR.

52

(GETCMND?) GETCMND(o1d ,t-)

(oid~id & C.Zzc.y:1) GETCMND(oid,t)«<TRIANGLE)

(oid~id & c.xmc.ysl)TIANS(t)<(Z:DEPTH(c.x,c.y)

GETCMND(oid .t) (< PASSCMNDC aid ,t)

(GETPIXEL?) GETPIXCEL?(c.id, c.x, c.y, ca, c.c)

<< z=DEPTH(c.x, c.y)

<< (new.id, new.z, new .c) CO#PARE(c.id,

C.z, c.0, z)

<< SENDPIXEL(new.id. C.X, c.y, new.z, new.c)

L INKS

GETCMND of i to PASSCMND of i-1 unless izl

GETPIXEL of i to SENDPIXEL of i-1 unless im1

COMMUNICATION

PASSCRkND(i) (oid(i), t(i)) << GETCMND(i+1) (oid(i#1), t(i+1) with

SENDPIXEL(i) (id(i), x(i), y(i), V~i), c(i) << GETPIXEL(i4.1)

X(1) zX(W.) y(i) z y(ie) z(i) =z(i+1) CMi c (i.1)

53

2.2.2 Performance Specifications

Performance is defined here as the ability of some system to meet a

set of stated constraints. The constraints are assumed to be expressed

in objective, precise terminology even when their origin might be

entirely subjective.

The nature of the stated constraints is the determining factor for

the manner in which the performance checks need to be carried out. One

taxonomy of constraints may divide them into quantitative and

qualitative. The quantitative constraints place bounds on various

performance indices such as those used to measure productivity,

responsiveness, or utilization. The indices are derived by employing

mathematical and/or simulation techniques in the context of particular

system models. The qualitative constraints, on the other hand, specify

non-numeric properties of the system, properties that can be checked by

analyzing the system or its specifications. Examples of qualitative

constraints are single fault recovery, hardware regularity, and single

source procurement.

Another way of categorizing constraints is by considering their

relevance domain rather than their nature. The new taxonomy could, for

instance, separate performance constraints into:

(1) Constraints pertinent to the technical aspects of the system.

(2) Constraints regarding the system's development (they bring

into play factors such as time, cost and resources, aspects

which undoubtedly have a significant impact on the design

decision making process).

(3) Constraints related to product enhancement and maintenance.

5"

(4) Constraints over the potential environmental impact such as

personnel retraining, human interfacing, etc.

Such an explicit and broad constraints-oriented perspective on

performance is not too common in current literature. As a matter of

fact, work pertinent to various classes of constraints fall into

separate (often isolated) research areas (e.g., fault tolerance,

performance modeling and simulation, reliability, software economics,

etc.). Growing emphasis on building formal systems specifications.

however, is certain to produce a unified view of performance through the

development of functional/performance specifications.

While the advantages of basing performance evaluation directly on

the functional specification have been recognized for quite awhile,

there are few published results. Automatic generation of simulation

models have been described in conjunction with some specification

languages such as RSL [8) and DREAM [7). More recently, the concept of

performance abstract data type has been proposed by Booth and Wiecek

[13].

Fundamental to the development of performance specifications is the

question of how they ought to be combined with the functional

specifications. This is the main Issue addressed by this section which

advocates the notion of extending the functional specifications to

include performance attributes and constraints. The latter are to be

stated as predicates over the functional characteristics of the system

and the relevant performance attributes.

DEFINITION:

A process whose specification includes performance data is called a

performance process. A formal definition is given below.

55

-- --It - -

p = (p. W, E, K)

where

- p is a process

- W is a set of attributes some of which are basic while others

are derivable from the ones that are basic.

- E is a performance evaluation model which describes the manner

in which basic attributes are related to entities of the

process and the rules needed to compute the derived attributes.

- K is a set of constraints expressed as predicates over the

values associated with the members of W.

2.2.2.1 Performance Process Definition

For the sake of clarity this section considers the way

performance attributes and constraints relate only to process

specification. Nevertheless, it is important to keep in mind

at all times the dynamics of constraints propagation. During

top-down design, constraints over some level n are checked for

satisfiability by making reasonable assumptions about some of

the attributes. These assumptions reflect performance

expectations with respect to lower levels of the design and.

thus, they transform into constraints that are imposed by level

n on subsequent levels. Once the level of detail suffices as

to replace some assumptions with actual performance data (i.e.

validated assumptions), an upward flow of corrected performance

information may be generated thus providing increased accuracy

to the results of earlier analyses. If some of the

56

assumptions, however, are proven wrong a certain amount of

redesign is needed. The emphasis on top-down propagation of

constraints marks a departure from Booth and Wiecek approach

that seems to focus primarily on the nature of the bottom-up

flow of performance information.

The basic attributes are the key to both top-down

propagation of constraints and the bottom-up flow of validated

performance data. They bias design choices toward those that

seem to make the safest assumptions about basic attributes and

also have least difficulty in meeting the constraints, given

those assumptions. Any such performance process for which the

constraints are met, given the assumptions made about the basic

attributes, will be called a partially satisfied process. In

contrast, a totally satisfied process denotes a process whose

const"aints are met by a complete set of validated attributes.

It is the result of the bottom-up propagation of validated

assumptions.

The nature of the basic attributes is quite diverse. It

depends, first of all, upon the functional entities which they

characterize. Data attributes (such as storage space or

maximum record size), for instance, need to characterize both

assumptions about invariant properties of the data and the

temporal qualities affected by procedure invocations.

Attributes associated with various procedures (e.g., delay)

typically depend upon the input/output parameters and the data

entities involved, while behavior attributes (e.g., average

response time) need to relate to the procedures being

sequenced.

The nature and objectives of the evaluation are another

factor. Different attributes are considered when constraints

57

are over throughout rather than development time or
reliability. Furthermore, the use of a deterministic versus
stochastic approach also alters the type of the basic
attributes, as illustrated by the two examples below.

58

Example (A performance process employing a deterministic performance

evaluation model).

PROCESS SAMPLEI

DATA.

ENTITIES: a ATTRIBUTE size

INVARIANT: ...

PROCEDURES.

GET.

INTERFACE: GET?(x) ATTRIBUTE time(GET) 5*size(x)

INPUT-ASSERTION: ...

OUTPUT-ASSERTION:

RETURN-VALUE: ...X... ATTRIBUTE size

UPDATE.

INTERFACE: y = UPDATE(v) ATTRIBUTE time(UPDATE)

size(a)/2 size(v)

INPUT-ASSERTION: ...

OUTPUT-ASSERTION: ...

59

- ~-- a -4i

RETURN-VALUE: ... y... ATTRIBUTE 31ze(y) =2

CORRECT.

INTERFACE: z =CORRECT(w) ATTRIBUTE timeCCORRECT)

3*3ize(w)

INPUT-ASSERTION: .

OUTPUT-ASSERTION:

RETURN-VALUE: ATTRIBUTE size(z)

SEND.

INTERFACE: SENDI(u) ATTRIBUTE time(SEND) 3

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE:

BEHAVIOR.

(GET?) GET?(x < y =UPDATE(x)

(y=UPDATEWi << z CORRECT(y)) v (y UPDATEWx << z

CORRECTx)

y aUPDATE,c << SENDI(y) << GET?(#)

zz CORRECT(' << GET ?(#)

60

- Al-o

CONSTRAINTS. (status totally satisfied)

"Average response time, artime, must be shorter than 800".

artime < 800

where artime is defined as the average time between consecutive

invocations of the GET procedure when data is assumed to be always

available for being read in.

ASSUMPT7IONS.

size(a) = 1000 (basic-validated)

size(x) = 10 (basic-validated)

artime < 593 (derived-validated)

"The validation of artime is based on the following

artime < time (GET?(x)) + time (y = UPDATE(x)) +

max (time (z = CORRECT(y)), time (z CORRECT(x))) +

time (SENDI(z))

5 0 size(x) + size(a)/2 + size(x) +

3 * max (size(y), size(z)) +

3

- 593

61

This formula for artime is deductible from the definition of the

process behavior".

62

Example (A performance processing employing a stochastic performance

evaluation model.)

PROCESS SAMPLE2

DATA.

ENTITIES: a ATTRIBUTE size

INVARIANT:

PROCEDURES.

GET.

INTERFACE: GET?(x) ATTRIBUTE time(GET)

5*size(x)

INPUT-ASSERTION: ...

OUTPUT-ASSERTION: ...

RETURN-VALUE: ...x... ATTRIBUTE size

UPDATE.

INTERFACE: y = UPDATE(v) ATTRIBUTE time(UPDATE)

size(a)/2 + size(v)

INPUT-ASSERTION: ...

OUTPUT-ASSERTION:

63

-Mimi"

RETURN-VALUE: ... y... ATTRIBUTE size(y) 2

CORRECT.

INTERFACE: z CORRECT(w) ATTRIBUTE time(CORRECT)

- 3*size(w)

INPUT-ASSERTION: ...

OUTPUT-ASSERTION: ...

RETURN-VALUE: ...z... ATTRIBUTE size(z) = I

SEND.

INTERFACE: SEND!(u) ATTRIBUTE time(SEND) 3

INPUT-ASSERTION:

OUTPUT-ASSERTION: ...

RETURN-VALUE:

BEHAVIOR.

(GET?) GET?(x) < y x UPDATE(x)

(y a UPDATE(x) << z x CORRECT(y) ATTRIBUTE probl) or (y s

UPDATE(x) << z CORRECT ATTRIBUTE prob2 1 - probi)

y * UPDATE(x) << SENDI(y) << GET ?()

64

z CORRECT(*) <(GET ?(')

CONSTRAINTS. (status = partially satisfied)

"Average response time, artime, must be shorter than 580".

artime < 580

where artime is defined as the average time between consecutive

invocations of the GET procedure when data is assumed to be always

available for being read in.

ASSM4PTIONS.

size(a) :- 1000 (basc-validated)

size(x) z 10 (basic-validated)

probi = 14/24 (basic-assumed)

prob2 = 10/24 (derived)

artime = 579 (derived)

"The derivation of artime is based on the following

artime = time (GET?(x)) + time (y = UPDATE(x)) +

probi * time (z = CORRECT(y)) +

prob2 * time (z z CORRECT(x)) +

time (SENDt(z))

65

i .. ---------

I-.

5 0 size(x) + szeCa)/2 + sze(x)

probl * 3 * size(y) +

(1 - probl) • 3 size(x) +

3

= 50 + 500 + 10 + probl * 6 + (1 - probl) • 30 3

= 593 - 24 0 probl

which results on

probl > 13/24

Assuming probi = 14/24, artime z 579 < 580".

The two examples above demonstrate the feasibility and some of the

advantages derived from the use of functional/performance specification.

There are however major issues that still await resolution. Among them,

an important one is the (partial and total) satisfiability of the

constraints. The examples employed an analytic approach but, depending

upon the nature of the problem or the methodology being used, simulation

may be required. The simulation itself may need to be (1) trace-driven

when real data is available, (2) program-driven when the workload is

describable in some problem-oriented language or (3) distribution-driven

when stochastic models are used to represent certain input attributes.

A facility meant to automate the satisfiability checks most certainly
would need to incorporate the entire range of tools.

The same specifications and tools should be expected to support not

66

only the design proper but also the performance of hardware/software

trade-offs. The case study will show how machine models could be

employed to determine the feasibility of placing one or more processes

on the same physical processor. In general the models may vary

considerably in nature from an n-tuple of machine attributes such as

(instruction execution time, core size, disk access time, disk storage

size) to a detailed specification in a hardware specification language

such as SMITE [18]. In the former case, the matching of the machine to

the performance process can be verified analytically, while in the

latter case critical software components are actually executed by

emulating the described hardware and monitoring the performance.

67

..

2.2.3 References

[13 Ross, D. T. and Schoman, K. E., "Structured Analysis for

Requirements Definition", IEEE Trans. on Soft. Eng. SE-3,

No. 1, pp. 6-15, January 1977.

[2) Robinson, L. and Levitt, K. N., "Proof Techniques

Hierarchically Structured Programs", CACM. 20. No. 1 pp.

271-283, (April 1977).

[3) Liskov, B. H. and Berzins, V., "An Appraisal of Program

Specifications", Research Directions in Software Technology,

P. Wegner (Editor), pp. 276-301, MIT Press, 1979.

[4] Liskov, B. H., Snyder, A., Atkinson, R., and Schaffert, C.,

"Abstraction Mechanisms in CLU", CACM 20, No. 8, pp 564-576,

August 1977.

[5] Wulf, W. A., London, R. L., and Shaw, M., "An Introduction

to the Construction and Verification of Alphard Programs",

IEEE Trans. on Soft. Eng., SE-2, No. I pp. 253-265,

(December 1976).

[63 Campbell, R. H., and Kolatad, R. B., "Path Expressions in

Pascal", Proc. 4th Tulp. Conf. on Soft. Eng. pp. 212-219,

1979.

E7) Riddle, W. E., Wiledon, J. C., Sayler, J. H., Segal, A. R.

and Stavely, A. M., "Behavior Modeling During Software

D0uign." IEEE Trans. on Software Engineering. SE-4, No. 4,

pp. 283-292, July 1978.

68

[8] Bell, T. E., Bixler, D. C. and Dyer, M. E., "An Extendable

Approach to Computer-Aided Software Requirements

Engineering", IEEE Trans. on Soft. Eng., SE-3, No. 1, pp.

49-60, January 1977.

[9] Owicki, S. S. "Axiomatic Proof Techniques for Parallel

Programs". Ph.D. Thesis, Report TR-75-251, Cornell

University, July 1975.

(10] Greif, I., "A Language for Formal Problem Specification."

CACM 20, No. 12, pp. 931-935, December 1977.

(11] Wegbriet, B., "Verifying Program Performance", CACM, No. 4,

pp. 691-699, (October 1976).

[12] Guttag, Z., "Abstract Data Types and the Development of Data

Structures", CACM 20, No. 6, pp. 396-404, June 1977.

[13] Booth, T. L., and Wiecek, C. A., "Performance Abstract Data

Types as a Tool in Software Performance Analysis and

Design", IEEE Trans. on Soft. Eng., SE-6, No. 2, pp.

138-151, March 1980.

[14] Feldman, J., "High Level programming for Distributed

Computing", CACM 22, No. 6, pp. 353-368, June 1979.

[15) Hoare, C. A. R., "Communicating Sequential Processes", CACM

21, No. 8, pp. 666-677, August 1978.

[16] Shaw, A., "Software Descriptions with Flow Expressions",

IEEE Trans. on Soft. Eng., SE-4, No. 3, pp. 242-254, May

1978.

69

J - - C

(17) Roman. G. C. and Kimura, T., "AVLSI Architecture for

Real-Time Color Display of Three-Dimensional Objects", Proc.

of Delaware Bay Computer Conference, March 1979.

[18) McClean. R. K. and Press, B., "The Flexible Analysis,

Simulation and Test Facility: Diagnostic Fhulation",

Technical Report TRW-SS-75-03. TRW Defense and Space

Systems Groups, Redondo Beach, CA 90278.

70

I

2.3 H/S TRADEOFFS METHODOLOGY FUNDAMENTALS

2.3.1 Methodological Approach to Binding

The importance of the binding phase lies in the fact that it brings

system development for the first time into the realm of the tangibles

with which the customer is more familiar. As a consequence, however,

the issues become more complex as economic, political, social, and other

considerations gain significance alongside the strictly technical

aspects. The significance of this phase rests, therefore, upon the

impact it has on the success or failure of some system.

The complexity of binding has long been recognized [4) even for the

somewhat simpler situation when a single computer system is to be

purchased. The difficulties stem from the growing multitude of feasible

alternatives, the virtual impossibility to objectively compare highly

dissimilar systems, the lack of sophistication of the performance

measurements, the complexity of evaluating cost and human factors, the

subjectivity of the selection team, its role, power, and composition,

etc. As one considers distributed systems and custom-made components,

the complexity grows many fold with the technical expertise required of

the selection team increasing accordingly.

The difficulty of binding can be alleviated to some degree when one

considers as input the processing model advocated in the realization

phase. The reason is to be found in the considerable amount of

information regarding the characteristics of the system already

available In the processing model. It includes for each processor the

processes that compose it, their performance constraints and

functionality, and the data involved, along with expected volume and

access patterns. Furthermore, communication protocols among processors

and related constraints (e.g., data rate, acceptable delays, etc.) are

71

- -- -SA-

also part of the model which has been subjected to extensive

optimization attempts.

This section emphasizes primarily the technical issues related to

binding: performance of hardware/software tradeoffs using as the

objective function complexity, risk and development cost minimization.

