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Preface

Modelling stochastic systems is an art. As such one learns by doing.

But the process of learning is long and has a number of steps preliminary to

doing. One must learn some basic concepts of stochastic processes and their

properties. Unfortunately, this step and its output have come to be called

"theoretical" and seem to be viewed with a jaundiced eye as though they were

unnecessary, irrelevant and an impediment to doing.

Except for the gifted few this process of learning must next include

some familiarity with how others have used the theory to study important

problems. This step I would call the study of models. It is not an end,

nor a beginning, but an intermediate step to learning how to do. Unfortu-

nately, most textbooks and many journal pages leave one with the impression

that models previously developed somehow have an intrinsic value and if one

knows enough models then applying the "theory" is just a plug-in exercise.

This may be true in some fields but in operations research we know so little

of the basic "science" of our processes that except in rather rare cases we

do not have coherent models. All applications must cut, paste, extend,

compress, rearrange or even develop models to make them do. The study of

existing models is necessary but not sufficient to the doing of modelling.

It is necessary to see how others have handled the problems of messy data

(Unlike laboratory sciences, operations researchers almost always deal with

messy data.), complexity of systems, systems that just do not satisfy

assumptions of existing models and the like. But this process is not

sufficient to doing modelling by oneself. My non-linearity is not your non-

linearity. My dependence is not your dependence. Therefore, the final



step in learning how to model is to model.

Modelling, it seems to me, cannot be taught in the usual sense that we

use that word. It is clear that it can be learned because many people have

learned how to do it.

These notes try to reach the second of the three levels of modelling.

That is, they try to expose very briefly, models of processes that others

have developed. To understand how these models have been developed will

require considerably more digging than we provide. Some of the studies we

will mention occupy hundreds of pages of discussion. They cannot be

summarized into a "how to do it manual" especially in our relatively few

pages. But when all is said and done these examples are models. They are

not "reality". They are not prescriptions or descriptions of "how to do it".

We start these notes with what we hope is a mildly surprising result

obtained from a simulation of a very simple system. Unravelling the seem-

ing mystery of the example takes us two rather long sections (II and III) to

develop some structure for the random process underlying the example. It will

turn out that the structure developed for that purpose (which has been in the

research literature for about 25 years) has many other uses. In section IV

some of these other uses are exposed. In particular we note, in very brief

summary form, some of the uses to which the results of section II and III

have been put. Here, we continually implore the reader to consult the source

documents. Our discussion is, intended simply to goad the reader into that

literature. In no sense do we do the literature the service it deserves.

Such is not our intention nor could it be done within the confines of space,

time and our short span of interest in rehashing work that others have exposed



well. In section V we summarize where we have been and try to put the

state-of-the-art in perspective in three pages. The bibliography is not

complete in any dimension but a careful reading of the documents therein

will take the reader more deeply into both theory and other applications.

During my years of teaching, I have had the priviledge of working

with some very bright young men and women. To them is due credit for

nearly everything in these notes. The errors are mine and I hope they

will forgive me the distortions I made to their work as I tried to condense

hundreds of pages to these few. Drs. Peter Cherry, Erhan ginlar, Arthur

Cole, Carlos Daganzo, Gilles D'Avignon, Atillio DiMarco, William Hall,

Ralph King, Myun Lee, Gordon Swartzman, Burton Simon, James Solberg, and

Thomas Vlach will recognize how deeply I am indebted to their work in

these pages. Mr. Ziv Barlach did the simulation analysis noted therein and

produced some of the analytic results with which we compared these results

with the simulation. Dr. Robert D. Foley a former student and now valued

colleague read this manuscript as did Dr. Jeffrey Hunter whose good nature

was taken advantage of during his sabbatical leave from the University of

Auckland, New Zealand at VPI & SU. Dr. Hunter was kind enough to share with

me the thesis by Ms. Sim. Finally, what can I say about my right arm, Ms.

Paula Myers? She typed, retyped and re-retyped these pages, always outwardly

good humoredly and met impossible deadlines caused by my normal

procrastination.

Ralph L. Disney

Blacksburg, Virginia

July, 1980



I. INTRODUCTION

1.0. Overview. Our purpose in these notes is to expose some concepts in

stochastic modelling.

Since computer simulation is a widely used tool, we attempt to motivate

our discussion with a problem that was simulated. The problem is very simple,

well known to all operations researchers, has an analytic solution and is easy

to simulate. However, we will see a result that at first glance can be perplex-

ing. In particular a variance estimate made using the computer's output does

not seem to be behaving "as it should". One can guess many reasons for the

anomaly. The sample is not big enough. The simulation was not generating

steady state results. These guys do not know how to simulate. While all of

this may be true, the problem is much deeper than this. To understand and

correct for it takes us far afield. By the time we return to the example

(section 4.1.2) we have discussed a large body of knowledge (sections II and

III). Since that knowledge is considerably more useful than our simplistic

simulation problem, we expose several examples and a few real-life applica-

tions of it.

1.1. A Simple Problem. Let us begin with a very simple problem whose structure

is well known to everyone in operations research. Consider the M/M/l/N queue.

Suppose that we would like to determine, experimentally, the mean time between

departures from such a queue. Such an endeavor is not too far fetched because

in a queueing system this departure process might be the input to other queues

that we wish to study or it might be the output of the system that we wish to

control.



In many experimental studies one seeks not simply a point estimate of such

a thing as a mean but rather one wants an interval estimate, perhaps a confidence

interval. Therefore, let us require of our experimental procedure that we find

the variance of the time between deparLures from the M/M/l/N queue. To make the

matter more precise, let us choose N = 3 and several values for the usual traffic

intensity p = A/p.

Now we know that we probably should choose a large sample to gain precision

in our estimates. Therefore, let us arbitrarily select 100 departure intervals

(not because of any magic formula but simply because I did not have more money

for computing).

One of my students, much more knowledged in simulation than I, simulated

100 steady state departure intervals from a M/M/l/3 queue. We then computed,

using the standard tools of statistics, the mean and standard deviation for

this sample.

A simple piece of stochastic modelling can give us the "true" mean for this

data. The analysis might go as follows.

Consider the queue just after a departure has occurred. At that instant,

the queue left behind is either 0 - the queue is empty or it is not 0 - there

is at least someone in service.

Now if the queue is empty at a departure point (with probability n0 (n))

we must wait I/X time units on the average until the next arrival plus 1/P

time units to service that arrival. If the queue is not idle at a departure

time (with probability (1- w 0(n)) then we need wait only 1/1 time units on

the average until the next departure. Thus, if E[T T is the mean time
n+l n

between departures n and n+l we have

2(



(1.1.1) E[T -T = o(n)(- + + (1- io(n))

0 (n) 1

We have plotted the "true" value of (1.1.1) in figure 1.1.1 as a function

of n. Note that the graph converges to (1.1.1) rather rapidly and for n > 6

the "time" dependent expectation (using ir0(n)) is very close to (1.1.1).

To find the standard deviation of the time between departures takes a bit

of work but it can be done. We will return to this problem in section IV

example 4.1.2. In figure 1.1.2 we have plotted both the estimated variance

and the "true" variance again as a function of n. It is important to notice

that the time dependent "true" variance is not converging to our computed

steady state variance.

1.2. Observations. From an analytic theory of these processes (see section

4.1.2), these variance estimates should converge to their steady state values

rather fast. Figure 1.1.2 shows they converge in 5-6 steps for reasonable

measures of "closeness" which checks with the theory. The problem is, and

the figures show this clearly, these variances are converging rapidly but to

the wrong value. True the values are not much different but they are obviously

different. Furthermore, they are converging to values less than the sample

variances would indicate. This means that if one used the sample variance to

produce confidence intervals these intervals would be too large or larger sized

samples would be required. (One can, alternatively, produce examples where the

sample variances are too small and things such as confidence intervals would

3



Figure 1. 1. 1
The Time Dependent
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Figure 1. 1. 2
Time Dependent Variances of Departures
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be too small.)

But there is more here than meets the eye. The differences shown in

figure 1.1.2 are caused by correlations in the data produced. Thus, the

observations are not independent and statistical tools that rely on

independence are at best suspect for this simulation.

Knowing what the problem is here, of course, allows one to design

simulations to eliminate it. Understanding what the problem is will take

us awhile. We return to this problem in section IV.

II. MARKOV RENEWAL PROCESSES

2.0. Introduction. The trouble with our study in section I is that we used

standard statistical tools to estimate a variance. These methods assume that

the random variables giving us the data are mutually independent. (i.e., all

subcollections of the random variables are collections of independent random

variables.) But the intuitive argument leading up to formula (1.1.1) clearly

indicates that this is not so. We consciously had to take into account

whether the queue was idle or not at a departure point in order to compute

formula (1.1.1). Thus, these interdeparture intervals must at least depend on

the queue present at the beginning of the interval. In essence that was the

fact we used when we found two conditional expectations, one depending on the

queue being empty, the other depending on the queue not being empty. In this

way we simply used the fact that

Ey[Ex[XIYl] E[XI,

a well known result.

6



We could have used a related argument to compute our variances. We did

not because it would have spoiled the fun. More importantly, however, it

would not have told us much about the probability structure of the departure

process.

It appears that if we are to explain the probability structure of this

departure process we must include in our structure some knowledge of the

queue length process. Furthermore, because it seems that there is at least

a first order correlation here (accounting for the difference'between the

variance as computed and that as calculated) we must account for at least

the joint distribution of two consecutive intervals (Tn+ 2 - T n+ and Tn+ 1 - Tn

perhaps and maybe more). But since each such interval depends on the queue

length at the start of the departure interval and since these queue lengths

are Markov dependent in the M/GI/IN models, it appears that we need a model

that at least allows for Markov dependent queue lengths and interdeparture

intervals that at least allow for some dependency on these queue lengths.

We will see how all of this comes about in section 4.1.2 but first we must

develop a bit of theory of a rather useful random process.

In the process of development, we will expose a class of random processes

that are useful for modelling complex systems and which has the advantage of

including most of the standard processes that are now popular for modelling.

We will point out these connections. We will not be able to expose what we

are about with rigor that the mathematics deserves. Whenever possible we will

try to motivate and provide at least plausible heuristic arguments in defense

of our assertions. The reader interested in the deeper aspect of the subject

can begin with the excellent text: inlar, E., Introduction to Stochastic

I



Processes, Prentice-Hall, (1975) or the article by the same author (1975).

The topics we discuss have been known since 1954 due to the two papers

Levy (1954) and Smith (1955). They became more widely known because of the

papers by R. Pyke, (1961). However, they were being used as models of

inventory and queueing problems a bit before Pyke's papers by Fabens, (1959).

In fact, P. Finch (1959) studied the departure process of section I over 20

years ago and gave almost a complete account of what is going on in M/G/1

queues using some of the results we now develop.

2.1. A Markov Renewal Process. We start by defining a sequence of pairs of

random variables. Let X be a random variable such that for each nf=O,1,2,.-.,n

X takes values in some fixed, countable space E called the state space. If

for some n, X =J, j cE we say the state of the process at the nth step is J.

Let T be another random variable that for each n-0,1,2,--., takes valuesn

in the non negative real numbers, say R+. Then the sequence of pairs

{(X nTn) } is called a Markov Renewal process if

Pr[X+l1 J, T n+1- Tn< t1Xo,'Xl,.-.,X -i, ,OT . T nl
(2.1.1)

=Pr[X+l--J, T+ 1 - T n< tix -..n

We will take T = 0 throughout our discussion and suppose Pr[X -=j) is given.

If in addition the probabilities in (2.1.1) do not depend on n, then the process

is homogeneous or has a stationary transition mechanism. In most modelling this

is the assumption made and we will assume the homogeneity throughout our discus-

sion (but see section 4.1.4). In this case we will identify the probabilities

in (2.1.1) by Qij(t) and call these the transition functions of the process. The

8



matrix 9(t), for which Qij(t) is the i,j element will be called the semi-Markov

kernel of the process {(X Tn) 

2.2. An Interpretation. Equation (2.1.1) can be rewritten in either of two

forms that helps one gain an intuitive feeling for how such processes could

arise in natural phenomence. First note that Q(t) can be written in either

of the forms

(2.2.1) QiJt) = Pr[T n+- T < tJX i]Pr[X +=jIT +- T ,nt, Xn i|

or

(2.2.2) Qj(t) = Pr[Xn+l = j IXn= iPr[Tn+l - T < tX+-=j, Xn=i].

Then, if we think of this process as one evolving over "time" (n) by jumps,

where a jump carries the process into some state in the space E, (2.2.1)

implies that the time between the (n+l)st and nth jump, T n+- T n, is a random

variable whose distribution depends on the state the process is in at Tn

(i.e., X ). The next state to be visited, Xn+, has a distribution dependent

on both the state the process is in at T , and how long it remains in then

state, Tn+l - Tn .

Thus, if one were to try to simulate this process on a computer, one would

have to create values of two random variables at each iteration. By (2.2.1)

one would have to generate a value for a non-negative random variable T n+- T nnl n

The distribution from which this value was generated would be the distribution

associated with X . There would be as many distributions to draw from as theren

are elements in E. Having generated this value for T n+-T n one would then

generate a value for the discrete random variable X The distribution from
n+1*

9



which this value was generated would depend on the previously chosen value of

T n+- Tn and the given Xn. Thus, to generate X one would have as many

distributions to choose from as there are elements in R + x E. While this is

not physically feasible, it will turn out that many modelling problems are

best understood if one thinks that this is how the application is generating its

behavior. As we shall see later, this thought process is natural to understand-

ing the departure phenomena of section I.

