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Erratum

Column 6 in Table I should be
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ABSTRACT

A fluid theory of collisional electrostatic drift waves in a
plasma slab with magnetic shear 1s presented. Both electron
temperature and density gradients are Included. The equations are
solved analytically in all relevant reglons of the parameter space
defined by the magnetic shear streangth and the perpendicular
wavelength and explicit expressions for the growth rates are given.
For shear strengths appropriate for present-day tokamak discharges
the temperature gradlent produces potential wells which localize the
mode In the aelectron resistive reglon, well inside the {fon sound
turning polnts. Mode stability arises from a competition between the
destabilizing i(nfluence of the time dependent thermal force and the
stabilizing influence of electron energy dissipation. Convective

energy loss is not important for shear parameters of present-day

fusion devices.v




I. INTRODUCTION

Low frequency density fluctuations have been observed in a wide vari-
ety of magnetic confinement systems including tokamaks, stellarators, and

multipoles.l_7

Such fluctuations are important slnce they may enhance the
crossfield particle or energy transport. The anomaly 1in the crossfield
thermal traasport coefficient has been most extensively documented in
tokamak discharges although no causal relationship with the density
fluctuations has been established-8

It is widely accepted that the observed density fluctuations arise
from drift instabilities driven by tle expansion-free energy assoclated
wlith pressure gradients in confined plasmas. Extensive theoretical inves-
tigations of drift wave stability have been undertaken. In particular, the
influence of magnetlic shear oa drift waves has been the gsubject of substan-
tial controversy for nearly a decade. Pearlstein and Berk found that shear
caused an outward convectlon of wave cenergy away from the mode rational
surface (ﬁ'ﬁ = 0) and they argued that drift wave gstability resulted from a
competition between this outward convection of energy and the release of
expansion-free energy near the rational surface.9 Later numerical and
analytic calculations, whlle verifying the outgoing wave character of drift
waves, demonstrated that pressure driven drilft waves are always stable in a
sheared magnetic fleld in slab geometry.lo

The majority of Investligations of drift wave stabflity have allowed
gradients I(n the amblent density but not in the electron temperature. The
dominant motivation for the study of drift waves, however, 1is the experi-

mentally measured anomaly in the crossfield thermal conductivity of

electrons in tokamak discharges; in these discharges, the temperature




gradient typically exceeds the density graalent. Thus, the inclusion of a
temperature gradient in studies of drift wave stability is of critical
importance. In fact, in recent numerical calculations, the temperature

t, 12 It was

gradient was found to alter the entlre structure of the mode.
found that the drift wave no longer had the character of an outward propa-
gating wave but vremained localized in the vicinity of the mode rational

n9 The outward convec-

surface, well within the "fon sound turning points.
tion of the wave energy therefore does not have a stabilizing influence on
the mode 1if a temperature gradient is present. This locallzation by the

temperature gradient appears both in the presence or absence of electron-

ion collisions, Vg In the collisionless limit11

the mode remains stable
even when the convective energy loss can be neglected because »f Landau
absorption of wave energy by electrons in the vicinity of the rational sur-
face. 1In the collisional limit, w < Ver OR the other hand, the wave can be
destabilized by the temperature gradlent {f the velocity dependence of
electron-ion collisions 13 taken into account.12
In the present paper we investigate the structure of collisional drift
waves In a sheared magnetic field with both density and temperature
gradients. We employ a fluld treatment which complements the kinetic
treatment of Ref. 12 but which allows us to solve for the frequencies and
growth or damping rates of the mode analytically. Our conclusions are in
qualitative agreement with the conclusions of Ref. 12. The temperature
gradient acts both to localize and to destabilize the drift wave. For
parameters typlcal of present-day tokamaks, we find the modes to be strong-
ly localized in the vicinity of the mode rational surface, well inside the

ion sound surface. As the shear 1is increased, the modes become less and

less localized and, eventually, for very strong shear the asymptotic
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behavlor of the mode far from the ratlonal surface assumes the outgoing-

wave structure of Pearlsteln and Berk.
The relative stability of the mode results from a competition between

wll and

the destabilizing Influence of the "time dependent thermal force
local resistive energy absorption by the electrons. Thus, the mechanism
for destabilization of the drift mode is the same as that of the tempera-
ture gradient driven milcrotearing mode.14 For paramelters appropriate for
current tokamak discharges (in which there are still typically many modes
with w < Vo ) these drift modes may be unstable. We have, however, not
included finite B corrections which were found to be stabilizing in Ref.
12.