The fundamental assumption is that, based on this approach, several

alternatives may be chosen in an objective manner, leaving the final

decision-making body to consider fewer configurations and reevaluate

them based on additional less quantifiable criteria (e.g., vendor's

reputation, future needs, maintenance costs, need for standardization,

delivery schedule, experience with particular hardware, economic trends,

politics, etc.).

The binding strategy takes advantage of the top-down organization
of the processing model in order to minimize not only the objective

function but also the effort required to carry out the binding.

Furthermore, various binding options are considered on a priority basis.

A lower priority option is introduced only when increased levels of

distribution cannot satisfy the performance needs given the current

option or become prohibitive in terms of cost. Furthermore, given a

feasible option, an attempt is made to minimize cost and number of

components (when cost differences are small).

The number of binding (i.e., hardware/software partitioning options

is surprisingly large. The more commonly encountered options are listed

below:

o All software (i.e., software on already given hardware)

o Software/commercial-computers systems (i.e., computer system

selection)

72

o Software/customized-commercial minicomputer (i.e.. micro-

programmable mLinis)

o Software/customized-firmware/custom-mini

o Firmware/custom-hardware

o All hardware (SSI, LSI, VLSI)

The first step of the birding phase (see Figure 2.3.1-1)

identifies the minimum distribution requirements, i.e., what

processori are prohibited from being implemented on the same

(physical) machine. This is done by reviewing pertinent

customer imposed constraints (e.g., survivability, fault

tolerance, etc.) and by recognizing performance constraints

which obviously require distribution. Next, tightly coupled

processors of comparable structure, behavior, and performance

are grouped into clusters. They represent areas of hardware

regularity which ought to result in uniform binding, i.e., each

processor in the cluster is bound to the same type of physical

I[machine.

Based upon the characteristics of its members, a binding

option is selected for each cluster. Every time an option is

considered, selection rules for determining the set of viable

candidates are established. They help in reducing the number

of candidates to those that have a better than average chance

of success and satisfy all the basic binding constraints. The

rules have to be simple to apply, making initial candidate

selection trivial.

Once the candidate set has been chosen, each candidate is

evaluated with respect to the cluster. The evaluation method

73

- -.............. .-

depends on the current option. Its role is that of determining

how good a match the candidate is for the particular cluster.

Each processor is mapped into a physical machine. The mapping

is verified and later evaluated with respect to performance and

other qualities that the system must exhibit. Candidates that

are too powerful or not powerful enough are rejected. A good

match between some candidate and the cluster results in a

successful binding which, along with other successful bindings,

is saved for future consideration. Failure to bind at least

one of the candidates results in taking one of the following

three courses of action: further distribution of the processors

in the cluster, selection of a different binding option, or

restructuring of one or more clusters.

The strategy above results in a number of possible

configurations. Not all of them are viable due to

incompatibilities that may occur when communicating clusters

are separately bound. AS such, all incongruent configurations

need to be discarded before continuing with the binding of the

communication links.

At this point a final validation of each configuration

takes place, and all acceptable configurations receive a

cost-value coefficient. The cost estimates ought to include,

in each case, hardware costs, software costs (two equally

priced machines but having different software results in

different software development costs), and communication costs.

The final choice is determined by contrasting the cost of the

various alternatives (development cost plus any other cost

factors) and by considering any other issues perceived to be

relevant to the decision in question. Thus, the binding

approach proposed here combines in an elegant manner systematic

objective evaluation and subjective selection.

74

The binding phase, however, cannot be completed until

precise and complete Software and hardware requirements are

generated, thus assuring the stability of both types of

components during the implementation and manufacturing phases.

Unless the requirements are frozen at the end of the binding

phase, the system is "bound" to fail. Hardware requirements

must identify the exact hardware and accompanying software to

be procured or, if custom items are present, their

functionality, hardware interfaces, storage requirements,

performance constraints, and configuration constraints. With

respect to the software requirements (other than purchased

software), they ought to state functionality, data needs,

interfaces, performance constraints, and the development

language. Based on these requirements, procurement and/or

implementation may start without any risk.

The remaining subsections elaborate on issues specific to

each of the four key binding options.

75

Identify Mlininum Distribution

I
Identify Clusters _ _

I

For every Select Binding Option

cluster I
Develop Candidate Selection Rulesa
Select Candidates

I
For every r.Generate Cluster/Candidate Map

Verify Happing

Performance Check

Qualitative Check

Accept Candidate Reject

j /Restructure Clusters

Review Cluster Binding -ZIncrease Distribution

\Consider New Option

Eliminate Incongruent Configurations

For every Bind the Communication

configuration I

Validate the Configuration 0 Reject

Assign Cost-Value Coefficient

Limit the Number of Configurations

Select Winning Configuration

Generate Hardware Requirements

Generate Software Requirements

FIGURE 2.3.1-1: Binding Phase

76

2.3.2 Selection of Commercial Computer Systems

The selection of commercially available computer systems is the

most frequent binding option encountered by system developers. Despite

its practical importance and the considerable attention it has received
(4, G), computer system selection continues to be carried out in an

ad-hoc subjective manner. The reasons are many. Exposure to a

particular vendor may breed a sense of familiarity and comfort. The

objective techniques available for selection are complicated and costly.

Actually, there are two distinct issues that make the selection

difficult: Candidate evaluation and assignment of a cost-value

coefficient.

The candidate evaluation steps are aimed at determining the ability

of the candidate to support the performance and other needs of the
processors involved. A survey of various approaches employed today is

available in [g] along with an extensive bibliographical list. The

sophistication and basic philosophy of the different approaches show

tremendous variability. Some of the most primitive techniques are based

on hand calculations. They require one to estimate the number of

various types of computations and device accesses and to compute a total

time based on the time required to perform each operation. Such

measurements are suitable only for relatively simple systems.

In the category of inexpensive experimental techniques, instruction

mixes and kernels are used. Small programs or sets of concurrent tasks

are carefully designed so as to permit extrapolation of performance data

for the case of actual large programs. A superior but also costlier

group of techniques includes artificial, standard, and live benchmarks.

The construction of the transportable benchmark is expensive and

impractical when the software has not yet been designed. Modeling and
simulation [1, 2, 6J appear to be the most promising approach and best

77

suited for use in connection with the data already existing in the

processing model. Nevertheless, there are severe limitations in the

usage of such techniques.

With respect to assigning a cost-value coefficient, objective

techniques fall into two categories: the weights and score approach and

the cost-value technique. The first technique starts by assigning

weights to the different features or characteristics required or desired

from the candidates. Subsequently, each candidate is given a score for

each weighted feature or characteristic. The total (weighted) score is

used to determine the finalists. The cost-value technique [4] replaces

weights and scores by cost. All desirable features and characteristics

are assigned a dollar value based on how much they are worth to the

customer. The actual cost of the machine is reduced by the value of all

desirables that come along with the machine. A few lowest cost machines

become the finalists. However, the cost associated with each candidate

should be based on purchase price, plus the cost of developing the

software for that machine, and minus the value of desirable features.

Existing software for some machines (e.g., availability of a database

facility) impacts significantly the total development cost. Good

software cost estimation tools are required to support such cost

computations.

78

2.3.3 Selection of Customized and Custom-Made Machines

The option of partitioning the system's function between software

and customized or custom-made machines is exercised typically in those

circumstances when important special performance requirements need to be

met and commercially available machines cannot satisfy them. In such

cases the developer may choose to modify the firmware of some

off-the-shelf available minicomputer or to specify a custom-made

minicomputer. The latter solution is often adopted for airborne

computers which have to meet special weight, volume, power, and

reliability requirements.

Within each one of the two options, cost differences between

various candidates are not very significant. As such, the key steps are

the candidate selection and evaluation, i.e., finding some candidate

that is able to satisfy the requirements. For customized machines, the

architecture is fixed but the instruction set may be altered.

Custom-made machines require one to consider both architectural and

instruction set alternatives -- there is an extra degree of freedom.

Nevertheless, the same candidate evaluation techniques may be employed

in both cases.

The candidates may be evaluated through the use of live benchmarks.

A few very sensitive software components are implemented and used as

benchmarks. The ability to satisfy the performance constraints of these

components assures that all other performance constraints can be met.

The benchmarks may be run on simulated machines, on specially designed

evaluation based testing facilities, or on prototype machines.

Effective simulation requires the availability of a good hardware

description language and extensive diagnostic and monitoring facilities.

Because simulations are slow and expensive, special facilities using

79

emulation [5, 3] have been built. They are able to increase

considerably the productivity of the candidate evaluation step. Still

another possibility is that of developing a prototype machine. For

customized machines, all it requires is the replacement of the

microcode. For custom-made machines, prototypes can be emulated or

built quickly through the use of prefabricated modules such as those

described in [7]. The disadvantage of the prototypes over the use of

the test facilities is the lack of diagnostic and monitoring

capabilities, which may result in incomplete evaluations.

so

----------.----- ____

2.3.4 Electing Custom-Made (VLSI) Devices

A device is perceived here as a special purpose, high performance

hardware unit made out of custom VLSI chips. The ability to build such

devices has increased considerably in the last few years, but this

option is limited to the few that have access to chip manufacturing

facilities. Furthermore, the cost and risk factors are still quite

high.

The construction of such devices requires the development of

parallel algorithms having topological properties amenable to effective

chip layouts and exhibiting a high degree of regularity, extensive

concurrency, local communication, and considerable distribution of both

memory and computation. In other words, candidate selection becomes the
most difficult step by evolving into a parallel algorithm development

problem. The evaluation is not particularly simple, either, since it

has to consider technological limitations such as minimum achievable

gate delay, maximum transmission delay, maximum number of gates per

chip, and maximum number of pins per chip. [8] offers the reader an

example of such a special purpose VLSI device (a very high performance

real-time hidden surface elimination unit for three-dimensional color

graphics) including a discussion of,the manner in which it was developed

and the evaluation procedures employed in demonstrating the feasibility

of the approach.

81

2.3.5 References

[13 Browne, J. C., "A Critical Overview of Computer Performance

Evaluation", Proceedings of the 2nd International Conference

on Software Engineering, pp. 138-145, October 1976.

[2] Chandy, D. M. and Yeh, R. T. (editors), Current Trends in

Programming Methodology, Vol. III, Prentrice-Hall, 1978.

(3) Clark, N. B. and Troutman, M. A., "The System Architecture

Evaluation Facility, an Emulation Facility at Rome Air

Development Center", Proceedings of the 1979 National

Computer Conference, pp. 7-12, June 1979.

[4) Joslin, E. 0., Computer Selection. Addison-Weskey, 1968.

[5) McClean, R. K. and Press, B., "The Flexible Analysis

Simulation and Test Facility: Diagnostic Emulation",

Technical Report TRW-S-75-03, Redondo Beach, California

90278, 1975.

[6) Muntz, R. R., "Queueing Networks: A Critique of the

State-of-the-Art and Directions for the Future", C

Surveys 10, No. 3, PP. 353-359, 1978.

[7] Orstein, S. M., Stucki, M. J., Clark, W. A., "A Functional

Description of Macromodules", SJCC 30, 1967.

[8] Roman, G. C. and Kimura, T., "Real-Time Hidden Surface

Elimination Without Sorting." Technical Report WUCS-79-2,

Department of Computer Science, Washington University, St,

Louis, Missouri 63130, 1979.

82

--_ " L- -,,- - =- -- - -- . .

[91 Tinuireck, E. M., "Computer Selection 14ethodologym, Coup.

Surveys 5, No. 4, pp. 199-222, 1973.

83

L i m -- - -- -w-

3.0 The FAST Methodology

A formal foundation for developing a hardware/software tradeoffs

methodology was established in Section 2. In this section a step by

step development of the methodology is presented. The approach is begun

by formally defining FAST(Flexible, Analysis, Simulation and Test). The

definition is given in Section 3.1. Additional assumptions are stated,

and a framework for presenting each step of the methodology is

discussed. The framework gives the objective of the step (what it is

suppose to do); states the input needed to develop the step, suggest

procedures; tools and other techniques and the output created.

Finally, conclusion are drawn from the results of the above

activity and discussed in Section 3.5.

3.1 FAST Definition

FAST is a comprehensive hardware/software tradeoffs methodology.

It is comprehensive in the sense that its steps can be applied to a wide

range of system development problems, (e.g, Command, Control and

Communications, Weapons Embedded, General Data Processing and

Distributed Data Processing systems). The methodology has been
developed to cover the following system options:

Commercial-off-the-shelf systems, Machines that are microprogrammable,

custom-made and customized systems and system components. FAST is

composed of:

(1) A set of methodological steps for directing the tradeoffs

process.

(2) A hardware/software analysis component for selecting an

overall architecture.

84

4 ,

(3) A set of tools and procedures for implementing the steps and

performing the hardware/software tradeoffs analysis.

(4) A set of rules for incorporating the use of the methodology

into projects, and for ensuring control over and visibility

into the hardware/software tradeoffs process.

Several basic assumptions are established upon which FAST is based:

(1) The methodology is a sequence of development steps, each of

which is a refinement of the previous step, and develops more

detail about the system.

(2) Each of the steps develops a formal representation of the

system and gives a set of tools to operate on the

representation in order to validate its developing view.

(3) Each step is performed by following a set of rules and
procedures which encompass methods for formulating the system

into the proposed representation.

The interim technical report (27) detailed the motivation behind

FAST. Essentially, FAST is an outgrowth of TRW's computer architecture

technology studies embedded in its SMITE computer description language.

The steps of FAST shown in Figure 3.1, is an augmentation of the
classical software system development methodology successfully employed

by TRW for several years. The methodology begins with a formal

definition of system requirements, proceeds through a preliminary

hierarchical functional design of the system, and reaches an iterative

loop to conduct the hardware/software tradeoffs analysis. Candidates

for the tradeoffs analysis in the methodology are derived from

simulation studies of functional system design, and are evaluated

85

quantitatively using data gathered with some specified tool such as

emulation techniques. The augmented development cycle interfaces with

the implementation phase (Figure 3.1), using a software first "approach,

to avoid the excessive time usually required for serial

hardware/software development.

Essentially, the FAST Project sought to improve performance and

reliability of both hardware and software, by using diagnostic tools to

study different system configurations. The diagnostic emulation

techniques provided the capability of having one computer "Host", behave

exactly like a "target" computer. The requirements are that detailed

specifications of the target system are known and that the host is

microprogrammable. Software written for the target machine can be

executed on the host, producing exactly the same code. Using this

concept as a basis, the FAST methodology was created. By specifying an

integrated set of tools (for both hardware and software development).

It should be possible to serially produce hardware and software. The

thrust of the diagnostic emulation, put forth by TRW, was the

development of a higher order description language for programming the

diagnostic emulations. The language, Software Machine Implementation

Tool using Emulation (SMITE) describes the microprogram component of the

diagnostic emulators (34). To realize the full potential of FAST, a

need for other tools became apparent. For example, the concept of a

retargetable compiler (see Figure 3.1), for automatically compiling

object code. (20). The extent to which automated tools are used and at

what stages they are used gives a basic foundation for making a

hardware/software tradeoffs. A hardware/software tradeoffs is assumed

to be made when at some point in the design process choices are made

between functional system elements. Tools are used to enhance the

allocation of functions and to study the behavior of them. This portion

of FAST is the hardware/software tradeoffs allocation process embedded

in the hardware/software analysis component. Performance

specifications, management constraints, etc. make up the decision

86

portion of the process. To provide for system traceability and

cohesiveness a set of steps are needed to show exactly when and how a

process should be performed and what tools are best fitted for this

purpose.

The process of integrating the above approaches to address every

phase of the system development is referred to as a Total System Design

methodology (TSD). The TSD has as it basis the design of systems

independent of any real functional elements. Insteaa, as suggested in

(48), the TSD is an abstraction based on a careful examination of

numerous methodologies, both hardware and software, and the tools

supporting them. When these methodologies and tools are integrated, the

results is a Total System Design methodology framework. Extensive

research in this area has been given by Roman (48), the details of which

are summarized in Section 2 of this report.

The TSD supports a hardware/software tradeoffs component called

Binding. Binding is that portion of the TSD where the unique

characteristics of the hardware/software duality are recognized. Its

major role is to assign processors to specific hardware, and then

optimize the proposed system by performing a hardware/software tradeoffs

analysis. Figure 3.2 outlines the steps of binding. The process begans

by receiving as input a System Design Specification and its constraints.

It proceeds by identifying levels of distribution within the system,

performs the hardware/software tradeoffs and finally produces a set of

hardware/software documents. The arrows in the diagram indicate design

flexibility by allowing feedback between steps.

