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RESUME

Le volume d'un échantillon d'explosif composite (RDX/liant-
83/17) a été mesuré dans une gamme de températures comprise entre
248 et 338 K en utilisant le principe d'Archiméde. Les &échantillons
étaient enrobés d'un film protecteur développé spécialement pour
éviter la dissolution du liant dans 1'huile de silicone utilisée
comme liquide d'immersion. Les résultats ont montré que la movennec
de 15 mesures du coefficient de dilatation cubique de 1l'explosif

3296 K est 3.57 x 10°% k™! avec un écart type de 0.066 x T

Une technique similaire appliquée i un &chantillon d'aluminium,
dont le coefficient est connu, a donné une valeur 2.0 pour cent

supérieure. (NC)

ABSTRACT
l4rhe volume of a composite 2xplosive (RDX/binder-83/17) has
been measured at temperatures from 248 to 338 K using Archimedes'
principle. The specimens were covered with a protective film specially
developed to prevent the binder from dissolving in the fluid, a
From the results the coefficient of cubical expansion

1

silicone oil.
of the explosive at 296 K is/3.57 x 10”4 K™" ‘as the _mean of 15 measure-
4 -1

ments having a standard deviation of 6;966 x 1007 K s A similar
technique applied to an aluminum specimen whose coefficient is known

gave a value about 2.0 percent too large. ({U)
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1.0 INTRODUCTION

Castable composite explosives developed at DREV have been exten-
sively studied to ascertain their mechanical, thermal and detonation
properties (Refs. 1 - 3). These explosives consist of one or several
energetic ingredients embedded in a fluid called the binder. After
the explosive is poured into place, this binder is cured by a nonrevers-
ible process. The binder consists of hydroxyl-terminated polybutadiene
prepolymer R-45M, sold by Arco Chemical, along with a plasticizer,

a diisocyanate as a curing agent, and small concentrations of a catalyst

and a wetting agent.

This report treats the laboratory measurement of the thermal
expansion of one of these composite explosives as a means of ascertain-
ing its coefficient of cubical expansion. The explosive consisted
of only one energetic ingredient, RDX, at a concentration of 83 percent.
The only other ingredient was binder. Our method used Archimedes'
principle to determine the volume of explosive specimens over a range
of temperatures, by measuring their loss in weight when immersed in a

silicone o0il maintained in turn at each of several temperatures.

The work described in this report was completed at DREV between
November 1974 and February 1976 under PCN 21A03 Composite Explosives.

2.0 APPARATUS

The apparatus assembled for our experiments consists mainly
of a balance which permits an additional bottom load below the pan, a
copper beaker for the o0il, a controlled-temperature bath, a fine
copper wire and several recording instruments. These are illustrated

schematically in Fig. 1, and by photographs as Figs. 2 and 3.
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FIGURE 3 - Specimens, aluminum at left, explosive at right,
and copper wire for suspending them in oil
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The balance is a Mettler [I-20-E electronic, with a least count
of 0.05 mg. Its weight reading is indicated by a digital voltmeter,
Dana 5000.

The silicone o0il was furnished by General Flectric under the
designation SF-8]. It is contained in a 0.4-£ copper beaker immersed
in a 9-£ thermostatically-controlled bath of ethylene glycol, Lauda
model TUK-30, kept at a constant temperature within * 0,03 K.

The copper wire, of 0.305 mm diameter, is used for suspending
each specimen immersed in the oil. It is partially twisted into a
small helix to minimize the transmission of vibrations from the spec-

imen to the balance.

