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ABSTRACT
s
This note calls attention to a difficulty which arises frequently in
the application of stress-strength methods in reliability theory. This

difficulty has led to unanticipated catastrophic failures in a number of

applications../
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SIGNIFICANCE AND EXPLANATION

Stress-strength models in reliability theory are highly sensitive to

small perturbations in the extreme tails. Failure to take this into

account has resulted in conclusions which differed substantially from

subsequent experience. This note points out the sensitivity to model

assumptions and indicates the difficulty in verifying these assumptions

experimentally.

The responsibility for the wording and views expressed in this
devcriptive summary lies with MRC, and not with the authors of this report
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A NOTE ON A DIFFICULTY INHERENT IN ESTIMATING RELIABILITY

FROM STRESS-STRENGTH RELATIONSHIPS

Bernard Harris and Andrew P. Soms

Introduction. Let X and Y be independent random variables with cu ulati. e
distribution functions Fx(x) and GY(y) respectively. The objective is o

estimate

R = P{Y<X]. %

This problem arises in the following physical context. Suppose tnat 7
is the strength of a component which is subjected to a stress Y. Tnen th«
component fails whenever X < Y and does not fail when Y < X. For purpcses of
this exposicion, it suffices to assume that X and Y are contiruous
random variables with probability density functions fx(x) and gy(y).

It is easily established that
R = Ey{6,(X)} 2
and in many of the references given below, specific parametric rodels are

employed, such as assuming that Fx(x) and GY(y) are both norially distrit -z,

In this case

NN

R = o(2Y). (%)
oo to
y
The purpose of this note is to examine the consequences of such para  *ic

assumptions.

Sponsored by the United States Army under Contract MNo. DAAG29-§O-E:005T
and the Office of Naval Research under Contract No. N0O0014-79-C-0371.




There is an extensive literature discussing both point and interval
estimation of R. In particular, the reader is referred to G.K. Bhattacharyya
and R.A. Johnson (1974), Z.W. Birnbaum (1956), Z.i\. Birnbaum and R.C. McCarty
(1958), S. Chandra (1975), J.D0. Church and B. Harris (1970), F. Downton
(1973), Z. Govindarajulu (1967), Z. Govindarajulu (1968), Z. Govindarajulu
(1974), G.D. Kelley, J.A. Kelley and W.R. Schucany (1976), M. Mazumdar
(1970), D.B. Owen, K.J. Craswell and D. Hanson (1964), H. Tong (1974).
Numerical comparisons between several techniques are given in a survey paper
by R.S. Downs and P.C. Cox (1974).

A number of examples have come to the attention of the authors, in which
estimates using such parametric assumptions produced results which were
significantly contradicted by subsequent experience. In this note, we ex-
hibit a model, which illustrates how such departures from theory occur, yet
still provide conformity with the experimental data. In some of these
examples, the discrepancies have caused catastrophic results. For this
reason, we feel that the publication of this note is warranted, despite its
elementary nature.

2. The Hormal Stress-Strength Model. To modivate the subsequent material, we

present an example in which the normal model was employed. To simplify the

discussion, without affecting any of the conclusions to be obtained, we will

specify the parameters “x’“y’ cx,cy. In practice these will naturally be




estimates and sampling errors will have to be accounted for in any in-

ferential staterent.

Example. Let by T 84.6, Hy 53.7, Cy

1-R = 3.036 x 10'7, which naturally suggests a highly reliable component.

= 6.0, Cy = 1.5. Then from (3),

The normal model is justified on the basis of the central limit theorem.
Clearly, the physical properties of stress and strength appear to satisfy
the usual intuitive requirements for approximate normality. -However, the
mode of convergence implied by the central limit theorem is of the
lim F (u) = %(u), where ¢(u) is the standard normal distribution and
S*j (x—EX)/oX. This does not preclude "large”" relative errors in the tails.
As indicated by the above example, the computation of the reliability R
is determined almost entirely by the lower tail of FX(x) and the upper tail
of GY(y). Further, since experimental data obtained from random samples of
strength and stresses (whether paired or two independent samples) is
collected primarily from the "center" of the distribution, 1ittle experimental
information about the tails tends to be available. As is exhibited in
the next section, relatively small perturbations to the tail of the strength
distribution can make the failure probability far higher than may be re-
garded as desirable, particularly in the case where failures can be
catastrophic. Ue exhibit this phenomenon for the example given above.

3. A lodel For Stress-Strength Data Which Conforms to Many Practical Situations.

For the equipn.ent whose data is given in the example in Section 2, when it

was placed into service, approximately one device in 1000 failed, contradicting




the results of the example in Section 2. A proposed explanation is given below.

Let 0 < € < 1 be given and let
Fy(x) = (1-e)H(x) + ek(x}, (4)
where H(x) is a normal distribution function and
PU<Y}>1-n, ' (5)

0<n<1 and U is distributed by K(x). The case of interest occurs f
when ¢ and n are both small. Physically, we may regard this as follows.
With probability 1-e, the customary properties of the strength distribution
hold, but with probability e, a "flaw" 1is present and the device fails

when subjected to a random stress distributed in accordance with GY(y).

Then, if a random sample of NX strengths is observed, the probability that no
device with a flaw is observed is

N -N,e
(1-€) X .e X (6)

and

(1-R) > €(1-n) ~ €. (7)




To see how this behaves numerically, we return to the previous illustration

and suppose ¢ - .001, NX = 100. Then the probability that no flaw is detected
is .905 and the failure probability of the device is .001 and not 3x10'7

as obtained earlier. Consequently, a naive application of inferential
procedures based on (3) is highly likely to drastically overestimate the
reliability (in the sense of a large relative error in the failure probability).
since the presence of the alternate mode Gf failure (a flaw) is not likely

to be detected during the experiment.

4. Concluding Remarks. This note is intended to exhibit a serious problem

in the use of stress-strength relationships in the estimation of reliability.
This problem is not arificial; it has actually occurred in a number of
instances that have come to the attention of the authors. Further, it is
clear that the usual types of experiment in which a random sample of NX
strengths and Ny stresses is observed or N pairs of strength and stresses
are observed will not eliminate the difficulty, unless astronomically large
sample sizes are employed. Unfortunately, testing strength is frequently
destructive of the item being tested so that increasing the sample size is
economically infeasible.

In the example given in Section 2, the population parameters were assu-ad
known. However, if sample estimates for NX = NY = 100 are used, a 90{ upper

confidence limit for 1-R is easily seen to be about 7x10-7.

Thus the
effect of not knowing the parameter changes the estimate from one failure
in 3,000,000 to about one failure in 1,400,000. However, the introduction

of the pertubation <K(x) changed the probability of failure to one on

1000. In addition, the difference betwecen Fk(x) and H(x) will not be detec*ed |
¥




by goodness-of-fit tests, thus giving the experimenter false confidence
in the results given by the example of Section 2.

While the preceding discussion has treated the case of normally dis-
tributed stresses and strengths, the same kind of problem arises in other
parametric models.

One way to proceed in circumventing this difficulty is to devise
models for the existence of flaws, which can be tested statistically. Such

studies are presently underway and some partial results have been obtained.
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