How exactly does FAST fit within the TSD framework? What are the

differences, and what are the similarities? Is there a common thread? It

will be re-emphasized here, that the TSD encompasses many methodologies

and serves as a basis for linking them together in some cohesive

framework. The .TSD takes a global view of the design process beginning

87

FAST METHOOOLOGY & CASE STUDY.(U)
NOV 80 F30602-79-C-0076

UNCLASSIFIED RAC-TR-80-336 NL

llI-u-.--iiuuuIuuuu*luululuInl
IEEIIEEEE-.IIIIIIIII.-

11111.25 liii 1411112~111 11 11 112-2

MICROCOPY RESOLUTION TEST CHART

'JA NAL IBURJAU Of ,TANDARL) IJ{ A

L

at the time a need for a system is conceived and interacts continuously

with the environment throughout the life of the system. FAST is

therefore a binding activity, having the same goals and system need. A

careful examination of Figure 3.2, will reveal that the following

corresponding steps exist between FAST and binding:

88

STEPS OF FAST CORRESPONDING STEPS OF BINDING

1. Hardware/Software Cand idate-Eval uation-Hardware/

Partitioning Software Partitionins

2. Software Critical Candidate-Evaluation-Hardware/

Module Benchmark Software Partitioning

for Software Development

3. Hardware Candidate-Eval uation-Hardware/

Implementation Software Partitioning

Analysis

4. Performance Logical Verification

Benchmark Performance Checker and

Studies Qualitative Checks

5. Software Generation of HIS

Concurrency Requirements Documents

Design

6. Hardware Generation of HIS

Distribution Requirements Documents

and Configuration

Analysis

7. Distributed Section of Winning

Preliminary Design Candidates

89

FAST differs from binding in the limited view it takes of the

partitioning activities stressed in binding. Binding provides the

capability of choices between partitioning options, as well as steps for

developing partitioning rules and a clearly define set of candidate

selection rules. The robustness of FAST lies in the emphasis it places

on the use of diagnostic emulation techniques. Binding, because it

recognize various options permits flexibility in tools and techniques

for performing the hardware/so ftware analysis.

For the above reasons, we have, for the purpose of this study,

extended FAST to include all of the steps of binding. The case study

analysis will be performed by using the steps of Figure 3.1. The reader

is referred to (27) for the developmental aspects of these steps. In

this section, a summary of the steps are given in order to lay the

foundation for performing the hardware/ software tradeoffs on the case

study.

90

- ' REALIZATION PHASE

" _-- ,BINDING PHASE INSTANTIATION

1I5,1 ft

Ism,

--

1~

S -l Iws.WSsimm mma

NO pmam YE

FIGURE 3.1
FAST METHODOLOGY COt

/ 91

Es -

MANUFACTURING PHASES

GUAML
NCEPTA

cm wgcouIvm

/

1 7

3.2 METHODOLOGICAL STEPS OF FAST

The purpose of this section is to explain the steps of FAST

(Binding) in enough detail so that the hardware/software tradeoffs on

the case study can be made, and add to the knowledge of system

development and system engineering. No claim is made that this activity

will produce a complete methodology that can automatically and

immediately implemented. Rather, what we have attempted to do is:

(1) Recognize the need for making hardware/software tradeoffs in

the design of systems.

(2) To provide a formal foundation for making a hardware/software

tradeoffs.

(3) To identify a particular set of tools to support the

analysis.

Although research in system engineering (27), (48), (28), etc.,

agree that hardware/software tradeoffs are performed continuously at

every design phase and at every aspect of engineering, it is particular

to the binding phase as pointed out in Section 2.

The steps that follow are guidelines that attempt to answer some of

the tradeoffs problems of system engineering.

3.2.1 Identification of Distribution Units

The main purpose of the steps is to identify the levels of

distribution imposed on the system. It answers the question of how many

units of work is defined by the system (A node is a unit of work). What

node behave similar and which one differ? How are tradeoffs made between

92

- ~ -~ - -~ ----

nodes? Classes of nodes making up the system are identified. A node may

consist of a radar site, a satellite communication It should be kept in

mind that no real machine has been assigned here. The strategy is to

study system behavior in terms of work to be done. Constraints plays a

major role at this level. We are concerned with those constraints

imposed on the system by the customer e.g., (the system must search and

detect a decoy in less than two seconds). Designer constraints to meet

a set of performance requirements, certain tradeoffs should be made

between the nodes of work.

The importance of the step laids in its ability to link together

for the first time in the development process the result of front-end

development activities (the result being the system specifications) and

the hardware/software tradeoffs allocation. A particular set of rules

for defining how work can successfully be allocated to conceptual

processors is the main tools needed to develop the step. How nodes are

identified is based primarily on identification factors such as customer

imposed constraints, performance constraints, etc.

93

INPUT: SYSTEM DESIGN SPECIFICATIONS AND CONSTRAINTS

IDENTIFICATION OF DISTRIBUTION UNITS--NODES

GENERATION OF H/S PARTITIONING CONSTRAINTS

for SELECTION OF H/S PARTITIONING OPTION
every /- DEVELOPMENT OF H/S PARTITIONING RULES
node iSELECTION OF COMPETING CANDIDATE PARTITIONS

for H/S PARTITIONING
every LOGICAL VERIFICATION
candidate PERFORMANCE CHECK

C QUALITATIVE CHECK

ELIMINATION OF INCONGRUENT CONFIGURATIONS
z

INPUT BSP IFDING OF THE COMMUNICATION
W

eNTery AIO OFDREAIBUTION OFITHE--NFIURTINS

AGNETO OF COS/VU CATTOEFIGCONSANTS

SELECTION OF WINNING CONFIGURATION

GENERATION OF H/S REQUIREMENTS DOCUMENTS

OUTPUT: H/S REQUIREMENTS DOCUMENTS

Note: arrows represent potential backtracking.

3.2 FAST 'IETHODQLOGy WITH ADDITIOVAL STEPS

94

To date, no single set of tools have been developed which supports

this identification activity. The activity depends on a large extent on

how well the specifications were developed in the requirements phase.

The output or product of this step should provide for the next set of

distributions that reflect the constraints imposed upon by the system.

The development of the step should provide answers to questions such as:

(1) The number of processors to be put on what kind of hardware

configurations.

(2) What restrictions are imposed regarding the distributions?

3.2.2 Generation of Hardware/Software Partitioning Constraints

An important aspect of the tradeoffs methodology is the capability

to study constraints and ascertain how they may affect partitioning

options. The purpose of this step is to help identify the origin of a

set of constraints and determine interdependencies between various types

of tradeoffs between different nodes. The partitionings are dependent

upon the system constraints and requirements. For example, if

reliability is an overall constraints, then the partitioning rules

should allow partitions to be grouped into a set of non-competing

rocesses to allow modeling and other forms of evaluation techniques to

be performed upon them.

0strofsky (38). discusses some very simple modeling procedures that

may serve as potential tools to help generate the activities required by

this step. Ostrofsky assigns mathematical measures to the nodes of the

design. This is done by evaluating each in terms of the tradeoffs to be

made, (i.e., a hardware/firmware trade that will not influence the

overall system architecture), assigning a priority to each one and then

treating the list mathematically. Al] tradeoffs in the nodes are

95

evaluated in this manner including the communication between nodes.

3.2.3 Selection of Hardware/Software Partitionin Options

The purpose of this step is to evaluate node, for which the

partitioning rules of the above step have been applied, and make

additional tradeoffs. At this point in the design process a set of well

defined options are available. The most likely options are:

- All software (the software first or the hardware first).

Because of how nodes have been identified and evaluated, it

may be better to design the software and select hardware

based on the software.

- All hardware (this options allows tradeoffs to be studied

between custom made, or commercial hardware).

- Software/firmware.

- Software/firmware/hardware.

Other options or combinations are possible.

The procedure is concerned with making sure the appropriate options

are available. When a tradeoff has to be made, within a CPU, one must

consider such options as: Memory space management, storage protection,

etc. The options again must be evaluated in terms of the overall system

mission and a lot of feedback is generated to ensure that the

requirements are being meet.

This step uses a host of automated tools particularly simulation

techniques where the options may be evaluated in terms of performance

constraints. The possible use of such techniques are discussed in (24),

96

-~ w-~,-,

(17), and (14). There appears to be no methodology for how this is to

be done and is an area that is a prime candidate for further research.

3.2.4 Development of Hardware/Software Partitioning Rules

This step becomes an important part of the methodology because of

the contribution it makes to creating guidelines for selecting competing

system candidates. The activities for developing the step include:

(1) A careful evaluation of the partitioning constraints,

(2) An examination of performance constraints and,

(3) Those factors that are constrained by technology and the

environment. The guidelines generated are the results of

hunan judgement and what is currently available at the time

of system design.

3.2.5 Selection of Competing Candidate

The hardware/software tradeoffs methodology must now provide a

capability for selecting among the various candidates those would best

satisfy the overall mission of the system. The evaluation process must

be performed over each of the competing nodes. The step is a candidate

for simulation and diagnostic emulation techniques. The step has been

divided into four substeps.

3.2.5.1 Hardware/Software Partitioning

This substep involves defining all hardware, firmware and software

functions based on the original requirements of the system, and under

the guidance of the partitioning rules of the previous step. This is

the area in the methodology where most of the hardware/software

97

tradeoffs techniques have evolved. For example, one may envision a

diagnostic emulation facility (34), where a hardware description

language such as SMITE (47), retargetable compilers and performance

benchmarks techniques for evaluating the candidates are used.

3.2.5.2 Logical Verification

Added to the above set of activities is the need to allow the

candidates to be treated by some logical means. This may take the form

of group review, individual judgement and other management techniques to

be used in system evaluations.

3.2.5.3 Performance Check

The purpose of this substep is to perform the performance

evaluation model. Decisions are made as to how to emulate both the

hardware performance and software performance. Decisions are optimized

based on the performance evaluations.

3.2.5.4 Qualitative Check

Under this activity a further evaluation is made based on overall

system requirements. Some of these qualitative factors are: Fault

tolerance of the system, e.g.,

The amount of survivability and reliability and critical

functions.

Ramamoorthy and Cowan (47), have discussed a method of computing

hardware and software reliability efficiency indices. The methods

entail a set of equations which when computed, gives some comparison

between various ways of achieving system reliability when it is known

what the tradeoffs are. Time, cost, and schedules are considered under

98

this step.

3.2.5.5 Elimination of Incongruent Configurations

We now arrive at a point in the design process where nodes may

compete with each other in the set of tradeoffs selected. Because of

various technological factors one nodes, once a tradeoff is made, may be

just as suitable for the job as several nodes. If the partitioning of

constraints has been performed well in step 3, the task here is reduced

to a minimal and eliminate conflicts between nodes. Further simulation

techniques may be applied to the candidates to make final elimination

and produce an optimal set of options.

3.2.5.6 Binding of the Communication and Revalidation

of the Configuration

The product of the previous step is a set of system configurations.

For example, we may have a distributed system, with several processors

and some well defined comnunications between. The amount of

communication is a function of system requirements, i.e., high speed

communications, baudwidth), etc. The task appears to presents no

substantial risk and tradeoffs when distribution is low, however, in the

case of C(3) and other types of DoD systems other techniques must be

considered.

Current research in this area is lacking, and there seems to be few

tools specified to aid in the tradeoffs.

3.2.5.7 Assignment of Cost/Value Coefficients

Cne of the more detailed frameworks for developing this step is
reported in the interim technical report (27), and is based on work by

Joslin (50). The methodology employs a cost-value technique which

99

} ,

enables a user to specify desirable features of a system and make

cost-tradeoffs based on the priority of these desirable features.

Advantages of the techniques is its provisions for management decisions

to be incorporated into the technical selection process.

3.2.5.8 Soledtion of Winning Candidates

The hardware/software tradeoffs process reduces to a set of

computer selection techniques. Numerous methodologies are available and

extensive research has been done in this area. Each company may have

its own selection methodology.

3.2.5.9 Generation of Hardware/Software Documents

The final activity performed by the FAST methodology is to produce

a set of hardware and software documents to be used in linking the

methodology with its implementation phase.

100

3.3 Discussion

Presented in this part of the report has been an overview of the

FAST methodology based on the formal foundation developed in Section 2.

For the methodology we proposed a set of methodological steps, a

hardware/software tradeoffs analysis component, and an associated set of

tools and techniques. We further proposed a wide range of options that

is applicable to the methodology. The methodology itself may take on

several forms and its major components may vary depending upon the kind

of system development under consideration. For example, in the case of

a distributed systems design, the solution is complicated by the number

of processors involved and the amount of interaction between them.

In order to do a meaningful analysis on the methodology, at most,

another iteration through the development portion is needed. Extensive

research is needed, particularly in the partitioning and generation of

constraints. The hardware/software tradeoffs analysis portion of the

A methodology is the main candidate for using automated tools. Emulations

and performance modeling techniques such as those discussed in (34) and

(19), have great potential in such a methodology.

While many of the steps of FAST are applicable to a common tools

approach, other may not. In the case of identification of distribution

units-what tools currently exists for performing this task. How are

constraints weighted in terms of the levels of distributions?

We are still left with the question of how exactly is a

hardware/software tradeoffs analysis made. The answer seems to involve

having available a methodology that has the facility for handling

choices. A hardware/software methodology may be preceiving as an

infinite set of management, technical and environmental choices. As

these choices are varied over factors such as cost, performance and

101

L -.

schedules, the hardware/software tradeoffs methodology should be able to

predict with a high degree of certainty the consequences of the choices.

Finally, we are left with the issue of where, in the system design

process, does FAST fit. Our conclusion are:

(1) FAST is an important subset of system engineering.

(2) It links together in a precise and cohesive way, front-end

development to detailed design and implementations.

(3) It works in concert with and supports system engineering

tradeoffs. It establishes methods for working with hardware

and software in parallel.

(4) If a highly effective set of automated tools can be

specified, FAST can become the true portion of system

engineering that can be automated.

The case study that follows will further point out how FAST may be

developed as a powerful engineering tool.

102

4.0 A FAST CASE STUDY

This section demonstrates the feasibility and potential use of FAST

by applying its methodological steps to a data processing problem. To

accomplish this objective, a data processing problem for the Defense

Mapping Agency's Aerospace Center (DMAAC) has been selected and the

methodological steps of FAST applied to it.

The design approach used to develop the case study and perform the

appropriate hardware/software tradeoffs are as follows:

(1) A description of the DMAAC organization is given. Each of

the directorates and departments making up DMAAC, and having

an interest in DMIS/P (DMA Program Management Information

System), is discussed. The goals, activities, input and

output of each of these divisions is elaborated. The current

DMSI/P system at DMAAC is also discussed pointing out the

degree of automation and the responsibility of each system.

(The problem environment is the output).

(2) The second step in the case study development, is to develop

an informal specification of the problem environment from the

above step.

An informal design technique discussed in Section 2.2.2. The

techniques employs a set of diagrams to specify each function

with a directorate or division, and shows how functions

interface with each other. The activity of the step results

in an formal system specification of DMAAC.

(3) This formal specification of DMAAC, provides the basis for

identifying an informal specification of the DMIS/P

supporting DMAAC. Again, the basis for such a specification

103

.. ... i -- -I-" ~-- ------- -----.--....--...

is discussed in Section 2.2.2.

A restatement of the DIIS/P is made and care is taken to

ensure that all requirements by directorates and departments

are included. Behavior and communication of each of the

major directorates and divisions is discussed.

(4) Finally. it is possible, to state the informal system in a

formal way. Section 2.2.2, provides an appropriate notation

for doing this. The formal specifications are then us'ed to

evaluate the steps of FAST and the hardware/software

tradeoffs analysis is performed.

Formally, the DMIS/P is described in terms of data, behavior

and procedures. Sections 4.1 to 4.3 details this design

approach.

104

Tne following svr-,bolisrr has been used to decompose the

D AC function,--' flow:

FUNCTION that will be

a) decomposed on the next level

FUNCTION that will not be

b) decomposed further.

C) I____ N____ _ IFO RMATION.

Each arc includes an

information symbol.

4. 0 Decomposi tiofl Symbol i~rr

105

EXTERNAL INPUT:
d) The dotted line represepts

.a feedback arc.

e) < CONDITIONAL: Flow of information.

