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SIGNIFICANCE AND EXPLANATION

Parailel systoms arise naturally in practice in engineering

and physics. Therefore it is of substantial significance to be

able to efficiently utilize data obtained on individual components

for the purpose of obtaining an overall assessment of the reli-

ability of the system. The methods of this paper may be employed

for this purpose.

.. ..........

ri. rcsponsihility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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WITH{ A-'ll , TIOZNS "'(; Tili, INTEIPVAL E7STIMATION:

OF THE I;AILUid- PROBAILITY OF PA!-ALLEL Y .

Bernard Harri.s ad Ahndr-.: P. Sms

1. Introduction and Summary

A problem of furndamental interest to practitioners in relia-

bility is the statistical estimation of the reliability of a

system using experimental data collected on subsystems. In t:.±

paper, the subsystem data available consists of a sequence of

Bernoulli trials in which a "one" is recorded if the suL.ys .<:m

functions and a zero is recorded if the subsystem fails. h '<

for each of the k subsystems composing the system, the data pr)-

vided consists of the pair (ni,Yi), i=l,2,...,k, where Y. is

binomially distributed (n.,p.). We assume that YIY....

mutually independent random variables.

The magnitude of interest in this problem is easily evid.c.

by the extensive literature devoted to it. In this regari, se

the survey paper by Harris (1977) and Section 10.4 of the br,-.-

Mann, Schafer, and Singpurwalla (1974). In addition, the c .

Advanced Research Projects Agency has recently issued a hanlo>,

for the Calculation of Lower Statistical Confidence Bounds :o

System Reliability (1980).

Historically, the first significant work on this probie. +,

produced by Buehler (1957). However, Buehler's method as c s

cribed in that paper is difficult to implement comoutticri

when k>2.

"nivcrrsity of Wisconsin-i.lwaukeo, 1iiwauk'(, Wisconsin, ,? '

SPOncofr(_d i,. th(, United Sta-e - Atm+  Un IF (Ti. track N . .A -

tf~i,' of Njavil Pc!,'nrcln unrl r iurt]-ct Nc. N. - .
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In this paper, we examine the problem of obtainin.g upper

confidence limits for products of Poisson parameters. This

problem is studied by means of majorizat.!on methods aid Schur-

convexity, such as described in the book by Marshall and Oikzin

(1979). A significant application is the detcrmination of conii-

dence limits for the reliability of systems of k parallel sub-

systems, a fundamental problem in the statistical analysis of

reliability.
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2. Exact Solutions for Products of
Poisson Parameters for Small Failure Combinations

Let X = (XlIX 2 ,... ,Xk) be independent Poisson random variables
k

with parameters \lx 2 ,...,Xk' k > 2, and let h(A) = X A.. Let
- i=l 1

k
g(x) = T, (xi+d) , l<d<l.5 , x.=0,l,... (2.1)i=l 1 2

and denote the ordered points in the range of g(c) by

ji<32 < . . . < m < .... Define

Ai= {xig(x)= Ji} (2.2)

Since xi, i=l,2,...,k, takes on non-negative integral values,

w'- regard it as desirable to have d in (2.1) only assume non-

inteer values. This has the effect of making the partition

icefin-.I in (2.2) finer than would be the case if d were an integer.

it is easily verified that

= fLi7) ' (2.3)an sup h() iA ,i<n

is a (i--) upper confidence limit for h(A), where

k
x.i k .i

f(;_X) = e i=l >0 x.=0,1,... (2.4)i=l xi!

The proof is identical with that given in Harris and Soms (1980).

Note that if R is fixed as ni+, i=l,2,...,k, then
k

a L 4-m q 7 n wheren - ~

mp
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,k ,k n n -x x:.

q sup" r! X J P i

i i -

k
Thus in pratico an" 7 r. may be employed as an approximate (1--)

l=] k

ipper confidence limi 'or , qi, qi = 1- p  In this sense the
1=1

nethcds of this paper can be used as aproxmat Ms for estimit~in_

the reliDoility -f ra;-:ile! systc.: whecn; -nd-.c 'ent binomia]lv

distributecd data is obtaLnoc _'Dr .2,ch comuo:L:-t.

