
PrAD-AO93 639 MARYLAND UNIV COLLEGE PARK DEPT OF PHYSICS AND ASTRONO 7y 0/9ICOLLISIONAL DRIFT WAVES IN A PLASMA WITH ELECTRO TEPERATURE 1--ETCUISEP 80 J F DRAKE, A B HASSA DE-AC05-79ET-53014 JlUMlNCLAKqIFIFn PM~R1ln

I mn..n..nNuni



Pl~asma Preprinit PL 181-008

ALEVFIEV

- COLLISIONAL DRIFT WAVES IN A PLASMA'

wITH EIECTRON TEV4PERATURE INHOMOGNEITY.

-J. F.j cake and A. B. Hassam

Q1_1 Physics Publication Number 81-05P . ,

L // -_7 ",
'/ September 1, 1980

Contract, DE-kCO 5-79ET-53044,..,
Departmen:fL-io Tnrgy"

Approved for public rejeag
_ _D rIbution Unilmited

UNIVERSITY OF MARYLAND

DEPARTMENT OF PHYSICS AND ASTRONOMY
COLLEGE PARK, MARYLAND

280i8011 17 131



Erratum

Columun 6 in Table I should be

v e Mz

.8

.6

1.4

1.0

1.3

.7



Aecr'ion 7or

COLLIS[ONAL ORIFT WAVES [N A PLASMA 14TIS c-A
DTIC A'A

WITH ELECTRON TEMPERATURE INHOMOGENEITY

J. F. Drake and A. B. Hassam

Department of Physics and Astronomy, -

University of Maryland,"-
College Park, Maryland 20742

ABSTRACT

A fluid theory of collisional electrostatic drift waves in a

plasma slab with magnetic shear is presented. Both electron

temperature and density gradients are included. The equations are

solved analytically tn all relevant regions of the parameter space

defined by the magnetic shear strength and the perpendicular

wavelength and explicit expressions For the growth rates are given.

For shear 3trengths appropriate for present-day tokamak discharges

the temperature gradient produces potential wells which localize the

mode in the electron resistive region, well inside the ion sound

turning points. Mode stability arises from a competition between the

destabilizing influence of the time dependent thermal force and the

stabilizing influence of electron energy dissipation. Convective

energy loss is not important for shear parameters of present-day

fusion devices.
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I INTRODUCr[ON

Low frequency density fluctuations have been observed in a wide 'ari-

ety of magnetic confinement systerm including tokamaks, stellarators, and

multipoles. 1- 7 Such fluctuations are important since they may enhance the

crossfield particle .r energy transport. The anomaly in the crossfield

thermal transport coefficient has been most extensively documented in

tokamak discharges although no causal relationship with the density

fluctuations has been established.
8

It is widely accepted that the observed density fluctuations ari3e

from drift instabilities driven by t.e expansion-free energy associated

with pressure gradients in confined plasmas. Extensive theoretical inves-

tigations of drift wave stability have been undertaken. In particular, the

influence of magnetic ,hear .n drift waves has been the subject of substan-

tial controversy for nearly a decade. Pearlstein and Berk found that shear

caused an outward convection of wave energy away from the mode rational

surface (t.B = 0) and they argued that drift wave stability resulted from a

competition between this outward convection of energy and the release of

9
expansion-free energy near the rational surface. Later numerical and

analytic calculations, while verifying the outgoing wave character of drift

waves, demonstrated that pressure driven drift waves are always stable in a

sheared magnetic field in slab geometry.
10

The majority of investLgationn of drift wave stability have allowed

gradients in the ambient density but not in the electron temperature. The

dominant motivation for the study of drift waves, however, is the experi-

mentally measured anomaly in the crossfield thermal conductivity of

electrons in tokamak discharges; in these discharges, the temperature
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gradient typically exceeds the density graalent. Thus, the inclusion )f a