The effect of temperature gradlents on collisional drift waves was

1.1 Thetr analysls was based on Braginskii’s

also studied by Chen et a
fluid equations,16 but they only solved the equations in the stroang shear
limit, Consisteut with our strong shear results, they found that the tem-
perature gradient does not localize the drift mode. However, their
solutions differ from ours in this limit in that VTe had no destabilizing
influeance on the mode. The time dependent thermal force, which is the
source of instability, {s a higher order correction to the thermal force

13 hence, this force did

and is not included in the equations of Braginskii;
not appear in theilr equations.

The fluid theory presented in this paper employs the Braginskii trans-
port equations modifled as described in Ref. 13. The derivation of the
basic equatinns describing the linear drift mode are presented in Section
IT. In Section I[I1 the structure of the drift wave is examined as a func-

tion of magnetic shear, as represented by the dimensionless parameter

S = (H/m)(LT/LS)z(m*T/ve), and perpendicular wavelength, kps’ where M and n




are the fon and electron mass, LS and LT are the shear and temperature
scale lengths, k is the perpendicular wavenumber, pg 18 the ton Larmor
radius based on Tos and w*T = kpsvs/LT is the diamagnetic frequency. The
structure of the mode falls into four basic categories in this shear-
wavelength parameter space (see Fig. 1). Eigenfunctions and eigeuvalues of
the drift wave are calculated analytically in each of these categories. A

sunmary of our results appears ln Section IV where we also discuss the

relevance of the results to present magnetic fusion confinement schenes.




II. EQUATIONS

We consider a plasma slab with inhomogeneous temperature T,(x) and

density n(x), with the inhomogeneity scale lengths being L, and L,

respectively. The plasma slab is immersed in a sheared magnetic field

B = Bo(; + y;/Ls). We take the ions to be cold and assume that magnetic
fluctuations can be neglected (a low B assumption). As mentioned in the
introduction, we employ Braginskii’s fluid equations,16 supplemented by the
higher order corrections obtained in Ref. 13, to describe the plasma dyna-
mics. For electric potential fluctuations z(;,t) = $(K)6Xp[i(ky*nt)],

the linearized fluid equations are:

wn =0, % - k“(au/ne) + k{;ui : (1a)

A‘\

ny, =~/ k G -n-01, (1b)

w+ @M1k G /m) T =w,, b - 2/3) k) k& [, /ne) -Vl (1o

2 .2~ ~

mpS v 1> = - k“ (jn/ﬂe) N (ld)

wrﬁz“i='rkn h+T , (le)
where
oz 1wattaar@p), vz @@ Ean metnlPdY

n 3 .51 mv /nez, pz : M T/esz,
e s
A




T " ’ T =T

<, = 1.61 T/ne’ , a = .71,

o~ -~

and tilldes denote perturbed quantities. The pertucbations B, T, and ¢ are
normalized to n, T, and T/e, respectively, and the operator Vzéaz/sz—kz.
The quantity a’ {3 a numerical coefficlent that appears as factor multiply-

{ng the time dependent thermal force.13 An accurate and reliable value of

17

’

a’ has not yet been computed; for a Lorentz collision model, the value of

4

a’ 1is 105/16, while a varlational calculation18 including electron-electron

collislons with Z = n_/n, = 1 ylelded the value .54. Since the time
dependent thermal force i{s the mechanism responsible for destabilizing the
present mode and because of the wide disparity in the values of a’ just
quoted, we have left the value of a’ unspeclfied.