(2.2.2) is more natural for simulation. By that formula the states visited,

X n, X n+, simply form a Markov chain. The time between jumps, T n+- T , is a

random variable that depends on both the current state, Xn, and the state to be

visited next, Xn+ I .

Thus, if one is to try to simulate this process using (2.2.2) one would

first generate the states of a Markov chain using Pr[X +f=i X n =. ij as the

transition probability of a jump from state i to state j. Then knowing that

this jump was made, one would generate a value of the continuous valued random

variables, T+ - T, from a distribution whose probabilities are given by

n n

distributions to draw from as there are values in E x E.

2.3. Two Applications. Models such as those described in section 2.1 have

been used to model road traffic flow in at least two studies. One study is

a little easier to elucidate. We will discuss another model in section

4.1.7.1.

One supposes that there are two types of vehicles that travel a road, cars

and trucks. One assigns

10



0, if the nth vehicle passing a point is a car,
X
n

1, if the nth vehicle passing a point is a truck.

It is assumed that the sequence of cars and trucks passing a fixed observer

forms a Markov chain with one step transition probabilities

Pr[X +=JlX=i] = Pij' i,j E E = {0,1}.

Then, given that the leader vehicle is of type i and the follower vehicle is

of type j,

Pr[T+ 1 - < tX+ 1 -j, X =i

would give the probability distribution of headway measured in units of time

or distance. One would expect that this headway depends on whether a car is

being followed by a car or a truck and whether a truck is being followed by

a car or a truck. Thus, there are four possible distributions for this

headway distribution depending on i,j. The i,j elements of the matrix

O= POI

LPlo Pllj

would give the probability that a vehicle of type j was following a vehicle

of type i (i.e., Pr[Xn+l1JXhi]). The i,j elements of the matrix

1I



F00  0 1

[F10 (W Fl(t)

would give the probability distribution of the headway, when a vehicle of type

j was following a vehicle of type i (i.e., PrET n+l -T n < t1X +1= j, X =i]).

Hall (1969) has developed a Markov renewal model in his study of dual

functioning ambulance systems. In his study, two types of calls are received

by a police dispatcher. One type of call is for police assistance. The

other type is for medical emergency assistance (i.e., ambulances). In his

model, Hall assumes that the calling process is a Markov renewal process. He

de fines

O, if the nth call is for police assistance,
X=
n

1, if the nth call is for an ambulance.

Then the i,j element of the matrix

POO PllrPo
LI

is the one step transition probability for the "type of call" process (i.e.,

P = Pr[X+ jIX i]). The i,j element of the matrix

12



[(t) t FF°° t)]
Foltt)

[F( t )  Fll(t)

then gives the probability distributions for the times between calls arriving

to the dispatcher depending on the types of calls involved (i.e., FJ(t) =

Pr[Tn -T < t]X+l= J, Xn =1]). We will discuss the Hall problem in more
n+l n - n n

detail in section 4.1.5.

2.4. Some Properties of Qij(t) and the Markov Renewal Process. The matrix

Q(t) has some useful properties.

(2.4.1) lim Qij(t) = Q (s) = Pr[Xn+1 = J I X = i ] "

That is, the marginal distribution of Xn+ I given X is the distribution that

is associated with some Markov chain (i.e., that chain whose one step

transition probabilities are given by Pr[X+l-j X = i]). We will call this

Markov chain the underlying Markov chain. In many queueing applications of

Markov renewal theory this underlying Markov chain is precisely the one

obtained by embedding methods. In particular, {X I is the embedded Markov
n

chain for the M/M/1/3 queue of the problem in section I.

(2.4.2) Fi(t) = E Pr[Xn+l= J, Tn+ 1 - T n < tjX =i]
JCE

- Pr[T+ 1 -T n tjX_ =i].

That is, the marginal distribution Fi(t) is the probability distribution

13
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function for the time spent in state i regardless of the next state to be

visited. In most applications Fi(t) is a proper distribution (but see section

4.1.3). In particular, E[T +1 -T IX -0] - l/X + 1/u and

E[T+I -T_ Xn>I] 1/p for the problem in section I.

(2.4.3) F(t) f- Pr[T +l-T - < tX n+l=J, X n1]

SQij (t)/Qij (o)"

That is, F ij(t) is the distribution for the time spent in state i when it is

known that the next transition is to state J. We will assume that F (t) is
ii

properly defined. Clearly, then Qij(t) - Fij(t)Qij(-o). That is, Qij(t) can

be obtained in our previous examples from Qij(t) - Fij(t)Pij where pij = Qij (®) "

When Q(w) ff 0 for some i,j, Fij(t) can be chosen to be any distribution

function.

We know from the discussion in section 2.2 that the {Xn ) sequence forms a

Markov chain and from (2.4.1) the one step transition probabilities for this

chain are given by lim Qij(t). But what about the {Tn+l - T n sequence? What

are its properties? From (2.2.2) we know that in general T +-Tn depends on

X and X n . Therefore, it follows that

PriT h+-T n < t n+-T n-Tn n < t,...T-T < t l 1X n + l,Xn '... ' ,

(2.4.4)

=FX X (t n+l)Fx (t)'"
n n n n- lot

That is, the sequence {T n+- T n  is a sequence of random variables that are

conditionally independent where the conditioning random variables are the

states of the sequences {X }. The Tn+l-T n0,1,2,'., themselves are not
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independent. In fact for each n, T n+- T depends on all increments T m+- Tm

for m < n.

2.5. Other Processes as Markov Renewal Processes. Other processes that are

commonly used for modelling can be thought of as special cases of the Markov

renewal process. However, the special cases were developed first and an

extensive theory exists for them. Because of this, when one knows that he is

working with the special case, it is probably preferrable to use the special

knowledge of that process. None-the-less, the more general theory of Markov

renewal processes often leads to new insights, new interrelations, and

interpretations, ties together many seeming disparate topics, and provides for

a consistent framework that often allows easy generalization.

2.5.1. Renewal Processes. We know from the above discussion that

{T n+- Tn I is a sequence of dependent random variables. Those random variables

are conditionally independent given {X n. Now suppose that the state space E

contains just one element. Then in formula (2.4.4) every X takes only thisn

one value or, equivalently, knowledge of the sequence {X } is irrelevant to then

conditional probabilities in (2.4.4) because there is on'y one sequence that the

X could possibly take. Every X must take only the one value in E.
n n

Consequently from (2.4.4) we obtain

(2.5.1.1) F (t )Fn (t F'(t)- F(tn)F(tn)' F(t)
X i Xnnl n-i X19 0 n+l n

In this case the sequence {T - T ) is not only a sequence of conditionally
n+l n

independent random variables, it is a sequence of mutually independent random

variables. Furthermore, since we have assumed that Qij(t) does not depend on

15



n, F does not depend on n in (2.5.1.1). Then in this case {T n+-T n ) is a

sequence of mutually independent, identically distributed, (obviously non-negative)

random variables. But these are precisely the conditions necessary for a

sequence of random variables to be a renewal sequence. That is, a renewal

process is a Markov renewal process with only one state.

2.5.2. Markov Processes. It is well known (e.g., inlar, (1975), pp.

246-247) that if {Y(t)) is a (regular) Markov process then one can identify

two underlying processes that generate {Y(t)). If we let T be the time ofn

the nth jump of Y(t) and let X be the state into which the process jumpsn

at the nth jump, then for {(Xn,Tn)

Pr[X n+I  j, T n+1  T n  >tlxn=i, X_l,-..,x 0 ' T n,  T n_ ,'''.,T 0
(2.5.2.1)

= p(i,j) exp(-X(i)t),

where p(i,j) = Pr[Xn+ 1 I = JIX n 
= i ] are the usual one step transition probabilities

of the (jump) Markov chain (X n. Conversely, if we start with a pair {(X nT)}ni

with probability structure as in (2.5.2.1) then we can always construct a

(regular) Markov process {Y(t)).

If we use (2.2.2) we see that these Markov processes are special Markov

renewal processes. The particularization comes about by requiring

1 - F (t) - Pr[T -T > t=X j, X- i ] - exp(-X(i)t).
ij n+l n n1X j Xn~i

That is, if one requires that the time between jumps in the Markov renewal

process be exponentially distributed random variables with parameters depending

only on the current state (Xn) and not on the next state to be visited, then

16



the Markov renewal process is a Markov process. In this way one can see that a

Markov renewal process is more general than a Markov process in that one does

not require the time between jumps in the process to be exponentially distributed

in the Markov renewal case nor does one require these interjump time distribu-

tions to depend only on the current state of the process. These distributions

may depend on both the current and next state in a Markov renewal process.

This latter property may be one reason for the appeal of the Markov renewal

models for road traffic. One simply expects the headway distributions to depend

on both the leader and follower not just the leader.

2.5.3. Markov Chains. If again in the structure of formula (2.2.2) we

require that

0, t < 1,

Pr[Tn+ -T < t1IX +1 
=

j, Xn =i ] =

1 i, t > 1 ,

then the interjump times are always of length 1 or jumps occur at 1,2,''',n'-'.

In this case, the Markov renewal process is simply a Markov chain with one step

transition probabilities given by Pr[X n+=JX ni = p

2.6. The Markov Renewal Function. Before going much further we must develop

some additional concepts.

First we have

Qij(t) = Pr[X n+= j, T n+-T < tXn =i ] .

Now it follows from first principles that

17



Pr[X+ 2 =k, T+ 2 -T n+l YIXn+l ]•

Pr[X+I=J, Tn+1 -T < xix n-i

=Pr(X k, =J, T+ -T <y, T T< xIX =1],
+2 kXn+1  ,n+ 2 -n+ 1  n+1 - Tn  n

where the result follows since the event {Xn+ 2 =k, Tn+2 - Tn+1 < y) does not

depend on T - Tn wheren+ is given. Then by usual convolution arguments

on the two random variables T+- , Tn - T whose sum is T T we
n+2 n+1 n+1. n n+2 n'

have

PrX k n+2 X 1 n+ J, Tn+2 - T  < tjX = i )

ft Qij(dx)Qjk(t- x)

=Pr[X2=k , X =J, T2 < tjx0=i ]

upon using the homogeneity property and the convention To = 0. Then we can

write

Pr[X 2'k, T2 < tIX 0 =i] =

tE f0 Qij(dx)Qjk(t- x).

In concert with the corresponding functions in Markov process theory these

functions are denoted by Q(2)(t) and are called the two step transitionik

functions. By induction one can show that
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I
Pr[X =k, T < tx=i]|n n-

(2.6.1)

E t Q (ds n-1) (t - s) Q (n)(
o EO Qij( )Qjk (ik (t),jEE

called the n step transition functions of the process.
(n)(n),t

If one defines the matrix Q (n)(t) to be that whose elements are Q (n t

then (2.6.1) can be written in matrix form as

(n) t (n1)(n-1)
Q(t) = 16 Q(ds)Q (t-s) = (Q * Q )(t)

where the operation here on these matrices is that defined by equation (2.6.1).

We will call this operation matrix convolution and denote it by the symbol *.

By convention we define Q(0 )(t) to be the identity matrix for all t > 0.

Now let us define two very useful random variables. Let

1, if X =j,n

1.(X ) =

0, otherwise.

This function of the random variable X simply indicates whether X = jfn n

or not. Similarly let

1, if T e- tO,t],

I1o, t] (T n

S0, otherwise.

This function of T is again an indicator random variable that takes the valuen

1 if the nth transition falls in the fixed interval [O,tJ and is 0 otherwise.

Clearly the product
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1 j (Xn ) 1 [0, t] (T n

will take the value 1 if both X - j and T c [O,t], and will take the value 0
n n

otherwise. Then

Z Ij(Xn)I (T )
n-O 0t

is simply a sum of O's and l's where 1 occurs each time X n j in the (fixed)n

interval [O,t]. That is, the sum simply gives the number of times X = j in
n

the interval [O,t].

Now define

Rij (t) - Ei[n 0 lj(X n)Io,t (T )
]

n-n

where Ei denotes the conditional expectation E[-Ixo- ij. Then pass the

expectation operator inside the sum (which can be proven to be a valid operation

here). Recall that the expected value of a Bernoulli random variable (which the

indicators are) is simply the probability that the random variable takes the

value 1. Here this is equivalent to the probability that both X n j andn
^(n)

T e 10,t] which from (2.6.1) is just Q (t). Then one finds that
n i

(2.6.2) Rij(t) - E Q(n)(),
nsO

a result well known at least in renewal theory. Rij(t) is finite for all

finite t, is right continuous for all t > 0 and is the expected number of

visits to state j in [O,t] for the process that starts at To - 0 in state i.

A As in renewal theory the deriviative Rij(dt) of Rij(t) , when it exists,
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can be given a useful interpretation. One can think of R ij(dt) as the

probability that some transition into state j occurred in the interval

(t,t + dt] for the process that started in state i at T = 0. This

interpretation provides heuristic justification for several of our later

results.