temperature gradient in studies of drift wave stability is of critical

importance. In fact, in recent numerical calculations, the temperature

gradient was found to alter the entire structure of the mode.1 1' 12 It was

found that the drift wave no longer had the character of an outward propa-

gating wave but remained localized in the vicinity of the mode rational

surface, well within the "ion sound turning points." 9 The outward convec-

tion of the wave energy therefore does not have a stabilizing influence on

the mode if a temperature gradient is present. This localization by the

temperature gradient appears both in the presence or absence of electron-

ion collisions, Ve. In the coLlistonless limit I the mode remains stable

even when the convective energy loss can be neglected because )f Landau

absorption of wave energy by electrons in the vicinity of the rational sur-

face. In the collisional limit, w < v , on the other hand, the wave can be

destabilized by the temperature gradient if the velocity dependence of

electron-ion collisions is taken into account.
12

In the present paper we investigate the structure of collisional drift

waves in a sheared magnetic field with both density and temperature

gradients. We employ a fluid treatment which complements the kinetic

treatment of Ref. 12 but which allows us to solve for the frequencies and

growth or damping rates of the mode analytically. Our conclusions are in

qualitative agreement with the conclusions of Ref. 12. The temperature

gradient acts both to localize and to destabilize the drift wave. For

parameters typical of present-day tokamaks, we find the modes to be strong-

ly localized in the vicinity of the mode rational surface, well inside the

ion sound surface. As the shear is increased, the modes become less and

less localized and, eventually, for very strong shear the asymptotic
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behavior of the mode far from the rational surface assumes the outgoing-

wave stroicture of Pearlste n and Perk.

The relative stabiLity of the mode results from a competition between

the destabilizing influence of the "time dependent thermal force"13 and

local resistive energy absorption by the electrons. Thus, the mechanism

for destabilization of the drift mode is the same as that of the tempera-

ture gradient driven microtearing mode.1 4  For parameters appropriate for

current tokamak discharges (in which there are still typically many modes

with w < v ) these drift modes may be unstable. We have, however, note

included finite corrections which were found to be stabilizing in Ref.

12.

The effect of temperature gradients on collisional drift waves was

also studied by Chen et al. [5 Their analysis was based on Braginskii's

fluid equations,16 but they only solved the equations in the strong shear

limit. Consisteat with our strong shear results, they found that the tem-

perature gradient does not localize the drift mode. However, their

solutions differ from ours in this limit in that 7 Te had no destabilizing

influence on the mode. The time dependent thermal force, which is the

source of instability, is a higher order correction to the thermal force

and is not included in the equations of Braginskii; 13 hence, this force did

not appear in their equations.

The fluid theory presented in this paper employs the Braginskit trans-

port equations modified as described in Ref. 13. The derivation of the

basic equations describing the linear drift mode are presented in Section

II. In Section II the structure of the drift wave is examined as a func-

tion of magnetic shear, as represented by the dimensionless parameter

S - (tH/m)(LT/Ls)2 (W*T/Ve), and perpendicular wavelength, kPs , where M and m
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are the ion and electron mass, Ls and LT are the shear and temperature

scale lengths, k is the perpendicular wavenumber, ps is the ton Larmor

radius based on Te, and p*T ksv s/LT is the diamagnetic frequency. The

structure of the mode falls into four basic categories in this shear-

wavelength parameter space (see Fig. 1). Eigenfunctions and eigenvalues of

the drift wave are calculated analytically in each of these categories. A

summary of our results appears in Section IV where we also discuss the

relevance of the results to present magnetic fusion confinement schemes.
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1I. EQUATIONS

We consider a plasma slab with inhomogeneous temperature Te (x) and

density n(x), with the inhomogeneity scale lengths being Ln and LT,

respectively. The plasma slab is immersed in a sheared magnetic field

B B (z + yx/L). We take the ions to be cold and assume that magnetic

fluctuations can be neglected (a low a assumption). As mentioned in the

introduction, we employ Braginskiifs fluid equations, 16 supplemented by the

higher order corrections obtained in Ref. 13, to describe the plasma dyna-

mics. For electric potential fluctuations (Xt) =(x)exp[i(ky-wt)],

the linearized fluid equations are:

= W*n - k1 (j/e) + k11 -V11  (1a)

n = -i(T/e) kl (4 - n - a T) , (ib)

(w + (2/3)1 k11 (K l/n)) k [(, - (2/3)(i+) kl [(Ji/ne) - vi, (Ic)

2 9
P 8 V - . (, /he) (id)

W?4 = T k (n + T) , (le)

where

(4-3)(2r"1/2Ln n 4 1/2 3/2

a + L + i a'(/v) , v (4/3)(2) ATe e

2 2 2 2m.51 9e e ps M T/eB,

jt
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2

K 1.61 T/he , a - .71

and tildes denote perturbed qiantittes. The perturbations a, T, and are

normalized to n, T, and T/e, respectively, and the operator V 2,2 /x2-k2.

The quantity a' is a numerical coefficient that appears as factor multiply-

ing the time dependent thermal force.13  An accurate and reliable value of

o' has not yet been computed; for a Lorentz collision model, 17 the value of

aI is 105/16, while a variational calculation 18 including electron-electron

collisions with Z = ne/ni = I yielded the value .54. Since the time

dependent thermal force is the mechanism responsible for destabilizing the

present mode and because of the wide disparity in the values of a' just

quoted, we have left the jalue of a' unspecified.

Equations (1)-(5) represent, respectively, the equation of continuity,

parallel force balance for electrons with the term proportional to w/ve

being the time dependent thermal force, parallel electron heat flow, the

parallel component of the curl of the one fluid momentum equation, and the

parallel one fluid force balance equation. We have defined the parallel

wavenumber k - kx/L

It will be shown later that except for the case of very strong shear,

(S >> Ls/Ln), vH, can be neglected in Eqs. (la) and (1c) in a self-

consistent manner. This approximation is equivalent to discardig the

"sound term" of the Pearlstein-Berk equation. Equations (la)-(ld) can then

be reduced to the eigenva]ue equation

2- 2 (2
a2 /as + iv 0 ,(2)

where I



2 2 2
b+ s (l+iCs ) a (W *T/W)s

)(s) D(s)

W -- , / , K = 1.07

2 4,

D(s) I + (14-+y)s + KS

b 2 P2
S (W*T/W)S, b - s

y (2/3)(l14a) a

and where s = [exp(is/ 4 )](x/AD), with AD defined by k1'
2 A 2DD =w, and

D = T/(.51m v ) is the parallel electron diffusion coefficient. TheII e

independent parameter s lies approximately along the line exp(-iT/4) with

respect to the real x axis. We will solve the eigenvalue equation along

this rotated axis and verify that the asymptotic solution corresponds to

either a bounded or outgoing wave along the real x axis.

Although the expression for the potential V in Eq. (2) appears some-

what complicated, its general structural dependence on s can be readily

discerned. In fact, for practical purposes, the true potential can be

replaced by the model potential Vm given by

s 2 a(w h/°)2

V( )b2+ s (3)I+s 2  (1+ )

The actual potential given in Eq. (2) reduces to this model in the limit K

= 1, y - 0. In the absence of w*T, this model potential has two turning

points (nearly on the real s axis for 6 < 0), one on either side of the
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rational surface (s 0). No solution localized between these tirning

points exists, however, because the potential is evanescent between the

2-=
turning points (V 0 along the real axis). The only possible solution

for w *T = 0 is a solution which is bounded between this inner turiifng point

and the outer 3ound turning point. In the presence of a temperature

gradient, however, the foregoing potential has four turning points, two oo

either side of the rational surface. A localized solution between each .f

these turning points is now possible if 6 has the appropriate sign.

Our general procedure in solving Eq. (2) is to assume that LT/Ln

O(I), and to examine the structire of the potential V as a function of the

parameters S and b. [In most magnetized plasma of interest, LT and La are

comparable and, in keeping this ratio fixed, we greatly reduce the para-

meter space and hence the number of possible parametric regions.] When the

shear S is very weak, we find that the two turning points on either side of

the rational surface are nearly coincident (Region I of Fig. I). The

potential well then becomes approximately parabolic near the turning points

and bounded solutions of the resulting Weber equation can be obtained.