PERMANENT RECORD:

1) L. The information may be used

or updated.

g) FORK

h) JOIN

105A

4.1 OBJECTIVE OF THE STUDY

The intent of the case study is to test the usefulness of FAST in a

particular instance. Specific objectives of the case study activities

are to point out the following factors:

a. Ensure that the methodological steps are clear and

consistent.

b. Ensure that the steps and techniques are flexible.

c. Provide for controls in the development process.

d. Recognize and provide clear standards for documentation.

e. Provide checkpoints and feedback allowing for frequent

management reviews.

f. Provide a consistent approach for new or additional system

development, modification, and improvements.

g. Provide the means for integrating tools and techniques as

they are needed.

h. Allow for logical decision-making.

i. Provide economic evaluation (cost/benefit analysis).

These factors will be used as criteria for testing the FAST

Methodology. If the activities of the Case Study supports this criteria

it can be assumed that the methodology is feasible.

106

kI

I

oo

0

i £

C,

o _ _ _ _ _ _ _ _

* - . o

4.2 DMAAC ORGANIZATIONAL MODEL

The case selected for the study entails an examination of the data

processing requirements of the Defense Mapping Agency's Aerospace Center

(DMAAC). DMAAC is concerned with providing information on all charts,

maps, geodesy products, production programs, status, and standards

needed by the various DoD agencies. These activities are currently

managed and supported by a DMA Program Management Information System

(DMIS/P).

DMIS/P is one of five subsystem of DMA, and serve as a repository

for information on maps, charts, and geodesy products, production

programs, and related products. Those elements having an interest in

DMIS/P at DMAAC are:

a. Directorate of Programs, Production, and Operation. This

directorate is responsible for preparation of the DMAAC

production program. It formulates the DMAAC input to the

Program Operation Management, and manages the MC&G production

program, resources, and related activities. These include:

allocating all center production resources required to

accomplish the assigned program; provide staff coordination

and supervision of the program, production and operation

activities involving implementing, scheduling, and

controlling work assignment; developing and implementing

quality control systems; supervision of commercial contract

production programs; developing and validating production and

process standards; etc. The Directorate consist of three

divisions:

1. Program Integration and Aeronautical Data Division

formulates and maintains the DMAAC multiyear POM and

108

." -

presents it to DMAHQ; serves as a focal point for all

MC&G progranvning. reprogramming, and production

management; and assigns and manages production programs

and resources.

2. Aerospace Charting Division develops, assigns, and

manages multiyear production programs and resources

related to navigation and planning charts; and

determines objectives and priorities, application of

production resources and equipment, and preparation of

production specification.

3. Geopositional and Digital Data Division develops.

assigns, and manages multiyear production programs and

resources related to strategic and tactical point

positions, point positioning data bases, digital data

for simulators, and weapon system operations:

geodetic/geophysical studies and applications supporting

advanced weapon systems, and special projects including

definition of production objectives and priorities,

application of production specifications; develop and

defend source data acquisition requirements essential to

satisfying production program objectives.

Within PP&O, program managers are assigned

responsibilities for one or more product lines. Program

managers manage their program through both the program

development phase and the production and program control

phase. This structure is different from that at DMATC

and DMAHC.

b. .Directorate of Plans, Requirements, and Technology. Has the

responsibility for developing, managing, and administering

109

- - -a-_

the DMA Aerospace Center mapping, charting, and geodesy

(MC&G) objectives, plans, and policies with regard to

operations, contingency and disaster preparedness;

requirements and technology to assure readiness and

availability of products and services in support of mission

operations; serves as the DMA Aerospace Center focal point

for MC&G intra-agency and interagency activities.

o. Comptroller. Has the responsibility for handling financial

and accounting activities, preparation of the budget,

providing computer support to all nonscientific applications.

and manpower, organization, and management analysis function

at DMAAC.

All five production line departments were identified as having an

interest in the capabilities of DMIS/P. These department include:

a. Aeronautical Information Department is responsible for

supervision and production of the FLIP products, analysis and

reduction of aeronautical source data, production of

aeronautical charts and aerospace charts, maintenance of the

DoD Library of Free World Air Facilities and Flight

Information, and providing DoD and other agencies with

evaluated operational flight data and air facility

in formation.

b. Geopositional Department has the responsibility for providing

support to manned and unmanned weapon systems by supplying

geodetic, gravimetric, and geophysical data studies and

technical capabilities; operations and maintenance of the DoD

Library of Gravity data, generating photogrammetric control

data base, producing precise point positioning data,

conducting special advanced studies and satellite

110

ephemor ides.

c. Aerospace Cartography Department is responsible for

exploiting a variety of materials to provide sterogrammetric

reductions and sensor significant imagery analysis, and

planimetric and terrain data in graphic and digital format to

support advanced aerospace navigation systems and simulation

applications; compiling and color separating for lithographic
printing of all aeronautical/aerospace charting programs, air

target materials, navigation and planning charts, special

purpose charts and related items by manual and automated

processes; revising and maintaining published charts and

graphics as required; provide technical review and guidance

on cartographic work projects contracted to commercial

contracts when required to supplement Department's

capability, provide typographic service to center and

component organizations.

d. Scientific Data Department has the responsibility for

providing support to the other line functions in the form of

scientific and technical support, analysis, reduction, and

evaluation of source material for cartographic products,

maintenance of cartographic data base library, provision of

precision photographic materials in support of production

processes, and provide graphic design support of the center.

e. Printing and Distribution Department has the responsibility

for providing photolithographic products for DMA Aerospace

Center; reproducing, storing, and distributing aeronautical

charts, maps and publications for DMAAC primary and support

missions; maintaining data required to initiate chart

reprinting; preparing reports for Joint Committee on Printing

(JCO) equipment.

L 111

Each production department has its own production management office

which analyzes the assigned department production programs and manpower

and develops production plans for the divisions. It establishes

department production rates and schedules in accordance with plans and

monitors all progress, and establishes department priorities. The

department management officers work closely with PP&O in programming and

controlling production.

The basic DMIS/P requirement by DMAAC is to have:

o Timely output of information.

o To provide a DMIS/P that is user oriented.

o To provide support to levels of management requiring

information.

112

- -

- rW~(A

U.0

ILI

4.2.1 Current DMIS/P System at DMAAC

DMAAC has several automated information systems which provide

program and production information to management. These include:

a. ARAPS. ARAPS is a DMAHQ-sponsored and maintained system.

Its capabilities were discussed earlier, so that they will

not be discussed in detail here. The validated area

requirements provided to DMAAC by t4AHQ are loaded into ARAPS

by DMAAC PP&O. PP&O maintains the currency of the file by

supplying updates on a monthly basis. Product status update

information is supplied by ISR to ARAP via a computer tape

which is generated on a monthly basis.

b. Integrated Status Reporting System (ISRS). Both ISRS and

CAPS systems are referred to as the DMIS/P systems at DMAC.

The objectives established for the ISRS system are:

1. Provide DMAAC management with current and accurate data

concerning status of jobs in progress, manpower resource

requirements/utilization, manhours/dollars expended on

DMAAC quality program, job completions, and progress of

actual production as compared to planned production.

This data is supplied to various management levels

through the timely publication of a variety of reports.

2. Eliminate or reduce where possible manual records

concerning production status being maintained by various

levels of management.

3. Establish and maintain a comon data base to support the

current and future phases of the ISR and other major

114

components of Program Management Information System

(DMIS/P).

The ISRS system is designed to collect, maintain, and report

information on status of jobs and resource expenditures, both

planned and actual, to those organizations involved in

production, planning, scheduling, and accounting. All

organizations of DMAAC are involved in the system. The

organizational source of the input depends upon the data

being submitted. The system input can be classified into two

broad categories which include:

1. Resource Utilization Data establishes and update the

planned program, e.g., the types and numbers of jobs to

be worked, the production schedule by month, and the

type and amount of resources allocated to each. This

information is compared with the actual progress of

total production, obtained from the job status section

of the ISR Data Base, to produce reports on status of

actual production versus planned production. The

Program Integration and Aeronautical Data Division (PPI)

is responsible for this program data. which is generated

through the CAPS Programming System.

2. Job Data Input authorizes the specific job numbers;

establishes the production operations, schedules and

manpower requirements for specific jobs; reports manhour

expenditures, job movements, phase and job completion,

and job cancellations and suspensions; and adjusts

information previously entered into the ISRS Data Base.

The responsibility for this category of input depends on

the type of input record being generated. This

responsibility ranges from the individual employee who

115

I

must report his manhour expenditures to PPI, which

authorizes specific job numbers for work throughout

DMAAC.

The ISRS system produces a series of output reports

containing current information on assignments in the

production pipeline, assignments completed, and program

requirements. The output reports are grouped into three

general categories: job status, job completions, and resource

utilization. A general discussion of the content and usage

of the three categories of output reports follow:

1. Job Status Category consist of calendar time and manhour

expenditures, both planned and actual, or jobs in

progress. The reports are used at various levels of

management to monitor the progress of individual

assignments through the various production processes,

and to provide information on current and anticipated

work requirements.

2. Job Completions Category has two forms. The first

consists of weekly reports listing each job completed by

organizational elements, along with manpower

expenditures. The second form consists of a magnetic

tape containing the historical summation of planned and

actual expenditures of calendar time and manpower for

each completed job. A current listing of the jobs

contained on this history tape can be printed. This

report provides historical data for standards analysis

and for performance evaluation.

3. Resource Utilization Category is concerned with

comparing the number of assignments in work or completed

116

.. - "~-- - - ,-;i '

to the number programmed for completion, and with

manpower expenditures compared to allocations. This

information is used trc monitor the progress of actual

production against programmed production.

C. Computer Assisted Programming System. The purpose of the CAP

system is to:

1. Support DMAC programming and resource allocation

functions performed by PPI.

2. Provide PPI with essential data for:

a) Preparation of the Program Objective Memorandum

(POM).

b) Preparation of in-house production plans and

general production schedules.

3. Compute the resources required to produce particular

products and services; then allocate the required

resources over a given time; and match the required

resources with the available resources over the same

time frame.

The objective of the program development phase of the

programming system is to arrive at a balanced program of

planned and estimated expenditures. CAPS supports this

operation by supplying PP&O with nine reports which

depict these expenditures and resources in different

formats, summaries, and sequences.

The CAPS system consists of four subsystems which are

117

graphically shown in Exhibit 11-17. These subsystems

include:

4. The Inventory Forecast Subsystem

a) Forecasts the resources required to complete

assignments that are in various stages of the

production pipeline or are assigned; calculates the

resource requirements for the in-process

assignments using the data in the ISR Status Master

(this subsystem is not currently being used in POM

development).

b) Searches the Standards Subsystem for necessary

production standards for functions that are not in

ISRS because of their position in the production

pipeline.

5. Program Requirements Subsystem

a) Stores up-to-date requirements for

products/services that are programied for

production during the current and subsequent six

years. (Requirements expressed in number of units

of product/services by quarter.)

b) Provides:

- Total program requirements and cumulative

completions.

- Number of items assigned for FY completions.

118

- Production rates based on established revision

cycles and stock usage for maintenance

production.

6. Standards Subsystem

a) Contains standard data covering in-service skills,

contract costs, calendar or elapsed time, and

equipment to perform each work sequence for an end

product or service.

b) Contains active job plans which can be used to

compare actual progress, as reported in the ISRS,

to the standard processes and times contained in

the Standards File for automatically generating

exception reports. (This capability currently does

not exist, but is planned as a long-range

objective.)

7. Resource Capability Subsystem

a) Contains the authorized manpower spaces by skill.

b) Projects the assigned personnel within DMAAC by

quarters for a two-year period and annually for the

next five years. Manpower spaces and corresponding

personnel status are separated into direct and

indirect labor categories.

8. Programming Subsystem

a) Combines and manipulates, in whole or in part,

other CAPS subsystem content to provide production

119

program reports in various formats.

b) Multiplies each new requirement from the Program

Requirements Subsystem by its applicable in-service

or contract standard (from the Standards Subsystem)

and combines the results with the resources needed

to complete the work in-process (from the Inventory

Forecast Subsystem), then compares the data at

various levels with the authorized and available

resources (from the Resources Capability

Subsystem).

The CAPS system has two options. Option 1 utilizes only the

Program Requirements and Standards subsystems in completing

the resource requirements. Option 2 draws on the Inventory

Forecast Subsystem for calculating the resources required to

complete in-process assignments, and then utilizes the

Program Requirements and Standard Subsystems for calculating

resources for unassigned jobs.

4.2.2 Formal Specification of DMAAC

The first step needed to accomplish the objectives of this case

study is to define the problem environment. This was done in Section

4.2, where a description of the DMMAC division of DMA was discussed as

well as its DMIS/P support.

The second step of the design is the development of an informal

specification of DMAAC. The following steps have been taken to develop

the informal specification:

a. Define the DMAAC environment in terms of its relationship to

DMA. Figure 4-1 shows this relationship.

120

b. Decompose the main component of DMAAC, showing its various

relationships between departments. (Figure 4.2).

c. Finally developed a model of the DMIS/P for DMAAC

organization showing. Figure 4.3 describes this relationship

between directorates and departments model.

The technique used to specify the functional model is a set of

top-down functional diagrams. Each diagram, whose graphix symbols are

shown in Figure 4.0, results from the decomposition of a single function

presented on an immediate higher level of abstraction. The "permanent

record", symbol is used to indicate explicitly the memorization function

vhile "external input" signifies an interaction with the outside

environment. For example, in Figure 4.1, the function (El) provides

information I(1) to DMAAC. Taking each of the functions within DMAAC,

and using this symbolism and its decomposition strategy, the components

of DMAAC have been specified by the appropriate functions and the

information it sends or receives. The decomposition is shown in Figures

4.1, 4.2, and 4.3 A narrative explanation accomplishes each function.

(J

E1() Defense Mapping Agency Headquarter (DMAHQ).

DMAHQ has the responsibility of developing policies, establishing

program guidance, and reviewing program execution. Specifically DMAHQ

has the following functions and responsibilities:

a. Coordinate all DoD MC&G resources and activities.

b.. Provide staff advice and assistance on MC&G matters and

present them to the Secretary of Defense, the Military

Department, and the Joint Chief of Staffs.

121 ,1

c. Develop a consolidated Mapping, Charting, and Geodesy program

for review by the Joint Chief of Staff.

d. Review and validate MC&G requirements and priorities in

support of the Joint Chief of Staff for approval by the

Secretary of State.

e. Establish policies and provide DaD participation in national

and international MC&G activities.

f. Establish DoD MC&G data collection requirements.

g. Establish DaD MC&G RDT&E requirements in coordination with

the Director of Defense, Research, and Engineering and other

divisions of the DoD.

The above general objectives are decomposed into a set of more

specific objectives and assigned to various departments and divisions

within DMAHQ and its centers, namely, DMA Aerospace Center (DMAAC), DMA

Hydrographic (DMAHQ), and DMA Topographic Center (DMATC).

The interfaces (input/output) between DMAHQ is handled through the

DMIS/P (Defense Mapping Agency's Program Management Information System).

The BIS/P serves as a central repository for all information on

MC&G product requirements, production programs, production capabilities,

status, etc. This information is used to support resource planning,

production programming and MC&G control.

I1(1) - This function ropresents area requirements provided by

DMAHQ to DMAAC. This function initiates the program

development each year by providing a set of validated DoD

122

area requirements. Requirements are received by

Programs, Productions, and Operations Directorate (Figure

4-3), and are analyzed and reviewed. The program manager

prepares the reviewed programs for input to the Resource

Objective3 Plan (DROP) - 11(2).

11(2) - Are the POM guidelines received by DMAAC and DMAHQ.

DMAHQ provides the Program, Production, and Operation

with program guidance in several forms:

a. Information copies of the planning and guidance

memorandum.

b. Fiscal guidance by appropriation.

C. POM Preparation instruction.

d. MC&G Program Guidance prepared by DMAHQ, PPI.

11(3) - Using put to DROP provided by DMAHQ in I1(3), DMAHQ

develops POM guidelines and provide this input to DMAAC.

DMAHQ provides PP&O with program guidance in several

forms:

a. Information copies of the Programming and Planning

Guidance Memorandum.

b. Fiscal Guidance by Appropriation to include Military

pay.

c. POM Preparation Instruction, a MC&G Program

Guidance.

123

I1(4) - INPUT TO POM - Using guidance received from DMAHQ in

11(3), PP&O develops the POM input. Consideration is

given to objectives, requirements, priorities, skill,

equipment, source material availability, production

schedule, training schedule, and product inventory. This

function provided by the CAPS (Computer Assisted

Programming System) at DMAAC.

11(5) - This function represents input received by DMAAC from

DMAHQ base on input to POM. The information consists of

the approved programs, work schedules, work assignment

letter, etc.

11(6) - A final review of all programs specified in D(5), a

report is provided to DMAHQ. The specific functions

within DMAAC are decomposed in and explained in 1.1

I1(1) -. indicates products provided in DMAAC and finally

these products are provided to the customer.