3.0 THEORY AND METHOD

3.1 Theory

The coefficient of cubical expansion B is defined as the ratio
of the change in volume of a unit volume divided by the corresponding
change in temperature. If volume can be expressed by an algebraic
equation as a function of the temperature T, then the value of B at that
temperature can be obtained by differentiating the equation.

av [1]

<|=
o,

A convenient and versatile laboratory method for measuring
the volume of a solid makes use of Archimedes' principle, namely, that
the loss in weight of a solid when immersed in a liquid is equal
to the weight of an equal volume of that liquid. We used this principle
in two ways: for determining the volume of explosive specimens each
was immersed in turn into the silicone oil (dimethyl polysiloxane),

and for determining the density of this silicone oil a steel specimen
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of known dimensions and welght was immersed in it. We rejected the
use of any direct measurement of the amount of liquid displaced by
a solid specimen as a measure of the volume of that specimen, because
this latter method seemed impractical for our requirements and less

convenient to accomplish,

In determining the density of the silicone oil we used a rect-
angular parallelepiped of '"milvar'" steel obtained from the Driver-
Harris Company, Harrison, New Jersey. This metal, according to infor-
mation furnished by the supplier, has a coefficient of linear expansion
a of 1.26 x 10'6 K_l, about one-tenth that of most other steels.

This small expansion rate was considered desirable for our experiments
so that (a) the observed change in its buoyancy with changing tempera-
ture would be due principally to changes in the density of the oil, and
(b) any inaccuracy in our assumed value of a, would have a minimal
influence on the measured density of the oil. We assumed that a

would have the same value in all directions, hence the volume of the
nilvar at any temperature T will be given by

Vo= LiLL[l e a (-1 )1 (2]

n 3

1’ L2 and L3 are the dimensions of the nilvar block at room
temperature To' By measuring the weight of that block when immersed

where L

in oil Wi, the density p of the oil can be determined at any tempera-

ture T using the equation-

- W,

wair i
Poil T VeV (3]

where wair is *he weight of the entire copper wire used for supporting
the nilvar when immersed in oil, along with that of the nilvar, both
weighed together in air, V in this instance is Vn, and Vc is the volume

of that portion of the copper wire immersed in oil during the buoyancy
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weighing. This partial volume Vc is given by

Vo= Z[+a (T-T )13 LD ? 4]
c 4 c o cc

where a, the coefficient of linear expansion of copper, is assumed

to be equal to 16.6 x 1078 1

, Dc is the diameter and Lc the length
at room temperature To of the copper wire immersed, and T is the tem-
perature of the oil bath. By measuring wi at several temperatures,
the corresponding densities of the oil can be computed using eqs. 3

and 4.
3.2 Method

It was found convenient to make the first buoyancy measurements
at about room temperature toward the end of a working day, then to
set the thermostat at the lowest temperature desired. This provided
sufficient time overnight to reach equilibrium at the required tempera-
ture, in spite of the small cooling capacity of the heat sink immersed
in the ethylene glycol. The other (higher) temperatures could then

be conveniently reached during the course of the same working day.

In applying Archimedes' principle to measurements with the com-
posite explosive it was discovered that our initial results had to
be discarded because the explosive was partially soluble in the sili-
cone oil. This solubility was confirmed by immersing into the oil at
343 K some specially prepared specimens composed entirely of binder.
These specimens showed losses in weight of about 10 and 15 percent
after immersions of 24 and 48 h respectively. This difficulty was
averted by coating all subsequent specimens of composite explosive
with a thin protective film before subjecting them to buoyancy mea-
surements. An alternative would have been to find a liquid which
did not attack the explosive, but such a search would not necessarily
have been successful and also it would have meant abandoning much

work already done.
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We developed a formulation for coating our explosive specimens

with a film which seemed satisfactory in every way. It was compatible

with the explosive and sufficiently flexible so as not to crucl ecasilv.

It could be readily applied in a film sufficiently thin (wcighing only
about 2 percent of the weight of the explosive) so as not to an.t.lv
influence the explosive in expanding and contracting frecly with ten-
perature changes. There was no detectable change in the weipht ot
film-coated explosive specimens upon immersion in oil for 27 i ut
temperatures up to 343 K and so the film is sufficiently inscluble

for the duration of a series of our buoyancy measurements. Ih: tor-
mulation used consisted of the epoxy resin Armstrong A32 at a con-
centration of 66.6 percent, the only other ingredient beiny the ol

sulfide LP33 manufactured by Thiokol Canada Ltd.