We p__oceed by showina that ,-X) is a Schur-c ncave functic:.

and consequently

is a Schur-convex set (see MarshaI! and Okin (1974), pp. I139-90

and Nevius, Proschan and Sethuraman (1977), p. 264). The Schur-

concavity of g(x) follows immediately by noting that

(xlx 2 ) g) g (k) 01 2 2 ix 10,

Define F(x 0;) by

F( o;) f((i ; ) = P (13- ) (2.f'x.s<B-. o
lxx

0

and let

u(x ;a) = sup 7 (k" , O<al (2.6)
h()=a 0

Since the Poisson distribution has a monotone likelihood ratio,

U(X ;a) is a strictly decresing function of a for fixed x0

Hence for every c, O<c'l, there is a unique a(c) such that

u ( 0;a(c)) = c .2.7)

Consecquently, we also have that a (see (2.3)) is the solution in



a of

u(0;a) 2

(2.8) is established exactly as in Harris and Soms (1930'.

The method .. qy to be employed is as follows. If P X; i ir

a Schur-concave function of R. = -In X. i1,2,...,k, then it

follows that u( 0;a) = F(X ;al/ki), wheri 1 = (il,....l),a

then the solution in a of U(x ;a) = is an optimal upper cnfi
k 0

dence limit for TI A.. This will entail verifying (for fixed .k 0i= 1  0

that

f3F(x ;N) 9F(x;)
(R - R ) 0 (2.9;

1 2 j -

(see Marshall and Olkin (IS74), p. 1190). Accordingly w,' ha',- .

following theorem.
k

Theorem 2.1: Let g(k) = T (xi+d), l<d<l.5, k>3. Define 0. Qi=l a.-

the j-vector all of whose components are zeros. Then let

Xl(1 = 6k ( x kl (2, 0 kl ) ' x (1 0k-2

x ( 3 )  = (3,6 kl , x ( 6 )  = (4,0 k-1 X(7) = (2,',0k 2 ) and

(8)x = (5,lk-l). The set A.I defined by (2.2) is the point xi

and the different permuntations of its components, i=l,2 .

Further, for j=l,2,...,7, F(xJ) ;X) is Schur-concave in F.i,

i=l,2,... ,k.

Proof: In the sense of the ordering given by (2.2), obviou.iy

x ( I )  < x ( 2 )  < x ( 3 )  < x ( 5 )  < x ( 6 )  < x ( 8 ) . Triviallyd(2+d) < (!-tc)

and hence (2+d)d k -  = g(x (3) < (l+d)2dk-2 = g(x (4). Similarly,

2 -(4))since l<d<l.5, (l+d) < d(3+d) and hence g(x() gCx ). I

the same way g(x(6) < g(x g(x < g(x(8) g(x(8) g(

and Q(x(8) _ (2,2, 0 k-2 establishing the first part cf tho concl i-:
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In order to establish Schur-concavity, ,.le must verify (2.9).

Thus consider

k -(. xJ
F(x1 ;. i x.(j (2.i)

xjEAjj<Z i=l 1 ±

where X. = e-Ri. Define1

k -R.
- Y e

-F(x e' e 2.11)
GR1  R2- _

Letting R = (RI,...,Rk), we obtain

-R1 -R 2

S(k =;R) (e 1 - e 2)

-R 1  e-R2 k -Ri)
-(2) - -R1 -R2 1 RG(x ;R) = (e - e ( e ,i=l

-R -R k -R. k -2R
G(x ;R) (e 1- e 2 X 1 + e

i=3 i=l

-R -R k -2R.
G(x ;R)=(e - e ( e2 + I e 1 )

i=l i<j

-R R -2R. -RI-R 2(5);R) = (e 1 - e 2) ( e + e 22 2 -i=3

k -R R . k -3 R i

+ e 1 + _i< j, (i, j) 4(1, 2) i=l 3

-R -R k -2R. -R 1 -R 2  k6)3 2 e v IG(X ;R) (e e )2 + L ej=3 2 2 i<j, (i,j)7(1,2)

k -3Ri -2R 1 -R2 -R 1 -2R2 k -4R

4 +__ +e e
2. ! -3! +4!i=3 i=l

and



-R R 2 R 2R -2R 2 "R 1 -2R2 -R

; (x ;R ) 3 33 +j

-R.-4R. -2R. -R.-
k L k 3ei ee e

+ 7 + e

i j,(i,j) (1,2)or(2,1)