1.1 - A representation of the functions with Dt4AAC. Currently

DMAAC is made up of three directorates, Programs,

Productions, and Operations; Program Requirements,

Scientific Technology, and Comptroller, and the five

production departments.

1.1.1 - Program. Production, and Operations is the focal point

for all DMAAC activities. All input from and output to

DMAHQ is handled by PP&O. I1(1) - 11(6), detailed in 1.0

represents this input/output relationship between DMAAC

and DMAHQ.

PP&O is responsible for the preparation of DMAAC

production programs. It formulates the DMAAC input to

124

. ,ran

_ _ _ _ _ _ _ _ _ _ _ - " "°-T ',- 7"- "

the POM, and manages the MC&G program, resources, etc.

PP&O is responsible for allocating all center production

resources, provides staff coordination, production,

scheduling, and controlling work assignment.

Input/output is provided to the various departments

written DMAAC by PP&O.

11.1(1)- Provides an input to Program Requirements and System

Technology. This input is in the form of reports on

advanced system requirements, anticipated requirements

dates, as well as R&D MC&G equipments.

11.1(2)- A function that provides program status, productivity

indexes, and manpower/skill needs for preparation of

budget and manpower inventory by the comptroller.

11.1(3)- Represents budgets and manpower status reports prepared

by the Comptroller based on input received in 11.1(2).

11.1(4)- This function provides input to production departments in

the form of job plans. Work assignment, a list of items

not meeting schedules, work assignment updates, and

assignment schedules.

I.1(5)- Production status provides input to PP&O and PR/ST on

detailed job plans, job schedules, schedule updates, and

work distribution.

11.1(6)- An inventory status function that provides information on

inventory, inventory forecast, dates, including projected

out of stock dates, MC&G products, their associated

stock, and the quantity needed.

125

11.1(7)- Information required by the distribution department on

all MC&G products completed.

11.1(8)- Production data required by the production departments on

production status, product status, etc.

11.1(9)- Charts and chart status information.

11.1(10)- Digital products - all information pertaining to digital

products.

11.1(11)- Information on all PR/ST needed as input to DROP and POM.

II.1(1)- Directorate of Plans, Requirements, and Technology has

the responsibility for developing, managing, and

administering the DMA Aerospace Center Mapping, Charting

and Geodesy (MC&G) objectives, plans and policies with

regard to operations, contingency, and disaster

preparedness, requirements, and technology to assure

readiness and availability of products and services in

support of mission operations; serves as the DMA

Aerospace Center focal point for MC&G intra-agency

activities. A major function of this department is to

identify future or advanced weapon system requirements.

1.1(2) - Comptroller has the responsibility for handling financial

and accounting activities, preparation of the budget,

provides computer support to all nonscientific

applications, and manpower, organization, and management

analysis function at DMAAC.

1.1(4) - Production Departments are responsible for work

assignments to specific branches and sections. Review

126

completions, unit produced, manpower expenditures as they

are compared against standards.

Each production department has its own production

management office which analyzes the assigned department

production programs and manpower and develops production

plans for the divisions. It establishes department

production rates and schedules in accordance with plans

and monitors all progress, establishes department

priorities. Department management officers work closely

with PP&O in programming and controlling production.

01.1(3)- Distribution. All completed products are handled by

Distribution Departments including MC&G products. digital

products, and charts.

1.1.1 - Programs, Production, and Operations. PP&O interfaces

with five center and departments within DMAAC. These

departments are: Program Integration, Aerospace

Aeronautical Division, Geopositional and Digital Data

Division, A&A Product Line, and G.D.D. Product Line

Department. The relationship between these departments

is shown in Figure 4-3.

1.1.1(1)- Program Integration formulates and maintains the DMAAC

multiyear POM and presents it to DMAHQ. The division

serves as the focal point for all MC&G programming and

production management; assigns and manages production

programs and resources; receives input from (I1.1(2)) and

provides input to (I1.1(3)) to PP&O for program, budget,

and manpower information.

1.1.1(2)- Aerospace Charting Center develops, assigns, and manages

127

multiyear production programs and resources related to

navigation and planning charts; and determines source

material requirements, definition of production

objectives and priorities, application of production

resources and equipment, and preparation of production

specifications.

1.1.1(3)- Geopositional and Digital Data Division is responsible

for supervision and production of the FLIP products;

analysis and reduction of aeronautical source data;

production of aeronautical charts and aerospace charts;

maintenance of DoD Library of Free World Air Facilities

and Flight Information; and providing DoD and other

agencies with evaluated operational flight data and air

facility information.

The relationship between 1.1.1(1), 1.1.1(2) and 1.1.1(3)

is interfaced by two product line departments; 1.1.1(4),

A.A Product Line, and 1.1.1(5), G.D.D. Product Line.

These product line departments plan for product plans x

and y.

The above decomposition represents only those divisions with DMJAAC

having an Interest in D1IS/P.

128

-Nul-

4.3 DMI3/P Design Specification

The design approach employed requires that the DMkAC formal

specifications of Section 4.2, be stated in terms of the DMIS/P design

specifications. Using the notation of Section 2.2.2, this is done by

defining the directorates, (see Figures 4.1, 4.2, and 4.3) in terms of

processes. Each process is primarily described in terms of the data

entities it controls, its invariant properties, a set of procedures.

message sending and receiving procedures, inputs and outputs and a set

of rules used to describe the behavior of the process.

DMAAC requirements dictate that its DMIS/P processes communicate

with each other, and; as such, form a net. (Figure 4.3). The

description of the net also includes the communications between

processes in the net. Processes communicate by messages. For example,

PP&O may communicate with DS by sending some message (x), which is

received by DS.

This input specification is created first by giving an informal

description of the DMIS/P processes. This informal description is then

described formally using the notation developed in Section 2.2. Such a

treatment allows performance attributes to be associated with each

process component, thus, establishing the foundation for making the

hardware/software tradeoffs analysis.

4.3.1 DMIS/P Informal Functional Specifications

Programs. Production and Operations is the most comprehensive

process in the DMIS/P net. Its major function is to prepare and execute

all of the DMAAC production programs. Activities supporting this

function are: Program allocations, program supervision and coordination

and production quality control. PP&O communicates with the other

129

processes in the tDtIS/P net by sending and receiving messages pertaining

to program and production requirements, plans, inventory and resources.

Behavior within PP&O is a function of the order in which resources and

data is received. For example, production requirements are received

from DMAHQ, validated by PP&O, and communicated to PDS. PP&O uses its

data for planning, maintaining and retrieving.

Job plans, job status, resource utilization, digital data and

inventory information is handled by the various production departments

with the DMIS/P net. Each production department analyzes production

program and job plans received from PP&O, and in turn, sends production

status to PP&O. Behavior within the various production departments is

dependent on monitoring product data, processing time cards and

servicing PP&Os.

130

- - - - - - - -- -- - - -

Cl
ii V

i

z C

0 II3..
~1~

4 -

LU 3 2~
a. C,

0

0
2

2
I- _ _ 0~

w

0

0

C. S 0

C-

ch
0

~'1

0
a.

43
b

o *1

i
A.
A.

3!

w

ij FjIj 111

-.--- *- -

Distribution departments uses data for handling all MC&G inventory.

Its major functions are to: produce inventory reports, receive

inventory data, update inventory and maintain inventory status.

Distribution departments communicate with both PPOD and PDs, in order to

keep inventory data current.

4.3.2 DM1S/P Formal Specifications

A formal description of DMI3/P is a net. The description (Called a

net view), begins by naming a process in the net, followed by a

description of the process. Each process in a net is described by:

- The data entities it controls and their invariant properties.

- A set of procedures acting upon the data.

- Message sending and receiving procedures associated with input

and output ports.

- Rules for controlling behavior.

Procedures in a process are made up of its appropriate interfaces.

Input/output assertions and a return value. Neither sending or

receiving procedures affect the data entities under the process control.

Sending procedures accept values to be sent, and receiving procedures

return some value each time it is invoked. This value is indicated by

Return-Value under it proper procedure interface.

The formal description is done by first defining the data,

procedures and behavior of each process, then placing these items into

the framework suggested by the specification notation. The following

paragraphs gives this view for the three processes.

132

JU
z I-

0
az

IL I

oI

I0'

I aL

LJ

I
It

132

DISTRIBUTION SYSTEM

DATA

Inventory

PROCEDURES

o Get Product Information

o Update Inventory Product Information

o Get Product Receiving Information

o Update Inventory Receipt

o Get Product Deliveries

o Update Inventory Deliverables

o Get Inventory Status Requirements from PPOS

o Send Inventory Status to PPOS

BEHAVIOR

get.product.info ? (pdi) from PDS < update.inventory.pdi(pdi)

get.prod. receiving ? (z) < update.inv.rec. (x)

get.prod.deliver ? (x) < update.inv.deliv. (x)

get.inv.status.req ? (x) from PPOS < send.inv! (x) to PPOS

133

PRODUCTION DISTRIBUTION SYSTEM

DATA

o Job Plans

o Job Status

o Resource Utilization

o Digital Data

PROCEDURES

o Get Job Plans (JP)

o Save Job Plans

o Get Job Plans (UPDATES)

o Update Job Plans

o Get Production Status Requirements

o Send Job Status

o Get Time Cards (TC)

o Update Time Cards

o Get Production Status (PDS)

o Send Production Updates

134

o Get Digital Data

" Update Digital Inventory

CON TROL

get.job plans ? (JP) < save Cjp)

get.job plan.update (Jpupdt) < update.job plans Cjpupdt)

get.prod.status.req ? (selidor) < send.job.status (selidor)

014076 get.time cards ? (to) < update.ps.tc (tc)

get.product.status ? Cpds) < update.ps.pds (pds)

< update.res.util. (pds)

get.product.statU3 ? (pds) << (pds =completed MC&G product)

3end.product.util (pds) to DS

get.product.status ? (pds) << (pds completed digital product)

digit.inventory.update (pds)

135

-A

PPOS

DATA

o Resources

o Production .Standards

o Current.Program

PROCEDXRES

get.i REQUEST ? (x)

get.requirements ? (requirements, constraints)

make plan (requirements, constraints, inventory, budget, manpower)

return plan

putout.plan I (plan)

send req. for inventory 1

get.inventory.status ? (inventory)

get.resource.updates ? (rupdt)

get.standards.updates ? (s.updt)

update.resources (r.updt)

update.standards (s.updt)

136

get.approved.program ? (prog)

create.program (progs)

get.program.updates ? (p.updt)

update.program (p.updt)

get program.req. ?

put out program 1(po)

send.prod.data.req ! (sP)

get.prod.data ? (pd)

standards.revision (pd) return S

putout.standards revision (3)

get.req ? (3)

send.prod.status.req 1 (3)

get.prod.status ? (pstatUs)

putout.status I (pstatus)

send job plaw! (asjp) to PPS

send job plan updates I (SJP)

BEHAVIOR

137

Note: These activities are related to planning.

get.requirements ? (r,c)

< send.req.for.inventory I to Ds

< get.inventory.status ? Cmnv) from DS

< plan =make.plan (r~o inv)

< putout.plan I (plan)

get.resource.updates ? (rupdt) < update.resource (r.updt)

get.standards.updates ? (s.updt) < update.standards (s.updt)

get.approved.program ? (prog) < create.program (progr.)

<send.job.plan I ()to PDS

get.program.updates ? (p.updt) < update program (p.updt)

<send.job plan.update I C) to PIS

get.requst ? (x) 3 u 'standards review'

send.prod.data.req I C)

< get.prod.dati ? (pd)

< s standards.revi3ion (pd)

< pUtout.3tandards.revision Wa

get.requat ? (x 3 U 'status' < get.request ? (seledor)

138

< send.prOd.status.req !(seledor) to PI)S

< get .prod-3tatus ? (pstatus) from pDS

< PUtout-StatUS ! (Pstatus)

get.request ? (x) 3 u 'program' < Putout-prograI

139

NET DMtIS/P

PROCESSES.

PROCESS PPOS.

DATA.

ENTITIES: Resources

Production .Standards

Current. Program

INVARIANT:

PROCEDURES.

INTERFACE: Get.Requirements ? (r,c)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: r = area requirements

c = planning constraints

INTERFACE: p = Make.Plan (r,coi)

INPUT-ASSERTION: r z area requirements, a z planning

constraints, I inventory

140

OUTPUT-ASSERTION: 04240

RETURN-VALUE: p = plan

INTERFACE: Putout. Plan I (p)'

INPUT-ASSERTION: p = plan

OUT PUT-ASSERTION:

RETURN-VALUE:

INTERFACE: Req.Inventory ! ()

INPUT-ASSERTION:

OUTPUT-ASSERTION

RETURN-VALUE:

INTERFACE: Get.Inventory.Status ? i)

INPUT-ASSERTION

OUTPUT-ASSERTION

RETURN-VALUE: i a inventory

INTERFACE: Get.Reaource.Updates ? (ru)

141

I

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: ru = updates to resource data

INTERFACE: Get.Standards.Updates ? (su)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: su = updates to standards

INTERFACE: Update.Resources (ru)

INPUT-ASSERTION: ru = updates to resource data

OUTPUT-ASSERTION: resources are updated

INTERFACE: Update.Standards (3u)

INPUT-ASSERTION: su = updates to standards

OUTPUT-ASSERTION: Production.Standards are updated

RETURN-VALUE:

INTERFACE: Get.Approved.Program ? (pg)

INPUT-ASSERTION:

142

OUTPUT-ASSERTION:

RETURN-VALUE pg =approved program

INTERFACE: Creat.Program (pg)

INPUT-ASSERTION: pg zapproved program

OUTPUT-ASSERTION: current.program is recreated

RETURN-VALUE:

INTERFACE: Get.Prograni.Updates ? (pu)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: pu updates to the current program

INTERFACE: Update.Program (pu)

INPUT-ASSERTION: Pu 2 updates to the current program

OUTPUT-ASSERTION: current.program is updated

RETURN-VALUE:

INTERFACE: Get.Request ? (x)

1413

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: x = member of approved list of requests for

In format ion

INTERFACE: pg a Extract.Program

INPUT-ASSERTION: ourrent.program Is available

OUTPUT-ASSERTION:

RETURN-VALUE: pg = copy of current program

INTERFACE: Putout.Program I (pg)

INPUT-ASSERTION: rg a copy of current program

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: Send.Prod.Dta.Req I ()

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE:

144.

I

INTERFACE: Send.Prod.Iata.Req I (

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: Get.Prod.Data ? (pd)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: pd = production data

INTERFACE: S = Standard.Revision (pd)

INPUT-ASSERTION: pd = production data

OUTPUT-ASSERTION: Production.Standards are revised based on new

production data

RETURN-VALUE: S = revised production standards

INTERFACE: Putout.Standards 1 (3)

INPUT-ASSERTION: s production standards copy

OUTPUT-ASSERTION:

RETURN-VALUE:

1i5

INTERFACE: Send. Prod.Status.Req I (z)

INPUT-ASSERTION: z valid request for production information

OUT PUT-ASSERTION:

RETURN-VALUE:

INTERFACE: Get.Prod.Status ? (p3)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: psa production status

INTERFACE: Putout. Prod.Status 1 (ps)

INPUT-ASSERTION: PS z production status

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: jp =Make.Job.Plan I

INPUT-ASSERTION: urrent program available

OUT PUT-ASSERTION:

14~6

RETURN-VALUE: jp = job plan data

INTERFACE: Send.Job.Plan ! (Jp)

INPUT-ASSERTION: jp job plan data

OUT PUT-ASSERTION:

RETURN-VALUE:

INTERFACE: Standards.Review.Req ! ()

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: y = Extract.Info (x)

INPUT-ASSERTION: x x member of approved list of requests for

inform at ion

OUTPUT-ASSERTION:

RETURN-VALUE: y z Extracted information from data being

maintained

INTERFACE: Send.Info I (y)

INPUT-ASSERTION: y : Extracted information from data being

147

• " . . . + + , .- L -. '+ ' " - ' -Y,- ItJ
- L

.7 .- ,,

maintained

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: Prod.Info.Req ? (z)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: z = valid request for production information

r

14M8

-. 0

BEHAVIOR.

0*~ Planning Activities.

Get.Requirements ? (r,c) < Req.Inventory I C)to DS

< Get. Inventory. Status ? (1) from DS

< p =Make.Plan (p,c,i)

< Put.Out.Plan (p)

0* Program Maintenance.

