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and physics.

ability of the system.

for this purpose.

SIGNIFICANCE AND EXPLANATION

Parallel systems arise naturally in practice in endgineering

Therefore it is of substantial significance to be
akle to efficiently utilize data obtained on individual components

for the purpose of obtaining an overall assessment of the reli-

The methods of this paper may be employed
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OF THE FAILURE PROBABILITY OF PAFALLEL SYSTRNMS

Bernard Harris and hndrew P, Soms

1. Introduction and Summary

A problem of fundzmental interest to practitioners in ralia-
bility is the statistical estimation of the reliability of a
system using experimental data collected on subsystems. In ftnlz
paper, the subsystem data available consists of a sequence of
Bernoulli trials in which a "one" is recorded if the subsystonm
functions and a zero is recorded if the subsystem £fails. Ths
for each of the k subsystems composing the system, the data pro-
vided consists of the pair (ni,Yi), i=1,2,....,%, where Yi is
binomially distributed (ni,pi). We assume that Yl’Y2""’lx ar -
mutually independent random variables.

The magnitude of interest in this problem is easily evid...o.
by the extensive literature devoted to it. 1In this regari, se.
the survey paper by Harris (1977) and Section 10.4 of the beroas b
Mann, Schafer, and Singpurwalla (1974). 1In addition, the Lefciiae
Advanced Research Projects Agency has recently issued a Handoo o
for the Calculation of Lower Statistical Confidence Bounds ¢
System Reliability (1980).

Historically, the first significant work on this preobiem w..
Aa.

>

produced by Buehler (1957). However, Buehler's method as
cribed in that paper is difficult to implement compulaticral’

when k>2.
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In this paper, we examine the problem cf obtaining upper

% confidence limits for products of Poisson paramcters. This
problem is studied by means of majorization methods and Schur-
| convexity, such as described in the bouk by Marshall and Olkin

(1979). A significant application is the detcrmination of confi-

dence limits for the reliability of systems of k parallel sub-

systems, a fundamental probiem in the statistical analysis of

reliability.




2. Exact Solutions for Products of
Poisson Parameters for Small Failure Combinations

Let X = (xl,xz,...,xk) be independent Foisson random variakles
- k
with parameters Rl,k.,...,kk, k > 2, and let h()X) = I Ai. Let
i=1
N k
gi(x) = 1 (x,+d) , 1<d<1.5 , x.=0,1,... (2.1)
i=1 *

ard denote the ordered points in the range of g(xX) by

J]<J—<---<]‘<.... Define
= ! =
A, {xlg(x) ].} . (2.2)

Since X0 i=1,2,...,k, takes on non-negative integral values,
w2 regard it as desirable to have d in (2.1) only assume non-
wnteder values. This has the effect of making the partition ]
defined in (2.2) finer than would be the case if d were an integer.

It is easily verified that

a_ = sup{h(i)] T f(k.:0) = c} (2.3)
n ~ : 1
xieAi,lfn

a {(l-1) upper confidence limit for h(i), where

]

-
-

A 1

X.
~ o~ k i
f(x;2) = e n =, A.>0, x.=0,1,... . (2.4)

. 1 i

The proocf is identical with that given in Harris and Soms (1980).

Note that if x is fixed as N>, i=1,2,...,k, then
k
a_ = limg I n. where
A i
-0 1=1

n




N < . K n n -xl xi
iy - o . f I
g=suwpl Ta. R
it a N S i
1=1 X, AL, 1n =L T L
i 17—
k
Thus in practicce an/ 1 n, may be employed as an aprnroximate (1-4)
i=1 k
:pper confidence limic for O a5 qizl—p;. In this sense the
4
i=1
methods »f this paper can be used as approximaticns for estimating

Lhe relizpility »f pacaeilel systems when independent binomially
distributed data is chtained for -:ach component.
We pioceed by showlng that i) 15 a Schur-concave functicn

and conseguently
By = {Rly) gl
P -—
o]

[SeF]

is a Schur-convex set (see Marshall and Olkin (1974), pp. 113%-%.
and Nevius, Proschan and Sethuraman (1977), p. 264). The Schur-

concavity of g(x) follows immediately by noting that

( (%) agm} <0
4» ‘ - _\' .
L xl 3x2 )
Define F(io;i) by
3y K = T (% s = 2 K
Fx i) ) Flxgid) Polsg, ) (2.0
X.eB~ C
i x
o
and let
u(§oza) = (??E F(Ro;i) , O<a<l . {2.6)

Since the Poisson distribution has a monotone likelihood ratio,
u(io;a) 1s a strictly decreasing function of a for fixed X

Hence for every ¢, 0<c-l, there is a unique a(c) such that

u(io;a(c)) =c . (2.7

Conseqgquently, we also have that a, {sec (2.3)) is the soluticn in




v . = '
u(xo,a) . 2.