-R1  R-R2  R1  -R2No% RR 2 implies e < e and thus (RI-R and (e

have , signs. Hence it follows that F(x i);X), i=1,2,3,

4,5,7 i, Schur-concave in R.. The verification that F(x(6);%) is
S_2 _i

Scnir-concave nay be accomplished by letting k=2, e = ce ,

c'0, 3Q examining the discriminant.

s r7 ,,, that (2.9) need not be positive for all Xo, consider

2 an, x (7,0). Then

R e-6R1  -6R 2, c.: R ( l 2 (e +e
•e 6!

-4R-. -3R -2R -2RI- 3R22 2 1 + 2 +e 1  +e-  4R2
5!

e-3R R 2 +e-2RI-2R2+e-RI-3R2 e -2R1- R 2+ e-R 1- 2R2

4! 3
-R 1  -R2

a7, i i chur-ccnvex near e e 4.

.. : ) ravided an extensive discussion of this problem for

-nwg function determined by the product of the upper

cc nfi :nce Iii for the individual components. In particular,

7 --,id some numerical tabulations for k=2. Asymptotically

*< - Icr s orcrering function is given by

k 1/2
9B~x) =W I (xi+z 'xi

-, -1 - /k z satisfies (z) = 1-a and D (x) is

,nn~ m, cumulative distribution function. It is easy

.- s Schur-concave (see, e.g., Marshall and Olkin

7



3. Bounds on Confidence Limits

In this section we employ majorization techniques descri;...

in Proschan and Sethuraman (1977) and Nevius, Proschan and

Sethuraman (1977) to obtain bounds for a . Throughouz thi c -

w,: assume only that the ordering function g(k) is stri<L-

jncreaing in each component and Schur-concave and thus the ;ct

B- will be Schur-convex (see the discussion immediately pr(';e<-:-V

in- z. 5 )).

In order to proceed, we need the preliminary results estaL-

lished below.
Theorem 3.1: Let c and a be given with c>kal/k and consider ti

set A(a,c) of vectors X = (Xlf 2 ,...,Xk) , Xi>O, such that

k k
HA. = a and X A.=c (3.i=1 1 i=1

Let S.= max 1 .. Then there is a unique X* - A(a,c) ot
3 aA(a,c) i=l

the form N. = M., 1<i<j, . i= m j+l<i<k, M.>m., S. = jM .1 3 - - 1 J' - - '3 3 j

Proof: The condition c>kaI/ k is a consequence of the aritbmeti?-

geometric mean inequality and insures that A(a,c) is non-triv%_'K

for k>3. If k=2, there is only one solution of (3.1) with ! ,

and hence the Theorem is trivially true. Consequently, suppos.-

k-3. Then for fixed j, (3.1) requires that any solution of the

required type satisfy

jM. + (k-j)m. c , M.3 mkj k a
a 3 3 3

arcd hence setting m. -- (c-jN.)/(k-j), we consider

3 3"
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f (M) = M[ (c-jM)/(k-j)] k-j lj<k-l, 0,.Ic/j (3.2)

Note that f. (0) = f (c/j) = 0, and
J J

(M) =-j(c k-j-I

f". (M) = (c-. )( ) (k_ j (3.3)

Thus, f.(M) is increasing for 0<M<c/k and decreasing otherwise,

further f. (c/k) = (c/k) k>a. Hence there is exactly one solution3

M. of f. (M)=a with M.>c/k, and therefore M.>m..3 J 3 33J

Now assume that for some j, l<j<k-l, the vector

X = (AIA 2 ,...,I k  with A. = S. is not of the form
i=1 3

(Mj,...,Mj, mi, .... m). Then let -A. = Sj/j and X2j = (c-S )/{- ).

j k-j
Define X. = Wit X ., by X'. = l<i<j, = 2j

3~~~~ 
I..g.1

..

j+l<i<k. Since the geometric mean of a set of positive numbers

whose sum is fixed is a maximum when they are all equal, we have
k
HI.. >a. Now X. is of the required form, however, from (3.2) arn
i=13 1 k I
(3.3), IT X.. >a implies that there is another solution of the

i=l 3 1

required form with XA > S./j, l<i<j, contradicting the maximaitv'

of S.