Get.Approved.Program ? (pg) < Create.Program (pg)

< pj =Make.Job.Plan()

< Send.Job.Plan I CQp) to PDS

Get.Prograrn.Updates ? Cpu) < Update.Program (pu)

< jp =Make.Job.PlanC)

< Send.Job.Plan I (Jpn) to PDS

#00 Resources and Standards Maintenance

Get.Resource.Updates ? (rd) < Update.Resource Cru)

Get.Standarda.Updates ? (su) < Update.Standard3 (3u)

Standards. Review. Req ? C < Send. Prod. Data. Req I ()to PD5

< Get. Prod. Data ? (pd) from PDS

< s Standards.Revi3ion (pd)I < Put.Out.Standards I (s)

* Information RetrievalI
Get.Request ? (x) < y =Extract.Info (x)

< Send.Info I (y)

Pro.Info.Req ? (z) < Send.Prod.Status.Req I (z) to PDS

< Get.Prod.StatU3 ? (pdz) from PDS

< Put.Out.Prod.StatU3 I (pdz)

14J9

PROCESS PDS.

DATA.

ENTITIES: Job.Plan

Job.Status

Resource. Utilization

Digital. Data. Inventory

INVARIANT:

PROCEDURES.

INTERFACE: Get.Job.Plan ? (jp)

INPUT-ASSERTION:

OUT PUT-ASSERTION:

RETURN-VALUE: jp job plan data

INTERFACE: Update.Job.Plan (jp)

INPUT-ASSERTION: jp = job plan data

OUTPUT-ASSERTION: job.plan is updated or replaced

RETURN-VALUE:

150

-_-- -.-- '-i "-

INTERFACE: Get.Time Card ? (tc)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: tc = completed time card

INTERFACE: Update.Job.Status (ujs)

INPUT-ASSERTION: ujs a time card or product monitoring data

OUTPUT-ASSERTION: job.status is updated

RETURN-VALUE.

INTERFACE: Get.Product.Status ? (p3)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: p3 x product monitoring data

INTERFACE: Update.Reaource. Utilization (p3)

INPUT-ASSERTION: pa = product monitoring data

OUTPUT-ASSERTION: resource.utilization is updated

151

-P W

RETURN-VALUE:

INTERFACE: Inform.DS I (pa)

INPUT-ASSERTION: pa = product monitoring data indicating

completed MC&G product

OUT PUT-ASSERTION:

RETURN-VALUE:

INTERFA~CE: Update. Digital. Inventory (pa)

INPUT-ASSERTION: pa product monitoring data indicating

completed digital product

OUTPUT-ASSERTION: digital.inventory is updated

INTERFACE: Get.Prod.Data.Req ? (p1)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: pd Extract. Prod. Data (pd)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

152

RETURN-VALUE: pd = production data based on job.status and

resource.ut il izat ion

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: Get. Prod.Status.Req ? (z)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: z = valid request for production information

INTERFACE: pdz = Extract.Prod.Status (z)

INPUT-ASSERTION: z z valid request for production information

OUT PUT-ASSERTION:

RETURN-VALUE: pdz = production status in response to the

criteria z

INTERFACE: Send.Prod.Status ! (pdz)

INPUT-ASSERTION: pdz product status

OUT PUT-ASSERTION:

RETURN-VALUE:

153

BEHAVIOR.

000 Job Plan Maintenance

Get.Job.Plan ? (jp) < Update.Job.Plan (jp) from PPOS

*00 Time Cards Processing

Get.Timecard ? (tc) < Update.Job.Status (tc)

"'* Product Monitoring

Get.Product.Status ? (ps) < Update.Job.Status (Ps)

< Update.Resource.Utilization (pa)

(P3 indicates completed MC&G product) Get. Product,.Status ? Cps)

<< Inform.ES I (p3) to DS

(ps indicates completed digital product) Get.Product.Status ?

(ps) << Ipdate.Digital.Inventory (p3)

"'Servicing PPOS

Get. Prod. Data. Req ? () < pd =Extract. Prod. Data C)from PPO!

<Send.Prod.Deta ! (pd) to PPOS

Get. Prod. Status. Req ? (z) < pdz =Extract. Prod. Status Cz)

from PPOS < Send.Prod.Status I (pdz)

15J4

PROCESS DS.

DATA.

ENTITIES: MC&G. Inventory

INVARIANT

PROCEDURES.

INTERFACE: Info.From.PSS ? (ps)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: ps = product monitoring data indicating

completed MC&G product

INTERFACE: Update.Inventory (d)

INPUT-ASSERTION: d = product monitoring data indicating

completed MC&G product or Information regarding

product receiving and shipping

OUTPUT-ASSERTION: MC&G.Inventory is updated

RETURN-VALUE:

INTERFACE: Get.Inventory. Req I (r)

155

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: i zExtract.Inventory Mi

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: i = inventory status

INTERFACE: Send.Inventory.Status I (i)

INPUT-ASSERTION: i zinventory status

OUT PUT-ASSERTION:

RETURN-VALUE:

INTERFACE: Get.Receiving.Deta ? Wx

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: x zinformation regarding products received

INTERFACE: Get.Shipping.Data ? (y)

156

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: y = information regarding products being

shipped.

157

. ... - -. . *

4.4 Performing Hardware/Software Tradeoffs

In order to perform the hardware/software tradeoffs on the case

study, the functional design developed in Section 4.3, must be specified

in terms of performance attributes and constraints. The design approach

begins by making some basis assumptions about performance attributes and

the constraints imposed upon them. A performance evaluation model is

defined hich provides the means for assigning a quantitative measures

to the performance attributes and constraints.

Each process in the net is evaluated in terms of its performance

specifications. Using this specification as input, the steps of the

methodology are applied to each process in the net. A hardware/software

tradeoffs is made among system options based on the performance

attributes and the constraints.

4.4.1 DMIS/P Performance Specifications

The DIS/P has been described as a net composed of three processes,

Program, Production and Operation, Distribution and Production (Figure

4.4.0). Each process in the net describes a system. For example, PP&O

is supported by the system PPOS (Program, Production, and Operation

Systems). The system for Distributed is DS (Distribution System), and

Production Department is supported by the Production Department System

(PDS). Partitioning of processes in this manner permits performance

attributes and constraints to be related to each process. When

assuMptions are made about basic attributes and constraints developed,

the design becomes a performance net. The DMIS/P Performance net is

made up of:

- The data entities it controls and their invariant properties.

158

- A set of procedures acting upon the data.

- Messages sending and receiving procedures associated with input

and output ports.

- A performance specification model consisting of:

- Attributes

- Constraints

- A performance evaluation model

Since the model is made up of communicating processes, the system

is assumed to be distributed. The next step in our design process is to

specify the constraints, performance attributes an to relate them to a

particular process with consideration for levels of distribution.

4.4.1.1 Relevant Performance Attributes

Relevant performance attributes refer to those factors that are

most essential for meeting the system's performance requirements.

Based on the formal and informal specifications for DMIS/P System,

the following are assumed to be the most relevant performance

attributes:

(a) Volume - Measured in number of records. (Assumed to have

some size.

Volume is important because of:

o The need to model storage.

159

o The need to determine access time attributes.

(b) Execution time - Measured in seconds: (Assumed to depend

upon):

o The nature of each procedure.

o The kind of hardware being considered.

o The volume of data being used.

(c) Response time - measured in seconds. (Discussed in details

in 4.4. 1.3, due to its relevance to execution time).

4.4.1.2 Performance Evaluation Model

The performance evaluation model provides the mechanism by which

derived attributes are computed from basic attributes. Fundamental

assumptions of the performance evaluation model are:

o Data access time.

o Communication delay (considered negligible with respect to data

access time).

o The worst ease situation.

The time attribute will be computed by the following formula:

t(procedure) a k. p. v where:

k - reflects the presumed machine speed.

160

-- - -..-- - -

p - measures the relative computational complexity of the

procedure.

v - measures the total data volume bounded by the procedure (this

involves process data as well as input parameters and returned

values).

4.4.1.3 Constraints

Response time is the attribute upon which the constraints are

based. The assumption is made that response time ought to satisfy

certain upper bounds.

Because of the worse case consideration, response time is measured

by the sum of the execution time of all activities that could be

simultaneously initiated. (All activities taking place at the same

time).

4.4.1.4 Formalization of Performance Specifications

Using the same method of Section 2.2, the performance of the

DMIS/P, can now be described. The three systems are formalized in the

following manner.

The approach is to associate an attribute with each procedure under

a process.

For example, for the process, PP&O, the attribute volume is

associated with: Data, where Data defines:

(a) Resources,

161

(b) Production standards, and

(c) Current Program volume is assumed to be critical.

162

NET DMIS/P.

PROCESSES.

PROCESS PPOS.

DATA.

ENTITIES: resources Attribute vol.

production.standards Attribute vol.

current.program Attribute vol.

INVARIANT:

PROCEDURES.

INTERFACE: GET.REQUIREMENTS ? (roc) Attribute time

(GET.REQUIREMENTS) z (VOL(r) + vol(o)) ok

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: r = area requirements

c x planning constraints

INTERFACE: p a MAKE.PLAN (r,c.i) Attribute time

(MAKE.PLAN) c k S (vol(r) * vol(o) vol(i))

163

- ~-- ~--S~------- __ ____ ___

INPUT-ASSERTION: r = area requirements, c planning

constraints, i inventory

OUTPUT-ASSERTION:

RETURN-ASSERTION: p plan Attribute vol(p)

vol (current.program)

INTERFACE: PUTOUT.PLAN I (p) Attribute time (PUTOUT.PLAN)

= k 0 vol(p)

INPUT-ASSERTION: p z plan

OUT PUT-ASSERTION:

RETURN-VALUE:

INTERFACE: REQ.INVENTORY I (r) Attribute time negligible

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: GET. INVENTORY.STATUS ? (i) Attribute time

(GET.INVENTORY.STATUS) k * vol(i)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

164

RETURN-VALUE: i inventory Attribute vol

INTERFACE: GET.RESOURCE.UPDATES ? (ru) Attribute time

(GET.RESOURCES.UPDATES) = k * vol(ru)

OLTrPUT-ASSERTION:

RETURN-VALUE: ru = updates to resource data Attribute vol

INTERFACE: GET.STANDARDS.UPDATES ? (3u0 Attribute time

(GET.STANDARDS.UPDATES) =c k vol(su)

OLMPUT-ASSERTION:

RETURN-VALUE: 3U = updates to standards Attribute vol

INTERFACE: UPDATE.RESOURCES (ru) Attribute time

(UPDATE.RESOURCES) = kc * vol(resources)

vol(ru)

INPUT-ASSERTION: ru = updates to resource data

OUflPUT-ASSERTION: resources are updated

RETURN-VALUE:

INTERFACE: UPDATE.STANDARDS (sU) Attribute time

(UPDATE.STANDARDS) = k *vol

(production.standards) *Vol(su)

165

INPUT-ASSERTION: su = updates to standards

OUTPUT-ASSERTION: production.standards are updated

RETURN-VALUE:

INTERFACE: GET.APPROVED. PROGRAM ? (pg) Attribute time

(GET.APPROVED.PROGRAM) = k * vol(pg)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: pg = approved program Attribute vol(pg)

vol (current.program)

INTERFACE: CREATE.PROGRAM (pg) Attribute time

(CREATE.PROGRAM) z k * vol(pg)

INPUT-ASSERTION: pg z approved programI
OUTPUT-ASSERTION: current.program is recreated

RETURN-VALUE:

INTERFACE: GET.PROGRAM.UPDATES ? (pu) Attribute time

(GET.PROGRAM.UPDATES) k * vol(pu)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

166

.. -

RETURN-VALUE: pu updates to the current.program Attribute

vol

INTERFACE: UPDATE.PROGRAM (pu) Attribute time

(UPDATE.PROGRAM) = k * vol (current.program) *

vol(pg)

INPUT-ASSERTION: pu = updates to the current.program

OUTPUT-ASSERTION: current.program is updated

RETURN-VALUE:

INTERFACE: GET. REQUEST ? x) Attribute time Negligible

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: x = member of approved list of requests for

information

INTERFACE: GET.INVENTORY.STATUS ? (1) Attribute time

(GET.INVENTORY.STATUS) = k * vol(i)

IONPUT-ASSERTION:

OUT PUT-A SSE RTION:

RETURN-VALUE: i inventory Attribute vol

167

INTERFACE: GET.RESOURCE.UPDATES ? (ru) Attribute time

(GET.RESOURCES.UPDATES) a ka vol(ru)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: ru = updates to resource data Attribute vol

INTERFACE: GET.STANDARDS.UPDATES ? (3u) Attribute time

(GET.STANDARDS.UPDATES) = k 0 vol(su)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: Su : updates to standards Attribute vol

INTERFACE: UPDATE.RESOURCES (ru) Attribute time

(UPDATE.RESOURCES) k a vol(resources

vol(ru))

INPUT-ASSERTION: ru = updates to resource data

OUTPT-ASSERTION: resources are updated

RETURN-VALUE:

INTERFACE: UPDATE.STANDARDS (su) Attribute time

(UPDATE.STANDARDS) = k * vol

(production.standards) a vol(su)

168

INPUT-ASSERTION: su = updates to standards

OUTPUT-ASSERTION: production.standards are updated.

RETURN-VALUE:

INTERFACE: pg = EXTRACT.PROGRAM Attribute time

(EXTRACT.PROGRAM) - k 0 vol(current.program)

INPUT-ASSERTION: current.program is available

OUT PUT-ASSERTION:

RETURN-VALUE: pg z copy of current program vol(pg) =

vol (current .program)

INTERFACE: PUT.OUT.PROGRAM ? (pg) Attribute time

(PUT.OUT.PROGRAM) z k 0 vol(pg)

INPUT-ASSERTION: pg z copy of current program

OUTPUT-ASSERTION:

RETURN-VLUE:

INTERFACE: SEND. PROD. DATA.REQ ? (pd) Attribute time

Negligible

INPUT-A SSE RTION:

OUTPUT-ASSERTION:

169

RETURN-VALUE:

INTERFACE: GET.PROD.DATA ? (pd) Attribute time

(GET.PROD.DATA) = k * vol(pd)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: pd z production data Attribute vol

INTERFACE: s = STANDARDS.REVISION (pd) Attribute time

(STANDARD.REVISION) = k 6 vol(pd) *

vol(production .standards)

INPUT-ASSERTION: pd = production.data

OUTPUT-ASSERTION: production.standards are revised based on new

production

RETURN-VALUE: s a revised production.standards Attribute

vol(s) z vol(production.standards)

INTERFACE: PUT.OUT.STANDARDS ? (s) Attribute time

(PUT.OUT.STANDARDS) = k 0 vol(s)

INPUT-ASSERTION: a : production standards Copy

OUTPUT-ASSERTION:

RETURN-VALUE:

170

- 4.

INTERFACE: SEND.PROD.STATUS.REQ I (z) Attribute time

Negligible

INPUT-ASSERTION: z = valid request for production information

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: GET.PROD.STATUS ? (ps) Attribute time

(GET.PROD.STATUS) = k * vol(ps)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: ps production status Attribute vol

INTERFACE: PUT.OUT.PROD.STATUS I (p3) Attribute time

(PUT.OUT.PROD.STATUS) x k * vol(ps)

INPUT-ASSERTION: pa z production status

OUT PUT-ASSERTION:

RETURN-VALUE:

INTERFACE: jp = MAKE.JOB.PLAN () Attribute time
(MAJE.JOB.PLAN) a k 0 vol(ourrent.plan)

INPUT-ASSERTION: current program available

171

RETPURN-ALET: jp job plan data Attribute vol~jp)

vlcurrent.plan)

INTERFACE: SEND.JOB.PLAN I (jp) Attribute time

L (SEND. JOB.PLAN) =c k vol(jp)

INPUT-ASSERTION: jp =job plan data

OUT~PUT-ASSERTION:

RETURN-VALUE:

INTERFACE: STANDARDS.REVIEW. REQ ? ()Attribute time

INPUTNegSERTIOe

OUPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: y EXTRACT.INFO Wx Attribute time

(EXTRACT.INFO) zk * vol(resources),

vol~production.standards) +

vol (current .program)/100

INPUT-ASSERTION: x z member of approved list of requests for

in format ion

172

OUTPUT-ASSERTION:

RETURN-VALUE: y = extracted information from data being

maintained Attribute vol(y) a time

(EXTRACT. INFO)/(10k)

INTERFACE: SEND. INFO ? (y) Attribute time (SEND.INFO) k

* vol(y)

INPUT-ASSERTION: y = extracted information from data being

maintained

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: PROD.INFO.REQ ? (z) Attribute time Negligible

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: z = valid reques for production information

173

BEHAVIOR.