Composite explosive specimens were prepared by casting approx-
imately to the desired size, then machining on a lathe and coating
with protective film by dipping. The upper end of each casting was
machined flat; the other surfaces were also turned on a lathe to elin-
inate the smooth outer ''skin'" consisting mainly of binder, in order
that the film would adhere adequately. To apply the filr a pin wa
stuck into each specimen so it could be conveniently dippecd :nto
the liquid and then mounted with the head of the pin embedded in Vias-
ticine while curing. Any excess film material which gathered at ta-
bottom of a specimen was removed by wiping lightly. When curcd cudth
specimen was removed from its pin and each hole filled with & .iru:
of film fluid.

Thermal expansion of the protective film had to be 1.::on
account in measuring the volume of coated composite explc i
expansion was studied by a separate series of buoyancy er: cri:
which the volumes of six film specimens were determined ut tow ;e

comparable to those used in the experiments with film-coatc’' ¢!
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The film volume V at each temperature T was computed using eqs. 3

and 4; it was convenient to express each of these results also in

the form of its specific volume, that is, volume per unit mass.

Thermal expansion for a specimen of 99.999 percent aluminum was
also measured using the buoyancy method, for comparison with litera-
ture data as an indication of the accuracy of our other measurements.
Again eqs. 3 and 4 were used to compute specimen volume V at each
experimental temperature. The results were compared with those obtained
using an equation, attributed to J.L. Brandt in Ref. 4, which gives
for the length L of an aluminum specimen of 99.996 percent purity

L= L [1+C(22.17 t + 0.012 t%) 1074 (5]

where Lo is its length at OOC, C is a constant which for pure aluminum
is equal to unity, and t is the temperature in degrees Celsius within
the range -60 to 100°C.  We applied eq. 5 to both length and diameter
in computing the "known'" volume of the aluminum specimen for comparison

with our experimental values.

In using buoyancy measurements to determine the volume of a
composite explosive, account must be taken of the fluid displaced by
the protective film with which the specimens are coated. The volume V
of the explosive itself is given by an equation of the form of eq. 3

with one additional term, Vp, the volume of this film.
Poil TV V. +V (6]

Values of Vp were computed using our previously determined value of

the specific volume of the film at each temperature at which buoyancy

measurements on the explosive were made.
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4.0 RESULTS AND DISCUSSION

4.1 Density of the Qil

Dimensions of the nilvar block, measured at 296 K, were found
to be 10.344 x 1.925 x 0.315 cm and its weight in air was 50.93630 g.
The entire 0.305-mm-diameter copper wire weighed 0.20870 g; it was
immersed to a length of 7.609 cm, measured at 296 K. Nilvar and
copper were assumed to have a coefficient of linear expansion of

1.26 x 10°® and 16.6 x 107° ! respectively. The immersed weights

at 22 different -~emperatures are presented in Table I along with the
computed density of the oil at each temperature. These densities as a
function of temperature are also presented graphically in Fig. 4, in
which it can be seen that the plotted points deviate from a straight

line. The cubic equation which best fits these points (least squares)

is
) . 2 3
Poil = Co * G T T GT + G 17]
where Co = 1.28656
c, = 1.28122 x 1073
C, = 8.60806 x 1077
and  C, = 4.98146 x 10710,

4.2 Protective Film

Buoyancy and other measurements made on six specimens of protec-
tive film are presented in Table II. The immersed weight was measured -
at five different temperatures, for each of which the specimen volume
was computed using eqs. 3 and 4. The copper wire weighed 0,21745 g;
during buoyancy measurements it was partly immersed in oil to the

extent of 8.424 cm of its length as measured at 296 K.
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TABLE 1

Density of the silicone 0il at several temperatures

Weight of nilvar, Computed
Temperature immersed in oil oil density

[K] [e] [g/cn)
248.1 44.78810 1.0137S
249.8 44.79148 1.01320
253.6 44.81966 1.00869
254.7 44.82485 1.00786
258.9 44 .85092 1,00369
262.9 44.87388 1.00001
268.4 44.90515 0.99500
273.1 44.93389 0.99040
278.0 44.95900 0.98638
282.4 44.98435 0.98232
287.0 45.01140 0.97799
289.6 45.02785 0.97536
295.4 45.05875 0.97041
296.3 45.06210 0.96987
302.0 45.09590 0.96446
312.4 45.15465 0.95506
322.4 45.20910 0.94634
333.2 45,26842 0.93685
342.5 45.31950 0.92867
352.6 45.37475 0.91983
362.5 45,42700 0.91146