These solutions correspond to the bounded solutions obtained analytically

in Ref. 12.

,s we move fromn Region I 'to Region II of Fig. 1, the two turning

points begin to separate and the inner turning point moves toward s=0. In

this region, the solution of the Airy equation near the outer turning point

is matched to the solution of a parabolic cylinder equation in the vicinity

of s = 0. In Region I1, the shear S is large; in this case, the potential

is shallow and a "constant approximation" can be made to solve the

equation. This constant solution near s 'm 1 is matched to au evanescent

solution for s >> I which is again localized well within the ion sound



10

turning point. Finally, In the case of very strong shear in Region IV of

Fig. 1, the "constant " solution for s 1 is joined to the Pearlstein-

Berk outgoing wave solution. In this region, our solution is consistent

with the solutions obtained by Chen et al.15 for drift waves with a

temperature gradient.

The detailed solutions of Eq. (2) are described in the next section.

I
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[it. ANALYTIC SOLUTIONS

As previously discussed, Eq. (?) can be solved in the four regions oF

parameter space defined by S and b as shown in Fig. 2. We now examine each

of the regions in detail.

A. Region I: S << b3/2,

When the shear is very weak (i.e., as S - 0 ) the mode wiLl tend to

localize itself in a region where the right-hand side of Eq. (2) is small

so that V(s) - S - I remains finite. The existence of such a localized mode

requires a second order turning point (aV/as = 0) . In the limit S + 0

we therefore obtain the dispersion relation by requiring that the two

turning points, given by solution of the biquadratic equation,

ic(b+6 )s 4 +- [(l+<+y)b + 6 - o(w T/)]s2 + b = 0 (4a)

tt

merge, or

[(1++y)b + 6 - a(,/W)]2 = 4eb(b+) • (4 b)

The lowest order dispersion relation obtained from (4b) is

o= [(W*n + 1.71 wT](l - 2.07 cbl 1 / 2 + .71ia' ,T/V e ) b << I

W*T *T
= .28 (I + .08ia" b b >> 1, > > 1,

e

1.71 ri 1/2c e)(5)
(I + 1.71 (

e
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where the root for b >> I has only been ;tvea for n e >> I for simplicity of

expression. The location of the double root is given by

2 b1/2 b << I

S o

0
s2 (11K) 1/2 0.97 b >> 1 q >> 1 . (6)

Note that the existence of a double root requires that n be nonzeroe

(ne > I for b >> 1). In the absence of shear, there are no stabilizing

terms in the expression for w in Eq. (5) and so the time dependent thermal

force destabilizes the mode.

When S is finite, the roots will split from the expression given in

Eq. (6) by an amount As corresponding to a shift Aw = w- ° in the eigen-

value. By expanding V(s) around So, we obtain the eigenvalue equation

2-~ 2 41b i 2_ 21

4bas + D J Is-S ) -(As) = 0 (7)25 s2 + sS2 D(So 
l s - 0

0 0

where

L{[(l++y)b + 6 - /W)]2 -4,b(b+6)} I / 2

As - (8)

The bounded solutions to this equation yield expressions for the shift in

the eigenvalue wf,

/O= 1.6 c5/2 exp(il/4)(S/bl/2)i/2 b << ,

(W = - 1.6 exp(it/4)S 1/ 2 b >> 1 , e > > 1 (9)
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where, again, for simplicity, we have assumed n >> I. Since Im ji < 0,

shear has a stabilizing influence on the drift wave even though the mode is

bounded. This damping arises from electron resisitive dissipation and from

parallel heat conduction. The instability drives a temperature perturba-

tion T [see Eq. (Ic)] which is dissipated by parallel diffusione
+

along B and is therefore stabilizing. The overall stability of the mode

results from the stabilizing influence of this local dissipation and the

destabilizing influence of tHe time dependent thermal force.