(2.8) is established exactly as in Harris and Soms (1230).

The method..ngy to be employed is as follows. If Fix;.) iz
a Schur-concave function of Ri = -1ln Ai, i=1,2,...,k, then it
follows that u(io;a) = F(io;al/ki), where 1 = (1,1,...,1), and
then the solution in a of u(io;a) = » is an optimal upper confi-
k
dence limit for 1 Ai. This will entail verifying for fixed ioi
i=1
that
(3F (x_: ) 5F (X ;1))
(Rl-R2)§ _ g : - ; g )i <0 (2.5
L PR ] -

{(see Marshall and Olkin (1874), p. 1190). &ccordingly wo have tno

following theorem.

k

Theorem 2.1: Let g{x) = 1T (x;+d), l<d<l.5, k>3. Define 0, as
i=]1 4
the j-vecter all of whose components are zeros. Then let
(1) _ 3 (2) _ P (3) _ p (4) _ . ] :
b = 0,s X = (1,0p 1) X = (2,0, ), x = (1,1,0, 5"~
(3) _ = (6) _ P (7) _ v A
X = (3,0, ), % = (4,0, ), x = (2,%,0,_,) and
x(s) = (S.Gk_l). The set Ai defined by (2.2) is the point o b

and the different permitations of its components, i=1,2,...,72.
Further, for j=1,2,...,7, F(x(J);i) is Schur-concave 1in Ri,

i=1,2,...,k.

Proof: 1In the sense of the ordering given by (2.2), obviouusly

x(l) < x(z) < x(3) < x(S) < x(6) < x(8). Trivially, d(2+d) < (1+d)

and hence (2+¢d)d"" 1 = g(x?) <« (1+a)%d¥ 7% = g(x ). simitariy,

since 1l<d«<l.5, (l+d)2 < d(3+d) and hence g(§(4)) < g(§(5>). n

the same way q(x(s)) < g(x(7)), g(x(7% < g(x(s)), g(x(g)) < g(l,l,l.ﬁp_
and ﬂ(x(8)) < q(2,2,6k_2), establishing the first part cof the conclasioer,




In order to establish Schur-concavity, we must verify {(2.9)
Thus consider

- k ~-A. xgj) .
NCALLISY SR noe i, 1/x.(3)z (2.19)
X.€A.,j<2 1i=] 1 1
j J -
- ~Rj .
where Ai = e . Define
k -R.
-5 e *t
- (2) x s sar™) N 15
G(x ;R) = SR : - "R L e . 2.11)
1 IRy )
Letting R = (Ry,...,R ), we obtain
. ~R -R
cx MR = (e Yoo 2y,
. -R -R k -R.
cx?) ;R e Y -e 2y Te b,
i=1
= (3) » Ry Ry k -Ry ok [T
G(x'”';R) (e -e (7T e + ] )
i=3 i=1
-2R,
N -R -R k i k -R.-R,
cx¥R)y = (e T-e (] S+ Te 173,
i=1 i<y
s - R, R, ¥ e—2R e—Rl—RZ
G(x ;R) = (e e )y () +
L p) 2
1=3
k -R.~-R k e'3Ri
i<j, (1,3)#(1,2) i=1 :
~16) ~ _Rl 'Rz k e-zR e_Rl_RZ X —Ri~R
G(x'"';R) = (e -e (7} 57— + 3 + ) e J
i=3 l<]'(llj)?£(ll~)
K 3Ry -2R)-R,  -R;-2R, K 4Ry
+ 3 e ’ _ ¢ + e + z e '___) ,
(23 3¢ 31 L

and




1
o R R, T2RTRy "Ry =2R, -R, =R
- 2, ,e e ~
G(x iR) = (e ~e ) 3 + 3 + . e
3ilij
k O- RL K e—4Rl e-ZR -R3
L ';3—'1 * \: 41 + ).
i= ) i=1 : i#j, (1,3)#(1,2)0r(2,1)
. Ry TRy "Ry TRy
Now R, R, implies e < e and thus (Rl-Rz) and (e - )

(1)7;\) , i=1,2,3,

have cnposite signs. Hence it follows that F (X

4,5,7 1s Schur-concave in Ri' The verification that F(ﬁ(s);l) is
-R -R,
Scnur=-concave nay be accomplished by letting k=2, e 2==ce l,

>0, ar? exanining the discriminant.