We define R(t) to be the matrix whose i, j element is R ij(t). R(t) is

called the Markov renewal function. Then (2.6.2) can be written as

(2.6.3) R(t) - E 9(n)(t).
nfO

From this it follows that

R(t) = I + Q(t) + Q (2)(t) +",

(Q*R)(t) Q(t) + Q (2)(t) +..

Thus one has that R(t) satisfies the equation

(2.6.4) R(t) = I + (Q*R)(t)

or in component form

1 + r t Qij(ds)Rj(ts), i-k,JcE fo j k t- ), i ,

(2.6.5) Rik (t) =

E Rij(ds)Qjk(t-s), i#k.
JCE

where I is the identity matrix. That is R(t) is a solution to the integral

equations (2.6.4). It is not clear (and in general not true), however, that

R(t) is the unique solution to this equation.
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In those cases where Q(t) is a finite matrix we can define Q*(a) to be the

matrix whose elements are the Laplace-StieltJes transform of the corresponding

elements of Q(t). If we define R*(a) similarly for R(t), then for finite state

processes (2.6.4) leads to the useful result

(2.6.6) R*(a) = (I - Q*(a))-

where I is the usual identity matrix. For finite matrices this inverse is

unique. However, if Q(t) is not finite the inverse may not be unique.

2.7. The Markov Renewal Equation. If we let f, g be column vectors whose

elements fi ( t) and gi (t) respectively are non-negative functions, bounded on

finite intervals, then the equation

f g+Q * f

or in component form

fi(t) = gj(t) + kE fo Qij(ds)fk(ts), i c E
kCE

is called a Markov renewal equation. In the special case where E has just one

element, this is the well known renewal equation. For most applications given 9

and g this equation has a unique solution f given by:

f(t) - (R * g)(t).

The solution is unique in the renewal case but there are exceptions in the

Harkov renewal case. The reader should consult Cinlar (1975) carefully here.

In component form this solution is
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(2.7.1) fi(t) = r f 0  (ds)gk(t-s)

Proving that this is a solution is easy, by substitution. Proving it is not

unique requires more work. Very roughly, if the Markov renewal process never

stops or if the transition functions Qj(b) are uniformly bounded away from 1
Qij

for some b > 0 then the above solution is unique. One of these two conditions

is almost always satisfied in modelling applications so we will assume that

the Markov renewal equation has a unique solution.

Notice in particular that if we let fi(t) be any column of R(t) then

equation (2.6.4) implies that R(t) satisfies a Markov renewal equation where

!i(t) is a column of R(t) and gi(t) is the corresponding column of I. Thus one

could have reversed our discussion by starting with (2.6.4) and proving that

(2.6.3) was the unique solution by the results of this section.

Interest in the Markov renewal equation and its solution lies not only in

the form of (2.7.1) and its computations but also in the limit (t - =) of this

solution. A complete discussion of this limiting behavior is not possible

here. For our future purposes we can say that if gi(t) is a proper probability

distribution for each i and if this function is Riemann integrable then the

solution to the Markov renewal equation has a unique limit. Both of these

conditions exist in our applications.

This limit, when it exists may be computed as follows. Consider the under-

lying Markov chain {X n. Assume it has a positive stationary vector (i.e., a

solution of the equations w f wQ(-)). Such is always the case at least if

{X n is recurrent, aperiodic as is well known from Markov chain theory. Let
n
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m(j) - E[T1 ]

be the mean time spent in state j initially. Then

lir fM(t) - lir E ft R (ds)gk(ts)
t-t- kEE 0 j

(2.7.2)

Z i(k)f O gk(s)dskcE
E (i)m(i)

icE

2.8. Summary. In this section we have presented the bare minimum knowledge

of Markov renewal processes and a very few properties. This background is

sufficient for building some useful models (but not 4.1.4) and exploring some

old problems that heretofore seemed intractable. We need one more construction

in section III then we will be ready to expose some of the usefulness of our

methods.

III. SEMI-REGENERATIVE PROCESSES

3.0. Introduction. In many models of stochastic processes it is common to

find that the process has certain times at which the future behavior of the

process is independent of the past. The process in a sense renews or regenerates

itself at such times. For example, in a Poisson process every instant of time is

a renewal or a regeneration time for the time between jumps. This is so well

known that the phenomena is given a name. It is called the "forgetfulness"

property. Indeed, it is this forgetfulness that makes the Poisson extremely

useful in stochastic modelling.
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But there are also processes for which there are some points at which the

process regenerates itself but not at every t > 0. For example, the times of

entry of customers to an empty queue are such points in Gl/G/l queues. Recent

work in the statistical analysis of stochastic processes relies on the existence

of such points (the so called "regenerative method").

But notice that if one observes a queue length process (call it {Z(t)})

for an M/G/l queue, times at which departures occur are in general not points

at which {Z(t)) regenerates itself. The development of the queue length

process after a departure depends very much on the size of the queue at that

departure point. Such is true for the queue in section I as was noted.

Therefore, the concept of regeneration while extremely important is not

sufficiently general for some applications. In the remainder of this section,

therefore, we will develop another concept that can be called "semi-regeneration".

It will follow from our discussion that all random processes that are regenerative

are also semi-regenerative. The converse is not true. k

3.1. Semi-Regenerative Processes. To generalize this concept of regeneration

we start by defining a random process, say {Z(t)}, and a random time, say T.

Then if the event {T < t depends on {Z(s)) only for those s < t we say T

is a stopping time for the process {Z(t)}. Such stopping times occur rather

often in stochastic models. In Markov chain models the times at which the

process enters some fixed state j for the first time are stopping times. In

fact the times at which the process enters j for the kth time are stopping times.

The times at which j is left for the first time is a stopping time. But note

that the time at which j is left for the last time is not a stopping time. This

latter result follows since one must know about the behavior of the chain for all
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future time (after each exit) to know whether this exit is the last one or not.

Now suppose {Z(t): t > 0) is a random processes with state space F. (We

are rather imprecise here.) Suppose further that {(X n,Tn ) is a Markov renewal

process. Suppose {Z(t)) and {(Xn Tn)) have the following properties:

(3.1.1) For each n = 0,1,2,-..,T n is a stopping time for {Z(t)};

(3.1.2) Xn is determined by the events {Z(s): s < Tn 1;

(3.1.3) for each n = 0,1,2,.--, m> 1, s 1 <s 2 < < s m and

positive function f on Fm,

Ei[f(Z(T n+s ) , Z(Tn+s 2 ), '- - ,Z(Tn+sm)IZ(u): u < Tn

E[f(Z(S1 ) , Z(s2),...,Z(sm)IX f j1.

Then {Z(t): t > 01 is called a semi-regenerative process and {T ) are calledn

semi-regeneration epochs or times. Conditions 1 and 2 are rather straight

forward. Condition 3 requires a bit of explanation. It is saying two different

things. First of all f is some function defined on the m-dimensional space F.

For example, f could be a cost function, as is often the case in inventory

applications. f could also be an indicator function in which case the

expectations in (3.1.3) are statements about probabilities. The important

thing to recognize is that the left hand side of (3.1.3) is an expectation over

states of the process after the stopping time Tn whereas the right side is an

expectation over the future of the process after time 0. Thus, the right hand

side of (3.1.3) is a re-initialized version of the left hand side with the re-

initialization occurring at T n

But there is more here. (Z(u): u<T )is the history of the {Z(t)) process
-2
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up to the time Tn, and X is the state of the Markov renewal process at Tn . Then

(3.1.3) is also claimtng that the "future" of {Z(t)} after T is independent ofn

the "past" of {Z(t)} before Tn if the "present" (at Tn ) state of the {(X n,T)}

process is known.

Thus, very roughly, a semi-regenerative process is one that has associated

with it a Markov renewal process and has the properties that: the Tn of the

associated Markov renewal process are stopping times for {Z(t)}; Xn depends

only on {Z(u): u < T 1; at each stopping time T, the {Z(t)} process regenerates

itself just as though it had started in the state of the Markov renewal process

existing at T (i.e., had started in X ). At the semi-regeneration point "the
n n

future of the process and the past of the process are independent if the current

state X is given".
n

If E contains just one point then as we have noted (section 2.5.1),
{T -T ) is a renewal sequence and {X I plays no role in (3.1.1)-(3.1.3).

n+l n n

Thus, in this special case we could redefine the {Z(t)} by requiring:

(3.1.1.a) T be stopping times for {Z(t));

(3.1.1.b) irrelevant;

(3.1.1.c) for each n = 0,1,2,'", m > 1, s I< s2 <' < s and

positive function f on Fm

E[f(Z(T + sl)' Z(T + s 2 ),...,Z(Tn + Sm))IZ(u), u < Tn] ,

E[f(Z(sI), Z(s 2 ), .. . ,Z(s m ))].

In this case (Z(t)} is called a regenerative process. We will not pursue the

topic but such processes have applications in many areas. Much of what we
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discuss later in this section is also true for regenerative processes by

restricting the results to state spaces with one element.

3.2. Some Examples of Semi-Regenerative Processes. We will give a few examples

of semi-regenerative processes here. Some of these examples we hope the reader

has encountered in other contexts. Other examples are given in section IV.

First we note that every regenerative process is a semi-regenerative process and

every (regular, jump) Markov process is a semi-regenerative process.

3.2.1. Forward Recurrence Times. Let {Y n = O,1,2,'.'} with Y0 0

be a sequence of independent, identically distributed, non-negative random

variables. Such things are called renewal sequences. They occur in reliability

theory where Y is taken to be the lifetime of the nth replacement of a part.n

YI is the original part's lifetime and it is assumed that the original part is

put into operation at time 0. In queuel.ng theory such sequences occur when Y
n

is taken to be the time between the n and n- I arrival to the queue. In

Markov process theory Y is the time between the n and n-I visit to somen

fixed state.

Now let

n
T = Z Yj.

Then T is the time at which the event of interest occurs for the nth time. For
n

example, T is the time of the nth replacement in reliability theory or the time
n

of the nth arrival in queueing theory.

A process of some interest is defined by
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Z(t) = T+ - t, T < t < T+.

Then for each t, Z(t) is the random time from t until the next event occurs. In

renewal theory this is called a forward recurrence time. A picture of a sample

path of {Z(t)} is informative. (See figure 3.2.1.) The things to observe are

teh Z(t) jumps upward at each Tn by an amount Yn = Tn- T n-l It then decreases

linearly with slope - 1 until it hits 0 (at Tn) then jumps again. Since the

{Y I sequence is a sequence of independent, identically distributed randomn

variables, the heights of the jumps have these properties.

Now it is rather obvious that {T } is a sequence of stopping times for

{Z(t)}. One needs only look at the above picture to tell if, for example,

t3 has occurred by some fixed t or not. In our picture it is obvious by

looking at {Z(t)} up to t that indeed T3 has occurred before t. We need no

other information than the paths of {Z(t)} up to t to partition those paths

into ones where T 3 occurs before t and those where such does not happen.

Thus {T } is a sequence of stopping times for {Z(t)I. Furthermore, at eachn

T a part fails in the reliability application or an arrival occurs in then

queueing application. That is, associated with each T there is only onen

thing that can happen. Hence the associated {X I sequence has only one state.

Thus, as we argued in section 2.5.1 the Markov renewal sequence {(Xn Tn)}

is a renewal sequence. Obviously property 2 of our semi-regenerative process

definition is satisfied.

Finally, since {Yn } is a sequence of independent, identically distributed

random variables any function of Y after T is independent of that functionSn n

of Yn prior to T n Since there is only one value of X condition 3 of our semi-
29n
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regenerative process definition is trivially satisfied.

Thus we conclude that {Z(t)}, the forward recurrence time process of a

renewal process is a semi-regenerative process. In fact since this semi-

regenerative process does not even depend on {X n } (since there is only one value

X can take for every n) it is a regenerative process. That is it satisfies~n

conditions (3.1.1.a)-(3.1.1.c).

3.2.2. The Birth Process. Let us define a simple random process, called

a pure birth process, as follows. Let E {0,1,2,3,--}, X0  0,

Xn+I  Xn + 1, n=0,1,2,'"

and

Pr[Tn+ -T < tlX_=i, X+lfjl = 1 -e

{(X ,T n)} is a Markov renewal process according to (2.2.1). {X n is a

transient Markov chain and T n+- Tn depends on the state X through the

parameter A(i). We assume

z llX~i) =-

i=O

so that the increments in {T n  remain finite with probability 1. (e.g., the

process does not "explode" in finite time.)

Define

Y(t) = X, T< t < T

Then {Y(t)) is a process that has almost all sample paths that are step

functions. At each t, Y(t) expresses the total number of jumps that have
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occurred since t = 0. Y(t)} is a semi-regenerative process but it is not

regenerative.

If further we define Z(t) - Y(t + Tn ) - Y(T ) then {Z(t)} counts the

n nnumber of Jumps in {Y(t)) over the interval [T n, T n+t]. Then (Z(t)} is

semi-regenerative and is regenerative if and only if (i) = X.

3.2.3. The Time Dependent Queue Length in the M/G/i Queue. Let us now

take a somewhat more complicated example of a semi-regenerative process.

Consider the M/G/l queue. Let T be the time of the nth departure from thisn

queue and let X be the number of customers left behind by the nth departure.
n

If we let S be the service time of the nth customer and I the idle time of
n

the server when the queue is empty then we have obviously

Sn+l, if X > 0,

Tn+1 -T n
I + Sn+I  if Xn  0.