The localization of the mode is of extent As around so • The parabolic

expansion of the potential well around s therefore requires As << S or

S << b 3 / 2 
, b << 1

S << I, b >> I. (10)

We must also check, of course, that the solution obtained from Eq. (7)

is bounded along the real x axis. In Fig. 2 we show the anti-Stokes

(solid) and Stokes (dashed) lines for the potential V with eigenvalues

given in Eqs. (5) and (7). The dashed lines are constant phase lines of

the e[konal expli f ds" [i V(s')]I / 2 1 while the solid lines are the con-

statt amplitnde lines of this eikonal. Th solution which is evanescent

along the Stokes line emanating from the turning point s2 in Fig. 2 is

evanescent throughout region B to the right of the anti-Stokes lines in

this figure. Since region B includes the real x axis, our solution is also

bounded along this axis.

For the eigenvalues given in Eq. (5), the sound turning point lies on

the real axis at xi - x s(1+b)1/2 with x = w/k'c ,, which is well outsides s
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of the region x A where this mode is localized. The neglect of the

parallel ton dynamics is therefore well justified.

B. Region II: b 3 / 2 < S < I

In the weak shear limit previously discussed, the mode was localized
1l/4

near s b (for b << 1), the two turning points being separated by a

distance As - (S/b1/2) 1 / 4 << s a As the shear is increased, the turning

points separate until S - b 3 /2 , As -s . At this point the inner turning

point s1 is near the origin while the outer turning point is around

s2 - b1/4 _ S1/6 << 1. In Region 11 of Fig. 1, we therefore look for a

solution with s << s2 << 1.

When b << 1, the positions of the turning points s, and s2 can be

calculated as

2
s2 = [a( ,T /W)- 6 1 / 6 < ,

2 2s= b/(6K s 2  (11)

Defining a new variable p - s/s 2 and assuming s << 1, we can rewrite Eq. (2)

2- 2 2 2 2_-=,(2a 2/ap - Q(p -C )(p -1); = (12)

where

2 s 2/S2 << l
1 (

Q -i 6K s 6/S •(13)
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We solve this equqtion by assuming that Q is a large parameter, and match-

ing the Airy solution of Eq. (12) near p 1 with the solution of the

2 2
parabolic cylinder equation in the region p C 0 through a WKB

region e < p < 1. The solution for near p 1 which is decaying for p >

1 is given by * = Ai[(2Q)'/ 3 (p-1)]. 19 The KB solution which matches the

p<l behavior of this function is given by

sin [Q1/ 2 (1-p2) 3 / 2 /3 + ir/41 • (14)

Near the origin this solution breaks down but Eq. (12) simplifies to

a2 0 2 + Q(p 2)i = 0, (15)

which is the parabolic cylinder equation. We are actually only interested

in solutions for which 2Q1/2 << I, i.e., the inner turning point can he

entirely neglected. That c 2Q is actually small shall be demonstrated a

posteriori. Equation (15) now becomes a Bessel equation with the

solution'
9

S= p 1Q 1/2p2/21 (16)

where C V is Y for even and J for ; odd. The dispersion relation is

then easily obtained by matching the asymptotic solution for * in Eq. (16)

with the small argument limit of 0 in Eq. (14). We Find

Q1/2 . (n + 1/4)3ii/2 , (17)
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where ii is a posittvo integer. For n > 0, the solution of this dispersion

relation yields a Stokes structure which is similar to that shown in Fig. 2

except that the tnier turning points are close to the origin. For n < 0,

the Stokes structure is entirely different and our evanescent solution for

p >> I does not correpond to ani evanescent solution along the real axis.

The disperston relation in Fq. (17) can be solved for the eigenvalue, viz.,

- W~n + 1,71.AT + 01.2i/c2)a (w *T/V) - c2 exp(in/6) S 1/ 3WT

2.81 (1 + 1.71n e ) (n + 1/4) 2/3 c . (18)
e I

In the absence 3f the destabilizing influence of the time dependent thermal

Force, the mode is damped at a rate which scales as SI/3. The location of

the turaing points an be calculated with the expression for o given in Eq.