T~ skew that (2.9) need not be positive for all X consider

k = 2 3nd x = {7,0). Then

-6R -6R
N . -R -R l 2
+
G(xj;?} = {n 1. e 2) (e €T €
-4R.-R -3R,-2R -2R,-3R -R,—-4R
- 1 2+e 1 2+e 1 2+e 1 2
- 51
-3R,—-R ~2R, -2R -R.=-3R -2R,-R -R.=-2R
o 1 te 1 2+e 2 e 1l 2+e 1 2
- + )
41 3
-R1 —R2 .
and thia 18 Schur-ccnvex near e = @ = 4,

n_~hler grovided an extensive discussion of this problem for
th. srooring function determined by the product of the upper

coafisence limits for the individual components. In particular,

fe - -vided some numerical tabulations for k=2. Asymptotically
a.--nler's ordering function is given by
k
gg (x) = izl (xi+za.xi/2) ’
whera l-(l-1)l/k , z, satisfies @(za) = l-a and d(x) is
The .1 normal cumulative distribution function. It is easy

so . .o s o {#) is Schur-concave (see, e.g., Marshall and Olkin




3. Bounds on Confidence Limits

In this section we employ majorization technigues descriie-l
in Proschan and Sethuraman (1977) and Nevius, Proschan and
Sethuraman (1977) to obtain bounds for a - Throughout thiz o=

nlon wa assume only that the ordering function g(X) is stricrivy

increasing in cach component and Schur-concave and thus the 50t

B will be Schur-convex (see the discussion immediately prouvoz-
Ko)

ing {£.5)).

In order to proceed, we need the preliminary results estal-
lished kelow.

1/k

Theorem 3.1: Let ¢ and a be given with c>ka and consider toi-o

it

set A(a,c) of vectors i (Al,xz,...,xk), Aizo, such that

(S]
v

A. = C . {
1

A, = A and
1t i

==
Il e~ %

i

[t S 1Y

Let S. = _ max Ai. Then there is a unique ¥ eA(a,c) of
3 XeA(a,c) i=1

n A\, = M., i< . = ML ) j . . 5. = JM..
the form S MJ 1<i<3, xl mj, Jj+1l<i<k, M3>m3’ b] 313

1/k

Procf: The condition c>ka is a consequence of the arithmeti--
geometric mean inequality and insures that A{a,c) is non-triv::l
for k>3. 1If k=2, there is only one solution of (3.1) with Nyt
and hence the Theorem is trivially true. Consequently, suppos~”
k»>3. Then for fixed j, (3.1) requires that any solution of the

raguired type satisfy

Mg+ (k=3mg = c M3 K3 -,

] J

ard hence soetting mj = (c-ij)/(k-j), we consider

2

2o il 2.




WP Tt B ¢

£500) = MI[{c-3t) /tk=9)1" 9, 1-:3<k-1, O<M-c/]

¥ote that fj(O) = fj(c/j) = 0, and
w1 oy K=3-1
v _ _ M c-jM fn -
fj(M) = (c-Mk) ( E;?—)(E:? ) . (1.3)

Thus, fj(M) is increasing for 0<M<c/k and decreasing otherwise,
further fj(c/k) = (c/k)k>a. Hence there is sexactly one solution

Mj of fj(M)=a with Mj>c/k, and therefore Mj>mj.