000 Planning Activities

GET.REQIJIREMENTS ? (r~c) < REQ.INVENTORY I C)to DS

<GET. INVENTORY.STATUS ? (i) from

< p H AKE.PLAN (p.c,1)

< PUT.OUJT.PLAN (p)

000 Program Maintenance.

GET.APPROVED.PROGRAM ? (pg) < UPDATE.PROGRAM (pu)

< jp z M4AKE. JOB. PLAN Ujp)

< SEND.JOB.PLAN I Cip)

GET.PROGRAM.UPDATES ? Cpu) < UPDATE.PROGRAM (pu)

< pjn aMAKE. JOB. PLAN Cjp)

<SEND.JOB.PLAN ! (Jpn) to P

***Resources and Standards Maintenance.

GET.RESOJRCES.LJPDATE ? (ru) < UPDATE.RESOURCES (ru)

GET.STANDARDS.UPDATES ? (3U)< UPDATE.STANDARDS (3U)

STANDARDS.REVIEW.REQ ? C < SEND.PROD.DATA.REQ I (3P) to

< GET. PROD. DATA ? (pd)

< s z STANDARDS.REVISION (pd)

< PUT.OUT. STANDARDS I (a)

0* Information Retrieval.

GET.REQUEST ? Wx < y zEXTRACT.INFO (x)

< SEND. INFO I (y)

PROD.INFO.REQ ? Cz) < SEND.PROD.STATUS.REQ I (z)

< GET.PROD.STATJS ? (pdz)

< PLT.OUT.PROD.STATUS I (Pdz)

174

PROCESS PDS.

DATA.

ENTITIES: job.plan Attribute vol(job.plan) = vol(current.program

in PPOS)

job.status Attribute vol

resource.utilization Attribute vol

digital.data.inventory Attribute vol

INVARIANT: ...

PROCEDURES.

INTERFACE: GET.JOB.PLAN ? (jp) Attribute time

(GET.JOB.PLAN) = k 6 vol(jp)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: jp z job.plan.data

INTERFACE: UPDATE.JOB.PLAN (jp) Attribute time

(UPDATE.JOB.PLAN) - k I vol(jp)/100

INPUT-ASSERTION: jp = job.plan.data

175

OUTPUT-ASSERTION: job.plan is updated or replaced

RETURN-VALUE:

INTERFACE: GET.TI1ECARD ? (to) Attribute time Negligible

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: tc completed time card

INTERFACE: UPDATE.JOB.STATUS (ujs) Attribute time

(UPDATE.JOB.STATUS) = k * vol(job.status)/100

INPUT-ASSERTION: uJs a time card or product monitoring data

OITPUT-ASSERTION: job.atatus is updated

RETURN-VALUE:

INTERFACE: GET.PRODUCT.STATUS ? (pa) Attribute time

Negligible

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: ps z product monitoring data

INTERFACE: UPDATE.RESOURCE.UTILIZATION (p5) Attribute time

176

ISJ

(UPDATE.RESOURCE.UTILIZATION) kv

vol(resource.utilization)/1O

INPUT-ASSERTION: PS= product monitoring data

OUTlPUT-ASSERTION: resource.utilization is updated

RETURN-VALUE:

INTERFACE: INFORM.DS ! (p3) Attribute time Negligible

INPUT-ASSERTION: p3s product monitoring data indicating

completed MC&G product

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: UPDATE.DIGITAL.INVENTORY (P3) Attribute time

(UPDATE.DIGITAL.INVENTORY)z k'

vol(digital .data .inventory)/1O

INPUT-ASSERTION: ps =product monitoring data indicating

completed digital product

OLTrPUT-ASSERTION: digital .inventory is updated

RETURN-VALUE:

INTERFACE: GET. PROD. DkTA.REQ ? C)Attribute time

Negligible

177

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: pd = EXTRACT.PROD.DATA () Attribute time

(EXTRACT.PROD.DATA) = k' * vol(job.status) +

vol (resource.ut ilizat ion)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: pd = production data based on job.status and

resource.utilization Attribute time vol(po) =

10 * vol(pds)

INTERFACE: SEND.PROD.DATA I (pd) Attribute time

(SEND. PROD. DATA) - k' 0 vol(po)

INPUT-ASSERTION: pd s product da;a based on job.3tatus and

resource .utilizat ion

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: GET.PROD.STATUS.REQ ? (z) Attribute time

Negligible

INPUT-ASSERTION:

178

OUTPUT-ASSERTION:

RETURN-VALUE: z = valid request for production information

INTERFACE: pdz = EXTRACT.PROD.STATUS (z) Attribute time

(EXTRACT.PRODSTATUS) = k' 0 vol(ob.status) +
vol (resource •util11zation) /10

INPUT-ASSERTION: z = valid request for production information

OUT PU T-A SSE RTION:

RETURN-VALUE: pdz = production status in response to the

criteria z Attribute vol

INTERFACE: SEND. PROD.STATUS I (pdz) Attribute time

(SEND.PROD.STATUS) a k' * vol(pdz)

INPUT-ASSERTION: pdz = production status

OUTPUT-ASSERTION:

RETURN-VALUE:

179

. |S.. 1 11 1 . .

BEHAVIOR.

m Job Plan Maintenance.

GET.JOB.PLAN ? (Jp) < UPDATE.JOB.PLAN (jp) from PPOS

*Of Time Cards Processing.

GET TIMECARD ?(tc) < UPDATE.JOB.STATUS (tc)

**' Product Monitoring.

GET.PRODUCT.STATUS ? (ps) < UPDATE.JOB.STATUS (ps)

(UPDATE.RESOURCE.UTILIZATION (ps)

(ps indicates completed MC&G product)GET. PRODUCT.STATUS ?

(p3) <<INFORM.DS I

(ps indicates completed digital product)GET.PRODUCT.STATUS ? (ps)

<<UPDATE. DIGITAL. INVENTORY (ps)

*00 Servicing PPOS

GET.PROD.DATA.REQ ? (Jp) < pd = EXTRACT.PROD.DATA (jp)

< SEND.PROD.DATA I (pd) to PPOS

GET.PROD.STATUS.REQ ? (z) < pdz = EXTRACT.PROD.STATUS (z) from

< SEND. PROD.STATUS I (pdz)

180

AD-A093 "0G TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA F/6 9/2

23 FAST METNOOOLOOT A CASE STUDY. (U)

Nov so F30602-79-C-007B

UNCLASSIF1IED RADC-TR-80-336 IN.

m E hhhlllEElIIIIIIIIIII!f....

'ME

IIII1 5 1 1 111.6

MICROCOPY RESOLUTION TEST CHART

NA',ONAL RUJHAII Of STANDARD]9%3 A

PROCESS DS.

DATA.

ENTIRIES: MC&G inventory Attribute vol

INVARIANT:

PROCEDURES.

INTERFACE: INFO.FROM.PDS ? (ps) Attribute time Negligible

INPUT-ASSERTION:

OUTPUT-ASSE RTION:

RETURN-VALUE: ps z product monitoring data indicating

completed MC&G product

INTERFACE: UPDATE.INVENTORY (d) Attribute time

(UPDATE.IINVENTORY) z k'

vol(MC&G. INVENTORY)/ O0

INPUT-ASSERTION: d z product monitoring data indicating

completed MC&G product or Information regarding

product receiving and shipping

OUTPUT-ASSERTION: MC&G.INVENTORY is updated

RETURN-VALUE:

181

INTERFACE: GET.INVENTORY.REQ I (r) Attribute time

Negligible

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: ± EXTRACT.INVENTORY Mi Attribute time

(EXTRACT.INVENTORY) zk' *vol(MC&G. INVENTORY)

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: i zinventory status Attribute vol~i)

Vol (MC&G. INVENTORY)/5

INTERFACE: SEND.INVENTORY.STATUS I Mi Attribute time

(SEND.INVENTORY.STATUS) x kc' * vol(i)

INPUT-ASSERTION: i a inventory status

OTPUT-ASSERTION:

RETURN-VALUE:

INTERFACE: GET.RECEIVING.DATA ? (x) Attribute time

(GET.RECEIVING.DATA) a10 * k'

182

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: x information regarding products received

INTERFACE: GET.SHIPPING.DATA ? (y) Attribute timeF (GET.SHIPPING.DATA) = 10 0 kc'

INPUT-ASSERTION:

OUTPUT-ASSERTION:

RETURN-VALUE: y =information regarding products being

shipped

183

BEHAVIOR.

000 Product Availability Data.
rNFO.FRCj..PDS ? (p)'UPDATE.INVENTORY

(ps) from
404 Servicing ppOS.

GET.INVENTORY.REQ ? (r) I r. EXTRAcT.XVEN~oRy (k) fram
< SEND.IVENTORY.STATUS 1 (1)

0*0 Hou-skeping.
CGET.RECEIVINGDTA I (z) < UPDATE. INVENToRy (z)GET. SHIPPINGMDAA I (y) < UPDATE. rNVENTORy (y)

1 84

LINKS.

REQ.INVENTORY I () PPOS to GET.INVENTORY.REQ ? C)DS

SEND.JOB.PLAN I () PPOS to GET.JOB.PLAN ? ()PDS

SEND.PROD.DATA.REQ I C)PPOS to GET.PROD.MATA.REQ ? C)PDS

SEND.PROD.STATUS.REQ I (z) PPOS to GET.PROD.STATUS.REQ ? (z)

INFORM.DS I (p3) PDS to INFO.FROM.PDS ? (ps) DS

SEND.PROD.DATA I (pd) PDS to GET.PROD.MATA ? (pd) PPOS

SEND. PROD.STATIJS I (pdz) PDS to GET.PROD.STATUS ? (pdz) PPOS

SEND. INVENTORY.STATUS I Mi DS to GET.IHVENTORY.STATUS ? Mi

PPOS

CQ4UNICATION.

<< 0 * ?()

Note: Each message sending is followed by the corresponding

2essage receiving without Message 1oss.

1 85

Constraints

"Worst Case response time, W, Must satisfY the condition that

W < 60 sec.

Worst Case response time is defined as the total execution time of all

sequence Of activities that could be initiated simultaneously.

ASSL?4PrIONS

PPOS: vol(resource) a 500 (basic-validated)

vol(prOdUCtion-3tandard3) z500 (baic-validated)

vol(current progr8Ms) z 4000 (basic-validated)

vol(r) x 1000 (bsic-validated)

vol(o) a 100 (basiC-Validated)

vol(ru) z 10 (basic-validated)

vol(su) x 10 (basic-validated)

vol(pu) z 10 (basic-validated)

PDS: vol(job.statUs) a 1000 (basic-Validated)

vol(resource.utilization) a500 (basiC-validated)

val(digital.data.inventory) 1000 (basic-Validated)

186

vol(pdz) = 100 (basic-validated)

DS: vol(mc&g inventory) = 10000 (basic-validated)

Given the basic-validated attributes above, it is now possible to

compute derived attributes as a function of the basic-assumed attributes

(K, K' and K").

Finally a worst case response time can be computed for each of the

three processes independently.

PPOS: t = 200180K

PDS: t' z 740OK'

DS: t" = 12120 K"

The value of w(worst case response) depends upon the partitioning

of the three processes. Maximum value for w is incurred when all three

processes are viewed as sharing a single physical machine:

KxK' :K"

W = 219700 K which requires K < .273 Es.

Maximum concurrency results is

W = max(200180K. 7400K', 12120K") with K < .299ms. K'< 8.lms.

K" < 4.9 ms.

187

4.4.2 Step by Step Application of FAST

The performance specification model developed in the previous

section provides the input needed to perform the hardware/software

tradeoffs. The model tells exactly what the system is to do; and

assigns quantitative measures to the assumptions and constraints. The

DMIS/P performance specification model has the following

characteristics:

(1) The system is distributed consisting of three processors.

(2) The processors communicate with each other by sending and

receiving messages.

(3) Relevant performance attributes are: volume, size, and time

(4) System behavior (the kinds of transactions, the number of

users, response time, software requirements, etc.).

The system development process proceeds by taking their

specifications and applying every step of the methodology to it. This

system specification is discussed in Section 2.1.5, and is defined as 8
machine independent processing model. Its uniques attributes are data,

messages, event, and processor. No attempt is made at this point to

assign physical machines or components to the model. Key activities are

to:

(a) Establish units of distribution with system processors, and

(b) Describe the system's functions so as to allow design options

to vary. Each step of the methodology is now applied to this

specification in order to make hardware/software tradeoffs

188

among the available options.

4.4.2.1 Identification of Distribution Units

o There are no restrictions regarding distribution.

o If possible all three processes will be put on a single

machine.

o If necessary each process may be placed on separate machines.

(Determined by the amount of work to be performed by each

processor).

4.4.2.2 Generation of Hardware/Software Partitioning

Constraints

o Local high speed comnunications is assumed within DMAAC.

o User imposed response time on worst case needs to be less than

60 sec.

o Data volume as described in Section 4.4.1.4 must be satisfied

by disk space (design originated constraint).

4.4.2.3 Selecting Hardware/Software Partitioning Option

o Off-the-shelf minicomputers with customer and vendor

application software and data base is considered.

Reason:

o Most likely option that would keep price down.

189

o Only one option is treated due to time availability on the

project.

4.4.2.4 Development of Hardware/Software Partitioning Rules

o A computer selection methodology is proposed under this step.

o The step is not relevant to the case study due to the fact that

a single machine will be considered. In this situation the

selection of the machine is abstract rather than market

availability.

4.4.2.5 Selection of Competing Candidate Partitions

A machine model is defined where M = (Disk-space, Disk-asses-time,

System-overhead) The following arbitary characteristics are assumed:

Disk space = 30,000 (this is the same unit as in the performance

specifications)

D1sk-access-time a 0.23 ms

System-overhead x 20%

4.4.2.6 Candidate Evaluation

Candidate evaluation is reduced to a performance check between the

attributes of the performance specifications and those of the

hypothetical machine.

Consideration is given to:

(a) Storage Requirements

190

Total storage need of all three processors are:

PPOS: less than 25,000

PDS: less than 10,000

DS: less than 15,000 06069

The above criteria suggest the use of at least two machines, for PPOS,

and one for DS and PDS.

(b) Response Time

Assuming the above partitioning, worst case response time

becomes

W Max(200180K. 19520K') with K (.299Ms and Kg < 3.073ms

These assumptions are feasible and can be meet because:

Disk-access-time 0 System-overhead a .28ms < .29

Binding of process is successful.

4.4.2.7 Elimination of Incongruent Configurations

The purpose of this step is to eliminate configurations that are

incongruent and conflict with each other. The result of the binding of

the case study was only homogeneous configuration with no

incongruencies.

4.4.2.8 Communication Medium Binding

191

High speed communication lines is assumed. The baudwidth must be

such that it makes communication negligible relative to disk access

time.

4.4.2.9 Assignment of Cost/VAlue Coefficient

This step is not relevant for the cast study since no real machines

are selected.

4.4.2.10 Selection of Winning Configuration

This step is also not relevant since no real machines are selected.

The final product (see Figure 4.4), that specifies:

(a) The kind of configuration.

(b) The cost, and

(c) User requirements, and

(d) Risk associated with implementing the system.

192

4.5 Discussion

This section has examined the potential use and effectiveness of

the FAST methodology by applying its steps to a single case study. A

major activity of the methodology was to make some basic assumptions

about the proposed system, to evaluate these assumptions in terms of

constraints and make hardware/software tradeoffs. Additionally, the

activity hopefully would point out areas of weakness, potential risk in

implementing the methodology and additional tools and techniques needed

to develop and fully implement the methodology.

The hardware/software analysis began by receiving as input a formal

specification of the DMIS/P system. Certain assumptions were made about

the system, and performance attributes and constraints were identified.

These were referred to as relevant performance attributes and for this

study, were identified as: volume, execution time and response time.

Relevant performance attributes established base on system needs that

are most important in terms of its overall mission.

The second major activity in performing the hardware/software

tradeoffs, was identifying a performance evaluation model. The model

proposed to answer questions such as what is a favorable and worst case

situation that can be tolerated by the system. For example, in the

process, PPOS: For a given procedure interface: GET REQUIREMENTS.

Using the formula specified by the performance evaluation we get:

time(GET REQUIREMENTS) = (vol(r) + vol(c)) * K. Using some arbitary

values for the attributes r, and c, we get: t(GET REQUIREMENTS) = (1000

+ 100) *K = 1100K. The computation is complete when for every process,

and every procedure in that process, a computed value is made on some

attributes. A sum for each process can now be compared with a worst

case situation. This establishes a system of constraints. In the case

of PPOS, t= 200180K, K, K' and K" is computed for each of the three

193

processes. This kind of evaluation can be done for an infinite number

of such processes, thus providing systems flexibility.