373.2 45.48327 0.90246
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FIGURE 4 - Density of the silicone oil at several temperatures
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TABLE Il

Protective film volume ac several temperatures

Immersed Computed Coefficient of cubical
Temperature weight volume expansion at 296 K (8)

(K] g] [en’] (K1)

249.7 3.02550 10.1871
Specimen # 1, 272.9 3.14930 10.2824

[P

weight = 294.6  3.25130  10.3881 5.08 x 107%
13.12890 g 317.4 3.33970 10.5180
342.7 3.39240 10.7136
251.9 3.14990 10.5920
Specimen # 2, 272.8 3.26698 10.6929 -4
weight = 296.2 3.37010 10.8175 5.31 x 10
13.64959 g 316.9 3.45290 10.9420
342.2 3.51912 11.1320
247.8 3.11994 10.5661
Specimen # 3, 272.7 3.25209 10.6789 -4
weight = 297.0 3.35746 10.8144 5.36 x 10
13.62578 g 316.9 3.43882 10.9312
342.6 3.51067 11.1201
247.6 3.13574 10.5419
Specimen # 4, 272.8 3.26461 10.6570 -4
weight = 294.0 3.37484 10.7602 4,96 x 10
13.61923 g 316.8 3.46531 10.8960
342.0 3.51248 11.1048
247.5 3.12132 10.5428
Specimen # 5, 272.3 3.26297 10.6450 -4
weight = 294.7 3.33770 10.7518 4,92 x 10
13.60681 g 316.8 3.46670 10.8809
341.9 3.50751 11,0956
247.6 3.12831 10.5718
Specimen # 6, 272.3 3.26961 10.6734 "
weight = 295.4 3.38689 10.7848 5.05 x 10
13.64165 g 316.8 3.46957 10.9145

341.9 3.51657 11.1239
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Our values of volume at each temperature for the six specimens
are presented graphically in Fig. 5. These 30 values of V are fitted,

using least squares, to the cubic equation

- 2 3
vp = w(co + CIT + CZT + C3T ) [8]

where the constants were found to have the following values:

C1 = 0.44941
-3
Cz = 3.23165 x 10
_ -5
C3 = 1.14768 x 10
- -8
C4 = 1.50803 x 10 .

From eqs. 1 and 8 the value of the coefficient of cubical expansion 8
at 296 K was found to be 5.05 x 10°? k"), values of 8 for each spec-
imen, given in the last column of Table II, were obtained in a similar

fashion from a cubic equation fitted to the results for each.

4.3 Accuracy of Measuring Technique

The aluminum specimen subjected to buoyancy measurements to
provide an estimate of the degree of precision of our other results
was 3.1717 cm long and 1.9101 cm in diameter, measured at 296 K.

In air it weighed 24.5606]1 g; immersed in o0il the weights, recorded
at 14 different temperatures, were as presented in Table III. The
copper wire weighed 0.21745 g; during buoyancy measurements it was
partly immersed in oil to the extent of 8.424 cm of its length as
measured at 296 K.

e e —— (jtﬂ
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TABLE 111 ]

Volume of the aluminum specimen at several temperatures

Aluminum weight, Computed Volume,
Temperature immersed in oil volume from eq. 5

3 3

(K] (e] [em™] [em™]
248.1 15.58397 9.0602 9.0590
254.2 15.63550 9.0614 9.0627
262.4 15.69843 9.0678 9.0675
271.9 15.77327 9.0730 9.0732
282.6 15.85554 9.0798 9.0797
295.1 15.95232 9.0869 9.0874
302.1 16.00302 9.0933 9.0917
312.6 16.08395 9.0979 9.0983
322.7 16.15874 9.1055 9.1047
333.5 16.23773 9.1131 9.1116
343.6 16.31032 9.1208 9.1182
353.6 16.38382 9.1265 9.1247
364.2 16.45858 9.1355 9.1317

371.6 16.51062 9.1419 9.1367
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The volume of the aluminum at each temperature, computed using
eqs. 3 and 4, is presented in the third column of Table III and also
plotted in Fig. 6. Along with these experimental volumes, we have
also plotted in this figure the "known" volume at each temperature

as computed from the measured dimensions using eq. 5.

