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ABSTRACT

This note calls attention to a difficulty which arises frequently In

the application of stress-strength methods in reliability theory. This

difficulty has led to unanticipated catastrophic failures in a number of

applications.
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SIGNIFICANCE AND EXPLANATION

Stress-strength models in reliability theory are highly sensitive to

small perturbations in the extreme tails. Failure to take this into

account has resulted in conclusions which differed substantially from

subsequent experience. This note points out the sensitivity to model

assumptions and indicates the difficulty in verifying these assumptions

experimentally.

The responsibility for the wording and views expressed in this
descriptive summary lies with MRC, and not with the authors of this report.



A NOTE ON A DIFFICULTY INHERENT IN ESTIMATING RELIABILITY

FROM STRESS-STRENGTH RELATIONSHIPS

Bernard Harris and Andrew P. Soms

Introduction. Let X and Y be independent random variables with c l

distribution functions Fx(x) and Gy(y) respectively. The objective is [c

estimate

R = P{Y<X}. )

This problem arises in the following physical context. 5upose tnat

is the strength of a component which is subjected to a stress Y. Then t',:

component fails whenever X < Y and does not fail when Y < X. For purposes cf

this exposicion, it suffices to assume that X and Y are contiruous

random variables with probability density functions fx(x) and ,,,(y).

It is easily established that

R = EX{G Y(X)}

and in many of the references given below, specific parametric -,odels are

employed, such as assuming that Fx(x) and Gy(y) are both nor;.ally dist.i::z.

In this case

R = ¢(- - - ).

The purpose of this note is to examine the consequences of suc:h

assumptions.
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There is an extensive literature discussing both point and interval

estimation of R. In particular, the reader is referred to G.K. Bhattacharyya

and R.A. Johnson (1974), Z.W. Birnbaum (1956), Z.W. Birnbaum and R.C. McCarty

(1958), S. Chandra (1975), J.D. Church and B. Harris (1970), F. Downton

(1973), Z. Govindarajulu (1967), Z. Govindarajulu (1968), Z. Govindarajulu

(1974), G.D. Kelley, J.A. Kelley and W.R. Schucany (1976), M. Mazumdar

(1970), D.B. Owen, K.J. Craswell and D. Hanson (1964), H. Tong (1974).

Numerical comparisons between several techniques are given in a survey paper

by R.S. Downs and P.C. Cox (1974).

A number of examples have come to the attention of the authors, in which

estimates using such parametric assumptions produced results which were

significantly contradicted by subsequent experience. In this note, we ex-

hibit a model, which illustrates how such departures from theory occur, yet

still provide conformity with the experimental data. In some of these

examples, the discrepancies have caused catastrophic results. For this

reason, we feel that the publication of this note is warranted, despite its

elementary nature.

2. The Normal Stress-Strenath Model. To modivate the subsequent material, we

present an example in which the normal model was employed. To simplify the

discussion, without affecting any of the conclusions to be obtained, we will

specify the parameters jXWy, aXGy. In practice these will naturally be

-2-



estimates and sampling errors will have to be accounted for in any in-

ferential statement.

EAamole. Let IX = 84.6, y =53.7, cX  6.0, y = 1.5. Then from (3),

1-R = 3.036 x 10- 7 , which naturally suggests a highly reliable component.

The normal model is justified on the basis of the central limit theorem.

Clearly, the physical properties of stress and strength appear to satisfy

the usual intuitive requirements for approximate normality. However, the

mode of convergence implied by the central limit theorem is of the

lim Fn(u) z u), where ¢,(u) is the standard normal distribution and
n-co
u = (x-EX)/a x. This does not preclude "large" relative errors in the tails.

As indicated by the above example, the computation of the reliability R

is determined almost entirely by the lower tail of Fx(x) and the upper tail

of Gy(y). Further, since experimental data obtained from random samples of

strength and stresses (whether paired or two independent samples) is

collected primarily from the "center" of the distribution, little experimental

information about the tails tends to be available. As is exhibited in

the next section, relatively small perturbations to the tail of the strength

distribution can make the failure probability far higher than may be re-

oarded as desirable, particularly in the case where failures can be

catastrophic. We exhibit this phenomenon for the example given above.
A ,del - For Stress-Strength Data Which Conforms to Many PracticalSituations.

For the equip:,ent whose data is given in the example in Section 2, when it

-as pl.hced into service, approximately one device in 1000 failed, contradicting
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the results of the example in Section 2. A proposed explanation is given belo...

Let 0 < E < 1 be given and let

Fx(x) = (I-e)H(x) + EK(x), (4)

where H(x) is a normal distribution function and

P{U < Y} > 1-n, (5)

0 < n < I and U is distributed by K(x). The case of interest occurs

when e and n are both small. Physically, we may regard this as follows.

With probability l-e, the customary properties of the strength distribution

hold, but with probability c, a "flaw" is present and the device fails

when subjected to a random stress distributed in accordance with Gy(y).

Then, if a random sample of NX strengths is observed, the probability that no

device with a flaw is observed is

NX NXE (6)

and

(l-R) > c(l-n) e. (7)
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To see how this behaves numerically, we return to the previous illustration

and suppose ; - .001, NX = 100. Then the probability that no flaw is detecteG

is .905 and the failure probability of the device is .001 and not 3xlO 7

as obtained earlier. Consequently, a naive application of inferential

procedures based on (3) is highly likely to drastically overestimate the

reliability (in the sense of a large relative error in the failure probability),

since the presence of the alternate mode of failure (a flaw) is not likely

to be detected during the experiment.

4. Concluding Remarks. This note is intended to exhibit a serious problem

in the use of stress-strength relationships in the estimation of reliability.

This problem is not arificial; it has actually occurred in a number of

instances that have come to the attention of the authors. Further, it is

clear that the usual types of experiment in which a random sample of N

strengths and NY stresses is observed or N pairs of strength and stresses

are observed will not eliminate the difficulty, unless astronomically large

sample sizes are employed. Unfortunately, testing strength is frequently

destructive of the item being tested so that increasing the sample size is

economically infeasible.

In the example given in Section 2, the population parameters were assuec

known. However, if sample estimates for Nx = NY= 100 are used, a 90. upper

confidence limit for 1-R is easily seen to be about 7xlO -7. Thus the

effect of not knowing the parameter changes the estimate from one failure

in 3,000,000 to about one failure in 1,400,000. However, the introduction

of the pertubation rK(x) changed the probability of failure to one on

1000. In addition, the difference betw:een FW(x) and H(x) will not be detected
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by goodness-of-fit tests, thus giving the experimenter false confidence

in the results given by the example of Section 2.

While the preceding discussion has treated the case of normally dis-

tributed stresses and strengths, the same kind of problem arises in other

parametric models.

One way to proceed in circumventing this difficulty is to devise

models for the existence of flaws, which can be tested statistically. Such

studies are presently underway and some partial results have-been obtained.
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