(18). We find s2 S I  while sI  b1/ 2/S 1 / 6. The condition sl < 2

then requires

S > b3 / 2
, (19)

which also guarantees that z2Q/2 << I. The assumption s2 << 1 along with

the requirement Imw << Rew requires

S << . (20)

Region [III: I < S << Ls/LT



When S is vry large, the potentidl V - S- I is weak and the drift wave

is no longer localized in the region s i, i.e., the shear prevents strong

localization of the mode. However, In Region [E we can still obtain solu-

tions which are localized within the ion sound turning point. Equation (2)

is solved in the two regions s << S and s >> S1/2 and the solutions are

matched in the overlap region S1/2 < s < S. Wthen s << S, Eq. (2) can be

approximated as

V2 s Z/2 I [1+(ic+y)s 2 l1 + (, T/2 = 0 , (21)

S D(s)

where we have neglected (b+6)/S - S (to be checked self-consistently).

Since S is large, this equation can be solved iteratively. To lowest

f)rder, " const. Corrections are obtained by integrating Eq. (21),

s f s f ? ds"

S(s)/o(o) D(s") [l+(K+y)s"-]6 + o(*r/W)s

I + (s/S) 16I + o(O*r/w)i 2 l , (22)

where

I, f [ ds [1+(K+y)s2]/D(s) = 5.0

0

1.2 - ds s2/D(s) = 1.2
0

and the second step in (22) is valid for 1 << s << S. In the raglin S1 /2

<< s, Eq. (21) simplifies to

i .. ... .. .,r .... ... .... .. ,, .... ....... .. .
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a2-3 s2 + iI(b+5)/sl$ b (23)

with the bounded solution

i(s) - exp f/[(b+2)/S12 exp (37i/4) . (24)

Matching the two solutions in Eqs. (22) and (24), we find the dispersion

relation

(b+S)1/2 = e-l /4 [-S/2 [ + o(WT/W)12] (25)

and the corresponding Ligenvalue

W*n

I+b - c 3 1s)

c 3  (4.4/he)Ie - 2.4 ) 2 
, (26)

which has a real frequency which is characteristic of the drift wave with-

out ne . Note also that this mode is always stable. In addition to the

requirement

S >> 1 , (27)

which was invoked to Ju3tify the iteration procedure, we require

Re(b+15) >/2 0 so that * in Eq. (24) is bounded. With the solution given

in Eqs. (25) and (26), this requires n > b/(1+b) so that this solution is

only possible when n e is nonzero. Finally, we require that the mode be

localized with the ton sound turning point. The scale length of the mode
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is p /(b+S) 1/
2 , while the ton sound turning point is given by xs(b+6) 1/2

so our solution is valid when

S << x s/p s  L s/L n (28)

When this Inequality is violated, we must include the ion sound term in the

outer solution.

Region IV: S > L /L.

In this strong shear limit the ion sound tern is retained and the

equation for in the outer region is

L2_ b+S AD4 21 (29)[-- i --- 2 2 1< (9

as S x p

T7he solution of this parabolic cylinder equation with the outgoing wave

boundary condition along the real x axis is

= U(ap) - D_a-1 / 2 (p) (30)

where

p 2 = 2 s2 AD2/XsPs

a (b+6)x/21ps , (31)

and Da(p) is Whittaker's function.1 9 The logarithmic derivative of this

solution as s + 0 is
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2 r~ii

AD 1/2 r(-
2 -_ _ (32)

as =0

Equating this expression to the logarithmic derivative of the solution for

the inner region given in Eq. (23) , we obtain the dispersion relatLon

3 a 
1/2r(-+ -) -i

-2 s:J2 + o(wT/w) (33)
r(4 + 1-) PsSS

When S << (Ls/Ln) , the solution to this dispersion relation corresponds to

a >> I and simply reduces to Eq. (26). The ion sound term is not important

in this limit. When this inequality is reversed (Region IV 'f Fig. 1),

r(1/4 + a/2) - (S L n/L s) 1/2>> I and the solution is given by a - /2 or

w*n Ln  4c2 1/2 L 1/2
w ~ [I_] + (34

b S

The damping term in Eq. (34) corresponds to the usual convective energy

loss in a sheared magnetic field. The temperature gradient, on the other

hand, simply causes a shift in the real frequency of the mode in this

strong shear regime. The destabilizing influence of the time dependent

thermal force, though present, is small in this limit. The dispersion

relation in Eq. (34) corresponds to that given in Ref. 15.
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[If. SUMMARY AND DISCUSSiON