Now assume that for some j, 1l<j<k-1, the vector

A= o0 *) with | 2% = s, £ £
= (A 2,...,Ak) with 4 i < Sj is not of the form
M.,...,M., m,,...,m.). Then let A,. = S./3 and A.. = (c=-S )/ (k=-3).
( Jr ' ]' gjr J) 19 J/] 23 ( 3 z
3 k-3 '
. L ' ! N Lt - T . . = T
Define Aj = (Ajl,ka,...,Ajk) by Aji Alj’ 1<i<j, Aji A2j’

j+l<i<k. Since the geometric mean of a set of positive numbers

whose sum is fixed is a maximum when they are all equal, we havea

k '
TA.. >a. Now A, is of the required form, however, from (3.2) and
i=13% k J
L}
(3.3), T Aj' >a implies that there is another solution of the
i=1
required form with Ai > Sj/j, 1l<i<j, contradicting the maximality

of Ss..
J

From (2.5) and (2.6), we can write

u(x ;a) = sup Py (B~ ) = sup sup P~ (B~ ) . ({3.4)
°© k A %5 c k k A Xy
n A;=a I A;=c,Tr;=a
i=1 i=1 1=1

We state now the main result of this section, using Theorem 3.1.

Theorem 3.2: Let v, = M

— 1 V. = lMi—(l—l)Mi

1 Vi 2<ivk-1,

-1

v, =c~- ) v,» where M, is specified by Theorem 3.1. Then
i=1

crpeanra .

P
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~ B — .
u(xc,a) < sup LV(BX ) . (3.5)
c o)
3 k
Proof: Since |} v, = S., l<j<k-1, } v. = ¢, V majorizes every
—_— L& i b -7 = b i
1=1 i=1
k k
A with ) )i =c, 1 Xi = a (Theorem 3.1). Then (3.5) follows,
i=1 i=1]
since if il najorizes 12, then for any Schur-convex set A,

P3 {a) > Py (A) (Proschan and Sethuraman (1977) and Nevius,
1 "2
Proschan and Sethuraman (1971), p. 264 and pp. 267-9).

The vector v may be intervreted as the best vectcr that major-
X k
izes all vectors A such that | Xi = c and I Ai = a. More
i=1 & i=1l  °
specifically., there is no vector w # v such that v majorizes w and

w majorizes all A satisfying the two conditions given above.
The following is a suggested method for employing Theorem 3.2.

Find aj such that

~ .. 1/k 1)

Next calculate the smallest a, say am, such that sup PG(Bi ) < a.

c o
T: a. = ag: this is the exact solution. Otherwise ag<ay and
sup PQ(BQ ) < a (here a==am) and the solution a, satisfies
o) o

adian:am. The vector ¥V may be calculated by any of a variety of
nunrerical techniques. In the numerical examples presented here,

interval bisection was employed.

Example 1: Let k = 5, a = 25, ¢ = 15. Then the 4 vectors il’ xz,

\

X3 ané A, of Theorem 3.1 are

4

il = (9.9660, 1.2585, 1.2585, 1.2585, 1.2585)
3_2 = (6.2004, 6.2004, .8664, .8664, .8664)
by = (4.6696, 4.6696, 4.6696, .4955, .4955)

and A, = (3.7172, 3.7172, 3.7}.2, 3.7172, .1309) ,
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from which v is determined to be

v = (9.9660, 2.4349, 1.6079, .8601, .1309)

Note that in the above example ViZVa2e . 2V . This in fact

is always true, as the following theorem establishes.

Theorem 3.3: For Vv defined by Theorem 3.2, we have Vi2Vy2e. 2V, .

Proof: It follows immediately that v,V since M,>M Consider

2’ 1="72°

therefore vy j>2. v.>v j=2,3,...,k-1 holds if and only if

j="j+1’

ML= (3-1)M, > (3+1)M, . -IM,
M- (=DM 2 (GHLIMy -3,

or

My 2 ((j+1)Mj+l+(j-l)Mj_l)/2 ’

where Mk = ¢/k (satisfying the condition Sk =c = kMk of Theorem

3.1).

Let XA. = (l-aj))\j_l + ajij_*-l' j=2[ 3'-oo'k~l, Where
3
aj = (1/2)+(1/(23)) and
Aj = (Ajl'AjZ""'Ajk)
and

Ass = Mj o 1<i<j, Aji =my j+l<i<k .

Now let

k
since z 1ln x5 is a concave function of xl,...,xk.

1 .
k
e L= 1L i]/j, i=1,2,...030 0 5 =[] ,-]/(k-j).
) =1 By Byrd lj=je1 Byr
i=j+l,...,k. Then

i}

j j .
Moxg 2 0 A, o 3=1,2,...,k-1

.