Equations (1)-(5) represent, respectively, the equation of continuity,
parallel force balance for electrons with the term proportional to m/ve
being the time dependent thermal force, parallel electron heat flow, the
parallel component of the curl of the one fluid momentum equation, and the
parallel one fluid force balance equation. We have defined the parallel
wavenumber k" E kx/LS.

It will be shown later that except for the case of very strong shear,

~

S > LS/Ln), v, , can be neglected in Eqs. (la) and (lc¢) in a self-

hi

consistent manner. This approximation 1is equivalent to discarding the

]
"sound term" of the Pearlstein-Berk equation. Equations (la)-(ld) can then
be reduced to the eigenvalue equation

3% /382 + 1V} = 0, (2)

where




;(w*T/w)s2
D(s) - D(s) ’

. 2 2
sv o py deUxs )

5§ = 1 - w*n/w , xk = 1.07 ,

ND(s) = 1 + (1+K¥Y)sz + Ksa,
& = _ 2 2
S = (wyp/w)s, b = kip .,
Yy = (2/3)(14+a) o ,
and where 8 = [exp(iﬂ/4)](x/AD), with Ap defined by kﬁz AZDD P =Y and

D" = T/(.5lm ve) 13 the parallel electron diffusion coefficient. The
independent parameter s lies approximately along the line exp(-im/4) with
regpect to the real x axis. We will solve the eigenvalue equation along
this rotated axis and verlfy that the asymptotic solution correspoands to
either a bounded or outgolng wave along the real x axis.

Although the expression for the potential V in Eq. (2) appears some-
what complicated, its general structural dependence on s can be readily
discerned. 1n fact, for practical purposes, the true potential can be
replaced by the model potential Vm given by

52 O©up/)

V «b + - 8" . (3)
l+s (1+82)2

The actual potential given in Eq. (2) reduces to this model in the limit «
= 1, vy = 0. In the absence of Wy, this model potential has two turning

polnts (nearly on the real 3 axis for § < 0), one on either side of the




rational surface (s = 0). No solutifon localized between these turning
points exists, however, because the potential {s evanescent between the
turning polnts (V2; = 0 along the real axis). The only possible solution
for War = 0 is a solution which 1Is bounded between this {nner turning point
and the outer sound turning point. In the presence of a temperature
gradient, however, the foregoing potentlal has four turning points, two on

either gside of the rational surface. A localized solution between each of 3

these turning points is now posslible if § has the appropriate sign.
Our general procedure f{n solving Eq. (2) is to assume that LT/Ln ~ :
0(l), and to examine the structure of the potential V as a function of the
parameters 53 and b. [In most magnetized plasma of interest, Lo and Ln are
comparable and, 1in keeping this ratio fixed, we greatly reduce the para- |
meter space and hence the number of possible parametric regions.] When the ?k
shear S i{s very weak, we find that the two turning points on either side of
the rational surface are nearly colncident (Region I of Fig. 1). The
potential well then becowes approximately parabolic near the turning points

and bounded solutions of the resulting Weber equation can be ohbhtained.

These solutions correspond to the bounded solutions obtained analytically
in Ref. 12.

As we move from Region I 'to Reglon II of Fig. 1, the two turning
polnts begin to separate and the inner turning point moves toward s=0. In
this region, the solution of the Alry equation near the outer turnling point
1s matched to the solution of a parabolic cylinder equation in the vicinity
of g = 0. 1In Reglon ITI, the shear S is large; in this case, the potential
1s shallow and a "constant ¢ approximation" can be made to solve the

equation. This constant ¢ solution near s * 1 is matched to au evanescent

solution for s >> 1 which is again localized well within the Lon sound




turning polnt. Filnally, {n the case of very strong shear in Reglon LV of
Fig. 1, the "constant‘3" golutinn for s ~ 1 (s jolned to the Pearlstein-
Berk outgoing wave solutinn. 1In this region, our solution is consistent
with the solutions obtained by Chen et al-15 for drift waves with a

temperature gradient.

The detailed solutions of Eq. (2) are described in the next section.