Therefore,

Pr[T+ -T < tIX]Pr[n+ l  Tn -_

is completely determined by the service time distribution (say H(t)) if Xn > 0

and is given by the convolution of an idle time distribution (which is

exponential for the M/G/1 queue) and the service time distribution if 0.

Furthermore,

Xn , -X +A(T n  -T)- l, K >0o
n+l n n+l T n 1,X

- A(T - T) if X -0,n+l n n
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where A(Tn+- Tn ) is a Poisson distributed random variable with parameter

X(Tn+- T n). Thus,

Pr[X+ JjTn+l - Tn, X- il

is simply the probability that there are j - i + 1 arrivals during the given

interval T n+- T of length, say, t, if X > 0 and is simply the probabilityn-l n n

that there are j arrivals over the interval if X n 0. Since the arrival

process is a Poisson process, these probabilities are completely known. There-

fore, the process {(Xn, Tn)) is a Markov renewal process according to (2.2.1).

We will exploit this result in section 4.1.2.

Now define the random process {Z(t)} by

Z(t) = Xn, for T< < t < Tn+ I .

Then {Z(t)} is the continuous time queue length process. It is easy to see

that {T n  is a sequence of stopping times for {Z(t)}. (A picture of a samplen

path is some help.) X depends only on {Z(t)} for t < Tn, obviously. However,

it is clear here that the future of {Z(t)} after T depends on how many
n

people are in the queue at Tn (i.e., depends on X n). For example, the queue

length at any time after Tn and before Tn+1 depends on whether the queue was

empty at T or not. Nonetheless conditions (3.1.1)-(3.1.3) are seen to ben

satisfied and we conclude that the time dependent queue length process for the

M/G/il queue is a semi-regenerative process.

3.2.4. A Disease Model. In a study undertaken some years ago of a

serious disease, one form of the disease was modelled as a Markov renewal

process. At that time it was medically acceptable to assume that the disease
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progressed in stages. Thus we can define Xn to be the stage of the disease

entered the nth time it changes stage. T can be taken as the time of the nthn

change of stage. It was assumed that the pair ((XnT)I was a Markov renewal

process. Of particular interest in tracking the disease is a three-tuple

{(Y(t), V(t), U(t))} random process where

Y(t)-XT, <t <

V(t) -T n I - t,' T n < t < T n+l ,

u(t) - n n - +i,

For this model, Y(t) gives the stage of the disease at time t, V(t) gives the

time until the next stage is reached and U(t) is the length of time the

current stage has been occupied. It is not difficult to show that this

{(Y(t), V(t), U(t))} is a semi-regenerative process whose associated

Markov renewal process is {(X n,T )}. A new wrinkle, that we must by-pass,

is that in this process the underlying Markov chain {X } has an absorbing

state.

3.2.5. The Minimal Semi-Markov Process. The random process defined by

Y(t) - X n , T n < t < T n+ I ,9 t > 0,

where {(Xn ,T)} is a Markov renewal process, is a semi-regenerative process.

The process (Y(t)) is called the minimal semi-Markov process associated

with {(X n,T)}.

3.3. Some Properties of Semi-Regenerative Processes. Conditions (3.1.1)-

(3.1.3) turn out to be useful for computing probabilities for semi-regenerative
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processes. For if we are concerned about the occurrence of some event at some

future time, t, we may partition the probability into two cases: Either the

time t occurs before semi-regeneration epoch T1 or it does not. Therefore, the

probability of the event can be composed by considering two mutually exclusive

cases: t < T , t > TI . The first case will take a bit of work to obtain prob-

abilities but the second case is made easier than it would appear to be. For if

T is a semi-regeneration epoch, the process loses all memory of its past except

for the state of the {Xn I process occupied at T1. Furthermore, the semi-regener-

ative process has probability laws after T1 that are replicas of those laws if

the process had started in X at time 0. That is, except for rescaling time then

probability laws are invariant to shifts of the time scale from T1 to 0

(assuming the state is X at both times, of course). Thus, for example, if
n

f(t) is a probability distribution for some event for t > TI then f(t-T I)

is the probability for this same event for t > 0. This independence and time

shift property are enormously useful as shown below.

Let {Z(t)} be a semi-regenerative process with state space F, with under-

lying Markov renewal process {(X, Tn )), with state space E, whose semi-Markov

kernel is q(t) and whose Markov renewal function is R(t). Let A C F. Let

hi(A,t) = Pr[Z(t) e A, T1 > tIX 0 = i]. That is, hi(A,t) is the probability

that the semi-regenerative process is in set A at t and the first regeneration

point has not yet been reached, given X0 = i. Let fi(A,t) - Pr[Z(t) c AIX - i],

t > 0. That is, fi(A,t) is the total probability that the semi-regenerative

process is in set A for any t > 0 given that Xo = i. Then we have

(3.3.1) f (A,t) - hi(A,t) + E fO Qik(ds)fk(Ats).
k3E
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We can give a heuristic argument to explain (3.3.1) as follows. Starting with

= i, Z(t) c A only two ways depending on whether t > T1 or not. If t < T1

then the first semi-regenerative point has not been reached. Thus,

Pr[Z(t) c A, TI > tIX 0 = i] = hi(A,t) simply by definition. On the other hand

if t > T then by t the first semi-regeneration point has been reached. At that

point (say, T1 .s) the process {Xn} jumps from state i where it started to some

state k. By the semi-regeneration property (3.1.3) the future probability

behavior of {Z(t)) depends only on this new state k and given this k,

Pr[Z(t) c AIX = k, T s] - Pr[Z(t-s) c AIX 0 = k]

= fk(A, t-s), k c E, AC F.

Since the intermediate state k and the time it is first entered is of no

interest to us for the probability in (3.3.1) we can sum out k and integrate

out s. Then (3.3.1) is simply a Markov renewal equation as defined in section

2.7.

Furthermore, from equations (2.7.1) and (2.7.2) we know the solution to

(3.3.1) for all t and the limiting value for t - -. In this sense the entire

time path of Pr[Z(t) e AIX0 
= i] is known. Of course, we can take any initial

probability vector for Pr[X i]. Thus, from first principles, Pr[Z(t) c A]

is completely determined for all t > 0 and A C F.

3.4. Summary. Let us quickly summarize where we stand before moving to some

examples and applications of the theory of semi-regenerative processes. If we

know (can prove) that a random process {Z(t)} is a semi-regenerative process

(satisfies conditions (3.1.1) to (3.1.3)) then it is a simple matter, in
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principle, to computer the entire time path of the probability of {Z(t)}. One

first constructs a Markov renewal equation as (3.3.1). Then immediately one

has from equations (2.7.1) or (2.7.2) the sought-for probabilities.

If E is large, one may need computer assistance to perform the necessary

operations unless Q(t) has some structure that can be exploited. If E is

infinite, as occurs in most queueing applications, then one probably must rely

on computer assistance and numerical analysis. If Q(t) is infinite with

special structure, that structure may be exploitable. However numbers are

obtained from the above results, one must recall that the time dependent

solution corresponding to A - {j} and Pr[Z(t) - J] for the M/M/l queue, for

example, (probably the simplest of all queues to study) is given by an

infinite number of Bessel functions (each of which is an infinite series).

Nothing in any theory says the answer will be simple or "in closed form" or

in terms of elementary functions. However, if the problem being modelled

is important enough then the effort necessary to get numerical answers may

be worthwhile. If the problem is not that important gross approximations,

perhaps to Q(t), may be good enough to get usable answers.

IV. EXAMPLES AND APPLICATIONS

4.0. Introduction. In section I we presented some results to show a difference

between a variance computed from a simulation study of the departure process

from an M/M/I/3 queue and the exact variance. While some of those differences

were not absolutely large there are some that are relatively large (25%

difference or more). In this section we will return to that problem to see

where these differences are coming from. At the same time we will have
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accumulated enough information to push that problem further. We will present

these two examples as 4.1.2 and 4.1.3. Section 4.1.2 is a nice example of

how Markov renewal processes arise in queueing theory. Thus, it will serve

to exemplify the contents of sections II and III. Example 4.1.3 is a nice

extension of 4.1.2 to show how semi-regenerative processes arise. In that

section we will note how the time dependent solution to any M/G/1 queue can

be expressed. This will illustrate our remarks at the end of section III

that conceptually the structure of the M/G/1 queue is not difficult. The

difficulty lies elsewhere - namely in computational procedures to get numbers.

The main purpose of example 4.1.1 is merely to show how information,

useful to applications can be derived from our results. The example is trivial

but it has been used as part of a large combat model.

In example 4.1.4 we analyze the disease problem of section 3.2.3 somewhat

further. In section 4.1.5 we will discuss a few aspects of the Hall study

(section 2.3) but that complete study required nearly 300 pages to discuss in

depth when it was originally presented so we cannot hope to reproduce all of

it. In section 4.1.6 we will present a quick review of a study of equipment

reliability due to DeMarco. In section 4.1.7 we will present a quick review

of a few other applications. We must beg the reader to examine the source

documents. Some of them require several hundred pages to completely expose

the underlying processes and their analysis.

For those interested in pursuing these topics and their applications

futher, it is difficult to say how to begin. Research and applications have

been going on for at least twenty years (25 years if one dates the Smith and

Levy work as the start of the field). There is a large literature on the
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theory and applications of Markov renewal processes but it is diffused through

the world's applied probability literature. In this sense there is no "home"

for these topics.

Real-life-applications literature is probably in worse shape than the

theory literature with respect to what is openly available. Private reports,

industrial studies, government reports, university theses and dissertations

and the like would be major sources of real life applications. But little of

this is ever published and often what is published is a skeleton of the true

work. (The Hall work of nearly 300 pages ended up as a 4 page paper in a

probability journal - hardly a process intended to expose the interesting

application underlying the 4 pages of theory.) Even the computing literature

which has produced an enormous number of papers purportedly relevant to real

life applications of these topics to computer modelling seldom supports the

model with the requisite data, statistical analysis, parameter estimation, etc.

called for in a real life application.

Thus, the reader is warned that finding theoretical studies concerning

Markov renewal processes takes some digging into a diffused literature, but

it can be done. Finding real life applications done by others that one can

study is not only difficult but probably must be done outside the normal

channels of journal communications.

4.1. Examples and Applications. In this section we will present examples of

various aspects of section II-III. Several of these are "real life" applica-

tions chosen from our experience. Thus, they are a biased view of "real life"

applications. We chose them bicause we know them, not for any other reason.
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4.1.1. Visibility. The example of this section is of no particular

importance. It is small enough to use many of the ideas of the previous

section with which to compute and we shall do that. We do note that in a

model for military combat a model such as this was used originally to provide

some insights into weapons used against targets travelling over rough terrain.

The basic idea here was that the target could be in one of two states. It

was either visible or not. One question posed was whether the target was

visible at t or not. Another question posed was how long was the target

visible when it was visible.

Without attempting to get deeply into the larger model, let us simply
C

study the visibility process. Thus, let

0, if the target is not visible at the nth transition,

Xn

1, otherwise.

Because it is not possible to tell if a visible target changes state to the

same visible state or an invisible target changes state but to the same C)

invisible state, we take

0, if i J,

= Pr[X n+1 1JX n i] -

1, if i J.

That is the matrix P whose elements are piJ has the form

1 4
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That is, our model assumes that the target can be in only one of two states.

(i.e., E = {0,1}). If at any time it is in state i it must at the next change

of states go to j 0 i.

Then to try to get a model of terrain conditions we define T to be then

time that the target changes state for the nth time. (A more useful assump-

tion might be to measure "time" in terms of range. There are other useful

addenda one could give.) We assume

Pr[T - T < tIX J, Xn i] = F t)
+1 ij

reflects the terrain. If the terrain has natural cover features we might

expect that on the average the target remains hidden for long periods of time.

This would be reflected through F 0 1 (t). If the terrain were open with little

chance of cover then we would expect that on the average the target was visible

for long periods. This would be reflected in the F10 (t).

Then the basic process of interest can be taken as the Markov renewal

process {(X,T)) with E {0,1}, semi-Markov kernel Q(t) as below and at

T = 0 we take Pr[X0  01 = 1. Then we have

Qij(t) Pr[X+l-J, Tn+l-T n< tXn -i1

=Pr[Xn+l=jIX=i]Pr[Tn+l-T n < t lX n+ l -j, X=i],

= (I- I(i,j))Fij(t).

The coefficient here is 0, if i j and is 1, otherwise. Therefore,
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A Markov renewal process with this Q(t) structure is sometimes called an

alternating renewal process. Notice that if we are given that we are in state

i, the next state is completely determined. So in the FijWt notation the

subscript j is superfluous. (It must be 0 i.) Thus,

Pr[T -T < tjx J, X =i] -Pr[T -T < t jX=i].
n+l n - n+l n n+l n - n

our notation is overdone here. It does have the virtue of exposing the theory

of sections II and III so we keep it.

Now

(2)2

- Pr[Xn+2 =j, Tn+2 -T n< tXn i],

by our homogeneity assumption. And by (2.6.1)

Q =2 t E f t Q (ds) Q(t -s),
00 JcE j

(4.1.1.2)

ft Q Q(ds)Q00(t -s) + f t Q0 1 (ds)Q 1 0 (t-s).