Ry




Thus, using the properties of Mi in Theorem 3.1,

M.

j > (j—l)[(l-aj)Mj_l+aij+l] + (l-aj)mj_l + aij+l '

yielding

My 2 (G¥LMg+ (=DM 1)/2 + (-amy )

which establishes the theorem.
To illustrate the techniques of this paper, we compare nurmcr-
ical values obtained by the above method with those given in the

examples from Mann, Schafer and Singpurwalla (1974, p. 505). Froo

now on we assume d = 1.1.

Example 2: For io = (1,2,1) we obtain ag = a = 20.56 for u = .10.
In Mann, Schafer and Singpurwalla, an A0 non-randomized confidence

bound of 20.7 is obtained.

Example 3: Let io = (2,3,5), o = .10. Then we obtain a; = 135.46.
A summary of computer calculations which establishes 135.46 e <
142.46 is given below in Table 1. With the exception of the
likelihood-ratio value of 133 and the AO non-randomized confidence
bound of 129, all the other confidenze bounds given in Mann,
Schafer and Singpurwalla exceed the upper bound of 142.46. For
k=3 it is possible to do a direct computer tabulation of u(io;a).

This gives a, = 135.46, the diagonal value.
Insert Table 1 here.

The two examples below are for four and five component systems

for which there are no comparable numerical examples available.

Example 4: Let io = (2,2,2,2) and o = .10. Then ag = a, = 150.63.
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Example 5: Let io = (2,2,2,2,2) and « = .10. Then ay = 429.¢9.
A summary cof the computer calculations which establish 429.69 <

a, £ 435.69 is provided in Table 2.

Insert Table 2 here.

As adl/k increases, the difference between a3 and a, beccmes wider
Thus the techniques of Section 3 are more useful for small X, 0T eguiva-
lently, small adl/k. For example, for X = (5,5,5), ay = 387.18,

and it is not practical to compute a, because it is much bigger

than ag- However, direct tabulation of u(io;a) reveals once more

that a4 = u(io;a). A justification of why a

1/k
d

of Section 2, suggests very strongly that for all practical

ac u(xo;a) for large

a is given in the Appendix. This, together with the results

urposes a, = a_.
purp d n

Remarks: Note that Tables 1 and 2 are virtually linear in their
behavior in the neighborhood of the solution. This suggests that
solutions are obtainable by interpolation and then one should
subject them to verification.

The calculations described above utilized two short FORTRAN
programs for 2-10 components. Listings are obtainable from the

authors.

4. Comparisons with Buehler's Tables

In order to provide an illustration of the performance of
k

g(io) = I (xi+d), 1<d<1.5, when compared with the tables given
i=1
by Buehler (1957), we chose d=1.1, k=2. For k=2, the values of

a, and ag coincided for both the ordering based on g(x) and

Buehler's ordering and further were for all practical purposecs




T
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evual for the two different orderings.

In Tabl~ 3 we give Buehler's upper confidence limit, Buehler's
diagonal value and the exact upper confidence limit and diagonal

value corresponding to g, denoting them by a a and a_ ,

a.
nB’ "dB" “ng dg
respectively. These values are provided for all failure combina-

tions from (0,0) to (5,5) for a=.1.
Insert Table 3 here

An examination of Table 3 shows that differences between the

natives presented are small for the specific example

rh
o}
[
at
v
[
or
0]
~

5. Concluding Remarks

In this paper a procedure for obtaining bounds on an optimal
upper confidence limit for the failure probability of a parallel
system is given. The procedure employs the theory of major-
ization and is valid for an arbitrary number of components and
gives the exact answer or narrow bounds when the observed number
of failures is small for each component. In addition, numerical
and asymptotic justification is given for using aq as an
approximation to ap. Tables of ay are in preparation for moderate

rumbers of failures for 3, 4 and 5 components and will be avail-

able in the near future.
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Appendix

Theorem Al: Let xli, 1 < i < k, be independent identically

distributed normal random variables with means A and variances A

Let XZi' 1 < i < k, be independent normally distributed random

variables with means <t. and variances Ty where Ty = A+ O(Ac),

i
k K
c < l,as XA + «, and it Ty < A", Let B be given, 0 < B < 1,
i=1
k
let a be a specified positive real number, let Z, = Il (le + a),
j=1
k
Zz = 1 (XZ' + a) and let d()) satisfy
j=1 %
P[Z1 <d(x)] = 8. (A.1)
Then as A > «,
ottan M7, e <o,
B - P[2, < d(A)] = (A.2)
2 - c-1
ofx ] ,0 < c <1,
Proof: Throughout, let ¢ and ¢ denote the density and
distribution function of the standard normal. Clearly,
w© =] o -~ ~ ~
P{Z, < d(A)) - P[Z, <A = [ [ eo [ (£,(x) - £,(x))dx,
1 - 2 - ‘e te ! 1 2
(A.3)
- k
{x: T (x,+ a) <d)}
=1