From (2.5) and (2.6), we can write

U(X o;a) = sup P (Bk ) = sup sup PX(B x ) x(.4)0 ~AX
k o c k k 0
l.=a I Xi=c,T i =a1 ~ i= i

iil=1

We state now the main result of this section, using Theorem 3.1.

Theorem 3.2: Let vl = M i V. = iM.-(i-l) i I , 2<i-'k-l,
k-1 ii -

vk = c- v i, where M. is specified by Theorem 3.1. Then
i=k '
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u(xo;a).< sup P-(B ) .3.5)

C 0

k
Proof: Since o v. = S., l<j<k-l, v= C, v majorizes everyill I - i= I

k k
X -with > = c, X. a (Theorem 3.1). Then (3.5) foll-ws,

i=!i

since if Xi majorizes X2 ' then for any Schur-convex set A,
1 2

P l(A) > P2 (A) (Proschan and Sethuraman (1977) and Nevius,

Proschan and Sethuraman (1971), p. 264 and pp. 267-9).

The vector v may be interpreted as the best vector that "najor-
k k

izes all vectors A such that . = c and H X. = a. More•i1 1 i=l 3-

specifically, Lhere is no vector w v' such that v majorizes , and

q majorizes all A satisfying the two conditions given above.

The following is a suggested method for employing Theorem 3.2.

Find ad such that

a = F(o;adl/k 
1)

Next calculate the smallest a, say am, such that sup P-(B < a.
c o

1-Z a = ad, this is the exact solution. Otherwise ad< am and

sup P-fB- ) < a (here a= a ) and the solution a satisfies
V x M n

c 0ad<a Dam. The vector 9 may be calculated by any of a variety of

numlerical techniques. In the numerical examples presented here,

interval bisection was employed.

Example 1: Let k = 5, a = 25, c = 15. Then the 4 vectors Xi' 2'

X3 and A 4 of Theorem 3.1 are

= (9.9660, 1.2585, 1.2585, 1.2585, 1.2585)

A2 = (6.2004, 6.2004, .8664, .8664, .8664)

3- (4.6696, 4.6696, 4.6696, .4955, .4955)

and A4 (3.7172, 3.7172, 3.7]-2, 3.7172, .1309)



from which ; is determined to be

v (9.9660, 2.4349, 1.6079, .8601, .1309)

Note that in the above example v1 >v2 . . _>vk- This in fact

is always true, as the following theorem establishes.

Theorem 3.3: For v? defined by Theorem 3.2, we have vl>V 2>...>vk.

Proof: It follows immediately that vl>v2 , since MI>M 2. Consider

therefore vj, j>2. vj>vj+l, j=2,3,...,k-1 holds if and only if

jMji- (j-1)Mj_ _? (j+l)Mj+l-jMj

or

jMj _> ((j+l)Sj+l+(J-1)Mj_l)/2,

where Mk = c/k (satisfying the condition Sk = c = kMk of Theorem

3.1).

Let XA. = (l-ati)Xj j-1 + aj j+l' j=2,3,...,k-l, where

I
a. = (1/2)+(1/(2j)) and

JX •= (At1 Aj2 .fk)13 jl' j2'' ' jk

and

.. M. i<j, X.. = m. 0 j+l<i<k

It follows that

k
1 A i>a,i=l A.',

k
since i in x i is a concave function of xl, ... ,xk . Now let

ii~kl 1(-)
Bj i = li~ I j/j, i=,2 0,...,j, X ,ii =  + / k- )

i=j+l,. ..,k. Then

J J
j: AS i > TI I~ i j=l,2,. .. ,k-I
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Thus, usin9 the properties of M. in Theorem 3.1,
)1

jM. > (j-1)(I-tj)M j+czM j+ I ) + (l-a )mj_ 1 + Ct M

yielding

jMj > ((j+l)Mj+I+(J-l)Mj_I)/2 + (1-j)mj_1

which establishes the theorem.