The collisional drift wave in the presence of VT falls into foure

distinct regimes as a function of magnetic shear and the perpendicular

wavelength. These four regions are shown in the S-b phase space in Fig. I,
=(M/m) ( 2 /v is the dimensionless shear and b = k s  the

where- (/mkLTLs I!s

perpendicular wavelength. In Region I, the shear is weak and the modes ire

strongly localized on either side of the rational surface at

= 2 )/2
x - + A, +(w/k • In Region II, the shear is somewhat stronger and

the mode penetrates to the rational surface but is still localized inside

the distance lxi < A D .  In Region III, the shear is strong enough to

prevent strong localization of the mode within the distance lx < AD, but

is sufficiently weak that the mode is stili localized well within the ion

sound turning points [lxi p C I(+b)- 1/21. Finally, when the shearsoun tuningpoits [xl < P s(L si/Ln)(l

is very strong, the mode assumes the usual outward propagating structure

characteristic of the drift wave with VT = 0. In Regions I and II, the

real frequency of the mode scales roughly as (w + W n)/(l+b) and is

determined by the electron dynamics In the region x AD .  In Regions III

and IV, the frequency is w = -o*,n/(l+b) and is given by the plasma dynamics

ouside the electron dissipative region lxj >> AD.

The relative stability of the collisional drift wave results from a

competition between the destabilizing influence of the "time dependent

thermal force" and the stabilizing influences of electron dissipation and

convective energy loss. In the limit S+0, the mode is unstable with a
2

growth rate y - w2T/V. As the shear increases, electron collisional dis-

sipation and parallel thermal conduction have a stabilizing effect (scaling

as S1/2 in Region I and S1/ in Region II) and the growth rate of the mode
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,e teases. In Region Ill, the drift mode is always stable with electron

dissipative effects completely dominating the destabilizing thermoelectric

terms. Finally, in Region IV, the convective energy loss becomes important

and the mode is again stable.

Since the elgenfrequencies of the drift mode have been calculated for

all values of shear and wavelength (under the restriction W/Vei < < 1), the

stability of a given mode for a given set of parameters can be calculated.

It would, however, be useful to obtain a shear stability criterion which

guarantees stability [or all modes k1 for a given shear. To do this, we

note that both b - k2 P2 and S , wTc k± are functions of the perpendicular

wavelength. Thus, by iacreasing ki for a fixed shear and collisionality,

we may trace out a curve in the S-b phase space. The two classes of

possible curves are shown by the dashed lines A and B in Fig. I for

1/2 2 >
(M/m) LT ve/LsV e < 1, respectively. For case A, the only possible

unstable modes are those in Region IT. The conditions y > 0 with

S < 1 and w/ve < 1 yield the constraint

e/

s 5

which can only be satisfied for Ls/L T > (/m) Thus, or stability we

require

Ls/U T L (M/m)/2.36)

This stability thireshold is rather sensitive to the value of a' and

therefore should only be considered approximate. In Case B, the modes can

be unstable in either Region I or Region II. The modes have larger growth
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rat., In Ro,:Oon I with b -> , so that If the drift wave is stahle here it

wiLL also be stable In tl,, other regions of Fig. 1. In Region I with b >

1, the conditLIon 0 with J/'e < I and S < 1 again yields the constralat
e

on w / given in Eq. (39); so all modes will again be stable when theC

inequality in Eq. (36) is satisfied.