~

where x = (xl,xz,...,xk), f1 is the probability density function

of and £ is that of X Now

2
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. _ A A+a
P[xlj 2_ —al :] = llzl'°°lk] Z_ (1 (>\+a) ¢(A172))
and A
k 1.1/2
P[x . 2. -a’ j = llz'ao.'k] Z n l -
23 j=1 Tj+a

m > 0 such that

PIX;52-a, j=1,2,...,k] >21-e

Then, for i =1,2,

PIZ; < d(M)]

k
+ P[Zi < 4a{x), : (Xij < -a)

and therefore

Next, we calculate

j=2

T.

T ¢(%)) . (ALs)

J

Consequently, for XA sufficiently large, there exists a constant

P[Zi id(k),xij i-a, j = 1’2"oo’k]

Plzg < A1 = PIZ; < A, X5 > =a, 3 = 1,2,...,k] < ™, (A.7)

k

(A.4)

, 1 =1,2, (A.6)

P{z, f_'d(l),xlj >=-a, j=1,2,...,k] - P(z, < d(k),x2j >=-a, j=1,2,...,% .
‘ Now
Plz, < d(x),xlj > -a, j= 1,2,...,k|x1j = Xy j=2,3,...,k]
_ a)  _
=plx;,, « L . (A.8) r
(x.+a)
_ j=2 ]
=0 dA)_ _ a4 - a2 e sbe)
n (xj+a) A




Therefore

< dM),Xyg 2 -a, 3 = 1,2,... k]

(A.9)

«© [=-] @

= [ [ ceef 0(ba)gy(X,.Xqpee.,x, )dx,dx, .. dx,
-a -a -a y 123 k' 772773 k

where gl(xz,x3,...,xk) is the probability density function of

. X From (A.6), we have that

X120%y30e e rXyye
L -] o 0

f I ...f ¢(b~)gl(x2,x3,-...xk)dxzdx3-..dxk
A

-0 -0 -0

(A.10)

a0 [~ -] o0
- f I ...f ¢(b~)gl(x2,x3,...,xk)dxzdx3...dxk < e-ml.
A

-a -a -a

Hence we will estimate the first expression on the left hand side of

(A.10). Similarly, for 2 we will consider

2
RS | Y- 103 I 1/2
{m {w {w o % a - 1.0 /1] gy (Xy1Xgsen s )dx,dx,. . dx,
T (x.+T.)
j=2 1 3 (A.11)

where gz(xz,x3,...,xk) is the probability density function of

X22,X23,...,X2k. In the first integral in (A.10), 1let

1/2 . 1/2
(yi - A)/X /2 ug and in (A.11l) let (yi - Ti)/ri/ = Uy,

i=2,3,...,k, obtaining




/ ai 1/2
I ! : ’\-h———\ ) - a - )\) /A / gl(x2,x3, ,xk)d>r.2<3x3...dxk
\ I (x.+a)
>
o ra: ! d()\)
- [ [ eeef 0 / — 1/2
e e . k -a-T|/T Gy (X Xy ees,X, )dx,dx,...dx
\\ N (x.+a) 1771 [92'%2r¥3 k' 9%2%%3 k
=2
w s ol f (A.13)
< I\ . d \
-/ SRR gg . 1(2) - s k)/Al/z
o ] \ oo / X.+i+a)
. .,=2
( K
da( 1/2
iy - -
k e a Tl) /Tl Ezcb(xj) c1x2c1x3...dxk
\. T (77 “x.+71.+a) J=
3=2 -
+ R,,.
-u2/2
where M = (2 in )\)1/2 and RM < 4 (k-l)i/z = O(A-l).
(27) M
using a() =K -k ok2 k() = 0(1),
a) 1/2 1/2 k -1/2. . -1.-1
AR - a - A|/x = (A %=k (M) T (1+x.)A +a) )
A W5 ar L,
T (0 % +n+a) ]
3=2 ’
a2 a2
Since !xi]_<_ M, we have
1+ x 2 amh T < l-xix_l/2+(—a+xi)k-l+0((Zn Ay Leoa1-5),

18
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Thus

k
- k. (A)) I (1 + x.A~
d j=2 j

172 1/2 -1,-1 _ 172 _ ,=1/2

+ aik 7) - A

K A ko
= - 1 xgkg00-kan T 2 00 (] xn M2

( -1/2
i=2 i=2 i

k S
L oxA (A.14) j

2

172 L o(an 1ot

+ (31 xixj)x- ) .