To illustrate the techniques of this paper, we compare ndarncr-

ical values obtained by the above method with those given in the

examples from Mann, Schafer and Singpurwalla (1974, p. 505). Fro;

now on we assume d = 1.1.

Example 2: For xo = (1,2,1) we obtain ad = an = 20.56 for a = .10.

In Mann, Schafer and Singpurwalla, an AO non-randomized confidence

bound of 20.7 is obtained.

Example 3: Let Xo = (2,3,5), a = .10. Then we obtain ad = 135.46.

A summary of computer calculations which establishes 135.46 < a n

142.46 is given below in Table 1. With the exception of the

likelihood-ratio value of 133 and the AO non-randomized confidence

bound of 129, all the other confidenze bounds given in Mann,

Schafer and Singpurwalla exceed the upper bound of 142.46. For

k=3 it is possible to do a direct computer tabulation of U(Xo;a).

This gives an = 135.46, the diagonal value.

Insert Table 1 here.

The two examples below are for four and five component systems

for which there are no comparable numerical examples available.

Example 4: Let xc (2,2,2,2) and a = .10. Then ad = a 150.63.
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Example 5: Let Xo (2,2,2,2,2) and u = .10. Then ad 429.69.

A summary of the computer calculations which establish 429.69

a < 435.69 is provided in Table 2.n -

Insert Table 2 here.

As adl/k increases, the difference between ad and an becomes wide-

hus the techniques of Section 3 are more useful for small x0 .or equiva-

lently, small ad l/k. For example, for Xo = (5,5,5), ad = 387.18,

and it is not practical to compute am because it is much bigger

than ad' However, direct tabulation of u(Xo ;a) reveals once more

that ad = U( 0 ;a). A justification of why ad = U(Xo;a) for large

ad l/k is given in the Appendix. This, together with the results

of Section 2, suggests very strongly that for all practical

purposes ad = an.

Remarks: Note that Tables 1 and 2 are virtually linear in their

behavior in the neighborhood of the solution. This suggests that

solutions are obtainable by interpolation and then one should

subject them to verification.

The calculations described above utilized two short FORTRAN

programs for 2-10 components. Listings are obtainable from the

authors.

4. Comparisons with Buehler's Tables

In order to provide an illustration of the performance of
k

g(ko) = H (xi+d), l<d<l.5, when compared with the tables given
i=l

by Buehler (1957), we chose d=l.l, k=2. For k=2, the values of
a and ad coincided for both the ordering based on g(x) and
n d

Buehler's ordering and further were for all practical purposes
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QIual for the two different orderings.

In TaAi 3 we give Buehler's upper confidence limit, Buehler's

diagonal value and the exact upper confidence limit and diagonal

value corresponding to g, denoting them by anB, adB , ang and adg ,

restivcly. These values are provided for all failure combina-

tions from (0,0) to (5,5) for c-=.i.

Insert Table 3 here

An examination of Table 3 shows that differences between the

four alternatives presented are small for the specific example

(k=2, a=.!) .

5. Concluding Remarks

In this paper a procedure for obtaining bounds on an optimal

upper confidence limit for the failure probability of a parallel

system is givpn. The procedure employs the theory of major-

ization and is valid for an arbitrary number of components and

gives the exact answer or narrow bounds when the observed number

of failures is small for each component. In addition, numerical

and asymptotic justification is given for using ad as an

approximation to a n . Tables of ad are in preparation for moderate

raimbers of failures for 3, 4 and 5 components and will be avail-

able in the near future.



15

Appendix

Theorem Al: Let Xli, 1 < i < k, be independent identically

distributed normal random variables with means X and variances I.