10




[IT. ANALYTIC SOLUTIONS

As previously discussed, Eq. (2) can be solved in the four regions of
parameter space defined by S and b as shown in Fig. 2. We now examine each
of the reglong 1in detatll.

A. Region I: S << b3/2,1

When the shear 1s very weak (i{.e., as S + 0 ) the mode will tend to
localize itself in a region where the right-hand side of Eq. (2) (s small
go that V(s) « s~ remalns finite. The existence of such a localized mode
requires a second order turning point (3V/3s = 0) . 1In the limit S+ O ,

we therefore obtain the dispersion relation by requiring that the two

turning points, given by solution of the biquadratic equation,
|<(b+<5)s? F [(1+x4y)b + & = ;(w*,r/w)]s: +b=0, (4a)
merge, or
[(4+r)b + 8 = 0@, /)17 = beb(bHS) - (4b)

The lowest order dispersion relation obtained from (4b) is

1/2 .
wo = [w*n + 1.71 w*T](l - 2.07 Clb + .71lia w*T/ve) b1,
w*,r , (»*T
wo o= .28 (1 + .081ia E;—ﬂ b> 1, n_>1,
l1.71 ne 1/2
©: Tvtaa) (5)

11




where the root for b >> 1 has only been glven for Ne »> 1 for simplicity of

expression., The location of the double ruot is given by

s s

si = buz/c1 , b1,
s(?; = (1/.<)1/2 = 0,97 b>> 1, e >»> 1 .  (6)

Note that the exlstence of a double root requires that ne be nonzero
(ne >1 for b >> 1). In the absence of shear, there are no stabilizing
terms in the expression for w in Eq. (5) and so the time dependent thermal
force destabilizes the mode.

When S is finite, the roots will split from the expression given in
Eq. (6) by an amount As corresponding to a shift Aw = ww in the eigen-

value. By expanding V(s) around S _, we obtain the eigenvalue equation

2%/05% + [ 1s=s )220 23 = 0, <7>
S s~ D(s )
o o]
’ where 4
1 {{(l+))b + 6 - ‘;(‘”*I/‘”)]Z - ln<b(b+6)}l/2 <
AS = T o "’Kso(b%) o T e (8) :

The bounded solutions to this equation yield expressions for the shift (n i

the etlgenvalue Wy,

5/2
1

1/2,1/2

(wl/wo) =~ 1.6 ¢ exp(in/4)(S/b ) b1,

/2

(wl/wo) = - 1.6 exp(ln/lo)S1

b>»1, o > 1, (9




poisrcoctoeit e ol
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where, again, for simplicity, we have assumed ne >> 1. Since Im 8y < 0,
shear has a stabilizing influence on the drift wave even though the mode 1is
bounded. This damping arises from electron resisitive dissipation and from
parallel heat conduction. The instability drives a temperature perturba-
tion %e [see Eq. (lc)] which 1is dissipated by parallel diffusion
along 3 and is therefore stabilizing. The overall stability of the mode
results from the stabilizing influence of this local dissipation and the
destabilizing influence of the time dependent thermal force.

The localization of the mode {3 of extent As around Sy° The parabolice
expansion of the potential well around s, therefore requires Ag << s, or

S << b3/2 R h << 1,

S << 1, b>»>1. (10)

We must also check, nf course, that the solution ohtained from Eq. (7)
1s bounded along the real x axis. In Fig. 2 we show the anti-Stokes
(solid) and Stokes (dashed) lines for the potential V with eigenvalues
given in Eqs. (5) and (7). The dashed lines are constant phase lines of

° 1/2
the elkonal exp{i [ ds’ [i V(s")] }

while the solid lines are the con-~
staunt amplitude lines of this elkonals Th~ solution which is evanescent
along the Stokes line emanating from the turning point 8, in Fig. 2 is
evanescent throughout region B to the right of the anti-Stokes lines in
this figure. Since region B includes the real x axis, our solution is also
bounded along this axis.