But QOO (ds) -0 by (4.1.1.1). So

Q (2 (F0 1  F 1 )(t),

using our symbolism *to denote a convolution. Similarly
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Q(2)M 0

* -- i, (t) ... 0

since either Q11 (t) or Q00(t) is zero when one uses (4.1.1.2) to compute.

Then it follows from these results that if the process starts in state 0,

the ensuing entrances to state 0 ("invisibility") form a sequence {S I and
n

{Sn+ 1 -Sn I is a sequence of independent, identically distributed random

variables with

(4.1.1.3) Pr[Sn+I -S n < t] = (F0 1 * F10 )(t).

That is the process of successive entrances to state 0 (for the process start-

ing in state 0) is a renewal process with intervals distributed as in (4.1.1.3).

Suppose the target is invisible at t = 0. We would be interested in

knowing many things about it at some future time. For example we might want

to know the probability that the target is visible at some time t. More

importantly in order to attack it when it is visible, it is important to know

how long it will remain visible. Considering that it takes time to lay a

weapon on a target, if the target is not visible for a long enough time we

simply cannot destory it.

To get at such a problem as this, define a process {Y(t)l so that

Y(t) = X, if Tn < t < Tn+ 1

Then for each t, Y(t) simply tells us that the target is or is not visible. Also

define

Z(t) = Tn+l - t, Tn < t < Tn+l.
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Then for each t, Z(t) tells us how long the target will remain in whatever state

it occupies at t. We will not stop here to prove that {(Y(t), Z(t))) is a semi-

regenerative process with F = {0,1} x R+. It is.

For A = {j} x {(y,-)} : F, define

(4.1.1.4) Gi(j,y,t) = Pr[Y(t) -J, Z(t) > y1X 0 
f i],

(4.1.1.5) hi(J,y,t) = Pr[Y(t) = J, Z(t) > y, T > tjX 0 = ii.

(4.1.1.4) contains the information we want. For if j = 1, then that formula

will yield the probability that the target is visible at t and will remain

so for more than another y minutes given that originally the target was

invisible. (4.1.1.5) is simply the initial function of the {(Y(t),Z(t))} as

required by formula (3.3.1). But hi(j,y,t) can be easily found from the basic

{(X ,T)} process. For example, given that X = 0 we will have Y(t) - J, with
n9

probability 1 if j = 0 and with probability 0 otherwise when T > t. Further-

more, Z(t) > y and TI > t if and only if there has been no change of state

before t (and thus' at t, Y(t) - 0) and there will be no change of state for

more than y time units after t. In general,

Pr[Z(t) > y, T1 > tjX 0 = i ] - Pr[IT > t + yjX 0  i l - I- F i(t +y)

where I - Fi(t+y) - 1 - E Qij(t). Altogether then,
JE

Pr[Y(t) = J, Z(t) > y, T > tjX 0 = i] - I(i,j)[l - Fi(t+y)].

Then from (3.3.1) we put the pieces together as
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G =J~y~t) I(ij)[l - F (t+y)t + Qik(ds)GX(j,y, t- s)

and from (2.7.1) we have

(4.1.1.6) Gi(j,yt) = $0 R (ds)(1 - F.(t+y-s)).

Here Rj(t) is the i,j term of the Markov renewal function of the under-

lying {(Xn,Tn)} process. In general the Rj (t) function is difficult to

compute. But from the very special structure of this Q(t) matrix it is rather

simple for this problem.

0 F61(a
Q*(a) =

F* (az) 0

where

F*j (a) = f O e-atFij (dt).

And using (2.6.6), it is easy to see that

1 Fol(a)F* (a) 1 - (a)F*o(a)

(4.1.1.7) R*(a) 

FO (a)

1- F* (a)F o(a) 1- Fo(a)F-o(a)

At this point we can proceed in several ways. We can formally invert
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(4.1.1.7). Once the functions F ij(t) are given (as in our example below),

of course, R(t) can be found by inverting R*(c) term by term and then using

(4.1.1.6).

Alternatively, one can view (4.1.1.6) as the convolution of two functions

and using the convolution properties of Laplace-Stieltjes transforms, the

transform of the solution can be obtained immediately from (4.1.1.6) and

(4.1.1.7).

Because R(t) has some independent interest, we will proceed to our

example, following, along the first of these two paths.

An example may make the manipulations involved here more apparent.

Example.

Fol(t) F1 0 (t) e - b t

Then

bi

F ba - w* (0
F01() -+ -j F10()

Then it is easy to see that

) 1 -b 2/(b+) 2 b

from (4.1.1.7). This matrix of transforms is not hard to invert. One does it

term by term to obtain
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1, if t = 0,

R0 0 (t) R1 1 (t) =

bt 1 -2bt

R01 (t) = R10 (t) = 2 + 4 [1 - e t > O.

It should be noted that RWi(t) will always have a jump at the origin of size 1

since we have defined this function on the closed interval [O,t] and assumed a

jump occurs at t = 0 (i.e., T = 0). Thus, the expected number of visits to

state i is always at least one if X = i.

Then from (4.1.1.6) we have after a bit of algebraic manipulation

1 by 1 -2bt -by
(a) G0 (O,y,t) e- e

(4.1.1.8)
1 -by 1 -2bt -by

(b) Go(l,y,t) = e - e

In interpreting (4.1.1.8) we have that, if the target is hidden initially,

it will be hidden at t and will remain hidden for more than y more time units

with a probability given by (a). On the other hand, if it is hidden at t = 0,

it will be visible at t and will remain visible for more than y time units

with probabilities given by (b). One notes that

(4.1.1.9) Go(O,y,t) + Go(l,y,t) = e- b  y > 0

as it should for this is simply the probability that the time until the next

change of state is greater than y no matter what state is next occupied. Since

state occupancy times are identical exponentially distributed random variables
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(4.1.1.9) is a consequence of the forgetfulness property.

If in (4.1.1.8) we let y 0 then

Gi(J,O,t) Pr[Y(t) - JX O = i].

Therefore this limit is the time dependent state probabilities for {Y(t)}. If

then we let t , we obtain the "steady state" probabilities for {Y(t)}. Of

course these probabilities are each 1/2 because of the symmetry we have built

into the problem.

Since

1 -by 1 -2bt- by
G0(l,y,t) = Pr[Y(t) =1, Z(t) > y 0 ] = - e - e,

and

G0 (l,0,t) Pr[Y(t) f1X0 - i] (1 e-2bt),

we have

Pr[Z(t) > yIY(t) = l, X 0 ] _ eby (1 -2bt)/1( 1 - e 2bt

- e-by, for all t> 0.

Finally, since Pr[X 0  0] - 1,

Pr[Z(t) > y1Y(t) - 1" e-1, for all t > 0.

Of course, this is expected because of the forgetfulness of the exponential

distribution. The point is that the left hand side is one of the sought for

probabilities. It is the probability that the target remains visible for

more than y more minutes given it is now visible. The simple result follows
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from the very special assumptions made about F ij (t).

Because of the simplicity built into this example in an attempt to provide

a model that easily exposes the concepts of sections II and III, the problem can

be solved many (and easier) ways than we have done. The {Y(t)) process is a

Markov process and those topics can be used here. The {(X ,Tn ) process is an

alternating renewal process and those methods can be used here.

4.1.2. Departures from the M/G/l/N Queue. Let us return to the example

of section I to see why our variance estimates differed from the "true"

variances. There, recall, we were interested in an M/M/l/3 queue and its

departure process and in particular its mean and variance. We have seen in

section 1.1 that one can use simple arguments to obtain the mean value (formula

(1.1.1)). The variance is a different matter.

To start let us define

Xn = the queue length left behind by the nth departing customer,

n

T = the time of the nth departure.n

While our results will be true for many queue disciplines (but not all) we will

fix our attention on a first in - first out discipline.

The increment (Tn+1 -T n ) is the time between the n+l and n departing

customer. Clearly, this increment satisfies the identity

Sn if X > 0

(4.1.2.1) T n+l-T -

I + s if X-.

That is, the time between two consecutive departures may be one service time
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(of customer n+1 which we have denoted as S This occurs if the queue

left behind by the nth departure is at least 1. On the other hand, this inter-

departure time will be the total time spent awaiting the next customer (I) and

then serving him (Sn) if the nth departure leaves the system empty.
n+l

The identity 4.1.2.1 has been known as one of those folk theorems in

queueing for many years. However, its exploitation awaited a development

of Markov renewal theory.

Now, from that identity, we have immediately

(4.1.2.2) Pr[Tn+1 - Tn < tiX J] - 1 - e- pt , j- 1,2,'.-,

where the right hand side is simply the probability that a service time is

less than or equal to t. (Remember in M/M/l queues service times are identically

distributed. n plays no major role here.)

Also,

(4.1.2.3) Pr[Tn+I  T < tIX n  01 t [1 e- (t s) ds

which simply says that Tn T- < t given X 0 if and only if I + S < t.whc sml sy ta n+ 1  Tn- n n-

The integral on the right is the convolution of the distributions of I (an

exponentially distributed random variable with parameter A) and S (ann

exponentially distributed random variable with parameter 0). As is usual in

queueing theory we have assumed the arrival process and service time process

are independent processes.

We further know from first principles of queueing theory that {X } is a

Markov chain and
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t(4.1.2.4) PrXn+i -JiIX =0 Tn+ -T =t ti e for J-0,1,2,

= -(At)~ Ji+le At

(4.1.2.5) Pr[X+ 1 =jI X i, T nl -T n j (J-'i+l) 1 2 >ji - 1i, i'> 0.

Since N = 3, the maximum queue that can exist at a point of departure is 2.

Note, therefore, that this {(X nT n)1 does not give, directly, the queue

length process that one would obtain from the usual Markov chain analysis of

1
this problem for all t > 0.

(4.1.2.6)~~C PrXJ i -£)i+l -t i 0

(4.1.2.6) Pr[X =21X =0, T -T =tj W _ (Xt) e i 0

n+l n n+1 n -2 J

Then putting (4.1.2.4)-(4.1.2.7) together with (4.1.2.2), (4.1.2.3) we obtain

the semi-Markov kernel as

0, if i,j = (2,0)

ft (Xz) Ji e-X (petie )dz, (i,j) c{(,)ll,2l)
0 (j-i+l)!

f t (Xz) e XZ [1 -e- X(t z) ](lielz ) dz, (i, J) e {(0,0) ,(0,1))

(4.1.2.8) Qij(t) = 0 ji e

t= (Z (k-i+)e! X JA(e1Z)dz, (i,j) c {(,2),(2,2))

t (Az) k -Azi -- A(t-z)-~eaz~d,(~)-02

k!2 0 k!

1 See the discussion on state spaces in section 4.1.3.
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In this way we can establish our first result as:

The {(Xn,T)) process is a Markov renewal process on E' {0,1,2}

with semi-Markov kernel Q(t) whose elements are given by (4.1.2.8).

The identity 4.1.2.1 establishes that T l-T n depends only on X . Formulas

(4.1.2.4)-(4.1.2.7) establish that Xn+1 depends only on Xn and T +-Tn.

Formula (2.2.1) establishes that {(X ,T )) is a Markov renewal process. That
n n

the transitions functions are as given requires the arguments that produced

(4.1.2.8).

The Markov chain {X I is the usual Markov chain embedded at departuren

points. From the theory of queueing (or directly by letting t - in

4.1.2.8) we find the one step transition probabilities for the {X n process

to be given by the Markov matrix:

14-p (1+p) 2  (1+p) 2

2

l+p (l+p) 2  (l+p) 2

1 p0 l+p 1+p A

n

Since we need (n) below it is necessary to determine Pn. This can be

done easily for this problem using an eigenvalue analysis. We have done

that. The eigenvalues are respectively

X0  l , = P/(l+p' 2  A 0,
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The eigenvector matrices are

1 _1 _ p2
2 2 2l+p+p 1+ + l+p+p

S= 1 -p2  -p - (l+p) 1 1
2 2 2p(l+p+p) (1+p+p2) (1+p+p2)

1 (1+p) 1 i/p -1/p 0

That is,

Pn =S An S

for S, A, and S given above. From this one finds that w(n) converges to its

1 (pp 2) n"steady state values of 2 A +0, i 01,2. The b are
l+p+p2 2ip I a b i

respectively (1+p __pp 2  p2
l+p+p2 l+p+p2 'l+p+p2"

Now

(4.1.2.9) F(n) (t) Pr[Tn+l-T nt]= E E Pr[X+l-j, Tn+lT n<tiX_ ni]Pr[X nfi
icE JiE

Thus if we take wi(n) Pr[X = i] to be the n step state probabilities for the

underlying Markov chain {X n (w(n) = i(0)Pn), (4.1.2.9) can be written in matrixn

notation as

(4.1.2.10) F(n) (t) = w(n)§(t)U, n =12,""

where (n) is the (row) vector whose elements are vi(n), Q(t) is the semi-Markov

I
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kernel of elements (4.1.2.8) and U is a (column) vector of lVs.