Our experimental volumes were fitted to a cubic equation from
which, in conjunction with eq. 1, the coefficient of cubical expansion
g at 296 K was computed. This value, 8 = 69.61 x 107° K'l, can be
compared with the '"known'" value of 8 obtained from eqs. 1 and 5, that
is, B = 68.24 x 10-6 K_l. These two values of B differ by about two
percent. It is not known to what extent this discrepancy is systematic

or random.

4.4 Composite Explosive

Buoyancy and other measurements made on 16 specimens of a com-
posite explosive, each completely covered by the protective film de-
veloped especially for this purpose, are presented in Table IV. The
immersed weight was measured at five different temperatures, for each
of which the volume of the explosive alone was computed using eqs. 4
and 6. The copper wire weighed 0.21745 g; during buoyancy measurements
it was partly immersed in oil to the extent of 8.424 cm of its length
as measured at 296 K.

The dependance of volume upon temperature for these 16 specimens
is illustrated in Figs. 7 - 11 where specific volumes are plotted
as ordinates. For each specimen a cubic equation was fitted to the
results, then each equation in conjunction with eq. 1 was used to
compute the corresponding value of 8 given in the last column of
Table IV. The mean value of B8 for each batch is also given in the

last column of Table IV.

o TS
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Composite explosive buoyancy results

Spec- Bare Protective Computed
imen Batch explosive film Immersed explosive Coefficient of cubical
No. No. weight weight Temp. weight volume expansion at 296 K (R)
(e} [e) Kl [g) [en’) K
1 1 13.93420 0.25959 247.8 5.21668 3.8578
272.3 5.35138 8.9277 -4
294.5 5.46629 8.9968 3.51-10
316.7 5.58138 9.0668
342.0 5.70259 9.1545
2 1 14.30517 0.24187 247.6  5.35677  9.0802
272.2  5.49376  9.1536 -4
294.6 5.61430 9.2240 3.49-10
316.9 5.73130 9.2961 mean = _,
342.1 5.85735 9.3835 3.59-10
3 1 12.84594 0.38179 248.0 4.73283 8.2894 SD = -4
272.3 4.85204 8.3612 4 0.10-10
294.6 4.95690 8.4317 3.69-10
316.8 5.06305 8.4992
342.0 5.17197 8.5866
4 1 13.55088  0.33858 247.8 4.99690 8.7136
272.3 5.12342 8.7887 -4
294.3 5.23312 8.8600 3.67-10
316.5 5.34416 8.9311
336.7 5.44021 9.0001
S 2 13.66780 0.31701 248.8 5.12188 8.7088
272.4 5.24723 8.7773 -4
294.5 5.36030 8.8462 3.63+10
316.3 5.46842 8.9166
337.3 5.56997 8.9854
6 2 13.77824 0.29955 249.4 5.16372 8.7779
272.8 5.28912  8.8462 4
294.2 5.40112 8.9114 3.49-10
316.9 5.51706 8.9823 mean = _,
337.5 5.61849 9.0491 3.55+10
7 2 13.84384 0.33030 247.8 5.17643  8.8232 SDh = -4
272.6 5.30968  8.8968 -4 0.06+10
295.3 5.42781  8.9677 3.56-10

316.9 5.53784 9.0371
337.5 5.63909 9.1053
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TABLE IV
(Continued)
Protective
film Immersed
weight Temp. wecight
(2] {x] (g]
0.30153 248.2  5.19436
272.6  5.32615
294.4 5.44130
317.0  5.55512
337.5 5.65450
0.22020 249.2 5.30331
272.7 5.43199
293.9  5.54692
317.3 5.66620
337.6 5.76789
0.22587 24%.8 5.29867
273.7 5.42894
295.2 5.54786
317.0  5.65936
337.3 5.76048
0.27494 248.3 5.17938
272.6  5.30910
294.6 5.42373
317.0 5.53606
337.6 5.63389
0.25582 248.6 5.25191
272.6  5.38219
293.7  5.49479
317.1 5.61374
337.4 5.71324
0.43082 248.2  5.23766
272.2 5.36907
295.6  5.49490
316.9  5.60085
337.7 5.70194
0.36308 248.6 5.29775
272.4 5.43036
295.1 5.55241
316.9 5.66331