For the elgenvalues given in Eq. (5), the sound turning point lies on

1/2

the real axls at [x| = Xs(1+b) with X, = w/k;cs, which {s well outside
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of the regfon x ~ AD where this mode L3 localized. The neglect of the

parallel ion dynamics (8 therefore well justified.

2
B. Region II: b3/" <S5 <1

—_——aaT

In the weak shear limit previously discussed, the mode was localized
pl/é

near s_ ~ (for b << 1), the two turning points beilng separated by a

1/2)1/4

distance As ~ (S/b << C As the shear is increased, the turning

b3/2,

polnts separate until S ~ As ~ so. At this point the 1inner turning

point s, is near the origin while the outer turning point is around

1/4 1/6 .
S, " b ~ 'S << l. In Reglon L1 of Fig. 1, we therefore look for a
gsolution with 8, << 8, << 1.

When b << 1, the pogitions of the turning points % and 8, can be

calculated as
52 = [;(w Jw)-81/8«
2 *T ?

sf = b/ (6x s%) . (1)

———y

Defining a new variable p = s/s2 and assuming 8 << 1, we can rewrite Eq. (2)

1% /p% - Qp2=<2) %104 = 0, (12)
where
52 = sllsg << 1,
_ 6
Q= -1 8¢ s5/s . (13)




E
&;

We solve this equation by assuming that Q is a large parameter, and match-
ing the Alry solution of Eq. (12) near p = 1 with the solution of the
parabolic cylinder equation in the region p2 = 82 = 0 through a WKB

region € < p < l. The snlution for @ near p = 1 which 1is decaying for p >

l/3<

1 1s given by $ = AL[(2Q) p-1)1. 19 The wks solution which matches the

p<l behavior of this function 1s given by

3~ stn Q120-p2)372/3 4 w/a) . (14)

Near the origin this solution breaks down but Eq. (12) simplifies to

3% /0% + Qp? <%} =0, (15)

which 1is the parabollc cylinder equation.9 We are actually only interested

2 2
in solutions for which ¢ Ql/ << 1, 1i.e., the inner turning point can bhe

ZQI/Z

entirely neglected. That ¢ fs actually small shall be demonstrated a

posteriori. FEquation (15) now becomes a Bessel equation with the

snlution19

1/2

~ 1/2 2

/21 , (16)

where C {8 Y  for $ even and Jv for 3 odd. The dispersion relation is
then easily obtained by matching the asymptotic solution for ; in Eq. (16)

with the small argument limit of $ in Eq. (l4). We find

1/2

Q

= (n + 1/4)3n/2 , an

15



where n Ls a positive lateger. For n > 0, the solution of this dispersion
relation ylelds a Stokes structure which is similar to that shown in Fig. 2
except that the fnner turning points are close to the origin., For n < 0,
the Stokes structuie [s entirely differeat and our evanescent solution for
p >> 1 does not correpond to an evanescent solution along the real axis.

The disperslon relation in Eq. {(17) can be solved for the eigenvalue, viz.,

1/3

W= W, o+ 1.71%,‘T + (X.Zi/cf)a'(miT/ve) - ¢, exp{(in/6) S Wep

2

2/3 C4/3

) . (18)

e, 3 2.81 (1 4+ 1.7In) (n+ 1/4)
e

4

In the ahsence of the destabilizing influence of the time depeadent thermal

force, the mode is damped at a rate which scales as 81/3. The location of
the turning points can be calculated with the expression for w given in Eq.