Similarly, using T, = Xk/ ! Tj' Tj/k= 1 + O(Xc-l),
j=2

(Tj/x)l/z =1 + O(Ac'l), j=1,2,...,k, Ixil < M, we have

( d(1) - a - Tl /11/2 :

1l
(T%/z

2 ]

UE=RaJ

x.+T.+a)
3 J 3J

k
_ 1/2{ ,,1/2_ -1/2, -1,-1_,1/2 -1/2
= (Tl/Al) {}A kd(l)§£2(1+ijj +arj Y T-=A :] -at,

(A.15)
k

-]

1

k k
- vy —1/2 -1/2 2..-1/2
2xi kg (1) -kak +kd(A)(i£2xi)A +(i£2xi)x

1/2 1

+ (] ] xR o y+o(en 1Ly,

2<i<j

Combining (A.14) and (A.15) with (A.7), (A.9), (A.10) and (A.ll)

establishes the theorem.

For ¢ < % standard weak convergence arguments show that 3

Lim(8 - PIz, < d()]) = 0.

Ao

In this case Theorem Al provides additional information by specifying

the rate of convergence.
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By standardizing the first expression in (A.13) and applying

the dominated convergence theorem the following result can be

obtained.

Theorem A2: Let Xli' 1 < i <k, be independent identically 'H
distributed normal random variables with means ) and variances .

Let x2i' 1 < i<k, be independent normally distributed random

variables with means Ti and variances Ty where T, < A+ O(kc),

c <1 and let B8, Zl,Z2 and d()) be specified as in Theorem Al.

Then

21 - P[2Z a(x 0.
Lm(8 - P[2; < A0)) {
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l. Summary of Calculations Used to
Obrain the Upper Bound for a, in Example 3
a_ v sgp P (B )
135.46 13.0680 4.7283 1.7108 .1101
136.46 13.0867 4.7409 1.7173 .1086
137.4¢ 13.1053 4.7532 1.7240 1071
138.46 13.1239 4.7€56 1.7305 .1057
139.46 13.1423 4.7780 1.7370 L1042
140.459 13.1607 4.7902 1.7435 .1028
141.46 13.1789 4.8024 1.7500 .1014
112.46 13.3299 4.8057 1.7325 .9999
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2. Summary of Calculations Used to

Obtain the Upper Boungd for a_ in Example 5

a sgp P;(Bio)
; 429.69 .1016
430.69 .1013
431.69 .1010
432.69 .1007
433.69 .1004
434.69 .1001

435.69 .0998
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3. Comparison of Exact and Diagonal Buehler's Values,
a g and 33B" Respectively, with the Exact and Diagonal Values
a and adg' Respectively, Corresponding to g(x) ?

5 5 60.7 60.70 60.70 60.70

5 4 51.8 51.89 51.89 51.89

5 3 41,2 41,21 41.22 41.21

5 2 31.9 31.91 31.91 31.90

5 1 23.3 23.34 23.34 23.34

5 0 12.3 12.32 12.32 12,32

4 4 44.3 44.40 44.40 44.40
4 3 35.7 35.73 35.74 35.73
4 2 27.2 27.23 27.23 27.23
4 1 18.8 18.77 18.77 18.76
ﬁ 4 0 9.05 9.05 9.05 9.05
3 3 28.9 28.89 28.89 28.89

1 3 2 22.0 22.04 22.04 22.03
§ 3 1 15.1 15.08 15.08 15.08
1 3 0 8.24 8.24 8.24 8.24
2 l6.8 16.80 16.80 16.79
// 2 1 11.8 11.85 11.85 11.85

2 0 5.59 5.59 5.59 5.59

1 1 7.09 7.08 7.08 7.08
1 0 3.86 3.78 3.78 3.78
0 0 1.33 1.33 1.33 1.33
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