Let X2i, 1 < i < k, be independent normally distributed random

variables with means Ti and variances Ti, where Ti = X + O(Xc),

k
c < l,as X-.c', and t. = r k. Let 8 be given, 0 < 8 < 1,

i=1
k

let a be a specified positive real number, let Z1  It (Xl + a),

k
Z =I (X2. + a) and let d(X) satisfyj=l

P(Z1 < d(X)] = 8. (A.1)

Then as X ,

O[(Zn X)I15X- ]  c 0 ,

8 - 2 < d(X)] = (A.2)

Proof: Throughout, let and 0 denote the density and

distribution function of the standard normal. Clearly,

P[Z 1 < d(Xfl - P[Z2 < d(X)] = f .- f (f1 (x) - f2 (x))dx,

(A.3)
k

Xf: I(X + a) < d()}
j=l x

where x = (Xl'X2 '.''xk) fI is the probability density function

of Xll,Xl2 ,...,Xlk and f2 is that of X 2 1 ,X2 2 ,...,X 2k. Now
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PXl >-a, j = 1,2,... ,k] > 1 -- 2 (A. 4)Ij(X+a) (A172
and 1/2

P[X2  > -a, j = 1,2,...,k] > k 1 - " j. + a  f (A.5)
j=l 

T +

Consequently, for X sufficiently large, there exists a constant

m > 0 such that

P[X 3 > -a, j = 1,2,...,k] > 1 - e- m  , = 1,2. (A.6)

Then, for i = 1,2,

P[Z. < d(X)] = P(Z. < d(X),X i  > -a, j = 1,2,...,k]

k
+ P[Z.< d(X), U (Xij < -a)],

j=l

and therefore

< d(X)] - P[Z. < d(X),X i  > -a, j = 1,2,...,k] < e- m . (A.7)

Next, we calculate

P(Z1 < d(X),X 1 j > -a, j = 1,2,...,k] - P[Z 2 < d(X),X 2 j > -a, j = 1,2,... ,k

Now

P[Z1 < d(X),Xlj > -a, j = 1,2,...,klX l j =xj, j = 2,3,...,k]

PX 1 d(A) a (A.8)

j_2 (x.+a)

d(A) a- / /2(b-)

IT (xj+a) X
j=2
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Therefore

P[Z1 < d(X),Xlj > -a, j = 1,2,...,k]
(A.9)

- f S (D(b-)gl(x 2 'x 3 ''xk )dx2dx 3... dxk
-a-a -a

where gl(x 2 ,x3,.. ,xk) is the probability density function of

XI 2 ,XI3,...,Xlk. From (A.6), we have that

f ". ?(b~) gl(x 2 ,x 3 ,...Ixk)dx 2 dx3- dxk
-00 -00 -00

(A.i0)

f ..-. f (b)gl(x 2 ,x 3 ... ,xk)dx 2 dx3 ... dxk < e'm
-a -a -a X

Hence we will estimate the first expression on the left hand side of

(A.10). Similarly, for Z2 we will consider

f '" k - a - T /T /  g 2 (x 2 x 3 ,  ,x.. ,dx

IT (xj+t )
-2 _ (A.11)

where g2 (x2 'x3 '''''Xk) is the probability density function of

X,X 2k. In the first integral in (A.10), let

(Yi - u)/.1/2 U. and in (A.11) let (y. - 1)/T/2 U ,

i = 2,3,...,k, obtaining
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-0 .. 9 -0a- /i/ g(x 2,x3 ,...,xk) dx2dx 3...dxk

- .... 1 (x-+a)

4=2  3

-~ k-ad 1/2'd7

k 7 (xj+a) 1 k 1 g2 (x2Ix3 '...xk)dx2dx 3
" dXk

3= a(A..13)

- " ::d(1) - a - / 1/2

-. -.I - -M' l a

_ d I,. . -a/2 aI -(xj) dx dx dxk 1 2 3- k '

S L/2 j= 2, ( ,. x +1 +a

j=2

where M = (2 n )1/2 and R < 4 (k-l)e-M/2 -1
M2Tr/2 =

Using dMl) kk kd Mx k-1/2Us= (~ -k,(kd)X)= 0(i),

k2X/ k -1/2 -1 -1
a k M (1+x.X +aX

j=2 dj=2
j=2 jxI1/2 _ aX-i1/2.