S1/6 b1/2/51/6

(18). wWe find Sy ~ ,» while s; ~ « The coandition 81 <KL Sy

then requires

s > v3/2 (19)

which also guarantees that Ele/Z << 1. The assumption $) << 1 along with

the requirement Imw << Rew requires

sK1. (20)

Reglon [I1: 1< 8 < L/L;




When § is very large, the potential V ~ S-—l is weak and the drift wave
is no longer localized in the region s ~ 1, i.e., the shear prevents strong
localization of the mode. However, in Region [IT we can still obtala solu-

tions which are localized within the i{on sound turning point. FEquatlon (2)

1/2

i1s solved in the two regions s << S and s >> § and the solutions are

1/2

matched in the overlap region S < s < S. When s << S, Eq. (2) can be

approximated as

2%/38% -t {4 $P 18 + 0w, s F =0, 21

~

S D(s)

where we have neglected (b+8)/S ~ 572 (to be checked self-consistently).,

Since 5 is large, this equation can be solved iteratively. To lowest

~

order, ¢ ® const. Courrections are obtained by integrating Eq. (21),

/B =1+ 4 'fsiﬁ"—{m( )s"218 + 0w, /w) s"2)
A I s M
=1+ 1(s/§){611 + ;(w*T/w)IZI , (22)

where

I, =/ ds [Hets?1/D(s) = 5.0,

I, = f ds sz/D(s) = 1.2 ,
o

and the second step in (22) is valid for 1 << s <K S. In the ragion Sl/2

<< 8, Eq. (21) simplifies to
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3%5/08% + LI(+8) /516 = 0 , (23)

with the bounded solution

3(s) ~ exp | [(0+8) /5112 exp i/} . (24) :

! Matching the two solutlons in Eqs. (22) and (24), we find the dispersion
relation

a=1/2

el -
/‘-=61"/45

(b+s) ! 51+ 0w, p/o) L, ] (25)

and the corresponding cligenvalue

w

o *n‘ - ~
% w o= e (1= 1 ey/)
b 2
cq F (A.Q/ne)[n ~ 2.4 I:E) , (26) T

which has a real frequency which {s characteristic of the drift wave with-

b out n,e Note also that this mode is always stable. 1In addition to the

3 requirement

y s> 1, (27)

1/2

> 0 so that 3 in Eq. (24) is bounded. With the solution given

[

‘ which was invoked to justify the lteration procedure, we require

[ Re(b+s)

i in Eqs. (25) and (26), this requires Ne 3 b/(1+b) so that this solution {is
|

only possible when N, is nonzero. Finally, we require that the mode be

localized with the {on sound turning point. The scale length of the mode

S
g v Ty
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/2

/2.

1
is os/(b+5) » while the ion sound turning polnt is given by xs(b+6)l

so our solution 1s valid when
S << Xs/ps ~ LS/Ln . (28)

When this inequality is vinlated, we must include the ion gound term in the

outer solution.

Region IV: S > Lg/Ln H

In this strong shear limit the {fon sound term is retained and the

equation for $ in the outer region 1s

%]
[N
[~

i 250, (29)
S

,,_
Q)
wn
[ (&)

x292
s s

The solution of this parabolic cylinder equation with the outgoing wave

boundary condition along the real x axis is

$ =Ua,p) =D___,,, (@ (30)
3
where i
1
p2 =2 82 ADZ/xspS , |
a= (b+6)xS/ths ’ (31)

19

The logarithmic derivative of this

and Da(p) is Whittaker’s fuunction.

solution as s + 0 1is




13
~ 98

Equating this expression to the logarithmic derivative of the solution for

the inner region given in Eq. (23), we obtain the dispersion relation

F(%—+ %] -1 X 1/2 .
1 au T 2 ( ‘a) [611 + o(w*T/w)Iz] . (33)
Y(4+2‘) ps S

wWhen S << (Lq/Ln)’ the solution to this dispersion relation corresponds to
a >> 1 and simply reduces to Eq. (26). The fon sound term i{s not important

in this limit. When this inequality is reversed (Reglon IV »f Fig. 1),
1/2

r(1/4 + a/2) ~ (s Ln/LS) > 1 aud the solution is given by a = - 1/2 or
Wy L e, 1/2 L 1/2
n n 2 n .
w =33t (1 - 1 Tt (-3 (=) 1. (34)

il S L
s

The damping term in Eq. (34) corresponds to the usual convective energy
loss in a sheared magnetic field. The temperature gradient, on the other
hand, simply causes a shift in the real frequency of the wmode in this
strong shear regime. The destabilizing influence of the time dependent

thermal force, though present, {s small in this limit. The dispersion

relation in Eq. (34) corresponds to that given in Ref., 15.