Furthermore,

F (n) (t1,t 2  =Pr[Tn+ 2 --T +1< t 2 T n+1- T n< t

jEkcE PrXn+2 -J X+l -k, Tn+2  T +i < t 2 P T n 1  T< 

or

(4.1.2.11) F ()(tt 2) w (n)Q(t I)Q(t 2)U, n = ,--

The probability distribution for any two intervals k transitions apart

is given in matrix form by

(4.1.2.12) F (n) (t l'tk) = i(n)Q(t1)pk-lQ( t)U.'

Then from (4.1.2.10)-(4.1.2.12) one can determine the means, variances and

autocovariance functions for any n. From this one finds

7r 0(n) 1
a. E[T - T]- A

W 0(n)1
(4121)b. VariT -TI- [2-iw0(n)] + 2'(4..2.3)n+l n Ix2029

c.~~~~ Coi (n)
c.Co[Tn+2 T n+1  T n+1 T n 2 [11-AE(T -~lT n]

for the case M/M/l/3. Graphs of (c) are given on the following pages.

Covariances of lag 2 and 3 are given in table 4.1.2.1 for a few values of p.

It is instructive to note that the covariance of lag 1 (4.1.2.13c) is

always negative for the M/M/l/N queues (0 < N < m) Therefore the variance
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Figu re 4.1. 2. 1
Time Dependent Covariance
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Table 4.1.2.1

Covariances of Lag 2 and 3

for the M/M/1/3 Queue

Lag Covariance X-1, p=3 X=2, v-3 X-6, v-'3

2 /p2 + VA + A2 2 -.01775 - .01662 -.00453

2 2 2 2 23 -(PA) /(p +jPA+A )0+0) -00332 -.00398 -.00100
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estimated under the assumption of independence (as was computed in section I

from the simulation) overestimates the true variance. The overestimate can

be relatively large. In the class of Erlang server queues, it can be shown

(Disney and de Morals (1976)) that the covariances can be positive,

negative or zero depending on X/V, N and the Erlang parameter. Therefore,

variances estimated under the assumption of independence can underestimate,

overestimate or correctly estimate the "true" variance depending on these

parameters: The key point to be made, however, is that the departure process

from the M/M/l/N queue is a Markov renewal process. This Markov renewal

process has {T n+ - T } as a sequence of independent, identically distributednl n

random variables in only 4 cases (Disney, et al. (1973)). Terms in this

sequence are dependent even in the steady state except for those 4 cases.

Thus, any statistical analysis which relies on independence of the random

variables is inappropriate to the analysis of this sequence. The problem

is caused by dependence not by distributional assumptions.

1

4.1.3. The Time Dependent M/G/l/N Queues. In this section we will

study the queue length process of an M/M/l/3 queue. Because of the

computations involved this is about as far as we wish to push our hand

computation talents. But one should be aware that the exercise here is

just that - an exercise. The methods illustrated by the exercise apply to

the M/G/l/N queue in general. inlar (1975) pursues the topic more generally

for the M/G/l case.

1There's a rather large literature on queueing applications. The reader

interested in this special case might consult [16], [17], [181, [19], and
[201 in the Bibliography to start.
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We have seen in section 4.1.2 that for the M/M/1/3 queue there is an

embedded Markov renewal process {(XnTn)) on E {0,1,2,} where X is the
n n n

queue length left behind by the nth departure and T is the time of the nthn

departure. The semi-Markov kernel Q(t) was given by (4.1.2.8).

Let

Z(t) = Xn, T < t < T l*

There is a question here of some interest. Since N = 3(< -), Xn 0 N

for any n except possibly n = 0. That is, the queue can never be full at

a departure point (almost universally we consider the queue just after a

departure.) Thus, in the limit the model {Xn) gives us no direct information

about the queue being full. The state X fi3 is a transient state. (In factn

once state 3 is left after n = 0, if it starts, there, it can never be reentered

in the {X ) process. If it does not start in state 3, the process can nevern

be there.)

However, if X = 2 for some n then Z(t) may be 3 (if an arrival occursn

before the next departure). Thus the continuous time process may occupy state

3 even though the embedded process never does after the process is started.

Thus, we take F - {0,1,2,31.

Then {Z(t)} is the time dependent queue length process. It is easy to

check conditions (3.1.1-(3.1.3) to see that {Z(t)) is a semi-regenerative

process. Then if we let A {j) for j = 0,1,2,3 we have
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e- Xt, (i,j) = (0,0),

O t -X(t-s) -us (Os) k-1si Xr f Ae e -) e ds, (i,j) (0,3),
k=2 k-i

(4.1.3.1) hl = 2t) ,00. (i,j) 0 , ,p j-i -Xti~ e ,(i J) c { (I, 1),(1, 2) ,(2,2)}

O (Xt) e t

k . (i tk! e -  , (i,j) c {(1,3),(2,3)1,k=3-i

eivt, (ij) = (3,3),

0, otherwise.

For example, if i = j = 0, then the queue is empty and the first departure

(after the previous departure) has not yet occurred if and only if there has

been no arrival in [0,t]. This accounts for the first term in (4.1.3.1). On

the other hand, i = 2, j = 3 then at T the queue has 2 customers and at tn

(which occurs before the next departure) the queue has 3 customers if and only

if at least one customer arrives in [0,t] and the server does not finish the

customer he began at T nn

The queue length process {Z(t)) is a semi-regenerative process with state

space F - {0,1,2,3} and the underlying Markov renewal process {(X n,T n)} of

section 4.1.2. For the {Z(t)} process one has

hi(Jt) - Pr[Z(t) = J, Tn > tIX - i]

as given in (4.1.3.1). Furthermore, the continuous time probability paths
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are given by

Pr[Z(t) J -J E fo Rikds)h

where R(t) is the Markov renewal function associated with the semi-Markov

kernel Q(t) of equation (4.1.1.8). It is most easily found from formula

(2.6.6). Formula-2.7.1. and the arguments in this section preceeding that

result produce this result.

For this process the embedded Markov chain {X n on E - {0,1,2} hasn

for its steady state solution the solution to the equations

ir = liP

where P has been given on p. 47. These steady state solutions are given by

O= 1/l + P + P2),

(4.13.2)ir 1 = p/(1 + p + p2 ),(4.1.3.2) 1 R +P+1

2 2
'T2  p/( I + P + p2).

Time dependent solutions for {X n } can be found from a standard eigenvalue

analysis or by raising P to its various powers. The results needed for this

analysis were given on pp. 47-48. We will not go through the details here.

The limiting values of the {Z(t)} process can be found from formula

(2.7.2) using (4.1.3.2) for the values of wj in that formula with the

obvious modification needed. For this example, hi(J,t) is directly Reimann

integrable so (2.7.2) can be used. Nothing new is gained by going through

these manipulations. However, the curious reader might be interested in
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comparing the {X } and {Z(t)} limiting values.n

This problem can be solved other ways, of course. But our methods have

the virtue of exposing the structure of the problem and showing vividly where

the difficulties are coming from in the computation of time dependent solutions.

The matrix of distributions for Pr[Z(t) = J, T1 > tIX0 = ii causes some problems

but it has some redeeming features. Rather the computational problems are

coming primarily from the convolutions of Q(t) necessary to generate R(t).

Whether these problems can be surmounted by a careful numerical analysis or

not is beyond our ken. The important observation is that we have pinpointed

the problem that ultimately must be tackled. The same problem arises in the

study of time dependent solutions for the state probabilities for M/G/1/N

and GlI/M//N queues. However, these computational problems exist no matter

how one tries to solve the time dependent problem. As always these problems

satisfy the well known conservation of difficulty law.

4.1.4. A Disease Model. In the disease model of section 3.2.3 we started

by assuming the disease could be modelled as a Markov renewal process. There

was little hard data at that time on which to base any assumption about the

stochastic nature of the evolution of the process. The assumption of Markov

renewalness was made simply because we thought it would be a good first

approximation and because it seemed clear from discussion with people more

knowledged in the process than we as operations research people were that

sojourn times in the various states of the disease depended on both the current

state and the next state to be visited. If later data proved the process was

Markov we had not lost time or analytic capability. If later data showed that

the process was not a Markov renewal process, the Markov renewal assumption at
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least directed our attention to what data was needed in what form - a not

inconsiderable accomplishment by itself.

At the time of this study there was some question as to whether the

disease was regressive or not (i.e., could return to a state it had already

visited). Models of both regressive and non-regressive diseases were studied.

We will discuss here only the non-regressive model because of its simpler

stochastic structure.

Because lifetimes are finite we consider the disease as starting in some

state 0 which can be taken to be "the disease absent". The disease may then

pass through its several stages which we will simply call stages 1,2. (In the

real study there were more than these two stages but to keep the discussion

simple we will keep just two.) At any stage (0,1,2) the disease can enter an

absorbing state 4 to denote death from causes other than this disease. From

stage 2, the disease may also enter an absorbing state, state 3, to denote

death from this disease.

The ultimate aim of the study was to try to determine when and how often

a person should be examined for this disease and its progress over time. For

our present purposes, we will simply look at a few properties of the model

of the disease. The other questions take us too far afield and require the

development of too much more machinery than we can accomodate in these notes.

To set up the problem formally, let {(X ,T)) be a Markov renewal process
nn

on the state space E - {0,1,2,3,4}. Let X - j if, at the nth change of state,

the disease enters state J. Transitions occur from j to J + 1 or 4 (the

disease is not regressive). State 3,4 are absorbing states. Let T be the
n

time of the nth transition. T - 0, X - 0 are the initial conditions to imply
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that one is born free of this disease. ('11iis is not a crucial assumption. We

could just as well take T0 = 0, Pr[X j] J

Then, we let

Pr[Xn+IsJIX n iI = P j' i,j E,

and let P be the matrix of these Pj" Then P has the form

0 Po1  0 0 P04

0 0 P12  0 P1 4

P 0 0 0 P2 3  P2 4

0 0 0 1 0

0 o 0 0 1

so that by our modelling procedure P is upper triangular. There are two absorbing

states and transitions are as shown under the assumption that the disease is not

regressive.

Then, let

F ij(t) - Pr[T+I - T < tIXn+lI J, Xn  i], i,j E E.

Then, using (2.2.2) we have that the Markov renewal process {(XnT) has semi-

Markov kernel given by
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0 P01F6, 0 0 F(t)0 PO Ol 04 04

0 0 p F(t) F0
12 12 14 14

F(t) F(t)0 0 0 P2 3 2 3  P24 24

o 0 0 F(t) oa33

0 0 0 0 FM44 _

Except for the last 2 rows, we can interpret the non-zero elements here as

telling us that at the nth change of state, the disease moved into state i.

In at most t tim units it will change state again and thence will move into

state j. The last two rows require a bit of discussion. These rows correspond

to the absorbing states 3,4. From either of these states transitions to any

other state is impossible. This explains the O's in the row except for the

diagonal term. Transitions from the state to itself occur at each step with

probability 1 (as is true for any Markov chain model with absorbing states).

However, the time from first entry to these states to the next transition is

finite with probability 0. Thus Fij(t) = 0 for all finite t > 0 and

F33 (o-) = F 44( )  1. So, in effect, once states 3 or 4 are reached the process

stops.

For diagnostic purposes and treatment one would like to know for any

t > 0, the stage of the disease, how long the disease has been in that stage

and how much longer that stage will be occupied. These three variables are not

independent so knowledge of the probability of the triplet will be more

informative than knowledge of the marginal probabilities of each. Therefore

we define
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Y(t) = X, if T< t < Tn+

(4.1.4.1) U(t) - t - T, if T < t < T

V(t) - T+1 - t, if Tn< t < T+l"

(It should be noted, as is well known in renewal thoery, V(t) + U(t) Tn+I- T

n

does not have the distribution Fij(t). Thus, for example, one cannot directly

use V(t) + U(t) to estimate F ij(t) from data.) Let Z(t) = (Y(t), U(t), V(t)).

Then {Z(t)} is a three-tuple valued random process on the state space E xR+x R+.

This process carries the information we want.

Now it is clear that (Tn I are stopping times for {Z(t)). (For example, see

section 3.2.1.) Furthermore, Xn is completely determined by Z(t) for t < Tn

In fact X is simply Y(T ). That {Z(t)) satisfies condition 3 of section 3.1 is
n n

not as clear. We will give a heuristic argument that it does. Notice first of

all that at each Tn, U(T) = 0 and V(T)n is the time until the next transition

starting in state XT . Furthermore, Y(t) for all t > T has probability laws
n

determined by XT by (4.1.5.1). Thus, (Y(t), U(t), V(t)) is probabilistically
n

determined by XT for t > T. Since the {(X ,T )) process is homogeneous,
C

these probabilities do not depend on n so we can take n - 0. Thus, condition

3 of section 3.1 is valid and {Z(t)} is a semi-regenerative process.

Let A = {Y(t) =j, U(t) >x, V(t) >y} denote the event "the disease at time

t is in state j, it has been in this state more than x time units and it will

remain there more than another y time units." Let

f0(A,t) - Pr[Z(t) c A 0 - 0].

Let

h0 (A,t) - Pr[Z(t) c A, T1 > t12 - 0].
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Then

(4.1.4.2) h 0(A,t) =I(0,J)I (x.-) (t) Pr[T1 > t + yIX 0  01.

We can explain (4.1.4.2) as follows. The condition T 1> t means that the

disease has not changed states by t. Therefore, for Z(t) to be in A it must

have started in A (i.e., X = 0) and not moved out of that state (hence, J = 0).
0

No other circumstances have T 1> t. Thus, here, Z(t) e A only if A

{0, U(t) >x, V(t) >y). But there's more. Z(t) will be in A only if t C (x,-).