Relevance to T kamik Dl 'ha res

We now t ir oir itvpntfin to the importance of the VT -modified
e

drift w i.' to t ,l'ar-Lik dIscIirges. Consider modes with kip s = 1; then, the

1/2
< V requires L /qR < (M/m) (a/qR), which

iW' <,nIt m-, , f ' aov tn'kamak discharges. (L, is the collisional

nel t ' it !,,1u,;, ir"ft wave speciAlists have tended to regard

t 'ka ' , I-; "! , li l, r nearly collisionless, and instabilities

+i*-' m* i -: I , .'e trapped ,Lectroa instability or the collisionless

23,5 r,1,l<,- !rt;.e JrIft wa:e ire considered to be more important than the

colliit nal Ari[t w o e. ;)n rue other hand, there are still large numbers

of cl 14 - onal modes present even In the highest temperature discharges.

Vie coadition , < e for all modes in a tokamak requires the inequality

1/2
T /qR > (M/m) (a/p )(a/qR), which is far from being satisfied in present

machines. There L-, at present, no compelling theoretical evidence for

believing that cotlia[onal drift waves are more important than collision-

less modes or vice versa.

Density fluctuations have been experimentally measured in a variety of

tokamak discharges by a number of different techniques including microwave,

rO2, and far infra-red scattering, and probes. The spectra are character-

istically peaked at the longest measurable wavelengths (lowest frequency)

while the fluctuations are peaked at a minor radius r - a/2. In Table I,

•~ >X
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we ,umnirtI.e the d ti )r -3ome pub i hied measurements of density

f luitLiat fis iL rkamaks. The first five columns list, respecttiely, the

tokamak on which the measuirements were made, the position (minor radius) of

the fluctUation measurement.5, the local temperature, the local density, and

the local Zero, as reported by the authors. In instances where only peak

(r-0) expressions For Te and ne were reported, we approximated T e(r s ) =

T e(0)/2 and n (r ) .75 n (0). Tn the sixth column, we have tabulatedee s C

the 900 electron-ion scattering collision frequency, v ei' as computed froin

the local plasma parameters. Finally in the last column is the spectral

half width, wm ' 21Tfh II, of the observed fluctuations, where fhm is the

frequency at which S(o) fills approximately to half of its peak value.

Note that wh < ei for all the reported measurements. It should, iowever,

be emphasized that the PLT data reported in Ref. 4 was taken before neutral

beam heating was undertaken and that this data may therefore not be repre-

sentative of present PLT operation. Nevertheless, Table I indicates that

collisional modes are quite likely to be more important in present-day

tokamaks than has been previously believed.

The observation ,)f collisional modes in tokamaks does not guarantee

that the fluct,|atLons are destabilized by the mechanism reported in this

paper. The shear stabilization condition reported in this paper, [Eq.

(36)], is not well sat-itied in present tokamak discharges so that insta-

bility is probable within the limitations of the present model. However,

finite 3 effects were found to have a stabilizing effect on this mode in

prevLous numerical computations.12 The effect of finite 0 on the present

fluid description of this instability is not yet determined.

Perhaps the moit important conclusion of this work is that the temper-

ature gradient strongly modifies the structure of collisional drift modes.
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Collisional modes ia present tokamak discharges would fall along curve A In

Regions I or III of Fig. I so that the modes would be localized and the

convective loss of wave energy not important. This conclusion may elimi-

nate the original motivation for studying the effect of toroidal coupling

on collisional drift waves, i.e., to nullify the convective loss of wave

energy by coupling adjacent poloidal modes. However, the existence of a

new unstable branch of the collisional drift wave in a VT e 0 plasma,

analogo-is to the "toroidicity-induced" branch for VT e 0 plasmas,20 can
e

not be discounted.
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FIGURE CAPTIONS

Fig. 1. The four regines of the VT -modified drift wave as shown in thee

S-b phase space, where S = ("l2 /mL 2)( W /v ) and b = k 2 p 2
n s *T~ e L s

represent the magnetic shear strength and perpendicular

wavelength, respectively.

Fig. 2. Anti-Stokes (solid) and Stokes (dashed) structure for the

VT -modlfied drift wave. The ion sound turning points fall
e

out Idf the domain (if the plot.
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