[ILl. SUMMARY AND DISCUSSION

The collisional drift wave in the presence of VTe falls into four
distinct regimes as a function of magnetic shear and the perpendicular

wavelength. These four regions are shown in the S-b phase space in Fig. 1,

2,2
where § = (M/m)(L_./L. )w,./v 18 the dimensionless shear and b = kzp2 {s the
T 7s” ¥ e 1"s

perpendicular wavelength. In Region I, the shear is weak and the wmodes are

strongly locallzed on either side of the rational surface at

X~ + AD = i(w/kﬁzD“)l/z. In Region 11, the shear 1{s somewhat stronger and

the mode penetrates to the ratifonal surface but (s still localized inside

the distance |x| < AD' In Regilon III, the shear is strong enough to

prevent strong localization of the mode within the distance |x| < A but

D’
is sufficiently weak that the mode is still localized well within the ion

sound turning points []x]| > ps(LS/Ln)(1+b)_l/2]

« Finally, when the shear
is very strong, the mode assumes the usual outward propagating structure

characteristic of the drift wave with VTe = 0. In Reglons I and 11, the

real frequency of the mode scales roughly as (w + w*n)/(l+b) and 1s

*T

determined by the electron dynamics In the reglon x ~ A In Reglons III

ne
and IV, the frequency is w = m*n/(l+b) and 1s given by the plasma dynanmics
ouside the electron dissipative region x| >> Ape

The relative stablility of the collisional drift wave results from a
competition between the destabilizing influence of the "time dependent
thermal force" and the stabilizing influences of electron dissipation and
convective energy loss. 1In the limit S$»0, the mode 1s unstable with a
growth rate y ~ wiT/ve. As the shear Increases, electron collisional dis-
sipation and parallel thermal conduction have a stabllizing effect (scaling

1/3

as Sl/2 in Region I and S in Reglon II) and the growth rate of the mode
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decreases. In Reglon ITT, the drift mode is always stable with electron
dissipative effects completely dominating the destabilizing thermoelectric
terms. Finally, in Region 1V, the convectlve energy loss becomes important
and the mode {s agaln stable.

Since the eigenfrequencies of the drift mode have been calculated for

all values of shear and wavelength (under the restrictlion w/\)e << 1), the

i
stability of a given mode for a given set of parameters can be calculated.
It would, however, be useful to obtaln a shear stability criterion which

guarantees stability for all modes kl for a given shear. To do this, we

note that both b = k2

2
1P and § « Wer & k, are functions of the perpendicular

1
wavelength. Thus, by iacreasing kl for a fixed shear and collisionality,
we may trace out a curve in the S-b phase space. The two clasgses of
posslble curves are shown by the dashed lines A and B in Fig. for

1/2 2 >
(M/m) Lp ve/Lq\)e < 1, respectively. For case A, the only possible

unstable modes are those in Region IT. The conditions y > 0 with

S <1 and w/\)oi < 1 yield the constraint

2 =1 2
M LT M LT
(T ~ ~
L ‘m 2) > w/vei > (m 2) ’ (35)
Lg Ly

which can only be satisfied for Ls/LT > (M/m)l/z- Thus, for stability we

require

/2,

~ 1
Ly /Ly < (M/m) (36)

This stability threshold is rather sensitive to the value of a’ and

therefore should only be considered approximate. In Case B, the modes can

be unstable in either Kegion I or Region II. The modes have larger growth
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rate {n Repfon T with b > 1, so that (f the drift wave ls stahle here 1t
will also be stable in the other reglong of Fig. 1. In Region I with b >
l, the conditlon y > 0 with »/ve < 1 and S < | again ylelds the constralat
on w/ve glven {n Eq. (35); so all modes will again be stable when the
inequalfty in Fq. (36) (s satisfied.