The indicator functions I(0,J), I (x-) (t) correspond to the probabilities for

these observations. And finally, V(t) > y only if T> t + y. Let

90(t + y) =Pr[T 1 > t + yIX 0  0].

then

90t+ y) = 1- E Pr[Xl = J, Tl. t + yIX 0 =0].

Thus, we have

Pr(Z(t) c A, T 1 > t1X0 - 0].

Then since (Z(t)) is a semi-regenerative process we have from (3.3.1)

f (A,t) - h (A,t) + E 't Q(ds)fk(A.T- a),
0 0 ~keE f ~

and f rom (2. 7.1)

fi(A,t) - E ft Rij(ds)h.k(A~t- a)

where R is the Harkov renewal function for Q(t).
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Because of the special structure of Q(t), the computation of R(t) is

simple. In fact, because of the several assumptions made here (primarily

the lack of a regression in the disease), there are several other ways this

problem could have been solved. Because of the structure of the problem

and the ability to easily generalize it to account for more states, different

transitions or regression we think it is preferrable to other models.

Then h i(A,t) is Riemann integrable ( it is a probability function) and

hence if necessary one can use (2.7.2) to determine the limit of f0(A,t) for

t - -. Of course, because {Xn I is an absorbing Markov chain this process

eventually ends in states 3 or 4 with probability 1. However, for disease

control it might be important to know which of these absorbing states has the

larger probability of eventual entry so there is some value in computing the

limiting probability.

There is nothing new to be gained by going through more detailed calcula-

tions here. The intent of the example is simply to show how one could model

a process as a Markov renewal process and use the results for controlling the

process. Details of calculation have been provided in previous examples.

It should be mentioned that there was some argument that this particular

disease did not have a stationary transition mechanism. Case studies were

inconclusive. Some seemed to support the assumption of homogeneity, some did

not.

Therefore, this disease was also modelled as a full, two dimensional

Markov model with (Xn, T) as before, but now it was assumed that

6
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Pr[Xn+l'ij, Tn+ 1 < tX ni, Xn1 l'''X O, Tnfy, Tn1 l,"',T O]

- Pr[Xn+l-J. T,+l < tX ni,T =y.

In this way the next stage of the disease and the time at which that stage

is reached (not the interval between the nth and (n + l)st jump) depends

on the current stage and the time at which that stage was reached. This

model is a Markov model on E x R+. While it is appealing at first glance,

one wonders how enough data would ever be collected to estimate the above

probabilities so as to validate the model.

The principle here seems to be that we are concerned with modelling.

The model that cannot conceivably be validated (not necessarily with today's

technology, however,) may well be useless. In short, the cry for "realistic"

models can often be detrimental to modelling.

There is one more afterword of some importance here and in other models.

In this model one must obtain some estimates of Qij(t) either directly or by

estimating pij and Fij (t). At the time this research was done such estimates

were not available. Therefore, one could proceed parametrically by proposing

likely Pij and Fij(t) to observe the sensitivity of the {Z(t)} probabilities.

If these probabilities (or more likely moments obtained from these probabil-

ities) are not sensitive to reasonable values of these parameters then it

does not seem reasonable to spend effort getting precise estimates for the

purpose of this model. If on the other hand the derived information is

sensitive to the parameters then one must have precise estimates. In that

case the model is useful in determining what data to collect and analyze. There

is no virtue in collecting "all possible data" in the hopes that it will be
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useful. It often is not and the data collection and analysis study then is

not only useless but expensive. That is, it seems to us that a researcher of

real life problems should have some model in his mind before extensive, costly

data collection is begun. Of course, one often needs a preliminary study to

suggest such a model.

4.1.5. Police Emergency Calls. Nearly every community in the country must

supply public medical emergency service for its citizens. How a locality does

this varies. In Detroit in 1968 such service was provided through the police

force.

In the Detroit system of 1968 police precincts, which act as nearly

autonomous units, had a mixture of sedans and station wagons used as police

vehicles. The sedans were always used for the normal duties of police work

such as patrolling. These sedans were called "squad cars". The station

wagons manned by police served a dual role. Their normal duty was to act in

a squad car capacity. However, these station wagons had some medical

emergency equipment so that if necessary they could act as an "ambulance".

Whenever a medical emergency arose in a precinct, a citizen could get ambulance

assistance from these police ambulances.

For many reasons, the city decided to take a look at this dual functioning

police-ambulance system in 1968. The results of our part of that study are

contained in a long report (Hall (1968)) that contains the details of the

following analysis, it's use in a rather sophisticated analytic model which we

cannot reproduce here and the conclusions drawn from this model. The purpose

of the following section is to show how the foregoing study of Markov renewal

processes was used in one place (it was actually used in several places) in
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our study of the dual functioning ambulance system in Detroit in 1968.

After a rather extensive period of observation of the system and many

discussions with personnel intimately aware of the details of the system

it was possible to develop a crude model depicting the major components

of the system. The precinct contained a number of squad cars (the exact

number is not important to our later discussion) and one or two ambulances

(again exact numbers are not important here). Telephone calls triggered a

dispatcher to dispatch a vehicle to some location in the precinct. Based

on information available from the call the dispatcher sent the nearest

squad car (sedan or "ambulance") for police assistance or an ambulance to

the call for medical emergency assistance. The intuitive rule used by the

dispatcher was primarily to send to a call for police assistance the vehicle

assigned to patrol the area from whence the call arrived. (These areas were

called "beats.") In the event the normal vehicle was not available (perhaps

it was on another call), the nearest available vehicle in the precinct was

dispatched. In this part of the system squad cars and ambulances were

indistinguishable.

If the call arriving to the dispatcher was for an ambulance, the nearest

ambulance was dispatched. This meant that the beat normally patrolled by that

ambulance, when acting as a squad car, was unpatrolled during the time the

vehicle was acting as an ambulance.

The driving force of this system was the sequence of calls received by

the dispatcher. Rather than delve into the details of the dispatcher himself

and our models of him or the process of vehicle dispatching and response and

our models of them, we will limit ourselves here only to one aspect of the
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process of demand - the time sequence of calls.

To study this sequence, data were obtained on over 5000 calls received by

the dispatcher in one precinct in one month. Because these calls are immediately

recorded by the dispatcher and punched on a clock to record time and date, this

data was about as clean as one can expect to get from any real life system.

(Such was not the case in our study of other parts of this system.) One

problem with the data was that it included a holiday which was obviously not a

typical day. The analysis tried to correct for that.

By collecting data for one month only, in one precinct, of course, it is

not possible to discuss the behavior of the system over the year. (e.g., one

would expect data collected in summer months to be rather different from data

collected in winter months and our study cannot reflect that difference.)

Furthermore, you may recall that 1968 may not have been a typical year for

police work in Detroit. Our data cannot reflect that. Therefore, whether the

detailed numbers of the following discussion are valid for every month of every

year or every precinct is a moot point. The analysis of the data and the over-

all model, however, are probably useful for more general studies and the

following is presented in that spirit.

The total calls received by the dispatcher were first split into police

calls and ambulance calls. Each series was analyzed separately to start.

We will pursue the ambulance data briefly in the following. The police data

exhibited somewhat different behavior that would require a much longer

discussion than this example deserves as an example of Markov renewal modelling.

First the total number of ambulance calls per day were plotted for the

period of study (see figure 4.1.5.1) and then were broken into three sub series
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for each of the three shifts of police work. (See figure 4.1.5.2.) No obvious

trends were observed nor were there any noticeable shift to shift variations.

(The police data differed here.)

Based on the above preliminary analysis, times between ambulance calls

were computed and subjected to a battery of tests available in a statistical

package for time series analysis then available for computer analysis. This

package computed for us the usual means and variances of the interevent times.

More importantly for modelling, however, it computed auto-covariances. We

computed these for lags up to 100 and, using the usual large sample theory of

these covariances, we came to the conclusion that the ambulance data were from

a renewal process. (i.e., the covariances were all essentially 0.) This

result is not surprising. One expects emergencies to occur "randomly" over

time and therefore exhibit properties of renewal processes. But this does

not mean that calls for ambulances in the police system (which is what is

under observation here) should obey such a process. Road accidents involving

multiple victims might well introduce non-renewal properties into the process

of calls for ambulances. What the data seemed to indicate is that, if such

properties exist for real they occur so seldom that over the course of the

entire data record we had, they could not be exposed by the methods used in

the data analysis.

To double check the correlation results the periodogram of the data was

estimated. Again, using standard statistical tools and the available computer

routine, this analysis supported the renewal assumption of the correlation

study. (See table 4.1.5.1.) Based on these results and our intuition we pro-

ceeded under the assumption that the ambulance call process was a renewal

73



CDC

0-

-(N

U.LL LA-
m,)m x

qb)

OD

ocJ

-dli

OD -D v cl

1-41HS~I~ 83 'a-.O83vn

740



Table 4.1.5.1

Test of Renewal Hypothesis Based
on Sample Periodogram

Statistic Value .05 Significance

Upper-Sided .641.224
Kolmogorov-Smirnoff .9

Lower- Sided .6 .2
Kolmogorov-Smirnoff .6 .2

Two-Sided
Kolmogorov-Smirnoff .866 1.358

Moran .818 2.492
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process.

Since an ordinary renewal process is characterized by a single probability

function, the remaining task was to analyze the data to estimate this function.

There are many tests for goodness of fit of data to distributions. We used

five and found that for the precinct under consideration an assumption that the

data satisfied the hypothesis of a Poisson process had to be rejected. (i.e.,

the interevent times form a renewal process - which we accepted - and these

interevent times are exponentially distributed - which we had to reject at

this point. (See table 4.1.5.2.)) The Moran test (one of the five goodness of

fit tests failed by the data) has high power against a gamma distribution

alternate hypothesis, so an attempt was made to fit a gamnma distribution to

the data. This attempt was successful using different methods to test the

goodness of fit. (We also used a hypothesis test that is designed to be

powerful against a log-normal alternate hypothesis.) The gamma density

function is given by the formula

k

kk k-1 -kx:f(x) =()x k - e-kX/I/r(k), k > 0, > 0, x > 0.

Based on all of the above analysis then we used maximum likelihood

estimators to estimate the requisite parameters of the gamma distribution.

Table 4.1.5.3 gives the maximum likelihood estimates of k and V. Then we

had a complete picture of the arrival of telephone calls to the dispatcher

for medical emergency service. But we were not out of the woods yet.

The objection was raised that even though the calls for ambulance

assistance seemed to be a renewal process with gamma distribution intervals

there was no evidence that this process and the process of calls for police
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Table 4.1.5.2

Test of Negative Exponential Distribution
of Times Between Ambulance Calls

Statistic Value .05 Significance

Upper-Sided
Kolmogorov-Smirnoff .361 1.224

Lower-Sided
Kolmogorov-Smirnoff 1.799* 1.224

Two-Sided

Kolmogorov-Smirnoff 1.799* 1.358

Anderson-Darling 3.137* 2.492

Moran 624.715* 451

*Significant at .05.
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Table 4.1.5.3

Maximum Likelihood Estimates
of Parameters for Gamma Model

of Time Between Ambulance Calls

101.2

k .77

Coefficient 1/2 1.14
of Variation (k
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assistance were independent processes. Thus, so it was argued, we could

not model the demand on the dispatcher as the superposition to two independent

processes. Since the quality of service of the ambulance system could be

compromised by the time spent by ambulances in responding to police calls,

this objection is non-trivial to the entire study. Indeed, so it was argued,

it was not unlikely to find calls for police service closely followed by

calls for ambulance service. People can get hurt and need an ambulance when

a crime is committed, so went the argument.

Thus, most of the previous analysis must be redone. It does give informa-

tion about the ambulance demand process. Therefore, any new model must be

consistent with it. But it, by itself, is a marginal study of the demand

process (i.e., considers only ambulances) when what is required is a study

of the joint process (i.e., ambulance and police calls).

To model this joint process we proceeded as follows. Let

0, if the nth call is for an ambulance,
Xn :, if the nth call is for police assistance.

Let T +-T be the time between the nth and (n + l)st call no matter what

types these are. Now consider the pair (X+I, Tn- T ). We assume that
n n+l n

the sequence of pairs here forms a Markov renewal process with state space

E - {o,l}.

The Markov renewal model did support the previous data analysis on the

ambulance calls, provided a somewhat simpler structure to compute with and

provided some new insights into the demand process. Based on that reasoning

we thought the Markov renewal model was a "good" model.
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Based on the previously collected data we estimated

Pij - Pr[Xn+l - J Ix - i], i,j e E.

From m ij/m where mij is the number of transitions from i to j (type i call

followed by a type j call) and m is the total number of transitions. (See

table 4.1.5.4.) These piJ estimates were then tested against a model

wherein the state process formed a Bernoulli process (i.e., Xn+l is
2

independent of X n ) by using a X test of independence. It was found that

the sequence of call types was a Bernoulli process from this test. That is,

we modelled the {X } process as one with Pr[IXn -jX =i] IPr[X =J] = pJ.