Finally, using the evaluation model, a mathematical value can be

computed for any number of performance attributes and a

hardware/software tradeoff made among those that are applicable to the

constraint, "worst case" situation.

In Section 4.4.2.3, a hardware/software is made because; evaluation

criteria suggest a response time of no less than 60 sec, a total storage

requirement for each of the three processes as: (25000 + 10000 + 15000).

etc. There are many real machines on the market meeting these

constraints. The tradeoff simply reduces to a computer selection

methodology for these given situations. The methodology recommends the

use of simulation and critical benchmark techniques to aid in the

selection process.

194

1 J

CL
a.C3 ~-o CL

CLz

cc

CLw

a19

The approach is applicable to a wide range of system options.

Suppose for example, it was found that no commercial-off-the-shelf

system was available meeting these requirements. The strategy would be

to consider the next option (customized-machines).

Finally, several iterations through the system should give an

optimal configuration. Constraints and attributes may be varied, as

system objectives change. The above instance through the case study

suggest the following minimum system configuration.

A distributed process consists of three nodes (one node for each of

the three processes: PPOS, PDS, and DS).

A distributed data base shared by PDS and DS, controlled by PPOS).

NODE CONFIGURATION

For PPOS:

o minicomputer system 1M

o 10 CRT Terminals

o 30 MB of Mass Storage

o I medium Speed Printer (100 - 300 1pm)

o 2 High Speed Printers (3000 1pm)

o Transaction/Interactive software

196

For PDS

o One Microprocessor 512

o 10 MB Mass Storage

o 5 CRT Terminals

o 1 High Speed Printer (3000 1pm)

o 2 Medium Speed Printers

o Communication Equipment

o Transaction/Interactive Software

For DS

o 1 Microprocessor 128KB

o 10 MB of Mass Storage

o One medium Speed Printer

o Communication Equipment

o Transaction/Interactive Software

A view of this configuration is given in Figure 4.5

What general conclusions can be made about the methodology based on

performing the hardware/software tradeoffs for the DMI1S/P Case Study? It

appears that the following conclusions may be made about the

197

methodology:

(1) A clearly defined method for forming the performance

specification model. The methodology should address the

issue of variability in performance specifications. As

options change, there should be some way to measure tradeoffs

in terms of performance and constraints.

(2) Identification of distribution units may prove to be a

non-trivial task, especially, when system constraints have

not been clearly defined.

(3) Generation of the hardware/software partitioning constraints

presents some risk. Exactly how these constraints are

partitioned were not completely answered by this case study

activity. The main reason being the limited number of

constraints and performance attributes.

Several iterations through this case study is needed before any

conclusions can be drawn about the real use of the methodology.

198

Mai"

5.0 CONCLUSIONS

This paper has discussed a definition, goals, methodology steps and

tools for performing a hardware/software tradeoffs. Major task were:

(1) Developed a framework upon which to build a hardware/software

tradeoffs methodology.

(2) Defined steps for performing a hardware/software tradeoffs

analysis.

(3) Evaluated the steps in a DMA cast study.

The above activities identified a plethora of issues that should be

considered in a hardware/software tradeoffs analysis. Some of the more

significants ones were:

(1) Formalization of the role played by hardware/software

tradeoffs in the overall system development cycle. This has

been accomplished through the use of the Total System

Development Methodology Framework.

(b) Identification of the key hardware/software tradeoffs

options. It has been determined that hardware/software

tradeoffs expand over a significantly wider spectrum than

previously anticipated. At one extreme, there is

partitioning between custom software and commercial software

and hardware. At the other extreme, there is partitioning of

system functions between VLSI custom designed chips and

inter-chip communication.

(c) Consolidation of functional and performance system

199

specifications. Hardware/software tradeoffs analysis

presupposes the existence of certain performance goals that

need to be reached. They may be supplied as constraints over

performance attributes attached to the functional

specification of the system. A specification language that

has the ability to define attributes and constraints has been

proposed, (1) for use in the case study and (2) for achieving

a better understanding with regards to the manner in which a

system's functionality and performance need to be specified

when supplied as input to hardware/software tradeoffs

analysis. Many of the proposed language features should be

evaluated for potential adoption of some already existing

specification language such as RSL.

(d) Development of a general strategy to hardware/software

tradeoffs analysis.

The feasibility of the proposed hardware/software tradeoffs

methodology has been evaluated in two different ways during the

performance of the contract. First. the methodology demonstrates

appropriate usage of diagnostic emulation facility supported by SMITE in

performing hardware/software tradeoffs. (The option being considered is

a partitioning between custom software and a custom minicomputer).

Second, the methodology was used to meet the specific needs of a DMA

based case study where the option involved was partitioning between

custom software and off-the-shelf hardware.

It is our firm belief that this study, provides a solid base for

the systematic development of techniques and automated tools that will

aid in the hardware/software tradeoffs analysis for a large variety of

classes of application problems. In addition to identifying what has to

be done in each step and the way steps should be sequenced, the study

also attempted to indicate the techniques and tools available to support

200

each step. Our research has shown that; there are still many tools

needed; and additional techniques for the different options.

Consequently, we recommend that future work in this area be

separated into several studies. Each study considering in depth, one

single option and focusing on:

(1) Development of techniques and proposal of automated tools

specific for that option and not yet available.

(2) Integration of the new techniques with the already existing

technology.

(3) Investigation of ways to achieve maximum productivity with

the techniques considered in (1) and (2) above be minimizing

either the number or the complexity of the iterations

required to obtain an acceptable solution.

Each study should be concluded by an appropriate DoD significant

case study. While there is no need to plan to perform one such study

for every option, a broad spectrum should be covered. For instance, one

may consider custom-software/off-the-shelf hardware and a case study

involving a large C(3) or distributed data base system; another could be

a follow-up on the current experience with diagnostic emulation and the

custom-software/custom-mini option; and still another could be dedicated

to the emerging area of VLSI design and its very different

hardware/software tradeoffs characters. Special architectures of

interest to DoD could also be considered.

Upon completion of several of these studies a new integration

effort should be contemplated. Its aim should be to propose a plan for

bringing together the respective techniques under the umbrella Of a

single unified facility. Besides supporting hardware/software tradeoffs

201

analysis, the facility could aid the phases preceding (e.g.,

requirements definition or conceptualization) and following (e.g.,

software and/or hardware design) the tradeoffs performance.

Finally, our research strongly indicates that attention should be

given to the emerging area of functional/performance specification of

distributed systems. Because the hardware/software tradeoffs analysis

presupposes the existence of a description of system's functionality and

performance objectives, any advances in this area are expected to impact

the effectiveness of the methodology being employed. Moreover, in many

cases, the ability to: (1) specify performance attributes, constraints,

and the performance evaluation model being used, and (2) relate this

information to some machine models, is fundamental to the performance of

hardware/software tradeoffs. (This occurs, for instance, when a

hardware description language is unsuitable because of the high level of

the specification or the complexity of the machine). Nevertheless,

there is little that we know today about the nature of the attributes,

constraints, performance models, and machine models appropriate for use

with particular options. Neither is there available any systematic way

to relate the system characteristics as reflected at One level of the

specification to the next. The specification language used on the case

study illustrates some of the issues identified above and give some

indication of the direction one might consider. Work in the

functional/performance specification areas could be considered both

within a stand alone investigation or in conjunction with the other

studies suggested earlier in the discussion.

202

REFERENCES

1. Alford, Mack W., "A Requirements Engineering Methodology for

Real-Time Processing Requirements", IEEE Transactions on Software

Engineering, Vol. SE-3, 01, Jan. 1977 pp. 60-69.

2. Alford, M. W. and I. F. Burns, "An Approach to Stating Real-Time

Processing Requirements", Presented at Conf. Petri Nets and

Related Methods, Massachusetts Inst. Technol., Cambridge, MA, July

1-2, 1975.

3. Alford M. W. and I. F. Burns, "R-Nets: A Graph Model for

Real-Time Software Requirements", Presented at MRI Conf. Software

Engineering, New York, NY, Apr. 1976.

4. Anderson, S E. and G. E. Short, "A Study of Automated Aids for

Secure Systems," TRW-SS-74-06, June 1974.

5. M. R. Baracci and R. A. Parker, "Using Emulation to Verify Formal

Machine Descriptions", COMPUTER, Vol. 11, No. 5, May 1978.

6. M. R. Barbacci, W. D. Dietz, and L. J. Szowerenko, "Specification,

Evaluation and Validation of Computer Architectures Using

Instruction Set Processor Descriptions", ACM/IEEE 1979

International Symposium on Computer Hardware Description Languages

and Their Applications. October 1979, Palo Alto, California.

7. Bell, T. E., D. C. Bixler, and M. E. Dyer, "An Extendible Approach

to Computer-Aided Software Requirements Engineering", TRW Software

Series Number TRW-SS-76-05, July 1976.,

8. Bell, G. G. Mudge, J. C. and McNamara, J. E., "Computer

Engineering: A DEC View of Hardware Systems Design Digital

Press". Digital Equipment Corporation, 1978.

203I,

9. Bell C. G. and A. Newell, "Computer Structures: Readings and

Examples", McGraw-Hill Book Company, New York, 1971.

10. B. W. Boehm, "Software and Its Impact: A Quantitative

Assessment", DATAMATION. Vol. 19, 48-59, May 1973.

11. Boehm B. W., "Software Reliability - Measurement and Management",

Abridged Proc. Software Management Conference. AIAA, Los Angeles.

CA 1976.

12. Boehm B. W. , R. K. McClean, and D. B. Urfrig, "Some Experience

with Automated Aids in the Design of Large Scale Reliable

Software". Proc. 1975 International Conference on Reliable

Software. IEEE, New York, 1975, pp. 105-113.

13. Boehm B. W., "Some Information Processing Implications of Air

Force Space Missions, 1970-1980". The Rand COrporation Report,

P-4947, January 1970.

14. Boyse, J. W., and Warm, D. R., "A Straightforward Model for

Computer Performance Prediction". Computing, Surveys 7, (June

1975).

15. Brooks, F. P., "The Mythical Man-Month", Addison-Wesley Publishing

Co., Reading, Mass. 1975.

16. Bucci, G., and Streeter, D. N., "A User-Oriented Approach to the

Design of Distributed Information Systems". In Measuring,

Modelling and Evaluating Computer Systems, H. Beilner, and E.

Gelenbe, Eds., North-Holland Pub. Co., Amsterdam. 1977.

17. Buoci, G., and D. J. Streeter "A Methodology for the Design of

204

Distributed Information Systems", Communication of ACM., Vol. 22,

#4 April, 1979. pp. 233-244.

18. Burr, W. E., Coleman, A. H., and Smith, W. R., "Overview of the

Military Computer Family Selection", Proceedings. 1977 National

Computer Conference. AFIP Press, Montvale, N. J. 1977, pP.

131-138.

19. Clark, Bruce, Capt. N. and 2Lt. Michael A. Troutman, USAF Rome Air

Development Center, Griffiss AFB, NY. The System Architecture

Evaluation Facility, An Emulation Facility at Rome Air Development

Center, Griffiss AFB, NY.

20. Clark, Bruce, Capt. N., "The Total System Design Methodology",

Rome Air Development Center, Griffiss Air Force Base, NY, Summer,

1978, pp. 1-10.

21. Denning, Peter J., "Third Generation Computer Systems", Computing

Surveys, December 1971, pp. 175-216.

22. DeRoze, B. C., "DOD Software Management Program Implementation

Status and Actions", Abridged Proc., Software Management

Conference, AIAA, LOs Angeles, CA. 1977.

23. Freeman, H. A., "System Design Methodology - A First Step", IEEE

Transactions on Software Engineering. pp. 213-215.

24. Fucik, George, "Automated Design of Distributed Special Purpose

Processors", 1st International Conference on Distributed Computer

Computing Systems, Oct. 1979.

25. Hansen, P. B., "Concurrent Programming Concepts", Computer

Surveys, 5 (Dec 1973) No. 4 pp. 223-245.

205

NOM

26. Hamilton, M. and Zeldin, S., "Higher Order Software - Defining

Software", IEEE Transactions on Software Engineering, SE-2 #1

March, 1976.

27. Jackson, Alyce, "The FAST Methodology: An Interim Technical

Prepared under Contract to RADC", Oct. 1979.

28. Jensen, R. W. and Tonies C. C., "Software Engineering",

Prentice-Hall, 1979

29. Kobayashi, H., "Modeling and Analysis - An Introduction to System

Performance Evaluation". Addison-Wesley Publishing Co.,

California 1979.

30. Kodres, U. R., "Analysis of Real-Time Systems of Data Flow

Graphs", IEEE Transactions on Software Engineering, May, 1978,

Vol. SE-4, #3, 169-178.

31. Levin, D., "Computer Aided Design of Digital Systems", Crane

Russak and Company, 1977.

32. Mariani, M. P., "Baseline Design Approach", Phase II of

Distributed Processing Architecture Design (DPAD) Programs, Vol.

III Technical Report, TRW, Feb. 1979.

33. Mesarevic, Mihajlc, and others, "Views On General Systems Theory".

Proceedings of the Second Systems Symposium at Case Institute Of

Technology, John Wiley, New YOrk, 1964, pp. 61-88.

34. McClean, R. R. and B. Press, "The Flexible Analysis Simulation and

Test Facility: Diagnostic Emulation", Oct. 1975 TRW-SS-75-03 pp.

15-17.

206

J4

35. Myers, Glenford, "Composite/Structure Design", Van NOstrand

Reinhold Company, New York, 1978.

36. Myers, W., "The Need for Software Engineering", Computer Vol. 11,

No. 2, pp. 13-27, Feb. 1978.

37. Myers, W., "Information Processing/Data Automation Implications of

Air Force Command and Control Requirements in the 1980's

(CC1P85)", SAMSO TR 72-122, 1972-73.

38. Ostrofsky, Benjamin, "Design, Planning and Development

Methodology". Prentice-Hall, New Jersey, 177 pp. 45-66.

39. Palk, G., "A Comparison of Network Architectures-The ARPANET and

SNA", Proceedings AFIPS National Computer Cnference, 1978.

40. Parker, A C., and A. W. Nagle, "Hardware/Software Tradeoffs in a

Varaiable Word Width Queue Length Buffer Memory", Proceedings, 4th

anual Symposium on Computer Architecture. IEEE, New York, 1977,

pp. 159-163.

41. Parnas, D. L., "Information Distribution Aspects Of Design

Methodology", Indormation Processing 71 North-Halland Publishing

Co., 1972.

42. Parnas, D. L., "On the Criteria to be Used in Decomposing Systems

into Modules", Communication of the ACM (Progriing Techniques

Department), December 1972.

43. Parnas, D. L., "A Technique for Software Module Specification with

Examples", Communications of the ACM (Programming Techniques

Department), May 1972.

207

.. .

44. Parnas, D. L., "Information Distribution Aspects of Design

Methodology", Proceedings of IFIP Congress 1971.

45. Parnas, D. L., and W. R. Price., "The Design of the Virtual Memory

Aspects of a Virtual Machine", Proceedings of the ACM

SIGARCH-SIGOPS Workshop on Virtual Computer Systems, March 1973.

46. Parnas, D. L., "The Use of Abstract Interfaces in the Development

of Software for Embedded Computer Systems", Technical Memorandum

Of the Naval Research Laboratory, Washington, D.C. 20375.

47. Ramamborthy, C. V., and R. L. Kleir., "Optimization Strategies

for Microprograms", IEEE Transactions on Computers, C-20 (July,

1971)

48. Roman, G. G., "Total System Methodology Framework". Summer, 1979.

49. Russell, R. D., "The PDP-11: A Case History of How Not To Design

Condition Codes", Proc. of the 5th Annual Symposium on

Architecture, 1978, pp. 190-194.

50. Yourdon, E., and Constantine, L., Structured Design,

Prentice-Hall, Englewood Cliffs, N.Y., 1979.

208

MISSION
Of

Rowe Air Development Center

i6 p'tovided to ESP Ptog4am 066ie6 (P04) and oteA ES?)
eement6. The p~nipa! .technicat m"L6ion ateaa a4e.
comLmuncO.ti.ona, etLectomragnetie guiZdance and cont&ot, &LLA-
veit-ance od g~uand and deopace objectA, icnfrJttience diata
cottecton and handting, injo'wiation .6yaem, technotogy,
i0n0,6pheAiC pkopagation, &6oti4 .6tLte. 6ciene", AOEtowave.
phyhseh and dtectni 4etiabZUity, maintainabitity and
cornpati~bZiy.