~

Relevance to 7okamak Discharpes

We now tarn our atrention to the importance of the VTe—modified

Jrift wares to tokanak discharges. Consider modes with klps = 13 then, the

frequality « > o~ <o o A< v requires Lc/qR < (M/m)llz(a/qR), which
fs dfF renle th gacisf s 1 many tokamak discharges. (Ln 1s the collisional
neta frec o aarhie Thas, drift wave speclalists have tended to regard
toxame¥s s helne oo lHstonless or aearly collisionless, and instabilities
Sach oas tae Jissipative trapped -lectron lnstability or the collisionless

V3 oressnance=dricen Irift wace ire considered to be more {mportant than the
collistonal driit ware. On the other hand, there are still large numbers
of enlliai{nnal modes present even In the highest temperature discharges.
The condition o, < Ve for all modes in a tokamak requires the {nequality

/Z(a/ps\(a/qR), which is far from being satisfied in present

LofaR > Ot/
machines. There ls, at present, no compelling theoretical evidence for
helieving that collisfonal drift waves are more ilmportant than collision-
legss modes or vice versa.

Denglty fluctuations have been experimentally measured in a varlety of
tokamak dlscharges by a number of dlfferent techniques including microwave,
COZ’ and far infra-red scattering, and probes. The spectra are character-

istically peaked at the longest measurable wavelengths (lowest frequency)

while the fluctuationns are peaked at a minor radius re s a/2+ 1In Table I,




-
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we summdarize the data Hf some published measurements of density
fluctnationg {n tokamaks. The first five columns list, respectively, the
tokamak on which the measurements were made, the position (minor radius) of
the fluctuation measurements, the local temperature, the local density, and
the local Zeff' as reported by the authors. In instances where only peak
(r=0) expressions for T, and n, were reported, we approximated Te(rs) =
T,(0)/2 and ne(rs) * .75 ne(O)- Tn the sixth column, we have tahulated

the 90° electron-1ion scattering collision frequency, v as computed from

el’
the local plasma parameters. Finally in the last column {s the spectral

half width, w.

= 2nf, , of the observed fluctuations, where f is the
hm hm hn

frequency at which S(w) falls approximately to half of 1ts peak value.

Note that whm % vei for all the reported measurements. It should, however,
be emphasized that the PLT data reported in Ref. 4 was taken before neutral
beam heating was undertaken and that this data may therefore not be repre-
sentative of present PLT operation. Nevertheless, Tahle I indicates that
cnllisional modes are quite likely to be more important in present-day
tokamaks than has been previously believed.

The observation of collistonal modes In tokamaks does not guarantee
that the fluctuations are destahllized by the mechanism reported in this
paper. The shear stabilization condition reported in this paper, [Eq.
(36)], 1s not well sattsiied in present tokamak discharges so that insta-
bility is probable within the limitations of the present model. However,
finite 8 effects were found to have a stabilizing effect on this mode in
previous numerical computations.12 The effect of finite B on the present
fluid description of this instability 1is not yet determined.

Perhaps the most important conclusion of this work {s that the temper-

ature gradient strongly modifies the structure of collisional drift modes.
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Collisional modes in present tokamak discharges would fall along curve A In

Regions IT or IIL of Fig. | so that the modes would be localized and the
convective loss of wave energy not important. This conclusion may elimi-
nate the original motivatlion for studying the effect of toroidal coupling
on collis{onal drift waves, i.e., to nullify the convective loss of wave
energy by coupling adjacent polnidal modes. However, the existence of a
new unstable branch ol the collistional drift wave in a VTe ¥ 0 plasma,

analogous to the "toroidicity-induced" branch for VTe = 0 plasmas,20 can

not he discounted.
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FIGURE CAPTIONS

The four regimes of the VTe-modified drift wave as shown in the

2
p

~—

2 2
S-b phase space, where § = (WLn/mLS)(w*T/Ve) and b = k

w

represent the magnetic shear strength and perpendicular

wavelength, respectively.

Anti-Stokes {snlid) and Stokes (dashed) structure for the

VTe-modiftud drift wave. The ion sound turning points fall

outside the domain of the plot.
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