Then to estimate

F j(t) - Pr[Tn I - T: < tIX+l - J, X - i],

the available data was split into four pieces corresponding to the possible

values of X+l, Xn. Visual inspection suggested that each of these four

distribution functions was an exponential distribution. Tests of goodness

of fit were applied to each set of data again using the five goodness of fit

tests available in the statistical package. (See table 4.1.5.5.) It was

found that F0 0 (t), F0 1 (t), F10 (t) passed all five tests of the exponential

fit but F11 (t) failed all but one. This caused us to investigate the process

whereby police calls follow police calls and consider a more detailed model

of that process (i.e., a compound Poisson process), but that analysis is not

relevent here.

From this analysis we are able to conclude that the joint police - ambulance

demand system could be modelled rather well as a Markov renewal process as
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Table 4.1.5.4

Frequency of Transitions
between Types of Calls

0 1

0 42 373

1 373 4352
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Table 4.1.5.5

Tests for Negative Exponential

Distribution of Timds Between Calls

0 1

.571(a) .163
1.029(b) .604

0 1.029(c) .604
1.494(d) .966
2.833(e) 40.435

1.048 .319
.988 1.933*

1 1.048 1.933*
1.879 5.144*

65.881 227.196*

*(a) using the Kolmogorov-Smirnoff upper-sided test.
(b) using the Kolmogorov-Smirnoff lower-sided test.
(c) using the Kolmogorov-Smirnoff two-Bided test.
(d) using the Anderson-Darling test.
(e) using the Moran test.

*Significant at the .05 level.
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described. The conditional intercall times were exponential and the parameters

of these could be estimated from the data. (See table 4.1.5.6.) The F t)

did not fit the data well but the discrepancies could be explained plausibly

and a model built for that sequence alone. At that point we were quite satisfied

that we had as good a model as our data would support and one that was

preferrable to the more common assumption that the two sequences of calls were

independent or Poisson or whatever. (Notice that the model is a rather special

Markov renewal process. Pr[Xn+1 =ijIX i] =Pj independent of i but

Pr[T n+l-Tn IXn, Xn+ I depends on both X and X+1. Thus, even though Fij(t)

is exponential, the calling process is not a Markov process.)

As an aside, due to theoretical research of ours performed five years

before this study, we were able to study the entire system as a queue with

a Markov renewal arrival process. The dispatching rules used by the

dispatcher (and many he never thought of) could be modelled as a stochastic

process that accounted for the type of arrival and the "state" of the vehicles.

In this way a model that was purely analytic was developed and massaged.

Results had to obtained numerically but, in spite of the size of the problem

and its seeming complexity, it could be studied analytically. The entire

study is a nice commentary on the interplay of theory, modelling, real life

problems, and statistics. It certainly seems to undercut the "theory -

application" dichotomy. Without the previous theory, this application would

probably never have been made.

4.1.6. The DiMarco Study (1972). In his study, DeMarco considers a 10

year history of power outages in a system composed of 5 - 200mw steam

generating units. Because the boiler unit and generator created nearly all
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Table 4.1.5.6

Maximum Likelihood Estimates
of Mean Times Between Calls

0 1

0 14.33 mins. 16.20 mins.

1 23.08 mins. 14.55 mins.*

* The times themselves here are probably not Poisson distributed.
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power outages over this period he concentrates his study on these two units.

The modelling process consists of a study of the available data for boiler

down times and running times, turbine down times and running times, a

combined model for the system's down time and a study of the system's

capability to meet the demand placed on the system. We will discuss only

a few aspects of the modelling of the boiler outage process.

After eliminating some obvious and explainable discrepencies in his

data, DeMarco was left with 1111 outage duration intervals and 774 running

duration intervals. A study of the outage duration intervals shows that such

intervals can be attributed to one of three types, say type a, b or c.

Running time is taken to be the length of time that the boiler system is

operating at the full capacity of 200 mw. Thus, while the system is

actually operating in some of the outage states (say, a, b), it is not up to

capacity and is considered to be in an "outage" state.

This system then can be in one of four states; running, outage a, outage

b, outage c. As the system operated every outage state was followed by a

return to the running state.

A lengthy and careful statistical analysis of the available data

indicated that the length of time the boiler was out depended only on the

outage state. Running times appeared to be a sequence of independent and

identically distributed random variables. However, if one considered only

the sequence of outage states, eliminating temporarily the intervening

running states, it appeared that this sequence was a Markov process. Thus,

one had the interesting result that if X = the state of the boiler at then

nth change of state (including the running state), {X was a second order
n
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Markov process. That is {Xn I had transition probabilities of the form

PrIX+1 - JIX - i, X 1 = k).

Having to specifically account for this running state interuption to the

outage states is a nuisance. To eliminate the problem, DiMarco defines

three running states (call them 4, 5, 6) so that every outage of type a

returns the system to running state 4, every outage of type b returns the

system to running state 5, etc. In this way, the state process of the

boiler system is a Markov chain on E - {1,2,3,4,5,61. Thus, {Xn I on this

state space has one step transition probability matrix in the form:

0 0 0 1 0 0

0 o 0 0 1 0

0 0 0 0 0 1

P11 P1 2 P1 3  0 0 0

P21 P22 P2 3  0 0 0

P3 1 P32 P3 3  0 0 0

Having previously established that the lengths of the running times

and the lengths of the outage times are each sequences of independent

random variables and the several sequences are independent of each other,

one can now estimate the probability densities of these interval's lengths.

After a lengthy study of the data it was concluded that: these intervals

can all be fit by hyper-exponential distributions with a reasonable degree

of acceptability. The parameters of these hyper-exponentials are given
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in the paper. They are of little concern to us here.

It is interesting to note, however, that the hyper-exponential density

function has a decreasing failure rate. This implies, for example, the

seemingly implausible condition that the longer the boiler goes without a

breakdown, the less likely it is to breakdown in the near future! DiMarco

argues that because of the complexity of these systems, it is unusual to

repair them correctly the first time. Therefore, for example, if the

boiler has been operational for a long period of time it is likely that it

was repaired correctly and therefore will continue to operate. If on the

other hand it was not repaired correctly (no matter how long it took to

repair it) then it is likely to fail shortly after coming out of repair.

In summary, then, the DiMarco model of the boiler portion of the steam

generators is a six state Markov renewal process whose requisite parameters

and distributions are estimated from the data. The model has an interesting

structure so that one has a degree of simplification and need not use the

full theory of Markov renewal process. That is, the model has the structure

Pr[X+l J,1 T I- T n _< tix i

= Pr[T+i - T < tJX i] Pr[X n+= JJX - i].

The sojourn times in state i do not appear to depend on the next state to be

visited as is possible in the full Markov renewal structure. (See formula

2.2.2 for a comparison.) This makes for a simplification in the analysis of

the model. But the hyper-exponential form of the running time and outage time

distributions (i.e., the Pr[Tn - Tn < t1Xn - il) still does not allow for a
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model as simple as a continuous time Markov model. (i.e., these sojourn times

are not exponentially distributed.) A Markov model appears to be feasible

here but to develop it would require a more elaborate state space (probably

E x {1,2}, at least). Whether this elaboration would lead to a simpler

analysis than DiMarco gives to the Markov renewal model is a moot point.

4.1.7. Other Applications. There are many other applications that have

been made of Markov renewal process thoery. We can briefly mention a few here.

The reader is invited to consult the noted literature for details.

4.1.7.1. The Daganzo (1975) Study. Road traffic has long been an area of

application for random process theory. We briefly mentioned a study

of road traffic as a Markov renewal process whose states were identified with

leaders and followers in section.

Daganzo used a three state Markov renewal process to study the behavior of

traffic on a two lane road. However, he identifies these states with fast

moving vehicles and slow moving vehicles. In this way he obtains three states

identified with fast moving vehicles that are moving fast (i.e., unimpeded in

a platoon) slow moving vehicles (alone or in a platoon) and fast moving

vehicles moving slowly (i.e., impeded in a platoon).

His study concentrates on the formation and dissipation of platoons of

traffic, passing characteristics, road capacity and the other usual measures

of road traffic. Of particular interest in the study is the assumption that

vehicles have physical dimensions (most previous studies assumed vehicles

were points in a point process). For this reason one can have (and Daganzo

studies) the formation of platoons not only by fast vehicles catching up
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with slow vehilles but by one platoon extending so as to encounter another

platoon. In this way, the author can examine road traffic in medium and

heavy traffic - a study rather different from older models of vehicles as

points, light traffic conditions, platoons that do not interact and leader -

follower models.

The author then observed vehicular flow on a two lane highway and collected

data on 295 vehicles to estimate the parameters of his model. He also col-

lected data on 476 other vehicles to test the predictive value of his finished

model. The results of this part of the analysis show that this Markov renewal

model of road traffic is superior to the then existing models. Indeed, this

model is shown to be a generalization of two other existing models so that by

particularizing the parameters of the model one can obtain other, previously

developed models which seem to be adequate for light traffic conditions but

inadequate for moderate to heavy traffic.

Furthermore, the Daganzo model seemed to fare better than some other models

which are also Markov renewal models but on different state spaces. The author

concludes that his model, while still in need to improvement, seems to produce

more realistic results than models that existed at the time.

4.1.7.2. The Lee (1979) Study. The study of fatigue has been an ongoing

enterprise in industrial engineering almost since the time of Taylor. In a

recently completed study, Lee attempts to build a stochastic model of the

physiologic processes that produce fatigue and to study the interaction of

fatigue inducing work and lengths of rest periods. His model, which attempts

to include many of the results found by many empirical studies, is much too

detailed to summarize here. The reader interested in the application of Markov
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renewal theory to a classical problem in industrial engineering is invited to

consult this important study. To the best of our knowledge this study is

about the first to attempt a modelling of the underlying physiologic processes.

Most previous studies had been statistical and empirical.

4.2. Other Studies. In an unpublished thesis, Sim (1976) briefly reviews

the theory of Markov renewal processes and then provides an annotated

bibliography of applications of the theory to studies such as queues and

Geiger counters as well as to "real-life" applications. We simply list here

the areas where the applications have appeared. The Sim thesis should be

consulted for precise references and source documents.

a. Movement of Coronary Patients in a Hospital.

b. Clinical Trials with Acute Leukemia Patients.

c. Screening for Chronic Disease (with applications to cancer).

d. Human Reproduction.

e. Description of Sleep Patterns.

f. Behavior Sequences.

g. Social Mobility.

h. Time Shared Computer Models.

It is interesting to note in this listing that the use of a Markov renewal

model seems to be prevalent in the social and biological sciences. We have

not noticed the same incursion in engineering and operations research.

A few other applications (items [161-[21] in the bibliography) have

come to our attention. We would be interested in obtaining references to

other applications not noted in the references in our bibliography.
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V. SUMMARY AND AFTERWORD

5.0. Summary. In the brief space available to us, but really because I lost

enthusiasm for saying more, we have tried to accomplish two things. First we

have tried to present an encapsulated version of some of the main ideas of

Markov renewal theory. That version is neither a primer nor a treatise on the

topic. Second we have tried to expose some of the areas of application of this

theory. In those discussions we have kept the manipulations to a minimum so as

to expose the ideas rather than dazzle the audience with our erring ability to

use mathematics. Thus, for example, we assumed that hiding places in a terrain

were distributed as a Poisson process in example 4.1.1. Clearly, that is a

silly assumption. But our interest was not to avoid silliness as much as to

show that Markov renewal theory had been applied and how.

In section IV we tried to expose some of the areas where the theory

developed in sections II and III had been applied. Most of these applications

have been "real life" in the sense that the researchers built a Markov renewal

model based on some existing phenomena, used data collected on the system to

estimate parameters of the model, exercised the model to obtain information

about the phenomena and used this information to recommend policy, predict

outcomes or gain new insights into previously little understood phenomena.

In the appropriate cases, it appeared that models built on Harkov renewal

process theory were more appropriate than models based on the more often

used methods of renewal theory or Markov process theory. That is, we think

we have demonstrated that such models are useful to a host of modelling

activities.
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5.1. Afterword. The theory of Harkov renewal processes is nearly complete.

Literature on the topic is, as is most applied probability, spread over the

relevant journals of the world. There is no one home for the topic. Material

on the topic is beginning to reach the textbooks though it has been in the

research literature for over 20 years. Applications of the theory to topics

such as queueing and reliability have been going on for nearly 20 years, not

always recognized as such. Indeed, there is reason to believe that the

applications to queueing have driven queueing into new areas. Conversely,

queueing problems have provided an impetus for the further development of the

theory of Markov renewal processes. Modern queueing theory is a much different

animal than that exposed in most currently available textbooks.

There is still much to be done at the theory-application interface. We

have seen that the computation of most quantities of interest rely on the

Markov renewal function. Except for special structure on the semi-Harkov

kernel, this function is difficult to compute. (Of course, if one only wants

steady state behavior, this function need not be computed.) Whether one can

develop efficient computational algorithms to help in these computations or

can develop a theory of approximations is an open question. Research work at

present is pursuing both of these topics.

Statistical properties of the processes are discussed and sumarized in

the Sim paper. There is a need to extend, unify and make available to

potential users this knowledge.

Finally, we need more experience in the use of these topics for real life

modelling. In those cases where they have been used for models they seem to

perform well. But there are potential areas of application where they have
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not been used and areas where they have been used but are still inadequate

for modelling the processes.
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