Since IxiI< M, we have

(1 + xi- 1 /2+aX-l)1 = l-xX 1/2+(-a+x2)X-1 +0((n X) 1.5 X-1 .5)
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Thus

1/2k -1/2 a- i- 1/2 -1/2
( - kd(X)) I (1 + x~' + aX x aX

j=2  3

k -1 2k -1/2+( k 2 - /

- id )-ka- 2+kd(X) xi)X + xi)=2 1 (A.14)
i=2 1dd i=2 i=2

+ ( 1 1 x x )-1/2 1.5X-12_<i j i j~. + O((£n \) .

k k 1
Similarly, using T = x /j2Tj 'T A = 1 + O(Xcl),

Simiarl, 1 j=2 i

(Tj/) 1 / 2 = 1 + o(xc-l), j = l,2,...,k, lxil < M, we have

( 1/2) 1/
1 T x. +T .+a)

j=2 3 3 3

= (T/X)21l/2-kd())II (+xj2 1 2  1 1  1/2] - 1/ 2

d j=2 I11

(A.15)
k -1/2 k -1/2 k 2,1/2

- x - +kd(X) (I x)X +( I
i=2 i=2 i=2

+ ( /2 + O(X C-)+O((Zn X) .5X-l)

2<i<j 1 )

Combining (A.14) and (A.15) with (A.7), (A.9), (A.10) and (A.11)

establishes the theorem.
1

For c < - standard weak convergence arguments show that2

Uim(O - PIZ2 < d()]) = 0.

In this case Theorem Al provides additional information by specifying

the rate of convergence.
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By standardizing the first expression in (A.13) and applying

the dominated convergence theorem the following result can be

obtained.

Theorem A2: Let Xli, 1 < i < k, be independent identically

distributed normal random variables with means X and variances X.

Let X2i , 1 < i < k, be independent normally distributed random

variables with means Ti and variances Ti, where Ti = X + o(XC)

c < 1 and let a, ZIZ 2 and d(X) be specified as in Theorem Al.

Then

im(8- P[Z 2 < d(X)) = 0.

A -t
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1. Summary of Calculations Used to

Obtiiii the Upper Bound for a n in Example 3

a v sup P- (B.-
V X

c 0

135.46 13.0680 4.7283 1.7108 .1101

136.46 13.0867 4.7409 1.7173 .1086

137.46 13.1053 4.7532 1.7240 .1071

138.46 13.1239 4.7656 1.7305 .1057

139.46 13.1423 4.7780 1.7370 .1042

140.46 13.1607 4.7902 1.7435 .1028

141.46 13.1789 4.8024 1.7500 .1014

142.46 13.3299 4.8057 1.7325 .9999
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2. Summary of Calculations Used to

Obtain the Upper Bound for a in Example 5

a sup P-(B-
c 0

429.69 .1016

430.69 .1013

431.69 .1010

432.69 .1007

433.69 .1004

434.69 .1001

435.69 .0998



24

3. Comparison of Exact and Diagonal Buehler's Values,

a nB and adB'- Respectively, with the Exact and Diagonal Values

a and adg Respectively, Corresponding to g(R)

-ng d

__ 1_2_ nB adBa qad

5 5 60.7 60.70 60.70 60.70

5 4 51.8 51.89 51.89 51.89

5 3 41.2 41.21 41.22 41.21

5 2 31.9 31.91 31.91 31.90

5 1 23.3 23.34 23.34 23.34

5 0 12.3 12.32 12.32 12.32

4 4 44.3 44.40 44.40 44.40

4 3 35.7 35.73 35.74 35.73

4 2 27.2 27.23 27.23 27.23

4 1 18.8 18.77 18.77 18.76

4 0 9.05 9.05 9.05 9.05

3 3 28.9 28.89 28.89 28.89

3 2 22.0 22.04 22.04 22.03

3 1 15.1 15.08 15.08 15.08

3 0 8.24 8.24 8.24 8.24

2 2 16.8 16.80 16.80 16.79

2 1 11.8 11.85 11.85 11.85

2 0 5.59 5.59 5.59 5.59

1 1 7.09 7.08 7.08 7.08

1 0 3.86 3.78 3.78 3.78

0 0 1.33 1.33 1.33 1.33
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