5.76456

Computed
explosive
volume

[em’]

DWLOYWW DVL D DDOODO OWYW®R®

DOV LYLY DWOWIODWH WWIWYWWo

.8324
L9045
L9713
. 0448

1146

L9058
.0658
.1298

2072
2760

.9773
. 0487

1187
1905

.2595

7450

.8150
.8818
.9634

0233

.9052

9758

. 0407
L1162
.1856

.9450
.0161
.0%896
.1630
L2363

L0219

0933

.1642

2379

.3104

Coefficient of cubical
expansion at 296 K ()

“i

.51.10°

L64:10°

.58+10"

-1

(K

.54-10""
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Let us consider the possible existence of batch-to-batch varia-
tions in B. 1If each is weighed equally their overall mean is 3.584

x 1074 k7!, with a standard deviation (SD) of 0.0297 x 10™% k™!, The

SD for the specimens within each batch ranges from 0.06 to 0.20 x 1()_4
K-l, therefore we may infer that no batch differs from any other with
respect to B, insofar as our experiments can detect such differences.
In other words, we shall tentatively consider each of our 16 measure-
ments of B in like fashion, as single measurements of equal validity.
This intuitive decision is supported by the results obtained using

Snedecor's F-test for the analysis of variance, where the F ratio con-
firms that our intuitive assumption has a probability greater than

99 percent of being valid.

Now let us consider our proposal to discard the greatest of
these 16 values of B, namely, that for specimen No. 11. Whether it
should be discarded or not can be judged using a criterion for testing
outlying observations suggested by Grubbs (Ref. 5). This test uses
the ratio of the sum of the squares of deviations from their mean for
the N-1 unsuspected values over the same sum for the N values including
the suspected one. For N = 16 this ratio must be smaller than 0.4634
to be significant at the one-percent level. Since the observed ratio
is 0.4358 for our sample of 16 specimens, the probability is less than
0.01 that the measured B for specimen No. 11 comes from the same normal

distribution as those for the other 15 values.

The origin of the abnormally large value of 8 for specimen No. 11
is perhaps apparent from Fig. 9. The curve for specimen No. 11 lies
below the others at low temperatures and above them at high tempera-
tures, but coincides with them near 296 X and also at both extremes.
That is, the slope of the curve at 296 K, near the point of inflection,

differs greatly from that of a straight line joining its end points

because of this reversal of curvature,
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Two further values of 2 were retained in spite of several in-
dications that they were suspect, namely, those for specimens Nos. 3
and 4. It is apparent in Fig. 7 that their specific volume is appre-
ciably greater than that of all other specimens. Also, their values

of P are the two largest of the 15 valid measurements.

e
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FIGURE 7 - Specific volume of composite explosive, hatch No. 1
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FIGURE 10 - Specific volume of composite explosive, batch No. 4
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FIGURE 11 - Specific volume of composite explosive, batch No. 5
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5.0 CONCLUSIONS

A technique has been developed and applied to the measurement
] of the specific volume of a composite explosive (RDX/binder-83/17)

at temperatures ranging from 248 to 338 K. Froa these results the
coefficient of cubical expansion B can be computed at any intervening
temperature or over any range within this interval. At 296 K it was
found to have the mean value of 3.57 x 10°% k™! from 15 separate mea-
surements. A similar technique applied to an aluminum specimen, for

which B8 is known, gave a value about 2.0 percent too large.

The standard deviation of the measurements made on this composite
explosive provides some evidence of its good batch-to-batch uniformity.

The coefficient of cubical expansion for 15 specimens from five sepa-
rate batches has a standard deviation of 1.9 percent (0.066 x 1074 7l
which is comparable to the values 0.10, 0.06, 0.05, 0.07 and 0.06 x

1074 k! for intra-batch specimens.
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